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Abstract

Updating beliefs to maintain coherence with observational evidence is a corners-
tone of rationality. This entails the compliance with probabilistic principles which
acknowledge that real-world observations are consistent with several possible in-
terpretations. This work presents two novel experimental paradigms and computa-
tional analyses of how human participants quantify uncertainty in perceptual infe-
rence tasks. Their behavioral responses feature non-trivial patterns of probabilistic
inference such as reliability-based belief updating over hierarchical state represen-
tations of the environment. Despite characteristic generalization biases, behavior
cannot be explained well by alternative heuristic accounts. These results suggest
that uncertainty is an integral part of our inferences and that we indeed have the
potential to resort to rational inference mechanisms that adhere to probabilistic
principles. Furthermore, they appear consistent with ubiquitous representations of
uncertainty posited by framework theories such as Bayesian hierarchical modeling
and predictive coding.

Keywords: Uncertainty Representation, Rationality, Bayesian Statistics, Probabi-
listic Inference, Cognitive Modeling, Behavioral Analysis, Confidence, Decision
Making, Generalization, Cognitive Biases.
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Zusammenfassung

Ein Grundstein rationalen Denkens ist die Anpassung vorherrschender Überzeu-
gungen infolge empirischer Evidenz. Dies beinhaltet die Berücksichtigung von
wahrscheinlichkeitstheoretischen Prinzipien, die anerkennen, dass jede Beobach-
tung, abgesehen von Idealisierungen, stets mit mehreren Interpretationen konsi-
stent ist. Diese Arbeit präsentiert zwei neuartige experimentelle Versuche, um zu
analysieren, wie Menschen Unsicherheit bezüglich ihrer wahrnehmungsbasierten
Überzeugungen abschätzen. Verhaltensdaten weisen komplexe Muster probabi-
listischen logischen Schlussfolgerns auf, wie zum Beispiel zuverlässigkeitsge-
wichtete Anpassungen hierarchischer Zustandsrepräsentationen. Trotz charakte-
ristischer Abweichungen beim Verallgemeinern, kann das Verhalten nicht auf al-
ternative heuristische Erklärungen zurückgeführt werden. Die Ergebnisse legen
nahe, dass die interne Darstellung von Unsicherheit ein wesentlicher Bestandteil
unserer wahrnehmungsbasierten Schlüsse ist, und dass wir durchaus das Potential
besitzen uns rationaler Inferenzmechanismen, die wahrscheinlichkeitstheoretische
Prinzipien befolgen, zu bedienen. Darüber hinaus scheinen sie darauf hinzudeuten,
dass interne Unsicherheitsrepräsentationen allgegenwärtig sind, was von Rahmen-
theorien wie Bayesian hierarchical modeling und predictive coding vorausgesetzt
wird.

Stichwörter: Representation von Unsicherheit, Rationalität, Bayessche Statistik,
Probabilistische Inferenz, Modellierung kognitiver Prozesse, Verhaltensanalyse,
Konfidenz, Entscheidungsfindung, Verallgemeinerung, Kognitive Verzerrungen.
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Resumen

Un pilar fundamental de la racionalidad es actualizar las creencias con la finali-
dad de mantener la coherencia con la evidencia observacional. Esto implica cum-
plir con principios probabilísticos, los cuales reconocen que las observaciones del
mundo real son consistentes con varias interpretaciones posibles. Este estudio pre-
senta dos novedosas pruebas experimentales, así como análisis computacionales,
de cómo participantes humanos cuantifican la incertidumbre en tareas de inferencia
perceptiva. Sus respuestas conductuales muestran patrones no triviales de inferen-
cia probabilística, tales como la actualización de creencias basadas en la confia-
bilidad sobre las representaciones jerárquicas del estado del entorno. A pesar de
los sesgos característicos de generalización, el comportamiento no puede ser co-
rrectamente explicado con descripciones heurísticas alternativas. Estos resultados
sugieren que la incertidumbre es una parte integral de nuestras inferencias y que
efectivamente tenemos el potencial para recurrir a mecanismos de inferencia ra-
cional, los cuales adhieren a principios probabilísticos. Además, dichos resultados
son compatibles con la idea de que representaciones de incertidumbre internas son
ubicuas, lo cual presuponen teorías generales como Bayesian hierarchical mode-
ling y predictive coding.

Palabras claves: Representación de incertidumbre, racionalidad, estadística baye-
siana, inferencia probabilística, modelación cognitiva, análisis de comportamiento,
confidencia, toma de decisiones, generalización, sesgos cognitivos.
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Preface

How can we be sure of our knowledge? This question is of tremendous relevance,
for instance, to determine if we can trust a medical diagnosis before undergoing
risky surgery. From an epistemic standpoint, it is related to the old philosophical
question what truth is. Our success as a species seems very coincidental if we
did not possess a mechanism that allows us to distill truthful statements from false
ones.

However, the applicability of certain formalisms, such as Aristotelian syllo-
gistic logic, is too limited to serve as a general rule - largely due to their incapaci-
ties to handle uncertainty. Rational reasoning crucially relies on respecting belief
uncertainty for which a theoretically normative theory is available with probability
theory. Nevertheless, it is generally claimed to be inadequate to describe how we
actually reason because of frequently observed biases - deviations from the norm.
It is puzzling that our inference skills, as e.g. evidenced by visual scene under-
standing, are very powerful and reach far beyond the immediate observations. But
yet we systematically fail on the simplest inferences in explicit reasoning tasks.
Ironically, scene understanding has turned out to be very difficult to replicate in
machines, while our reasoning errors typically do not pose great challenges.

Statements regarding the subjectively assessed certainty of knowledge are
expected to provide important insights into the power and flaws of human infe-
rences. We hypothesize that humans have access to probabilistic computations for
judgments about uncertainty and experimentally further explore their extent and
limitations. Crucially, testing must respect the subjective ’boundary conditions’
such as prior knowledge. As an analogy, numerical weather prediction requires
both physical principles (fluid dynamics) but also initial and boundary conditions
(today’s weather) to be combined. We must disentangle whether errors arise from
disobeying principles or from inappropriate boundary conditions. This work con-
tributes to an emerging research field at the intersection of machine learning and
cognitive science. It follows a constructive approach to understanding the mind
and attempts to describe cognition and behavior in computational terms. After all,
the basic perceptual problems are shared by both biological and artificial agents.

Chapter 1 introduces the fundamental problem of perception along with im-
portant concepts. The following Chapter 2 discusses the implications for experi-
mental testing of rational inferences. Supplementary information is given in ’info
boxes’ which may be omitted without compromising further understanding. The
subsequent two Chapters 3 and 4 present two comprehensive experimental and
computational studies which can be read independently. Finally, Chapter 5 sums
up their contributions and puts them into context with the literature.
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Chapter 1

Probabilistic principles for
rational inference

1.1 Perception under uncertainty

Any agent must determine its behavior based on uncertain information about the
state of its environment. For our purposes, an agent is an entity that can interact
with and sense aspects of the environment in which it is embedded [1]. Natural
agents, such as humans, must acquire knowledge of their surroundings to avoid
potentially harmful states. Instead, they must seek out valuable resources to main-
tain physiological homeostasis and to procreate. The better the internal map to
navigate the environment, the better an agent can adapt its behavior accordingly.

This is complicated by the fact that our sense organs are adapted to only pick
up certain signals, the stimuli, of the physical world. We do not have access to the
environment as it is, we only have access to our sensations. The brain is enclosed
in our skulls and only provided with access to high-dimensional, raw signals of the
sense organs [2]. These impinging sensory signals are important to the organism
only insofar as they bear information about the environment. In order to access this
information, the neural code needs to be deciphered to reveal the environmental
state they originated from. This interpretative process is commonly referred to
as perception: "Perception is the organization, identification, and interpretation of
sensory information in order to represent and understand the environment" [3].

The central idea is that perception leads to a representation of the environ-
ment. In its most elementary form, a representation is a surrogate for the thing
itself [4]. The percept is the "internal re-creation" of the distal object from the
neural activity called the proximal stimulus [5]. Internal operations on the sur-
rogate "substitute for operations on the real thing" [4] - much like a simulation.
Therefore, a correspondence must be established between the real environment
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and the objects referred to. Perception may be considered a canonical information
processing operation that extends to increasingly abstract concepts, but which are
nevertheless firmly based on sensations. Apart from the semantics, the accuracy
of the representation is of great importance as mental surrogates are inevitably
imperfect.

1.1.1 Uncertainty: An inescapable problem

The dissociation between internal representations and real-world objects poses an
inference problem. Because our senses provide only limited access, perception is
uncertain, especially in realistic or complex environments. Uncertainty refers to
the problem that, given a set of observations, different conclusions may be drawn
about the environment.

It underlies many common ambiguous visual percepts (Fig. 1.1A-B) such
as the Rubin vase [6]. However, uncertainty is no less prevalent for inferences in
more abstract domains such as natural language (Fig. 1.1C-D). In the example,
it is impossible to resolve the uncertainty about the meaning of these sentences
without making additional assumptions about their context. In other words, the

Figure 1.1: Ambiguous percepts (A) Face-vase illusion. (B) The picture can be inter-
preted as either an old or a young woman [7, 8]. (C-D) Sentences with several possible
meanings [9, 10].

observations do not sufficiently constrain the set of hypotheses to arrive at a certain
conclusion. Correspondingly, this so-called "poverty of stimulus" [11] has been
considered a fundamental problem to provide a unique description of the world.
Instead, suitable assumptions are indispensable to reach truthful conclusions about
our environment.

Such inferences under uncertainty are very common in every-day life, e.g.
when determining the trustworthiness of an unknown person based on her actions.
A typically strategy is to resolve uncertainty by gathering more information. In
fact, this may be the reason why people find watching crime stories interesting.
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However, the inference we just engaged in (assuming it is a fact that many pe-
ople like crime stories) is actually consistent with many other explanations. Not
only in this example do our conclusions critically depend on assumptions how hu-
mans behave and for what they strive. Overall, the uncertainty of our inferences is
fundamental as it stems from two unsurmountable origins.

Origin of Uncertainty

"Little Susie was told by her parents to never open the basement door. Why?"1.
In popular games called situation puzzles, people are given some puzzling facts
calling for an explanation. The goal is to explain the situation in the fewest steps
possible by asking yes-no-questions to the host who has made up the narrative
behind the scenario. This is an instance of active inference in which information
should be sampled such that it most effectively reduces uncertainty akin to delibe-
rate hypothesis testing.

Gathering information lessens uncertainty about possible interpretations.
Non-observability [1] on the other hand introduces uncertainty. We can only sam-
ple a small subset of the state-space of the environment, e.g. because our sensors
are only sensitive to particular physical stimuli. For objects more than a few meters
away, stereo-vision is virtually ineffective. We only have access to 2D projections
on our retinas to determine what the 3D world looks like (Fig. 1.2A). Our percepts
largely correspond to the outside world because the brain effectively exploits pre-
viously acquired background knowledge [12] to draw the most likely conclusion,
e.g. about the shape of an object. As finite agents, our percepts are governed by
states that are beyond our access. For instance, a central characteristic of a stock’s
price evolution is its lack of patterns. Consequently, it is difficult to predict which
out of several possible states it will adopt next. This randomness, or stochasticity,
is mostly due to non-observability.

If we had access to the intentions of all potential investors, we could account
for a great amount of this variation that otherwise appears to occur without obvi-
ous origin (assuming behavior can be fore-casted). In a completely deterministic
world, one could in principle explain away all variation by recursively uncovering
its causal factors. This is similar to exploring which branches of a maze lead to the
exit or to a dead-end (Fig. 1.2B).

However, from physics we known that events on a microscopic quantum-
level are nondeterministic, i.e. there is irreducible randomness. The photon in-
teraction with a receptor in the retina is governed by laws that only allow for
probabilistic statements, not for statements about single events. The molecular
components of the nervous system are susceptible to individual physical quanta

1http://puzzlewocky.com/brain-teasers/situation-puzzles/, 05.01.2018
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Figure 1.2: Non-observability introduces uncertainty (A) Several 3D objects (black)
yield the same 2D-projection (red). Adapted from [12]. (B) Finding its way through an
unknown maze, the access to the environment of the agent (blue) is limited to its line of
sight (blue cone). It is a priori unclear which decision leads to a dead-end and which to
the exit (green). Adapted from [13]

.

[14]. The brain itself is highly nonlinear so that intrinsic noise may be amplified
and might be translated into behavioral variability.

Altogether, nondeterminism and non-observability are the reasons why our
observations are subject to changes for which we cannot account [1]. These sto-
chastic processes introduce uncertainty into our inferences because we face the
’problem of induction’. The question how one can generalize from "instances of
which we have had no experience resemble those of which we have had expe-
rience"(D. Hume, e.g. [15]). Uncertainty is an inescapable problem for every
agent, apart from artificially limited environments to which idealized descriptions,
such as propositional logic, apply.

1.1.2 Perception as optimization

The idea of perception as an inference process that occurs unconsciously and pre-
rationally in the brain dates back to Helmholtz [16]. Critically, the uncertainty
involved in the process converts perception into an optimization problem because
the best matching hypothesis to explain the observations needs to be found. To
attain convergence of the internal world representation with the actual state of
the environment, one needs an optimization objective. Probability theory offers
precisely this, a way of scoring competing hypotheses in the light of ambiguous
evidence (see also [17, 18]).

While we motivated the need to reduce uncertainty of the internal repre-
sentation in rather intuitive terms, a more rigorous argumentation with respect to
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thermodynamics and information theory has been proposed. A natural agent must
seek out ways to (locally) resist the tendency of the thermodynamical forces of
the environment to destroy its structural integrity by disordering [19]. In order to
maintain homeostasis, its attained internal sensory and physiological states must
be limited to some few states. Mathematically speaking, this means that the pro-
bability distribution over sensory states must have low entropy. This in turn can be
achieved by minimizing a information theoretic equivalent of free-energy which
allows to avoid surprising events in the environment. Minimizing free-energy is
tightly related to posterior inference in Bayesian statistics which is discussed next.

1.2 Probability theory: A calculus for uncertainty

Above, we argued that uncertainty is inherent in the inference problem with which
the environment confronts an agent. Due to the fact that we do not have access to
all of the causes of our sensations, our observations are only a randomly sampled
subset of a population containing all possible outcomes. As a consequence, finite
and especially small samples feature fluctuations, i.e. their statistics deviate from
the corresponding measure on the population.

An agent may choose to ignore uncertainty and somehow limit its internal
representation to just one interpretation. A better, because more adaptive, option
is to explicitly handle it by constructing appropriate representations. Probability
theory is commonly regarded as the formalism of choice when uncertainty needs
to be represented [1, 20].

Here we must limit the discussion to relevant aspects for the following stu-
dies and refer to the standard literature for mathematical foundations or details.
Readers who prefer some more background information on the basic assumptions
that establish the probabilistic formalism and its relation to reasoning are kindly
referred to consult the appendix (Sec. A.1).

1.2.1 Probabilistic inference

Because of sampling, there is no deterministic correspondence in the form of a
mapping between an observation and any feature of the population. Here, we
illustrate the practical application of probabilistic inference with an example of an
urn problem that forms the basis of an experimental task which was carried out
with human participants (Chapter 3, Fig. 3.1).

Suppose that we blindly pick four items from a large urn (population) which
contains only red and blue items. The goal is to determine if there were more
blue or red items inside the urn before drawing. Assuming that the sample d
happens to consist of three blue and one red item (Fig. 1.3, top), we cannot say for

5



sure what value the population proportion µ must take because the observations
d are sampled from the random variable D ∼ Bin(N = 4, µ). Except for the

Figure 1.3: Probabilistic inference determines the hypothesis (population proportion) that
is most likely to result in the observed data/sample (top). Conditioning on the observed
sample (colored frames) yields the posterior distribution over possible population propor-
tions. The simulations that generated the sample from a red majority (red frames) provide
misleading evidence as the sample suggests a blue majority.

extremes of only red or blue items, we cannot exclude any value of µwith certainty
as each urn proportion is capable of producing the sample (Fig. 1.3, simulated
observations). However, some are more likely to generate the actually observed
sample d than others.

Probabilistic inference is performed by deriving the distribution over µ
when we condition on the actually observed instances d. In the example (Fig.
1.3), the number of simulations that generated three blue and one red item is tallied
up for each possible population proportion (columns). The normalized histogram
(bottom) approximates the posterior distribution as specified by Bayes theorem
(see Eq. A.1) for an infinite number of simulations (bottom, orange curve).

p(µ|d) ∝ Bin(d|N = 4, µ)p(µ) (1.1)

The distribution p(µ) is termed the prior distribution (or just prior) as it reflects the
state of knowledge about µ prior to observing d. Ideally, it should correspond to
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the base rates, i.e. the actual frequency p(µ) with which such urn proportions µ
occur. While the prior distribution can be any valid probability distribution, it was
chosen to be uniform for simplicity here.

Overall, observing d has changed the belief state from p(µ) to p(µ|d). Ne-
vertheless, uncertainty about the value of µ remains which is reflected by the fact
that p(µ|d) is a distributional estimate over all possible values that µ might take.
Altogether, the environment’s sampling process introduces uncertainty into our in-
ferences which should result in the construction of distributional estimates over
possible environmental states. The estimated posterior distribution p(µ|d) is the
optimal, i.e. most accurate, belief about the population proportion µ. Any agent
attempting to perform truthful inferences should ideally comply to such belief up-
dating (see Relation to normativity).

Relation to normativity

Justifying beliefs in terms of their empirical evidence is at the heart of science
and of rationality considerations. Our goal is to make truthful inferences to
establish beliefs that achieve close correspondence to the state of the environ-
ment. In the example above, the posterior yields a justified belief if the prior
distribution is sensibly chosen.

Formal arguments have been put forward that establish probabilistic
inference as a normative theory of belief updating [21], claiming that proba-
bility theory is indeed the only sensible way to reason under uncertainty [20,
22]. Accordingly, the framework of Bayesian inference can be considered a
normative theory for belief updating in the light of empirical evidence.

1.3 Probabilistic agents

Before, we have outlined the problem of establishing truthful beliefs about the
environment that every agent faces. We followed the arguments that suggest pro-
babilistic inference as a solution to that problem. The framework of probabilistic
inference is formal and does not concretely specify neither the probabilistic mo-
dels and prior distributions, nor how the necessary computations are carried out on
physical hardware such as a nervous system.

However, it can be used to formulate computational models of subjective be-
liefs. These internal ’boundary conditions’ can be tested and inferred themselves
using similar inference methods as for cognitive modeling itself (see Computati-
onal approaches to cognition). Proponents of the Bayesian brain hypothesis [23–
25] believe that this framework provides a principled approach to understanding
cognition and to guide further inquiries. In essence, probabilistic inference is clai-
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med not to be just a normative language but also a descriptive one for internal
models of cognition [26].

The main implication for a probabilistic agent concerns the nature of its
knowledge representation. The "probabilistic approach is first and foremost about
representing knowledge as probability distributions" [25]. This entails that infor-
mation about possible world states must be instantaneously available as "trial-to-
trial neural representation of uncertainty" [27]. Consequently, the central task of a
probabilistic agent is density estimation of a (probability) distribution over unob-
served world states. Beyond that, belief updating from observational evidence
must follow the probabilistic rules (appendix A.1).

Computational approaches to cognition

The present conceptualization of perception under uncertainty is typical for
the approach of cognitive science. Cognition is a broadly used term to refer
to mental processes which typically emphasizes the information processing
viewpoint. It rests on the tenet that "thinking can best be understood in terms
of representational structures in the mind and computational procedures that
operate on those structures." (Paul Thagard, [28]).

If agents are well adapted to the challenge that a task poses, their solu-
tions should be similar to formal computational approaches to the problem. In
such cases, knowledge of the agents’ goals and a formal model of the environ-
ment should suffice to explain and predict behavior. Such arguments underlie
the rational analysis methodology [29–31] which emphasizes the structure of
the environment as it is expected to provide tighter constraints on a theory
of cognition than the specific structure of the brain [32]. Consequently, such
accounts reside on a high level of abstraction encompassing the computatio-
nal and the algorithmic levels of description according to Marr’s and Poggio’s
classification [33, 34].

If the problem drives the solution, formal cognitive models are believed
to provide a suitable starting point which can then be refined to capture devi-
ations, e.g. due to resource constraints [35]. Critically, this is by no means a
claim that a computational level analysis provides an adequate description for
all kinds of tasks or phenomena. Important constraints of cognitive processing
and behavior are expected to be found on algorithmic or implementational le-
vels which more concretely describe an algorithm’s realization in physical
hardware. Indeed, bridging levels of analysis is a central topic of ongoing
research and among the ultimate goals of cognitive neuroscience [36].
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1.3.1 Generative models

Inherent in the probabilistic approach to inference is a model of the observations.
It is defined in terms of hidden variables H that are used to construct a probabi-
lity distribution over observable variables D (Fig. 1.4A). These hidden or latent

Figure 1.4: Generative models (A) A model can generate data D for a given hypothesis
H . Inference determines the most likely hypothesis depending on actually observed in-
stantiations d of D. (B) Schematic of compositional construction rules for objects from
rectangular primitives embedded in visual images which can be used to parse a scene.
Adapted from [37]. (C) A hypothesis (red variables) may be expanded in terms of further
variables (blue) for a more flexible representation.

variables may be interpreted as possible world states, as the urn proportion in the
example above (Sec. 1.2.1). As a consequence, inference follows an "analysis
by synthesis" approach [38] that, simply put, inverts the constructive process (Fig.
1.4A). In the example of the urn problem, a generative model was evaluated for
some candidate world states to quantify their respective consistency with the sam-
ple that was actually observed (Fig. 1.3, posterior).

Here, we use H to generically refer to such hidden variables or hypotheses.
It may stand for the space over model parameters as in traditional inferential sta-
tistics, e.g. the parameters defining a mixture distribution of Gaussians. However,
also models over complex spaces D such as images can be defined (Fig. 1.4B).
The model specification may e.g. include a certain inventory of objects of a visual
scene similar to the settings of a computer graphics engine to render images [37].

In inferential statistics, a generative model pM (D,H) =

p(D|H,M)p(H|M) refers to a joint probability distribution over both ob-
servableD and hidden variable(s)H . It specifies which variations in sample space
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could be explained away by knowing the value of H . The model M defines the
distribution over the random observations D in terms of H and potentially further
parameters. Ultimately, the distinction between what constitutes a hidden random
variable and what a parameter is artificial and depends on assumptions about the
context and the scope of modeling.

Our observations result from a multitude of interrelated causal, physical pro-
cesses. Hypotheses may be defined in terms of further intermediate states or latent
variables (Fig. 1.4B,C). In probabilistic graphical models the probabilistic chain
rule (appendix A.1) allows to expand the latent structure to richer representations.

To predict the observations well, the structure of the hypotheses H ought to
correspond to the causal structure in the environment. Several organization pro-
perties of the physical world such as symmetry, locality, compositionality, and
polynomial log-probability [39] have been suggested to facilitate representation
learning. Mirroring the outside dependence structure internally with a web of in-
terdependent variables gives rise to a mental "small-scale" model of the world
[40]. Strictly speaking, it is only a generative model of the observations D with
some correspondence to the actual processes in the environment. Over its indivi-
dual perceptual history, the agent thus learns an approximate world-representation,
including uncertainty, by refining the distribution over the latent variables H .

1.3.2 Learning as belief updating

The Bayesian inference equation (Eq. A.1) can be understood as an update rule
for a statistical model of the observations. A ’good’ internal representation allows
the agent to truthfully generalize from a sample d to the actual, unknown popu-
lation pE(D) of the environment E. The adequacy of an internal representation
can be objectively assessed, e.g. by predictive accuracy. Mathematically, gene-
ralization from a sample d is expressed as the predictive distribution over unseen
observations D which is a posterior-weighted sum (or integral) of the probabilistic
model.

p(D|d) =
∑
H

p(D|H)p(H|d) (1.2)

The internal model of the environment p(D|H)p(H) needs to adapt to the
environment pE(D) in order to make good predictions and to avoid surprising
events (Sec. 1.1.2). In principle, an agent can always compute how probable a
given set of observations p(d|H) is under its current hypothesis H of the envi-
ronment. Critically, Bayesian model evidence integrates out competing a priori
values of the hidden variables H and thereby automatically penalizes complex
models with widely dispersed prior distributions p(H) [41, 42] that overly adapt
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to the data d,
p(d) =

∑
H

p(d|H)p(H) . (1.3)

Maximizing the probability of the observed data, the model evidence - or marginal
likelihood - provides an optimization objective to more accurately represent the
environment (Sec. 1.1.2). The agent is free to tune the prior p(H) and the model
structure H itself, i.e. the distribution over the latent variables of the statistical
model which is typically governed by further hyper-parameters.

The free energy formulation provides deep analogies between the minimi-
zation of (environmental) surprise (free energy) and the maximization of a lower
bound on evidence [19, 43]. Intuitively, adaptive changes to better represent the
environment should be limited to those that increase model evidence. Posterior
(Bayesian) inference amounts to a suppression of free energy [19]. Hence, the
free-energy principle may be seen as a justification of the Bayesian framework lin-
king information processing in an representational agent with first principles from
thermodynamics.

So far, we have mainly discussed what we ought to do as perceptual agents
who have to act in only partially observed environments. Probability theory pro-
vides a measure of evidence that allows to find those hypotheses which offer the
best account of the problem. However, for the difficult real-world inference pro-
blems that humans face, often not even the problem structure itself is clear. We
may always test a particular hypothesis but hypothesis generation is outside of the
formalism discussed above. Hence, the basic practical problems of a probabilis-
tic agent are model selection (Sec. 1.4) and computability (Sec. 1.5) which are
discussed next. We will see that the situational context and tractability naturally
impose restrictions for applications embedded in realistic environments.

1.4 Inductive biases and inference models

The fundamental problem of induction (Sec. 1.1.1) reappears in the Bayesian in-
ference formulation as the choice of the model. The specification of a particular
probability distribution out of all possible distributions over some space of outco-
mes is high-dimensional. We need to impose constraints on possible distributions
by assuming a certain parameterization or latent structure such as the objects that
might be present in a visual scene. These constraints then impose biases for in-
ference onto what might be identified. If the only represented categories are cats
and dogs, even a picture of a car is forced to be categorized as either of the two.
Correspondingly, a model can be seen as a compact representation of all possible
data [44].
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One can explore whether the assumptions expressed by a particular model
are also adopted by humans when they perform an experimental version of the
problem [45, 46]. Accordingly, these assumptions have been termed inductive
biases [32], as they affect how an agent generalizes from a sample to the popula-
tion. Hence, the model itself constitutes a form of prior knowledge by imposing
inductive biases [32].

1.4.1 Embedding in the causal context of task

A task-specific knowledge representation should be constrained by the context.
The hierarchical structuring of nature [39] allows to extract knowledge that is ap-
plicable in a wider range of contexts. There is considerable experimental evidence
that humans organize and interpret their input in a hierarchical manner [47–49].
Moreover, also behavioral responses feature hierarchical patterns [50] and e.g. fol-
low optimal action hierarchies [51].

A concrete formalism are probabilistic graphical models (PGM, e.g. [52])
which describe the construction of probability distributions in terms of a (potenti-
ally large) web of interrelated latent random variables whose dependence structure
can be represented with a graph. Moreover, this allows to incorporate knowledge
of unidirectional, causal dependencies among variables [53–57].

In the language of PGMs, higher-level, ancestral nodes define and thus con-
strain the prior distribution for lower-level variables (see Fig. 1.4B). Importantly,
hierarchical dependence structures allow the agent to learn constraints from obser-
vational data itself as learning takes places on all levels (see task in Chapter 3).
Thus, learning increasingly abstract representations on multiple levels of a hier-
archy partly resolves the conundrum of what priors an agent should choose for a
particular task [58]. Hence, in principle at least, the model can be inferred as well,
e.g. by learning more abstract graph-production rules [59]. However, such a hier-
archical extension just defers the problem one level up. If the correct ’rule’ is not
included, inference will suffer from biased estimates. For some applications such
’abstracting away’ might suffice, but it is generally unclear what ’rules’ one should
follow to generalize well.

1.4.2 Structural uncertainty and instance-based approaches

Beyond uncertainty regarding the designated latent variables, there can be struc-
tural uncertainty [60]. More specifically, this refers to uncertainty about what the
latent variables are, their dependencies and the parameters defining a model. This
is very common in real-world environments and a substantial problem for the ge-
nerative approach to inference which requires choosing a model.
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We illustrate that with a simple example of clustering in some arbitrary fea-
ture space (Fig. 1.5). The agent is assumed to know that the features are normally
distributed for each cluster. It however does not know any parameter of the Gaus-
sian mixture distribution, nor how many clusters there are in the first place (Fig.
1.5A). It is an example of unsupervised learning in which only the unlabeled ob-
servations are given. Specifically, there is no information about the latent structure
such as the cluster identity from which a data point originated.

Figure 1.5: Estimating density in terms of an unknown number of clusters (A) The
’unknown’ generative structure consists of three 2D-Gaussian distributions (blue, red,
green) whose means and covariances are indicated. Values are sampled according to a
mixture distribution over the Gaussian and indicated in their respective colors. (B) Ker-
nel density estimation (KDE) sums up the contribution (color code) of Gaussian basis
distributions (yellow) placed on each observed data point (cyan crosses). (C) Bayesian
nonparametric clustering infers the appropriate number of basis distributions (yellow) for
the data. (D) As opposed to nonparametric approaches, an imposed limitation to two cate-
gories results in biased estimates.

The agent may approach this inference problem in different ways depen-
ding on how freely its internal model may adapt to the observational data. Purely
instance-based inferential methods take an extreme stance in that they impose only
minimal constraints on the distribution to be inferred. They effectively assume that
the sample is highly representative of the population.

A simple example is nonparametric kernel density estimation (KDE, Fig.
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1.5B). The estimated density is constructed by placing generic basis distributions
(Gaussians of certain width, yellow circle) on each data point (cyan) and by then
summing up their normalized contributions. The inferred distribution is explicitly
conditional on the data. As opposed to parametric approaches, the data does not
just enter through the updated latent variables H (see e.g. Eq. 1.2). As a conse-
quence, the model complexity grows with the amount of data which is retained as
building blocks of the model. This is the defining property of a more general class
of inferential methods termed nonparametric [44, 61].

The strengths of instance-based methods are complementary to their weak-
nesses. In terms of the bias-variance classification of generalization errors, they
fall at the low-bias end of the spectrum (see also [41]). As they do not impose
strong structural constraints, such approaches may be used as a starting point in
environments of unknown structure. This is essential to acquire new concepts such
as entirely new categories or clusters of features. People have been shown to ima-
gine and flexibly generate new category exemplars and categories in experiments
[62]. In our example, the density inferred by KDE will be more concentrated over
the generative clusters if enough data is provided.

However, purely instance-based, nonparametric methods come with major
liabilities. First, their low estimation bias comes at the expense of a high suscep-
tibility to fluctuations in the sample. Especially in high-dimensional spaces, the
assignment of probability (density) is typically sparse and local. This is reminis-
cent of the over-fitting problem inherent in the maximum likelihood procedure to
model fitting. Without any restrictions, the model that strictly maximizes the li-
kelihood p(D|H) is discontinuous and distributes density only to the data points
which become singular. This extreme case highlights the importance of including
constraining prior (structural) knowledge to avoid that the model fits the noise.

As a consequence, instance-based inferential methods are detached from
contextual or prior knowledge. Strictly speaking, KDE only implicitly captures
the three clusters. It actually estimates one cluster for each data point (Fig. 1.5B).
In terms of causal modeling, each data point is treated as its own cause, as if the
observed instances would consistently reproduce in the long run. Such a prolife-
ration of latent variables results in inefficient representations. They do not harness
the structure inherent in the data and poorly transfer to different contexts.

1.4.3 Efficient representations

Part of the inefficiency evidently arises from the need to memorize all training
data. Another problem is the large overlap of the basis distributions which makes
the representation very redundant (see Fig. 1.5B). To alleviate this, the efficient
coding hypothesis [63] posits an additional constraint known as redundancy re-
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duction. Nevertheless, even more crucial than a mere "compressed representation
of sensory experience" [64] is a representation whose factors are driven to be sta-
tistically independent. Such disentangled representations are considered to be im-
portant for generalization and have been suggested to enable zero-shot inference
[65]. Studies have claimed that the internal representation of human visuo-motor
errors are sparse, i.e. they are made up of a low number of basis distributions [66].
Additionally, they were found to be close to orthogonal, i.e. non-overlapping, and
to have compact support which is achieved by tiling the space with simple adjacent
basis distributions.

In the statistical realm, Bayesian nonparametric methods (BNP, see e.g.
[61]) have been suggested to alleviate both problems of purely nonparametric met-
hods. First, they allow for an incorporation of prior knowledge. And second, they
implement "an automatic Occam’s razor embodied in Bayesian inference [that]
trades off model complexity and fit to ensure that new structure (in this case, a new
class of variables) is introduced only when the data truly require it" (Tenenbaum
et al., [42]).

