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Abstract

Data controllers accumulate more and more data on people, of which a substan-
tial proportion are personally identifiable and hence sensitive data. Storing and
processing these data in local premises is increasingly inconvenient, but resor-
ting to cloud storage and processing raises security and privacy issues. We tackle
here the problem of outsourcing to untrusted clouds in a practical and privacy-
preserving manner two basic operations on non-encrypted sensitive data: scalar
products and matrix products. These operations are useful to perform data
analyses such as correlations between attributes or contingency tables, among
others. Specifically, we propose several secure protocols to outsource to multiple
clouds the computation of a variety of multivariate analyses on nominal data
(frequency-based and semantic-based). These analyses are challenging, and they
are even harder when data are nominal (i.e., textual, non-ordinal), because the
standard arithmetic operators cannot be used.

Our protocols allow using the cloud not only to store sensitive non-encrypted
data, but also to process them. We consider two variants of honest-but-curious
clouds: clouds that do not share information with each other and clouds that
may collude by sharing information with each other. In addition to analyzing the
security of the proposed protocols, we also evaluate their performance against a
baseline consisting of downloading plus local computation. Our protocols have
been designed to outsource as much workload as possible to the clouds, in order
to retain the cost-saving benefits of cloud computing while ensuring that the
outsourced data stay split and, hence, they are privacy-protected versus the
clouds. In addition to analyzing the security of the proposed protocols, we also
evaluate their performance against a baseline consisting of downloading plus
local computation The experiments on categorical data that we report on the
Amazon cloud service show that, with our protocols, the data controller can
save more than 99.999% runtime for the most demanding computations.

We also present here a methodology to compare statistical disclosure con-
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ABSTRACT

trol (SDC) methods for microdata in terms of how they perform regarding the
risk-utility trade-off. Previous comparative studies (e.g. [24]) usually start by
selecting some parameter values for a set of SDC methods and evaluate the
disclosure risk and the information loss yielded by the methods for those pa-
rameterizations. In contrast, here we start by setting a certain risk level (resp.
utility preservation level) and then we find which parameter values are needed
to attain that risk (resp. utility) under different SDC methods. Finally, once
we have achieved an equivalent risk (resp. utility) level across methods, we
evaluate the utility (resp. the risk) provided by each method, in order to rank
methods according to their utility preservation (resp. disclosure protection).
This ranking depends on a certain level of risk (resp. utility) and a certain
original data set. The novelty of this comparison is not limited to the above-
described methodology: we also justify and use general utility and risk measures
that differ from those used in previous comparisons. Furthermore, we present
experimental results of our methodology to compare the utility preservation of
several methods given an equivalent level of risk for all of them.
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Resum

La quantitat de dades sobre la gent que s’emmagatzema creix sense aturador.
Moltes d’aquestes dades fan referència a individus concrets i, per tant, poden
revelar informació sensible. L’emmagatzematge i el processament d’aquestes
dades en entorns locals presenta certs inconvenients, però l’alternativa de fer
servir el núvol per emmagatzemar-les i per processar-les amenaça la privadesa i
la seguretat. En aquesta tesi afrontem els problemes derivats de l’ús de núvols no
confiables. En particular, volem que el núvol pugui fer dues operacions bàsiques
amb dades sensibles no xifrades de manera pràctica i amb privadesa: productes
escalars i productes de matrius. Aquestes operacions són útils per fer diferents
anàlisis de dades com ara el càlcul de correlacions entre atributs i el càlcul de
taules de contingència. Espećıficament, proposem diversos protocols segurs per
externalitzar a múltiples núvols el càlcul de diverses anàlisis multivariants sobre
dades nominals (basades en freqüències i basades en semàntica). En general,
aquestes anàlisis són complexes i ho són encara més amb dades nominals (per
exemple, dades textuals, dades no ordinals) perquè les operacions aritmètiques
estàndards no es poden fer servir.

Els nostres protocols ens permeten d’utilitzar el núvol no només per em-
magatzemar dades sensibles no xifrades sinó també per processar-les. Consi-
derem dues variants de núvols semihonrats: núvols que no comparteixen infor-
mació entre ells i núvols que poden col·laborar compartint informació. A banda
d’analitzar la seguretat dels protocols proposats, també n’avaluem el rendiment
respecte d’un protocol de referència que consisteix a descarregar les dades i
processar-les localment. Els nostres protocols han estat dissenyats per exter-
nalitzar als núvols la major quantitat possible de càrrega de treball. D’aquesta
manera podem conservar la rendibilitat de la computació al núvol alhora que
ens assegurem que les dades externalizades romanen fragmentades i, per tant,
preserven la privadesa envers el núvol. Les avaluacions experimentals amb
dades categòriques que hem fet sobre el serveis de núvol d’Amazon mostren
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RESUM

que, amb els nostres protocols, l’administrador de les dades pot estalviar-se més
del 99.999% de temps d’execució per als càlculs més exigents.

També presentem una metodologia per comparar mètodes de control de la
revelació estad́ıstica (CRE) per a microdades en termes del compromı́s entre risc
i utilitat. Els estudis comparatius anteriors comencen habitualment seleccionant
alguns valors dels paràmetres per a un conjunt de mètodes CRE i avaluen el
risc de revelació i la pèrdua d’informació que produeixen aquests paràmetres.
Aqúı comencem seleccionant un nivell de risc (resp. utilitat) i cerquem els valors
dels paràmetres que calen per obtenir aquest nivell de risc (resp. utilitat) amb
cadascun dels mètodes CRE avaluats. Finalment, un cop hem aconseguit un
nivell de risc (resp. utilitat) equivalent en els diferents mètodes CRE, n’avaluem
la utilitat (resp. risc), cosa que permet d’ordenar-los segons la utilitat (resp.
risc). Aquesta ordenació depèn del nivell de risc (resp. utilitat) i del fitxer de
dades original. La novetat d’aquesta comparació no es limita a la metodologia
descrita prèviament. També proposem mesures d’utilitat i de risc diferents de
les habituals. Addicionalment, presentem resultats experimentals de la nostra
metodologia en l’avaluació de la preservació de la utilitat de diversos mètodes
per a un cert nivell de risc.
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Resumen

La cantidad de datos sobre la gente que se almacena continua creciendo. Muchos
de estos datos hacen referencia a individuos concretos y, por tanto, pueden re-
velar información sensible. El almacenamiento y el procesado de estos datos en
entornos locales presenta algunos inconvenientes, pero el uso de la nube para al-
macenarlos y procesarlos supone una amenaza para la privacidad y la seguridad.
En esta tesis afrontamos los problemas derivados del uso de nubes no confiables.
En particular, queremos que la nube pueda hacer dos operaciones básicas con
datos sensibles no cifrados de forma práctica y que preserve la privacidad: pro-
ductos escalares y productos de matrices. Estas operaciones son útiles para
hacer diferentes tipos de análisis de datos como son el cálculo de correlaciones
entre atributos y el cálculo de tablas de contingencia. Espećıficamente, pro-
ponemos diferentes protocolos seguros para externalizar a múltiples nubes el
cálculo de varios análisis multivariantes sobre datos nominales (basados en fre-
cuencias y basados en semántica). En general, estos análisis son complejos y
lo son aún más sobre datos nominales (por ejemplo, datos textuales, datos no
ordinales) porque las operaciones aritméticas estándar no pueden usarse.

Nuestros protocolos nos permiten utilizar la nube no sólo para almacenar
datos sensibles no cifrados sino también para procesarlos. Consideramos dos
tipos de nubes semihonradas: nubes que no comparten información entre ellas
y nubes que pueden colaborar compartiendo información. Aparte de analizar
la seguridad de los protocolos propuestos, también evaluamos su rendimiento
respecto a un método de referencia consistente en descargar los datos y hacer
el procesado en local. Nuestros protocolos han sido diseñados para externalizar
a las nubes la mayor cantidad posible de carga de trabajo. De esta manera
podemos conservar la rentabilidad del cálculo en la nube y, al mismo tiempo,
asegurarnos de que los datos externalizados permanecen fragmentados y, por
tanto, mantienen la privacidad frente a la nube. Las evaluaciones experimentales
con datos categóricos que hemos realizado sobre los servicios de nube de Amazon
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RESUMEN

muestran que, con nuestros protocolos, el administrador de los datos puede
ahorrarse más del 99.999% del tiempo de ejecución en los cálculos más exigentes.

Presentamos asimismo una metodoloǵıa para comparar métodos de control
de la revelación estad́ıstica (CRE) para microdatos en términos del compromiso
entre riesgo y utilidad. Los estudios comparativos anteriores empiezan habi-
tualmente seleccionando algunos valores de los parámetros para un conjunto de
métodos CRE y luego evalúan el riesgo de revelación y la pérdida de información
que ocasionan estos parámetros. Aqúı comenzamos por seleccionar un nivel de
riesgo (resp. utilidad) y buscamos los valores de los parámetros que hacen
falta para obtener dicho nivel de riesgo (resp. utilidad) con cada uno de los
métodos CRE que se evalúan. Finalmente, una vez conseguido un nivel de
riesgo (resp. utilidad) equivalente en los diferentes métodos CRE, evaluamos
su utilidad (resp. riesgo), lo que permite ordenarlos con respecto a la utilidad
(resp. riesgo). Esta ordenación depende del nivel de riesgo (resp. utilidad) y
del fichero de datos original. La novedad de esta comparación no se limita a la
metodoloǵıa descrita previamente. También proponemos medidas de utilidad
y riesgo diferentes de las habituales. Adicionalmente, presentamos resultados
experimentales de nuestra metodoloǵıa en la evaluación de la preservación de la
utilidad de varios métodos para un cierto nivel de riesgo.
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Chapter 1

Introduction

1.1 Motivation

In 2017, DOMO estimated that 90 percent of the world’s data had been cre-
ated in the previous two years [26]. Moreover, many data analysts expect that
the digital universe will be 40 times bigger by 2020 [43]. This big amount of
person-specific and sensitive data arrives from disparate sources such as social
networking sites, mobile phone applications and electronic medical record sys-
tems. The use of big data offers remarkable opportunities. For example, in
a healthcare context, big data can be used to refine health policies, which is
beneficial for individuals and for the society as a whole. However, at the same
time, the privacy of the subjects to whom the data refers to needs to be guar-
anteed. The data must be protected against attacks and data leakages (data
protection), e.g. unauthorized people cannot have access to sensitive data. At
the same time, it should not be possible to re-identify any individual in the pub-
lished data even when other external or publicly available data are integrated
(data anonymity). Additionally, the access to the released data should not allow
an attacker to increase his knowledge about confidential information related to
any specific individual (data condentiality). For instance, the Big Data Value
Association [8] recognizes data protection and anonymization as one of the main
priorities for research and innovation. Moreover, they also identify the need of
efficient mechanisms for data storage and processing, and they suggest the joint
development of hardware and software for cloud data platforms.

The cloud is fast becoming a new normal and suitable strategy in the big
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data context. In fact, the cloud is often the only possible strategy due to the
costs (software, hardware, energy, maintenance) associated to the storage and
processing of big data. The 2017 State of the Cloud Survey [56] estimated that
95 percent of enterprises had a cloud strategy. Nevertheless, even if companies
run most of their workload in the cloud, around the 79 percent of their total
workload, a remaining 21 percent, runs locally. This local workload may be
traced back to the reluctance of data controllers to entrust their sensitive data
to the cloud due to security and privacy concerns [4]. For instance, the 2017
State of the Cloud Survey shows that 25 percent of respondents cite security as
a major concern. The problem is not only that cloud service providers (CSPs)
may read, use or even sell the data outsourced by their customers; but also
that they may suffer attacks and data leakages that can compromise data con-
fidentiality. For instance, Ristenpart et al. [57] show that co-resident virtual
machines (VM) can give rise to certain security vulnerabilities: if the attacker
becomes a customer of the cloud and obtains a VM, he can use different infor-
mation leakage attacks on the shared physical resources to gain access to the
victim’s (sensitive) information.

Although data collection has become easier and more affordable than ever
before, releasing data for secondary use (that is, for a purpose other than the
one that triggered the data collection) remains very important: in most cases,
researchers cannot afford collecting themselves the data they need. However,
when the data released for secondary use refer to individuals, households or
companies, the privacy of the data subjects must be taken into account.

A great variety of statistical disclosure control (SDC) methods, which aim
at releasing data that preserve their statistical validity while protecting the
privacy of each data subject, are now available [40]. Since sensitive information
can be inferred in many ways from the data releases, these masking methods
are compulsory. Homer et al. [39] show that participants in genomic research
studies may be identified from the publication of aggregated research results,
including where an individual contributes in a mixture less than 0.1% of the
total genomic DNA. Greveler et al. [37] show that the high-resolution energy
consumption data which are transmitted by some smart meters to the utility
company can be used to identify the TV shows and movies being watched in a
target household. Coull et al. [19] show that certain types of web pages viewed
by users can be deduced from metadata about network flows, even when server
IP addresses are replaced with pseudonyms. Finally, Goljan and Fridrich [36]
show how cameras can be identified from noise in the images they produce.

While there is a great diversity of SDC methods for microdata protection,
all of them imply some level of data masking. The greater the amount of
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masking, the greater are both privacy protection and information loss. Different
SDC methods tackle the trade-off between privacy and utility in different ways.
For example, in global recoding the level of information loss is set beforehand
(the amount of coarsening of the categories of each attribute), whereas the
disclosure risk is evaluated afterwards on the protected data set. In contrast,
in k-anonymity [61] the risk of disclosure (the risk of record re-identification, in
particular) is set beforehand, whereas the actual information loss results from
the masking needed to attain the desired level of disclosure risk.

Although some general assertions about specific SDC methods/models can
be made, comparing the latter regarding the privacy-utility trade-off is not
straightforward. Let us illustrate this point with two well-known privacy mod-
els: differential privacy [31] and k-anonymity [61]. In terms of privacy protec-
tion, ε-differential privacy is regarded as stronger than k-anonymity. On the
contrary, k-anonymity is regarded as more utility-preserving than ε-differential
privacy. The practical value of these general statements is dubious. After all, by
increasing ε we reduce the protection of differential privacy, and by increasing
k we reduce the utility of k-anonymous data. An accurate comparison between
SDC methods has to take into consideration both aspects of the privacy-utility
trade-off.

1.2 Contributions

The main objective of this thesis is the design of protocols to outsource and
process sensitive data in an untrusted cloud. That is, we aim at obtaining a
privacy-preserving version of the original data which allows fast analyses of its
contents while preserving the privacy of the subjects to whom the data refer
to. We focus on the honest-but-curious security model. That is, the cloud
runs the protocols as expected but tries to learn as much as possible about the
underlying data. In particular, different clouds may even collude to reconstruct
the entire data set. In case of collusions, anonymization techniques are required
and, therefore, we need to assess the risk-utility trade-off among several masking
methods.

Specifically, for numerical data:

1. We focus on secure scalar products on vertically partitioned data when
CSPs are honest-but-curious and do not share information. We present
two new non-cryptographic protocols and two variants of a known cryp-
tographic protocol to compute the secure scalar product. After that, we
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show how secure scalar products between pairs of clouds can be combined
with computations involving a single cloud to perform data analyses such
as correlations.

2. We present a new protocol that can resist information sharing between
CSPs but assumes the CSPs have no side knowledge about the original
data set; rather than computing individual scalar products, this protocol
computes a matrix product XTX of an original data set X of which the
cloud only knows a masked version Y. Just like the scalar products al-
lowed computing the data set correlation matrix, so does the above matrix
product; furthermore, the clouds can also be used to compute the means
and the standard deviations of attributes in X.

3. We propose another new sharing-resistant protocol to compute the matrix
product XTX that involves heavier computations but stays safe even if
the CSPs have information on the statistical structure of the original data
set X.

For categorical data, we propose efficient protocols to securely compute statis-
tical dependence analyses on split outsourced data for:

1. Frequency-based tests. They rely on the frequencies of attribute values.
The contingency table associated to categorical attributes is the input of
these tests. Therefore, the secure computation of the contingency table
allows the calculation of all these tests, which are not computationally
demanding. We adapt the two best protocols of the honest-but-curious
non-sharing CSPs model to the computation of that table.

2. Semantic-based tests. They are the costliest ones and the ones that would
benefit the most from outsourcing the computation to the cloud. We adapt
the two best protocols of the honest-but-curious non-sharing CSPs model
to the sample covariance matrix computation. Specifically, several seman-
tic measures to quantify distances between nominal values are discussed
and evaluated, both theoretically and in practice.

Finally, we present a new methodology to compare statistical disclosure control
methods for microdata in terms of how they perform regarding the risk-utility
trade-off. Previous comparative studies usually start by selecting some param-
eter values for a set of SDC methods and evaluate the disclosure risk and the
information loss yielded by the methods for those parameterizations. In con-
trast, we start by setting a certain risk level (resp. utility preservation level)
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and then we find which parameter values are needed to attain that risk (resp.
utility) under different SDC methods. Finally, once we have achieved an equiv-
alent risk (resp. utility) level across methods, we evaluate the utility (resp. the
risk) provided by each method, in order to rank methods according to their
utility preservation (resp. disclosure protection), given a certain level of risk
(resp. utility) and a certain original data set.

1.3 Document structure

The remaining of this document is organized in the following chapters:

Chapter 2 provides the background on cryptographic and non-cryptographic
techniques that will be used for the secure processing of outsourced data
in an untrusted cloud. Moreover, masking methods and risk and utility
measures are also discussed.

Chapter 3 explores new non-cryptographic protocols for the scalar product on
split data and also consider cryptographic protocols to compute on split
data in honest-but-curious non-sharing clouds.

Chapter 4 introduces two non-cryptographic protocols for the matrix prod-
uct in a honest-but-curious sharing clouds. With respect to the previous
chapter, the non-sharing assumption is relaxed. As a result, we need to
introduce the data anonymization techniques. Moreover, the procotols
become more suitable for matrix products rather than for scalar products.

Chapter 5 presents efficient protocols to securely compute statistical depen-
dence analyses on split outsourced data for a variety of methods, encom-
passing frequency-based and semantic-based tests.

Chapter 6 proposes a new framework based on general empirical measures of
utility and risk to compare the risk-utility trade-off of several statistical
disclosure control methods.

Chapter 7 summarizes the main contributions of this thesis and presents some
lines of future research.
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Chapter 2

Background

In this chapter, we provide the background on cryptographic and non-crypto-
graphic techniques that will be used for the secure processing outsourced data in
an untrusted cloud. Moreover, masking methods and risk and utility measures
are also discussed. The chapter is organized as follows. Section 2.1 introduces
cloud computing and its main models. Section 2.2 presents the CLARUS archi-
tecture and the security assumptions considered in the design of our protocols.
Section 2.3 reviews the literature on data splitting. Sections 2.4 surveys mul-
tivariate analyses on nominal data. Frequency-based tests and semantic-based
tests are reviewed. Section 2.5 recalls the main semantic distance measures.
Section 2.6 reviews several statistical disclosure control methods which will be
used in Chapter 6. In particular, we focus our attention on correlated noise
addition, multiplicative noise, multivariate microaggregation and rank swap-
ping. Section 2.7 introduces the permutation paradigm and the permutation
distance (a measure used in risk assessment). Section 2.8 provides an overview
on multivariate utility measures.

2.1 Cloud computing

Cloud computing, often referred to as simply “the cloud”, is the delivery of
on-demand computing resources over the internet on a pay-for-use basis [41].
Depending on the needs, the cloud can offer to its users different models which
guarantee scalable flexibility on services that it can provide. Usually, three
models are identified: Software as a Service (SaaS), Platform as a Service (PaaS)

7

UNIVERSITAT ROVIRA I VIRGILI 
OUTSOURCING COMPUTATION ON NON-ENCRYPTED SENSITIVE DATA TO UNTRUSTED CLOUDS 
Sara Ricci 
 



CHAPTER 2. BACKGROUND

End User

IaaS

PaaS

SaaS

DeveloperIT Professional

execution time, database,
web server, development
tools, ...

CustomizationsCustomizations Customizations

Application

Platform

Application

C
S
P

C
o
s
tu
m
e
r

C
o
s
tu
m
e
r

C
S
P

Cloud Service Provider types:

CRM, Email, virtual 
desktop, communication,
games, ...

virtual machines,
servers, storages,
networks, ... 

Figure 2.1: Cloud service provider types: SaaS, PaaS, IaaS.

and Infrastructure as a Service (IaaS). Figure 2.1 depicts the three models and
the costumers’ accessibility to the platform depending on the model.

In SaaS model, the cloud allows users to run applications on distant com-
puters via internet and a web browser. In other words, users can log in the
application software and databases owned by the cloud but they cannot man-
age the cloud platform where the application runs. This allows users to access
the prefixed application from any computers and, therefore, this application
does not need to be installed on the users’ computers. Examples of SaaS are
when users update their Facebook status or check their bank balance.

PaaS provides a development environment where users can develop and run
their software solutions on a cloud platform, but they cannot manage or control
the underlying cloud infrastructure, such as network, servers, operating systems
and storage. In this way, users do not have to buy and manage the hardware,
software, provisioning, and hosting needed for their development environment.
Moreover, the service can be dynamically scaled to usage needs.

In IaaS model, the cloud provides users with computing resources as servers,
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networking or storage. Users do not manage or control the underlying cloud in-
frastructure but have control over operating systems, storage, and deploying and
running arbitrary software. This latter model presents all the advantages of the
previous ones and, additionally, can cover all those situations where users build
the infrastructure required to computation-intensive workloads and applications
to big data and analytics.

In this thesis, we are particularly interested in IaaS due to the design of
protocols to outsource and process sensitive big data on CSPs. In fact, local
storage and processing of such big data is often unfeasible for the data controllers
because of the associated costs (software, hardware, energy, maintenance). In
statistical analyses, for instance, measuring the correlation between (just) two
categorical attributes in a data set containing one million records may require
computing and storing matrices of size one million times one million [55]. If
matrix values are as short as 4-byte integers (real numbers would take more),
then storing one such matrix takes nearly 4 terabytes.

2.2 System architecture, assumptions and secu-
rity models

The scenario we consider involves the three entities in Figure 2.2: the data
controller, the CLARUS proxy and the CSPs. The data controller owns the
data that need to be outsourced to the CSP. CLARUS is a proxy located in
a domain trusted by the data controller that implements security and privacy-
enabling features towards the cloud service provider so that i) the CSP only
receives privacy-protected versions of the controller’s (or the controller’s users’)
data, ii) CLARUS makes transparent the access to such data to the controller’s
users (by adapting their queries and reconstructing the results retrieved from
the cloud) and iii) it remains possible for the users to leverage the cloud to
perform accurate computations on the outsourced data without downloading
them.

The raison d’être of such an architecture is to outsource as much storage
and computation as possible to the cloud in a privacy-preserving manner, and
keep the computational load of the CLARUS proxy (sitting in the controller’s
premises) as low as possible. The privacy-preserving calculation protocols im-
plemented by CLARUS should, thus, follow this principle. The underlying
assumption is that computing in the cloud is cheaper and/or otherwise more
convenient than computing in the controller’s local facilities. In order to eval-
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Figure 2.2: System architecture: CLARUS sits in the controller’s trusted
premises while the CSPs are untrusted.

uate the performance of a protocol, we will focus on how much it reduces the
work to be done by the CLARUS proxy compared to the trivial alternative
of CLARUS downloading the entire data set, unprotecting it and computing
locally on the downloaded unprotected data.

CLARUS may outsource data either in separate cloud accounts within the
same CSP (see left side of Figure 2.2) or to different clouds, each one run by
a different CSP (see right side of Figure 2.2). The CSPs that receive privacy-
protected versions of the controller’s data are not trusted and, hence, they
should not be given access to the entire original data set. Therefore, the CSP
just sees fragments of the original data set or an anonymized version of it. More
specifically, we consider three different security models for the CSPs, depending
on their information sharing and their level of background knowledge:

Honest-but-curious non-sharing CSPs. The CSPs honestly fulfill their role in
the protocols, and they do not share information with each other (perhaps
because they do not even know each other). In particular, they do not
pool together the data fragments they hold. However, each CSP may
be curious to infer and analyze the data it stores and the message flows
received during the protocol, in order to acquire additional information.
This model is common in the cloud computing literature, e.g. see [13].

Honest-but-curious sharing CSPs without background knowledge. We relax here
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the previous assumption about non-sharing: while honestly following the
protocol, CSPs may collude by sharing information with each other. How-
ever, we assume they do not have any initial side knowledge about the
original data set.

Honest-but-curious sharing CSPs with side knowledge. This is the most de-
manding model we consider. In addition to sharing information with each
other, the CSPs have background knowledge on the statistical structure
of the original data set. Nevertheless, they honestly perform their roles in
the protocols.

We do not consider malicious CSPs that may deviate from the protocols
because they would not be very useful for computation outsourcing in our con-
text. The data controller/owner using the CLARUS proxy is assumed to rent
the CSPs to get help from them. Hence, it would be pointless if it took CLARUS
more effort to check that malicious CSPs carry out the computations correctly
than to download the data and do the computations locally.

2.3 Data splitting

Data splitting (or data partitioning or fragmentation) means dividing an original
sensitive data set into fragments and storing each fragment in a different site,
in such a way that the fragment in any site considered in isolation is no longer
sensitive. Data splitting has long been used as a privacy-preserving technique
[71, 73, 18].

Queries on split data can often be answered much more efficiently than
queries on encrypted data (see [1]). In data splitting, the most challenging
step is usually to efficiently compute on the fragmented data when the com-
putations involve more than one fragment: in this case, the clouds may need
to exchange (part of) their respective fragments, but none of them ought to
reveal its own private information. Specifically, challenging tasks in computing
on split/distributed data are data mining [75] and data correlation [79]. The
literature on parallel processing for statistical computation has partly treated
this topic: the way to combine partial results obtained from independent pro-
cessors may provide guidance on how to treat distributed data. On the other
hand, privacy-preserving data mining on partitioned data can be of use too, as
its main objective is to mine data owned by different parties who are willing to
collaborate in order to get better results, but who do not want or cannot share
their raw original data.
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Splitting can be horizontal (each fragment contains the values of all at-
tributes but only for a subset of subjects), vertical (each fragment contains
the values of a subset of attributes for all subjects), or mixed (each fragment
contains the values of a subset of attributes for a subset of subjects). Whereas
vertical and mixed splitting preserve privacy by decomposition, horizontal split-
ting does not do so because all the information on the same individual subject
is stored together [1]. Hence, if preserving anonymity and preventing attribute
disclosure is a key concern, horizontal partitioning is not suitable.

Vertical splitting methods were proposed in [1] and [32] to ensure confiden-
tiality. Both methods rely on predefined constraints describing risky attribute
combinations. An example of a risky pair is passport number and disease,
whereas blood pressure and disease is generally a safe pair. The goal of both
methods is to partition the original data set into two vertical fragments in such
a way that, if some risky attributes are stored together in a fragment, some
of them need to be encoded/encrypted. In [15] the authors illustrate a similar
approach to [1] and [32] but using an arbitrary number of non-linkable data
fragments, which can be stored at an arbitrary number of providers. Also, [16]
presents a solution for splitting data into two vertical fragments without requir-
ing the use of encryption, but rather using a trusted party (the owner) to store
a portion of the data and perform part of the computation.

Regarding mixed splitting, in general, it does not improve on vertical split-
ting in terms of privacy and it complicates distributed computation (no local
computation on entire attributes is possible any more at the locations holding
fragments).

In summary, vertical splitting is the most suitable splitting method for pri-
vacy, since in statistical databases it is the joint distribution of several attributes
that is sensitive (because it may lead to re-identification of the subject behind
a tuple of values). Attributes in isolation (or even groups of attributes whose
value combinations are very common) are not sensitive. For example, if a frag-
ment consists of the values of an attribute “Diagnosis”, then just knowing a list
of diagnoses is clearly useless to an intruder, because he cannot associate it to
the corresponding subjects (it is nearly as useless as seeing a list of diseases and
their frequencies in a manual of medicine).

2.3.1 Computing on vertically partitioned data

A privacy breach occurs when individuals are re-identified in a data set contain-
ing confidential attributes. Re-identification may be enabled by single attributes
(like SS numbers) or by sets of attributes each of which does not uniquely iden-
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tify the individual to whom the record corresponds to but whose combination
may (e.g., job+age+place of birth). The former type of attributes are known
as identifiers, whereas the latter are called quasi-identifiers.

If a data set is to be released without splitting, identifiers should be re-
moved or at the very least encrypted or pseudonymized, whereas quasi-identifiers
should be masked (by either perturbing them or reducing their detail); see [40]
for details. Thus, information is lost in this process (removed identifiers, reduc-
tion of detail or perturbation of quasi-identifiers).

However, if the data set is protected by splitting it among several untrusted
clouds, no information loss needs to be incurred. Under vertical data splitting,
identifiers may be fragmented (e.g. locations can be split into longitude and
latitude, SS numbers may be fragmented into several subgroups of digits, etc.)
and the set of quasi-identifier attributes may also be fragmented into several
disjoint subsets; this fragmentation of identifiers and quasi-identifiers should
be such that no re-identification is feasible from a single fragment [62]. Then
data fragments (either split values or attribute subsets) are stored in separate
locations (i.e., different CSPs or cloud accounts).

2.3.2 Additions, updates and processing in vertically split
data vs other protection options

Since re-identification is not possible from single fragments, these can be stored
in clear form. Thanks to this feature, data splitting allows fast additions and
updates of the outsourced data, provided that the local proxy in charge of
orchestrating the splitting process stores the criteria employed to fragment the
data and the locations at which fragments were stored [62].

In contrast, when protecting data by masking instead of splitting, adding or
updating a value typically requires re-encrypting or re-masking the entire data
set or in any case larger chunks than just the value that has been added/updated.
For example, if the data are protected according to the k-anonymity privacy
model by generalizing quasi-identifiers [60] or microaggregating them [25], adding
or updating an original record may require k-anonymizing again the entire data
set. Furthermore, the CSP storing the anonymized data set might be able to
infer the value of some original records by comparing the successive anonymized
versions of the data set; thus, splitting may offer more protection than masking
as long as the various CSPs holding fragments do not collude.

Similar issues arise if protecting data uses functionality-preserving encryp-
tion. In order to update a single value, the data controller has to (1) retrieve
the entire data set from the cloud, (2) decrypt, update and re-encrypt it and,
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(3) send back the entire encrypted data to the cloud. Therefore, data split-
ting is significantly more efficient for additions and updates than encryption
methods, such as searchable or homomorphic encryption [62]. Regarding data
processing on the cloud, even though searchable and homomorphic encryption
allow performing some operations on ciphertext [29], computing on encrypted
data is extremely limited and costly [53], and it requires careful management
of encryption keys. Outsourced data processing can be performed much more
efficiently on split data: although each CSP only holds partial data, these are in
the clear. Admittedly, both the orchestration of the split calculations to be done
and the aggregation of the partial results retrieved from each CSPs should be
done by the local proxy; therefore, computation protocols should be designed to
minimize both the data that need to be locally stored and the amount of local
calculations needed to obtain the final result.

In vertical splitting, analyses that involve single attributes (e.g., mean, vari-
ance) or attributes stored within a single data fragment are fast and straight-
forward: the cloud storing the fragment can independently compute and send
the output of the analysis to the local proxy. However, analyses assessing the
relationship (e.g., correlation) between attributes may involve data fragments
stored in different locations, and thus, communication between several clouds.
As shown in [12, 21], performing calculations on data split among multiple clouds
can be decomposed into several secure scalar products to be conducted between
pairs of clouds. Scalar products can be made secure with or without cryp-
tography. Cryptographic approaches use a variety of techniques; for instance,
the protocol in [35] involves homomorphic encryption. Non-cryptographic ap-
proaches are rather based on modifying the data before sharing them, in such
a way that the original data cannot be inferred from the shared data but the
final results are preserved (e.g., [18], [45]).

2.4 Multivariate analyses on categorical data

When data are numerical, multivariate statistical analyses such as correlations,
covariances, regressions and classifications are easy to perform and can be com-
puted using standard arithmetic operators. In contrast, analyzing categorical
data is more difficult. Especially challenging are nominal categorical attributes,
whose values are noun phrases describing jobs, interests or conditions, etc., be-
cause they are textual and non-ordinal and, therefore, require specific analytical
methods.
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2.4. MULTIVARIATE ANALYSES ON CATEGORICAL DATA

Table 2.1: Source: ”Preliminary report: Finding from the aspirin component
of the ongoing Physicians’ Health Study.” New Engl. J. Med. 318: 262-264
(1988).

Myocardial Infarction
Fatal Attack Nonfatal Attack No attack

Placebo 18 171 10845
Aspirin 5 99 10933

2.4.1 Frequency-based tests

The simplest methods rely on the frequencies of attribute values. Well-known
frequency-based procedures to measure the statistical dependence between two
categorical attributes are the χ2-test of independence [2], ANOVA [33] and
Cramer’s V [2]. These tests use the contingency tables associated to categorical
attributes as input for a linear regression analysis.

In particular, a contingency table (or cross-classification table) is a table
containing the (multivariate) frequency distributions of the nominal attributes.
Let a and b denote two nominal attributes, a with h categories c1(a), . . . , ch(a)
and b with k categories c1(b), . . . , ck(b). The contingency table has h rows
and k columns displaying the sample frequency counts of the h × k category
combinations.

Table 2.1 shows a 2× 3 contingency table from a report on the relationship
between aspirin use and heart attacks by the Physicians’ Health Study Research
Group at Harvard Medical School. In this case, a represents the pharmaceutical
drugs (aspirin or placebo) given to each patient and b represents the kind of
myocardial infarction attacks got from each patient. The length of a and b is
the number of participants in the research.

2.4.2 Semantic-based tests

Even though frequency-based methods can measure some degree of statistical
dependence, they only consider the similarities between the distributions of
categorical labels; therefore, they fail to capture the semantic similarity among
the categories themselves, which is the means by which human beings create,
understand and manage nominal data.

To tackle this issue, semantically grounded methods have been recently pro-
posed. In [23], nominal values are associated to numbers that capture both
their semantic and distributional features; from these, semantically coherent
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CHAPTER 2. BACKGROUND

variances [65] and correlations can be computed based on standard numerical
methods. In [69], a more accurate way to measure the dependence between
categorical attributes is proposed. Specifically, the distance covariance and the
distance correlation measures are proposed as alternatives to the numerical co-
variance and correlation, respectively. The numerical covariance requires the
values of attributes to be totally ordered, and it measures dependence by check-
ing whether greater values of one attribute correspond to greater values of the
other attribute, and smaller values to smaller values. This assumption does
not work for non-ordinal (i.e., nominal) categorical attributes, which lack total
order. In contrast, the distance covariance quantifies to what extent the two
attributes are independently dispersed, where dispersion is measured according
to the pairwise distances between all pairs of values of each attribute. Unlike
frequency-based approaches, pairwise distances can capture the semantics in-
herent to categorical values. To do so, the pairwise distance can be calculated
using similarity/distance measures [59], that quantify how similar are the mean-
ings of the concepts associated to the categorical values, based on the semantic
evidences gathered from one or several knowledge sources (e.g., ontologies, cor-
pora).

Formally, let x1 = (x11, . . . , x
1
n)T and x2 = (x21, . . . , x

2
n)T be vectors of values

of two nominal attributes. The calculation of the distance covariance requires
measuring the pairwise semantic distance between the nominal values of each
attribute. The semantic-distance matrix of x1 is given by

X1 = [x1ij ]i,j≤n, (2.1)

where x1ij = |x1i − x1j | are the semantic distances between two nominal values

of the same attribute xj (see Section 2.5 for more details). Similarly, we define
X2 = [x2ij ]i,j≤n, where x2ij = |x2i − x2j |. Then, the double-centered matrix X̂1 is
computed, whose elements are obtained as

X̂1
kl = x1kl − x̄1k· − x̄1·l + x̄1·· for k, l = 1, . . . , n, (2.2)

and where

x̄1k· =
1

n

n∑
l=1

x1kl, x̄1·l =
1

n

n∑
k=1

x1kl, x̄1·· =
1

n2

n∑
k,l=1

x1kl. (2.3)

Similarly, let us define X̂2
kl = x2kl − x̄2k· − x̄2·l + x̄2·· for k, l = 1, . . . , n.
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2.5. SEMANTIC DISTANCE CALCULATION

Definition 1. The squared semantic-distance covariance is obtained as the
arithmetic average of the products X1

klX
2
kl, that is,

dV2
n(x1,x2) =

1

n2

n∑
k,l=1

X1
klX

2
kl, (2.4)

and the squared semantic-distance variance is obtained as

dV2
n(x1) = dV2

n(x1,x1) =
1

n2

n∑
k,l=1

X1
klX

1
kl. (2.5)

See [69] and [59] for details and justification of the above definition.
In general, if X = (x1, . . . ,xm) is a data set with m attributes xj , j =

1, . . . ,m, the distance covariance matrix Σ̂ of X is

Σ̂ =


dVn(x1) dVn(x1,x2) · · · dVn(x1,xm)

dVn(x2,x1) dVn(x2) · · · dVn(x2,xm)
...

...
. . .

...
dVn(xm,x1) dVn(xm,x2) · · · dVn(xm)

 .

The method we have just recalled accurately captures the (semantic) de-
pendence between nominal attributes; however, its main drawback is the cost.
Due to the need to compute pairwise distance matrices, the calculation of the
distance covariance between two nominal attributes has quadratic cost, both
in time and storage. Moreover, as we discuss in Section 2.5 below, evaluat-
ing the semantic distance between each pair of nominal attribute values adds a
significant burden.

Therefore, for large data sets, the only feasible alternative for data prac-
titioners may be to outsource the calculation to the cloud. However, when
the data are sensitive (which is often the case because most of the personal
attributes gathered on individuals are nominal [72]), outsourcing storage and
calculation should be performed in a privacy-preserving way. This is precisely
the main goal of this thesis.

2.5 Semantic distance calculation

The semantic distance quantifies the difference between the meaning of two
nominal values. Semantic similarity/distance measures rely on the semantic
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CHAPTER 2. BACKGROUND

Figure 2.3: Ontology extract for the “Diagnosis” concept

evidences gathered from knowledge bases, such as ontologies, which taxonomi-
cally structure the concepts of a domain of knowledge [7]. Formally, an ontology
O is composed, at least, of a set of concepts or classes C organized in a di-
rected acyclic graph (due to multiple inheritance) by means of is-a (ci < cj)
relationships [14], as shown in Figure 2.3.

Measuring the semantic distance in large ontologies can be costly. In this sec-
tion we discuss the computational cost of some well-known measures by relying
on the concepts introduced in the following definition.

Definition 2. Let S(Xa) be the set of subsumers (i.e., taxonomic ancestors) of
the nominal values of attribute Xa mapped in an ontology O. The least common
subsumer of Xa, denoted by LCS(Xa), is the most specific concept in S(Xa).
Formally,

S(Xa) = {ci ∈ O|∀cj ∈ Xa : cj ≤ ci};

LCS(Xa) = {c ∈ S(Xa)|∀ci ∈ S(Xa) : c ≤ ci}.

The semantic distance is defined as a function ds : O × O → R mapping
a pair of concepts (corresponding to nominal values) to a real number that
quantifies the difference between their meanings. According to the calculation
principle employed, ontology-based measures can be divided in three families:

1. Edge-counting measures.

2. Feature-based measures.

3. Measures based on information content.
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2.5. SEMANTIC DISTANCE CALCULATION

Edge-counting measures
They estimate the semantic distance between concept pairs as a function of the
length of the taxonomic path connecting the two concepts in the ontology [52].

A well-known edge-counting measure was proposed by Wu and Palmer [78]:

dWP(c1, c2)

= 1− 2× depth(LCS(c1, c2))

2× depth(LCS(c1, c2)) + path(c1, LCS(c1, c2)) + path(c2, LCS(c1, c2))
,

(2.6)
where LCS(c1, c2) is the most specific subsumer of c1 and c2 in the ontology;
depth(LCS(c1, c2)) is the number of nodes in the longest taxonomic path be-
tween the LCS(c1, c2) and the node root of the taxonomy; and path(c1, LCS(c1,
c2)) is the number of taxonomic edges in the shortest taxonomic path between
the two concepts.

Simplicity is the main advantage of edge-counting measures. However, they
present some shortcomings: 1) if they are applied to ontologies incorporating
multiple taxonomical inheritance, several taxonomical paths are not taken into
account, and 2) by considering only the paths (i.e., subsumers) between the
concepts, much of the taxonomical knowledge explicitly modeled in the ontology
is ignored.

Assuming that concepts in the ontology are linked with their ancestors
through pointers, in the worst case (comparing the two most specific concepts
in the ontology that have the root node as LCS), obtaining the LCS(c1, c2)
requires running through the longest path in the taxonomy, i.e., twice the tax-
onomy depth D. Therefore, it takes O(D) cost to compute Equation (2.6).

Feature-based measures
They consider the degree of overlap between the sets of ontological features of
the concepts to be compared. In [63], the authors suggested measuring the se-
mantic distance as a function of taxonomic features, i.e., as the ratio between the
number of non-common taxonomic ancestors and the total number of ancestors
of the two concepts:

dlogSC(c1, c2) = log2

(
1 +
|S(c1) ∪ S(c2)| − |S(c1) ∩ S(c2)|

|S(c1) ∪ S(c2)|

)
, (2.7)

where S(ci) is the set of taxonomic subsumers of the concept ci, for i = 1, 2.
Due to the additional knowledge feature-based measures take into account (i.e.,
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multiple direct ancestors in case of multiple inheritance), they tend to be more
accurate than edge-counting measures [63].

If S is the maximum number of ancestors that a concept can have in the
ontology, computing Equation (2.7) takes O(S) cost. Notice that, for ontologies
without multiple inheritance, this cost is the same as the one of edge-counting
measures.

Measures based on information content
They measure the semantic distance between two concepts as the inverse of the
amount of information they share in the ontology, which is represented by their
LCS [54]. In particular, Lin [48] proposed as a measure the inverse of the ratio
between the information content of the LCS of the concepts and the sum of the
information content of each concept.

dlin(c1, c2) = 1− IC(LCS(c1, c2))

IC(c1) + IC(c2)
. (2.8)

In [64], IC(c) is intrinsically estimated within the ontology as the normalized
ratio between the number of leaves (i.e., terminal hyponyms) under concept c
in the taxonomy and the number of subsumers of c:

IC(c) = − log

 |leaves(c)|
|S(c)| + 1

|max leaves + 1|

 . (2.9)

Thanks to IC-based measures exploiting the largest amount of ontological
evidence (i.e., ancestors and leaves), they achieve better accuracy than edge-
counting and feature-based measures [6].

Equation (2.8) requires computing the LCS of the two concepts, plus the
ICs of the LCS and the concepts. Like in edge-counting measures, computing
the LCS has a worst-case complexity O(D). On the other hand, Equation (2.9)
requires obtaining all the possible concepts connected to c, either subsumers
of hyponyms; hence, in the worst case (i.e., when c is the root node, which
subsumes all the concepts in the ontology), the IC computation takes O(C)
cost, where C is the total number of concepts in the taxonomy. In conclusion,
Equation (2.8) has O(C+D) computational cost. Thus, IC-based measures are
not only the most accurate but also the costliest.
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2.6. STATISTICAL DISCLOSURE CONTROL

Table 2.2: Example of correlated noise addition method with γ = 0.2.

Original data (+ noise)
Age Height Income

55 -1 1.80 -4 2000 -381
44 -3 1.60 -9 1100 +252
32 +0 1.83 +0 1500 -410
56 -11 1.78 -11 500 +59
40 +4 1.56 +6 750 +76
77 +5 1.70 -2 1350 +258
41 -4 1.80 -5 600 -10
13 -10 1.71 +1 400 -269

Masked data
Age Height Income

54 1.76 1619
41 1.51 1352
32 1.83 1090
56 1.67 959
40 1.62 826
77 1.68 1608
41 1.80 590
13 1.72 131

2.6 Statistical disclosure control

Statistical disclosure control techniques reduce the risk of disclosing information
on individuals, enterprises or other organisations [40]. These methods mask the
original data, reducing the risk of disclosure, but, as a side effect, they reduce
the utility of the published data. The real issue is to find a satisfactory balance
in the risk-utility trade-off of the protected released data.