In the clustering example, the BNP-model correctly infers the dominance of
the three underlying clusters (Fig. 1.5C) without any explicit restrictions. Such a
strategy effectively is a hybrid between instance-based nonparametric approaches
and structured parametric approaches. This framework is used to explain human
inductive biases for predicting future events (Chapter 4). More generally, enfor-
cing sparsity and orthogonality of the latent structure is believed to provide a link
towards theory-based Bayesian models of inductive learning and reasoning [67,
68].

1.4.4 Generalization biases

Ultimately, it is not generally clear what the right level of flexibility is. The basic
challenge is: "balancing constraint and flexibility, or the need to restrict hypothe-
ses available for generalization at any moment with the capacity to expand one’s
hypothesis spaces, to learn new ways that the world could work." (Tenenbaum et
al., [42]). We must learn representations that are not fixed and that may grow with
the number of observations [69]. However, a purely instance-based generalization
scheme too readily posits new categories and thus detaches from prior knowledge
such as in the extreme case of KDE (Fig. 1.5B). Nonparametric models generally
follow a strict bottom-up approach as the resulting representation is (almost) solely
determined by the data.

On the other hand, if we make the a priori assumption in our example that
there are just two clusters, the estimated density will be biased no matter how
much data we collect (Fig. 1.5D). Such expectation-biased generalization enfor-
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ces a structure that is very rigid. The data points are only assigned to either of the
two clusters which is inappropriate in this case. More generally, we must commu-
nicate whether the hypothesized model is still adequate and revise beliefs about
the context (the model) if necessary.

Consequently, a feature of hierarchical generative models is a bidirectional
information flow [58] between higher-level, contextual variables and lower, more
input-related variables (see study in Chapter 3). In such a scheme, the balance
of top-down compared to bottom-up influences is critically determined by uncer-
tainty. To select a proper context, uncertainty must be ubiquitously available across
all levels of the hierarchy (see e.g. [43]).

After all however, the choice of a model is not a purely representational
question. It also depends on the cost of performing inference on that knowledge
representation.

1.5 Performing probabilistic inference

In the previous section, we mainly discussed the generative model p(D|H)p(H)

that allows to generate data D conditional on a hypothesis H . For inference we
must compute the posterior distribution p(H|D) over the entire hypothesis space
which often poses a big practical problem.

1.5.1 The computability problem

Rich latent structures with many hidden variablesH are necessary to map onto the
generating processes in the environment. If their domain is unbounded and they
are assumed to vary independently, finding the best matching hypothesis p(D|H)

requires searching the Cartesian product space H = X1 × ... × Xn of all latent
variables X1, ..., Xn, that grows exponentially with the number of variables. For
interesting real-world problems this is prohibitively expensive.

This "curse of dimensionality" [41, 70] can be mitigated by exploiting the
fact that the laws of physics constrain generative variables to a subspace of lower
dimensionality. The Helmholtz machine [71] e.g. limits this combinatorial ex-
plosion by hierarchical self-supervised learning which maximizes a lower bound
on the probability of the observations. It has been shown that inference in Baye-
sian belief networks (also PGM) belongs to the nondeterministic polynomial-time
(NP)-hard complexity class [72]. There is evidence that human cognition is simi-
larly affected by computational complexity measures [73].

Furthermore, perceptual inference is a highly non-convex optimization pro-
blem that requires a rather global optimization scheme to avoid local optima. In
the brain, neural variability has been suggested to enable this exploration of diffe-
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rent possible interpretations [74]. More formally speaking however, even powerful
approaches, such as genetic algorithms, are heuristic solutions (see [75]) as they
cannot guarantee global optimization. Interestingly though, certain evolutionary
dynamics resemble Bayesian inference describing "populations of beliefs" [76].

1.5.2 Facilitating assumptions and approximations

One way to attain tractable posterior inference is a restriction to simpler repre-
sentations. Within the appropriateness of these representations, often even exact
posterior inference is possible. If we restrict a probability distribution to have a
certain shape which can be described by a function and its parameterization, the
parameters efficiently encode the whole distribution. Operations on distributions
can then be substituted by operations on their parameters. If a conjugate prior is
chosen, the posterior has the same functional form (parameterization) as the prior
and inference may be formulated as iterative updates of the parameters (see e.g.
[41]). Similarly, an analytic expression for normalization may be found that other-
wise requires a numerical integration over the whole space of hypotheses which is
often prohibitively expensive.

An easier, factorized joint probability distribution may be obtained if condi-
tional independences between latent variables can be assumed [41]. Inference can
then be performed by local computations (marginalization) on the factors and by
passing messages between factor nodes (see also [77]). All together, such approa-
ches can greatly facilitate the computation of the posterior and have led to tractable
inference methods even for large belief networks [41, 52, 78, 79]. However, often
tractable computations come at the cost of concessions to representational accu-
racy. Too many times, a certain distribution is chosen for mathematical ease rather
than being warranted by the generative processes of the data.

Alternatively, to render inference tractable, one may forgo exact inference
and compute the posterior distribution only approximately. For instance, a distri-
bution can be approximated by a small number of samples to reduce computational
cost. This comes with an asymptotic guarantee because the sampling approxima-
tion approaches exact posterior inference as more samples are taken. Applications
for which computationally efficient sampling schemes can be found are very po-
werful [68].

A more radical solution is to deliberately limit inference to a belief subspace.
Such categorical commitments are similar to decision making among several mu-
tually exclusive ways to act and have been reported for humans [80].

Links to algorithmic and implementational accounts
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Important constraints for a theory of cognition (see e.g. [25, 57] for over-
views) may be found on levels that describe how abstract information proces-
sing is carried out on physical hardware.

The sampling hypothesis (see [81]) suggests that the brain is a sam-
pler whose dynamically changing states over time correspond to a probability
distribution over these states [82]. There is experimental evidence, such as
behavioral variability, for which the sampling hypothesis provides an elegant
explanation [83, 84]. The results range from perceptual bi-stability [85] over
variability in the decision processes [86] to causal inference [87]. There ap-
pear to be deep connections between posterior modes and attractor basins in
dynamical models [88]. Further studies attempted to map sampling-based
probabilistic representations onto neural models in cortex [89] and interpre-
ted neural variability as probabilistic inference through Markov chain Monte
Carlo sampling [90].

A different implementation for probabilistic machinery in the brain are
probabilistic population codes (PPC) [27, 91, 92]. They suggest that neu-
rons of different tuning properties represent a basis function decomposition
of a distribution over a stimulus variable. Contrary to sampling, a complete
distribution is maintained by PPCs at all times which may make them more
demanding in terms of memory. For such representations, message passing
akin to inference in PGMs has been suggested [77]. Overall, there are further
ways to represent uncertainty, and the brain may use more than one encoding
type. Accordingly, there is evidence that "distinct neural encoding (including
summary statistic-type representations) of uncertainty occurs in distinct neu-
ral systems" [93].

Despite the wealth of environmental features that are represented by the
brain, neural processing is suggested to follow a small set of information pro-
cessing operations (e.g. common to all input modalities) [94]. Canonical mi-
crocircuits (see e.g. [95, 96]) have been suggested to support population-level
integrative operations such as divisive normalization [94]. At the implemen-
tational or physical level, for instance, the neuromodulators acetylcholine and
norepinephrine are believed to signal expected and unexpected uncertainty
respectively [97].

1.6 The rationality of inferences

So far, we have mainly discussed the problem of making truthful inferences that
closely correspond to the environment. However, we as humans have not evolved
with the purpose of making the best possible inferences of the world. If at all, we

18



are maximizers of evolutionary fitness with a wide array of competing proximal
goals.

1.6.1 Valuation and objectives

Natural selection across ancestral generations has equipped us with basal moti-
vations that are an evolutionary proxy for beneficial states to attain in order to
maximize evolutionary fitness (see [98] for a comprehensive review). The brain
features dedicated neural structures, the reward system, that provide signals to
virtually all parts of the brain through neurotransmitters such as dopamine [99].
Evolutionarily important primary rewards trigger learning and define the proximal
reward functions of everyday behavior (e.g. money or candies). It is even possible
that curiosity or learning itself is intrinsically rewarding.

Beyond that, if an agent possesses an accurate representation of the envi-
ronment, it is able to make better inferences, predictions and select better actions.
Hence, truthful representations are of at least instrumental value as they allow to
obtain other rewards more efficiently. They may thus increase the agent’s evolu-
tionary fitness in comparison to one with a poor knowledge of its surroundings.
Nevertheless, truthful inferences are just one among many competing goals. To
arbitrate between several actions which lead to differently valued goals, decision
theory suggests the following.

1.6.2 Combining values and beliefs in decision theory

A decision maker should always choose the option of highest expected utility (see
also [100, 101]).

E [U(A)] =
∑
O

p (O|A)U(O) (1.4)

A decision or action A leads to outcome O with probability p(O|A) and has utility
U(O) (subjective value). The expected utilityE[U ] depends on actionA and is the
sum over the product of all possible outcomes (or states) and utility. This is assured
by the von-Neumann-Morgenstern utility theorem if basic assumptions about an
agent’s preferences are satisfied [102]. As a consequence of the uncertainty about
the state of the environment, decision outcomes are uncertain as well. This rule is
practically difficult because values need to be assessed and the outcome probability
depends on the expected (inferred) state of the environment.

1.6.3 Cost, Effort and Motivation

The expected utility hypothesis of decision theory is rather a desideratum than a
descriptive rule for human cognition [103, 104]. The theoretical separation bet-
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ween probabilities and utilities is lifted for effort considerations of state inference
[105]. There is evidence that mental effort is similarly important for human cog-
nition as computability costs are for machines (Sec. 1.5.1). Accordingly, human
participants display a strong incentive to avoid mental engagement [106]. Their
responses are systematically biased by a cost to act [107]. Likewise, the passage
of time for evidence accumulation has been associated with an increasing inter-
nal cost that shapes the timing of a decision [108]. These examples indicate that
cognition comes at a substantial internal cost. Importantly, also the two-systems
framework of Kahneman [109] mainly separates cognitive mechanisms along an
axis of mental costs.

1.6.4 Computational and bounded rationality

As the goals of a natural agent are typically not perfectly aligned with any given
task at hand, there is no strict incentive to optimize. Additionally, to cut through
complexity, humans are suggested to rather "satisfice" (H. Simon, [110]), i.e. se-
arch until an acceptable solution has been obtained.

This notion has reemerged as computational rationality [111] for human
cognition and artificial computing systems. An explicit incorporation of the cost
of computation into the objective function makes an agent also deliberate about the
most suitable way of solving a problem. If there is e.g. no time-pressure, it may be
worth investing more time into finding a close-to-optimal solution, whereas under
time pressure one better goes with the default option instantaneously.

While simple in principle, it requires a quantification of the internal costs to
make better (meta-) decisions of resource allocation. A trade-off must be found be-
tween the accuracy of an approximation and the costs to compute it. Such conside-
rations have been shown to introduce e.g. reward-modulation of sensory receptive
fields [112] - i.e. they interfere with the representation of beliefs. Experimental
evidence has been provided that the brain disposes over several behavioral con-
trol systems and ways of arbitrating between them [113]. Cognitive costs may
be tracked based on the degree to which control mechanisms are employed [114].
This arbitration constitutes a form if meta-optimization with potentially rational
cost-benefit trade-offs [115].

1.6.5 Rationality and optimality

All the considerations above must be taken into account when the rationality of
behavior is experimentally assessed. A mere comparison to some devised task
optimal strategy is generally insufficient [116, 117].

Optimality is used to refer to an ideal solution to a specific task or agreed
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upon, objectively known problem. Strictly speaking, task-optimality is an impossi-
ble problem even for a machine for virtually all problems of real-world complexity
[118].

As opposed to optimality, rationality acknowledges the perspective of the
agent. Most scholars such as Kant identified two dimensions behind the concept
of rationality. This largely accords with the differentiation between theoretical and
practical rationality [119, 120] which we build upon here.

Theoretical rationality refers to internal belief consistency. Beliefs must be
grounded in empirical support. Logical consistency has a formal, objective
dimension such as the use of Bayes theorem to update beliefs.

Practical rationality Optimization of the use of cognitive resources to achieve
goals with respect to their relative importance (meta-optimization).

Table 1.1 attempts to illustrate these concepts with some examples for rational and
irrational inference behavior.

Table 1.1: Examples for different notions of rationality
Theoretical rationality Practical rationality

Rational Bayesian inference over all known
candidate structures

Heuristic inferences to quickly
finish a dull and repetitive task

Irrational
Neglecting prior knowledge;
Inconsistent beliefs; Local or
subspace optimization

Heated debate due to emotional
reactions limiting inferences to
deeply entrenched stereotypes

Equating theoretical rationality with task-optimality grossly overlooks com-
peting internal goals and the costs of cognition [121]. It furthermore neglects that
the agent might solve the problem under (slightly) different assumptions which
may be justified given its perceptual history [117, 122]. Hence, irrationality does
not automatically follow from suboptimal task performance.

In this work, we are predominantly interested in testing for theoretical rati-
onality which translates to representing knowledge as distributions and Bayesian
belief updating. However, for the participants in our experiments, the practical
notion of rationality is equally important as they face mentally effortful tasks and
certainly possess competing goals such as a desire to finish early. The next Chapter
addresses how our rational inference abilities have been interpreted and how they
can be measured.

Optimal vs. probabilistic

The terms ’optimal’ and ’probabilistic’ should not be conflated [123]. Gi-
ving optimal responses in some task does not imply probabilistic processing
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and vice versa. Probabilistic inference based on wrong assumptions leads to
suboptimal results. Optimal responses in turn can under some conditions be
learned associatively without resorting to internal probabilistic representati-
ons. "The probabilistic approach, however, is not about optimality per se, [...]
the probabilistic approach is first and foremost about representing knowledge
as probability distributions [...]." (Pouget et al., [25])
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Chapter 2

Probing the rationality of human
inferences

Dealing with uncertainty and adhering to probabilistic principles of belief upda-
ting are key criteria for rational inferences. The experimental assessment how
humans internally quantify uncertainty is expected to reveal characteristics of the
underlying representations and inference processes. We will also revisit how our
rational abilities have been interpreted based on experimental evidence.

2.1 Measuring uncertainty processing

The defining characteristic of probabilistic computations is a "trial-to-trial neural
representation of uncertainty" [27]. Knowledge of latent variables must be repre-
sented in the brain as distributions instead of as point estimates [124]. Ideally, we
would like to elicit a behavioral statement that cannot be made on a trial-by-trial
basis from point estimates only. The experimenter may induce variations regarding
the certainty with which the stimulus supports a conclusion, such as a decision,
across experimental trials. The responses of the participants, such as decision con-
fidence, should then follow (covary with) these induced "trial-by-trial" variations
of uncertainty. Participants must be prompted to reveal and outwardly communi-
cate their internal estimates. If those estimates take the format of distributions, a
suitable (scalar) "summary statistic" must be elicited [125]. As an example, the
computation of Bayesian decision confidence is discussed next.

2.1.1 Bayesian confidence hypothesis

Uncertainty refers to the whole distribution over the set of all hypotheses H under
consideration. Decision confidence in contrast may be regarded a summary statis-
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tic that reports the fraction of probability mass/density assigned to the subset Q of
these hypotheses that corresponds to the choice made [125–127].

For instance, in the urn problem introduced earlier (Sec. 1.2.1), we might
like to compute the confidence that the majority of items in the urn is blue, ir-
respective of the actual proportion. To derive decision confidence, uncertainty is
quantified through the integration over all hypotheses H ∈ Q that correspond to
the decision made (see also Fig. 1.3, blue part of histogram at the bottom).

c(Q) = p(Q|d) =

∫
H∈Q

p(H|d)dH (2.1)

This Bayesian or posterior-based approach construes confidence as expected de-
cision accuracy as it acknowledges that the sample may also be consistent with
H /∈ Q (Fig. 1.3, red part of histogram). Such a quantification of uncertainty
makes use of the normalization property of probability theory and will be used in
both experiments.

If the agent’s model p(D|H)p(H) matches the generative model of the data,
confidence predicts the probability that a decision turns out to be correct. In this
case, a decision maker is said to give calibrated confidence reports. The Bayesian
confidence hypothesis has received empirical support also due to its amenability
to animal research (see also [128–130]). Specifically, we will use it to model
confidence reports in the empirical prior task (Chapter 3).

Other experimental measures

Probing representations of uncertainty is experimentally difficult due to the
subjectivity of uncertainty representations (e.g. the many degrees of free-
dom). Decision making is most commonly used [131] because the decision
boundary in hypothesis space may be clearly communicated. Nevertheless,
the participant still has to map his internal estimate (summary statistic) onto
the response variable provided by the experimenter (e.g. saccade endpoint
[132]). By converting it to discrete ratings, natural language or numerical
scores certain nonlinear distortions may be introduced obscuring the actual
estimate [133].

Other approaches use indirect reports, e.g. by introducing a gamble or
wager [134]. However, effects such as loss aversion on post-decision wage-
ring must be taken into account [135]. Few methods such as Matching Pro-
bability (no-loss gambling) [136] circumvent such pitfalls at the expense of
a more complicated incentive structure of the task which must be understood
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by the participant.
Some experiments indirectly evidence uncertainty estimates through

their effects on other behavioral responses [86]. For instance, participants
were found to counteract a lateral distortion based on uncertain evidence when
making reaching movements [137].

Not all experiments elicit trial-by-trial estimates of uncertainty. Some
exclusively rely on recorded decisions (e.g. [138]) and estimate per-trial con-
fidence from the fraction of correct trials. Hence, only trial-averaged statistics
are shown to conform to those of a probabilistic agent. Other studies like this
work directly probe momentary representations of uncertainty [139–141].

2.1.2 Comparison to a model-free approach

So far, we have mainly discussed the benefits of a probabilistic generative model
for inference. Here we point to important consequences if we drop that assump-
tion. We compare a probabilistic agent (A1) to a hypothetical contestant (A2)
that merely learns appropriate responses to stimuli. This is not intended to be
exhaustive as there are many other learning strategies available. Nevertheless, it
attempts to highlight that judgments about uncertainty are very difficult for non-
probabilistic, model-free agents even in the simplest tasks especially if supervising
feedback is withheld.

We build on the urn problem introduced before (Sec. 1.2.1) where the agent
was asked to decide whether the majority of items inside the urn is either blue or
red. Beyond that, the goal here is to provide accurate estimates of the chances that a
decision will turn out to be correct. The task consists of independent instantiations
of this problem across trials whereby both the unobserved urn proportion and the
sample size vary unpredictably (for details see appendix A.2).

The following provides a brief comparison between critical aspects of both
learners (see Table 2.1 for an overview). The probabilistic agent (A1) is assumed
to known the appropriate probabilistic model to generate observations. It performs
posterior inference over the latent urn proportion and reports decision confidence
as expected accuracy (Eq. 2.1). However, if we assume that it uses an inappropriate
uniform prior distribution that does not correspond to the actual base rates of the
latent urn proportions, its estimates are slightly suboptimal throughout the task
(Fig. 2.1, green line).

The agent A2 on the other hand does not possess a generative model. Whe-
reas agent A1 builds a representation of the environment, agent A2 merely learns
to make appropriate actions for different stimuli. Such mapping-based approaches
are also referred to as model-free (e.g. [142, 143]) because they cannot gene-
rate observations, e.g. simulate hypothetical samples for a given urn proportion.
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Table 2.1: Comparison of a probabilistic model-based and a model-free agent.

Agent Probabilistic (A1) Model-free (A2)
Model Generative None
Inference Posterior over urn proportion Heuristic: Sample proportion
Estimate Distribution Point estimate

Uncertainty Distribution contains full
information

No explicit representation

Confidence Expected accuracy Learned function of input

Objective Model evidence
Error across trials
if supervised

Task experience Not necessary Needs feedback
Origin of
procedure Hierarchical context Unclear

Task generality Environment-specific, not
task-specific

Specific to learned task
objective

Advantage Generalization, contextual
extension

Simplicity

Disadvantage Biased inference for wrong
assumptions

Task specific, handcrafted

Instead, agent A2 may infer the urn proportion heuristically by computing the
proportion of blue samples which is actually accurate in the limit of infinite sam-
ple size. Both agents report the same decisions which always follow the sample
majority.

While the estimate of agent A1 is a distribution over all possible urn pro-
portions supported by the data, the estimate of agent A2 commits to one singular
interpretation. As opposed to the distributional estimate of agent A1, the scalar
state estimate of agent A2 does not contain explicit information regarding the un-
certainty of the urn proportion. Therefore, agent A2 has no principled objective
for deriving decision confidence on a single-trial basis. However, it may use the
feedback about the correctness of its actual choices to learn appropriate confidence
estimates over trials (Fig. 2.1, A2).

Consequently, and given enough flexibility, it may approximate the map-
ping that the inference procedure of agent A1 defines. In fact, the behavior derived
from the posterior distribution is nothing but a particular, albeit complicated, map-
ping from sensory inputs to actions. To suppress that possibility in experiments
and to evidence the reliance on an internal probabilistic model, supervising feed-
back about correct behavior must be withheld [124]. Remarkably, even for this
simplistic task, many trials are required to reach comparable levels of accuracy.

A data-efficient and thus fast way to learn is batch processing (Fig. 2.1,
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Figure 2.1: Model-free agents must learn from experience The absolute difference
between decision confidence judgments and the actual probability of making correct deci-
sions for different learners (smoothed). Agent 1 (A1, green) is a probabilistic model-based
agent correctly describing outputs as a function of the unobserved proportion of items in-
side the urn. Its flat prior distribution is mismatched so that there is small mis-calibration.
The model-free learner (A2) can only learn from experience over trials. Batch learning
(red) requires memorizing all statistics and outcomes across trials but converges faster as
on-line learning (blue, stochastic gradient decent (sgd)). The inset zooms in on the first
trials (unsmoothed).

red). Critically, this requires the agent A2 to memorize all decision outcomes for
each experienced condition. A more realistic assumption is some form of on-line
learning, i.e. small parameter updates which only depend on the outcome of the
preceding trial. This however leads to highly fluctuating confidence estimates and
slower convergence than batch learning (blue). In contrast, the probabilistic agent
A1 does not rely on any feedback from prior experience with the task and can
make principled confidence judgments from the first trial on (Fig. 2.1, green).

For both agents, the origin of the inference procedure is not readily clear.
However, probabilistic generative models are ideally suited to be embedded in
larger hierarchical or contextual structure. On the other hand, the problem of se-
lecting a suitable heuristic appears to be more severe. As opposed to probability
theory, heuristics lack a theory of evidence so that the agent does not possess a
within-trial optimization objective to select the ’best fitting’ heuristic to explain
the data. Due to these problems, integrative models rather than collections of heu-
ristics have been proposed to describe human inferences [144].

Moreover, a generative model is a task-independent representation of the
environment. Therefore, it leads to task generality because the representation is
still useful when the objective changes (e.g. reporting the probability that the urn
contains at least ten percent of red items). It also generalizes more readily to
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seemingly minor changes in the generative process such as to smaller or larger
sample sizes. The mapping-based agent A2 would in both cases have to revise its
confidence mapping by learning from experience again.

The main advantage of a heuristic approach is its simplicity which is the
main motivation that heuristic accounts have been considered. The downside is
their task specificity and that it is not clear what a ’good’ heuristic is. On the
other hand, a disadvantage of probabilistic models are biased estimates if their
assumption do not (fully) match the generative process as shown here. However,
such models may resolve contextual uncertainty and e.g. learn about the prior. We
will address a related problem of contextual inference in Chapter 3 in which the
capability to infer appropriate prior knowledge based on its reliability is examined.

2.2 Interpretations of suboptimal human performance

The power of today’s computational methods enables rigorous testing of behavior
against benchmarks which are often termed optimal conditional on some assump-
tions about the task. One may categorize the observed behavioral deviations from
task optimality as follows:

(1) Fundamental insufficiency to reason theoretically rationally (Sec. 1.6.5)
Violation of formal rules such as Bayesian inference

(2) Systematic biases through the use of approximations (Sec. 1.5)

(3) Structural problem mismatch (Sec. 1.4) Subjective assumptions by the par-
ticipant that do not match the generative structure of the task

(4) Response noise Residual variations due to (input-independent) influences
beyond the experimenter’s control

The forth point is neither avoidable nor surprising given the influence of many
extraneous factors on experimental responses, such as motor noise. Upon more
careful inspection, the noise carries information about its origin [145] which is
however not further examined in this work. Next, we will revisit the scientific
literature that has cast doubt on the notion that humans adhere to rational mental
processing (interpretation 1).

2.2.1 Heuristics and biases

In the wake of the heuristics and biases program pioneered by Kahneman and
Tversky [109, 146], many studies have reported cognitive biases, flawed reasoning
and decision making errors in humans.
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Many participants were reported to obey the so-called representativeness
heuristic. Loosely speaking, it refers to the idea that humans generalize according
to similarity, e.g. that a person belongs to a group because she matches the stere-
otypical description of the group, irrespective of other factors that are important for
judgments of probabilities. This entails an insensitivity to base rates and to sample
size [147]. Correspondingly, the ’law of small numbers’ [148] states that an ob-
served sample - no matter how small - is representative of the population in all its
aspects [149]. The notion of representativeness is conceptually somewhat vague
and commonly illustrated through a set of examples [150]. The general idea of a
tendency to equate the population with the sample is reminiscent of instance-based
generalization bias (Sec. 1.4.4) and is extensively discussed in both studies.

We will address other systematic errors, such as a confirmation bias which is
characterized by an interpretation of ambiguous evidence such that preexisting be-
liefs are selectively supported [151, 152], for instance by neglecting contradictory
evidence, which may lead to belief perseverance [153]. We have already discus-
sed such expectation-biased generalization in the clustering example before (Sec.
1.4.4). There, a restriction to only two clusters neglects evidence for the more ap-
propriate choice of three clusters and thus leads to a confirmation bias even though
inference is otherwise completely rational.

Furthermore, humans are frequently reported not to treat probabilities li-
nearly but to "apply" a systematic nonlinear weighting function that over-weighs
small probabilities and vice versa (probability distortion, see e.g. [154]).

Overall, research has compiled a huge list with myriads of biases that might
actually stem from common mechanisms. Much of it may be considered pheno-
menological because of its unsatisfactory insight into the origins [153]. Common
to many accounts is the conclusion that the rational faculties of humans are poorly
developed or rarely used in practice.

If the rational abilities of humans are poorly developed, some other me-
chanisms must be able to explain the undeniably big cognitive achievements of
humans. We were suggested to instead use an "adaptive toolbox" of heuristics
[155]. The defining characteristic of heuristics is their cognitive or computational
simplicity and their reliance on some way of effort reduction by ignoring part of
the information. In other words, they are justified by ’satisficing’ an immediate
goal, while they do not and cannot guarantee optimal results.

Yet, there is no clear-cut notion what constitutes a heuristic. For instance,
the coarser a computational approximation (Sec. 1.5), the more heuristic an in-
ference may appear. Furthermore, justifying the extent of such an approximation
may be regarded a heuristic choice unless it results from a clear optimization ratio-
nale that trades off its cost against its benefits (Sec. 1.6.4). Critically, in perception
under uncertainty, heuristics are not straightforwardly linked to a measure of evi-
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dence that allows to arbitrate which heuristic performs ’better’ inference on just
one instance of the problem (see also Sec. 2.1.2).

2.2.2 A different perspective by cognitive neuroscience

The availability of modern computers to conduct experiments and to perform
model-based analysis has scrutinized these interpretations. As a result, describing
inferences in probabilistic terms, underpinned by behavioral and computational
studies, has gained considerable interest in the scientific community and suggests
that the human brain’s capability to perform probabilistic inference may have been
under-appreciated.

Experimental evidence in support of internal probabilistic computations
mainly rests on behavioral studies. Many have shown that human behavior re-
sponds to uncertainty in ways that is consistent with probabilistic processing [156].
A corollary of probabilistic belief updating is uncertainty-weighted integration
which relies more strongly on information sources of low uncertainty, or conver-
sely high reliability. As an example, psychophysical experiments of cue combina-
tion (e.g. [157]) claimed a reliability-based weighting of conflicting cues from dif-
ferent modalities that is consistent with distributional estimates provided by each
modality [138].

The visuo-motor domain is particularly amenable to experimental testing.
Studies reported that the planning of reaching movements depends on represen-
tations of motor-error [158, 159]. Participants were also found to counteract a
movement perturbation based on the reliability of a visual cue [137].

Beyond the visuo-motor domain, human participants are reported to adhere
to principles of probabilistic inference in more abstract cognitive tasks [160, 161].
Interestingly, such claims have even been made for pre-verbal infants [162] sugges-
ting some independence from language and cultural learning. Humans were also
able to give sensible confidence judgments in a complicated hierarchical learning
task [139]. Furthermore, they demonstrated the ability to learn patterns of abstract
(unsignaled) hierarchical visual concepts without explicit awareness [163].

Beyond that, there is evidence from neuroscience that sensory uncertainty
represented in visual cortex can be decoded and used to predict behavior [164].
Activity in certain brain areas, such as the anterior cingulate cortex (ACC), shows
a specificity to uncertainty, e.g. to the estimated volatility of the environment
[160].

Additionally, experimental paradigms have been developed to test uncer-
tainty representation in behaving animals [129]. Their results suggest that mon-
keys possess an internal notion of confidence which is used to guide behavior [128,
130, 165]. Altogether, these and similar findings show that nervous systems may
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adhere to principles of rational inference.

2.2.3 Reinterpreting biases

In the light of these seemingly contradictory findings, what are the appropriate
interpretations for human insufficiencies to comply to task optimal behavior pre-
sented at the outset of this section 2.2? As opposed to denying rationality (in-
terpretation 1), a closer examination of the actual constraints that the agent faces
more strongly emphasizes an explanation due to the use of approximations (2) and
internal constraints to adequately represent the problem (3). For instance, approx-
imate Bayesian belief updating (e.g. [166]) and efficient coding may account for
systematic deviations [167]. Similarly, sampling approaches to posterior inference
have been shown to naturally generate a variety of systematic probabilistic reaso-
ning errors [82].

Critically, the assumption that the task structure is transparent to the parti-
cipant is actually a strong and unrealistic one [116]. Performing inference with a
mismatched model can lead to severely biased inferences [168]. In more extreme
cases of structural uncertainty, participants may resort to model-free behavior [60].

Strikingly, many of the tasks for which violations of rational reasoning were
reported feature a commonality. They tend to be description-based and strongly
rely on working memory and natural language. These developmentally relatively
recent faculties may constitute a severe impediment to interact with inferential
systems that are capable of rational inference [133].

2.2.4 Design of experiments

Following these ideas, and to evidence the actual potential of human inferences,
the two studies introduced in this work attempted to avoid these interrogation pro-
blems. The task design was guided by the ’principle of intuitiveness’. In short,
outward reporting of internal estimates should be facilitated and reduce the invol-
vement of both working memory and natural language. Correspondingly, the tasks
avoid any explicit deliberation that would allow our participants to easily explain
their behavior.

The first study (Chapter 3) investigates the human ability to infer and use
contextual information through the construction of empirical priors. Special atten-
tion is given to generalization biases due to imbalances between bottom-up and
top-down influences which are more specifically investigated in the subsequent
chapter. The second study (Chapter 4) is an examination of the inductive biases
that underlie the generalization of continuous random variables.
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Chapter 3

Empirical priors for confidence
judgments

3.1 Abstract

As a consequence of the uncertainty inherent in perception, our observations must
be supplemented with suitable contextual assumptions to make better inferences.
This is challenging as for real-world problems neither the context is certain. While
this theoretically requires uncertainty representations on both the task and the con-
textual level, little is known how humans solve such problems. We present a novel
hierarchical cue integration task in which human participants may learn a contex-
tual prior belief from a series of ambiguous cues across trials. This contextual prior
provides additional constraints for inference of a latent variable on the trial level.
There, participants freely express their decision confidence which is found to clo-
sely correspond to actual decision accuracy. Behavior exhibits several nontrivial
patterns of probabilistic inference such as sample size effects. Despite the high
degree of sophistication, commonly reported reasoning fallacies are not generally
present and neither do participants appear to rely on simple heuristics. Instead,
information integration can be captured with reliability-based message passing be-
tween latent variables across hierarchical state representations. This is evidence
for ubiquitous representations of uncertainty similar to a probabilistic agent.

The content of this study is currently prepared for publication, P. Schustek and R. Moreno-Bote.
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3.2 Introduction

Updating beliefs to maintain coherence with observational evidence is a corners-
tone of rationality [120, 169]. Real world outcomes are imbued with uncertainty
such as the preference to vote for a certain party of a randomly polled voter. To
infer the unknown voting preferences of the whole population from a finite number
of polls, one faces uncertainty in that the results are consistent with many possible
interpretations. Probabilistic inference acknowledges uncertainty by representing
degrees of belief with distributional estimates [25] as opposed to point estimates
[124], such as committing to only one possible election outcome.

The scarcity and insufficiency of the data to constrain the conclusions may
be mitigated if powerful assumptions about the task’s context can be made. For in-
stance, prior knowledge that voters in a certain context (e.g. their profession) tend
to have similar preferences. Indeed, the power of human inferences is believed to
crucially rest on selecting appropriate contextual knowledge to supplement sparse
stimulus data [42].