Masking methods can be: (i) non-pertubative (they do not distort data but
instead produce partial suppressions or reductions of details in the original data
set) and (ii) perturbative (they distort the data before publication and they
ensure that the statistics computed on the perturbed data set do not differ
significantly from the statistics that could be computed on the original data
set). As an alternative to masking methods, we can generate synthetic data that
preserve some statistical properties of the original data set. The latter approach
has issues related to data utility. In fact, only the statistical properties explicitly
selected by the data protector will be preserved.

In the following sections, we describe those methods that will be used in
Chapter 6, namely correlated noise addition, multiplicative noise, multivariate
microaggregation and rank swapping. We will call x = (x1, . . . , xm) a record
of an original data set X with attributes X1, . . . , Xm and y = (y1, . . . , ym) a
record from a related anonymized data set Y with attributes Y 1, . . . , Y m.
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Table 2.3: Example of multiplicative noise method with s = 0.1.

Original data
Age Height Income

55 * 1.1 1.80 * 1.07 2000 * 1.16
44 * 0.87 1.60 * 0.95 1100 * 0.95
32 * 1.03 1.83 * 0.92 1500 * 0.97
56 * 0.91 1.78 * 0.95 500 * 0.97
40 * 0.99 1.56 * 1.1 750 * 1.09
77 * 0.91 1.70 * 0.92 1350 * 0.85
41 * 1.08 1.80 * 1.04 600 * 1.07
13 * 0.99 1.71 * 0.93 400 * 0.94

Masked data
Age Height Income

63 1.88 2166
39 1.60 1040
33 1.71 1395
63 1.72 891
36 1.74 839
68 1.64 1135
50 1.88 685
22 1.65 500

2.6.1 Correlated noise addition

Correlated noise addition [40] preserves means and correlation coefficients, i.e.
the masked version has the same means and correlation coefficients as the orig-
inal data set X. This is achieved by adding multivariate normally distributed
noise to the original records in the collected data set, that is

Y = X +N(0, γΣ),

where Σ is the covariance matrix of X, γ is an input parameter and N(0, γΣ)
is the multivariate normal distribution with null matrix as mean and Σ as co-
variance matrix. Note that the covariance matrix of Y is proportional to the
covariance matrix of X. Table 2.2 shows correlated noise addition method ap-
plied to a data set of 3 attributes and 8 records. The parameter γ takes value
0.2 in the masking.

The most prominent shortcomings of this method are that it does not pre-
serve the univariate distributions of the original data and that it cannot be
applied to discrete variables due to the structure of the transformations.

2.6.2 Multiplicative noise

Multiplicative noise has advantages with respect to noise addition. The use of
a noise with constant variance leads to different levels of protection. On one
side, small values are strongly perturbed and, on other side, large values are
weakly perturbed. For instance, if we consider a business data set, then the
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Table 2.4: Example of multivariate microaggregation method with k = 3.

Original data ( ∗ noise)
Age Height Income

55 1.80 2000
44 1.60 1100
32 1.83 1500
67 1.78 900
36 1.56 750
72 1.70 1350
45 1.85 600
23 1.71 400

Masked data
Age Height Income

53 1.78 1617
53 1.78 1617
53 1.78 1617
43 1.70 750
43 1.70 750
43 1.70 750
43 1.70 750
43 1.70 750

large enterprises, which are much easier to re-identify than the smaller ones,
have their confidential data only slightly perturbed.

We present here Höhne’s variant ([38] and Ch. 3 of [40]) which preserves the
first- and second-order moments. In a first step, each attribute value xij ∈ X
is multiplied by 1 ± N(0, s), where s is an input parameter. In particular, the
formula is as follows,

yij = xij(1±N(0, s)),

where N(0, s) is the normal distribution with mean 0 and standard deviation s.
Then, the following transformation is applied to preserve the first and second-

order moments,

Ŷ i =
σXi

σY i

(Y i − µY i) + µXi ,

where µXi and µY i are the average of the original and masked variables, and
σXi and σY i are the corresponding standard deviations, respectively.

Table 2.3 shows Höhne’s method applied to a data set of 3 attributes and 8
records. The parameter s takes the value 0.1 in the masking. The noise added
to the elements of the original data set is depicted in red.

2.6.3 Multivariate microaggregation

Univariate microaggregation proceeds attribute by attribute. For each attribute,
we partition the values into groups (clusters) of cardinality equal or greater than
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k. To minimize the information loss, the partition groups should be as homo-
geneous as possible. Then, we compute a group representative (e.g. the group
centroid) and replace each of the values by the corresponding group represen-
tative.

Here, we follow the MDAV heuristic [25], which is a multivariate microag-
gregation method. MDAV proceeds in two steps: i) it generates clusters of k (or
more) records that are distant to the center of the data set, and ii) it replaces
each of the original records by the corresponding cluster centroid. The cluster-
ing step proceeds in the following way. First we compute X̄, the average record.
Then we compute xr, the farthest record to X̄, and xs, the farthest record to xr.
To generate the clusters, we check the number of remaining records to cluster:

• If this number is greater than or equal to 3k, we generate two clusters: one
containing xr and the k− 1 records closest to it, and the other containing
xs and the k − 1 records closest to it.

• If this number is between 2k and 3k − 1, we generate two clusters: one
containing xr and the k− 1 records closest to it, and the other containing
all the remaining records.

• If this number is below 2k, we generate a single cluster with all the re-
maining records.

Finally, the clustered records are removed from X, and the process is repeated
meanwhile there are remaining records.

Table 2.3 shows MDAV method applied to a data set of 3 attributes and 8
records. The parameter k takes value 3 in the masking. Records with the same
color belong to the same cluster.

2.6.4 Rank swapping

Among the presented masking methods, rank swapping is the only univariate
one. It works as follows. Independently for each attribute, this method swaps
the attribute’s values within a restricted range: the ranks of two swapped values
cannot differ by more than p% of the total number of records, where p is an
input parameter. More details about these methods can be found in [40].

Table 2.3 shows the rank swapping method applied to a data set of 3 at-
tributes and 8 records. The parameter p takes value 20% in the masking. For
instance, the elements with the same color are swapped between the two data
sets.
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Table 2.5: Example of rank swapping method with p = 20%.

Original data
Age Height Income

55 1.80 2000
44 1.60 1100
32 1.83 1500
67 1.78 900
36 1.56 750
72 1.70 1350
45 1.85 600
23 1.71 400

Masked data
Age Height Income

55 1.78 1500
36 1.60 900
32 1.85 2000
72 1.80 1100
44 1.56 600
67 1.71 1350
45 1.83 750
23 1.70 400

2.7 Permutation paradigm and permutation dis-
tance

In [20], a permutation paradigm to model anonymization was proposed. Let
X = {x1, . . . , xn} be the values taken by attribute X in the original data set.
Let Y = {y1, . . . , yn} represent the anonymized version of X. Consider the
attribute Z obtained using the following reverse-mapping procedure

For i = 1 to n

Compute j = rank(yi)

Set zi = x(j) (where x(j) is the value of X of rank j)

Endfor

We can now view the anonymization of X into Y as a permutation step to turn
X into Z, plus a small noise addition to turn Z into Y . Note the noise addition
must be necessarily small, because it cannot alter ranks: by construction the
ranks of Y and Z are the same. If we perform the above procedure independently
for all attributes of an original data set X and corresponding attributes of an
anonymized data set Y, we can say that anonymization can be decomposed
into a permutation step to obtain a data set Z plus a (small) noise addition to
obtain Y from Z.

The permutation distance measures the dissimilarity between two records in
terms of the ranks of the values of their attributes. Assume the original data set
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X consists of m attributes X1, . . . , Xm and the anonymized data set consists
of corresponding attributes Y 1, . . . , Y m. Let x = (x1, . . . , xm) be a record in X
and y = (y1, . . . , ym) be a record in Y. The permutation distance between x
and y is the maximum of the rank distances of the attributes:

d(x,y) = max
1≤i≤m

|rank(xi)− rank(yi)|.

The permutation distance between records is used in [20] to conduct a record
linkage between the original data set X and the anonymized data set Y. In
particular, records with minimal permutation distance are linked.

2.8 Utility measures

Utility measures are a key component to compare SDC methods. We introduce
two utility measures that will be used in the empirical evaluation of the proposed
methodology: the propensity scores [77] and the earth mover’s distance [58].

Algorithm 1 shows a way to use the propensity scores as a utility measure.

Algorithm 1.

1. Merge the original data set X and the anonymized data set Y and add a
binary attribute T with value 1 for the anonymized records and 0 for the
original records.

2. Regress T on the rest of attributes of the merged data set and call the
adjusted attribute T̂ . Let the propensity score p̂i of record i of the merged
data set be the value of T̂ for record i.

3. The utility can be considered high if the propensity scores of the anony-
mized and original records are similar. Hence, if the original and the
anonymized data sets have the same number n of records, the following is
a utility measure

Ups(X,Y) =
1

2n

2n∑
i=1

[p̂i −
1

2
]2. (2.10)

The value Ups resulting from Equation (2.10) is close to zero if the propensity
scores computed with the regression model for all records are similar (in which
case they will be neither 0 nor 1, but close to 1/2). This situation means that the
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original and the anonymized records cannot be distinguished by the regression
model, and hence the utility of the anonymized data set is high (its records
“look” like the original records). In contrast, if the adjusted propensity scores
were exactly the original values of T , it would mean that the regression model
can exactly tell the original from the anonymized records, so the utility of the
latter is low; in this case, we would have n propensity scores 0 and n propensity
scores 1, which would yield a large Ups. Obviously, propensity scores as a utility
measure are very dependent on the accuracy of the regression model adjusted
to the data: the more accurate the model, the more discriminating it is and the
less likely are values of Ups indicating good utility (close to 0).

Earth mover’s distance (EMD) is a natural extension of the notion of distance
between single elements to distance between sets, or distributions, of elements.
Given two distributions, one can be seen as a mass of earth in the space and the
other as a collection of holes in that same space. Then, the EMD measures the
least amount of work needed to fill the holes with earth, i.e. the minimal cost
needed to transform one distribution into another by moving distribution mass.
Thus, the EMD distance can be used to evaluate the similarity between the
distribution of the original data set and the distribution of the anonymized data
set. Note here that measuring similarity amounts to measuring utility, because,
the more similar the distribution of the anonymized data to the distribution of
the original data, the more useful are the anonymized data.

Formally, we can group records in clusters and represent each cluster j by its
mean and the fraction ωj of records that belong to that cluster. Let the original
data set X be clustered as {(t1, ωt1), . . . , (th, ωth)}, and the anonymized data
set Y as {(q1, ωq1), . . . , (qk, ωqk)}. Let D = (dij) be the matrix of the distance
between the h clusters of X and the k clusters of Y, i.e. dij = ti − qj (in the
multivariate case, we take the Euclidean distance between cluster means). The
problem is to find a flow F = (fij), with fij being the flow between ti and qj ,
that minimizes the overall cost under some constraints (see [58] for more details).
Once the optimal flow F is found, the earth mover’s distance is defined as the
resulting work normalized by the total flow:

Uemd(X,Y) =

∑h
i=1

∑k
j=1 dijfij∑h

i=1

∑k
j=1 fij

(2.11)

The greater Uemd is, the more different the distributions of X and Y are and
hence the more utility has been lost in the anonymization process.
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Chapter 3

Secure Scalar Product in
Honest-but-curious Cloud

3.1 Introduction

With the advancement and spread of computation and communication technolo-
gies, the amount of data collected and stored by private and public sectors is
constantly increasing. Storing and processing such huge amounts of information
in local premises has become very problematic, due to soaring costs of software,
hardware, energy and maintenance. In this context, the need to find a fast and
cost-effective alternative emerges as a necessity. An attractive possibility for
a data controller is to outsource storage and processing to a cloud [4]. Such
outsourcing gives the data controller several benefits like elimination of infras-
tructure costs (no software/hardware investments needed), flexibility (storage
and computing power can scale depending on business growth) and energy sav-
ings.

Unfortunately, storing and processing data in the cloud has also downsides
related to security and privacy. A lot of the information collected is personally
identifiable and therefore sensitive. Neither the data controller nor the subjects
to whom the data refer to want the cloud service provider (CSP) to read, use
or sell their data.

In this thesis we discuss several procedures to store and process sensitive
data in a privacy-preserving way in untrusted clouds, where processing consists
of two basic operations: scalar products, which will be discussed in this chapter,
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CHAPTER 3. SECURE SCALAR PRODUCT

and matrix products (Chapter 4). These operations are useful in statistics and
data analysis (to compute correlations between attributes, contingency tables,
etc.), and also in engineering (image encryption, 3D graphics simulation, etc.);
see Section 1.2 of [47] and references therein.

For scalar products, the privacy-protected sensitive data stored in the clouds
are not encrypted and fully preserve the utility (that is, the statistical features)
of the original data. In fact, the data are neither modified nor encrypted. This
allows making the most of the outsourced data, while ensuring that no original
records can be re-created from the outsourced records. The outsourced data
can be used for purposes other than computing scalar products or matrix prod-
ucts. This is a relevant difference with respect to related work on algebraic
computation outsourcing (see Section 3.2).

In our protocols, we use vertical splitting, so that each cloud stores a cleart-
ext fragment on which any statistical analysis can be directly performed by the
cloud. The goal is that the outsourced version achieves the same utility of the
original data for exploratory analysis by any user with direct access to the cloud-
stored data (who should, however, be unable to reconstruct the original data).
Note that there are many organizations interested in releasing privacy-protected
data for secondary analysis, including but not limited to official statistics [40].

Following the architecture defined in the “CLARUS” European H2020 project
[17] (within which this work has been carried out), we will assume a proxy
located in a domain trusted by the data controller (e.g., a server in her com-
pany’s intranet or a plug-in in her device) that implements security and privacy-
enabling features towards the cloud service providers. We will call this trusted
proxy CLARUS, see Section 2.2 for more details.

Contributions

In this chapter, we explore new non-cryptographic protocols for the scalar prod-
uct on split data and also consider cryptographic protocols to compute on split
data. In the cryptographic protocols we use encryption only in the commu-
nication between clouds. However, the sensitive data stored in the clouds are
protected by splitting, not by encryption. Regarding the sharing assumptions,
we assume that the CSPs do not pool their fragments to reconstruct the original
data set. We start from two existing protocols for this setting, one use cryp-
tography and the other does not, and we develop two new non-cryptographic
protocols and two variants of the cryptographic protocol.

The contributions in this chapter have been published in [21]. A preliminary
version appeared in [12], where already existent non-cryptographic proposals for
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secure scalar product and secure matrix product on vertically split data were
evaluated. Moreover, we proposed two new non-cryptographic protocols and
enhanced already existent cryptographic protocols adapted to the CLARUS
scenario. The CSPs were assumed to be honest-but-curious and not to share
information with each other.

This chapter is organized as follows: Section 3.2 depicts the related work
on algebraic computation outsourcing and points out how our contributions dif-
fer from the previous proposals. Section 3.3 focuses on secure scalar products
on vertically partitioned data when CSPs are honest-but-curious and do not
share information: a non-cryptographic protocol and a cryptographic protocol
are reviewed, and then two new non-cryptographic protocols and two variants
of the cryptographic protocol are presented. After that, we show how secure
scalar products between pairs of clouds can be combined with computations
involving a single cloud to perform data analyses such as correlations and con-
tingency tables. This section also contains mathematical technicalities related
to the presented cryptographic protocols. In Section 3.4, the computation and
communication costs of all protocols described in Sections 3.3 are assessed and
compared against a benchmark protocol consisting of the CLARUS proxy down-
loading the entire data set and locally computing on the downloaded data set.
Section 3.5 presents the experimental results obtained by implementing the
proposed protocols in a multi-cloud scenario. Finally, Section 3.6 lists some
conclusions.

3.2 Related work

Secure scalar products can be based on cryptography or not. Cryptographic
approaches may use a variety of techniques. For instance, the protocol in [35]
involves homomorphic encryption. Similarly, [49] presents a protocol in which
all users encrypt their private vector using fully homomorphic encryption and
upload it to a server. A user (initiator) sends a scalar product query to the
server, which returns the final result after a series of computations and collab-
orative operations with the other user.

Non-cryptographic approaches are based on modifying the data before shar-
ing them in such a way that the original data cannot be deduced from the shared
data but the final results are preserved (e.g. [18], [27], [28], [45]).

The vast majority of protocols proposed for computing on vertically split
data do without a trusted third party (with the exception of the commodity
server solution of [27, 28]). While avoiding a trusted third party is technically
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elegant, it normally takes more computation and communication. See [74] for a
performance comparison of several protocols for the secure scalar product.

As explained in Section 2.2, our scenario involves a trusted party, the CLA-
RUS proxy; in particular, the clouds holding the private vectors do not see the
result of the scalar product (that is only seen by the CLARUS proxy). Hence,
our setting is simpler than the one usually assumed in secure two-party com-
putation, in which there is no third party and at least one of the parties learns
the computation output.

3.3 Secure scalar product for data analysis on
vertically partitioned data

Initially, the data are stored by the data controller vertically split across several
clouds, either directly or via the CLARUS proxy. After that, users want to
use the CLARUS proxy to compute scalar products between attributes stored
in different clouds. Our goal is to minimize the computation at the CLARUS
proxy, which is a resource in the controller’s premises. In contrast, we assume
that the CSPs have unlimited storage and computational power, and, therefore,
we want to shift as much of the computational and storage load as possible to
the CSPs’ side. As to security, no cloud should learn the data stored by the other
clouds, but the CLARUS proxy is trusted and is entitled to know everything.

In this context, we assume that the clouds are honest-but-curious, i.e. they
do not deviate from the protocols. If properly performed, splitting does not
allow linking confidential information to specific individuals. For example, if a
fragment consists of the values of an attribute ”Diagnosis”, then just knowing
a list of diagnoses is useless to an intruder, because he cannot associate them
to the corresponding subjects (it is nearly as useless as seeing a list of diseases
and their frequencies in a manual of medicine).

In Section 3.3.1, we start from the most efficient protocol for computing on
vertically split data identified in [74] and adapted for use with the CLARUS
proxy in [12]. We identify several shortcomings of this protocol in the CLA-
RUS setting and we modify it by replacing or complementing random noise
additions with permutations. In Section 3.3.2, we revise and adapt to the CLA-
RUS scenario a cryptographic protocol for the secure distributed scalar product.
Section 3.3.4 illustrates how secure scalar products can be used to compute cor-
relations and contingency tables on vertically split data.
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y=[
y1

⋮
yn

]x=[
x1

⋮
xn

]

Alice Bob

CLARUS

User

x t y

Figure 3.1: Honest-but-curious, non-sharing CSPs

3.3.1 Secure scalar product without cryptography

In this section, we work under the honest-but-curious and non-sharing model:
the CSPs neither deviate from the protocols nor pool the data fragments they
hold. Let x and y be two vectors with n components owned by Alice and
Bob (who can be two CSPs), respectively. The goal is to securely compute the
product xTy, see Figure 3.1. The privacy of the following protocols relies on
the fact that the original vectors x and y are not shared at any time by the
respective CSPs owning them; only linear transformations of them are shared,
such that the number of unknowns (randomness) added by the tranformations
is greater than or equal to the number of private unknowns. In the following
protocols, CLARUS obtains the desired result; note than any disclosure by Alice
or Bob to CLARUS does not entail any privacy leak, because (unlike Alice and
Bob) CLARUS is trusted by the data controller/owner.

We take as starting point the protocol proposed in [27, 28], that is based
on what they call a commodity server. This protocol is identified as the most
efficient one in [74]. Let Alice and Bob be as previously defined and let a third,
non-sharing cloud Charlie play the role of the commodity server. In [12], we
suggested the following variant adapted for use with the CLARUS proxy:

Protocol 1.
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1. Charlie generates a random n-vector rx and another n-vector ry and com-
putes p = rTx ry (note that p is a number).

2. Charlie sends Alice the seed for a common random generator of rx, and
sends Bob the seed for a common random generator of ry (or equivalently
Charlie sends rx and ry to Alice and Bob, respectively, if sending these
vectors is faster than Alice and Bob generating them). Also, Charlie sends
p to CLARUS.

3. Alice sends x̂ = x + rx to Bob.

4. Bob sends t = x̂Ty to CLARUS and sends ŷ = y + ry to Alice.

5. Alice sends sx = rTx ŷ to CLARUS.

6. CLARUS computes t−sx+p [= (x+rx)Ty−rTx (y +ry)+rTx ry] = xTy.

The authors of [27] show that their basic protocol allows neither Alice to
learn y nor Bob to learn x. In [12], is it is shown that the above variant still
offers the same security regarding Alice and Bob as the basic protocol [27].

It is important to note that in Protocol 1 (as well as in the basic proto-
col [27]), the generated random vectors rx and/or ry should be reused in suc-
cessive instances of the protocol with the same original data vectors x and/or y,
in order to avoid leaking new equations that would facilitate the reconstruction
of a player’s original data vector by the other player. It is easy for Alice to store
rx along with x for subsequent potential reuse, and the same holds for Bob with
respect to ry and y. However, computing p requires knowledge of both rx and
ry, which neither Alice nor Bob have. On the other hand, Charlie knew both
random vectors when he generated them, but he is unaware of any reuse unless
told. So we propose to add the following two preliminary steps to Protocol 1:

pi. If Alice wants to reuse a previous private vector x, she sends Charlie the
corresponding seed of the random vector rx (or equivalently sends the
vector if doing so is faster than Charlie generating it).

pii. If Bob wants to reuse a previous private vector y, he sends Charlie the seed
of ry (or equivalently sends the vector if doing so is faster than Charlie
generating it).

and modify the first two steps of Protocol 1 as

1. If Charlie has not received rx, he generates it randomly; if Charlie has not
received ry, he generates it randomly. Charlie computes p = rTx ry.
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2. If Charlie generated rx, he sends the seed used to generate this vector
to Alice; if Charlie generated ry, he sends the seed used to generate this
vector to Bob (equivalently, instead of sending seeds, Charlie may send
the actual vectors if doing so is faster). Also, Charlie sends p to CLARUS.

Beyond the need to manage reuse as specified above, using random vectors
can result in the following potential weaknesses:

• Weak choices of rx and ry could also leak information, and should there-
fore be avoided: for example, an unsafe choice is when only one component
of rx (or ry) is different from zero.