This is complicated by the fact that the contextual structure generating our
observations is not fully certain. The central question is where reliable informa-
tion about the context itself originates from. Theoretically, Bayesian inference can
be extended hierarchically so that upper-level, ancestral latent variables constrain
lower-level, more task-related variables [59]. Hence, contextual information itself
can be inferred across multiple levels of a hierarchy [43]. Hierarchical Bayesian in-
ference selects contextual constraints depending on the degree of empirical support
received in related situations. Such hierarchical dependencies among latent varia-
bles are characterized by bottom-up and top-down information flow that conveys
empirical and contextual information respectively [58]. Previous studies eviden-
ced that humans internally represent uncertainty and adapt behavior accordingly
[25, 124, 138].

However, the scope of explicit uncertainty representations is unclear. (1) A
fully probabilistic agent maintains a probability distribution over its entire latent
structure which ideally mirrors the generative process in the outside world. Such
a complete representation allows to derive statements about uncertainty such as
decision confidence [125–127]. (2) Humans may instead apply crude approxima-
tions to simplify the problem. One example are categorical commitments to an
interpretation once sufficient evidence has been accrued for it (see e.g. [80]). If
contradictory information is subsequently neglected, this could lead to a confir-
mation bias [151] of existing beliefs. (3) Alternatively, we may use rather task-
specific heuristics, such as learned cues to uncertainty [17], which are detached
from representations.

In the latter case, rational probabilistic principles are rejected to describe
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internal information processing [155]. This interpretation is favored by a wealth
of studies reporting reasoning biases [109] such as an insensitivity to sample size
for confidence judgments [147, 149, 150].

This, in turn, is challenged by tasks in more perceptual domains that typi-
cally found humans to adhere to principles of rational belief updating. However,
evidence is limited to rather simple tasks in which the unobserved problem struc-
ture was low-dimensional and is often assumed to be completely transparent to the
participant.

This study developed a novel paradigm that allows to probe the acquisition
and subsequent use of contextual information. To our knowledge, only very few
studies (e.g. [47, 139]) have experimentally addressed the maintenance of explicit
uncertainty representations across a hierarchy of latent variables which are posited
by framework theories such as predictive coding [58, 170, 171].

We asked whether participants acquire and use contextual information in
a graded manner that respects contextual uncertainty? To which degree are their
inference patterns specific to a probabilistic agent? And furthermore, what sy-
stematic biases are displayed? Despite mostly expected deviations, participants
performed remarkably well and displayed reliability-based belief updating over
hierarchical latent structures. These findings invite challenging the popularized
notion that we are not suitably endowed with the necessary preconditions for rati-
onal mental processing.

3.3 Results

Many formal random processes are embedded in real world problems. The ex-
ample of election forecasting above is essentially an instance of an urn problem.
In this study, we use a hierarchical extension of a basic urn problem to construct
an inference task with hierarchical latent structure and map it onto a more acces-
sible metaphor phrased in commonly understandable terms to avoid resorting to
formal mathematical descriptions. As this structure is latent, we must assure that
the participant attributes the observations to the right processes and variables.

We attempted to carefully align the actual structure of the problem with the
one that the participant assumes. To achieve this, participants were incrementally
exposed to the full complexity of the problem (see Methods 3.5.3-3.5.4). Speci-
fically, they first completed a basic version of the task on a separate appointment
(Experiment 1) that we will address first. Afterwards, we will discuss the hierar-
chically extended learning task (Experiment 2).
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3.3.1 Experiment 1: Empirical support of decision confidence

The basic urn problem is phrased as follows (details in appendix C.2): The sampled
dots on the screen represent passengers randomly exiting an airplane that transpor-
ted only two kinds of passengers (Fig. 3.1a). One must decide whether the flight

Figure 3.1: Posterior-based confidence features sample size effects
(a) Task: The colored dots (sample) represent two kinds of passengers (blue and red) that
disembarked an airplane. The participants are subsequently asked to report the confidence
in their decision that the airplane carried more blue or red passengers by horizontally mo-
ving the cursor line (orange). (b) Sample size increases posterior-based confidence in a
(blue) trial majority (right) suggested by the (blue) sample majority. Confidence (right) is
computed as expected accuracy from the area under the curve for the inferred proportion
(middle). (c) Posterior-based confidence in a blue airplane majority increases with the
proportion (%) of blue samples. A higher sample size (color coded) increases decision
confidence for a given sample proportion and leads to a higher slope at the category boun-
dary (50 % red-blue). (d) Consequently, the slope parameter of fitted sigmoidal functions
increases with sample size.

carried more blue or red passengers based on the small sample on the screen. Our
participants freely determined when to proceed to the response screen where they
were instructed to report their confidence in the correctness of their decision. The
more confident they are that the airplane majority is blue, the farther right from the
middle they should position the response cursor and vice versa (Fig. 3.1a, vertical
yellow line).
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The only feature that distinguished the sampled passengers was the dot co-
lor that we chose to be either blue or red. Because the positions of the dots are
communicated not to be informative, the sample is completely summarized by the
sufficient statistics, i.e. the numbers of blue and red passengers NB, NR. We will
mostly use the equivalent formulationD = q = NB/N,N = NB+NR expressed
through the presented sample proportion q and the sample sizeN . As the presented
sample proportion on the screen can be assumed to virtually equal the subjectively
perceived proportion, we simply refer to it as ’sample proportion’ (appendix C.3).

Each trial consists of an independent instantiation of this problem. The sam-
ple size and the latent airplane proportion are independent draws from constant
distributions across trials (Methods 3.5.3). After each trial, the participant recei-
ves feedback about the correctness of his decision but no supervising feedback
regarding his confidence estimate. On pauses every five trials, only trial-averaged
feedback based on the absolute deviation from actual performance was provided
to motivate task engagement and to determine a bonus payment at the end of the
entire experiment (Methods 3.5.2). The airplane metaphor was chosen for con-
venience, but the mathematical problem could surely be mapped onto a different
metaphor instead.

Inherent in the probabilistic approach to inference is a generative model that
allows to simulate outcomes. The agent knows that the observations are random
draws from a population (airplane) of blue and red passengers whose proportion
is unknown. This population proportion is the latent variable that needs to be in-
ferred. To achieve this, the probabilistic agent calculates the posterior distribution
over possible population proportions (Methods 3.5.6, Eq. 3.4) and thus acknow-
ledges that several latent proportions are consistent with the sample.

However, some are more likely to generate the observed sample than others.
In the example (Fig. 3.1b, middle column), posterior probability is predominantly
assigned to population proportions corresponding to a blue majority. Thus, the
agent believes that a blue population majority is more likely and hence the rational
response is to report a blue majority, even though a red one still receives substan-
tial empirical support. The proportion of posterior probability assigned to a blue
majority (the choice) thus corresponds to the expected decision correctness and
equals the proportion of the blue area under the posterior distribution (Fig. 3.1b).
Correspondingly, a probabilistic agent may naturally report confidence as expect
decision accuracy (Methods, Eq. 3.5). The better its internal model matches the
generative process in the environment, the more correct its subjective estimates of
decision accuracy will be. Importantly, given the choice of a model, no previous
task experience is required.

A central feature of posterior-based confidence is sample size dependence.
For example, if we consider three different samples with the same sample pro-
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portion but of increasing sample size (Fig. 3.1b, rows), the posterior distribution
becomes more concentrated over population majorities suggested by the sample.
Consequently, confidence in a blue majority, i.e. expected decision correctness,
increases with sample size. In contrast, for any approach that neglects sample size,
any systematic confidence report would be constant for all samples. Such behavior
was reported for humans [109, 149] but we challenge its generality.

In the experiment, sample size unpredictably varies across trials. For a pro-
babilistic agent, confidence in a blue majority is a function of both the proportion
of blue samples and the sample size (Fig. 3.1c). Sample size acts as a magni-
fier for the population majority which is suggested by the sample proportion. It
thus provides a proxy to experimentally control the uncertainty of evidence and to
evidence intricate patterns of probabilistic inference.

More concretely, sample size effects can be evidenced by the slope of the
confidence curves when we condition on sample size (Fig. 3.1c). We fitted sigmoi-
dal functions to the reported confidence in a blue majority whose slope parameter
can vary separately for each sample size (Methods 3.5.7). For a probabilistic agent,
this slope pattern features a steady increase with sample size (Fig. 3.1d).

3.3.2 Confidence judgments are predictive of their performance

First, we sought to establish a correspondence between the confidence estimates of
our participants and their actual trial-by-trial decision correctness as estimated by
expected accuracy of the optimal inference model. The raw experimental response
was linearly scaled to an interval between zero (red) and one (blue) and hence
it can be interpreted as a confidence estimate of a blue trial (airplane) majority.
As a relative quantity, it can be straightforwardly converted to the belief in a red
trial majority (see Methods 3.5.2). We found that human confidence judgments
are highly predictive of their trial-by-trial decision accuracy despite systematic
deviations from giving calibrated responses (linear correlation, ρ = 0.81, p =

1.27 · 10−45, details in appendix C.1).

3.3.3 Participants adjust confidence to sample size

A hallmark of probabilistic inference is a dependence on sample size (Fig. 3.1c-d).
As a function of the sample proportion, experimental confidence shows sample-
size-conditional curves (Fig. 3.2a, solid lines). We found that human confidence
judgments increase with larger sample sizes as evidenced by the increasing slope of
these sample-size-conditional curves (Fig. 3.2b, linear correlation, pooled across
participants, ρ = 0.30, p = 7.05 ·10−6). This even holds individually for 19 out of
24 participants (linear correlation, shuffling test, threshold p = 0.05). Remarkably,
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Figure 3.2: Human confidence estimates vary with sample size as described by pro-
babilistic inference
(a) Confidence in a blue majority is a monotonic function of the proportion of blue sam-
ples (solid lines). For a given sample proportion, sample size (color coded) increases the
respective decision confidence (optimal model in light colors). (b) The slope of the confi-
dence curve in (a) increases with sample size. Participants feature a quantitatively similar
increase as the optimal model (solid line). Error bars indicate SEM across participants.

we found a high quantitative match of the average responses across participants
(data points) to the optimal model’s responses (solid lines) calculated on the same
trials (Fig. 3.2b, linear correlation of the averages, ρ = 0.90, shuffling test p <
0.001). Hence, participants show quantitatively similar sample size effects as a
probabilistic agent.

Consistently, sample size was found to be crucial to predict confidence judg-
ments as determined by the comparison of the optimal inference model to two dif-
ferent heuristic estimators. The ratio model (ratio) reports confidence as a function
of the sample proportion q alone. This could be the result of a simpler approach
in which the population estimate is a point estimate corresponding to the sample
proportion. The ensuing implicit assumption that the sample is representative of
the population is actually accurate in the limit of large sample sizes. The difference
model (diff) on the other hand estimates confidence as a function of the difference
of blue and red samples NB −NR. As the ratio heuristic, this statistic is informa-
tive of decision correctness but additionally even covaries with sample size. The
output of the optimal model and the heuristic estimators are fed into a sigmoidal
function, called response mapping (Methods 3.5.6), to map the estimates onto the
unit interval or to account for distorted reports.

The comparison between the optimal model (opt) and the ratio model (ratio)
shows that the latter is clearly rejected because of its incapacity to take sample size
into account (details in appendix C.3, Fig. C.2). Even though the confidence esti-
mates of the difference model (diff) are sensitive to the sample size, they typically
do not correspond to the notion of uncertainty that our participants report. We can
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thus dissociate the experimental reports from these simple but covariant heuris-
tics and conclude that the response patterns of our participants typically follow a
probabilistic inference approach.

3.3.4 Experiment 2: Learning inferential constraints from prior data

In order to test the ability to handle contextual uncertainty, we extended the basic
task (Experiment 1) hierarchically by forming blocks of always five consecutive
trials which are governed by a single binary contextual variable. The generative

Figure 3.3: Schematic of the hierarchical structure for learning empirical priors
Participants are told that across trials (1, 2, ..., T ) within a block (schematic) they will
see passengers from different airplanes arriving to the same airport. They are still asked to
report their confidence about the airplane majority on the current trial T . (a) Within a block
of trials, the hidden airplane majorities are drawn from a common skewed distribution
(cyan or magenta), the block tendency, which is selected by a contextual variable b drawn
once for each block. In the example, the context favors airplanes of red majorities. (b)
Sample generation given the airplane majority is the same as for the basic task. (c) The
internal representation of the agent (orange background) mirrors the dependence structure
in the environment (green background). Probabilistic inference is performed by message
passing between the nodes which internally represent the hidden variables. Previous trials
(t < T ) provide evidence about the block tendency through messages mt(b). They are
probabilistically integrated into a belief about the block tendency M(b) which provides
top-down constraints on the inference of a new airplane’s majority (orange node).
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structure of the observations which were shown to the participant is illustrated in
Fig. 3.3a (green shading). In the example, the contextual variable b is randomly
chosen to favor red airplane (trial) majorities in the block by selecting a skewed
Beta-distribution (details in Methods 3.5.5). On each trial, the airplane majority is
independently drawn from this distribution (magenta shading). Given the airplane
majority, the procedure to select the presented sample is identical to Experiment 1
(Fig. 3.3b). Importantly, also the task remains the same as inference is still asked
to be made about the airplane majority of the current trial T (Fig. 3.3c, orange
variable).

The participant is informed of the block tendency by extending the task me-
taphor. The block is supposed to correspond to several airplanes that arrive conse-
cutively at an airport of a particular city. The city is known to host an event that
tends to attract either more red or more blue passengers and thus corresponds to
the binary contextual variable b. The contextual variable itself is unknown, so that
joint inference must be performed over the trial-level variables and the contextual
block-level variable which introduces a dependence on all previous trials (t < T )
within a block.

Such prior knowledge provides additional information beyond the momen-
tary sample by confining the space of hypotheses that may explain the data. For
instance, knowledge of being in an environment in which there is a prevailing
tendency to observe ’red’ airplane majorities should raise the corresponding con-
fidence, even for very ambiguous or even contradictory samples. The proba-
bilistic agent inverts the generative structure to perform inference (Fig. 3.3c,
orange shading) by passing messages mt(b) to update latent variables on the
graph (Methods 3.5.6, Eq. 3.6-3.10). In the example, trials encountered prior to
trial T provide information about the contextual variable b through the messages
(m1, ...,mT−1) which result from a marginalization operation over the trial-level
latent variables (µ1, ..., µT−1) of previous trials. These messages are integrated
and define the belief MT (b) over the binary contextual variable b prior to trial
T . This ’prior’ is passed downwards to the trial-level to constrain inference about
the current airplane’s majority (Fig. 3.3c, orange) and to generate the response
(Methods, Eq. 3.10). At the beginning of each block, the context is unknown. It
may only be acquired through inference across trials within a block as there is no
feedback (Methods 3.5.4). In the whole task, the inferred block tendency M(b)

is never asked to be reported. It is only indirectly revealed through the top-down
effect on the responses.
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3.3.5 Features of the probabilistic inference model

We use the optimal inference model that is assumed to know the generative model
of the task to illustrate experimentally testable probabilistic inference patterns (Fig.
3.4). Human participants cannot be expected to fully comply with these particular
task assumptions. In the following, we highlight the variation patterns that we con-
sider specific to probabilistic belief updating but which do not presume knowledge
of the exact Beta-Binomial mixture model used in the task (see Methods 3.5.6).

Integrating information from previous trials leads to different confidence re-
ports conditional on the real (hidden) block tendency (Fig. 3.4a). The inferred
contextual belief M(b) correlates with the actual contextual variable and thus le-
ads to an increased decision confidence (on average) for a blue trial majority in a
context that favors blue majorities and vice versa. We must control for evidence
from the momentary sample to show actual prior effects. This is achieved by plot-
ting confidence as a function of the sample proportion as the generative sample
size distribution is by construction independent of all other quantities. Ideally, the
vertical separation of the context-conditional curves is maintained over the whole
range and features point symmetry around the point of indifference (Fig. 3.4a,
center).

The uncertainty of the inferred contextual beliefM(b) gradually affects con-
fidence reports (Fig. 3.4b). The higher the prior belief in a blue context, the larger
should be the top-down modulation of the response towards a blue trial majo-
rity and vice versa. To increase statistical power, we plot the (block-) aligned
confidence. This refers to the confidence that matches the actual context in the
environment which can always be obtained from the normalization property. Li-
kewise, the aligned quantities of the sample proportion and the inferred contextual
prior belief are statistically independent due to the symmetry of the skewed ge-
nerative distributions defining the context (Fig. 3.3a). Ideally, aligned confidence
is a monotonically and gradually increasing function whose slope indicates the
modulatory strength of the prior belief on trial-level inference.

Sample reliability governs the integration of momentary evidence with the
prior belief (Fig. 3.4c). Our task requires an integration of bottom-up signals from
the momentary sample DT = (q,N) with top-down contextual signals M(b), e.g.
to resolve conflicts when the sample suggests a blue airplane majority while the
inferred context suggests a red majority. For a given sample proportion, larger
samples reduce uncertainty about possible trial (airplane) majorities more strongly
and consequently should be relied upon more. Ideally, the modulation of aligned
confidence with the momentary aligned sample proportion is stronger for larger
sample sizes leading to the crossover of the two conditional curves at the point
where sample evidence is indifferent.
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Samples of high reliability influence bottom-up belief revision more
strongly (Fig. 3.4d). When learning the context, one should rely more strongly
on those trials that allow to draw strong conclusions, as opposed to trials whose
sample is likely to be a result of fluctuations. Thus, the modulation of aligned con-
fidence with the sample proportion of the previous trial should be stronger when
the previous sample was large. This is an effect that is only indirectly revealed
through the influence of the bottom-up messages mt(b) on the belief about the
inferred context M(b).

Each trial provides the same information about the context compared to all
others on average across blocks. The test must be separated with respect to the
number of previous trials as normalization effects reduce the influence of each
trial as more trials are added (Fig. 3.4e, Methods 3.5.6). We used a model that
allows to selectively adjust the influence that each trial’s sample proportion q has
on the judgments in later trials (Methods 3.5.7). Ideally, for an infinite amount of
data, all trial weights for the same number of previous trials should be positive and
equal.

Information from all previous trials within a block should be accumulated
and thus aligned confidence should increase on average as more trials are observed
(Fig. 3.4f). Theoretically, hierarchical integration does not require memorization
of the samples after bottom-up belief revision. Merely the belief corresponding to
the contextual variable M(b) must be kept in memory. Ideally, aligned confidence
for the optimal model is a monotonically (and sub-linearly) increasing function of
the number of previously observed trials within a block.

Importantly, all these patterns refer to covariation, they do not claim abso-
lute confidence values. Extraneous factors such as subjective assumptions about
the strength of the block tendency naturally lead to deviations such as vertical off-
sets of most curves.
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Figure 3.4: Behavioral patterns of probabilistic inference in the hierarchical infe-
rence task
(a) For a given sample proportion, confidence in a blue airplane (trial) majority should be
larger in a block that favors blue majorities (cyan) than in a block favoring red majorities
(magenta). (b) The belief in the presence of a certain block tendency should gradually
increase the confidence in the corresponding trial majority. Thus, responses can be pooled
with respect to the real block tendency. We refer to it as ’aligned confidence’ and use the
same concept for other relative quantities below. (c) Confidence in the aligned airplane
majority increases with the aligned sample proportion. This modulation is stronger for
larger sample sizes (green) compared to smaller ones (orange) while it has no effect for
an indifferent sample (50 % sample proportion). (d) Likewise, the aligned confidence in-
creases with the aligned sample proportion of the preceding trial and is modulated by its
respective sample size. (e) The influence of all previous trials should be equal on average
(e.g. trials 1 − 2 on trial 3, T3). However, it decreases with the number of previous trials
due to normalization. (f) Aligned confidence increases across trials within a block because
of evidence accumulation regarding the block tendency. All patterns are derived from the
optimal model (Methods 3.5.6).

44



3.3.6 Prior observations constrain future inferences

We found that participants, on average, manage to correctly learn the real block
tendency (Fig. 3.5a, pattern: Fig. 3.4a). As a function of the proportion of blue

Figure 3.5: Learned belief about the block tendency affects confidence reports
(a) Confidence in blue majority is higher when the block tendency favors blue majorities
than when it favors red majorities. Experimental results (data points) are shown along
with optimal behavior (solid lines) indicating an integration of sample information with a
learned belief about the block tendency. (b) Behavior (black) increases with the optimally
inferred belief about the block tendency and is a close correlate of the optimal response
(red). This suggests that participants internally track a graded belief based on previously
available evidence. Error bars indicate SEM across participants.

samples, their responses show a higher confidence in blue majorities when we
condition on a real blue context than vice versa (details of plotting in Methods
3.5.7). As a comparison we additionally plotted the response of the optimal model
for the same data in all following figures.

The actual inferred context is subjective to the participants and only mani-
fests itself through its influence on the responses. However, we can ask to what
extent these observed influences correspond to those of the optimal model. Par-
ticipants (Fig. 3.5b, black) were found to track a close correlate of the optimally
inferred block tendency M(b) (red) (linear correlation of binned values in Fig.
3.5b, pooled across participants, ρ = 0.77, p = 5.12 · 10−33). The relationship
appears to be monotonic and close to linear which suggests a gradual integration
of subjective prior information (pattern: Fig. 3.4b).

An obvious deviation from the optimal model is the reduced sensitivity to
prior information apparent by the smaller range. Correspondingly, we found smal-
ler linear slopes compared to the optimal model of individually fitted linear functi-
ons (one-sided signed rank test across participants, p = 0.0043). This discrepancy
mainly stems from under-confidence for high evidence for the aligned block ten-
dency. As in the basic task, the confidence judgments of our participants are found
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to correspond closely to the actual decision correctness as derived from the optimal
model (appendix C.1).

3.3.7 Uncertainty governs hierarchical information integration

In the hierarchical dependence structure of latent variables, disparate information
about the context from different trials must be fused. Using the same analysis as
for the basic task (Methods 3.5.7), we found that the size of the momentary sample
also increases decision confidence (Fig. 3.6a). As before, we evidence an increase
of the slope of the confidence response curves with sample size (linear correlation
of slope with sample size, pooled across participants, ρ = 0.49, p = 8.67 · 10−14).
This measure averages over fluctuating values of the prior belief and again de-
monstrates a good overall match with the optimal sample size dependence (linear
correlation, pooled across participants, ρ = 0.52, p = 1.22 ·10−15). Crucially, this
pattern cannot be reproduced by any heuristic estimate ignorant of sample size and
indicates that behavior preserves this feature in the hierarchically extended task of
higher complexity.

Beyond the finding above that participants learn the block tendency (Fig.
3.5a), they should use it selectively and rely more strongly on the sample compa-
red to the prior when sample evidence is reliable (Fig. 3.6b, pattern: Fig. 3.4c).
Indeed, the modulation with the aligned sample proportion is stronger for larger
sample sizes and leads to the crossover of the two conditional curves (signed dif-
ference of conditional slopes from linear regression, signed rank test across parti-
cipants, p = 1.44 · 10−5). This pattern is expected from a probabilistic agent that
constantly adjusts the relative strengths of bottom-up and top-down influences to
update hierarchical state representations.

As for the momentary sample, the influence of the previous trial depends
on its reliability. Behavior is more strongly modulated if the previous sample size
was large (Fig. 3.6c, pattern: Fig. 3.4d) (linear regression, signed difference of
conditional slopes, sign rank test across participants, p = 0.002). This pattern is
weak and superseded by noise, yet we can even determine a significantly larger
slope for nine out of 24 individual participants (shuffling test of high/low sample
size conditions, threshold p = 0.05). Interestingly, participants do not generally
appear to discard evidence that contradicts the already established belief about
the block tendency. On average across blocks, a presented percentage < 50 %

(Fig. 3.6c) contradicts the established belief. If a confirmatory bias were present,
there should be no modulation with contradictory evidence because it is simply
discarded. However, we found no general confirmation bias, as the slopes of fitted
linear functions are significantly larger than zero in this range (signed rank test of
slopes across participants, p = 0.0051).
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A major challenge is to integrate evidence (messages) from different trials to
determine the best estimate of the block tendency. Even several trials, each provi-
ding weak evidence, may jointly allow to draw strong conclusions about the block
tendency. The optimal estimate of the block tendency is a complicated nonlinear
function of the individual evidence distributions involving pointwise multiplica-
tion and subsequent renormalization (Methods 3.5.6). To assure that the behavio-
ral pattern caused by the learned prior belief of the block tendency is unlikely to
be produced by a comparably simple, heuristic integration mechanism, we attemp-
ted to reject three alternative prior accumulation schemes that differently estimate
M(b) (overview in appendix, Tab. C.1).

The averaging model (avg) computes an average of the presented percen-
tages of previous trials in a block and thus neglects sample size (Methods 3.5.6).
The tally model (tly) in contrast, tallies the total number of blue samples vs. the
number of all points observed so far within a block (Methods 3.5.6). This is si-
milar to pooling the samples of all trials, as if they were drawn from a common
population. The tally model can be seen as an estimate its proportion through the
(pooled) sample proportion. As larger samples contribute more points, this tally
estimate is sensitive to sample size. In addition, and similar to Experiment 1, we
test a difference model (diff) that relies on a running average of the differences be-
tween the number of blue and red samples in previous trials to compute the belief
of the block tendency.

Even though all three heuristic approaches are close correlates of the optimal
prior belief M(b), all are determined to be insufficient as a model of behavior. On
the group level, the optimal model is significantly more likely to predict the data of
a randomly chosen participant compared to any other model (Fig. 3.6d). However,
large confidence intervals suggest that few participants may be better described
by rather heuristic approaches. For fitting, we attempted to impose the fewest
constraints possible on the implementation of the integration of the empirical prior
M with the sample D = (q,N). Thus, to reduce the noise in the estimation
process, we modeled this stage with a flexible function (D,M) → C onto the
confidence report C which is adaptive to the idiosyncrasies of behavior (Methods
3.5.6).

Overall, we found strong support for sample size effects suggesting an im-
portant role for uncertainty to guide the information flow for inference of interde-
pendent latent variables.
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Figure 3.6: Sample size effects evidence reliability-based information integration
(a) Confidence reports increase with sample size (data points) and tightly follow the op-
timal pattern (solid line). As in Fig. 3.2b, the slope of the confidence curve is shown.
(b) The modulation of aligned confidence with the aligned sample proportion of the cur-
rent trial is larger when the sample size is high (green) than when it is low (orange).
Significant signed differences of a bin-wise one-sided signed rank test are indicated,
∗ : 0.01 < p ≤ 0.05, ∗∗ : p ≤ 0.01. (c) The modulation of aligned confidence with
the aligned sample proportion of the previous trial is larger when the sample size of the
previous trial is high (green) than when it is low (orange), similar to the previous panel. Er-
ror bars indicate SEM across participants in (a-c). (d) Binomial probability of the optimal
model to account for the data of a randomly chosen participant (error bars are 95 %-CI,
see Methods 3.5.6). Pairwise comparisons to the models (tly, avg, diff) show that probabi-
listic information integration yields better predictions on the group level. Additionally, the
exceedance probability pe is used to quantify how much more likely the optimal model is.
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3.3.8 Incremental prior learning is consistent with hierarchical evi-
dence accumulation across trials

Behavior is remarkably consistent with hierarchical integration in which evidence
between trials is mediated solely via the context-level variable. A central pre-
diction of the probabilistic model is that all previous trials should have equal in-
fluence on behavior on average across blocks (pattern: Fig. 3.4e). We determined
their influence from a regression analysis on the confidence report (see Methods
3.5.7) and found a rather balanced influence of all previous trials (Fig. 3.7a, black,
pattern: Fig. 3.4e). Accordingly, no significant trend could be evidenced through

Figure 3.7: Behavior reflects hierarchical evidence integration across trials
(a) On average across blocks, all previous trials provide the same information about the
block tendency irrespective of their distance to the current trial. From top to bottom,
trials number 3-5 of each block are predicted from the indicated previous trials (sample
proportion). Participants show a balanced weighting despite smaller weights compared
to optimal inference in the hierarchical task (red). (b) Participants accumulate evidence
about the block tendency in a gradual fashion. Aligned confidence increases over trials
within a block despite a smaller effect compared to the optimal model (red). Error bars
indicate SEM across participants.

another linear regression analysis of the trial index against aligned confidence (re-
gression on means across participants, p-values (0.47, 0.51, 0.87) for trials with
(2, 3, 4) previous trials respectively). We remark that consistent with the above
findings (Fig. 3.6c), there is no general confirmation bias which is characterized
by selective evidence integration once a belief has been established. If it were
present, later trials should be disregarded more often which would result in a lo-
wer influence here. In addition, this rather balanced weighting is also inconsistent
with some sort of leaky prior integration scheme in which evidence presented long
ago is fading from memory. Hierarchical integration offers a better explanation
instead as it does not require explicit memorization of previous samples after they
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are integrated into the context-level variable.
Consistent with an accumulation of evidence for the block tendency, aligned

confidence increases over the trials within a block (Fig. 3.7b, black, pattern: Fig.
3.4f). A linear regression analysis of the trial index against aligned confidence
clearly shows the expected increase (regression on means across participants, p =

3.43 · 10−9). Further evidence for accumulation of evidence was provided above
by the correlation with the optimally inferred belief about the block tendency (Fig.
3.5b). As this correlation is high, participants are expected to also accumulate
evidence. Participants generally refrain from making extreme responses in the
hierarchical task both for high sample evidence (e.g. Fig. 3.6b) as well as for high
contextual evidence (Fig. 3.5b). This is expected to more severely affect later trials
in a block which, on average, should allow for stronger trial-level inferences. Such
deviations, as e.g. the markedly smaller increase in Fig. 3.7b, are more specifically
addressed next.

3.3.9 Limitations of the probabilistic inference model to account for
behavior

So far, we have found that behavior well matches characteristic variations that are
expected from probabilistic inference (Figs. 3.5-3.7, patterns: Fig. 3.4). However,
despite finding close correlations, the direct output of the task-optimal probabilistic
model is not sufficient to provide a close fit to behavior because there are further
perturbations. Compared to the optimal model, most patterns feature a substantial
vertical offset and participants appear to rely less on evidence from previous trials
(see e.g. Fig. 3.5b).

Participants are not expected to possess matching a priori knowledge of the
block tendency to our modeling choice of a mixture of two skewed Beta distri-
butions (Methods 3.5.5). One possible reason for such a deviation could be that
participants assume that the asymmetry introduced by the block tendency is we-
aker than the generative one which is supposed to be known be the optimal mo-
del. To explore this, we fitted a model that can account for this fact by allowing
for a differently skewed Beta-distribution implementing this block tendency. In
addition, it accounts for some nonlinear distortions on the response. According
to that, participants appear to subjectively assume a somewhat weaker block ten-
dency as evidenced by the expectation value of the skewed Beta-distribution (op-
timal 0.61, quartiles across participants (0.54, 0.56, 0.60), one-sided signed rank
test, p = 0.0011). We achieved a better fit although systematic deviations from
the fitted model remain for the probabilistic inference patterns (see appendix C.4).
Not surprisingly, this suggests that participants likely rely on a different paramete-
rization of the block tendency.
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Next, we tested whether there is further evidence for partial ignorance of
prior information which is not restricted to this modeling assumption. The inter-
pretation of the deviations, such as the vertical offset in Fig. 3.6c, is not straig-
htforward as every response is the result of tracking prior information about the
block tendency M(b) and the evidence provided by the momentary sample D.
Consequently, deviations may result from a lower dependence on previous trials
and/or from a lower dependence on sample evidence. Nevertheless, there is evi-
dence that participants are less affected by prior evidence overall. Aligned con-
fidence is less strongly modulated with the presented percentage of the previous
trial compared to the optimal model (see Fig. 3.6c) (individual slopes from linear
regression, one-sided signed rank test, p = 0.0036). Consistently, the estimated
weights on the sample proportion of previous trials (Fig. 3.7a) are typically lower
than the respective weights of the model (red) (pooling weights across participants
and trial index, signed rank test, p-values for trials with (2, 3, 4) previous trials
p = (1.50, 0.05, 0.90) · 10−5). This is consistent with an accumulation of contex-
tual evidence in Fig. 3.7b that is weaker than the optimal model).

However, participants might generally respond weaker, that is also to evi-
dence from the sample. There is evidence that participants also depend somewhat
less on the sample than the optimal model. This is quantified by the weights of
the fitted sigmoidal function which are found to be slightly smaller than the corre-
sponding weights of the model (Fig. 3.6a, one-sided signed rank test for smaller
slope, p = 4.62 · 10−5, pooled across participants and sample sizes). We also
tested whether the aligned confidence is less strongly modulated with the sample
proportion (see Fig. 3.6b, linear regression, one-sided signed rank test for smaller
slope, p = 0.13). The result is only suggestive (but non-significant) of such a trend
and consistent with a tendency to restrict confidence reports in particular for large
sample fractions (Fig. 3.6b, sample fractions over 60 %).