• While the basic protocol in [27] and Protocol 1 do not leak the exact values
of y to Alice or the exact values of x to Bob, it may be possible to infer the
range of some elements in x and y from the range of the random vectors,
rx and ry. For example, imagine the elements of x are known to lie in the
domain [0, 100] (the domain of an attribute may sometimes be estimated
from its semantics, e.g., the domain of Age can be estimated at [0, 100]).
On the other hand, assume Charlie generates the elements of rx by ran-
domly sampling the [0, 200] domain (the parameters of (pseudo)random
number generation are normally public). Then, if an element of vector
x+rx is 250, Bob learns that the corresponding original element in vector
x is greater than 50.

A way to avoid the previous shortcomings of noise addition is to resort to
the other main principle of non-cryptographic data protection, namely permu-
tation [20]. Independent random permutation of the values of each attribute
affords suitable protection if: a) the values taken by the attribute to be per-
muted are diverse enough; b) breaking the joint occurrence of attribute values
in original records is deemed sufficient to protect the subjects’ privacy, but the
values of each attribute can be released as long as they cannot be linked to
the corresponding subjects (in fact, using vertical data splitting for privacy is
also predicated on this assumption). Specifically, we propose an alternative new
permutation-based protocol, which is graphically depicted in Figure 3.2 and
whose steps are as follows:

Protocol 1.1.

1. Alice randomly permutes the values in her private vector to obtain x̂ =
Px(x).

2. Alice sends x̂ to Bob and rx = x̂− x to Charlie.
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Figure 3.2: In Protocol 1.1, the CSPs permute their private vectors

3. Bob randomly permutes the values in his private vector to obtain ŷ =
Py(y).

4. Bob sends ŷ to Alice and ry = ŷ − y to Charlie.

5. Charlie sends p = rTx ry (note that p is a number) to CLARUS.

6. Bob sends t = x̂Ty to CLARUS.

7. Alice sends sx = rTx ŷ to CLARUS.

8. CLARUS computes t−sx+p [= (x+rx)Ty−rTx (y +ry)+rTx ry] = xTy.

Unlike in Protocol 1, randomness in Protocol 1.1 does not consist in adding
random numbers and it is not generated by Charlie: Alice and Bob are the ones
generating random permutations for their own vectors. Hence, the shortcomings
identified above for Protocol 1 (need to handle random vector reuse, possible
weak choices of random values, possible partial inferences) do not apply to
Protocol 1.1. Regarding security, we have the following result.

Proposition 1 (Security). After participating in Protocol 1.1, Charlie does not
learn x or y; the probability of Bob’s guessing x is at most

nx1 !nx2 ! . . . nxdx !

n!
,
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where dx is the number of different values among the n values of x, and nxi is
the number of repetitions of the i-different value; analogously, the probability of
Alice’s guessing y is at most

ny1!ny2! . . . nydy !

n!
.

Further, the probability of Bob’s guessing one particular component in x is at
most max(nx1 , . . . , n

x
dx

)/n and the probability of Alice’s guessing one particular
component in y is at most max(ny1, . . . , n

y
dy

)/n.

Proof. Charlie receives rx from Alice. Note that rx can be obtained as the
difference between x̂+k and x+k, where k is an n-vector with all its components
set to k, where k is any real number. Hence, Charlie learns nothing about x. A
similar argument shows that Charlie learns nothing about y.

On the other hand, Bob receives x̂ from Alice, which is a random permuta-
tion of x. The number of different permutations of x is n!

nx
1 !n

x
2 !...n

x
dx

! ; hence, the

probability of Bob’s guessing the correct one is 1 divided by this number. The
argument for the probability of Alice’s guessing y is analogous.

Finally, if Bob wants to guess a particular component of x given x̂, his best
guess is the most frequent value in x̂, which is also the most frequent value in
x. The probability of the target component coinciding with the most frequent
value is the relative frequency of the most frequent value. The argument when
Alice wants to guess a component of y is analogous.

If the probabilities given by Proposition 1 are not considered low enough
(this may be the case if data are not diverse enough), then Protocol 1.1 should
not be used. In this case, another option can be to combine permutation and
noise addition into a hybrid of Protocol 1 and Protocol 1.1, as follows:

Protocol 1.2.

1. Charlie sends Alice the seed for a common random generator of a random
n-vector rx, and sends Bob the seed for a common random generator of
a random n-vector ry (or equivalently generates and sends the vectors if
doing so is faster than Alice and Bob generating them).

2. Alice computes x̂ = x + rx and randomly permutes the values in x̂ to
obtain x̂′ = Px(x̂).

3. Alice sends x̂′ to Bob and r′x = x̂′ − x to Charlie.
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4. Bob computes ŷ = y+ry and randomly permutes the values in ŷ to obtain
ŷ′ = Py(ŷ).

5. Bob sends ŷ′ to Alice and r′y = ŷ′ − y to Charlie.

6. Charlie sends p = (r′x)Tr′y (note that p is a number) to CLARUS.

7. Bob sends t = (x̂′)Ty to CLARUS.

8. Alice sends sx = (r′x)Tŷ′ to CLARUS.

9. CLARUS computes

t− sx + p [= (x + r′x)Ty − (r′x)T(y + r′y) + (r′x)T(r′y)] = xTy.

In the above protocol, reusing the random vectors in successive instances is
not needed, because the components are randomly permuted each time, so that
an attacker cannot link the successive noise-added versions of the same original
component of x (resp. y). Regarding security, Protocol 1.2 is at least as secure
as Protocol 1. Specifically:

Proposition 2 (Security). Protocol 1.2 does not allow Charlie to learn x or y,
it does not allow Alice to learn y, and it does not allow Bob to learn x.

Proof. Charlie receives r′x from Alice. Note that r′x can be obtained as the
difference between x̂′+k and x+k, where k is an n-vector with all its components
set to k, where k is any real number. Hence, Charlie learns nothing about x. A
similar argument shows that Charlie learns nothing about y.

Regarding Alice and Bob, Protocol 1.2 clearly offers at least the same secu-
rity as Protocol 1. In fact, due to the additional random permutation step and
provided that there is some diversity in the original attribute values, it offers
better security: it is free from the shortcomings of Protocol 1 related to poor
choice of random vectors and to range inference. At best, the attacker can make
inferences on permuted values.

3.3.2 Secure scalar product with cryptography

Using cryptography to compute the scalar product of two vectors x and y pri-
vately owned by Alice and Bob, respectively, can be expected to increase the
computational complexity with respect to non-cryptographic protocols. How-
ever, it is attractive in terms of security if it can be shown that for Alice to
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learn y or Bob to learn x they should break a cryptosystem that is known to
be secure.

In [35], the authors proposed a cryptographic protocol based on the Paillier
homomorphic cryptosystem [51]. Let x = (x1, . . . ,xn)T and y = (y1, . . . ,yn)T.
We remain under the honest-but-curious, non-sharing model: the CSPs neither
deviate from the protocols nor pool the data fragments they hold. The protocol
is depicted in Figure 3.1 and consists of the following steps:

Protocol 2.

Set-up phase:

1. Alice generates a private and public key pair (sk, pk) and sends pk to Bob.

Scalar product:

2. Alice generates the ciphertexts ci = Encpk(xi; ri), where ri is a random
number in FN , for every i = 1, . . . , n, and sends them to Bob.

3. Bob computes ω =
∏n
i=1 c

yi
i .

4. Bob generates a random plaintext sB, a random number r′ and sends
ω′ = ωEncpk(−sB ; r′) to Alice.

5. Alice computes sA = Decsk(ω′) = xTy − sB.

6. Alice and Bob simultaneously exchange the values sA and sB, respectively,
so that both can compute sA + sB = xTy.

Protocol 2 works in a finite field FN , where the order N must be large enough
(as explained in 3.3.3) and it is the product of two primes p and q of the same
length and such that gcd(pq, (p− 1)(q− 1)) = 1. In case Alice and Bob need to
execute this protocol several times, they can reuse public and private keys and
thus the set-up step (first step) needs to be executed only once. The number of
computations required is: Bob must perform n exponentiations and one encryp-
tion, and Alice has to perform n encryptions and one decryption. Encryption
involves computing two exponentiations and multiplying them, but one of the
exponentiations can be precomputed. Decryption needs one exponentiation as
its most expensive operation. The complexity of all these operations depends
on N : the larger N , the more computationally demanding they are.

In Protocol 2, both Alice and Bob obtain the result. If we want only the
proxy to learn it, we propose the following variation of the last steps:
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Figure 3.3: Protocol 2.1 is based on the Paillier homomorphic cryptosystem. In
this case, the generation of the public key pair is left to Alice.

Protocol 2.1.

4. Bob generates a random plaintext sB, a random number r′, sends ω′ =
ωEncpk(−sB ; r′) to Alice and sends sB to CLARUS.

5. Alice sends sA = Decsk(ω′) = xTy − sB to CLARUS.

6. CLARUS computes sA + sB = xTy.

A sketch of Protocol 2.1 is given in Figure 3.3.
If it is possible for CLARUS to use an auxiliary cryptographic module, the

number of computations can be reduced, and the protocol can be simplified as
follows:

Protocol 2.2.

Set-up phase:

1. CLARUS generates a private and public key pair (sk, pk) and sends pk to
Alice and Bob.

Scalar product:
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2. Alice generates the ciphertexts ci = Encpk(xi; ri), where ri is a random
number belonging to FN , for every i = 1, . . . , n and sends them to Bob.

3. Bob computes ω =
∏n
i=1 c

yi
i and sends it to CLARUS.

4. CLARUS computes Decsk(ω) = xTy.

We have the following security result regarding the previous protocols.

Proposition 3 (Security). If Paillier’s cryptosystem is secure, then Proto-
cols 2.1 and 2.2 are secure, in the sense that Alice cannot learn y and Bob
cannot learn x.

Proof. It is proven in [35] that Protocol 2 is secure in the above sense if the
Paillier cryptosystem is secure (see [51] about the security of this cryptosystem).

Regarding Protocol 2.1, the only modification with respect to Protocol 2 is
that Alice and Bob do not share their results sA and sB , but they send these
values to CLARUS. Since neither Alice nor Bob have more information than in
Protocol 2, the security of Protocol 2 is preserved by Protocol 2.1.

Regarding Protocol 2.2, the only differences with Protocol 2 are that: Alice
neither generates the key pair in the set-up phase nor decrypts ω′ later; Bob
does not generate nor encrypt sB ; Alice and Bob do not share their results sA
and sB , but they send these values to CLARUS. Neither Alice nor Bob have
more information than in Protocol 2. Therefore, the security of Protocol 2 is
preserved by Protocol 2.2.

3.3.3 Finite field for the computations

Protocol 2 and its variants work in a finite field FN , i.e. given x = (x1, . . . , xn),
y = (y1, . . . , yn) two private n-vectors, we are computing xTy mod (N). If
we do not want the result to be modified by the modulus, it must hold that
N > xTy. Let Mx = maxxi∈x xi be the maximum value belonging to x,
My = maxyi∈y yi the maximum value belonging to y and M = max{Mx,My}.
It is sufficient to choose N > nMxMy. To chose such an N , we suggest that,
before the protocol, Bob send M ′y > My to Alice who chooses M ′x > Mx, and
then picks N > nM ′xM

′
y.

Alternatively, Alice can one-sidedly choose a very large N without Bob’s
input (a 1024-bit N is a common choice with Paillier’s cryptosystem). In Pro-
tocol 2.2 the public key generation and hence this one-sided choice would be
done by CLARUS.
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The choice of a very large N allows decreasing the computational cost of
the set-up phase of Protocols 2, 2.1 and 2.2 (reading the vectors is not neces-
sary anymore and so the set-up phase has O(1) cost). On the other hand, the
computational cost of the scalar product in all three protocols is considerably
increased, because a larger N means larger keys and ciphertexts, which make
cryptographic operations slower.

3.3.4 Example data analyses based on scalar products

In vertical splitting, analyses that involve only attributes in a single fragment are
really fast and easy to compute: the cloud storing the fragment can compute
and send the outputs of the analyses to the CLARUS proxy. Unfortunately,
many statistical analyses, such as regression, classification, principal component
analysis, etc., are likely to involve attributes stored in different fragments, and
thus communication between clouds.

The sample correlation matrix ζ̂ is fundamental for many statistical analyses.
Let X be the original data set with n rows (records) and m columns (attributes

X1, · · · ,Xm). The sample correlation matrix of X can be computed as ζ̂ = (ρ̂ij)
for 1 ≤ i, j ≤ m, where

ρ̂ij =
1

n

XT
i Xj − nµ̂iµ̂j

σ̂iσ̂j
(3.1)

with µ̂T = (µ̂1, . . . , µ̂m) being the vector of sample means and σ̂T = (σ̂1, . . . , σ̂m)
the vector of sample standard deviations of the attributes of X. Regarding the
scalar product XT

i Xj in the numerator of Equation (3.1), it can be viewed as a
component of the following matrix

XTX = (X1| · · · |Xm)
T

(X1| · · · |Xm)

=


XT

1 X1 XT
1 X2 · · · XT

1 Xm

XT
2 X1 XT

2 X2 · · · XT
2 Xm

...
...

. . .
...

XT
mX1 XT

mX2 · · · XT
mXm

 .

Each element of µ̂, σ̂ and each diagonal element XT
i Xi can be separately

computed by the respective cloud and sent to the CLARUS proxy, who calculates
ζ̂. Off-diagonal elements are also easy to compute if the involved attributes are
stored in the same cloud. The most challenging task is therefore calculating the
off-diagonal elements of XTX when the involved attributes are not in the same
cloud. Note that it is not expensive for CLARUS to subsequently reassemble
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and store XTX and to derive ζ̂ according to Equation (3.1): on the one hand,
if X has n records and m attributes with m � n, XTX is an m ×m matrix,
and thus it is very small compared to the size of X; on the other hand, the
required computations to obtain ζ̂ are simple operations between short vectors
(of m components) or numbers.

Computing XT
i Xj, for any Xi and Xj stored in different clouds, amounts to

performing a secure scalar product of two vectors each held by a different party
(where “secure” means without any party disclosing her vector to the other
party). Therefore, obtaining the sample correlation matrix in vertical splitting
among several clouds can be decomposed into several secure scalar products to
be conducted between pairs of clouds.

Furthermore, being able to securely compute scalar products permits ob-
taining, in addition to sample correlation matrices, contingency tables (that is,
cross-tabulations) in a very simple way. To help computing a cross-tabulation
cell between value x of attribute Xi and value x′ of attribute Xj, the cloud
holding Xi computes an auxiliary binary attribute as follows:

auxix =

{
1 for records with Xi = x;
0 for records with Xi 6= x;

similarly, the cloud holding Xj computes another auxiliary attribute:

auxjx′ =

{
1 for records with Xj = x′;
0 for records with Xj 6= x′.

Finally, to count the joint occurrences of Xi = x and Xj = x′, the clouds holding
Xi and Xj, respectively, engage in a secure scalar product protocol of their
attributes auxix and auxjx′ . Note that this procedure is directly applicable
to discrete numerical and categorical attributes, and can also be applied to
continuous numerical attributes if discretized as intervals.

3.4 Comparison among methods

We compare here the protocols described in the previous sections against bench-
mark solutions that consist of CLARUS downloading the data from the cloud
or clouds and computing locally.

Specifically, the protocols to compute scalar products over vertically split
data described in Section 3.3 are compared to the following benchmark protocol:

Protocol 3.
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1. Alice and Bob send x and y to CLARUS, respectively.

2. CLARUS locally computes xTy.

The case of CLARUS outsourcing encrypted data to a single CSP can also
be used as benchmark. The whole data set X (containing in particular vectors x
and y) is stored in a single cloud in an encrypted form. In this setting, CLARUS
first encrypts the data set, stores it in the cloud and, when it needs to compute
a scalar product, it downloads and decrypts the data set, as detailed in the
following protocol:

Protocol 4.

Set-up phase:

1. CLARUS encrypts the original data set E = Enc(X)

2. CLARUS sends E to a cloud Alice for remote storage, and deletes X from
local storage.

Matrix product computation:

3. CLARUS requests E from Alice, decrypts X = Dec(E) and performs the
computation (X)TX.

Encryption and decryption can be performed using a fast symmetric cryp-
tosystem, such as the Advanced Encryption Standard (AES), which takes time
linear in the number of records/vector components n, as well as ciphertexts
similar in size to the corresponding plaintexts.

We now evaluate the computational cost for Alice, Bob, CLARUS and the
total computation under each protocol. Moreover, operations that do not need
to be repeated each time the protocol is executed, specifically the generation of
cryptographic keys in Protocols 2.1 and 2.2, are separately counted as set-up
costs.

Considering that the clouds have unlimited storage, it is reasonable to as-
sume that they can store any random matrices or vectors that may need to be
reused. In contrast, we do not assume unlimited storage at CLARUS; therefore,
we assume the proxy just stores the random seeds and (re)generates random
matrices or vectors when needed. Also, the cost of a communication is associ-
ated both to the sender (who needs to send the data) and to the receiver (who
needs to read the data). We use a parameter γ to represent the maximum length
of the numbers in the vectors and matrices used in the protocols. For the case

44

UNIVERSITAT ROVIRA I VIRGILI 
OUTSOURCING COMPUTATION ON NON-ENCRYPTED SENSITIVE DATA TO UNTRUSTED CLOUDS 
Sara Ricci 
 



3.4. COMPARISON AMONG METHODS

Table 3.1: (Set-up computation and communication costs of Proto-
cols 1, 1.1, 1.2, 2.1, 2.2, 3 and 4): n is the length of the private vectors
x and y. γ represents the maximum length of the numbers in the vectors and
matrices used in the protocols. N is the size of the plaintext field used by
Paillier (see 3.3.3). The computation cost is presented in terms of the costliest
operations performed in each case. Protocols 2.1 and 2.2 have two different
computation costs depending on the choice of N (they are separated by “|” in
the table): if the smallest possible N is taken, then the private vectors need to
be read (see 3.3.3 for details). The communication cost is the exact amount of
data transmitted. The Paillier key generation cost is indicated with “PKgen”,
the AES keys generation with “RNDgen” and the AES encryption with “AES-
encr”. Note: in protocols not requiring the presence of Bob or Charlie, their
costs are indicated with “−”.

Set-up
Computation Communication

Alice Bob Charlie CLARUS Alice Bob Charlie CLARUS
Prot. 1 0 0 0 0 0 0 0 0

Prot. 1.1 0 0 0 0 0 0 0 0
Prot. 1.2 0 0 0 0 0 0 0 0
Prot. 2.1 n read + PKgen | PKgen n read|0 − 0 3 log2N 3 log2N − 0
Prot. 2.2 n read|0 n read|0 − PKgen 3 log2N 3 log2N − 6 log2N

Prot. 3 0 0 − 0 0 0 − 0

Prot. 4 0 − − n AESencr
2nγ − − 2nγ

+1 RNDgen

of Protocols 2.1 and 2.2, lengths are a function of the size N of the field used
by the Paillier cryptosystem (see Section 3.3.3): the public key is 3 log2N bits
long, the secret key is log2N bits long, ciphertexts are 2 log2N bits long and
plaintexts are log2N bits long. We consider that, whenever possible, the partic-
ipants send the seeds of random vectors and matrices, rather than the vectors
and matrices themselves. If communications are very fast and/or vectors are
very short, sending the vectors rather than the seeds might be preferable (see
related experimental results in Section 3.5).

3.4.1 Comparison for scalar products over split data

In this section, we compare the protocols based on data splitting (Protocols 1,
1.1, 1.2, 2.1 and 2.2) with the benchmark Protocols 3 and 4. We do not detail
the costs of Protocol 2, because they are mostly equivalent to those of the two
variants, Protocols 2.1 and 2.2.

Table 3.1 shows the set-up computation costs and set-up communication

45

UNIVERSITAT ROVIRA I VIRGILI 
OUTSOURCING COMPUTATION ON NON-ENCRYPTED SENSITIVE DATA TO UNTRUSTED CLOUDS 
Sara Ricci 
 



CHAPTER 3. SECURE SCALAR PRODUCT

costs incurred by all protocols. For the computation cost, just giving the order
of magnitude of the complexity is not accurate enough (e.g. n additions are
faster than n multiplications, even if we have O(n) computation in both cases);
therefore, we give the complexity in terms of the costliest operation performed
in each case. For instance, “read” means reading the vector, “AESencr” means
AES encryption of the vectors and “RNDgen” is one random number generation.
When the stored data are updated (that is, records are added, changed or
removed), the set-up phase (key generation) of Protocols 2.1 and 2.2 needs to
be repeated only if some of the new values are greater than the order N of
the finite field in use; otherwise, it is possible to reuse the same keys without
losing security. Protocol 4 requires downloading, decrypting, updating and re-
encrypting all the records.

If in Protocols 2.1 and 2.2 one wants to save storage by using the smallest
possible N that does not result in overflow, it takes 2n “read” effort (to check
all vector elements). If one just takes a large N , say a 1024-bit N , then the
key generation cost is constant. This is why the n reads have been marked as
optional in Table 3.1 (See 3.3.3 for details). At most, the key generation for
both Protocol 2.1 and Protocol 2.2 requires 3 random generations, 1 modular
multiplicative inversion and 1 least common multiple computation, which is
represented with ”PKgen” in the table. It is possible to use the same keys also
for different data sets belonging to the same field FN ; therefore, the update of
elements in the private vectors does not require generating new keys. Protocol 4
also requires a set-up phase, that is, the key generation for the AES cryptosystem
and the encryption of the private vectors. Compared to Protocols 2.1 and 2.2,
the set-up phase of Protocol 4 needs to be repeated every time that the private
vectors are changed.

Table 3.1 also shows the communication cost of the set-up phase. As said
above, the cost of communicating a number of bits is incurred by both the sender
(who must write them to the channel) and the receiver (who must read them
from the channel). Only Protocol 2.1, Protocol 2.2 and Protocol 4 involve a
set-up communication cost, due to the exchange of the public key for the two
former protocols and the transmittal of the encrypted private vectors for the
latter one.