In summary, participants depend weaker than optimally on previous trials
and presumably, but not decisively, weaker on momentary evidence. Nevertheless,
the variation with the momentary sample is of a larger magnitude (scales in Fig.
3.6b-c) so that a considerable part of the systematic deviations might arise from
integration with momentary evidence and is not solely due to prior belief tracking.

3.3.10 Dominance of bottom-up influences

A selectively weaker dependence on previous trials might hint at a characteristic
imbalance between bottom-up and top-down influences on hierarchical integration.
Here, we report two relative measures of the influence of (1) the sampleD over (2)
a subjective prior belief M(b). The first measure uses conditional variance while
the second relies on the frequency that judgments oppose sample evidence.
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If participants did barely depend on inferred prior information, all variation
in their behavior would be exclusively determined by the sample and noise. We
controlled for variations in the sufficient statistics of the sample and estimated
residual variance which is attributed to (1) tracking prior information of the block
tendency and (2) response noise (Methods 3.5.7). Compared to the total variance
computed on the same responses, we estimated a ratio of about one third (median
across participants 0.34 (0.24, 0.53), 95 %-CI) for the residual variance fraction.
While the corresponding fraction for the optimal model yields a similar value 0.36

(0.39, 0.42), a direct comparison is somewhat biased by response noise which
only enters in the estimate of the participants. If we however add realistic levels
of response noise (appendix C.3) to the model, its prior related fraction is larger
than for the participants (median 0.4786 (0.45, 0.504), one-sided signed rank test
p = 0.038). This suggests that participants respond less strongly to previous trials
relative to the variations induced by the current trial.

Further insight is provided by trials in which an optimal agent would e.g.
estimate a red majority despite more blue samples because of a high prior belief
in a red tendency. We found that most participants likely make these evidence-
opposing choices (see Methods 3.5.7, one-sided signed rank test with respect to
non-hierarchical ratio model with realistic response noise, p = 0.008). There is
however a tendency to stay on the side of the category boundary that is suggested
by the momentary evidence, as they make significantly fewer opposing choices
than the optimal model (one-sided signed rank test, p = 0.008). Remarkably,
evidence-opposing choices are virtually absent in the basic task suggesting that
there is almost no sensory-motor noise leading to misjudgments of the sample
majority (appendix C.3).

Altogether, we found evidence that participants are less strongly driven by
previous trials in comparison to the effect that the current trial has. On the group-
level, bottom-up influences tend to dominate judgments even though more robust
test are needed to corroborate these findings. Special attention should be payed
to the conspicuously large variations across participants which may render simple
group-level measures unrepresentative.

3.4 Discussion

This study presented a challenging hierarchical integration task which requires hu-
man participants to respect uncertainty about all jointly inferred variables in order
to make truthful confidence judgments. Participants appear to impose contextual
constraints on their inferences to the extent that contextual evidence is reliable.
Correspondingly, behavior exhibits several nontrivial patterns of probabilistic pro-
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cessing such as sample size effects. Moreover, the inference procedures involve
complex and nonlinear operations such as normalization and marginalization [172]
which could not be reduced to explanations with simple heuristics [155].

Beyond that, there is a close correspondence between the probabilistic,
posterior-based conception of decision confidence [125–127] and the uncertainty
estimates of our participants. Remarkably, they were completely free to report their
subjective estimates of their decision correctness on a finite and quasi-continuous
interval spanned by the two possible choices. No clues, nor supervising feedback
was provided to guide their confidence estimates which means that they must pos-
sess surprisingly accurate internal trial-by-trial representations of uncertainty [123,
124]. Overall, their behavioral patterns closely match the ones of a probabilistic
agent [24, 25] which possesses ubiquitous representations of uncertainty through
distributions over all latent variables.

Our basic choice and confidence judgment task (Experiment 1) is compara-
ble to several commonly performed studies [140], although not all systematically
assessed sample size effects [161]. In one study [132], decision time is a proxy
for sample size and was similarly reported to influence confidence judgments. Im-
portantly, our task reaches beyond commonly employed basic visuo-motor tasks
[138, 140, 156] and probes uncertainty representations for more abstract, higher-
level concepts. Apart from the insight into probably domain-general mechanisms,
our computational modeling approach largely sidesteps the idiosyncrasies of the
perceptual stage.

Overly simplistic and un-naturalistic tasks have been criticized for limiting
brain processing to a domain where its power is hidden [77]. The hierarchical
inference task drastically increases complexity as joint inference of several latent
variables at different levels of a hierarchy needs to be performed which capture
the contextual embedding that is typical for real-world inferences [42]. Our par-
ticipants could successfully adjust to perform inference in the hierarchical task
without guiding feedback and repeated exposure. Such rapid domain adaptation
[32, 59, 173] might be enabled by internal representations that harness the compo-
sitionality [68, 174] of our hierarchical problem which is a modular extension of
the basic task.

Such powerful generalizations are hard to conceive without relying on an
internal model of the observations. This is in line with previous studies (e.g. [175,
176]) which conclude that human inferences are model-based or use internal simu-
lations [177]. Veridical judgments about the uncertainty of our inferences require a
representation of the possible worlds [178] that are consistent with our data – even
of those which are not most strongly supported. Correspondingly, the probabilistic
approach to inference always faces the problem of model selection.

Estimating uncertainty about latent variables is a particularly difficult pro-
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blem for heuristic bottom-up approaches which do not acknowledge the distri-
butional (probabilistic) format that our estimates should take [25, 124], e.g. by
committing to one interpretation. In our task for instance, learning calibrated con-
fidence reports would require repeated exposure to the same sample together with
supervising feedback about the actual latent variable (airplane majority). Even for
very simple problems, the scarcity of such data makes this frequentist approach to
uncertainty estimation practically difficult and thus un-ecological.

To select a model, participants must first infer the problem structure itself
from the instructions. We constructed a task metaphor relating to airplanes to
convey the mathematical assumptions in an intuitive manner. We believe that the
task metaphor is exchangeable as long as it manages to communicate or trigger the
underlying assumptions equally well.

An appealing feature of hierarchical Bayesian models is their ability to in-
fer suitable constraints from data. Lower, task-level variables are constrained by
higher-level contextual variables. The latter may be acquired empirically from re-
lated situations as joint inference is performed simultaneously at all levels. This
results in a bidirectional information flow across levels [58] to select the best mat-
ching contextual constraints. Consistent with the use of such top-down constraints,
a recent imaging study [179] has provided evidence for the activation of so called
stimulus templates.

More generally, such a hierarchical scheme is believed to underlie visual
processing [180]. The behavior of our participants fits well into this framework.
Information integration can be well captured with reliability-dependent message
passing between latent variables at different levels of a hierarchy. Such ubiquitous
representations of uncertainty are a crucial ingredient for framework theories such
as predictive coding [170, 171]. A virtue of explicit, probabilistic representations is
that uncertainty estimates can naturally emerge from the knowledge representation
itself, without requiring a meta-representation [181]. If reliability information is
separable from other aspects of the estimate [165], and if it follows a hierarchical
organization [47], may be elucidated with further (imaging) studies.

When comparing behavior against normative approaches, the interpretation
of deviations should respect the internal constraints of the participant as much as
possible [116, 117]. The goal of the participant is not necessarily veridical infe-
rence but the maximization of some subjective cost-benefit measure [111]. Furt-
hermore, sometimes different assumptions about the problem may be internally
justifiable but outwardly appear as irrational to solve the problem [168]. Even
though our instructions were evidently successful, participants likely committed
to slightly mismatching structural assumptions such as the parameterization of the
block tendency. This may explain the typically high variability across participants
[182] and the failure of some few participants to engage in the task.
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If the structure of the problem is uncertain, one might intuitively rely more
strongly on the sample. Structural uncertainty has been evidenced to affect perfor-
mance [140, 175, 183] and may even lead to model-free behavior in severe cases
[60]. We found evidence that top-down information is relied upon less strongly re-
lative to information from the specific instances of the sample. However, its origin,
or whether it is due to structural uncertainty, is not conclusive. Importantly, this
bias is not dichotomous but rather graded which might result from approximate
computations. For instance, a sampling framework [81] may produce biases such
as a base rate neglect [82]. Behavior features other systematic perturbations, such
as a systematic probability distortion [154], whose origin is unclear and beyond
the scope of this study. However, not all deviations must be due to inference as
e.g. the movement-related control problem may obscure the actual estimates of the
participant.

Strikingly, many commonly reported biases [109, 146] are not generally
observed in this study, e.g. sample size insensitivity [147, 149]. The inferences
in our tasks are mathematically almost identical (e.g. [147]) or of even higher
difficulty in the hierarchical task. Hence, the brain may in principle carry out these
computations. We even observed that sample size was taken into account on a
quantitatively accurate level. Furthermore, we did not find a general confirmatory
bias or base rate insensitivity even though participants appear to gravitate towards
such behaviors.

A recent proposal suggested that the ability to interrogate rational inferential
systems through developmentally recent systems which involve natural language
and working memory is limited [133]. Consequently, to minimize their invol-
vement, the task was designed to be intuitive. We attempted to make its structure
maximally transparent by incremental familiarization and by repetitive exposure.
Such structural alignment under precisely controlled conditions is probably crucial
to interpret and possibly account for many behavioral biases [182].

Ultimately, what experimental conditions impede or enable more rational
and/or veridical inferences must be addressed by specifically designed studies
which e.g. control for task instructions or cognitive effort [106]. Such studies
may also investigate the relationship between the ability to make rational inferen-
ces and the degree of conscious awareness underlying the common understanding
of reasoning.

After all, our results suggest that uncertainty is an integral part of our infe-
rences and that we indeed have the potential to resort to rational inference mecha-
nisms that adhere to probabilistic principles. The extent and why we fail to use
them may crucially depend on context and how the problem is communicated.
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3.5 Methods

3.5.1 Participants

All participants were required to complete three sessions on separate appointments
on different days within three consecutive weeks. The sessions were targeted to
take about 35 minutes (Session 1) and 45 minutes (Sessions 2,3). In total 25 par-
ticipants (15 female, 10 male) were recruited mainly among students from the
Pompeu Fabra University in Barcelona. The median age was 25 (minimum 20,
maximum 43). We accepted all healthy adults with normal or corrected to normal
vision. We obtained written confirmation of informed consent to the conditions
and the payment modalities of the task. Irrespective of their performance, they
were paid 5 e for session 1 and 7 e for sessions 2 and 3.

Additionally, they had the chance to obtain a bonus payment which was
determined by the mean of their final score after removing the worst trials (2.3 %).
The score S = 1 − |y − yopt| of a response y was computed with respect to the
optimal response yopt. The payment was determined by comparison to an array
of five thresholds that were set according to the {0.5, 0.6, 0.7, 0.8, 0.9} cumulative
quantiles of the empirical score distribution across prior participants. A higher
score S corresponds to a better performance so that participants were payed an
additional bonus of {1, 2, 3, 4, 5} e if their final score was higher or equal to the
quantile thresholds. This is a relative way of rewarding their efforts to optimize
their responses.

Written task instructions explained that we would score their responses with
respect to the chances that their decision turns out to be correct and that bonus
payments would be based on that score. Additionally, they were informed that
their score was to be compared to the other participants and that the experimenter
could monitor their behavior on-line via a second screen from outside.

3.5.2 Stimuli & Responses

The task was presented with Matlab Psychtoolbox 3.0.12. Immediately after trial
onset, our participants were shown the sample consisting of red and blue solid
circles arranged on a two-dimensional grid about the screen center. The goal was
to make the sufficient statistics easily perceptible while making the display appear
otherwise completely random. Adequate grid spacing was introduced to prevent
the circles from overlapping. Furthermore, red and blue samples never appear
intermingled (details in appendix C.2).

The display is static until the participant makes a response by clicking the
USB-mouse which clears the display of the sample. After a short delay of 300 ms,
the program shows a centered horizontally elongated response bar of random hori-
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zontal extent with a vertical line marking its center. In addition, the response cursor
(Fig. 3.1a, short vertical line) is shown at a random initial horizontal position al-
ong the response bar. Participants can precisely adjust the horizontal position of
the response cursor by moving the mouse horizontally and confirm the input with
a click. The movement range of the response cursor was bounded to the horizontal
extent of the response bar. Their raw response is linearly mapped onto an interval
between [0, 1] and interpreted as the confidence in a blue trial majority y. The
corresponding quantity for the confidence in a red majority is 1− y.

The program then either proceeded to the next trial or to a feedback and/or
pause screen. Participants may receive a short time-out which is signaled by a ho-
rizontal ‘progress’ bar which linearly diminishes over time indicating the fraction
of the waiting time left. During time-out, there is nothing a participant can do to
proceed but wait. Apart from that, the participants are free to proceed at their own
pace without restrictions.

Every five trials, a pause screen is shown which provides information about
how many out of all trials have already been completed. To motivate engagement
in the task, we gave motivational feedback as an average over the trials since the
last pause (blocks for hierarchical task) of the score 〈S〉. Additionally, they also
received a time-out of some few seconds proportional to 1− 〈S〉.

3.5.3 Experiment 1: Procedure & Instructions

First, participants read detailed written instructions of the task. We introduced the
task metaphor that relates to judging the (hidden) majority of passengers on a flight
and used it to explain the mathematical assumptions in more intuitive terms (see
appendix C.2).

Additionally, our participants were given 30 trials to familiarize with the
handling of the task through a short interactive session. The subsequent experi-
mental session (session 1) consisted of 280 trials with pauses together with feed-
back after every 5 trials. The sample sizes where independent and identically
distributed (i.i.d.) samples from {3, 5, 7, ..., 13} while the hidden airplanes pro-
portions were i.i.d. samples from a Beta(4, 4)-distribution. After confirming the
response, participants received extra feedback about the correctness of each de-
cision. Partly, this was done to emphasize the dissociation between sample and
population majority. In addition, a two second time-out was presented for false
decisions.
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3.5.4 Experiment 2: Procedure & Instructions

Experiment 2 comprises the sessions 2 and 3 and was carried out with the same
25 participants as in Experiment 1 (session 1). Later, we excluded two of them
because one did not complete the experiment and one showed too little compliance
with the hierarchical task (appendix C.4). Despite the hierarchical extension across
blocks of five trials, the handling of the task and the presentation of the sample is
virtually the same. The changes to the latent structure should lead to a different
interpretation of the information which we attempted to convey by an extension of
the task metaphor (appendix C.2).

As for Experiment 1 and prior to starting session 2, participants completed
two very short training sessions. First, they were given 20 trials (4 blocks) with
a strong block tendency (sample sizes {8, ..., 11}, block asymmetry Beta(15, 7)).
Then another 30 trials under slightly harder conditions (sample sizes {3, ..., 11},
block asymmetry Beta(15, 7)). Importantly, this only permits them to understand
the structure of the reasoning task. However, they cannot deduce how they have to
make their judgments because we do not give informative, supervising feedback
to learn from.

Afterwards, our participants completed 270 trials of the experimental ses-
sion 2 with an even more difficult setting of the parameters (sample sizes
{3, ..., 11}, block asymmetry Beta(14, 9)). On the third session, on a different
appointment, the participants just continued the instructed task of session 2 for
300 trials with identical settings to obtain more data.

3.5.5 Generative model for the stimuli of the prior learning task

First and once for every block, the binary variable b governing the prevalence
for either red or blue trial majorities is drawn from a Bernoulli distribution b ∼
Bern(0.5) in which b stands for a blue block tendency. For simplicity, we use
the same variable names for the generative process (Fig. 3.3a) as for the optimal
agent (Fig. 3.3c), although in general, an agent’s representation is not necessarily
the same as the generative process in the environment. For every trial, the latent
airplane proportion µ is drawn from one of two Beta distributions depending on b.
More formally, this can be written as a mixture distribution:

p(µ|ν1, ν2, b) = b · Beta(µ|ν1, ν2) + (1− b) · Beta(µ|ν2, ν1) (3.1)

The Beta distribution is parameterized by two parameters (ν1 = 14, ν2 = 9). They
are chosen such that the resulting distribution over the trial majority µ is skewed.
By convention, Beta(µt|ν1, ν2) is positively skewed (ν1 ≥ ν2) and models a blue
block tendency. The greater the expectation ν1/(ν1 + ν2) ≈ 0.609 the more ex-
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treme this effect.
Sampling then proceeds as for Experiment 1. First, an i.i.d. sample is drawn

from a uniform categorical distribution Cat(N |1/n, ..., 1/n) over all n sample sizes
N ∈ {3, . . . , 11}. Then, the sufficient statistics of the sample are determined
by a draw from a Binomial distribution NB ∼ Bin(N,µ). Hence, the sampling
distribution for one trial is:

p(NB, N, µ|ν1, ν2, b) ∝ Bin(NB|N,µ)·Cat (N |1/n, ..., 1/n)·p(µ|ν1, ν2, b) (3.2)

The geometric placement on the screen is not considered to be part of the gene-
rative model as we make the assumption that only the sufficient statistics mat-
ter. The expression in Eq. 3.2 defines the probability distribution for the suffi-
cient statistics of the observations of trial t to which we refer more concisely as
p(qt, Nt, µt|b, ν1, ν2), thus equivalently expressing it in terms of the sample pro-
portion q = NB/(NB + NR) and the sample size N = NB + NR. We drop
the conditioning on the parameters of the categorical distribution over sample si-
zes to keep the notation uncluttered. Using this expression, the entire sampling
distribution over all variables of all trials within a block is:

p(q1, ..., q5, N1, ..., N5, µ1, ..., µ5, b|ν1, ν2) = p(b)
5∏
t=1

p(qt, Nt, µt|b, ν1, ν2)

(3.3)
Given the block tendency b, the per-trial quantities, such as µt, are independent.
The parameters, e.g. (ν1, ν2), do not result from sampling but serve to define other
distributions.

3.5.6 Computational models

Inference using the probabilistic generative model of the basic task

Due to the choice of a conjugate distribution p(µ) for the Binomial probabilistic
model NB ∼ Bin(N,µ) above, posterior inference yields a Beta-distribution over
the latent airplane proportion µ.

Beta(µ|NB + rB, NR + rR) ∝ Bin(NB|N,µ) · Beta(µ|rB, rR) (3.4)

Specifically, to give calibrated responses, the prior distribution used for inference
must correspond to the actual base rates specified by Beta(µ|rB = 4, rR = 4).
The confidence in e.g. a blue trial majority c(B) is expressed as the belief that
choosing a blue majority is correct by integrating over the corresponding subspace
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of inferred blue majorities.

c(B) = 1−c(R) = p(µ > 0.5|NB, NR) =

1∫
0.5

Beta(µ|NB+rB, NR+rR) (3.5)

Inference using the probabilistic generative model of the hierarchical task

The optimal inference model inverts the generative structure of the task. It main-
tains a probability distribution over the observations of all in-block trials and their
respective latent variables (µ1, ..., µT ) up to the current trial T . The parameters
(ν1, ν2) are part of the generative structure and assumed to be known. Conse-
quently, inference amounts to an updating of the distribution over the latent varia-
bles through a calculation of the posterior distribution conditional on the observati-
ons. We identify distributions by their respective arguments and e.g. write p(D|µ)

for the distribution over the sufficient statistics of the sample. We use the abbre-
viation D = (q,N) for the observations, omit parameters and index according to
in-block trials t.

p(µ1, ..., µT , b|D1, ..., DT ) ∝ p(b)
T∏
t=1

p(Dt|µt)p(µt|b) (3.6)

The current trial is labeled T and we would like to compute the probability of a
blue latent trial majority, namely that µT is larger than 0.5. For this purpose, all
nuisance variables that are not of interest (previous trials) must be integrated out.

p(µT ≥ 0.5|D1, ..., DT ) =
1

ψ

∑
b={0,1}

1∫
0.5

p(DT |µT )p(µT |b) dµT

· p(b)

T−1∏
t=1

1∫
0

p(Dt|µt)p(µt|b) dµt (3.7)

Because of conditional independence given the block tendency b, the high-
dimensional distribution factorizes so that only one-dimensional integrals over
the latent variables of previous trials must be performed. Examining the graph
structure, we see that they may be considered messages mt(b) which are passed
upwards to update the block-level variable b.

mt(b) =
1

ψmt

1∫
0

p(Dt|µt)p(µt|b) dµt (3.8)
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For proper normalization ψmt , they are themselves probability distributions which
convey bottom-up evidence for the block tendency variable b = {0, 1} based on
the observations Dt.

These bottom-up messages from different trials are integrated to update the
belief MT (b) about the block tendency b prior to trial t through point-wise multi-
plication and proper renormalization ψM .

MT (b) =
1

ψM
p(b)

T−1∏
t=1

mt(b) (3.9)

As more evidence is gathered (trials), more factors can be absorbed into the belief
about b without having to memorize data from all previous trials as it is efficiently
encoded in MT (b). Subsequently, this knowledge serves as top-down constraint
on future inferences on the trial level. Consequently, to derive the probability of
a blue trial majority on the next trial, the integration of momentary evidence (Eq.
3.7) can be expressed as

cT (B) =
1

ψ

∑
b={0,1}

MT (b)

1∫
0.5

p(DT |µT )p(µT |b) dµT (3.10)

Proper normalization can be obtained analytically (appendix C.4).

Hierarchical heuristic average percentage model (avg)

To derive the belief in a blue block tendency, this model computes the average of
the presented fractions of blue samples q = NB/(NB + NR) in the trials t prior
to the current trial T .

M q
T (b = 1) =

1

T − 1

T−1∑
t=1

qt (3.11)

It neglects sample size and corresponds to the implicit assumption that each trial’s
population is well captured by a point estimate, i.e. by its respective sample pro-
portion. To integrate information from each trial, equal weight is given to each
trial ignoring the fact the some trials provide more information than others due to
different sample sizes. As for the other models below, indifference is assumed on
the first trial M q

T=1(b = 1) = 0.5.
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Hierarchical heuristic tally model (tly)

Similarly, this model computes a tally of all blue samples observed prior to the
current trial T versus the number of all samples observed in a block so far.

M±T (b = 1) =

∑T−1
t=1 NBt∑T−1

t=1 NBt +NRt

(3.12)

This corresponds to pooling the samples of all trials, as if they were drawn from
a common population of unknown population proportion whose ML estimator is
M±T .

Hierarchical heuristic difference model (diff)

The heuristic difference model considers the difference between the number of
blue and red samples dt = NBt − NRt as informative to establish a belief about
the block tendency. Across trials, it is accumulated by computing:

Md
T (b = 1) =

1

1 + exp
[
−ω ·

∑T−1
t=1 dt/(T − 1)

] (3.13)

The logistic sigmoidal function ensures that the result always takes a value between
zero and one and that it can be interpreted as a proper belief. The parameter ω
adjusts the sensitivity to the sample-difference statistics dt and can be determined
by a fit to behavioral data.

Response mapping captures distorted reports of internal confidence estimates

Behavior is influenced by additional factors and subjective assumptions of the par-
ticipant which are difficult to model explicitly. Instead, we implicitly model those
which can be captured by a nonlinear transformation of the confidence estimate
through the effects they exert on the response. By allowing for additional freedom
through a mapping, we can capture that participants may not report their internal
estimate in an unperturbed way, e.g. due to motor control constraints, without
having to model its origin.

All models compute a confidence estimate c ∈ [0, 1] and may be supple-
mented with this mapping. First, we standardize the output c′ = 2(c− 0.5) which
then enters the argument of a logistic sigmoid function through the polynomial
Z = ω0 + ω1c

′ + ω2c
′3.

ŷ =
1

1 + exp(−Z)
(3.14)

As we assume symmetry, only odd powers of c′ are used. In other words, the
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perturbed confidence estimate ŷ should lead to the same decision confidence ir-
respective of the sign (red or blue) of the unperturbed (standardized) confidence
estimate c′.

This function is flexible and able to approximate a wide range of distorted
reports including the identity mapping and various forms of probability distortion.
It only accounts jointly for all effects which affect the final judgment. Other sys-
tematic deviations during confidence estimation which are conditional on a subset
of the input space can only be partially accounted for, e.g. deviations for extreme
values of the sample proportion.

Flexible sigmoidal mapping (zmap)

This is a flexible extension of the response mapping described before. It is used
to construct an approximation of low estimation bias to the sample integration
stage in the hierarchical task. More concretely, we must integrate any given prior
belief M , not necessarily derived from a probabilistic model, with the momentary
sample D = (q,N) and map it onto the final response (q,N,M)→ ŷ. As a mere
function approximator, it is agnostic to the mechanisms that participants may use
to combine information. Correspondingly, its parameters ω must be determined by
a fit to the experimental data. Here, this process is approximated by a polynomial
function Z of the input (q,N,M) that is fed into a logistic sigmoid as in Eq. 3.14.

Z = ω1 + ω2q
′ + ω3q

′N + ω4M + ω5q
′3 + ω6q

′3N

+ ω7NM
′ + ω8M

′3 + ω9NM
′3 (3.15)

The argument Z contains only odd powers of q andM because we assume symme-
try and no preference for estimating either red/blue majorities. Correspondingly,
both quantities are standardized beforehand by the function f(x) = 2(x − 0.5).
As they are also independent from one another, no corresponding product terms
are included.

Preliminary testing revealed that the inclusion of nonlinear terms is impor-
tant to capture finer-grained patterns of behavior. The sample size N is introduced
into some terms to model its magnifying effect on the signed quantities (q,M).
We performed a weight normalization by the SD of each polynomial (for the input
data) which was absorbed into the indicated weights ω. The particular choice of
the terms in Eq. 3.15 balances flexibility with model complexity (and optimiza-
tion for finite behavioral data). We manually tested different parameterizations but
did not find crucial differences for reasonable choices of the mapping. However,
we remark that behavior certainly features more subtle variations that cannot be
captured well but only approximated by this functional choice.
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The response distribution

The probability of obtaining the behavioral response yt on trial t conditional on
the data dt and the model parameters is assumed to be a Gaussian distribution
truncated to the interval from zero to one N[0,1](yt|ŷt, θ). The mean parameter
of the normal distribution is set to the model prediction ŷt. The latter is denoted
by ŷ to distinguish it from the response y of the participant which is formally
represented by a draw from the response distribution to account for task-intrinsic
behavioral variability beyond the variations captured by the model. The standard
deviation (SD) parameter θ of the Gaussian is assumed to be constant and robustly
estimated from the data (appendix C.2).

As our data might be contaminated by other processes such as lapses, we
take precaution against far outlying responses. The response likelihood is calcula-
ted for all R responses y as:

p(y|D1, ..., DR) =
R∏
t=1

(1− ε)N[0,1](yt|ŷt, θ) + ε (3.16)

Additionally, to prevent isolated points from being assigned virtually zero proba-
bility, we generally add a small probability of ε = 1.34× 10−4 to all. This corre-
sponds to the probability of a point at four standard deviations from the standard
normal distribution. For non-outlying points this alteration is considered negligi-
ble.

Estimating model evidence

The evidence that each participant’s data lends to each model is derived from pre-
dictive performance in terms of the cross-validation log likelihood (CVLL). For
training, we maximized the logarithm of the response likelihood (Eq. 3.16). To
maximize the chances of finding the global maximum even for non-convex pro-
blems or shallow gradients, every training run first uses a genetic algorithm and
then refines its estimate with gradient based search (MATLAB ga, fmincon). The
CVLL for each participant and model is summarized by the median of the loga-
rithm of the response likelihood (Eq. 3.16) on the test set across all cross validation
(CV) folds (appendix C.2).

Differences in model evidence, ∆, are reported on a log-scale in decibans
(also decihartleys, abbreviated dHart) that may be used to interpret the significance
of the results of individual participants. According to standard conventions, we
consider a value of 5 > ∆ barely worth mentioning, 10 > ∆ ≥ 5 substantial,
15 > ∆ ≥ 10 strong, 20 > ∆ ≥ 15 very strong and ∆ ≥ 20 decisive.
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Group level model comparison

Instead of making the assumption that all participants can be described by the
same model, we use a hierarchical Bayesian model selection method (BMS) [184]
that assigns probabilities to the models themselves. This way, we assume that
participants may be described by different models. That is a more suitable appro-
ach for group heterogeneity and outliers which are certainly present in the data.
The algorithm operates on the CVLL for each participant (p = 1, ..., P ) and each
model (m = 1, ...,M ) under consideration and estimates a Dirichlet distribution
Dir(r|α1, ..., αM ) that acts as a prior for the multinomial model switches upm. The
latter are represented individually for each subject by a draw from a multinomial
distribution upm ∼ Mult(1, r) whose parameters are rm = αm/(α1 + ...+ αM ).
We use the CVLL and assume an uninformative Dirichlet prior α0 = 1 on
the model probabilities. Later, for model comparison, exceedance probabilities,
pe =

∫ 1
0.5 Beta(αi,

∑
j 6=i αj), are calculated corresponding to the belief that a

given model i is more likely to describe the data than all other models under con-
sideration. High exceedance probabilities indicate large differences on the group
level. We consider values of pe ≥ 0.95 significant (marked with ∗) and values of
pe ≥ 0.99 very significant (marked with ∗∗). A comparison of the parameters of
the models reported in the main text can be found in the appendix C.2.

3.5.7 Other analyses

Regression for sample size dependence

Separate regression analyses conditional on sample size N are used to determine
the slope of the psychometric curves of the confidence judgments in a blue trial
majority over the proportion of blue samples q (Figs. 3.2, 3.1 and 3.6). For a
given sample size N , we use a logistic sigmoid with a weight ωN to relate the
standardized sample proportion q′N = 2(qN − 0.5) to the modeled response ŷ.

ŷ =
1

1 + exp(−ωN · q′N )
(3.17)

We note that with this parameterization symmetric and unbiased judgments are as-
sumed. Conditioning reduces the number of data points available for fitting. To
avoid numerical singularities due to finite data (sigmoid collapses to step function),
we use the likelihood function (Eq. 3.16) but with the truncated Gaussian replaced
by a Gaussian. This effectively leads to weighted regression assigning less proba-
bility density to responses close to the extremes (e.g. a response of 1 is assigned
1/2 of the density due to spill-over of the Gaussian into [1,∞)). In this heuristic
scheme, outlying responses are given less importance which translates into higher
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stability of the weight estimate.

Regression for previous trial weights

To estimate the weight on the sample proportion of previously presented in-block
trials on the current confidence estimate, we perform a regression analysis (see
Figs. 3.4e and 3.7a). Probabilistic integration of evidence for the block tendency
M (Eq. 3.9) results in a nonlinear increase of aligned confidence with the number
of previously observed trials which saturates due to normalization. Hence, as the
relative contribution of each trial decreases as more trials are observed, we perform
the regression analysis separately for different numbers of predictors (2, ..., T −1)

(previous trials).

ŷ =
1

1 + exp
[
−
∑T−1

t=1 ωt · q′t
] (3.18)

As before, we use a logistic sigmoid with a weight ωt to relate the standardized
sample proportion q′t = 2(qt−0.5) of each previous trial t to the modeled response
ŷ. Again, this conditioning reduces the number of data points available for fitting
(570/5 = 114 trials) from which up to four weights have to be determined. To
avoid numerical singularities due to finite data, we use the likelihood function (Eq.
3.16) but with the truncated Gaussian replaced by a Gaussian (see above).

Residual variance when conditioning on the sample

If we control for the sufficient statistics of the sample (q,N), the residual varia-
tion may be attributed to variations due to the prior belief and non-input related
response noise. We searched for all trials with the same sufficient statistics of the
momentary sample. If there were ten or more trials for a particular sufficient statis-
tic, we computed their squared deviation from the mean. Subsequently, we pooled
all squared deviations calculated this way and took the mean individually for each
participant. This was used as an estimate of the residual variance conditioned on
the sample. As a reference, the total variance on the same trials was computed.
The residual variance was then expressed as the ratio of the sample-conditioned
variance with respect to the total variance. We added realistic levels of response
noise (SD = 0.1, appendix C.3) to the optimal model for a less biased comparison
of the prior related variance fraction with experimental data.

Evidence opposing choices

The sample proportion is converted to a frame of reference in which it corresponds
to evidence for the real (latent) block tendency, called aligned sample proportion
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and denoted by q̃. In this frame, evidence from the sample opposes the tracked
prior belief (on average) when q̃ < 0.5. If we record a response that reports the
other category ỹ > 0.5 for such a trial, we call this an evidence opposing choice
(confidence judgment). This can be attributed to an influence of an opposing prior
belief or task-intrinsic response noise (independent of input). To avoid biased
estimates because of the latter, the analysis is conditional on trials q̃ < 0.5 that
provide opposing evidence on average.

Crucially, in Experiment 1, we found that noise basically does not lead to
evidence opposing choices (appendix C.3). Nevertheless, we make a conservative
estimate by comparison to a model whose evidence opposing choices just result
from noisy responses in the absence of any prior belief tracking. This reference
model ŷ = q̃+ε just reports the aligned sample proportion q̃ plus independent noise
ε drawn from a truncated Gaussian distribution of standard deviation SD = 0.1.