Table 3.2 shows the long-term and temporary data storage costs (temporary
storage is the one needed only to conduct a certain calculation at some point).
In Protocol 1, Alice needs long-term storage for her data vector x and also for
the random vector rx, which is needed for potential reuse; similarly for Bob
regarding y and ry. In Protocols 1.1 and 1.2, the random vectors do not need
to be reused, so less long-term storage is needed by Alice and Bob; on the
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Table 3.2: (Long-term and temporary storage costs of Protocols 1,
1.1, 1.2, 2.1, 2.2, 3 and 4): n is the length of the private vectors x and y; γ
represents the maximum length of the numbers in the vectors and matrices used
in the protocols. N is the size of the plaintext field used by Paillier (see 3.3.3).
Note: in protocols not requiring the presence of Bob or Charlie, their costs are
indicated with “−”.

Storage

Long-term Temporary

Alice Bob Charlie CLARUS Alice Bob Charlie CLARUS

Prot. 1 (2n+ 1)γ (2n+ 1)γ 0 0 (2n+ 1)γ (2n+ 1)γ (2n+ 3)γ 4γ

Prot. 1.1 nγ nγ 0 0 (2n+ 1)γ (2n+ 1)γ (2n+ 1)γ 4γ

Prot. 1.2 (2n+ 1)γ (2n+ 1)γ 0 0 (4n+ 1)γ (4n+ 1)γ (2n+ 3)γ 4γ

Prot. 2.1
nγ+

nγ − 0
2γ+ 3γ+ − 3γ

4 log2N 2(n+ 1) log2N 2(n+ 2) log2N

Prot. 2.2
nγ nγ − 4 log2N

γ+
2(n+ 1) log2N − γ + 2 log2N

2(n+ 1) log2N

Prot. 3 nγ nγ − 0 0 0 − (2n+ 1)γ

Prot. 4 2nγ − − 0 0 − − (4n+ 1)γ

other hand, computing the random permutations in those protocols takes just
n random number generations and no auxiliary storage, by using Durstenfeld’s
algorithm [30]. Only the benchmark Protocols 3 and 4 require CLARUS to
(temporarily) store a large amount of data, namely the downloaded data, plus
the decrypted data if the downloaded data are encrypted.

Table 3.3 and Table 3.4 show the computational and communication costs,
respectively, incurred by the execution of the above mentioned protocols (after
set-up). Protocols 1, 1.1, 1.2 and 2.1 have all similar costs for CLARUS. Proto-
col 2.2 requires more computation and communication from CLARUS, but these
additional costs can be reduced if CLARUS has a cryptographic module. It is
worth noting that all protocols have constant computation, storage and com-
munication costs for CLARUS; hence, they clearly outperform the benchmark
Protocols 3 and 4, which require CLARUS to carry out computations, storage
and communications whose complexity increase linearly with the data set size n.

If we add the costs associated to all the involved parties, Protocol 1 is the
most efficient one, closely followed by Protocol 1.1 and Protocol 1.2 (note that
these three protocols do not require any set-up). If we focus on the cost/security
trade-off, Protocol 1.2 is probably the best choice.

47

UNIVERSITAT ROVIRA I VIRGILI 
OUTSOURCING COMPUTATION ON NON-ENCRYPTED SENSITIVE DATA TO UNTRUSTED CLOUDS 
Sara Ricci 
 



CHAPTER 3. SECURE SCALAR PRODUCT

Table 3.3: (Computation costs for Protocols 1, 1.1, 1.2, 2.1, 2.2, 3 and
4): n is the length of the private vectors x and y; Finally, Charlie only appears
in Protocols 1, 1.1 and 1.2, and Bob does not appear in Protocol 4; we indicate
the absence of a cloud with “−”. The computation cost is presented in terms
of the costliest operations performed in each case.

Computational cost

Alice Bob CLARUS Charlie

Prot. 1 n prod. + n RNDgen. n prod. + n RNDgen. 2 sum. n prod. + 2n RNDgen.

Prot. 1.1 n prod. + n RNDgen. n prod. + n RNDgen. 2 sum. n prod.

Prot. 1.2 n prod. + n RNDgen. n prod. + n RNDgen. 2 sum. n prod.

Prot. 2.1
n RNDgen. + n encr. n prod. + 2 RNDgen

1 sum. −
+1 decr. +1 encr.

Prot. 2.2 n RNDgen. + n encr. n prod. 1 decr. −

Prot. 3 0 0 n prod. −

Prot. 4 0 − n prod. + −
n AESdecr.

3.5 Experimental results

This section details the experimental results obtained by implementing the pro-
posed protocols in Java in a multi-cloud scenario. Since Protocols 1 and 2 had
security and functionality issues that motivated Protocols 1.1, 1.2, 2.1, and 2.2,
we focused on implementing the latter protocols.

The reported experiments were conducted using the first two attributes of
the California housing data set (CADATA, [10]), a usual test data set in the
statistical disclosure control literature that contains 9 numerical attributes and
20, 640 records. Let x and y represent the two selected attributes of CADATA,
and X be the matrix containing x and y.

First, we ran the tests on Amazon Web Services (AWS), a public CSP that
offers 12 months free tier. The tests were performed on a t2.micro Amazon
EC2 instance for each cloud. Since the computing power and main storage were
substantially capped in this free-of-charge service, and communication with it
was slow, we took it as representing the low-end scenario a user can expect from a
CSP. Second, we also used a local server (CERSEI) offering more computational
power and main storage, as well as faster communication, in order to mimic the
service that can be expected from a for-payment CSP. In both cases, we used
another local computer to run CLARUS on it, that worked as the proxy located
in a trusted domain. Table 3.5 summarizes the specifications of CLARUS,
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Table 3.4: (Communication costs for Protocols 1, 1.1, 1.2, 2.1, 2.2, 3
and 4): n is the length of the private vectors x and y; γ represents the maximum
length of the numbers in the vectors and matrices used in the protocols. Finally,
Charlie only appears in Protocols 1, 1.1 and 1.2, and Bob does not appear in
Protocol 4; we indicate the absence of a cloud with “−”. The communication
cost is the exact amount of data transmitted. In Protocol 1 we have considered
the most usual case in which there is no reuse; for each reused private vector,
nγ communication cost is shifted from Charlie to the reusing cloud, and the
computational cost for Charlie decreases by n RNDgen.

Communication cost
Who

needs a

Alice Bob CLARUS Charlie
crypt.

module

Prot. 1 (2n+ 2)γ (2n+ 2)γ 3γ 3γ none

Prot. 1.1 (3n+ 1)γ (3n+ 1)γ 3γ (2n+ 1)γ none

Prot. 1.2 (3n+ 2)γ (3n+ 2)γ 3γ (2n+ 3)γ none

Prot. 2.1 2(n+ 1) log2N + γ 2(n+ 1) log2N + γ 2γ − Alice

Prot. 2.2 2n log2N (2(n+ 1) log2N 2 log2N − CLARUS

Prot. 3 nγ nγ 2nγ − none

Prot. 4 2nγ − 2nγ − CLARUS

Table 3.5: (Computational specifications of CLARUS and CSPs ) CLA-
RUS, the trusted proxy, was run on a local computer. CERSEI is a local server
mimicking a for-payment CSP. AWS represents a free-of-charge t2.micro Ama-
zon EC2 instance.

Machine Operating System Width(bits) CPU(GHz) RAM(GB) HDD(GB)

CLARUS Windows 7 64 2.5 8 500

CERSEI Ubuntu 14.4 LTS 64 3.4 16 500

AWS Ubuntu Server 16.04 LTS 64 2.4 1 30

CERSEI and the AWS instance.

The computational cost was measured as the time in seconds that each
machine spent to perform the computations specified by the protocols. The
communication cost was measured as an approximation of the time each cloud
spent at sending data (writing to the channel) or receiving data (reading from
the channel). As explained in Section 3.4, we consider in general that the
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participants send the seeds of random vectors and matrices, rather than the
vectors and matrices themselves. The reason is that generating a random vector
takes normally less time than sending it. However, the communication time
depends on many factors (user internet connection, distance between users,
network load, etc.). In our experimental setting, we compared the times for
generating and sending vectors of several sizes n; the results are reported in
Table 3.6, where it can be seen that sending a random vector takes longer than
generating it at the recipient for sizes n > 104.

3.5.1 Experimental results for scalar products over split
data

In this section, we detail storage, computation and communication costs of Pro-
tocols 1.1, 1.2 and 2.1 (based on data splitting) and the benchmark Protocols 3
and 4. We do not detail the costs of Protocol 2.2, because they are basically
equivalent to those of Protocol 2.1.

Table 3.7 shows the comparison of long-term and temporary storage mea-
sured in bytes. The storage does not depend on the particular CSP used. Long-
term storage turns out to be similar in all protocols for all players involved; the
only remarkable difference occurs in Protocol 4, where CLARUS must keep the
AES keys (whereas it keeps nothing in the other protocols). Temporary storage
is of the same order of magnitude for Protocols 1.1, 1.2 and 2.1 and really small
for CLARUS; instead, the benchmark Protocols 3 and 4 require large temporary
storage on the CLARUS side.

Table 3.8 shows the computation and communication costs incurred by the
execution of the above mentioned protocols. Communication takes substantial
time both at the sender and at the receiver: obviously, the receiver cannot
process the data until he receives them, and the sender needs to wait for the

Table 3.6: (Time to send a random vector vs time to generate it at the
recipient): n is the number of elements of a random vector x and the times
are given in seconds. Sending is faster only for short vectors.

PPPPPPPPTime (s)
n

103 104 105 106

to generate x 2.08× 10−3 4.6× 10−3 8.4× 10−3 2.07× 10−2

to send x 2.8× 10−4 3.5× 10−3 1.9× 10−2 1.19× 10−1
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Table 3.7: (Long-term and temporary storage costs of Protocols 1.1,
1.2, 2.1, 3 and 4): Private vectors x and y have length n = 20, 640. The
representation of the numbers takes γ = 8 bytes. Elements in the field FN used
by the Paillier cryptosystem have 65 bytes. We indicate the absence of a cloud
with “−”. The values are given in bytes.

Storage (B)

Long-term Temporary

Alice Bob Charlie CLARUS Alice Bob Charlie CLARUS

Prot. 1.1 1.7× 105 1.7× 105 0 0 3.3× 105 3.3× 105 3.3× 105 32

Prot. 1.2 3.3× 105 3.3× 105 0 0 6.6× 105 6.6× 105 3.3× 105 32

Prot. 2.1 1.7× 105 1.7× 105 − 0 2.5× 105 2.5× 105 − 24

Prot. 3 1.7× 105 1.7× 105 − 0 0 0 − 3.3× 105

Prot. 4 3.3× 105 − − 0 0 − − 6.6× 105

receiver’s acknowledgment of receipt before carrying on. The communication
between AWS and CLARUS is slow, in part because the Amazon services are
geographically distant and in part because we used a free-of-charge instance.
Note that, although CLARUS receives only scalars in Protocols 1.1, 1.2 and 2.1,
its communication cost is greater than for Alice, who sends and receives vectors.
The explanation is that: i) reading/sending between the CSPs (Alice and Bob) is
faster than between the CSPs and CLARUS (because Alice and Bob are located
in the same cloud system, AWS in one case or CERSEI in the other case); ii) in
the CLARUS-CSP communication the time to send a scalar is dominated by the
time to establish the channel. Protocols 1.1, 1.2 and 2.1 have all similar costs
for CLARUS. In Protocol 2.1, the computational and communication costs for
Alice and Bob are greater than in Protocols 1.1 and 1.2, because in the former
protocol computations are performed over a field FN , where N is big and the
representation of numbers takes 65 bytes instead of 8.

If we aggregate costs for all parties involved, Protocol 1.1 is the most efficient
one, closely followed by Protocol 1.2 (note that these two protocols do not
require any set-up). These results are consistent with the analytical comparison
in Section 3.4.1.

3.6 Summary

We have presented several protocols (two of them new variants of already ex-
istent protocols, two of them new, and two benchmark protocols) for outsourc-
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Table 3.8: (Execution costs for Protocols 1.1, 1.2, 2.1, 3 and 4): Private
vectors x and y have length n = 20, 640. The representation of the numbers
takes γ = 8 bytes. Elements in the field FN used by the Paillier cryptosystem
have 65 bytes. We indicate the absence of a cloud with ”−”. Times are given
in seconds.

AWS
Computational cost (s.) Communication cost (s.)

Alice Bob CLARUS Charlie Alice Bob CLARUS Charlie

Prot. 1.1 8.3× 10−3 8.5× 10−3 3.3× 10−5 1.4× 10−3 0.05 0.05 0.40 0.06

Prot. 1.2 1.7× 10−2 1.6× 10−2 4.1× 10−5 1.4× 10−3 0.06 0.06 0.40 0.06

Prot. 2.1 34.1 121.6 9.1× 10−5 − 0.15 0.31 0.40 −

Prot. 3 0 0 1.5× 10−3 − 0.1 0.1 0.65 −
Prot. 4 0 − 0.8 − 2.2 − 2.62 −

CERSEI
Computational cost (s.) Communication cost(s.)

Alice Bob CLARUS Charlie Alice Bob CLARUS Charlie

Prot. 1.1 8.1× 10−3 7.8× 10−3 3.1× 10−5 1.4× 10−3 0.04 0.04 0.20 0.04

Prot. 1.2 5.7× 10−3 5.8× 10−3 3.7× 10−5 1.4× 10−3 0.04 0.04 0.20 0.04

Prot. 2.1 29.3 120.9 8.4× 10−5 − 0.07 0.08 0.20 −

Prot. 3 0 0 1.9× 10−3 − 0.02 0.01 0.23 −
Prot. 4 0 − 0.7 − 0.3 − 0.45 −

ing the computation of scalar products on sensitive numerical data vectors to
honest-but-curious non-sharing clouds. Based on this operation, more complex
data analyses can be performed, such as correlations and contingency tables.
The goal is to minimize the amount of work that needs to be performed locally
by the controller, who wants to use the cloud as much as possible to compute
on her outsourced sensitive data. For the sake of flexibility and efficiency, we
have considered a non-cryptographic method for data protection, such as data
splitting, rather than the heavier fully homomorphic encryption (e.g. [34]). A
distinguishing feature of our approach is that the outsourced data on which the
clouds compute fully retain the utility of the original data, which entails added
value with respect to outsourcing encrypted or otherwise gibberish data.

If clouds can be assumed not to share information (perhaps because they
do not know each other), data splitting is probably the best choice, due to
simplicity and flexibility. We have proposed four protocols to compute on split
data.

We have provided complexity analyses and benchmarking for all proposed
protocols, in order to show their computational advantages for the outsourcing
controller. Further, we have provided experimental evidence that the new pro-

52

UNIVERSITAT ROVIRA I VIRGILI 
OUTSOURCING COMPUTATION ON NON-ENCRYPTED SENSITIVE DATA TO UNTRUSTED CLOUDS 
Sara Ricci 
 



3.6. SUMMARY

tocols take less effort from CLARUS than the benchmark protocols consisting
of downloading and locally processing.

In this way, clouds are not only used to store sensitive data, but also to per-
form computations on these data in a privacy-aware manner. This is especially
interesting for large sensitive data sets.
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Chapter 4

Secure Matrix Product in
Untrusted Clouds

4.1 Introduction

As shown in the previous chapter, outsourcing split data to one or more honest-
but-curious CSPs can take advantage of the cloud to do most of the compu-
tations while preserving the privacy of the subjects to whom their data refer.
In fact, such outsourcing brings several benefits like elimination of infrastruc-
ture costs (no software/hardware investments needed), flexibility (storage and
computing power can scale depending on business growth) and energy saving.

Security is attained by splitting the data among several CSPs and, then, us-
ing secure protocols to process them. In data splitting, the most challenging step
is to efficiently compute on the fragmented data when the computations involve
more than one fragment. Chapter 3 shows how to carry out secure scalar prod-
ucts involving two fragments, which is one of the most challenging operations
among fragments and which allows performing several statistical analyses (e.g.
covariance matrix and contingency table). The security of those scalar products
holds on the fact that the CSPs honestly fill their role in the protocols, and they
do not share information with each other (perhaps because they do not even
know each other). What happens if there are collusions among CSPs and/or
CSPs own some external information on those data? For instance, if only one
CSP with several accounts is used to store the data, it may happen that the
CSP recognizes that two or more of those accounts belong to the same entity.
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In this scenario, the CSP may try to pool together the data fragments it hold.
Moreover, if the CSP has side knowledge on the outsourced data, it can try to
re-identify the subjects to whom those data refer.

Existing literature proceeds by outsourcing encrypted data [46, 50, 67]. This
comes at the price of using complex cryptographic schemes. In all those schemes
the servers only see encrypted versions or shares of the actual data: the client
must create these encrypted versions for each protocol execution and decrypt
the final result.

In our solutions, the privacy-protected sensitive data stored in the clouds are
not encrypted and preserve some of the utility (that is, some statistical features)
of the original data. This allows us to make the most of the outsourced data,
while ensuring that no original records can be re-created from the outsourced
records. The outsourced data can be used for purposes other than computing
scalar products or matrix products. This is a relevant difference with respect
to related work on the outsourcing of algebraic computations (see Section 4.2
for more details). Specifically, the outsourced data preserve the mean and the
standard deviation of attributes for the entire data set and even in subsets of it.

Following the architecture defined in the “CLARUS” European H2020 project
[17] (within which this work has been carried out), we will assume a proxy
located in a domain trusted by the data controller (e.g., a server in her com-
pany’s intranet or a plug-in in her device) that implements security and privacy-
enabling features towards the cloud service providers (see Section 2.2 for more
details). We will call this trusted proxy CLARUS.

Contributions

In Chapter 3, we explore two new non-cryptographic protocols for the scalar
product on split data and we also consider cryptographic protocols to compute
on split data when the CSPs are honest-but-curious and they do not collude.

Here, we start from the conclusions of the previous chapter and break new
ground by relaxing the non-sharing assumption. We present two non-cryptographic
protocols that are sharing-resistant, even though they require substantial cloud
storage (because they rely on data replication rather than splitting). The re-
laxation of the non-sharing assumption also requires adding privacy-preserving
techniques such as data anonymization and data replication. Moreover, the
procotols end up being more suitable for matrix products rather than for scalar
products. In fact, some data anonymization methods require us to work on the
entire data set.

The contributions in this chapter have been published in [21].
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4.2. RELATED WORK

This chapter is organized as follows: Section 4.2 depicts the related work
on outsourcing matrix and polynomial computations, and points out how our
contributions differ from previous works. Section 4.3 presents a new protocol
that can resist information sharing between CSPs but assumes the CSPs have
no side knowledge about the original data set. Section 4.4 proposes another
sharing-resistant protocol to compute the matrix product XTX that stays safe
even if CSPs have information on the data set X but involves heavier computa-
tions. In Section 4.5, the computation and communication costs of all protocols
described in Sections 4.3 and 4.4 are assessed and compared against a bench-
mark protocol consisting of the CLARUS proxy downloading the entire data
set and locally computing on the downloaded data set. Section 4.6 presents
the experimental results obtained by implementing the proposed protocols in a
multi-cloud scenario. Finally, Section 4.7 lists some conclusions.

4.2 Related work

There is a substantial amount of literature devoted to outsourcing matrix and
polynomial computations. We next review it and then highlight the differences
with our approach.

In [5], a client securely outsources algebraic computations to one or several
remote servers, in such a way that the server learns nothing about the client’s
private input or the result of the computation, and any attempted corruption
of the answer by the server is detected with high probability. This scheme is
based on multiparty secure computation via secret sharing. In [46], a client
outsources a matrix inversion to an untrusted cloud, so that the cloud does not
learn either the original or the inverted matrices. Furthermore, the protocol
is resistant against a cheating cloud. In [47], the authors present a protocol
to outsource multiplication of large matrices that can detect cheating by the
server. The more recent contribution [67] follows the same line (outsourcing
polynomials and matrix computations), but it focuses on public verifiability
of the computation (any third party can verify its correctness, not only the
client as in the previous proposals). This comes at the price of using more
complex cryptographic schemes. In all the schemes reviewed in this paragraph,
the server(s) only see(s) encrypted versions or shares of the actual data: the
client must create these encrypted versions for each protocol execution and
decrypt the final result.

Outsourcing matrix computations where the server computes on additively
split matrices rather than encrypted matrices is considered in [50]. Even though
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no encryption is used, the split versions of the matrics seen by the server do not
preserve any of the statistical features of the original data (they look gibberish),
so that no direct exploratory analyses can be performed on them.

A substantial difference between our proposals in this paper and the previ-
ous literature is that we assume that the cloud(s) compute on data that have
been previously outsourced and privacy-protected not only to compute scalar
products or matrix products on them. Specifically, the outsourced data preserve
some of the utility of the original data, as explained in Section 4.1 above.

A second difference is that, as mentioned at the end of Section 2.2, in the
CLARUS setting we can assume that CSPs are not malicious: hence, we do not
need all the cryptographic apparatus of the above cryptographic proposals to
detect cheating.

4.3 A sharing-resistant protocol in case of clouds
without side knowledge

If the non-sharing assumption between clouds does not hold (see Section 2.2),
then vertical partitioning alone cannot guarantee the privacy of the stored sen-
sitive data. Here we show how the owner of a sensitive data set (represented
by the CLARUS proxy in our case) can still use the computing power of several
honest-but-curious, potentially sharing clouds to compute the matrix product
XTX of her original data set X (which contains the scalar products of the
columns of X). With the new protocol we propose, no information sharing be-
tween the clouds can determine the original data set or its matrix product. The
latter is only seen by the owner CLARUS. We assume here that the CSPs do
not have any side knowledge about the original data set (such as its statistical
structure).

Let X be an n×m matrix representing an original data set with n records
and m attributes, where n � m. In this case we are interested in computing
the matrix product XTX. The protocol is depicted in Figure 4.1 and it runs in
two phases: set-up and matrix product computation. The set-up phase needs
to be run only once. The steps of the protocol are detailed next.

Protocol 1.
Set-up phase (data storage):

1. CLARUS (the owner of X) does:

(a) Choose a random invertible m×m matrix P.
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CLARUS

User

Y=X+E j

C0

C1

C j

Ct+1

...

...
E1

E j

E t

XT X

Figure 4.1: CSPs that share information but do not have side knowledge on
the original data set. Despite sharing, the lack of knowledge of the CSPs on X
prevents them from discovering with certainty which error matrix they ought
to subtract from Y to get X.