Binning for visualization and analyses

To impose minimal constraints on data for visualization (see Figs. 3.5-3.7), we
plotted the responses by grouping them into approximately equally filled bins
across participants. The number of bins was manually chosen to achieve an ap-
propriate trade-off between resolution and noise of the estimated bins values. Im-
portantly, this only affects visualization. Unless stated otherwise, the underlying
un-grouped data is used for testing. The conditional curves in Fig. 3.6b and c were
determined by the cumulative quantiles Q of the sample size distribution (many
≥ Q(0.6), few < Q(0.4)) and (many > Q(0.5), few ≤ Q(0.5)) respectively.
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Chapter 4

Inductive biases for inference

4.1 Abstract

While previous studies have shown that human behavior adjusts in response to
uncertainty, it is still not well understood how uncertainty is estimated and repre-
sented. As probability distributions are high dimensional objects, only constrained
families of distributions with a low number of parameters can be specified from
finite data. However, it is unknown what the structural assumptions are that the
brain uses to estimate them. We introduce a novel paradigm that requires human
participants of either sex to explicitly estimate the dispersion of a distribution over
future observations. Judgments are based on a very small sample from of a cen-
tered, normally distributed random variable that was suggested by the framing of
the task. This probability density estimation task could optimally be solved by
inferring the dispersion parameter of a normal distribution. We find that although
behavior closely tracks uncertainty on a trial-by-trial basis and resists an expla-
nation with simple heuristics, it is hardly consistent with parametric inference of
a normal distribution. Despite the transparency of the simple generating process,
participants estimate a distribution biased towards the observed instances while
still strongly generalizing beyond the sample. The inferred internal distributions
can be well approximated by a nonparametric mixture of spatially extended basis
distributions. Thus, our results suggest that fluctuations have an excessive effect
on human uncertainty judgments because of representations that can adapt overly
flexibly to the sample. This might be of greater utility in more general conditions
in structurally uncertain environments.

The content of this study is prepared for publication: "Instance-based generalization for human

judgments about uncertainty", P. Schustek and R. Moreno-Bote, under review.
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4.2 Author Summary

Are three heavy tropical storms this year compelling evidence for climate change?
A suspicious clustering of events may reflect a real change of the environment or
might be due to random fluctuations because our world is uncertain. To generalize
well we should build a probability distribution over our observations defined in
terms of latent causes. If data is scarce we are forced to make strong assumpti-
ons about the shape of the distribution ideally incorporating our prior knowledge.
In our task, human behavior is consistent with probabilistic inference but reveals a
tendency to generalize based on observed instances enhancing the effect of random
patterns on behavioral judgments. This decreased context-sensitivity corresponds
to a dominance of bottom-up sensory information. Maintaining a balance with
expectation-driven top-down information is crucial for proper generalization. Our
work provides evidence for the necessity to include graded instance-based genera-
lization into the mathematical formulation of cognitive models. The investigation
of the determinants and neural substrates of this inferential bias is expected to give
insights into the richness but also fallibility of human inferences.

4.3 Introduction

Determining from limited data when observations reflect a consistently appearing
pattern or when they are merely the result of randomness is important to faithfully
represent the environment (see e.g. [185]). Suppose you want to assess the skill of
a dart player to thrown darts at the bullseye (center) of the board. For a single bad
throw, it is hard to discern whether it was due to bad luck or to the general inability
of the player. For several throws however, the dispersion of the darts around the
center should more closely reflect the skill of the player.

To represent uncertainty of our knowledge in this and more general situa-
tions, normative considerations suggest that an agent should explicitly represent
knowledge as probability distributions instead of as point estimates [25, 124]. Se-
veral studies have shown that under certain conditions humans behave as if the
uncertainty about a task-relevant variable was available to them as a distribution
over its possible values [137, 186].

For instance, judging the skill of the dart player corresponds to estimating
the spread of the distribution around the observed values. This requires constrai-
ning structural assumptions about the "shape" of the underlying probability distri-
bution (e.g. a parameterized function such as a Laplacian or Gaussian) and it is
generally unknown what assumptions are used by humans when dealing with un-
certainty. Ideally, previous knowledge about the data generation process such as an
expectation for the darts to cluster around the center corresponding to the goal (of
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the example) is incorporated. As opposed to visuo-motor uncertainty [66], there is
little evidence for the shape of inferred trial-by-trial perceptual representations in
the small sample limit. In several previous studies such as cue combination [138],
distributional estimates are taken to be normally distributed. While this may be
justifiable under certain conditions, we challenge the general validity of this as-
sumption.

Here we asked what kind of internal structural assumptions humans employ
to generalize from sparse observations. Human participants are asked to quantify
uncertainty about future events by estimating the dispersion of a normally distri-
buted random variable. Although the instructions and the framing of the task sug-
gested a simple, centered, unimodal, bell-shaped distribution, human behavior was
not consistent with structural assumptions based on a close to normal probability
distribution. Instead, human behavior was better explained by instance-based ge-
neralization whereby observed samples were used to build an internal representa-
tion of the underlying probability distribution, not necessarily unimodal or symme-
tric. The resulting internal representation is a mixture of several components and
hence less sparse than necessary. Participants demonstrated faithful trial-by-trial
estimates of uncertainty while the opportunity to learn a suitable response map-
ping from feedback was suppressed [124]. All alternative heuristic explanations
proved insufficient to explain complex and consistently made estimates. Hence,
our results support the notion that approximate probabilistic processing underlies
behavior.

4.4 Results

We asked human participants to estimate the dispersion of future events from a
small sample by indicating a range in which they predicted 65% of all future events
to fall. The task instructions alluded to judging the ability of a dart player to hit
the target based only on the outcome of previous attempts (Fig. 4.1).

Ideally, this task could be accomplished by inferring the dispersion of the
generative distribution which in accordance to the task was chosen to be Gaus-
sian. More specifically, participants were asked to judge the unknown accuracy
of a "dart player" to hit the center of the board (Fig. 4.1A). On a given trial, of a
total of 320 trials, the participants are shown four points representing the "darts"
thrown by one unobserved player of unknown accuracy to hit the center of the
board. Based on the four observed "darts", participants must predict where fu-
ture darts from the same player might strike the board. Specifically, participants
were asked to capture 65 % of all future imaginary darts by adjusting the width
of the rectangular frame of size 2y symmetrically about the center (y is the ho-
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rizontal, one-sided distance of the lateral borders of the rectangle to the center).
Only the horizontal dispersion of the dots is relevant to estimate the accuracy of
the dart player, while vertical displacements are added just to improve visibility
of the samples. The choice of 65 % is convenient as it does not depend on an
accurate estimate of the distribution’s tail and conveniently allows to examine a
limiting case of instanced-based generalization. Participants were informed that
they would see a new player of unknown accuracy to hit the center in every trial,
that there would be just as many amateur as expert level players and that the order
of appearance is unpredictable.

Based on the observed samples, a probabilistic agent would infer a pre-
dictive probability distribution over the position of the next sample to accurately
estimate the size of the frame that would capture 65% of the imaginary darts
thrown by the same dart player. Inference requires the specification of a gene-
rative model of the observational data. However, the actual generative model in
the environment (controlled by the experimenter) and the model the agent uses for
inference is generally different. Nevertheless, in order that inference is optimal, the
agent’s probabilistic model needs to match the generative process (in the environ-
ment). Exploiting knowledge that a normal distribution dn ∼ N(µ = 0, σ) cente-
red at zero is responsible for theN = 4 observations d = (d1, . . . , dN ), estimation
of the predictive density p(x|d) over an unseen event x amounts to inference of the
only unknown quantity σ parameterizing the standard deviation of the zero-mean
Gaussian distribution. Maximizing the likelihood function p(d|σ) with respect to

σ yields σML =
√

1/N
∑N

n=1 d
2
n. This corresponds to the expression for the

standard deviation with a known mean of zero. The predictive distribution may
be directly based on maximum likelihood estimation (MLE) p(x|σ = σML(d))

which is illustrated in Figure 4.1B. However, given the observations it is not pos-
sible to determine σ with certainty. The maximum likelihood estimator σML and
the number of observations N can only be regarded as sufficient statistics for σ.
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Figure 4.1: Human participants perform a task consisting in estimating the disper-
sion of future events based on a few observations (A) Schematic of one trial of the task.
Participants were asked to judge the unknown accuracy of a "dart player" to hit the center
of the board (gray rectangle). Based on the four observed "darts" (white dots), participants
must predict where future darts might strike the board. Specifically, participants were as-
ked to capture 65 % of all future imaginary darts by adjusting the width of the rectangular
frame (colored frames, see below). Only the horizontal dispersion of the dots is relevant to
estimate the accuracy of the dart player, while vertical displacements are added just to im-
prove visibility of the samples. (B) Based on the observed samples, the participants might
infer a predictive probability distribution over the position of the next sample. Two hypot-
hetical predictive distributions are shown, representing different structural assumptions
about how the samples might have been generated, corresponding to maximum likelihood
estimation based on a Gaussian distribution (blue) or a generalized normal distribution
with shape parameter p = 10 (orange) (see Methods 4.6.3). Based on the predictive pro-
bability distribution, the participant can set the frame’s width so that it matches the target
percentage of 65 % (colored frames in panel A). Note that for the assumption of a ge-
neralized normal distribution, the posterior is more sensitive to data points far from the
center and hence a larger frame is chosen. (C) The horizontal positions of the points with
respect to the center were generated as follows. First, all samples r = (r1, . . . , r4) were
generated independently from a standard normal distribution. Second, the samples were
scaled by the factor ν/σML(r), where σML(r) =

√
1/N

∑
r2n is the maximum likeli-

hood estimator (MLE) for a normal distribution centered at zero and ν is drawn from a
uniform probability distribution over the range of [10, 140] pixels. The scaled samples
d = ν/σML(r) · r feature a MLE given by σML(d) =

√
1/N

∑
d2n = ν. This method

allows choosing any desired distribution of σML(d) by setting ν correspondingly. (D) His-
togram of σML(d) across 320 trials (blue). For comparison, the red histogram indicates
the results for a sample scaling d = ν · r without normalizing by σML(r). Both sam-
ples have a comparable mean, but the red distribution features few but extremely outlying
values, which are avoided by our scaling method
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In a Bayesian treatment, the posterior distribution p(σ|d) requires the spe-
cification of the distribution of prior knowledge p(σ).

p(σ|d) ∝
N∏
n=1

N(dn|0, σ) · p(σ) (4.1)

The prior is part of the agent’s subjective knowledge. However, to be optimal it
must equal the actual distribution over σ in the environment, i.e. the base rate at
which the hidden variable σ occurs. To then predict the probability of the next
event at position x given d, σ has to be marginalized out. The predictive distribu-
tion results from the probabilistic model N(x|0, σ) weighted by the posterior over
σ.

p(x|d) =

∞∫
0

N(x|0, σ) · p(σ|d) dσ (4.2)

More generally, the predictive distribution p(x|d) corresponds to the belief about
future events after observing data d.

Now, we turn to the problem of how the agent might set the frame in a
principled way based on the estimated predictive probability distribution. For a
given setting of the rectangular frame, z, one can determine the fraction of future
events within that interval, the capture probability c, by calculating the integral

c(z) =

z∫
−z

p(x|d) dx (4.3)

The belief in Eq. 4.3 is subjective but it yields a clear objective to determine
the response y (half-frame size) by optimization so that c(y) matches the target
probability of 65 % (Fig. 4.1B).

c(y)
!

= 0.65 (4.4)

For our purposes, we are mainly interested in inference strategies regarding the
probabilistic model given task instructions and input d. For data generation, we
dispense with the definition of an explicit latent σ variable for the normal distribu-
tion as we are interested in the subjective assumptions underlying inference. We
used a sampling scheme which reduces response noise and keeps outlying con-
ditions to a minimum translating into improved discriminatory power for model
comparison (see Methods 4.6.1). This was achieved by renormalization of the raw
samples (Fig. 4.1C). We directly sampled σML(d) from a uniform distribution
over the desired range of dispersions. Defining an explicit latent σ-variable over a
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finite range would have led to a long-tailed σML(d) distribution with undesirable
properties (Fig. 4.1D) which is avoided by our approach. Inference of a normal
distribution whose width is assumed to vary parametrically across trials is devised
as a reference model (benchmark) for comparison with behavior. It follows the in-
ference strategy of Equations 4.1-4.2 and assumes a uniform prior over the range
of [0, 140] pixels corresponding to the task instructions. The Bayesian benchmark
model was chosen as reference for motivational feedback and bonus payments to
incentivize engagement in the task (see Methods 4.6.2).

Figure 4.2: Generalization beyond the observed sample is governed by the parame-
tric assumptions of the distribution Each row shows examples of probability densities
(black lines) for a different sample (green and blue dots, four observations) in units of its
root mean squared deviation (RMSD). (A) A zero centered unimodal Gaussian distribu-
tion is used to account for the whole sample. All point positions d enter via the estimated
standard deviation parameter, σML(d) (RMSD), determined by probabilistic inference.
Whereas for instanced-based generalization the sample points effectively enter as parame-
ters themselves. (B-D) Different additive basis distributions (red) to cover the observation
space can be used. The tiling model covers the space with adjacent non-overlapping uni-
form basis distributions resulting in a compressed distribution around spatially proximal
points (B). Additionally, models can be constructed from simpler components by cente-
ring a Gaussian kernel on each observation (see Methods 4.6.3). In the limit of vanishing
kernel widths (C) there is no generalization beyond the sample while for larger widths (D)
a smoothed density over the whole domain is obtain due to overlapping basis distributions.

The goal is to determine which inductive biases participants employ for ge-
neralization and whether that conforms to the structural assumptions suggested by
the framing of the task. More specifically, we attempted to distinguish between in-
ference of a centered, unimodal, bell-shaped distribution (Fig. 4.2A) and variants
of instance-based generalization (Fig. 4.2B-D), such as kernel density estimation
(KDE), which make only very few assumptions about the distribution to be infer-
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red. We furthermore investigated whether participants might derive their behavior
from an internal representation of a probability distribution. Alternatively, any
measure that correlates with the dispersion to be estimated might serve to inform
behavior. These heuristics are primarily chosen to facilitate processing and not
to achieve a more accurate representation of the environment. Our task allows
explicit testing of some heuristic short-cuts to the task.

4.4.1 Faithful tracking of trial-by-trial uncertainty

First, we tested whether participants demonstrate the ability to faithfully estimate
the dispersion of the centered normal distribution assumed to be responsible for
the observations. The MLE of the Gaussian, σML (Fig. 4.3A, red), is the sufficient
statistic to inform the optimal response (green).

Figure 4.3: Human behavior closely tracks trial-by-trial uncertainty of future events
(A) Mean response across participants plotted as a function of the MLE of the sample,
σML(d), in ten equally spaced bins (black, error bars 95 % CI). Basing behavior on a
Gaussian estimated by ML (red, N(x|0, σML(d)) results in responses proportional to the
estimate. The prior distribution that is assumed by the devised Bayesian benchmark mo-
del (green) biases responses towards intermediate values (see Methods). (B) Individual
response curves of all 23 participants tested (gray lines). Three participants displaying
poor compliance with the instructed task (dotted) were excluded from further analysis.
Average across participants is superimposed (black).

The averaged mean response across participants (black) is closely related to
it in an almost linear relationship (see Methods 4.6.3). Assuming that participants
use the Gaussian distribution for inference (Methods 4.6.3, normal-model) yields
good predictive performance and accounts for a substantial amount of the variance
(regression, cross-validated median R2 = 0.80, 95 %-CI, (0.73, 0.82), across par-
ticipants). Uncertainty tracking is also apparent on an individual participant level
(Fig. 4.3B) (cross-validated median R2 ranging from 0.47 to 0.93). On average,
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the responses appear to be systematically biased towards intermediate values with
respect to the ML approach (Fig. 4.3A, red) resembling the effect of a prior dis-
tribution (green) incorporating knowledge about the range of dispersions across
trials. This bias from proportionality is quantified by the loss of predictive perfor-
mance of a model restricted to proportional outputs (Methods 4.6.3, Eq. 4.7). It is
strongly inferior to a linear mapping (Methods, Eq. 4.6) even on an individual le-
vel (cross validation log likelihood (CVLL) difference ∆ ≥ 20 for 12 participants,
∆ ≥ 10 for 17 participants).

4.4.2 Evidence for an internal trial-by-trial objective

Next, behavior is examined with respect to the objective participants were in-
structed to obey. Namely, if their estimates are quantitatively accurate and cor-
respond to the 65 % target percentage. For independent trials, participants must
infer the dispersion anew on each trial. Inferring a probability distribution over fu-
ture events allows behavior to be derived from a principled trial-by-trial objective
regarding the target percentage (see Fig. 4.1B and Methods, Eqs. 4.3-4.4). By
construction, our task objective demands a quantification of the relative frequency
of all future events and was intended to require participants to approximate distri-
butional estimates.

To examine how well participants performed with respect to the devised op-
timal inference strategy, we calculated the capture percentage by evaluating (Eq.
4.3) with respect to the optimally inferred probability distribution (Eq. 4.1-4.2).
The distribution of the per participant median capture percentage across all trials
is clustered close to the target of 65 % (Figure 4.4). In this measure opposing de-
viations cancel, so that it evidences an overall compliance to the target percentage
across all trials. The median across participants is close to the target percentage,
which indicates that participants quantify uncertainty in a quantitatively similar
manner as the probabilistic benchmark model. The median of the absolute devia-
tion per response is 6.54 % (95 %-CI, (5.83, 7.28) %) with respect to the external
objective of the task. However, it is possible that behavior has been produced from
an internal objective (see Eq. 4.4) in which the percentage is matched much more
closely to 65 %. There are at least two contributions that inflate the deviation from
the external measure (Fig. 4.4A). First, there is intrinsic response noise which
would even occur for fixed stimuli on the screen, e.g. through motor-related vari-
ability. Second, there are deviations due to mismatched inference with respect to
our benchmark model (see e.g. [168]). The latter are deterministic and the result
of e.g. different prior knowledge from the one assumed by our benchmark mo-
del. Altogether, the median absolute deviation (Fig. 4.4A) is a conservative upper
bound estimate for an internal trial-by-trial objective of the capture percentage so
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Figure 4.4: Behavior is consistent with participants possessing a subjective but well
calibrated trial-by-trial internal objective that remains stable over the experiment.
(A) Across trials participants tend to comply well to the objective despite per trial devia-
tions due to systematic biases and response noise, as the capture percentage c is typically
around the target value 65 % (vertical axis) and the median deviance is relatively small (ho-
rizontal axis). Histograms correspond to marginal distributions. (B) Participants display
stable behavior throughout the experiment, as they do not appear to adjust their respon-
ses closer to the task objective over time. Median capture percentages c are calculated
separately for the first and second halves of the experimental session.

that the quantitative match with the target percentage can be considered high.
If participants did not possess an internal trial-by-trial objective, they

could instead associate stimuli with suitable responses by a learning a behavio-
ral function. Next, we tested whether behavior is consistent with this alternative
approach. We checked for temporal transients adapting to the externally provi-
ded objective via feedback and across-trial dependencies. Remarkably, the median
capture percentage appears not to adjust closer to the target percentage as indi-
cated by similar values calculated separately for the first and second half of the
experimental session for each participant (Fig. 4.4B). The absolute difference of
the median capture deviation is small and not significantly different from zero
(right-tailed Wilcoxon signed rank test, p = 0.48) despite the fact that the trial-
averaged feedback about the capture percentage in the experimental session may
have allowed to derive some global adjustments. Accordingly, too high a capture
percentage on average should subsequently lead to the choice of smaller response
frames. Hence, a decrease of the feedback error would be expected over time. We
also confirmed that the previously presented feedback about the capture percentage
did not influence behavior (regression, exceedance probability pexc = 2.04 · 10−4

compared to baseline model, see Methods 4.6.3). Similarly, no considerable de-
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pendencies across trials were found (Methods 4.6.3).
Overall, participants typically predict the dispersion of future darts in a

quantitatively accurate manner. They appear to have relied on an internal trial-
by-trial objective regarding the target percentage as they largely conform to trial
independence, feature stable processing across time and virtually ignore feedback.
This is consistent with internal probabilistic processing.

4.4.3 Systematic deviations from inference of a Gaussian

Thus far, behavior appears to be close to the optimal inference strategy defined by
the benchmark model, but we have also observed deviations (Figure 4.3, 4.4A). If

Figure 4.5: The weighting pattern of the observed samples deviates from inference of
a close-to-normal distribution and matches kernel density estimation (KDE) Evalua-
tion of the normalized weights ωn of the weighting-model Ŝ(d) =

√
1/N

∑
n ωnd2n as

a generalization of the MLE of a zero-centered Gaussian. The points are indexed accor-
ding to their distance from the center. (A) Input weight that each participant (gray lines)
assigns as a function of the weight index. If participants followed optimal MLE based
on a Gaussian centered at zero, all input weights should be equal (black line). Fitting
of the weighting model (see Methods 4.6.3) shows a systematic deviation of the median
across participants (red, error bars 95 %-CI). Participants tend to overweigh the third most
extreme value compared to the others. (B) Among all models tested, only KDE (blue)
qualitatively matches the characteristics of the experimental weighting pattern (red, same
as panel A). The other models fail to capture the behavioral weighting pattern (fits of the
weighting model to the other indicated models’ output).
Model abbreviations: kde - kernel density estimation, tlg - tiling, gnm - generalized nor-
mal, max - maximum

behavior follows from inference of a normal distribution, it can only depend on the
sample via the sufficient statistic, σML(d) =

√
1/N

∑
d2n. This means that the

squared position of each point should contribute equally to the final estimate. We
tested this with a weighting model that generalizes σML by assigning a tunable
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weight ωn to each input depending on its excentricity,
√

1/N
∑
ωnd2n. Excentri-

city refers to the distance from the center irrespective of the side where the sample
occurs.

Experimentally, the weights of the individual points tend to take unequal
values (Fig. 4.5A). Participants put more emphasis on the third most excentric
point and down-weigh the first and the fourth point. We also tested whether other
models of behavior are able to reproduce this pattern (Fig. 4.5B).

In the following, models will be compared by both the (i) weighting pat-
tern (Fig. 4.5B) as well as their (ii) overall ability to predict behavior (Fig. 4.6).
Consistent with the weighting pattern observed in our data, the normal model (nm)
is far from providing the best predictions of behavior. This can be seen from the
pairwise model comparison matrix (Fig. 4.6). There, the binomial probability that
the model indexing the row (vs. the model indexing the column) is more likely
to account for the data of a randomly chosen participant is depicted as color code.
Additionally, entries with high exceedance probabilities are considered significant
(Methods 4.6.3) and marked with asterisks. For instance, the comparison between
the weighting model in row (wgt) to the normal model in column (nm) shows that
the latter is clearly rejected (pexc > 0.999). Beyond the group level, the normal
model can be decisively ruled out individually for many participants despite the
fact that generally different participants are best described by different models.

We tested whether generalizations of the Gaussian can account for the syste-
matic deviations that were observed before. The generalized normal model (gnm)
allows for more freedom in the representation of the inferred density through a
shape parameter governing its kurtosis (see Fig. 4.1B) by generalizing the square
in the exponential function to other powers than two leading to an unequal weig-
hting pattern of the samples (Fig. 4.5B). This model predicts significantly better
than the Normal-model (Fig. 4.6, pexc > 0.999) by making use of the additional
shape parameter to represent heavier tailed distributions (quartiles across partici-
pants Q = (0.79, 1.24, 1.68)). Heavier tailed distributions discount outlying and
enhance the influence of inlying points on judgments (Fig. 4.5B, black line). The
experimental pattern (red) is not matched well suggesting that it does not reflect
how participants behave. In addition, the weighting model still outperforms the
generalized normal model (Fig. 4.6).

4.4.4 Simple heuristics are poor predictors

Before, we determined that responses are on average relatively close to the target
but that the finer-grained behavioral patterns are inconsistent with inference of a
close-to-Gaussian distribution. That raises the question whether simpler, heuristic
strategies might offer a better account of behavior which might also unequally
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weigh sample information.
We first tested the established heuristic models that use perceptually sim-

ple statistics and only a subset of the available information. The maximum model
(max) only depends on the most excentric point which leads to a weighting pattern
(Fig. 4.5B, yellow) which is highly inconsistent with the experimental one (red).
The participants’ weighting is more balanced and typically features weights smal-
ler than four (normalization to number of sample points). The range model (rng)
is based on the sample’s range and predicts worse than the maximum model (Fig.
4.6). On the group level, both are clearly refuted by all other models.

Another heuristic strategy is attending to just one point when sorting them
according to their excentricity. In particular, the third most excentric point is im-
portant as it closely corresponds to the target percentage of 65 % on the sample
and is the response in the limiting case of pure instance-based generalization (see
δ-KDE model, Methods 4.6.3). Participants typically take all point positions into
account. The four (unnormalized) weights are significantly different from zero
for many individual participants (weighting model, 10000-fold permutation test,
(14, 20, 20, 19) out of all 20 participants feature a p-value < 0.05 for the weights
(w1, ..., w4) respectively). Furthermore, for each individual, at most one weight is
insignificant showing that it is not an effect of grouping. Consistent with integra-
tion of the whole sample, the maximum of the normalized weights is considerably
lower than four (Fig. 4.5A).

Altogether, this is evidence that among all participants only few tend to
exploit heuristics. The clear majority however resorted to some more sophisticated
weighting inconsistent with the simple heuristics tested.

81



Figure 4.6: Pairwise model comparison evidences an inclination to resort to instance-
based generalization, indicating that fluctuations have a profound effect on the in-
ferred representations Summarized results of a hierarchical Bayesian model compari-
son procedure that estimates probability distributions over models. Pairwise comparisons
(each square) are performed to evidence relative differences in prediction for models with
different features. The color code over each square shows estimates of the parameter
of the binomial distribution governing the probability by which the model indexed by
the row is more likely than the one indexed by the column. This corresponds to the ex-
pectation value that a given model is considered responsible for generating the data of a
randomly chosen participant. Superimposed are large differences of the exceedance pro-
bability (∗ =̂ (0.99 > pexc ≥ 0.95); ∗∗ =̂ pexc ≥ 0.99) which quantifies the belief
that the row model is more likely to have generated the data of a randomly chosen partici-
pant compared to the column model. Model abbreviations: gpr=Gaussian process regres-
sion, wgt=weighting, kde=kernel density estimation, gnm=generalized normal, tlg=tiling,
nm=normal, max=maximum, rng=range
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4.4.5 Behavior relies on instance-based generalization

So far, participants appear to violate the assumptions of a close to Gaussian dis-
tribution centered at zero that was suggested by the task instructions and the dart
metaphor. Alternatively, the probability distribution to be inferred may be directly
constructed from the observed instances by imposing only minimal structural con-
straints on the data. That corresponds to the assumption that the sample is repre-
sentative of the unknown population to be estimated.

Our tiling model (tlg) implements such an approach with spatially confined
basis distributions. It places a uniform distribution in between observations and
hence the resulting density is increased around clusters and reduced elsewhere
(Methods 4.6.3). It adapts to the fluctuations which are present in the sample.
Consequently, the target capture percentage of 65 % is by construction very close
to the third most excentric point. As a result, this model emphasizes the third most
excentric point (Fig. 4.5B, green) and thus captures an important characteristic of
behavior (red).

The kernel density estimation (KDE) model uses Gaussian basis functions
to implement instance-based generalization. It centers a Gaussian distribution on
each data point and thus assigns density to its vicinity depending on the standard
deviation parameter. The experimental weighting pattern (black) is closely cap-
tured by KDE (Fig. 4.5B, blue). It is very successful at predicting behavior and
superior to both the normal and the generalized normal model considered before
(Fig. 4.6). The small and insignificant difference of the model probability (Fig 6,
wgt vs. kde) indicates that KDE predicts on a similar level as the weighting model
even though the latter has more adaptable parameters and thus may be conside-
red more flexible. The weighting model does not explicitly construct a probability
density but can be viewed as a functional approximation that can capture similar
dependencies of behavior on the sample.

In summary, participants do not sufficiently exploit the structural constraints
suggested by the task but instead give more freedom to the specific instances of the
observations to determine their responses. The tendency to assume that even small
samples are representative of the population could be well captured by nonpara-
metric kernel density estimation.

4.4.6 Inferred representations feature overlapping and redundant
kernels

Probability distributions over perceptual variables should be embedded in the con-
text of more general knowledge of the task’s context. From a causal inference per-
spective, they should be attributed to the causal variables already known to exist.
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Treating all observations as (new causal variables) if they originate from their own
cause makes purely nonparametric methods seem of limited applicability in wider
contexts. In this sense, KDE itself may be considered a heuristic approach as it lar-
gely ignores prior (structural) knowledge. Examining the inferred representations,
we argue here that there is reason to belief that behavior is not purely nonparame-
tric but can rather be conceived of as an instance-based modulation (bias) to causal
inference.

If we infer very narrow kernel functions for our participants that would indi-
cate that there is very little generalization from the sample. For close to orthogonal
kernel functions with virtually no overlap (e.g. delta-distributions) the output re-
duces to a mere counting of observations. First, we tested how strong this instance-
based bias is on the level of raw responses by comparing them to the predictions of
δ-KDE (Fig. 4.7A). Both axes are normalized to the MLE, σML, of the sample (i.e.

Figure 4.7: Strong generalization consistent with the possibility of integrating prior
knowledge about the task structure (A) Responses (black) show higher consistency with
inference of a single Gaussian than with approaches generalizing only weakly beyond the
sample such as δ-KDE (limit of vanishing kernel widths; third most excentric sample
point). The plot shows aggregated (median across participants, 95 %-CI) bin medians of
the responses (normalized by σML) and the fitted KDE model (cyan) as a function of the δ-
KDE output (approximately equally filled bins). By construction, inference of a Gaussian
results in a horizontal line (red) while δ-KDE (green) yields a linear function of slope
one. The experimental curves are less steep indicating a rather moderate instance-based
modulation compared to a Gaussian model. The inset is a zoomed out version additionally
showing the relationship of the responses to the distribution of sample points (median of
absolute value within each bin). (B) The KDE model infers internal distributions that are
smoothed and spatially extended around the sample points. The mean probability density
function across participants (black, 95 % CI) is shown for four different samples (blue
circles). The inferred density is smooth featuring fewer modes than the number of basis
distributions (red curves). This is a consequence of the large fitted Gaussian kernel widths
which lead to substantial overlap of the basis distributions.

84



the draws from the standard normal distribution, see Methods 4.6.1). All responses
are plotted as a function of the δ-KDE output. Thus, by construction, predictions
of δ-KDE (green) itself follow the unity line while predictions of inference using
a Gaussian likelihood function follow a constant line of slope zero (red). Values
of the optimal benchmark model (not shown) would fluctuate because of varying
prior beliefs that average to a constant independent of the sample given the MLE.
The slope of a linear function fitted to the experimental responses is far from one
as expected from δ-KDE (Fig. 4.7A, regression, median slope across participants
0.27 (0.24, 0.38)). As opposed to the δ-KDE model, the KDE model (cyan) can
predict the behavioral pattern (black) well because its kernel width parameter takes
large values (Fig. 4.7B, red) (median across participants 0.40 (0.35, 0.59), in units
of σML). Participants capture a varying number of points with the response frame
(Fig. 4.7A, inset) which is only possible if the constructed density is a non-local
function of the specific sample configuration on the screen. This slope pattern is
not entirely inconsistent with inference of a Gaussian likelihood function as re-
sponses actually vary around its value as a function of the sample configuration.
On the contrary, the normal model reaches high predictive performance in abso-
lute values as shown before. However, additional to the responses derived from
Gaussian inference, there are subtle instance-based variations which can be captu-
red by the KDE model. At the level of responses, behavior may be understood as
inference of a normal distribution that is modulated by KDE.

Interestingly, KDE predicts behavior significantly better than the tiling mo-
del (Fig. 4.6). The main difference is that the tiling model relies on spatially
confined basis functions while Gaussian kernels are spatially extended. The weig-
hting pattern shows that the tiling model (Fig. 4.5B, green) overweighs the third
most excentric point even more than behavior (red). The tiling model too closely
resembles the purely instance-based approach of δ-KDE while behavior is not so
strongly influenced by the third most excentric point. Of all models tested, KDE
(blue) best captures the weighting pattern (Fig. 4.5B) because the large kernel
width exhibits a non-local effect so that the positions of all points influence judg-
ments leading to a more balanced pattern.

A large kernel width makes spatially extended kernels overlap (Fig. 4.7B,
red). Accordingly, we typically find fewer than four modes in the inferred den-
sities of the participants (median of the per participant mean across trials 2.0375

95 %-CI (1.50, 2.27)). Thus, increasing the kernel width may be understood as
a reduction of the effective number of components in the mixture distribution as
measured by the number of modes (Pearson correlation coefficient, ρ = −0.95,
p = 6.01 · 10−11. Our data requires the KDE model to perform close to a regime
where it must approximate inference of some smooth distribution which is clo-
ser to unimodal. Despite being the best approximation explored, it is nevertheless
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possible that the inference method used by our participants is structurally more
constrained than KDE and uses some prior knowledge of the task structure.

From a representational point of view, the large overlap of the basis distribu-
tions (Fig. 4.7B, red) is a rather redundant and thus inefficient way of representing
the whole distribution. For a large degree of overlap, several kernel functions could
be well represented by a single kernel function whose free parameters are tuned to
accommodate all their contributions. Bayesian nonparametric mixture models [61]
can effectively reduce the number of redundant mixture components and minimize
shared responsibility to account for the data points. The number of components
can adapt to the position and number of data points in the sample. It gives less
freedom to the data than KDE but implements soft and gradual constraints to-
wards sparsity. A preference for sparser or denser representations can be specified
by a prior. Likewise, prior knowledge such as a zero-centered population may be
included in this way. We suggest this as a connection to theoretical principles.

We found that participants show different preferences for instance-based ge-
neralization. The average number of modes of the inferred densities (according to
the KDE-model) almost covers the full range of possible values (minimum 1.01,
median 2.04, maximum 3.63, across participants). Even with wide kernels, KDE
is limited in its ability to represent unimodal near-Gaussian distributions. Corre-
spondingly, the difference in predictive performance (CVLL) between the KDE
and the normal model is larger for smaller kernel widths (linear correlation coef-
ficient, ρ = −0.54, p = 0.0075). Consistent with previous results, the slope
in Figure 4.7A decreases with the kernel width (Pearson correlation coefficient,
ρ = −0.66, p = 7.30 · 10−4). The determinants of the participants’ preferences
are unclear from this experiment. We remark however, that participants who infer
more redundant densities tend to respond faster (Spearman correlation coefficient,
ρ = 0.35, p = 0.064) although the result does not reach significance.

In summary, using KDE we found very wide overlapping kernels leading
to densities which could be more sparsely represented. This hints at a more so-
phisticated inference approach than pure instance-based generalization. It may be
considered a modulation of causal inference by a kernel based approach. We sug-
gest a connection to nonparametric Bayesian methods in statistics that allow to
incorporate prior knowledge and sparsity constraints.

4.4.7 Explanation close to ceiling level

There are many possible ways in which this task might be approached by our par-
ticipants. Thus, we attempt to estimate an upper bound of the predictable structure
in the data regardless of how the task was solved by the participant. Gaussian pro-
cess regression (GPR) is used to find a low-bias functional approximation between
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input d and behavior y. Hence, if a model reaches similar predictive levels this
is an indication that it captures the most relevant computational operations. GPR
is indeed found to be the best model (Fig. 4.6) on the group level. However, the
differences to the KDE-model are not disconcertingly large (median CVLL diffe-
rence across participants, 13.3 dHart, 95 %-CI, (−3.1, 23.5) dHart). Overall, KDE
can predict on a comparable level as GPR. This is remarkable as for interpretable
models, all factors need to be specified explicitly. For instance, even motor related
variations with dwould have to be incorporated. Moreover, as probability densities
are high dimensional and subjective, the achieved match is not trivial. However,
we conclude that behavior is somewhat predictable beyond what is captured by
the KDE-model but that it manages to capture the most important computations
reflected by behavior.

Whether the unexplained variations may be captured by more sophisticated
approaches to density modeling is left for future investigations. Nevertheless, to
give a more concrete demonstration of these ideas, additional experimental tests
were conducted with a smaller sample of participants on a variation of this main
experiment. Its primary purpose is to further substantiate the claims regarding
probabilistic processing and to flesh out modeling with Bayesian nonparametric
methods. The task design was slightly varied in that the task objective demands
a more flexible use of the sensory representation of uncertainty. The reader is
referred to the appendix B for further details. The additional experiment fully un-
derscores the principal claims made by the main experiment. Moreover, it provides
a proof of concept that Bayesian nonparametric mixture models are indeed suitable
to describe the internal representations.

4.5 Conclusions

This study attempted to elucidate how sensory representations of uncertainty are
constructed from sparse data. We have described a new experimental task that
allows to measure quantitative judgments of uncertainty in response to a noisy sti-
mulus with high precision. We find that (1) participants give faithful judgments
about uncertainty on a trial-by-trial basis which are irreducible to simple heuris-
tics. (2) Their behavior is not in agreement with the structural assumptions of a
Gaussian suggested by the framing of the task. Instead, according to their behavior,
participants are biased to judge the sample as representative of the population and
that random fluctuations in the sample will reproduce in the long run. A connection
to nonparametric Bayesian models is suggested to model this inclination towards
instance-based generalization. (3) Furthermore, behavior is consistent with the
idea that participants internally represent the variable of interest probabilistically
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as a normalized distribution over its possible values.
The idea that perception constitutes some form of probabilistic inference

process was suggested long ago [16]. It has a particular appeal for deriving sub-
jective estimates of uncertainty as it emerges naturally from the knowledge re-
presentation itself, i.e. from the posterior distribution, without requiring a meta-
representation [108, 126, 181].

Experimentally, one must elicit the read-out of a suitable summary statistic
of the sensory representation. In previous work, participants were typically asked
to report their confidence in that the latent variable to be inferred lies beyond some
fixed decision boundary [129]. Instead, we allowed participants to freely estimate
the dispersion of the inferred density. There is virtually no demand on working
memory and participants do not need to resort to language to perform the task.
Both aspects are believed to be critical for promoting rational behavior [133]. In
addition to being intuitive, this task requires an ability to deal with uncertainty to
construct an internal trial-by-trial objective regarding the target percentage. Cri-
tically, this task was designed to minimize sensory and motor noise to obtain a
sensitive probe of behavioral variations of dispersion estimates. As opposed to
prior work, e.g. using the random dot motion stimulus [132, 187], here mainly
the task-relevant stimulus dimensions (dot positions) drive behavior. This study
more specifically investigates the process of density estimation that is embedded
in other (hierarchical) tasks. Previously, several studies tested how multiple in-
ferred sensory representations are combined. The reliability based weighting of
conflicting cues from different modalities suggests that distributional estimates are
provided by each modality [138]. Another study also supplied evidence by means
of a dot cloud [137] but assumed normally distributed noise. Many previous stu-
dies made the strong assumption that participants know the generative process of
the task. Very often it is chosen to be a normal distribution [132, 161]. It may be
a reasonably good proxy to model cognitive processes for simple, nonlinear and
low-dimensional stimulus tasks with abundant evidence. However, we challenge
the adequacy for inference in complex environments or sparse observations. These
assumptions evade the deeper question of choosing a suitable model that the agent
faces. In hierarchical models and depending on context, the upper levels provide
constraints as to what the important causal factors are. We framed the task by allu-
ding to a commonly known random process of throwing darts conforming to prior
structural assumptions of a centered, unimodal and bell-shaped distribution that is
close to Gaussian.

Nevertheless, we find that most participants fall short of these assumptions
but rather give systematically biased estimates. Because of the low number of sam-
ples, our task allows testing what inductive biases [32] participants exhibit. They
appear to give more freedom to the model’s structure to adapt to the sample. Thus,

88



their judgments seem to assume that fluctuations in the sample are representative
of the population [150]. However, we found evidence that their inferences are so-
mewhat more constrained as purely kernel-based estimates leading to potentially
sparser representations. We propose to view this in the framework of Bayesian
nonparametric mixture models [61, 188] which may infer the appropriate com-
plexity for each sample based on a prior expressing a preference for the sparsity
of the final estimate (the number of components). In this context, the bias towards
instanced-based generalization can be considered a prior that favors more complex
solutions. This is reminiscent of findings in the literature where human abilities to
learn functions are described by a hybrid of nonparametric and parametric appro-
aches [189].

We can only speculate about the reasons behind this inductive bias. First, it
might be due to considering the cost of computing [111] in an attempt to simplify
judgments. However, we found a tendency towards more complex representati-
ons whereas sparser representations are typically believed to be more economical.
E.g., decomposing high-dimensional objects such as continuous probability den-
sity functions of human visuo-motor errors into simple non-overlapping (uniform)
basis distributions was suggested to be a solution to complexity by obtaining a
sparser representation [66]. Instead, we speculate that the bias towards instanced-
based generalization might be related to structural uncertainty about the causes of
their observations. Structural uncertainty has been shown to lead to model-free
learning [60]. Similarly, a sensitivity to small alterations in the task setting has
been found to affect the optimality of behavior [140]. Furthermore, we might be
equipped with a more fundamental bias to perceive causes behind patterns even
for little evidence [109].

By construction, our task objective only applies to a normalized distribu-
tion over future outcomes regardless of its functional shape. Various studies have
claimed that internal processing is probabilistic or at least demonstrated a "lower
bound for the sophistication of confidence evaluation" [17]. Typical approaches
derive an optimal solution to the task and show that behavior is reasonably close
to it. However, strong claims require preconditions [190] such as testing alter-
native models [191] for non-trivial optimal processing. We do not claim optimal
processing but emphasize systematic deviations that nevertheless might originate
from internal probabilistic computations. Often as in our case, a clearly suboptimal
strategy yields near-optimal results.

In fact, instead of a trial-by-trial objective for the target percentage derived
from a density estimate, a learned stimulus responses mapping might be used.
Our task design minimized the possibility to optimize a reward measure through
trial-and-error over trials by omitting informative feedback. Consequently, the
chances of acquiring a stimulus-response mapping are minimized. Furthermore,
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simple heuristic approximations [155] to behavior have been ruled-out explicitly.
Additionally, we found that the implementation of instance-based generalization
by KDE is within reasonable bounds of an estimate of the predictable structure in
behavior [190] suggesting that we have captured the important computations.

Ultimately, the degree to which claims to probabilistic processing seem sub-
stantiated depends on the propensity to belief that the task could alternatively be
solved by a well-tuned mapping or heuristic estimator acquired prior to the experi-
ment. This task is rather artificial and humans are seldom prompted to state or give
error intervals in terms of percentages. Accordingly, the situations to learn from
are sparse. Uncertainty about (latent) variables is rarely made explicit (especially
in numerical terms) but rather implicitly used by the agent to integrate and update
beliefs. Generally, there is little information about the frequency with which events
happen in our world across instances of the same situation. Even though learning
calibrated mappings from specific situations is in principle possible, it is highly
uneconomical and thus regarded unlikely. Likewise, it seems unrealistic that evo-
lutionary training across generations has provided us with well-tuned heuristics for
specific situations such as this task. After all, we deem it more plausible to assume
that most participants estimated some (approximate) probabilistic distribution to
derive their judgments.

In conclusion, our results suggest that human judgments about uncertainty
are guided by an internal probabilistic objective. However, there is a tendency
to identify fluctuations in the sample as representative for judgments about the
population. This may be captured by a representation endowed with a preference
to adapt overly flexibly to the observed instances.
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4.6 Materials & Methods

4.6.1 Sampling scheme to generate observations

On each of the 320 trials, the horizontal positions of the points with respect to
the center were generated as follows (Fig. 4.1C). First, always N = 4 sample
values r = (r1, . . . , r4) are independently drawn from a standard normal distri-
bution rn ∼ N(0, 1). Second, the samples were scaled by the factor ν/σML(r),
where σML(r) =

√
1/N

∑
r2n is the maximum likelihood estimator (MLE) for a

normal distribution centered at zero of the samples r and ν is drawn from a uni-
form probability distribution over the range of [10, 140] pixels. The scaled sample
d = ν/σML(r) · r always has a MLE given by σML(d) =

√
1/N

∑
d2n = ν.

This method allows choosing any desired value of σML(d) by setting ν correspon-
dingly. Setting σML(d) directly, which is the main determinant for inference, has
the advantage that observations d and the MLE σML(d) take less extreme values
which translates into increased numerical stability for model comparison. Defi-
ning an explicit latent σ-variable over a finite range instead would have led to a
long-tailed σML(d) distribution with undesirable properties (s. Figure 4.1D). The
ability to tell apart models with similar predictions is enhanced if response noise
and outlying conditions are kept at a minimum.

However, because of this way of generating the dots, the optimal inference
model with respect to the actual generative model in the environment is not readily
defined. Nevertheless, participants do not know these alterations how the dots
were generated. The best they can do is to follow the instructions and their prior
knowledge suggested by the dart metaphor to explain the data. We do not define the
optimal model with respect to the generative model in the environment. Instead,
we define it as an optimal inference strategy based on a normal distribution whose
width varies parametrically across trials. It follows the inference strategy of Eq.
4.1-4.2 and assumes a uniform prior over the range of [0, 140] pixels. As this prior
arguably matches the task instructions it was chosen as the basis for our Bayesian
benchmark model and the feedback in the experiment.

4.6.2 Participants & Experimental Procedure

In total 23 participants (15 female, 8 male) were recruited mainly among students
from the Pompeu Fabra University in Barcelona. We accepted all healthy adults
with normal or corrected to normal vision. We obtained written confirmation of
informed consent to the conditions and the payment modalities of the task. The
training and the experimental session were carried out on a single appointment that
nominally lasted 75 min. First, participants read detailed written instructions of the
task. In a brief training session, they were given 40 trials to familiarize with the
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handling of the task through a short interactive session with feedback after every
trial. The feedback consisted of the actual percentage ct (using Equations 4.1-4.3)
they would have captured in trial t according their response yt and our benchmark
model. In addition, they were given a deviation score (mean squared error (MSE))
from the target percentage δt = (ct − 0.65)2 · 1000.

In principle, a participant could learn how a pair consisting of observations
d together with his response y, (d, y), relates to the capture probability p from
experience in the 40 training trials. For a given learned mapping (d, y) → p

he would have to adjust y such that p = 0.65. We regard this as unlikely for
the following reasons. First, 40 trials do not provide a lot of data to learn from.
Second, the mapping is nonlinear and its domain is high-dimensional which makes
it hard to learn and susceptible to the specific instantiations of d across trials – as
well as the choice of y. (d, y) and p are never simultaneously visible on the screen.
And finally, batch learning requires memorizing all presented pairs which seems
infeasible for participants. While on-line learning is possible, it typically suffers
from slower convergence rates.

Participants could ask any questions to the experimenter prior to the experi-
ment. The subsequent experimental session consisted of 320 trials with pauses to-
gether with feedback after every 5 trials. In the experiment, the feedback consisted
of 5-trial averages of the quantities ct and δt above that were computed since the
last pause. Participants were supposed to minimize the deviation score and were
payed more compensation when having a smaller deviation score to incentivize
optimization. This supposedly promoted high motivation to prevent participants
from resorting to computationally cheaper heuristic shortcuts. The task circum-
vents risk aversion since there is practically nothing that the participant can do to
prevent losses other than stating the response as accurately as possible.

The bonus payment was determined by the mean of their final devia-
tion score after removing the eight worst trials. The payment was determi-
ned by comparison to an array of five thresholds that were set according to the
{0.1, 0.2, 0.3, 0.4, 0.5} cumulative quantiles of the empirical deviation score dis-
tribution across prior participants. A lower score corresponds to a better perfor-
mance so that participants were payed an additional bonus of {5, 4, 3, 2, 1} e if
their final deviation score was less or equal to the quantile thresholds. This is a
relative way of rewarding their efforts to optimize their responses. Irrespective of
their performance they were paid 10 e and hence on average received 11,50 e per
session. The experiment was carried out with 23 participants. Later we excluded
three of them because their behavior had very little dependence on the stimulus.

The task was presented with Matlab Psychtoolbox 3.0.12. Participants made
input with an USB-mouse that allowed them to precisely adjust the width of the
response frame and confirm it with a click. Immediately after trial onset, they were
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presented with the dots and could start to expand/shrink the frame from a random
initial width by moving the mouse up/down-wards. The points remained visible
throughout the entire time until the participant confirmed his response with a click.
The program then either proceeded to the next trial or to the feedback/pause screen
that indicates the averages over the five last trials of the percentage the participant
would have captured as well as the numerical deviation score. In addition, infor-
mation about how many of all trials have already been completed was presented.
The participant could proceed at his own pace.

4.6.3 Computational Models

We attempted to examine whether the behavior of our participants can be descri-
bed by inference of probability distributions. More specifically, we attempted to
infer whether their internal structural assumptions correspond to unimodal near-
Gaussian distributions (Fig. 4.2A) or might be better described by instance-based
(nonparametric) approaches (Fig. 4.2B-D) such as kernel density estimation. In
addition, we checked whether selected heuristics can also account for the behavi-
oral data.

Response mapping accounts for nuisance factors

Behavior is influenced by various factors and subjective assumptions of the par-
ticipant which are difficult to model explicitly. Among these are subjective prior
knowledge and probability distortion. Even for a probabilistic agent there exists
some mathematical freedom as to what prior distribution over the latent variables
to use. We did not explicitly include prior knowledge into our models but instead
endow the model with flexibility to approximately account for such effects.

We make use of the fact that ultimately, behavior such as the one derived
from a probabilistic inference model just amounts to a specific mapping d → ŷ

from inputs onto the response ŷ. Generally, for probabilistic models, the mapping
d → ŷ can be written in two steps. (i) Computing the sufficient statistic Ŝ which
is then (ii) mapped onto the response, d → Ŝ → ŷ, such as Ŝ = σML(d) for the
Gaussian. We use Ŝ to refer to any dispersion estimate and call Ŝ → ŷ the response
mapping. For nonprobabilistic estimators, it just allows for additional tuning of
the dispersion estimate. The introduction of the response mapping permits the
construction of computationally simple models that may accommodate subjective
knowledge of latent variables, like σ, in the second step.

This is illustrated in Figure 4.3A for the theoretical response curves (red,
green). For maximum likelihood estimation (MLE), the response (red) is nothing
but a linear mapping of the sufficient statistic σML(d) onto its output ŷ. The Bay-
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esian benchmark model (green) also takes the sample size N = 4 and a uniform
prior distribution over σ into account. Compared to MLE, its main effect is a
bias of the responses towards intermediate values. The effect of a different prior
on σ would merely manifest as a somewhat different mapping onto the response
because σML(d) and N are sufficient statistics for σ. In other words, the model
will produce the same results even when input d changes as long as the sufficient
statistics remain the same. They compactly sum up all the information that is to
be known about the hidden variables of a probabilistic model from the sample d.
Hence, distributions such as the posterior p(σ|d) or the prior p(σ) do not have
to be explicitly represented in our model. Instead they are implicitly considered
through the effects they exert on the response by allowing for additional freedom
through a mapping. Apart from that, the mapping σML(d) → ŷ also depends on
the target percentage that the model is required to capture. A larger target per-
centage leads to a larger dependence on σML and would e.g. manifest as a larger
slope of the ML response (Fig. 4.3A, red). The model may however account for
the fact that participants suffer from probability distortion such that their internal
target probability does not exactly match the one of a probabilistic agent (Eq. 4.4).

The response mapping from the dispersion estimate to the response,
Ŝ(d) → ŷ, is chosen to be the same for all models and is intended to be flexi-
ble enough to jointly account for all these implicit effects. Empirically we found
that a quadratic polynomial is only minimally better than a linear mapping (using
the weighting-model, Sec. 4.6.3). The improvements on the group level are signifi-
cant (increased median cross-validation log likelihood (CVLL) across participants,
Wilcoxon signed rank test, p = 0.0027) but small in absolute terms (median CVLL
difference 3.66 dHart, 95 %-CI (0.34, 7.15) dHart, Sec. 4.6.3). For this weak non-
linearity and to obtain a sparse model formulation, we consider a polynomial of
first order to be a sufficiently good approximation to represent the response map-
ping.

ŷ = β0 + β1Ŝ(d) (4.5)

The models that we consider differ only in how they compute the dispersion mea-
sure Ŝ. They may introduce additional parameters which are detailed below. We
start by describing approximative models that do not make use of distributions
first. In addition, we will explicitly consider heuristic models. In general, heuris-
tics are not linked to optimal responses in a principled way but might nevertheless
yield satisfactory results. Every estimator that correlates with σML contains some
useful information about the dispersion and may thus be used. As heuristics are
frequently associated with less effortful processing we consider simple and visu-
ally salient quantities that may be readily assessed by the participants. As another
approximate model, we test a weighting model that emphasizes certain stimulus
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features. We will then describe probabilistic models that derive responses from
different distributional estimates and conclude with a predictive model intended to
serve as an estimator of the upper bound on predictability given our data.

Maximum model

This model uses the distance of the point that is farthest away from the center, that
is, Ŝ = max(|d|). This function can be considered a simple heuristic approach be-
cause it reduces the input information to be processed, but as this distance strongly
correlates with σML it is expected to be predictive of behavior.

Range model

This model uses a dispersion estimate based on the difference between the leftmost
and rightmost point Ŝ = max(d)−min(d). Again, this quantity is correlated with
σML.

Weighting model

The maximum likelihood estimator σML can be generalized in that it assigns diffe-
rent weights to individual points when calculating the root mean square deviation.
The observations d are indexed according to their excentricity, i.e. their absolute
deviation from zero such that |dn| ≥ |dm| for n > m.

ŷ(d) = β0 + Ŝ(d) = β0 +

√√√√ 1

N

N∑
n=1

ωnd2n, ωn ≥ 0 (4.6)

The parameter β1 of the response mapping ŷ = β0 + β1Ŝ (Eq. 4.5) is factored
into the ωn and set to one to avoid under-constrained solutions for regression. We
may enforce the summation constraint,

∑
n ωn = N , on the weights after fitting to

interpret the weights as relative contributions with respect to the case of ωn = 1,
which corresponds to inference of a Gaussian. This can be done by factoring out
a term

√
N/
∑

n ωn which can be formally assigned to β1. We consider the equal

weighting of the square of each point’s position σML =
√

1/N
∑N

n=1 d
2
n a non-

trivial pattern of inference of a normal distribution. Within this model, we also test
the heuristic of considering just one out of all n = 1, ..., N points, Ŝ(d) = |dn|.
In this case, just one of the four weights should be four while the others would
become zero due to the summation constraint. The task is constructed such that
the position of the third most excentric point closely corresponds to the target
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percentage. Yet, we found that this heuristic is evidently exploited by just one
participant (normalized ω′3 = 0.95, d3 almost explains full variance, R2 = 0.96).

Because of the generality and the computational ease with which optimiza-
tion can be performed for this model, we used it to test variants of the response
mapping Eq. 4.5. We tested whether participants behave in accordance to a prior
belief about the range of dispersions across trials. A pure ML approach ignores
prior knowledge and leads to responses proportional to the dispersion estimate
Ŝ(d) (Fig. 4.3A, red). If that was sufficient to predict behavior, a model whose
output is restricted to be proportional to the dispersion estimate (omitting constant
term in Eq. 4.5) should perform equally well.

ŷ(d) = Ŝ(d) =

√√√√ 1

N

N∑
n=1

ωnd2n (4.7)

Likewise, a model which additionally features a quadratic term ŷ = β0 + Ŝ+β2Ŝ

is used to test for the nonlinearity of the response mapping. The weighting model
is chosen for these tests as it can flexibly account for other systematic biases in
behavior that are not related to prior knowledge.

Normal model

Making inference using a normal distribution is equivalent to the mapping d →
Ŝ → ŷ in which Ŝ = σML(d) is the sufficient statistic and the MLE of the
Gaussian. To match the responses of our benchmark model the response mapping
Ŝ → ŷ must equal the green curve in Fig. 4.3A. The chosen response mapping
for regression Eq. 4.5 can only provide a linear approximation to this curve but
was chosen based on considerations regarding model sparsity and the empirical
evidence to be sufficient to capture behavior.

Generalized normal model

The dart metaphor and the task instructions suggest that the distribution of darts
follows some symmetric and bell-shaped curve centered at zero. As a perfect ma-
tch between the true distribution and the one that was assumed by our participants
is not expected, we consider a generalized normal distribution which has an additi-
onal shape parameter p > 0 so that it can represent a larger family of distributions.

p(x|µ, α, p) =
p

2αΓ(1/p)
exp [− (|x− µ|/α)p] (4.8)
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It effectively generalizes the exponent of the normal distribution for which it takes
a value of p = 2. For small p the distribution is more peaked whereas it approx-
imates a plateau like distribution for larger values (Figure 4.1B). We assume that
the exponent parameter p is constant across trials and treat it as an additional fitting
parameter. For a known mean of zero, µ = 0, the maximum likelihood estimator

for α is Ŝ =
(
p/N

∑N
n=1 |dn|p

)1/p
which we identify with the dispersion es-

timate Ŝ. In the limit of p → ∞ it corresponds to the heuristic MaxAbs-model
above. We also tested a generalized normal model which infers µ on a trial-by-trial
basis for a given exponent p to test whether dropping the assumption of a centered
distribution can better explain behavior. In this case, Eq. 4.4 is explicitly solved,
and its result is assigned to Ŝ. As it was found to be worse than the centered nor-
malized distribution on the group-level (exceedance probability pexc > 0.999) we
chose to only report results using a centered distribution.

Gaussian kernel density estimation model

If one imposes only minimal structural constraints, more freedom is given to the
data to determine the inferred density. One may assume that even small samples
represent the population well and that future observations will cluster around the
already observed instances. One way to do so is to estimate p(x|d) over future
events x based on a kernel method. It generalizes observed data points dn by assig-
ning probability density proportional to a kernel function k(x, dn) to their vicinity
and thus constitutes a data smoothing problem (Fig. 4.2D). For the whole obser-
vational data d, kernel density estimation centers a kernel on each observation and
sums up their contributions to determine p(x|d) as:

p(x|d) = NP(x|η, d1, ..., dn) =
1

N

N∑
n=1

k(x|dn, η) (4.9)

It is a nonparametric method because it does not assume a certain parameterized
family of probability distributions for p(x) apart from the kernels. The kernel
function k typically decays with the distance between x and dn. Here we assume
that it has the shape of a normal distribution k(x|dn, η) = N(x|dn, η). The ker-
nel width η = η(d) is in principle a free parameter, but it needs to be sensibly
chosen with respect to the dispersion of the data. Manual testing revealed that
η = a · (d3 + d4)/2, with fitted proportionality parameter a, is a reasonably good
approximation to the unknown η(d) function. Thus, potentially even better per-
formance might be achievable than the one reported here. The model’s dispersion
estimate, Ŝ, regarding the 65 % capture probability is determined by inserting the
inferred distribution (4.9) into Eq. 4.2 and then solving Eq. 4.4.
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In the limit of vanishing kernel widths, η → 0 (δ-distributions), the response
for the target percentage of pt = 65 % converges to the third most excentric point.
We refer to this approach as δ-KDE (Fig. 4.2C). In this limiting case, one would
merely capture the target fraction pt of observed points on the screen, thus repla-
cing an estimation of the target fraction pt of the population with a corresponding
estimation of pt on the sample.

Tiling model

To capture a certain percentage of points of the sample one must have some sort
of quantile function that outputs the region containing the desired percentage.
Explicit density models such as KDE entail a quantile function. A simple al-
ternative way is to construct some normalized histogram. We attempt to do so
with the constraint that an observation point only exhibits a local effect on the
constructed density (Fig. 4.2B). Specifically, the contribution to the overall den-
sity of one data point only depends on its own position and on the position of
its adjacent points. More formally, this can be achieved by tiling the space bet-
ween observations into rectangular, adjacent but non-overlapping basis functions.
We adhere to the additional constraint that the N ordered points correspond to
the (0.5/N, 1.5/N, ..., (N − 0.5)/N) cumulative quantiles. Hence, each basis
function spanned between points has to be normalized by N . To assign the remai-
ning probability 0.5/N below the lowest point d1, we use a uniform distribution
U(d1 − d2, d1) whose support equals the distance to its only adjacent point d2
(and likewise for the largest point). Representations of probability densities ba-
sed on orthogonal basis functions are suggested as a solution to tractably represent
complex densities [66].

Gaussian Process Regression

Gaussian Process Regression (GPR) [192] is used to estimate the upper bound on
the predictability of our participants’ behavior. It does not lend itself readily to an
interpretation of how participants solve the problem on a given trial. It is however
very flexible and successful in prediction by exploiting consistency between input
d and output y across pairs of trials (i, j). We used GPR since it is a virtually
bias free estimator of the distribution p(y|d) which is assumed to be normally
distributed with a constant intrinsic noise parameter σI . We chose a Gaussian
kernel function

k(di,dj) = θ · exp

[
−1

2

∑
n

(din − djn)2 /σ2n

]
(4.10)
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that defines a scalar measure of similarity and the entries of the covariance matrix
of the GP as Cij = C(di,dj) = k(di,dj) + σ2Iδij . Input pairs (di,dj) that are
considered similar in this sense should result in comparable responses (yi, yj) if
the process p(y|d) is consistent. Prediction is more strongly influenced by those
trials’ responses y for which (di,dj) are similar. To make predictions for a new
input dν , we evaluate the mean of the predictive distribution ŷ(dν) = kTC−1y.
Here k has the entries k(di,dν) with i indexing all trials in the training data.
Likewise, C and y are constructed from all the training data used to derive pre-
dictions. For each trial dt = (dt1, ..., dtN ) symmetry is exploited by sorting the
points in ascending order of excentricity. To set the hyperparameters of the GP,
(θ, σ1, ..., σN , σI), its generalization error is minimized. To do so, the mean of the
test sets of Eq. 4.13 of a 5-fold cross validation (CV) procedure is calculated. This
procedure is part of training the GPR. We also attempted to predict behavior using
a simple 1-hidden-layer feedforward neural network. Despite being a successful
predictor, its performance was inferior to the GPR which is why we chose to only
report the latter.

Baseline model

The baseline model is chosen to provide a simple lower bound estimate for pre-
dictability that is independent of the trial-by-trial variations of the stimulus. This
model calculates the mean of the responses of all its input yin (training set). It thus
makes the same prediction on every trial t.

Ŝt = 〈yin〉 (4.11)

Inter-trial and feedback dependence

We investigated the influence of other quantities on behavior that participants
might have (erroneously) utilized to guide their responses. To test for a depen-
dence on the preceding trial, the estimator Ŝ is chosen to be the previously stated
response.

Ŝt = yt−1 (4.12)

There is a significant effect with respect to baseline (exceedance probability,
pexc > 0.99) yet the effect on behavior is virtually negligible as the overall pre-
dictive performance is very low (median cross-validation log likelihood across par-
ticipants -318 dHart, 95 %-CI (−356,−300) dHart, with respect to the best model
for each participant). The influence of the previously presented feedback about the
capture percentage is similarly tested but its effect is found to be even weaker.
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Table 4.1: Overview of model parameters

Model Abbreviation Fitting parameters
Maximum max β0 β1
Range rng β0 β1
Weighting wgt β0 ω1 ω2 ω3 ω4

Normal nm β0 β1
Generalized normal gnm β0 β1 p

Kernel density estimation kde β0 β1 a

Tiling tlg β0 β1
GPR gpr Nonparametric; hyperparameters:

(θ, σ1, ..., , σN , , σI)

Overview of model parameters

The models used have a different number of parameters depending on the disper-
sion estimate Ŝ. The ones reported later are summarized in Table 4.1.

The response distribution

The probability of obtaining the response yt on trial t conditional on the data dt
and the model parameters is assumed to be a mixture distribution of two contribu-
tions. The first and dominant term is a normal distribution centered on the model
prediction ŷt modeling task intrinsic noise around the estimates. Upon prelimi-
nary inspection of the data we found considerable heteroscedasticity with higher
unexplainable response variability for larger sample dispersions.

To account for this feature of the response data, we assume that the stan-
dard deviation (SD), θ, of the distribution over response yt, N(yt|ŷt, θ(ŷt)), is a
function of the model output ŷt. The model output is denoted by ŷ to distinguish
it from the response y of the participant which is formally represented by a draw
from the response distribution to account for behavioral variability. Instead of as-
suming a parametric relationship and the need to include further parameters, we
make a parameter free estimate by assuming a discretized function, as follows. We
divide the whole model output ŷ into Q equally filled quantiles q ∈ {1, ..., Q} by
assigning trial t to quantile qt. For every quantile q the SD is estimated separately
by calculating θq = (

∑
j(yj − ŷj)2/J)1/2 (j = 1, ..., J indexes trials belonging

to quantile q). Hence, whenever there is heteroscedasticity, the true function θ(ŷ)

is approximated by the estimated bin values. For homoscedasticity all θq are the
same and collapsing bins would make no difference. The resolution of the function
is higher when many quantile divisions are used provided the θq can still be esti-
mated faithfully. We consider Q = 5 a suitable choice for our problem. As our
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data might be contaminated by processes other than dispersion estimation, such as
lapses, we take precaution against far outlying responses. We calculate a trimmed
standard deviation, i.e. before calculating θq we remove values below or above two
interquartile ranges from the lower or upper quartiles respectively. However, this
applies to θq estimation only. No points are removed from calculating the response
likelihood

p(y|d1, ...,dT ) =

T∏
t=1

(1− ε)N(yt|ŷt, θqt) + ε . (4.13)

Additionally, to prevent isolated points from being assigned virtually zero probabi-
lity we generally add a small probability of ε = 1.34·10−4 to all. This corresponds
to the probability of a point at four standard deviations from the standard normal
distribution. For non-outlying points this alteration is considered negligible.