(b) Send X′ = XP to t clouds C1, . . . , Ct.

(c) Delete X′ and P.

2. For i = 1 to t, each cloud Ci does:

(a) Compute a random n×m matrix Ei such that it is orthogonal to X′,
that is, such that

(X′)TEi = (Ei)
TX′ = 0.

and send Ei to CLARUS.

(b) Compute (Ei)
TEi and send it to CLARUS.

3. CLARUS does:

(a) Randomly select j ∈R {1, . . . , t}.
(b) Read Ej and (Ej)

TEj, and discard all communications from clouds
other than Cj.

(c) Compute Y = X + Ej.
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(d) Store Y at cloud C0.

(e) Delete X,Ej and Y.

Matrix product computation:

1. Cloud C0 computes (Y)TY and returns it to CLARUS.

2. CLARUS just subtracts

YTY − (Ej)
TEj = XTX. (4.1)

We have the following correctness and security results.

Proposition 4 (Correctness). Protocol 1 is correct.

Proof. If P is not invertible, then there exists at least one vector b in Ker(X′)
such that X′b = 0 (but it is not necessary that Xb 6= 0). We can always
take P invertible without losing security (see Section 4.3.5). The correctness of
Equation (4.1) follows from

(Y)TY = (X)TX + (Ej)
TEj + (X)TEj + (Ej)

TX

= (X)TX + (Ej)
TEj,

where in the last step we use orthogonality between Ej and X, which in turn
follows from orthogonality between Ej and X′.

In Section 4.3.2, we discuss how to create Ej so that X′ preserves the means
and the variance of X.

Proposition 5 (Security). If the CSPs are honest-but-curious and share infor-
mation, but have no side knowledge on X, Protocol 1 is secure in the sense that
their probability of guessing the correct X and XTX is at most 1/t.

Proof. Let us examine what the clouds receive. During the matrix product
computation, none of the clouds receives any further information. They only
receive information during the set-up.

In Step 1 of the set-up, clouds C1, . . . , Ct receive matrix X′, which is the
original data set multiplied by a random matrix generated by CLARUS; hence
X′ leaks no information on X to the clouds.

In Step 3 of the set-up, cloud C0 receives Y, which is the original data set plus
a random matrix Ej generated by one of the clouds. However, the sharing clouds
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cannot find out which of the noise matrices E1, . . . ,Et they have generated is
the one that has been used to obtain Y. The clouds could try an exhaustive
method: subtract all the possible Ei from Y, i.e. Si = Y −Ei, for i = 1, . . . , t.
Note that, since all Ei are random (we assume the clouds honestly follow the
protocol), all t matrices Si are different with overwhelming probability. But the
clouds have no way to guess which Si equals the original data set X, because by
assumption they neither know X nor have any side information on X. Hence,
even by sharing information, the clouds have no better strategy than randomly
picking one of S1, . . . , St; the probability that they hit the correct X is 1/t.

On the other hand, to obtain XTX, Alice also needs to guess the correct Ej

in Equation (4.1), which happens with probability 1/t.

4.3.1 Computing the attribute means and standard devi-
ations

In addition to leveraging the clouds to compute XTX, CLARUS can use them
to compute the attribute means and standard deviations. Note that, according
to Equation (3.1), the vector of means and the vector of standard deviations are
needed to compute the sample correlation matrix of the data set. The following
additions need to be done to Protocol 1 to compute the means:

• In Step 2b of Protocol 1 (set-up phase), each cloud Ci computes the vector
of sums of the columns of Ei, say sTi = (si1, . . . , sim) and the vector of
the squared sums of the columns of Ei, that is, ssTi = ((si1)2, . . . , (sim)2);
then Ci sends sTi and ssTi along with Ei and (Ei)

TEi to CLARUS.

• In Step 1 of Protocol 1 (matrix product computation), C0 computes the
vector of sums of the columns of Y, say sTY = (sY1, . . . , sYm), and the vec-
tor of squared sums of the columns of Y, that is, ssTY = ((sY1)2, . . . , (sYm)2)
and returns both vectors to CLARUS along with (Y)TY.

• In Step 2 of Protocol 1 (matrix product computation), CLARUS computes
the vector of sample means of X, say (µ̂X)T = (µ̂X1, . . . , µ̂Xm) from the
partial results obtained from the clouds as

µ̂X =
sTY − sTj

n
.

Additionally, CLARUS computes ssTX = ((sX1)2, . . . , (sXm)2) from the
partial results obtained from the clouds as

ssTX = ssTY − 2(sj1sY1, . . . , sjmsYm) + ssTj .
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Finally, CLARUS computes the vector of standard deviations of X as

σ̂TX =

(√
(sX1)2

n
− (µX1)2, . . . ,

√
(sXm)2

n
− (µXm)2

)
.

The additional computations to be performed by CLARUS may seem substan-
tial, but they are only O(m) and, since m � n, they are much less than the
additional O(mn) computations performed by the clouds. On the other hand,
the correctness of those additional computations follows from direct algebraic
verification.

Security The security of the extended version of Protocol 1 to compute the
attribute means and standard deviations is the same as the security of the basic
Protocol 1. Clearly, the proof of Proposition 5 also holds for the extended
version of Protocol 1, because the computations and communications added
in the extended version do not result in the clouds receiving any additional
information (all additional communications are directed to CLARUS).

4.3.2 Preserving the attribute means in the masked data
set

It may be desirable to preserve the means of attributes of X in the data set Y
stored in the cloud. To that end, matrices Ei, i = 1, . . . , t must be such that
each of their columns adds to 0. We show how to obtain such matrices Ei.

Given a random n×m matrix Bi such that (X′)TBi = (Bi)
TX′ = 0, take

any two of the m column vectors of Bi, say bj and bk, such that their respective
components do not add to zero. This may be infeasible in two cases:

• If all columns of Bi have their respective components adding to 0, then
we can take Ei = Bi and stop.

• If all columns of Bi except one have their components adding to 0, then
we have a problem and we must choose a new random matrix Bi.

Divide all components of bj by the sum of the components, in order to obtain

a vector b̂j such that its components add to 1; do the same to bk and get

b̂k. By construction, it holds that (X′)Tb̂j = 0, (b̂j)
TX′ = 0T, (X′)Tb̂k = 0,

(b̂k)TX′ = 0T. Then build

Ei = Bi − s1M1 − . . .− smMm, (4.2)
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where Ml for l 6= j is a matrix having all columns equal to 0 except the l-th
column which is equal to b̂j , Mj is a matrix having all columns equal to 0

except the j-th column which is equal to b̂k, and, for l = 1, . . . ,m, sl is the
sum of the l-th column of Bi. Clearly, each column of Ei adds to 0 and, by
construction, (X′)TEi = (Ei)

TX′ = 0.

Security The error matrices obtained with Equation (4.2) are still random
and can be different from each other. On the other hand, these additional com-
putations are done separately by each cloud. Thus, they do not require exchange
of information and hence do not affect the security of the basic protocol, stated
in Proposition 5.

4.3.3 Preserving means and correlations in subdomains

One may wish to enable the computation of sample correlations in the cloud for
subdomains of X. Also, one may wish to preserve the means of attributes for
records in the subdomain. For example, consider a medical data set, in which
we define the following 20 subdomains: women aged 0 to 9, women aged 10 to
19, . . ., women aged 90+, men aged 0 to 9, men aged 10 to 19, . . ., men aged
90+.

In the example, one can split X into 20 data subsets X(1), . . ., X(20). Then
Protocol 1 (set-up phase) with the improvements described in Sections 4.3.1
and 4.3.2 is separately run for each X(i). It holds that the corresponding Y(i)
preserves attribute means and Protocol 1 (matrix product computation) can be
used to compute correlations within each X(i).

The price paid for considering subdomains is that it may no longer hold
that ni � m, where ni is the number of records of X(i). This reduces the
computational gain of using Protocol 1 and also the privacy of the X(i), because
the number of degrees of freedom is reduced. However, as long as all ni are
substantially larger than m, considering subdomains is acceptable.

Security We merely subdivide the problem into disjoint subproblems. In each
subproblem, security is guaranteed as for Proposition 5.

4.3.4 Using a single cloud

If one assumes all clouds may share information, then from the security point
of view the situation is equivalent to using a single cloud. We could then take
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C0 = C1 = · · · = Ct in Protocol 1. While security is not affected, there are
performance pros and cons in using a single cloud:

• Pros. Using a single cloud is simpler and CLARUS saves communication
at Step 1b, because X′ only needs to be sent to one cloud. Also, one can
modify the protocol at Step 1 for the cloud to compute YTY−(Ei)

TEi for
i = 1, . . . , t, so that at Step 2, CLARUS only needs to pick YTY−(Ej)

TEj

as XTX without doing any computation. A similar modification could be
done to the additional computations described in Section 4.3.1: the cloud
could be asked to provide all candidate vectors of means and standard
deviations under the t different error matrices, so that the only job left to
CLARUS would be to pick the right vectors.

• Cons. When all the work needs to be done by a single cloud, the overall
computation is likely to take longer (except if the cloud has a great com-
putational power and/or is very efficient at parallelizing). Also, CLARUS
can no longer discard any communication (as it did in Step 3b when com-
munication coming from clouds other than Cj was discarded). Further, if
we require the cloud to provide all YTY − (Ei)

TEi for i = 1, . . . , t, plus
all candidate vectors of means and standard deviations under all error
matrices, communication increases even more.

So, all in all, there is no clear advantage in using a single cloud: while CLARUS
saves computation, it incurs more communication costs.

4.3.5 Computation of the invertible matrix P

The probability of obtaining an invertible matrix P (needed in the set-up phase
of Protocol 1) if we randomly choose its elements depends on the cardinality of
the field we are working in.

Lemma 1. Let K be a field where the elements of a random m×m matrix P
are chosen. If |K| = N , then

Pr(P is invertible) > 1− 1

N − 1
+

1

(N − 1)Nm
. (4.3)

Proof. P has m column vectors v1, . . . ,vm. In order for P to be invertible,
they must be linearly independent. We have:

• Pr(v1 is the null vector) = 1
Nm ;
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• Pr(v2 is linear combination of v1) ≤ N
Nm ;

• Pr(v3 is linear combination of v1,v2) ≤ N2

Nm ;

• . . .

• Pr(vt is linear combination of v1, . . . ,vm−1) ≤ Nm−1

Nm .

Hence, Pr(P is not invertible) ≤
∑m−1
i=0

Ni

Nm = Nm−1
(N−1)Nm and then

Pr(P is invertible) > 1− Nm − 1

(N − 1)Nm
= 1− 1

N − 1
+

1

(N − 1)Nm
.

We suggest to obtain P by randomly picking an m×m matrix over K and
trying to invert it. This will work with probability lower-bounded by Equation
(4.3). As N grows, the lower bound approaches 1, so if we take a sufficiently
large K, a single attempt is very likely to suffice to find P . If the first attempt
fails, one can always try again.

4.3.6 Orthogonal complement of a matrix

In Protocol 1 (set-up phase), each cloud Ci needs to find an n ×m matrix Ei

orthogonal to X ′. Following [45], we suggest to find Ort(X ′) by using the QR-
decomposition of X ′, where Q is an (n × n) orthonormal matrix and R is an
n×m upper-triangular matrix. If we split Q = [Q1,Q2], where Q1 is (n×m)
and Q2 is composed of n−m orthogonal vectors to X ′, it is possible to select
m columns out of Q2 to generate Ei. Note that n � m, so m columns can
be selected out of n −m and each cloud is likely to select a different set of m
columns.

If n−m > m, but it does not hold that n� m, then m random linear com-
binations of the columns of Q2 are preferable to using the columns themselves:
since Protocol 1 (set-up phase) will be used by all the clouds C1, C2, . . . , Ct, we
want to avoid the possibility that different clouds obtain the same Ei.

4.4 A sharing-resistant protocol robust against
cloud side knowledge

In Protocol 1, if clouds have side knowledge on the statistical structure of X
(for example, correlations between attributes, etc.), they can discard most of
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CLARUS

User

Y=X+E j

XT X

Alice

E1,… , Et

Figure 4.2: CSPs that share information and have side knowledge about the
original data set are treated as if there was a single CSP. An anonymized version
Y = X+Ej of the original data set X is stored in the cloud, together with several
plausible error matrices E1, . . . ,Et under the side information on X known to
the CSP. The CSP does not know which error matrix should be subtracted from
Y to recover X.

the “false” error matrices and focus on the (possibly unique) error matrix Ej

such that Y − Ej matches their side knowledge on X. This would allow them
to recover X. We propose an alternative solution that addresses this issue but
requires more set-up computation from CLARUS.

By the argument given in Section 4.3.4, a set of clouds sharing information
is equivalent to a single cloud from a security point of view. Whereas Protocol 1
could work the same way with one or several clouds, in this section we present
a new protocol designed for a single cloud. The proposed protocol is depicted
in Figure 4.2 and its steps are detailed next.

Protocol 2.
Set-up phase (data storage):

CLARUS does:

1. Anonymize the whole data set X using a randomized statistical disclosure
control method to obtain a safe matrix Y and send Y to cloud Alice.
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2. Randomly select j ∈R {1, . . . , t}.

3. Let Ej = Y −X and let E1, . . . ,Ej−1,Ej+1, . . . ,Et be fake but plausible
error matrices (in the sense that all Y − Ei are plausible with the side
information on X known to the clouds, for i = 1, . . . , t).

4. Send E1, . . . ,Et to Alice.

5. Delete X, Y and E1, . . . ,Et.

Matrix product computation:

1. Alice computes YTY.

2. For i = 1, . . . , t, Alice computes:

(Y −Ei)
T(Y −Ei) = YTY + (Ei)

TEi −YTEi − (Ei)
TY. (4.4)

3. For i = 1, . . . , t, Alice sends (Y −Ei)
T(Y −Ei) to CLARUS.

4. CLARUS picks (Y −Ej)
T(Y −Ej) as XTX.

Note that, to compute the products in Step 2, the cloud needs to know
Y and all error matrices. This is why this protocol only works for a single
cloud (or for clouds that share all information). The randomized statistical
disclosure control (SDC) methods usable to obtain Y from X should be such
that the matrix Y −X looks random. Possible options include additive noise,
multiplicative noise, synthetic data, etc. (see [40] for more details).

A key issue to Protocol 2 is how to obtain fake plausible error matrices
E1, . . . ,Ej−1,Ej+1, . . . ,Et. We propose to generate these fake error matrices
as anonymized versions of the true Ej. As above, the anonymization method
should be such that the difference matrix between Ej and any anonymized
version of it looks random. However, even if random-looking, the differences
between Ej and its anonymized versions should be relatively small, so that the
following two conditions are satisfied:

1. All the Ei’s are similar enough to yield data sets Y − Ei plausible under
the side knowledge on X held by the clouds;

2. The matrices Y −Ei for i 6= j are not too similar to Y −Ej = X.
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Introducing random perturbations that achieve a good trade-off between pro-
tection and preservation of the structure of data is precisely the purpose of
the aforementioned SDC methods. Note that, whereas when anonymizing X
into Y the only purpose was protection (and perturbations could be large),
when anonymizing Ej into E1, . . . ,Ej−1, Ej+1, . . . ,Et, parameters for the SDC
methods yielding smaller perturbations must be chosen to attain the previously
mentioned protection/preservation trade-off. We can now state the following
security result:

Proposition 6 (Security). If Y −X looks random, all Y −Ei for i = 1, . . . , t
are plausible under the CSP’s side knowledge on X, and Y−Ei for i = 1, . . . , t,
i 6= j are not too similar to Y −Ej = X, then Protocol 2 is secure in the sense
that the probability of the CSP guessing the correct X and XTX is at most 1/t.

Proof. Let us examine what the cloud Alice receives. During the matrix product
computation, Alice receives no further information. She only receives informa-
tion during the set-up.

In Step 1 of the set-up, Alice receives an anonymized version Y of the original
data set X. By assumption, Y −X looks random, so Y does not leak X.

Finally, in Step 4 of the set-up, Alice receives error matrices E1, . . . ,Et.
By assumption, Alice’s side knowledge does not allow her to single out Y −Ej

(which is equal to X) from Y −Ei for i = 1, . . . , t. On the other hand, also by
assumption, Y −Ei for i = 1, . . . , t, i 6= j are not too similar to Y −Ej.

Hence, Alice has no better strategy than randomly picking one of Y − Ei

for i = 1, . . . , t as X; her probability of hitting the correct X is 1/t.
On the other hand, to obtain XTX, Alice also needs to guess the correct Ej,

which happens with probability 1/t.

4.4.1 Computing the attribute means and standard devi-
ations

If attribute means and standard deviations are to be computed (for example, for
CLARUS to obtain the sample correlation matrix of the data set), then some
computations need to be added to Protocol 2:

• In Step 2 of Protocol 2 (matrix product computation), for i = 1, . . . , t,
Alice computes in an analogous way as in Section 4.3.1:

1. sTY and ssTY corresponding to Y;

2. sTi and ssTi corresponding to Ei;
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3. µ̂Y−Ei
= (sTY − sTi )/n;

4. ssY−Ei
= ((sY−Ei,1)2, . . . , (sY−Ei,m)2) as

ssY−Ei
= ssTY − 2(si1sY1, . . . , simsYm) + ssTi .

5. The vector of standard deviations of Y −Ei:

σ̂T
Y −Ei

=

√
(sY −Ei,1)

2

n
− (µY −Ei,1)

2, . . . ,

√
(sY −Ei,m)2

n
− (µY −Ei,m)2

 .

• In Step 3 of Protocol 2, Alice sends µ̂Y−Ei and σ̂Y−Ei to CLARUS, for
i = 1, . . . , t.

• In Step 4 of Protocol 2, CLARUS picks µ̂Y−Ej as µ̂X and σ̂Y−Ej as σ̂X .

Security The security of the extended version of Protocol 2 to compute the
attribute means and standard deviations is the same as the security of the basic
Protocol 2. The proof of Proposition 6 also holds for the extended version of
Protocol 2, because the computations and communications added in the ex-
tended version do not result in Alice receiving any additional information.

4.4.2 Preserving means and other statistics

In Section 4.3.2 above, we discussed how the data set Y stored in the cloud under
Protocol 1 could exactly preserve the attribute means of X. This is even easier
for Protocol 2, where it would be sufficient for all columns of all error matrices
E1, . . . ,Et to add to zero. Given Ej whose columns add to zero, it is easy
to generate anonymized versions of it (the other error matrices E1, . . . ,Ej−1,
Ej+1, . . . ,Et) whose columns also add to zero (see [40]).

Furthermore, we can do more than preserving means. In the discussion
above, we have not required the anonymized Y to preserve the statistical prop-
erties of X. If the parameters of the SDC method used to transform X into
Y are carefully chosen, many statistical properties of X can be exactly or ap-
proximately preserved by Y. The specific preserved properties and whether
preservation is only approximate depend on the particular SDC method used
(see [40]).

4.5 Comparison among methods

If we relax the non-sharing assumption, then we need a benchmark which no
longer relies on data splitting (note that Protocol 3 splits data among Alice and
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Bob). Therefore, the protocols described in Sections 4.3 and 4.4 are compared
here against a benchmark solution that consist of CLARUS downloading the
data from the cloud or clouds and computing locally. In this setting, CLARUS
first encrypts the data set X (containing in particular vectors x and y), stores
it in the cloud and, when it needs to compute a scalar product, it downloads
and decrypts the data set, as detailed in the following protocol:

Protocol 3.

Set-up phase:

1. CLARUS encrypts the original data set E = Enc(X)

2. CLARUS sends E to a cloud Alice for remote storage, and deletes X from
local storage.

Matrix product computation:

3. CLARUS requests E from Alice, decrypts X = Dec(E) and performs the
computation (X)TX.

Encryption and decryption can be performed using a fast symmetric cryp-
tosystem, such as the Advanced Encryption Standard (AES), which takes time
linear in the number of records/vector components n, and generates cyphertexts
that are similar in size to the corresponding plaintexts.

We now evaluate the computational cost for Alice, Bob and CLARUS and
the total computational cost under each protocol. In particular, operations that
do not need to be repeated each time the protocol is executed, specifically the
generation of the random and error matrices Ej in Protocols 1 and 2, respec-
tively, are separately counted as set-up costs.

Assuming that the clouds have unlimited storage, it is reasonable to assume
that they can store any random matrices that may need to be reused. In con-
trast, we do not assume unlimited storage at CLARUS; therefore, we assume
the proxy just stores the random seeds and (re)generates random matrices or
vectors when needed. Also, the cost of a communication is associated both
to the sender (who needs to send the data) and to the receiver (who needs to
read the data). We use a parameter γ to represent the maximum length of
the numbers in the vectors and matrices used in the protocols. We consider
that, whenever possible, the participants send the seeds of random vectors and
matrices, rather than the vectors and matrices themselves. If communications
are very fast and/or vectors are very short, sending the vectors rather than the
seeds might be preferable (see related experimental results in Section 4.6).
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Table 4.1: (Costs for Protocols 1 and 3): X is the n × m matrix (with
n � m) containing the original data set. γ represents the maximum length of
the numbers in the vectors and matrices, and t is the number of clouds involved
in the protocol.

Protocol 1 Protocol 3

Alice (C0) Bob (Cj) CLARUS Alice CLARUS

Set-up
computation

0 3nm2 prod. nm2 prod. +m2 RNDgen. 0 nm AESencr.

Set-up
communication

nm (2nm+m2)γ ((t+ 2)nm+m2)γ nmγ nmγ

Long-term storage nmγ nmγ m2γ nmγ nmγ

Temporary storage 0 0 2m2γ 0 (nm+m2)γ

Matrix product
computation

nm2 prod. 0 m2 subtr. 0 nm AESdecr. +nm2 prod.

Matrix product
communication

m2γ 0 m2γ nmγ nmγ

4.5.1 Comparison for the sharing-resistant alternative with-
out side knowledge

Table 4.1 shows all the costs for Protocols 1 and 3. Alice represents C0, the
cloud storing the anonymized data set Y. The other clouds C1, . . . , Cm per-
form similar amounts of computation and so we represent all of them by Bob.
Protocol 1 needs a set-up phase, in which:

• CLARUS needs to compute the random invertible m × m matrix P (as
described in Section 4.3.5). Then it must multiply X times P and add Ej

to X.

• Each cloud needs to compute the orthogonal complement of Y (as de-
scribed in Section 4.3.6), which takes 2nm2 products (using the Gram-
Schmidt algorithm for QR decomposition), plus (Ej)

TEj, which takes nm2

products.

The set-up phase is performed just once, unless X is modified (in which case it
needs to be repeated).

Regarding storage, in Protocol 1 each cloud stores one n × m matrix (X′

for C1, . . . , Ct, and Y for C0), whereas CLARUS stores three m ×m matrices
((Y)TY and (X)TX as temporary storage and (Ej)

TEj as long-term storage).
As to communication, at set-up CLARUS sends one n × m matrix to clouds
C1, . . . , Ct (this can be done in a single message if using broadcast or if using
a single cloud to do all computations) and one n×m matrix Y to C0; each of
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Table 4.2: (Costs for Protocol 2): γ represents the maximum length of the
numbers in the vectors and matrices. ”anon” stands for the anonymization cost
of a value and ”read” stands for the cost of reading a value.

Protocol 2 Protocol 3
Alice CLARUS Alice CLARUS

Set-up computation 0 (t+ 1)nm anon. 0 nm AESencr.
Set-up communication (t+ 1)nmγ (t+ 1)nmγ nmγ nmγ

Long-term storage (t+ 1)nmγ γ nmγ nmγ
Temporary storage (3t+ 1)m2 m2γ 0 (nm+m2)γ

Matrix product computation (2t+ 1)nm2 prod. +tm2 reads 0 0 nm AESdecr. +nm2 prod.
Matrix product communication (3t+ 1)m2γ (3t+ 1)m2γ nmγ nmγ

C1, . . . , Ct returns one n ×m matrix and one m ×m matrix to CLARUS; C0

returns one m×m matrix to CLARUS.
To compute the matrix product (after set-up), in Protocol 1 C0 needs to

compute (Y)TY, which takes nm2 products. CLARUS only needs to compute
m2 subtractions. As to communications during matrix product, only C0 needs
to send an m×m matrix, which makes m2γ bits.

With the benchmark Protocol 3, CLARUS needs less set-up communica-
tion than with Protocol 1, but more communication during the matrix product
computation. The difference between the two protocols regarding storage is
substantial: Protocol 1 requires CLARUS to use much less temporary and long-
term storage. Another important difference refers to the computing time for
the matrix product: in the benchmark protocol, CLARUS needs to perform nm
decryptions (to decrypt the entire data set) plus nm2 products, which is clearly
more work than the m2 subtractions needed under Protocol 1.

In summary, the advantage of Protocol 1 is that it permits different statistical
analyses without requiring the use of the original data set X: just using Y
suffices and most of the computational burden falls on the C0 cloud. In contrast,
Protocol 3 requires CLARUS to download and decrypt X before performing any
analysis.

4.5.2 Comparison for the sharing-resistant alternative with
side knowledge

Table 4.2 shows all the costs for Protocols 2 and 3. Protocol 2 requires a set-up
phase to anonymize the original data set, compute the true error matrix and
obtain the t plausible fake error matrices by means of an SDC method.

To compute Equation (4.4) t times, Alice first computes YTY once, and
then, for i = 1, . . . , t, she computes (Ei)

TEi, YTEi and (Ei)
TY. This takes
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Table 4.3: (Computational specifications of CLARUS and CSPs ) CLA-
RUS, the trusted proxy, was run on a local computer. CERSEI is a local server
mimicking a for-payment CSP. AWS represents a free-of-charge t2.micro Ama-
zon EC2 instance.

Machine Operating System Width(bits) CPU(GHz) RAM(GB) HDD(GB)

CLARUS Windows 7 64 2.5 8 500

CERSEI Ubuntu 14.4 LTS 64 3.4 16 500

AWS Ubuntu Server 16.04 LTS 64 2.4 1 30

(2t + 1)nm2 products, and transposing (Y)TEi into (Ei)
TY for i = 1, . . . , t

takes tm2 reads.
When comparing Protocol 2 with Protocol 3, we can see that the latter has

smaller set-up costs for CLARUS, but larger costs for the matrix computation
phase. Although the set-up costs are higher for Protocol 2, they allow usefully
releasing the data protected with anonymization to potential users (such as
researchers), which is not possible with Protocol 3 (because protected data are
encrypted in the latter protocol).

4.6 Experimental results

This section details the experimental results obtained by implementing the pro-
posed protocols in Java in a multi-cloud scenario. The reported experiments
were conducted using the first two attributes of the California housing data set
(CADATA, [10]), a usual test data set in the statistical disclosure control lit-
erature that contains 9 numerical attributes and 20, 640 records. Let X be the
matrix containing the two selected attributes of CADATA.

First, we ran the tests on Amazon Web Services (AWS), a public CSP that
offers 12 months free tier. The tests were performed on a t2.micro Amazon
EC2 instance for each cloud. Since the computing power and main storage were
substantially capped in this free-of-charge service, and communication with it
was slow, we took it as representing the low-end scenario a user can expect from a
CSP. Second, we also used a local server (CERSEI) offering more computational
power and main storage, as well as faster communication, in order to mimic the
service that can be expected from a for-payment CSP. In both cases, we used
another local computer to run CLARUS on it, that worked as the proxy located
in a trusted domain. Table 4.3 summarizes the specifications of CLARUS,
CERSEI and the AWS instance.

73

UNIVERSITAT ROVIRA I VIRGILI 
OUTSOURCING COMPUTATION ON NON-ENCRYPTED SENSITIVE DATA TO UNTRUSTED CLOUDS 
Sara Ricci 
 



CHAPTER 4. SECURE MATRIX PRODUCT

The computational cost was measured as the time in seconds that each
machine spent to perform the computations specified by the protocols. The
communication cost was measured as an approximation of the time each cloud
spent at sending data (writing to the channel) or receiving data (reading from
the channel). As explained in Section 4.5, we consider in general that the
participants send the seeds of random vectors and matrices, rather than the
vectors and matrices themselves. The reason is that generating a random vector
takes normally less time than sending it. However, the communication time
depends on many factors (user internet connection, distance between users,
network load, etc.). In our experimental setting, we compared the times for
generating and sending vectors of several sizes n; the results are reported in
Table 4.4, where it can be seen that sending a random vector takes longer than
generating it at the recipient for sizes n > 104.

4.6.1 Comparison for the sharing-resistant alternatives

In this section, Protocol 1 (sharing-resistant without background knowledge)
and Protocol 2 (sharing-resistant with background knowledge) are compared
with the benchmark Protocol 3.

Table 4.5 shows the storage, computation and communication costs for the
aforementioned protocols. CLARUS needs significantly less storage, computa-
tion and communication resources in Protocols 1 and 2 than in the benchmark
Protocol 3. In fact, once the set-up phase is completed, the sharing-resistant
protocols are extremely convenient for CLARUS, because nearly all the compu-
tations are performed by the cloud and CLARUS only needs to do very little
work. AWS and CERSEI give results that are consistent with the analytical
comparison in Sections 4.5.1 and 4.5.2.

Table 4.4: (Time to send a random vector vs time to generate it at the
recipient): n is the number of elements of a random vector x and the times
are given in seconds. Sending is faster only for short vectors.

PPPPPPPPTime (s)
n

103 104 105 106

to generate x 2.08× 10−3 4.6× 10−3 8.4× 10−3 2.07× 10−2

to send x 2.8× 10−4 3.5× 10−3 1.9× 10−2 1.19× 10−1
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Table 4.5: (Costs for Protocols 1, 2 and 3 for AWS and CERSEI): X
is a 20, 640× 2 matrix containing the original data set. The components in the
vectors and matrices take γ = 8 bytes. The storage is given in bytes (B) and
the computational and communication costs are given in seconds (s).

Protocol 1 Protocol 3 Protocol 2

Alice (C0) Bob (Cj) CLARUS Alice CLARUS Alice CLARUS

Long-term(B) 3.3× 105 3.3× 105 32 3.3× 105 0 3.6× 106 8

Temporary(B) 0 0 64 0 6.6× 105 124 160

AWS
Protocol 1 Protocol 3 Protocol 2

Alice (C0) Bob (Cj) CLARUS Alice CLARUS Alice CLARUS

XTX comp.(s) 0.2 0 4.4× 10−5 0 0.9 0.05 2.03× 10−5

XTX comm.(s) 1.2× 10−4 0 0.4 2.2 2.6 3.6× 10−4 0.4

CERSEI
Protocol 1 Protocol 3 Protocol 2

Alice (C0) Bob (Cj) CLARUS Alice CLARUS Alice CLARUS

XTX comp.(s) 0.08 0 4.2× 10−5 0 0.7 0.03 1.9× 10−5

XTX comm.(s) 5.4× 10−5 0 0.2 0.3 0.5 8.2× 10−5 0.2

4.7 Summary

We have presented two new protocols for outsourcing to untrusted clouds the
matrix products of sensitive data. Based on this operation, more complex data
analyses can be performed, such as correlations and contingency tables. The
goal is to minimize the amount of work that needs to be performed locally by
the controller, who wants to use the cloud as much as possible to compute on
her outsourced sensitive data. For the sake of flexibility and efficiency, we have
considered non-cryptographic methods for data protection, such as data split-
ting and anonymization, rather than the heavier fully homomorphic encryption
(e.g. [34]). A distinguishing feature of our approach is that the outsourced data
on which the clouds compute retain some of the utility of the original data,
which entails added value with respect to outsourcing encrypted or otherwise
gibberish data.

In case clouds can share information but have no side knowledge on the orig-
inal data set, we have proposed a sharing-resistant protocol based on orthogonal
noise matrices that shifts most of the computational burden to the clouds. For
the worst case, in which clouds share information and have side knowledge allow-
ing them to recognize the original data set, we have proposed a sharing-resistant
protocol relying on noise matrices derived via anonymization. Although the lat-
ter protocol is heavier, it still substantially relieves the controller (CLARUS) in
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computational terms. We have provided complexity analyses and benchmarking
for all proposed protocols, in order to show their computational advantages for
the outsourcing controller. Further, we have provided experimental evidence
that the new protocols take less effort from CLARUS than the benchmark pro-
tocols consisting of downloading and local processing.

In this way, clouds are not only used to store sensitive data, but also to per-
form computations on these data in a privacy-aware manner. This is especially
interesting for large sensitive data sets.
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Chapter 5

Multivariate Categorical
Analyses in Untrusted
Clouds

5.1 Introduction

Statistical analyses involve collecting and investigating (potentially large) data
samples. In turn, collecting and investigating data requires storing them and
computing on them. Among the usual analyses, measuring the dependence
between attributes in multivariate data sets is one of the costliest operations.
For instance, measuring the correlation between (just) two categorical attributes
in a data set containing one million records may require computing and storing
matrices of size one million times one million [55]. If matrix values are as short
as 4-byte integers (real numbers would take more), then storing one matrix
alone takes nearly 4 terabytes.

Coping with such huge data amounts is often infeasible for data controllers.
In this scenario, outsourcing storage and computation to the cloud is an at-
tractive alternative because of the large, cheap and highly scalable resources it
offers. Nevertheless, when the data to be outsourced contain sensitive infor-
mation (e.g., personal data, clinical outcomes, etc.), data controllers may be
reluctant to embrace the cloud due to privacy concerns [4]. These concerns are
not only related to the fact that the cloud service providers (CSPs) may read,
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use or even sell the data outsourced by their customers, but also because CSPs
may suffer attacks or data leakages that can compromise data confidentiality.

To mitigate the above concerns, privacy-preserving methods for storing and
processing the data outsourced to the cloud should be designed. This is the
main goal of the European project CLARUS [17] in which the current work is
framed. Following its architecture, we will assume a proxy located in a domain
trusted by the data controller (e.g., a server in her company’s intranet or a
plug-in in her device) that implements security and privacy-enabling features
towards the cloud service providers. We will call this trusted proxy CLARUS,
see Section 2.2 for more details.

However, performing many statistical analyses, such as data dependence or
correlation assessment, requires using the whole data set or at any rate more
than a single fragment. With split data, the problem is for the controller to
manage as effortlessly as possible the data fragments stored at different un-
trusted CSPs to conduct such computations while ensuring that data attributes
in different fragments cannot be linked by the CSPs [12]. The problem is even
more challenging when dealing with nominal categorical data, i.e., data whose
attribute values are noun-phrases corresponding to jobs, interests, conditions,
etc. These data, that are textual and non-ordinal and on which the standard
arithmetic operators cannot be used, account for most of the personal infor-
mation currently being collected (e.g., in social networks, B2C transactions,
etc.) [72]. In particular, accurately measuring the dependence or correlation
between nominal attributes requires semantically grounded techniques [59] that
are costly, both in computational power and storage.

Contributions

Chapter 3 shows several non-cryptographic proposals for statistical computa-
tions (basically correlations) on split data across several honest-but-curious non-
sharing clouds (see Section 2.2). All these protocols and methods were designed
for numerical data. In this chapter, Protocols 1.2 and 2.1, which are the two
best protocols identified in Chapter 3, are adapted to categorical data. In
this way, we present efficient protocols to securely compute statistical depen-
dence analyses on outsourced split data for a variety of methods, encompassing
frequency-based and semantic-based tests. In all cases, the goal of the protocols
is to outsource as much workload as possible to the cloud, while ensuring that
confidential data are not leaked to the CSPs. Semantic-based tests, that are
the costliest ones and those that would benefit the most from outsourcing the
computation to the cloud, are analyzed in greater detail. Specifically, several
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semantic measures to quantify distances between nominal values are discussed
and evaluated, both theoretically and in practice. We also report on empirical
work on Amazon Web Services cloud instances. Performance figures show that
our protocols are able to outsource most of the workload to the CSPs, thereby
reconciling data privacy with the cost saving benefits of the cloud.

The contributions in this chapter have been published in [55]. An extended
version has been submitted to a journal, feedback on it has been received, and
a revised version has been submitted.

The rest of this chapter is organized as follows. In Section 5.2 we pro-
pose protocols to securely outsource the computation of frequency-based tests
(χ2-test, ANOVA or Cramer’s V), and semantic-based tests (semantic-distance
covariance). Section 5.3 reports the experimental results obtained when imple-
menting our protocols for the costliest analysis (the semantic-based test) and
compares the workload savings against a local computation. Section 5.4 contains
the conclusions.

5.2 Privacy-preserving multivariate analyses on
the cloud

In this section, we show how the multivariate analyses introduced in Section 2.4
can be performed on split data outsourced to honest-but-curious non-sharing
CSPs by relying on the secure scalar product protocols. Protocols 1.2 and 2.1
represent the most efficient protocols among the ones compared in Section 3.4.
If we focus on the cost/security trade-off, Protocol 1.2 is probably the best
choice, whereas Procotol 2.1 guarantees the highest security.

For each analysis, the CLARUS proxy decomposes and orchestrates calcu-
lations and aggregates partial results. To avoid overloading the local system in
which the CLARUS proxy runs, the protocols are designed to keep the workload
of the CLARUS proxy as low as possible by outsourcing as much storage and
computation as possible to the CSPs in a privacy-preserving way.

5.2.1 Frequency-based analyses

To calculate the χ2-test, ANOVA or Cramer’s V, CLARUS orchestrates the
calculation of the contingency table of the split attributes stored in separated
CSPs, which is the input of the aforementioned tests, see Section 2.4 for more
details.
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To obtain the contingency table from data vertically split among several
clouds, one just needs to compute the table cells. Let (a1, . . . , an)T and (b1, . . . , bn)T

be the vectors of values from the attributes a and b, owned by the CSPs Alice
and Bob, respectively. A cell Cij (for every i = 1, . . . , h and j = 1, . . . , k) is
computed by counting the number of records in the original data set containing
both the categories ci(a) and cj(b). Alice creates a new vector x = (x1, . . . , xn)T

such that

xl =

{
1 if al = ci(a)

0 otherwise
for l = 1, . . . , n. (5.1)

Bob creates y = (y1, . . . , yn)T such that

yl =

{
1 if bl = cj(b)

0 otherwise
for l = 1, . . . , n. (5.2)

The scalar product xTy (computed by means of the Protocols 1.2 and 2.1
detailed in Section 3.3) gives the number Cij of records in the original data set
containing both the categories ci(a) and cj(b).

Specifically, Alice and Bob can use Protocols 1.2 and 2.1 to securely compute
Cij by just adding two preliminary steps to the scalar product computation part:
one step by Alice to generate x from (a1, . . . , an)T using Equation (5.1), and
another step by Bob to generate y from (b1, . . . , bn)T using Equation (5.2).

Security. The only modification with respect to Protocols 1.2 and 2.1 is that
Alice and Bob compute x and y, respectively. These computations are done by
the clouds in isolation, i.e., without exchanging information; hence, the security
of the protocol is preserved.

Cost. Once the contingency table is obtained, frequency-based tests, which
have a low computational cost, can be run locally by CLARUS. In fact, for the
χ2-test, ANOVA and Cramer’s V the most demanding computation is a linear
regression; therefore, given a h × k contingency table with h < k, the linear
regression has complexity O(h2k + h3) (notice that h and k are much smaller
than the number n of records of the original data set). For CSPs, Alice and Bob,
the computation of one cell has O(n) cost in both Protocol 1.2 and Protocol 2.1.
In particular, in Protocol 1.2 Alice and Bob have to perform, respectively, n
products and n reads as the most demanding computations; Charlie (the third
cloud needed in the protocol) generates two random n-vectors and CLARUS
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just performs two sums. In Protocol 2.1, Alice performs n encryptions, n reads
and n random number generations. Bob performs n reads and n products as
demanding computations. CLARUS computes one sum. Since the contingency
table has h × k cells, Alice’s and Bob’s calculation has O(n × h × k) cost.
CLARUS just needs to compute 2 sums in Protocol 1.2 or 1 sum in Protocol 2.1
for each table cell, that is, constant cost. Therefore, the CLARUS computation
has complexity O(h× k).

Another reason to locally conduct the calculation of the frequency-based
tests is that sharing the contingency table with a CSP can lead to privacy issues,
because the table may contain cells with values one or zero that may allow re-
identifying some subjects. For instance, if a cell representing the number of
Asian people with HIV that answered a specific survey has value equal to one,
just knowing that only one participant of the survey was Asian discloses that
he is sick. Moreover, this information can be enough to recognize a subject if,
for example, the survey was carried out in an area with only few Asian families.

Observe that, if one CSP stores in its own data fragment all the attributes
required for the contingency table computation, all the calculations are done
by that CSP in isolation, and CLARUS just receives the result of the required
frequency-based test.

5.2.2 Semantic-based analyses

As introduced in Section 2.4, the calculation of the distance covariance requires
measuring the pairwise semantic distance between the nominal values of each
attribute. The pairwise distances as well as the double-centered matrices are
computed among the values of one attribute at once and, therefore, the CSP
owning the attribute performs the calculation in isolation. Each CSP can also
compute the distance variance of its attribute in isolation. Then the CSPs use
Protocols 1.2 or 2.1 to securely compute the distance covariances in view of
completing the distance covariance matrix Σ̂.

Formally, let x1 = (x11, . . . , x
1
n)T and x2 = (x21, . . . , x

2
n)T be vectors of values

of two nominal attributes owned by CSPs Alice and Bob, respectively. Alice
computes X1 and X̂1 and Bob computes X2 and X̂2. In this case, the distance
covariance matrix Σ̂ of X = (x1,x2) is given by

Σ̂ =

(
dVn(x1) dVn(x1,x2)

dVn(x2,x1) dVn(x2)

)
.

Note that dVn(xi,xj) is the square root of dV2
n(xi,xj), for i, j = 1, . . . ,m,
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and that Xj , Xj
kl, dVn(xj), for j = 1, . . . ,m, are separately computed by the

CSP storing the respective attribute. The most challenging task is, therefore,
calculating the squared sample distance covariance, i.e., Equation (2.4), which
requires performing n secure scalar products of vector pairs, where the two
vectors in each pair are respectively held by two different CSPs.

In fact, by calling X1
k = (X1

k1, . . . , X
1
kn)T and X2

k = (X2
k1, . . . , X

2
kn)T for

k = 1, . . . , n, we can rewrite Equation (2.4) as

dV2
n(x1,x2) =

1

n2

n∑
k=1

(
n∑
l=1

X1
klX

2
kl

)
=

1

n2

n∑
k=1

(X1
k)TX2

k, (5.3)

where the n scalar products are (X1
k)TX2

k for k = 1, . . . , n.
Therefore, once the double-centered matrices are obtained, the distance co-

variance matrix computation with data split among different CSPs can be de-
composed into several secure scalar products to be conducted between pairs
of clouds. Protocols 1.2 and 2.1 are perfectly suited to compute (X1

k)TX2
k for

k = 1, . . . , n (see Section 3.3). The only adaptation needed is to add two pre-
liminary steps: one step for Alice to compute x = X1

k from x1, and another
step for Bob to compute y = X2

k from x2.

Security. The two preliminary steps added before the secure scalar product
are separately performed by Alice and Bob, so there is no additional exchange
of information between the clouds. Hence, the security of Protocols 1.2 and 2.1
is preserved.

Cost. Calculating the distance covariance matrix between two nominal at-
tributes has a quadratic cost, both in time and storage. Moreover, generating
the semantic-distance matrices (Eq. (2.1)) requires using the semantic mea-
sures. Let h1 be the number of categories of x1 and h2 be the number of
categories of x2, where h1, h2 ≤ n; then h21/2 and h22/2 semantic distances are
computed for each attribute by Alice and Bob, respectively. Recalling the costs
discussed in Section 2.5 for each type of semantic measure, we have that the cost
of generating the semantic-distance matrix is O(h2j ×D) for the edge-counting

measure, O(h2j ×S) for the feature-based measure and O(h2j × (C +D)) for the
information content-based measure, for j = 1, 2 and where D is the depth of
the taxonomy, S is the maximum number of subsumers of any concept and C
is the total number of concepts in the ontology (which can be in the order of
thousands or hundreds of thousands in large ontologies). On the other hand,
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the double-centered matrix (Eq. (2.2)), which is also computed by each CSP
independently, has O(n2) computational cost.