Estimating model evidence

The evidence that each participant’s data lends to each model is derived as its
predictive performance in terms of the cross-validation log likelihood (CVLL).
For training, we maximized the logarithm of the response likelihood (Eq. 4.13).
To maximize the chances of finding the global maximum even for non-convex
problems or shallow gradients, every training run first uses a genetic algorithm and
then refines its estimate with gradient based search (MATLAB ga, fmincon). The
CVLL for each participant and model is summarized by the mean of the logarithm
of the response likelihood (Eq. 4.13) on the test set across all cross validation (CV)
folds.

As cross validation (CV) is a computationally expensive method, we use a
random 5-fold split of data into training and test sets such that each training point
is used four times for training and once for testing. However, to make splits more
representative of the sample, we use a stratified version of CV by ensuring that the
mean target variable is approximately equal in all folds. This is done by assigning
data points to one of the 8-quantiles of the distribution of the target variable. We
constructed strata that contain one value from each quantile. Subsequently, we
sampled strata to create the 5-fold CV splits. To improve the reliability of per
participant estimates of the model evidence (CVLL), we repeated this procedure
with different random splits and aggregated the output so that in total 10 CV splits
are performed for each participant and model.

Differences in model evidence, ∆, are reported on a log-scale in decibans
(also decihartleys, abbreviated dHart) that may be used to interpret the significance
of the results of individual participants. According to standard conventions, we
consider a value of 5 > ∆ barely worth mentioning, 10 > ∆ ≥ 5 substantial,
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15 > ∆ ≥ 10 strong, 20 > ∆ ≥ 15 very strong and ∆ ≥ 20 decisive.

Group level comparison

Instead of making the assumption that all participants can be described by the
same model we use a hierarchical Bayesian model selection method (BMS) [184]
that assigns probabilities to the models themselves. This way, we assume that
participants may be described by different models. That is a more suitable ap-
proach for group heterogeneity and outliers which are certainly present in the
data. The algorithm operates on the CVLL for each participant (p = {1, ..., P})
and each model (m = {1, ...,M}) under consideration and estimates a Diri-
chlet distribution Dir(r|α1, ..., αM ) that acts as a prior for the multinomial mo-
del switches upm. The latter are represented individually for each participant by
a draw from a multinomial distribution upm ∼ Mult(1, r) whose parameters are
rm = αm/(α1 + ... + αM ). We use the CVLL and assume an uninformative
Dirichlet prior α0 = 1 on the model probabilities. Later, for model comparison,
exceedance probabilities, pexc =

∫ 1
0.5 Beta(αi,

∑
j 6=i αj), are calculated corre-

sponding to the belief that a given model is more likely to have generated the data
than any other model under consideration. High exceedance probabilities indicate
large differences on the group level. We consider values of pexc ≥ 0.95 significant
(marked with ∗) and values of pexc ≥ 0.99 very significant (marked with ∗∗).
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Chapter 5

General discussion

5.1 Summary of contributions

The introductory chapters argued that task-optimality is an insufficient criterion
to assess the rationality of human inferences. This is due to subjective assumpti-
ons leading to problem mismatch and due to competing goals in combination with
cost-sensitive cognition. As a consequence, tests for theoretical rationality must
more specifically assess Bayesian belief updating while respecting the individual
internal boundary conditions [116]. I sought to estimate the human potential to re-
sort to rational inference mechanisms. For this purpose, I conceived and developed
two novel experimental paradigms on my own. These tasks bridge low-level per-
ceptual and higher-level cognitive domains in an attempt to expand experimental
evidence beyond commonly tested basic visuo-motor tasks (Sec. 2.2.2).

The experimental responses show non-trivial patterns specific to internal
probabilistic processing while the inference procedures involve complex and non-
linear operations such as normalization and marginalization. Behavior is found
to be stable across trials without relying on supervising feedback, suggesting that
actions are guided by internal objectives derived from internal representations of
uncertainty. While, the results were tested against many other conceivable appro-
aches, simple heuristics are typically insufficient to account for behavior. Conse-
quently, mechanisms that at least approximate probabilistic inference are sugge-
sted to be available for similar higher cognitive tasks.

Beyond that, behavior is highly consistent with a jointly learned represen-
tation at several levels of a hierarchy in which upper contextual levels constrain
inferences of lower-level latent variables. Moreover, information integration can
be well captured with reliability-dependent message passing between latent va-
riables of a generative model suggesting that representations of uncertainty are
ubiquitous.
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Group-level results or well-performing individuals demonstrate that both
tasks are cognitively feasible. However, the failure of some individuals to at least
remotely perform the task suggests that proper problem alignment is crucial. Pro-
blem mismatch was partly made explicit by model-based analyses but also during
briefing and debriefing of our participants. Systematic misconceptions and beha-
vioral biases are very heterogeneous across participants and supposedly stem from
extraneous factors.

The most notable inferential bias is a tendency of the momentary sample to
dominate judgments against previously available information. The second experi-
ment allowed to explicitly link this behavioral observation to an internal represen-
tation which tends to be overly dominated by the momentarily observed instances.
Bayesian nonparametric approaches to density estimation were used for modeling
and are suggested as a connection to further theoretical developments (see model
selection, Sec. 1.4).

Crucial ideas and questions that this work addressed are further discussed
in the following sections while the task-specific discussions can be found in Secs.
3.4 and 4.5.

5.2 Model-based probabilistic inference

Probabilistic inference is inherently model-based. The functioning of many every-
day mental abilities such as counterfactual thinking, imagination, dreaming, pre-
diction and planning is hard to conceive without reliance on a model that may go
beyond the data that has ever been observed. There is scientific evidence that hu-
man decision making is model-based and not consistent with model-free learning
[175]. Model-based inference may occur largely unconsciously and is suggested
to underlie complex tasks such as physical scene understanding [177].

There are increasingly many accounts that attempt to interpret neural pro-
cessing as an inference process of the causes behind their bodily influences [193].
Besides evidence from cognitive science [42], convergent evidence in support of
the framework of Bayesian hierarchical inference [74] has indeed led to the deve-
lopment of quantitative and testable models of implementational (neural) aspects
of brain function [96]. For instance, a recent neuro-imagining study has repor-
ted the preactivation of stimulus templates by expectations that is similar to actual
stimuli [179]. Such top-down information flow is characteristic for model-based,
hierarchical inference and for brains that are driven to adjust to best predict stimuli
[43, 58].

The results of the present work support the notion that humans rely on pro-
babilistic models of their sensations. Judgments about uncertainty, such as estima-
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ting the probability of a correct decision (Bayesian decision confidence), require
a representation of the possible worlds that are consistent with the data - even of
those which are not most strongly supported. We found that many participants na-
turally chose to express "their" confidence as a quantity tightly related to Bayesian
decision confidence.

This is a very difficult task for a non-probabilistic, model-free agent as ar-
gued before (Sec. 2.1.2). In the absence of a probabilistic world representation,
estimating the frequency of occurrence of possible worlds requires re-experiencing
a situation conditional on the observations. Even for few, stable and repetitive con-
ditions with correctly supervising feedback, a model-free agent needs many repe-
titions to reach comparable levels of behavioral accuracy (Sec. 2.1.2, Fig. 2.1).
From birth, we are exposed to a plethora of extremely complex situations in dif-
ferent contexts, whose latent structure is not signaled so that we must learn in an
unsupervised manner. To make things even more difficult, many situations, un-
der the same environmental distribution, are just experienced once. In the light of
these arguments, the frequentist approach to estimating uncertainty appears very
unecological.

Another argument in favor of perceptual models concerns the transfer of
knowledge [194–196]. Models are a task-independent representation of the envi-
ronment. But of course they may be used to construct task specific objectives. The
extension of the second experiment exemplifies this because the read-out of the
sensory representation has to adapt to the momentary target capture percentage.
Such representations may be efficiently re-used for different tasks. On the other
hand, directly learned stimulus-response mappings typically exhibit a high degree
of task specificity and are thus of limited use when behavior must transfer to new
environments or objectives (see also Sec. 2.1.2). Our participants transfered ra-
pidly and successfully to more complex environmental distributions in both tasks.
These powerful generalization abilities suggest that they make use of internal mo-
dels that are inferred based on the task instructions.

The results of the empirical prior study are highly consistent with mes-
sage passing between latent variables across a hierarchy and suggest that uncer-
tainty information is ubiquitously available for reliability-based integration [197].
A feature of probabilistic representations is that uncertainty estimates can natu-
rally emerge from the knowledge representation itself, without requiring a meta-
representation [181, 198]. The degree to which the biological brain and human
cognition rely on a separate re-representation (or meta-representation) is unclear
(see also [199]). Some animal studies have claimed an anatomical locus for a
meta-cognitive reports that is distinct from the processes required for perceptual
decisions [165]. Other studies using causal neuro-physiological tests reported that
reasoning on the object- and the meta-level could not be dissociated [130, 200] so
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that overall evidence is inconclusive.

5.3 Model selection problem

The question what internal model humans select and how they generate new hypot-
heses is experimentally difficult to test and hence poorly understood. Many times,
participants are simply assumed to know the problem structure which is tied to the
faulty practice of equating task-optimality with theoretical rationality (Sec. 1.6.5).

Humans were speculated to monitor uncertainties about the world’s causal
structure [197]. Experimental evidence suggest that human inferences possess the
ability to select among several structures (models) [183, 201], especially if the set
of candidate structures is clear [202]. The empirical prior learning task confirms
this notion (Chapter 3). Even more, our participants learned and rationally used
a representation of the respective uncertainty of different structures. A similar in-
formation processing scheme was suggested to underlie human vision: "recurrent
feedforward/feedback loops in the cortex serve to integrate top-down contextual
priors and bottom-up observations so as to implement concurrent probabilistic in-
ference along the visual hierarchy" [180]. The idea that humans internally main-
tain generative models, akin to Bayesian hierarchical inference in which higher-
level variables constrain lower-level states, may extend to more abstract concepts
beyond vision. Apart from behavioral data in our task, there is evidence, e.g. from
a brain imaging study of a hierarchical planning [203], in support of this notion.

Every task is specified by a number of implicit and explicit assumptions.
First, participants must infer the structure of the problem itself from the task des-
cription. In this process, description-based methods may fail to entirely communi-
cate the problem, e.g. the base rate information as the specification of distributions
is high-dimensional and difficult to convey in words. Unfortunately, this process is
hard to test in a rigorous and controlled manner. While we only informally addres-
sed this by making short, Q&A sessions before and after the experiment, it would
be interesting to explore this more rigorously with a larger number of participants.

Systematic reasoning errors are suggested to arise to a large extent because
inference based on a somewhat mismatched model of the environment is made
which can lead to severely biased estimates [168]. Even though we attempted to
clearly convey the dependence structure among the latent variables in the empi-
rical prior task, the problem is not completely transparent to the participants, as
we could e.g. not communicate the strength or magnitude of the block tendency
to them. To reduce uncertainty, they may make subjective assumptions or even
infer it across trials by an upward extension of the hierarchical latent structure (see
Sec. 3.3.4, Fig. 3.3). In such an attempt to infer the problem, participants may
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supplement the instructions with automatic but inappropriate assumptions. In this
context, another study has explicitly attributed task suboptimality to structural le-
arning [201]. Different subjective assumptions may largely explain the substantial
inter-individual differences found in behavior. As the exposure to learning situa-
tions over the entire life is individually specific, different ’empirical priors’ might
emerge even if we were entirely rational agents (see Sec. 5.6 below).

After all, the assumption of a transparent problem in inference tasks is dif-
ficult to satisfy. The chances are high that participants attempt to solve a slightly
’mismatched problem’. Structural problem alignment is absolutely crucial and
is claimed to increase compliance with Bayesian norms [204]. Particularly, the
success to evidence intricate patterns of probabilistic inference in this work is be-
lieved to stem from careful instructions of incremental complexity (empirical prior
task, Secs. 3.5.3-3.5.4).

Increased structural uncertainty such as a "small unusual twist or additional
element of complexity" can adversely affect performance [140]. Similarly, we
could ask what would happen if participants were not instructed and instead just
exposed to the block tendency in the empirical prior task. We did not test this
specific case but consider it an interesting extension that may further clarify the
role of structural uncertainty.

More generally, when the problem structure behind the observations is
highly uncertain, a nonparametric, instance-based approach to inference is sen-
sible. This might actually be one explanation for instance-biased generalizations
that were observed in the second experiment even though participants typically sta-
ted that the task was clear. Considering also the simplicity of the sampling process,
this explanation seems less likely.

In the absence of structural knowledge, another study reported that parti-
cipants resort to model-free behavior [60]. We however did not give supervising
feedback to our participants which precludes a model-free approach. This, on the
other hand, might explain the failure of few participants to even remotely engage
in the tasks.

5.4 Biases through approximations

We sought to increase the motivation of the participants to engage in the task by
using sparse motivational feedback and by posing economic incentives through
bonus payments. This presumably leads to a high priority of performing rational,
optimized inference (Sec. 1.5). It was intended to preclude that participants resort
to computationally cheap short-cuts or heuristics which may introduce behavioral
biases (Sec. 2.2.1).
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Human inferences have been interpreted in terms of a sampling approach
to inference when drawing samples is assumed to be costly [84]. Many cognitive
biases, such as a base rate neglect, are reproducible by a sampling framework [82]
or they are suggested to originate from noisy internal processing [205, 206]. A
substantial part of the overall behavioral variability might actually be introduced
by the inference process itself [87, 145]. For inference through finite sampling, for
instance, behavioral response variability should covary with the width of the pos-
terior distribution [86]. In our tasks, response variability introduced at the inferen-
tial stage cannot easily be disentangled from other noise sources, e.g. introduced
through motor control. Thus, unfortunately, we cannot make claims about the use
of sampling-based approximations here which is a limitation owing to compromi-
ses in the design.

In the second task, we found a tendency for instance-based generalizations.
Such nonparametric or instance-based approaches to inference may also be con-
sidered an approximation because they detach the problem from the context. If
they can be assumed to be cognitively cheaper, there is a practically rational in-
centive to use them even at the expense of poorer inference. The idea of having
both an instance-based encoding scheme and a structured one, which allows for
powerful generalizations, underlies recent advances in artificial intelligence [207].
These complementary learning systems parallel the functional roles that have been
attributed to the hippocampus and the neocortex respectively in biological brains
[208]. However, the degree to which they rely on spatially separated cognitive
systems in the brain is not clear [209]. Generally, it may be beneficial to forgo
precision of the world representation whenever it is not strictly important for the
momentary task objective. Flexible schemes, such as utility-weighted sampling
[210], may allow for a gradual incorporation of approximations into just one lear-
ning system. There might actually be a similar interaction between instance-based
and structured learning systems that provide the hybrid functionality of Bayesian
nonparametric models.

There is a remarkable parallel between the findings of both experimental
tasks here in that behavior is a distorted, nonlinear function of optimal probabi-
lity estimates. This could merely be caused by concurrent or extraneous processes
such as motor control. On the other hand, it could reflect systematic biases of the
inferred representations. The second task (Chap. 4) suggested that an instance-
based representation leads to distorted reports in that objectively small target per-
centages are overstated while large ones are understated. In the first task (Chap.
3), we observed a similar form of probability distortion. Decision confidence was
too low for objectively hard trials and too high for easy ones. At the same time,
an increased reliance on the momentarily sample was found through the use of
under-constrained internal representations. It is not clear if this is coincidental, or
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if it may indicate that participants also construct internal representations which are
overly influenced by the very instances of the data they were exposed to. Particu-
larly, because there is evidence for a tendency of the sample to dominate judgments
on the level of their behavioral responses. Correspondingly, to elaborate on this,
modeling efforts would e.g. have to focus on hierarchical extensions of Bayesian
nonparametric methods.

Overall, these ideas are speculative and their experimental testing probably
requires adaptations in the task design, e.g. to control the extent that participants
have an incentive to resort to approximations. Nonetheless, this is a vast area
of active research with potentially beneficial interchange between artificial intelli-
gence and cognitive neuroscience [207].

5.5 Generalization biases

The behaviorally found bias of the sample to dominate judgments corresponds
to a form of dominance of bottom-up influences in a hierarchical model. It was
linked to internal instance-based representations which give too much freedom
to the model’s structure to adapt to the sample. The origin of instance-biased
generalization is suspected to be due to structural uncertainty (Sec. 5.3) or the use
of effort-reducing approximations (Sec. 5.4).

However, there might be a third explanation which rests on a more funda-
mental, ecological argument. We might be equipped with a fundamental bias to
perceive causes behind our observations even for little evidence (e.g. [109]). A vir-
tue of (partially) instance-based methods such as Bayesian nonparametric models
is that they may readily incorporate structural changes such as new causal factors.
This might be adaptive in a structurally uncertain and changing world compared to
parametric models of fixed structure.

On the other hand, completely instance-based approaches are inefficient be-
cause they ignore contextual information. We found behavioral evidence that in-
ferences are more constrained than purely instance-based estimates. This is remi-
niscent of recent accounts of function learning [189] claiming that humans follow
hybrid approaches between instance-based (nonparametric, similarity based) and
structured (rule-based) methods. The second study here is limited in that it provi-
des only weak evidence that internal distributional representations follow such a
hybrid approach.

To generalize well in realistic and thus uncertain environments, an agent
must disentangle noise from systematic patterns. Bottom-up sensory stimuli need
to be integrated with top-down prior expectations about the context of the task.
To strike a balance between both, the perceptual representation needs to be equip-
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ped with the right degree of flexibility to adapt to the observations. Theoreti-
cally, uncertainty provides a key link between top-down and bottom-up influences
as partly contradictory information must be combined into the posterior (see e.g.
[43]). Experiments have confirmed the importance and the use of uncertainty re-
presentations for multi-stage [211] and hierarchical decision making [187]. Exces-
sive instance-based generalization corresponds to a bottom-up surplus giving more
emphasis to the sample at the expense of prior (structural) knowledge. In extreme
cases, insufficient integration might lead to incoherent beliefs. Interestingly, at-
tempts have been made to explain the positive symptoms of schizophrenia in terms
of disturbed belief updating in a hierarchical Bayesian framework [212]. Internal
representations of schizophrenic patients are commonly considered too fragmen-
ted which bears certain resemblance with the consequences expected from excess
bottom-up dominance [213, 214].

This work suggests a link between bottom-up dominance of information
flow and instance-based computational representations. At the same time, it is
unclear why an instance-based generalization scheme tended to dominate in both
experiments. This is not expected to be general as expectation-biased generali-
zation through top-down dominance undoubtedly exists in human inferences. It
might for example be a consequence of the rather dull, low-value and repetitive
nature that is common to many laboratory tasks.

5.6 Are we rational agents?

The necessity to handle uncertainty has initiated the probabilistic turn to describe
sound reasoning [31] - a paradigmatic shift away from the formalisms of traditional
logic and towards probability. Theoretically rational inferences are not about a task
result, they are about a method of inference.

We evidenced patterns of variation that are highly specific to probabilistic
(Bayesian) belief updating which suggests that human participants have the po-
tential to maintain coherent reliability-based beliefs over complex latent structu-
res. These results support the thesis formulated in the beginning that humans have
access to internal mechanisms of rational inferences.

Irrational responses, on the other hand, can result from an agent not ma-
king full use of its available resources (see also [119]). In this sense, rationality
is not dichotomous but a continuum. The observed instance-based generalization
approach is somewhat theoretically irrational unless there are justifiable reasons
to believe that e.g. the environment undergoes drastic changes and that the pre-
vious context is not applicable anymore. Context-detached reasoning may lead to
incoherent beliefs, e.g. by not taking all available prior knowledge into account.
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Hence, "local rationality" would actually be a more descriptive term in such cases.
Practical rationality concerns the degree to which cognitive resources are al-

located to achieve an internal set of goals, i.e. whether meta-reasoning is rational.
As opposed to theoretical rationality, no claims regarding practical rationality can
be made here because the internal motivations of our participants are opaque. In
the light of "resource-rational analysis" [35], an habitual response may be more
rational than a deliberate one if the avoidance of fatigue outweighs the expected
losses from fast and frugal performance. A top-down reduction from a principled
approach, such as an approximation, may be practically rational but outwardly ap-
pear like a theoretically irrational heuristic. Generally, however, I am skeptical
whether meta-reasoning can be understood in an overarching rationality frame-
work as it would require quantifications of the costs of possible approximations
(see [215]).

It is possible that many of the task-irrationalities found by the heuristics and
biases program can be explained away by structural problem mismatch (see e.g.
[216–219]). The high-level tasks of economic decision making, which arguably
cover an important domain of real life, are suspected to be particularly susceptible
to misunderstandings and wrong implicit assumptions. Our results support the
notion [133] that many biases may rather be due to a deficiency of reporting than
a fundamental inability to reason probabilistically (Sec. 2.2.3).

Instead of targeting explicit deliberation, both tasks were designed to be in-
tuitive. As an example, I avoided the use of number and discrete scales to facilitate
undistorted, intuition-based reporting and I attempted to preclude explicit mental
deliberation such as arithmetic. Our participants typically could not give an expla-
nation about how they performed the task as evidenced by debriefing. For instance,
the quantitative match of the magnifying effect of sample size on decision confi-
dence is mathematically too complicated to be carried out explicitly. We take this
as an indicator of intuitive reporting even though the concept certainly needs ela-
boration. Additionally, the sequential, repetitive exposure across trials is hypothe-
sized to lead to a natural familiarization with the task (see also [220]). Similarly,
we do not believe, but cannot provide evidence against, that explicit knowledge
about mathematics and statistics has any influence apart from understanding the
problem structure in our experiments.

Generally, the measures that we apply to test behavior should be robust to
’rational biases’ [121], i.e. to extraneous factors and idiosyncrasies such as prior
distributions that are unequal to the actual base rates [220]. Correcting for those
confounds, the "ability to make decisions seem rather good, although not perfect,
in both sensory-motor and cognitive domains" [182]. Nevertheless, abstract dom-
ains might still be more susceptible to problem mismatch so that care must be
applied when interpreting systematic deviations from normative task behavior [80,
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221, 222].
Critics may object that one might, in principle, always construe an objective

whose optimum corresponds to the explanandum, i.e. rationalize all behavior or
inferences. "Bayesianist" models have been criticized for having excess freedom
of fit and for lacking falsifiability (e.g. [191, 223]). However, the present findings
also clearly demonstrated the limitations that formal Bayesian models have. We
could clearly reject probabilistic (Bayesian) models by implementing a wide ar-
ray of (non-Bayesian) models that incorporate different assumptions. As always,
Bayesian models are only appropriate if their assumptions can be justified. Nonet-
heless, the fact that the assumptions have to be made explicit is believed to be a
virtue of the Bayesian framework (see also [224]).

After all, we seem to possess the potential for rational inference but we of-
ten fail to use it appropriately. This is remarkably similar to findings regarding
behavioral control deficits of patients suffering from obsessive-compulsive disor-
der who "develop an accurate, internal model of the environment but fail to use it
to guide behavior" [225].

5.7 Beyond this work

This work pioneered two experimental paradigms from the ground up. They are
expected to hold potential for further contributions to the scientific community.
Extensions could focus on scrutinizing the origin of the sample dominance by e.g.
varying structural uncertainty in the instructions. Ways of controlling motivation
or effort, e.g. through adaptations similar to demand selection tasks [106], may
reveal whether cognitive approximations are responsible for (generalization) bia-
ses. Some physiological or brain related measures might provide important further
clues. Pupil dilation for instance is reported to be linked to uncertainty induced
arousal [226, 227], and might serve as a proxy for cognitive effort. Electroen-
cephalographic correlates of subjective decision confidence [228] and correlates
of hierarchical probabilistic inference [47] have been found. Similarly, it might
be fruitful to explore traces of bottom-up dominance or the interaction of comple-
mentary learning systems with brain imagining techniques.

Interindividual differences have not been properly explored here because
of the relatively small number of participants tested. For instance, the data is
suggestive that the extent of sample dominance leads to shorter response times
which might be a proxy for task engagement. Held against common statistical
standards, this relationship slightly misses conventional significance measures, but
it might well bear out to be robust for larger samples. Similar measures might
provide useful clues of the origins of behavioral biases.
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Across-participant variation and idiosyncrasies are indeed very common
and should be taken into account [157, 166, 182, 229]. Studies have suggested
a relation between behavioral biases and more general cognitive abilities [230],
e.g. the extent of executive control to engage in cognitively demanding tasks
[231]. In addition, truthful inferences are the key enabler to reach whatever goals
in any environment. General inferential ability is thus the basis for intelligent
behavior which "measures an agent’s ability to achieve goals in a wide range of
environments" [232, 233]. It is tempting to ask if the presented tasks could be
elaborated to provide insight into more general cognitive abilities or disabilities
such as those of clinical populations suffering from schizophrenia [212].

The field of research to which this work contributed may be seen as a (par-
tial) resurrection of the notion of humans as "intuitive statisticians" [234]. Science
shapes our world by enabling technology and by shaping our perception through
the terms it coins. The very terms that we use to convince and influence one anot-
her. Opinions about human rationality tend to oscillate between its affirmation and
its polar opposite. Without doubt, our rational capabilities are easily disengaged
or taken over by more automatic control mechanisms which are part of our evo-
lutionary heritage and which were maybe rational under ancient conditions. One
may consider this a maladaption to an ever more complex world in which conflict
resolution has to increasingly rely on justified arguments.

Currently, it is almost a truism that our thinking and action is deeply flawed.
This is a frequently used argument and rationalization for paternalistic political
measures. For instance, the idea that we almost need to be protected from our-
selves and "nudged" to make better choices has led to the Nobel Memorial Prize
in Economic Sciences in 2017 (e.g. [235]). However, we should be critical to-
wards readily accepting such a strong societal top-down bias and thus ultimately
an aggregation of power. It calls for a proper justification ’who’ is ascribed this
authority, its checks and balances, and that it is not driven by self interest. On
a societal level, the current implementations and accepted procedures to aggre-
gate beliefs (see also [236–238]) and to deliberate about desirable outcomes need
amendments.

In this respect, I would like to point to the underexplored potential of
artificial intelligence and machine learning. Can we manage to put artificial
intelligence into our service as a more objective, interest-free "nudge" towards
rationality and hence more truthful decisions? Could it help us improve our
inferences, identify inappropriate assumptions or simply remind us to always
remain a little bit doubtful about overly strong conclusions? Would it be desirable
and acceptable, if we all had access to such tools with the ease of use of a spell
checker? We all may thus dedicate more time to truly achieving our goals. As
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a beneficial side effect, successful goal alignment would depend on ’cognition-
computation interaction’ in which I see a vital role especially for one: Humans.

"Not to be absolutely certain is, I think, one of the essential things in rationality."

Bertrand Russell
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Appendix A

Supplements to the introduction

A.1 Probabilistic formalism

Probability is a measure that is assigned to an event. An event can be any subspace
of the set of possible outcomes. This allows both discrete and continuous outcome
spaces to be treated within an axiomatized formulation known as measure theory
(e.g. [239]). As a formal theory, probabilities can be defined over (almost) arbi-
trary sets or objects making it an extremely versatile tool. The basic Kolmogorov
axioms are:

1. The probability P (E) of event E is a positive number: P (E) ≥ 0

2. Assumption of unit measure. At least one of all outcomes O will occur:
P (O) = 1

3. Assumption of σ-additivity. The probability of the union of countably many
disjoint sets Ej is: P

(
∪∞j=1Ej

)
=
∑∞

j=1 P (Ej)

In addition, these laws of probability may be derived (with the restriction of finite
additivity of the third axiom) by making basic common sense assumptions about
coherent reasoning (Cox’s Theorem [21]). This has led some scholars to consider
probability theory a natural extension of propositional logic to uncertainty [20].

For practical purposes, a probability distribution assigns probabilities (or
density) to possible outcomesD ∈ O and is typically some parameterized function
p(D|parameters) over the space of outcomes O. Direct consequences of the ba-
sic laws of probability are the sum and the product rule for the joint distribution
p(X,Y ) over two random variables X and Y .

1. sum rule: p(X) =
∑

Y p(X,Y )

2. product rule (chain rule): p(X,Y ) = p(X|Y )p(Y )
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Here, we assume they are discrete and that
∑

Y sums over the space of outcomes
of Y . For continuous random variables, summations must be replaced by integra-
tions to obtain the respective expressions. The sum rule describes the margina-
lization operation to obtain the marginal distribution over X unconditional to Y .
The product rule says that the joint distribution can be written as the product of the
conditional distribution of X given Y and the marginal distribution over Y . Anot-
her consequence is Bayes theorem which relates two complementary conditional
probabilities.

p(X|Y ) =
p(Y |X)p(X)

p(Y )
=

p(Y |X)p(X)∑
X′ p(Y |X ′)p(X ′)

(A.1)

It is however not specific to the Bayesian interpretation of probability (see Baye-
sian probability). In principle, the normalization in the denominator can always
be obtained by summation (or integration). Bayes theorem A.1 forms the basis for
statistical learning as it can be used to update unobserved (latent) variables of a
model.

Bayesian probability

The question to what quantity in the world the mathematical concept of a
probability refers has been subject to philosophical debate. This problem of
reference is reminiscent of the above division of the external state of the world
and the internal surrogate that is constructed through perception. Proponents
of the Bayesian interpretation take a subjectivist stance. Probability is regar-
ded as a measure of the degree of belief that an agent has towards a propo-
sition. It does not require a random process to be present. This evidential
interpretation is different from the physical interpretation which relates pro-
babilities to random physical processes. The latter are roughly subdivided
into the empirical, frequentist explanation and the causal propensity account.

The Bayesian interpretation assigns probability to each statement even
in the absence of prior evidence. The Bayesian interpretation may itself be
further divided into an objective and a subjective variant. Proponents of the
objective Bayesian interpretation argue that the choice of the prior cannot be
arbitrary as requirements of rationality and consistency should impose com-
mon bounds on agents to share essential features - measuring the plausibility
of a proposition across agents. Subjectivists on the other hand do not view the
a priori belief space so strongly constrained.
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A.2 Comparison with a model-free learner

The agent is supposed to provide an accurate estimate of the probability that its
decision will turn out to be correct (Sec. 2.1.2). In other words, it should give
calibrated confidence judgments that correspond to fraction of correct decisions in
the long run.

The difficulty of making choices crucially depends on the sample size. For
each trial, we chose it to be a draw from an independent uniform random vari-
able over small sample sizes from six to 12. The task consists of independent
instantiations of this problem in each trial whereby the latent proportion of blue
and red items in the urn varies according to a constant and symmetric Beta(4, 4)

distribution.
Agent A1 uses a Beta-Binomial model for inference (Sec. 3.5.6) and com-

putes confidence as expected accuracy (Eq. 2.1). It estimates a blue majority when
its corresponding decision confidence is higher than vice versa (ties are broken at
random). Agent A2 on the other hand learns a mapping cN (q,ωN ) by tuning the
parameters ωN for each sample size N encountered.

cN (q,ωN ) = 1/
(

1 + exp
[
−
(
ω1,N · |q − 0.5|+ ω2,N · |q − 0.5|3

)])
(A.2)

It is endowed with knowledge of the symmetry of the problem, i.e. decision confi-
dence for a sample with the sufficient statistics (NR = 1, NB = 3) should be the
same as for (NR = 3, NB = 1). This allows the agent A2 to reduce the number
of effective observable conditions to the decision-aligned sample proportion q̃ and
thus to pool data for more efficient learning.

Nevertheless, batch learning requires agent A2 to memorize the number of
correctly made decisions out of all the decisions that were made under this condi-
tion (q̃, N). The objective is to minimize the error of the sum over the contributions
from all previous decisions J = (c(q̃,w) − y)2. The feedback variable is y = 1

for correct and y = 0 for false decisions.
On-line learning through stochastic gradient descend uses small updates

proportional to the gradient computed from the preceding data point only.

ωt = ωt − η∇ωtJt (A.3)

Differentiation of Eq. A.2 with respect to both weights yields

δJ

δω1
= 2 (c(q,ω)− y) · c(q,ω)(1− c(q,ω)) · |q − 0.5| (A.4)

δJ

δω2
= 2 (c(q,ω)− y) · c(q,ω)(1− c(q,ω)) · |q − 0.5|3
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The learning rate was chosen to be η = 2 which trades off speed of convergence
and volatility. In both learning schemes, random initialization of weights ωN were
chosen by draws from a zero-centered Gaussian N(0, 2).
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Appendix B

Study 1: Inductive biases

This is a variation of the main experiment reported in Chapter 4. Since the overall
rationale is the same, only differences relating to task design, modeling and results
are reported and the reader is encouraged to revisit the corresponding sections
above.

B.1 Variations of the task design

In the main experiment, the target capture percentage was fixed at 65 %. Here,
the target capture percentage for every trial is an independent and identically
distributed sample from the uniform distribution over the interval of [30, 90] %.
Additionally, for every trial, the number of the observations is independently
and uniformly sampled from a categorical distribution over the sample sizes
N ∈ {3, ..., 9}. As before, participants performed a short training session (30
trials) to familiarize with the task. For this training only, the capture percentage
was fixed to 65 % and the sample size to N = 4. As opposed to the main expe-
riment, feedback in the training session (captured percentage and deviation score)
was given only after every two trials as an average of the two preceding trials.
In total 8 participants (5 female, 3 male, average age 28.3 years) were recruited
mainly among students from the Pompeu Fabra University in Barcelona.

Rationale of the extension

These alterations lead to a considerable complication of the task, unless a probabi-
listic generative model is used for inference. Any inferred probability distribution
is independent of the target percentage. The latter merely imposes a different op-
timization objective (Eq. 4.4) from which to derive the response. While this task
is straight-forward for an agent with a probabilistic generative model, it is hard
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for an agent learning a suitable end-to-end mapping because there is no sensory
representation independent of the objective (target percentage).

Learning input-dependent adjustments from feedback over the task is virtu-
ally impossible now. The averaged feedback in the training session poses an as-
signment problem, as it is not clear which trial contributed how strongly. Had par-
ticipants nevertheless somehow learned some stimulus-action plan from the short
training session, it would be of limited use in the subsequent experimental session.
Here, participants have to generalize to different sample sizes and target percen-
tages which may be seen as an instance of transfer learning [195]. Whereas an
internal model would easily allow for this generalization, a stimulus-action plan
would have to be expanded while there would be no principled way of choosing
its parameters. The weighting model used above for instance (Sec. 4.6.3) would
have to be equipped with a different set of weights for each sample size. Moreo-
ver, this sample size dependence is complicated and follows a normalization rule
lowering the influence of each sample’s position for larger samples. Hence, even if
feedback were given, learning a calibrated response mapping would require a sub-
stantial amount of data (Sec. 2.1.2). We can be confident that the participant did
not acquire such a mapping over the course of this experiment in the laboratory.

Computational models

Because of the trial-by-trial variation of the target capture percentage pt, the model
output is not just a single fixed mapping of the statistics onto the response anymore
but dependent on the target percentage. Explicit density models allow to derive the
output in a straightforward way by imposing a different optimization objective.
However, as the results of this optimization cannot be derived in simple analytic
terms, Eq. 4.4 needs to be numerically solved for every trial and its corresponding
target percentage. As before, we identify the result with the dispersion measure Ŝ
as before and then endow it with some more flexibility through the linear response
mapping ŷ = β0 + β1 · Ŝ used before (Eq. 4.5). Table B.1 provides an overview
of all models and its parameters used for fitting. In the remainder of this section, I
will briefly comment on selected models. First, the maximum model (max) tested
before can be regarded as inference assuming a centered and symmetric uniform
distribution. Maximizing the likelihood of all presented sample points then just
yields a distribution extended symmetrically up to the most excentric point. A
certain target percentage in this task then merely corresponds to reporting its pt-th
fraction

Ŝ = pt ·max(|d|) (B.1)

Second, a more general form of the generalized normal model that drops the as-
sumption of a zero-centered distribution by inferring its central tendency from the
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Table B.1: Overview of model parameters

Model Abbreviation Fitting parameters
Maximum max β0 β1
Normal nm β0 β1
Generalized normal gnm β0 β1 p

Tiling tlg β0 β1
Kernel density estimation kde β0 β1 a

Nonparametric Bayesian mixture bnp β0 β1 a α0 κ0

sample was tested. As it was not found to yield significant improvement over the
generalized normal model (gnm) assuming a centered distribution, it is not repor-
ted. Third, in the limiting case of vanishing kernels in the main experiment, the
response was found to collapse onto the third most excentric point. Here, sample
sizes and target percentages vary so that the response collapses onto the point of
the nearest integer fraction of all points that is closest to the target percentage. This
"rounding"-model was tested but is not reported due to inferior results. Finally, the
most important addition is an explicit implementation of a hybrid model between
pure instance-based generalization and causal inference of a centered Gaussian
distribution which is described next.

B.2 Bayesian nonparametric mixture model of Gaussians

Here we provide one possible implementation of the idea of instance-based mo-
dulation to causal inference by using a Bayesian nonparametric mixture model
of Gaussians (BNP) that determines the adequate structural complexity from data
(number of components). Because it is nonparametric, it can adapt to the observed
instances to adjustable degrees. Because it is Bayesian, it allows to incorporate
prior knowledge about the task’s context such as a zero centered distribution. Set-
tings of the prior distribution(s) trade-off these two competing influences. We use
a custom adaptation of a variational inference approach to a BNP borrowing ideas
from [41, 61].

Every data point is assumed to originate from one of K basis distributions
of the mixture model.

p(d|Z,µ, τ ) =
N∏
n=1

K∏
k=1

N(dn|µk, τ−1k )znk (B.2)

The conditional distribution of the observed data vector d = (d1, ..., dN ) depends
on the component identity Z = (Z1, ..., ZK) and the parameters specifying the
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basis distributions. As we are assuming normal distributions, the mean µ and
precision parameters τ need to be specified. The latent variable Z governs the
assignments to the mixture components and follows a categorical distribution pa-
rameterized by the mixing coefficients π.

p(Z|π) =
N∏
n=1

K∏
k=1

πznk
k (B.3)

The assumption of normal distributions for the individual mixture components
turns out to considerably simplify the algorithm and allows for a computationally
efficient implementation.

N(d|µ, τ−1) =

√
τ

2π
exp

[
−τ

2
(d− µ)2

]
(B.4)

For convenience it is formulated in terms of the precision τ = 1/σ2.
For a fully Bayesian formulation, priors are introduced over the parameters

µ, τ and π. The a priori distribution over the mixing coefficients is a Dirichlet
distribution for which the same parameter α0 is chosen for each component.

p(π) = Dir(π|α0) = C(α0)

K∏
k=1

πα0−1
k (B.5)

C(α0) is the normalization constant for the Dirichlet distribution. This prior go-
verns the sparsity preference and can be adjusted by the concentration parameter
α0 · 1 = α0 which is fitted to our experimental data. For the mean µ and the
precision τ a Gaussian-Gamma prior is chosen.

p(µ, τ ) = p(µ|τ )p(τ ) =
K∏
k=1

N(µk|m0, (κ0τk)
−1) ·Gam(τk|a0, b0) (B.6)

The factor over µk pushes posterior estimates closer to the value of m0 which we
use to incorporate knowledge of a zero-centered distribution. The selectivity of the
prior is governed by its precision κ0τk which is a function of the precision τk of
the Gaussian components. As a consequence, prior knowledge of a zero-centered
distribution has a larger influence if the precision of the Gaussian basis distributi-
ons is high. More importantly, the strength of the prior can be controlled through
the κ0 parameter which can be freely chosen and which was fit to the experimental
data. A Gaussian-Gamma distribution was chosen to obtain conjugate prior dis-
tributions. The Gamma distribution over the precision is defined in terms of the
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parameters a0 and b0 which are symmetric across all K components.

Gam(τk|a0, b0) =
1

Γ(a0)
ba00 τ

a0−1
k exp(−b0τk) (B.7)

For the KDE model we assumed that the kernel width scales proportionally to
some global dispersion measure which we took to be σML(d). We make a similar
assumption for the BNP model but we have to formulate it in terms of the prior
distributions over the precision τ . To begin with, all data points are scaled in
units of σML(d) · qτ with the proportionality parameter qτ being determined by
fitting. For the scaled problem the expectation of the precision is set to one E[τ ] =

a0/b0 = 1. For simplicity, the shape parameter a0 of the Gamma prior distribution
(B.7) is clamped to the value of a0 = 4 resulting in a more concentrated density
with a single mode. Because of the nonlinear relationship between τ and σ, the
expectation of the corresponding σ-distribution is close to, but not exactly, one.
For our purposes this is considered sufficient. From the constraint a0/b0 = 1 the
remaining parameter is chosen to be b0 = a0 = 4. All the above defines the joint
distribution over all unknown variables:

p(d,Z,π,µ, τ ) = p(d|Z,µ, τ )p(Z, |π)p(π)p(µ|τ )p(τ ) . (B.8)

Because it is a Bayesian treatment this includes the variables that define the Gaus-
sian mixture distribution and not just the mixture component assignments Z. Pa-
rameters that define the prior distribution are left implicit.

Variational Bayesian inference approaches draw on a decomposition of the
marginal likelihood of the data given a model. Approximation of the posterior
distribution such as factorization assumptions can be introduced. The formalism
allows to iteratively improve a lower bound of the model evidence making use of
variational calculus that may permit to derive tractable iterative update formula.
The only approximative assumption we make here is

q(Z,π,µ, τ ) = q(Z)q(π,µ, τ ) (B.9)

The approximative (variational) posterior distributions are then derived by taking
the log expectation of (B.9) with respect to all the other latent variables [41].

In analogy to the EM-algorithm we refer to the iterative updating steps as
E- and M-steps. We start with an initial guess for the parameters (ak, bk, κk, αk)

by setting them to the corresponding values of their prior distributions. As for
KDE, a Gaussian component is centered on every data point setting mk = dk,
with k = n. Contrary to KDE, overly redundant components will be pruned by
the algorithm depending on the sparsity constraint. We first perform an E-step to
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obtain the responsibilities, i.e. the probabilistic assignments of the data points to
the latent variables Z based on the current parameter estimates.

rnk =
ρnk
K∑
j=1

ρnj

(B.10)

ρnk ∝ π̃kτ̃
1/2
k exp

[
− 1

2κk
− 1

2

ak
bk

(dn −mk)
2

]
The following abbreviations were used.

τ̃k = exp(Ψ(ak)− ln(bk))

π̃k = exp(Ψ(αk)−Ψ(α̂)), α̂ =
∑
k

αk

In the subsequent M-step, the responsibilities rnk together with the parameters of
the prior distributions (a0, b0, κ0, α0,m0) are used to calculate revised parameter
estimates.

αk = α0 +Nk

κk = κ0 +Nk

mk =
1

κk

(
κ0m0 +Nkd̄k

)
ak = a0 +

1

2
Nk

bk = b0 +
1

2
NkSk +

κ0Nk

2κk

(
d̄k −m0

)2
, (B.11)

making use of the abbreviations

Nk =

N∑
n=1

rnk

d̄k = 1/Nk

N∑
n=1

rnkdn

Sk = 1/Nk

N∑
n=1

rnk(dn − d̄k)2 .

The whole algorithm alternates between E- and M-steps and is repeated until con-
vergence is reached which we determined by a threshold on the changes of the
parameter estimates. The inferred density is then used by the optimizer to deter-
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mine the response rt corresponding to the desired target percentage. The result
rt is then transformed back into the original observation space and identified with
Ŝt = rt · σML qτ .
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B.3 Supplementary results

In this version of the task, participants had to demonstrate a more flexible use
of their sensory representation of uncertainty by adapting the read-out to the mo-
mentary task-objective. It is virtually impossible to learn beneficial behavior from
experience alone so that participants must rely solely on internal mechanisms to
make quantitatively accurate judgments of uncertainty.

Internal objective can well adapt to varying target percentage

As for the main experiment, behavior is tightly correlated with the maximum like-
lihood estimator of the Gaussian σML (Fig. B.1 A, Pearson correlation coefficient,
median across participants: 0.74, 95 %-CI (0.72, 0.77)). Beyond that, the capture

Figure B.1: Behavior is consistent with an internal trial-by-trial objective adapting
flexibly to the changing target percentage (A) The behavioral response (black, mean
across participants, with 95 %-CI) is an increasing function of the objective dispersion
measure σML. Individual response curves of all 8 participants tested (gray lines). Two par-
ticipants displaying poor compliance with the instructed task (dashed) were excluded from
the analysis. (B) Participants give estimates closely corresponding to the target percentage.
Optimal responses (green) result in the unity line. Individual participant responses as in
panel A.

percentage of future darts closely corresponds to the target percentage (Fig. B.1
B, Pearson correlation coefficient of binned values across participants ρ = 0.94,
p = 8.5 · 10−29). Hence, participants manage to give good estimates of the fu-
ture percentage on a trial-by-trial basis despite the fact that a different summary
statistic must be read out on each trial. Even though the task complexity increased
compared to the main experiment (see Fig. 4.4A), the accuracy of the participants
has hardly suffered. The per participant median of the per-trial capture deviation is
close to zero percent as for the main experiment (mean across participants, −0.45,
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95 %-CI, (−2.21, 1.34) %). Likewise, the median of the absolute value of the per-
trial capture deviation is on a comparable level as for the main experiment (here
8.47 %, (95 %-CI (7.69, 9.24) % vs. 6.54 % before, medians across participants
shown). Consequently, the per-trial deviations do not strongly depend on task
complexity. Hence, participants can adapt their trial-by-trial objective well to the
target percentage. This is what would be expected from an agent making flexible
use of its inferred distributional estimate.

Behavior features a systematic deviation in that small objective target per-
centages are overstated while large ones are understated (Fig. B.1B) as evidenced
by a slope that is considerably smaller than one (fitted linear function, 0.66, 95 %-
CI (0.60, 0.72)). This is reminiscent of descriptions of probability distortion in
prospect theory where lower probability is typically reported to be over-weighted
and vice versa [154]. Notably, this finding is independent of any prior distribution
over the dispersion that participants might hold as the latter is independent of the
target percentage by construction of the task.

Behavior tends to instance-based generalization

As in the main experiment, behavior is inconsistent with inference of a centered
Gaussian distribution. Evidence for instance-based generalization is found from
the strong support for all methods based on basis distributions such as the tiling
model (tlg), the KDE model (kde) and the Bayesian nonparametric mixture model
(bnp) (Fig. B.2). All are superior to the normal model on the group-level which is
evidenced by the significant exceedance probability (asterisk) of the corresponding
pairs, (bnp-nm, kde-nm, tlg-nm) in the model comparison matrix (Fig. B.2A).

The individual differences in terms of the absolute value of the cross-
validation log likelihood (CVLL) with respect to the normal model (nm, row 3) are
mostly large and individually significant (green shaded background) (Fig. B.2B).
The normal model is only found to predict better than the maximum model (max)
which is equivalent to maximizing the likelihood of a centered uniform distribution
over all sample points (Fig. B.2).

As before, behavior is typically not consistent with inference of a near-
Gaussian distribution evidenced by the performance of the generalized normal
distribution model (gnm). Despite giving better predictions than the normal model
(nm), it is clearly inferior to all approaches based on basis distributions imple-
menting instance-based generalization. Furthermore, models with Gaussian basis
distributions (bnp, kde) predict better than the tiling model with spatially confined
basis distributions. This confirms the notion that sample points have a non-local
effect on the inferred density beyond the neighboring point.
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Figure B.2: Behavior is consistent with a Bayesian approach to sparsity-constrained
mixture modeling (A) Summarized results of a hierarchical Bayesian model comparison
procedure that estimates probability distributions over models. The color code over each
square shows estimates of the parameter of the binomial distribution governing the pro-
bability by which the model indexed by the row is more likely than the one indexed by
the column. Superimposed (asterisk) are large differences of the exceedance probability
(Methods). (B) Many models can be rejected for individual participants despite group he-
terogeneity. The plot shows differences of the cross validation log likelihood (CVLL) for
each participant (black dot) with respect to the model indicated in each row (bnp, tlg, nm).
The median across participants indicates trends on the group level (red circles). The num-
ber of decisive individual CVLL differences (green shaded background) is additionally
indicated as a number.
Model abbreviations: bnp=Bayesian nonparametric mixture, kde=kernel density estima-
tion, tlg=tiling, gnm=generalized normal, nm=normal, max=maximum

Conceiving behavior as an instance-based modulation to causal infe-
rence

In the main experiment, we found evidence that the inferred densities based on the
KDE model constitute a redundant representation because of spatially extended
and overlapping kernel functions. On the level of raw responses, human estimates
are not far from causal inference of a centered Gaussian distribution which was
suggested by the framing of the task (see Fig. 4.7). This indicates that participants
considerably generalize beyond the instances observed. That raised the question
if behavior might not be better conceived an instance-based modulation to causal
inference pushing the KDE model closer to a regime where it must approximate
inference of a bell-shaped distribution.
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Figure B.3: Bayesian nonparametric mixture of Gaussians explicitly incorporates
prior knowledge and sparsity constraints
Comparison of the inferred distributions of the purely instance-based KDE model and the
BNP model. The latter is a specific implementation of the concept of instanced based mo-
dulation of causal inference which imposes differently strong prior structural knowledge
(P1-weak, P2-moderate, P3-strong) on the distribution to be inferred. Inferred internal
distributions (black) of three selected participants (P1-P3, rows) for two example samples
(green, blue) together with the underlying additive basis distributions (red).

As a better description of the internal representation of human participants,
we suggested Bayesian nonparametric methods allowing to incorporate prior kno-
wledge and gradual sparsity constraints. Here we tested a specific implementation
through the Bayesian nonparametric mixture model of Gaussians (bnp) (Sec. B.2)
to investigate the experimental plausibility of this idea. We found that the explicitly
enforced sparsity constraint compared to the KDE model (kde) does not impede
predictive performance (Fig. B.2A). It predicts on a similar level and is even found
to be decisively superior for one participant (Fig. B.2B).

The inferred densities are illustrated for both models (bnp, kde), for two
samples (green, blue) and for three selected participants (P1, P2, P3) (Fig B.3). As
in the main experiment, the probability densities inferred by the KDE model fea-
ture redundant representations through overlapping kernels. The Bayesian nonpa-
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rametric mixture model demonstrates that very similar densities can be more spar-
sely represented by a smaller number of mixture components for which the overlap
is reduced. The number of components varies across participants but shows fewer
components than KDE (averaged across trials, mean across participants, 3.0505,
95 %-CI (2.10, 4.17), KDE: 7). Participant P1 (Fig. B.3) more closely follows
instance-based generalization while P2 and especially P3 assign observations to
fewer components. Because of normalization, the reduction in the number of com-
ponents, through effectively zero-valued mixture coefficients, strengthens others.
The strongest mixture component accounts for several sample points, especially
for larger samples (Fig. B.3, blue) (largest component in multiples of the KDE
model’s (equal) weight(s), 3.20, 95 %-CI (2.24, 4.14), average across participants
and trials). Correspondingly, we find a smaller number of components for parti-
cipants who feature a strong maximum mixture component (Spearman correlation
of trial averages, ρ = −1, p = 0.0014).

The Bayesian nonparametric mixture model (bnp) allows for the incorpo-
ration of prior knowledge of a zero-centered distribution. The effect is strongest
for small sample sizes (Fig. B.3, green sample) and depends on how strongly the
participant’s prior belief suggests a centered distribution (Sec. B.2, parameter κ0).
A strong prior belief, such as for participant P3, results in inference of an almost
centered distribution despite a negative sample mean (green). A comparison with
the inferred density for participant P2 illustrates the difference in the resulting re-
presentation as his representation also just consists of one Gaussian component
but his prior belief of a centered density is weaker. The parameter governing the
strength of this prior knowledge correlates negatively with the number of inferred
components of the Bayesian nonparametric mixture model (Spearman correlation,
ρ = −1, p = 0.014). The extent to which participants attribute sample points
to fewer mixture components, the more they appear to align their inferred density
with the expectations of a single zero-centered cluster of events stemming from a
single cause.

B.4 Summary & Conclusions

This additional experiment fully underscores the principal claims made by the first.
It shows that participants do not depend on feedback or training beyond understan-
ding the task (objective). Before, it was highly unlikely, though not strictly im-
possible, that participants learned some behavioral stimulus-response mapping by
associating stimuli with beneficial outcomes through training and feedback, even
though we found evidence that suggested they did not exploit this option. This task
prevented this opportunity by construction. Instead, it required the flexible use of
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sensory representations of uncertainty by adapting the read-out to the momentary
task-objective. Despite the increase in complexity, participants can flexibly adapt
to the varying task objective almost without performance loss. Constructing a dis-
tribution over future events is crucial to have a principled trial-by-trial objective,
and participants indeed appear to quantify uncertainty in a similar way demon-
strating that the match with the fixed target percentage of the main experiment is
no coincidence. Despite featuring systematic probability distortion which might
stem from instance-biased generalization, these results underpin the claims that
participants derive their responses from estimated distributions.

We have demonstrated that a Bayesian nonparametric mixture model of
Gaussians could be used to implement instance-based modulation of causal in-
ference. It allows to incorporate prior knowledge about the generative process
of the observations. Sparsity constraints enforce a more efficient, less redundant
representation connected to contextual knowledge of the causal structure. The par-
ticular formulation showed that these ideas are consistent with the experimental
data. Our model is at least as good as KDE and we believe that these ideas merit
further investigation. To go beyond this proof of concept, more data needs to be
collected and the task should be adapted to richer causal structures.
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Appendix C

Study 2: Empirical priors

C.1 Calibration of confidence judgments

In Experiment 1, the correlation with the actual probability of deciding correctly
is ρ = 0.81 and can be considered high (linear correlation on bin values for all
participants in Fig. C.1a, p = 1.27 · 10−45). Similarly, in Experiment 2, the

Figure C.1: Human confidence judgments (black, mean ± SEM) correspond to the pro-
bability of deciding correctly (optimal model). Responses are grouped in approximately
equally filled bins for Experiment 1 (a) and Experiment 2 (b).

correlation with the actual probability of deciding correctly is ρ = 0.85 (linear
correlation on bin values for all participants in Fig. C.1b, p = 2.66 · 10−63).
Decision confidence shows systematic deviations from calibrated responses in that
the participants are under-confident for difficult decisions of low expected accuracy
and overconfident for easy decisions. Significant signed differences of the group
median against calibrated responses are computed from a signed rank test and
indicated for each bin (∗ : 0.01 < p ≤ 0.05 and ∗∗ : p ≤ 0.01).
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Table C.1: Overview of fitted models used for prediction

Experiment 1
Model Confidence estimate Response map Parameters Comment

opt c(B) sigmoid ω Sec. 3.5.6
ratio NB/N sigmoid ω
diff NB −NR sigmoid ω

Experiment 2
Model Block estimate Response map Parameters Comment

opt M zmap ωZ 3.5.6
tly M± zmap ωZ 3.5.6
avg M q zmap ωZ 3.5.6
diff Md zmap ωZ 3.5.6

Model Confidence estimate Response map Parameters Comment
Beta prior c(B;ν) sigmoid ω, ν1, ν2 C.4

C.2 Overview of fitted models

The models listed in Table C.1 under Experiment 1 were used for model compari-
son in Fig. C.2. The respective results for Experiment 2 were reported in the main
text in Fig. 3.6d. For all models, we used a nonlinear response mapping to account
for distortions. The parameters of the one-dimensional sigmoidal mapping (Sec.
3.5.6) are abbreviated by ω while those of the zmap (Sec. 3.5.6) are referred to as
ωZ .

Construction of stimuli

All sample points to be displayed were separated by color and arranged along a
horizontal line. The horizontal extent of the grid has a random number of entries,
but always more than the maximum number of samples used over the entire ses-
sion. We randomly sampled two sub-regions along the horizontal direction which
are large enough to accommodate both the red and blue sample circles. Within
each sub-region, the grid entries are randomly populated by the respective subs-
ample. In the vertical direction, we linearly divided a randomly chosen range by
the same amount of grid entries as determined for the horizontal direction. We
then randomly assigned the circles to these positions. The circle density is not pre-
served over different sample sizes, but roughly for each subsample. Across trials,
blue samples are randomly chosen to be either to the left or right side of the red
samples.
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Experiment 1: Instructions

We emphasized in colloquial terms that the sampling of the passengers is indepen-
dent and identically distributed (i.i.d.) and that it does not favor either group. In
addition, it was stressed that the sample positions are irrelevant to the task. Our
participants were asked to report their decision and their confidence in the correct-
ness of that decision. Specifically, a higher decision confidence should lead to a
placement farther from the center whereas for guessing, it should be in the middle.
They were specifically advised to rely on their intuition while we discouraged any
explicit mental arithmetic. We made it clear that for Experiment 1, there is no
relationship between the airplanes (trials).

Regarding the base rates, we mentioned that there are just as many airplanes
with a red than with a blue majority arriving at the airport. And that most airplanes
are known to have a roughly equal number of passengers of the two kinds on
board. Apart from the instructions, the participants could ask any questions to the
experimenter they deemed necessary to understand the task.

Experiment 2: Instructions

At the beginning of session 2, each participant read further written instructions
which introduced the block-wise design. We explained that there is an event in
the city (e.g. a concert, a football match, etc.) that tends to attract many more red
than blue passengers. That the airplanes would be presented one after the other in
consecutive trials grouped together in a block separated by pauses. To make that
clear, we additionally added visual indication of the in-block trial by presenting
five horizontally equidistantly spaced open circles which turned to solid circles
one-by-one as the participant progresses through the trials within a block.

We mentioned that the tendency for ’red’ or ’blue’ airplane majorities chan-
ges unpredictably from city to city and does not favor either group. Moreover,
even though red passengers might preferably travel to a particular city, occasio-
nally there might be airplanes with a blue majority. We attempted to make it very
clear that the decision is still about a given airplane majority (trial) and not about
the overall tendency of one kind to travel to that city (or airport).

Robust estimation of variation of the response distribution

For robustness, we estimated a trimmed SD, i.e. we removed values below or
above three interquartile ranges from the lower or upper quartile respectively.
On the remaining (non-outlying) trials, the ML estimator for the normal distribu-
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tion, θ =
√

1/N
∑

t (yt − ŷt)2, corresponding to the root mean squared deviation
(RMSD) of the residual responses is used. A more ideal solution would be to
set θ so as to strictly maximize the likelihood of the responses for the truncated
Gaussian. For the sake of faster computations however, we resort to this approx-
imate approach which is justified by the relatively low behavioral response noise
(appendix C.3).

Cross-validation splits

As cross validation is a computationally expensive method, we use a random 5-
fold split of the data into training and test sets such that each training point is used
four times for training and once for testing. However, to avoid splits that are highly
unrepresentative of the response distribution, we used a stratified version of CV by
ensuring that the mean response 〈y〉 is approximately equal in all folds. For this
purpose, we assigned the data points to one of the q cumulative quantiles of the
response distribution. We then constructed slices that contain one value from each
cumulative quantile. Subsequently, we sampled the slices to create the 5-fold CV
splits. The number of quantiles q is chosen from suitable multiples of the factors
of the number of trials close to eight.

To improve the reliability of the per participant estimates of the model evi-
dence (CVLL), we repeated this procedure five times with different random splits
and aggregated the output so that in total 25 CV folds are performed for each par-
ticipant and model. For the prior learning task (Experiment 2), only blocks of
trials are split. We basically applied the same logic as before to blocks and attemp-
ted to achieve an approximately equal amount of trials from all quantiles of the
experimental distribution of the decision confidence |yt − 0.5|+ 0.5.

C.3 Experiment 1

Model comparison to evidence sample size effects

The large confidence intervals in Fig. C.2 point to high variability across partici-
pants. We do not claim that all are best described by the probabilistic inference
model (opt) but acknowledge that few probably follow a rather heuristic appro-
ach. One participant had to be excluded due to numerical problems caused by an
extremely high model evidence for the difference model.
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Figure C.2: Sample size is crucial to predict confidence judgments in Experiment 1
Binomial probability of the optimal model to account for the data of a randomly chosen
participant (error bars are 95 %-CI, Sec. 3.5.6). Pairwise comparisons to the models (ratio,
diff) show that probabilistic information integration yields better predictions on the group
level. Additionally, the exceedance probability pe is used to quantify how much more
likely the optimal model is.

Sensory noise

The task design results in low levels of perceptual noise which may obscure accu-
rate perception of the sufficient statistics (NR, NB). In the basic task (Experiment
1), optimal decisions should always follow the sample majority. If there is sensory

Figure C.3: High ratio of optimal decisions evidences low sensory noise levels The
percentage of correctly made decisions is plotted as a function of sample size (median
across participants, 95 %-CI).

noise, the internal estimate would deviate from the sample proportion. In particu-
lar, trials whose sample proportion is close to q = 0.5 would lead to suboptimal
choices. However, participants are rarely found to make suboptimal choices (Fig.
C.3) which suggests very low levels of perceptual noise.
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Task-intrinsic noise

To estimate non-input related response noise that is intrinsic to the task, we sear-
ched for all trials with the same sufficient statistic. The only assumption we made
is symmetry, i.e. decision confidence should only be a function of the absolute
distance from the decision boundary (e.g. q = 0.25 and q = 0.75 result in the
same decision confidence). Consequently, with respect to the sample majority,
trials of the same sample proportion can be pooled. If there are ten or more tri-
als for a particular sufficient statistic, we computed their squared deviation from
the mean. Subsequently, to estimate the variance for fixed inputs, all squared de-
viations calculated this way were pooled and the mean is taken individually for
each participant. The standard deviation parameter of a corresponding Gaussian
distribution is estimated by taking the square root. A median value across partici-
pants of 0.104 (95 %-CI, 0.089, 0.126) indicates low to moderate noise levels in
Experiment 1.

C.4 Experiment 2

Compliance with hierarchical task

Even though our participants performed the hierarchical task remarkably well, few
of them showed such little dependence on previous trials within a block that one
may doubt whether they properly understood the hierarchical nature of the task.
To evidence this, we fitted a linear function y = aq(b)q + a0(b) of the sample
proportion q to their responses y conditional on the actual block tendency (see
Fig. 3.5a). The separation of the offset ∆a = a0(b = 1) − a0(b = 0) should be
significantly positive. We repeated this fit 10000 times with a randomly shuffled
assignment of the b-variable for every participant. To derive the p-value that ∆a is
significantly larger than chance, we compute the fraction that ∆a is larger than the
surrogates from the shuffling test (see Table C.2). Generally, one should only
discard participants on justified grounds. Based on this measure, we chose to
leave out only the first participant such that the remaining analysis is based on
23 participants in total.

Table C.2: Estimate of the compliance with the hierarchical task of the least engaged
participants. Participants are ordered from left to right according to decreasing p-values.

1 2 3 4 5 6
∆a 0.0037 0.0201 0.0258 0.0301 0.0224 0.0556
p-value 0.4372 0.2154 0.1415 0.0969 0.0894 0.0190
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Inferential patterns for for fitted block tendency

The probabilistic model assumes that the block tendency from which the trial-
by-trial (airplane) majorities µ are drawn is given by one of two skewed Beta-
distributions (see Sec. 3.5.5). By convention a ’blue’ context is characteri-
zed by the block tendency Beta(µ|ν1 = 14, ν2 = 9) and b = 1 while the
’red’ context is correspondingly denoted by Beta(µ|ν2, ν1) and b = 0. The
two distributions are symmetric with respect to the block aligned trial majorities,
µ̃b = b · µ + (1 − b) · (1 − µ), which immediately follows from the property
of the Beta distribution: Beta(µ̃b=1|ν1, ν2) = Beta(µ̃b=0|ν2, ν1). A variation of
the optimal inference routine (Eqs. 3.6-3.10) is used that allows for different va-
lues of the parameters ν1, ν2 governing the block tendency with the restriction that
ν1 ≥ ν2. In addition, the sigmoidal response mapping (Eq. 3.14) is used to allow
for nonlinear distortions of the output.

The model output for the fitted parameters determined by maximum like-
lihood are plotted together with the experimental data as in the main text (Fig.
C.4). As concluded in the main text, the qualitative match with behavior impro-
ves but systematic deviations remain. Remarkably, we tried a related model that
similarly estimates the block tendency from a differently skewed Beta distribution
M(b; ν1, ν2) but which then uses the zmap response mapping (Eg. 3.5.6), i.e. the
integration of the block tendency estimate M with the sample is different. Even
though the latter has more parameters and may in this sense be considered more
flexible, it did not yield better predictive performance which is why we chose to
report the former probabilistic model. Consequently, most of the deviations that
the flexible zmap response mapping can account for can also be captured by the
more constrained probabilistic model under the assumption of a differently skewed
Beta distribution of the block tendency.

Proper normalization of messages

Here we will focus on finding the normalization ψ of Eq. 3.10. Marginalizing
out all random variables (integration over the full range of µT ) must result in the
expression being equal to one. Because of independence, the categorical distribu-
tion over N factorizes and separately integrates to one. Compact expressions can
be found for the µT -terms as the product of the distributions p(DT |µT )p(µT |b) in
the integrand is a product between a Binomial distribution and a Beta-distribution.
Hence, the resulting distribution is of Beta-shape again but is not normalized. If
we drop the index T , the expression for b = 1 can be re-written in terms of the
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gamma distribution Γ:

p(D|µ)p(µ|b = 1) = µNB+ν1−1(1− µ)NR+ν2−1

= Beta(µ|NB + ν1, NR + ν2)
Γ(NB + ν1)Γ(NR + ν2)

Γ(NB + ν1 +NR + ν2)
(C.1)

To determine ψ, we enforce the normalization condition
1/ψ

∑
bM(b)

∫
p(D|µ)p(µ|b) dµ = 1. Together with the probability dis-

tribution M(b), which can be easily normalized, we arrive at:

ψ =
Γ(NB + ν1 +NR + ν2)

M(1)Γ(NB + ν1)Γ(NR + ν2) +M(0)Γ(NB + ν2)Γ(NR + ν1)
(C.2)

The messages to update the belief M(b) about the block tendency Eq. 3.8 can be
normalized analogously.
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Figure C.4: Behavioral patterns in the hierarchical inference task compared to a fitted
model assuming a differently parameterized block tendency. Compare to the theoretical
patterns in Fig. 3.4 and the match with the optimal model reported in the main text Figs.
3.5-3.7.
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