Finally, the distance covariance matrix computation is decomposed into sev-
eral scalar products, where the total number of scalar products performed by
the CSPs is 3n. Each scalar product has O(n) computational cost for both
Protocols 1.2 and 2.1. In particular, in Protocol 1.2 Alice and Bob have to
perform, respectively, n products as the most demanding computations, Char-
lie (a third cloud needed in the protocol) generates two random n-vectors and
CLARUS just performs two sums. In Protocol 2.1, Alice performs n encryptions
and n random number generations. Bob performs n products as the most de-
manding computations. CLARUS computes one sum. Consequently, the CSPs’
computation has O(n2) cost and CLARUS’s computation has O(1) cost. The
storage needs at the CSPs are also quadratic due to the need to create several
n × n matrices, i.e., 1 semantic-distance matrix and 1 double-centered matrix
per attribute.

One can notice that the calculation of the semantic-distance covariance is
significantly costlier than the frequency-based method (both in time and stor-
age); yet, the protocol we propose is able to outsource the cost to the CSPs,
thus keeping the CLARUS workload low even with large data sets.

5.3 Experimental results

This section reports the results of the implementation of our protocols in a
real setting. As a use case, we employed the most computationally demanding
analysis: the semantic-distance covariance. As evaluation metrics, we report the
workload of each entity (CLARUS and the CSPs) and quantify the percentage
of workload that our protocols were able to securely outsource to the CSPs w.r.t.
a local implementation of the analysis.

The tests were run in a free-tier CSP provided by Amazon Web Services
(AWS). It is important to note that the computing power and storage of such
a free-of-charge service are substantially limited and, therefore, significant im-
provements can be expected when moving to payment services. On the client
side, a local computer was configured to act as the CLARUS proxy, which is
in charge of orchestrating the storage and calculations on the outsourced data.
The specifications of AWS and CLARUS are summarized in Table 5.1.

The experiments were conducted on a sample of 1, 000 records with two
nominal attributes extracted from a patient discharge database provided by the
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Table 5.1: Specifications of CLARUS (the trusted proxy running on a local
computer) and the AWS CSPs (free-of-charge t2.micro Amazon EC2 instances)

Machine Operating System Width(bits) CPU(GHz) RAM(GB) HDD(GB) Instances
CLARUS Windows 7 64 2.5 8 500 1

AWS CSP (t2.micro instance) Ubuntu Server 16.04 LTS 64 2.4 1 30 3

Table 5.2: AWS instance types. The t2.micro free-of-charge instance was used
in our experiments.

AWS instance type Name CPU Cores RAM(GB) Clock Speed(GHz)

General purpose t2.micro 1 1 Up to 3.3
General purpose t2.2xlarge 8 32 Up to 3.0
General purpose m4.16xlarge 64 256 2.3

Compute optimized c4.8xlarge 36 60 2.9
Accelerated computing f1.16xlarge 64 976 2.3

Memory optimized r4.16xlarge 64 488 2.3
Memory optimized x1.32xlarge 128 1, 952 2.3

California Office of Statewide Health Planning and Development [11]. The two
nominal attributes represent the diagnosis (x) and medical procedure (y) of
each patient. Notice that the size of the sample is deliberately small because of
the limited resources of the CSPs instances we used. To cope with larger data
sets, one just needs to hire more powerful CSP instances, e.g., see those offered
by AWS [3] in Table 5.2. Given the computational cost figures we discussed in
the former section, scaling the obtained results for larger data sets and more
attributes is straightforward.

SNOMED-CT was used as the ontology for the semantic distance calculation
in the semantic-based test. SNOMED-CT models 321, 901 clinical concepts and
constitutes the largest and most detailed medical knowledge base [66].

In all the experiments, two AWS CSPs (Alice and Bob) separately stored
the two attributes (diagnosis (x) and procedures (y), respectively), whereas
a third CSP (Charlie) was used as commodity server. For each analysis, we
reported the storage requirements and workload of each CSP and CLARUS for
the protocols we propose, and compared them against a local implementation in
which CLARUS should store the whole data and perform all the computations.

As detailed in Section 5.2.2, first each CSP computes in isolation the semantic-
distance matrix (Eq. (2.1)) and the double-centered matrix (Eq. (2.2)) of the
attribute it stores; then, Alice and Bob jointly work on the calculation of the
distance covariance. CLARUS performs a small part in this latter calculation,
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Table 5.3: Long-term and temporary storage for the semantic-distance covari-
ance calculation with two attributes and 1, 000 records.

Storage requirements (MB)

LOCAL CLOUD

Long-term Temporary Long-term Temporary

CLARUS CLARUS Alice Bob CLARUS Charlie Alice Bob CLARUS Charlie

40 242.5 16 16 8 0 242.5 242.5 0 0

and its workload depends on the secure scalar protocol in use: Protocol 1.2 or
Protocol 2.1. In particular, the total number of scalar products performed by
the CSPs is (m(m− 1)/2) ∗n+m ∗n, out of which (m(m− 1)/2) ∗n are secure
scalar products, being n the number of records and m the number of attributes.

In the local implementation, CLARUS plays the part of the data controller
and is required to perform all the computation by itself: semantic-distance
matrices, double-centered matrices and the distance covariance. However, since
CLARUS owns the whole data and runs in a trusted environment, no secure
scalar products are needed.

Table 5.3 shows the storage requirements of the calculations for the cloud-
based and local scenarios. The storage is broken down into long-term and
temporary: the former corresponds to the storage of the split data, whereas
the latter is the storage required to conduct the calculation at some point,
which can be discarded once the calculation is finished. In terms of temporary
storage, the CSPs (or CLARUS in the local solution) need to load into RAM
the SNOMED-CT ontology, which requires 242.5 MB. The semantic-distance
and the double-centered matrices of the attributes are stored in the long-term
storage for them to be re-used in further calculations. The local solution, which
requires storing the matrices of all the attributes, can be considerably heavy for
CLARUS when the number of records and/or attributes is large. In contrast,
in the cloud-based solution only the semantic-distance covariances are stored
by CLARUS. The use of secure scalar products imperceptibly increases the
required storage (for 1, 000 records, the storage increases by around 0.032 MB
for Protocol 1.2 and by 0.065 MB for Protocol 2.1).

Table 5.4 shows the computation and communication runtimes of the dis-
tance covariance calculation with the three ontology-based semantic measures.
Notice that in the local scenario there is no exchange of information between
separate entities and, therefore, there is no communication cost. In the cloud-
based solution, Protocols 1.2 and 2.1 were used for the computation of the secure

85

UNIVERSITAT ROVIRA I VIRGILI 
OUTSOURCING COMPUTATION ON NON-ENCRYPTED SENSITIVE DATA TO UNTRUSTED CLOUDS 
Sara Ricci 
 



CHAPTER 5. MULTIVARIATE CATEGORICAL ANALYSES

Table 5.4: Computation and communication runtimes for the distance-
covariance calculation with the three semantic-distance measures and the two
secure scalar product protocols. The computation runtime (Comp.) represents
the time each entity spent following the protocol. The communication runtime
(Com.) is an approximation of the time the CSPs and CLARUS spent sending
and receiving the data. The times are given in minutes (m.).

LOCAL CLOUD

Comp. Comp. (m.) Com. (m.)
(m.)

Edge-counting measure (Eq. (2.6))

CLARUS Alice Bob Charlie CLARUS Total comp. Total com.

21.3
Prot.1.2 9.9 2.4 3.5× 10−4 2.8× 10−5 12.3 16.5

Prot.2.1 34.2 2.4 − 8.7× 10−5 36.7 6.3

Feature-based measure (Eq. (2.7))

CLARUS Alice Bob Charlie CLARUS Total comp. Total com.

22.8
Prot.1.2 9.6 2.5 3.5× 10−4 2.7× 10−5 12.1 16.5

Prot.2.1 33.8 2.4 − 9.1× 10−5 36.2 6.6

Information content-based measure (Eq. (2.8))

CLARUS Alice Bob Charlie CLARUS Total comp. Total com.

183.8
Prot.1.2 836.5 49.2 3.9× 10−4 2.6× 10−5 885.7 16.5

Prot.2.1 863.2 49.3 − 9.7× 10−5 912.5 6.6

scalar products. Observe that Protocol 2.1 results in higher costs in terms of
computation due to the use of cryptographic primitives. Moreover, the run-
time of Alice is significantly larger than Bob’s, although the attributes have the
same length. The reason is that the SNOMED-CT taxonomy for the attribute
stored by Alice (diagnosis, i.e., clinical finding) is much larger than that of Bob’s
attribute (procedure), as shown in Table 5.5. Furthermore, within the 1, 000-
record data set, Alice’s attribute has 434 categories, whereas Bob’s attribute has
only 342; hence, Alice needs to perform a greater number of semantic-distance
assessments.

The reported runtime figures are consistent with the cost of the semantic
measures we detailed in Section 2.5: the edge-counting and the feature-based
measures have similar costs, because both analyze the set of ancestors of the
concepts to be compared, the measure based on information content is signifi-
cantly costlier (around 8 times slower in the local solution) due to the need to
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iterate through all the hyponyms of each concept. In fact, the calculation of
the semantic-distance matrix takes around 13 hours for Alice’s attribute (whose
domain is significantly larger than Bob’s). Even though the runtime of the
cloud-based scenario is around 5 times greater that the local one, we should
consider the very limited resources of the free t2.micro instance we use. With
more powerful instances, runtimes will be decreased to reasonable figures, e.g.,
a general-purpose t2.2xlarge instance should be around 8 times faster than the
free instance (see Table 5.2), which would make the cloud-based calculation
faster than the local one.

Since absolute runtime figures depend on the amount of resources of the
CSPs, in Table 5.6 we report a more general metric stating the percentage of
runtime saved by CLARUS (which runs on local premises) when outsourcing
local calculations to the cloud. The runtime saved by CLARUS was computed
with the formula

100 ∗ CLARUSl − CLARUSc
CLARUSl

, (5.4)

where CLARUSl represents the computation runtime of CLARUS in the local
scenario and CLARUSc represents the computation runtime of CLARUS in the
cloud-based scenario.

Since the calculation of the semantic-distance matrices is, by far, the costliest
operation (especially for the measure based on information content), outsourcing
this calculation results in very large savings (i.e., very low workload and also
very low storage requirements) for CLARUS.

5.4 Summary

Data splitting is an alternative to encryption that is more flexible and efficient
for securing sensitive data outsourced to the cloud. With data splitting, CSPs do
not only store data, but they can efficiently conduct computations on the data

Table 5.5: Number of concepts in some taxonomies of SNOMED-CT
Taxonomy Number of concepts

Body structure 31, 206

Clinical findings 104, 737

Pharmaceutical/biologic product 17, 425

Procedure 55, 880

Substance 25, 911
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Table 5.6: Percentage of computation runtime saved by CLARUS when moving
from the local scenario to the cloud-based scenario for the different semantic
measures and scalar product protocols

Computation runtime saved by CLARUS (%)

Edge-counting Feature-based Information content-based

Prot. 1.2 99.99987 Prot. 1.2 99.99988 Prot. 1.2 99.99999

Prot. 2.1 99.99959 Prot. 2.1 99.99960 Prot. 2.1 99.99995

they store in a privacy-preserving manner. Multivariate analyses are, however,
challenging; the reason is not just their potentially large computational cost,
but also the difficulty of performing the calculations involving data fragments
stored in different clouds.

In this paper, we have presented protocols to securely outsource the compu-
tation of several multivariate statistical analyses on nominal data split among a
number of honest-but-curious clouds. Our protocols are designed to outsource
as much workload as possible to the CSPs, which is especially interesting for
computationally demanding calculations that may not be affordable locally. In
this way, we retain the cost-saving benefits of the cloud while ensuring that the
outsourced data do not incur privacy risks.

Empirical tests conducted on AWS free-tier cloud instances confirm our the-
oretical assumptions. Experimental results clearly show that outsourcing the
calculations to the cloud considerably decreases the workload of the data con-
troller, who can save more than 99.999 per cent of the runtime for the most
demanding test we considered.
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Chapter 6

A Methodology to Compare
Anonymization Methods
Regarding Their
Risk-Utility Trade-Off

6.1 Introduction

With the expansion of information technology, the importance of data anal-
ysis (e.g. to support decision making processes) has significantly increased.
Although data collection has become easier and more affordable than ever be-
fore, releasing data for secondary use (that is, for a purpose other than the
one that triggered the data collection) remains very important: in most cases,
researchers cannot afford collecting themselves the data they need. However,
when the data released for secondary use refer to individuals, households or
companies, the privacy of the data subjects must be taken into account.

Statistical disclosure control (SDC) methods aim at releasing data that pre-
serve their statistical validity while protecting the privacy of each data subject.
Among the possible types of data releases, this work focuses on microdata (that
is, on the release of data about individual subjects).

While there is a great diversity of SDC methods for microdata protection,
all of them imply some level of data masking. The greater the amount of
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masking, the greater are both privacy protection and information loss. Different
SDC methods tackle the trade-off between privacy and utility in different ways.
For example, in global recoding the level of information loss is set beforehand
(the amount of coarsening of the categories of each attribute), whereas the
disclosure risk is evaluated afterwards on the protected data set. In contrast,
in k-anonymity [61] the risk of disclosure (the risk of record re-identification, in
particular) is set beforehand, whereas the actual information loss results from
the masking needed to attain the desired level of disclosure risk.

Although some general assertions about specific SDC methods/models can
be made, comparing the latter regarding the privacy-utility trade-off is not
straightforward. Let us illustrate this point with two well-known privacy mod-
els: differential privacy [31] and k-anonymity [61]. In terms of privacy protec-
tion, ε-differential privacy is regarded as stronger than k-anonymity. On the
contrary, k-anonymity is regarded as more utility-preserving than ε-differential
privacy. The practical value of these general statements is dubious. After all, by
increasing ε we reduce the protection of differential privacy, and by increasing
k we reduce the utility of k-anonymous data. An accurate comparison between
SDC methods has to take into consideration both aspects of the privacy-utility
trade-off.

Related works and contributions

Many risk and utility measures have been proposed in the literature, but some
of them are designed for use with specific SDC methods. For example, the
probability of record re-identification is the natural risk measure in k-anonymity,
but it may not be appropriate in SDC methods that are not predicated on
protecting privacy by hiding each data subject within a crowd. In this work, we
propose a framework based on general empirical measures of utility and risk to
compare the risk-utility trade-off of several SDC methods.

Previous comparative studies (e.g. [24]) usually start by selecting some pa-
rameter values for a set of SDC methods and evaluate the disclosure risk and
the information loss yielded by the methods for those parameterizations. In
contrast, here we start by setting a certain risk level (or a certain utility level)
and then we find which parameter values are needed to attain that risk (resp.
that utility) under different SDC methods; finally, once we have achieved an
equivalent risk level (resp. utility level) across methods, we evaluate the utility
(resp. the risk) provided by each method, in order to rank methods according
to their utility preservation (resp. disclosure protection), given a certain level
of risk (resp. utility) and a certain original data set. Furthermore, we present
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SDC

experimental work that illustrates the application of the proposed methodology.

The contributions in this chapter have been published in [22].

The rest of the paper is organized as follows. In Section 6.2, we describe the
proposed framework for comparing methods regarding their risk-utility trade-
off. In Section 6.3, we propose an empirical measure of disclosure risk that
is based on record linkage. Experimental results are reported in Section 6.4.
Conclusions are gathered in Section 6.5.

6.2 A methodology for comparing the risk-utility
trade-off in SDC

In this section we describe a methodology for comparing SDC methods. Looking
only at either the disclosure risk or the utility of an SDC method would be a
flawed comparison. We need to analyze the privacy-utility trade-off, as explained
in the introduction. Even if this principle may seem evident, very often it is not
followed.

To make the proposed methodology as general as possible, we will employ
empirical measures of risk and utility. That is, we will choose risk and utility
measures that depend on the original and the anonymized data sets, rather than
being prior conditions. To select specific measures, we need to define the aspects
of risk and utility that we consider relevant for our comparison. In turn, the
choice of measures will shape the outcome of the evaluation.

Let us illustrate the difference between empirical measures and prior condi-
tions by taking differential privacy as an example. As a privacy model, differ-
ential privacy states some privacy guarantees but does not tell how they ought
to be attained. Let us assume that A1 and A2 are ε-differentially private algo-
rithms that output a data set. Let us also assume that A2 is a refined version
of A1 that manages to attain ε-differential privacy while adding less noise than
A1. If we use the level ε of differential privacy as our risk measure, both A1

and A2 are equally good (they are both ε-differentially private). However, the
fact that A1 adds more noise to the original records may indicate that the data
set output by A1 entails less disclosure risk than the data set generated by A2,
even if differential privacy is unable to capture the difference. Alternative mea-
sures of disclosure risk (e.g. risk measures based on record linkage) should be
able to capture the difference in risk between A1 and A2. In this work, we do
not deny the value of any measure of disclosure risk, but, due to their broader
applicability, we will employ empirical risk measures based on record linkage.
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Let us assume that we are given functions

U : D ×D → R

R : D ×D → R

such that, for any given original data set X and anonymized data set Y,

• U(X,Y) measures the utility of Y as a replacement for X.

• R(X,Y) measures the disclosure risk of Y as a replacement for X.

We have described some utility measures in Section 2.8. In Section 6.3 we will
describe several risk measures based on record linkage.

SDC methods usually accept some parameters that can be adjusted to select
the desired level of disclosure risk/utility. Let Mα(X) be the anonymized data
output by SDC method M with parameter α when applied to data set X.

Given an original data set X and two anonymization algorithms M1 and
M2, we say that M1 is more utility-preserving than M2 at risk level r if

U(X,M1
α(X)) ≥ U(X,M2

β(X)),

for α and β such that R(X,M1
α(X)) = R(X,M2

β(X)) = r.

In a similar fashion, we can compare the risk associated to a given level of
data utility. We say that M1 is less disclosive than M2 at utility level u if

R(X,M1
α(X)) ≤ R(X,M2

β(X)),

for α and β such that U(X,M1
α(X)) = U(X,M2

β(X)) = u.

The results of the previous utility (resp. risk) comparison depend not only
on the SDC method, but also on the original data set, the risk and the utility
measures selected, and the target level of risk (resp. utility). Actually, this
comparison methodology is designed for use by a data controller who must
decide which among several SDC methods is best suited to anonymize a given
data set with a given target level of disclosure risk or utility. In other words,
the aim is not to make general statements about the relative goodness of several
SDC methods. Although such statements may make sense in some cases, our
results can only be taken as empirical clues of such underlying truths.
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6.3 Empirical measures of disclosure risk

To compare the risk-utility trade-off between SDC methods, we need adequate
measures of disclosure risk. For the methodology described in Section 6.2 to
be broadly applicable, the risk measure should be as general as possible (rather
than based on specific characteristics of an SDC method).

We propose a risk measure based on record linkage [76], which is a technique
that seeks to match original records that correspond to the same individual.
Among its several uses, record linkage has a direct application in disclosure
risk assessment [70]. Such an application bears some resemblance to the way
an intruder having access to the anonymized data and to some side knowledge
would proceed. Let E be a data set that represents the non-anonymous side
information available to the intruder. By linking records in E to records in Y,
the intruder associates identities to the records in Y.

The number (or the proportion) of correct re-identifications is a common
record linkage-based measure of disclosure risk. However, this measure has
some limitations that we next discuss. It is certainly appropriate when SDC
is achieved by masking the quasi-identifier attributes, whereas the sensitive at-
tributes are left unmodified (or are only slightly modified). However, if the
sensitive attributes have been significantly altered, a correct linkage may not
be equivalent to disclosure. Furthermore, if we use SDC methods that are not
based on masking the original records, we may not even be able to tell what
a correct linkage is. Generating a synthetic data set by repeatedly sampling
from a statistical model adjusted on the original data is an example of an SDC
method not based on masking; and indeed, it is not possible to say what is the
correct mapping between the original records and the synthetic records.

In the spirit of [20], rather than measuring the disclosure risk as the propor-
tion of correct re-identifications, we will measure the risk of disclosure associated
to a record in the original data set X by means of a distance to its linked record
in Y. Such an approach has two important advantages with respect to counting
the number of correct re-identifications:

• It is more broadly applicable. The linkage between records in X and Y
can be performed independently of the SDC methodology used, even when
the correct mapping between original and anonymized records cannot be
established.

• The distance between a record in X and its linked record in Y provides
more detailed information about the risk associated to a record in X than
a mere binary outcome (right/wrong linkage):

93

UNIVERSITAT ROVIRA I VIRGILI 
OUTSOURCING COMPUTATION ON NON-ENCRYPTED SENSITIVE DATA TO UNTRUSTED CLOUDS 
Sara Ricci 
 



CHAPTER 6. RISK-UTILITY TRADE-OFF

– On the one hand, the binary nature of correct linkages could lead to
understating the risk of disclosure when, in spite of failing to find the
correct linkage, the intruder links to a record that is similar to the
correct one.

– On the other hand, if all the attributes in Y have been thoroughly
altered by the SDC method, a correct linkage may not disclose any
useful information to the intruder; in this case, the proportion of
correct linkages would overstate the risk of disclosure.

Any record x in the original data set X is linked to the record yx ∈ Y at
the smallest distance, that is, such that

d(x,yx) = d(x,Y) = min
y∈Y

d(x,y).

The distance d(x,Y) is an indicator of the disclosure risk associated to x. If
the distance is small, there is a record in Y that is quite similar to x and the
risk of disclosure is high.

The choice of the distance d(x,Y) is an important step in determining the
disclosure risk. Along the lines of the permutation paradigm (see Section 2.7),
our proposal is based on ranks, but it differs from [20] in the way attributes are
aggregated. Let x = (x1, . . . , xm) be a record from an original data set X with
attributes X1, . . . , Xm and y = (y1, . . . , ym) be a record from an anonymized
data set Y with attributes Y 1, . . . , Y m. Take the distance between x and y to
be the Euclidean distance between ranks, that is,

d(x,y) =

√√√√ m∑
i=1

[rankXi(xi)− rankY i(yi)]2,

where the subscript of the rank function denotes the attribute within which the
rank of the value in the argument is computed.

The overall risk of disclosure is an aggregation of the distances d(x,Y) for
all x ∈ X. Many different aggregations are possible. In this work we focus on
the average risk of disclosure by computing the mean of the record distances.

R(X,Y) =
1

n
log
∑
x∈X

d(x,Y). (6.1)

The smaller R(X,Y ), the greater the risk of disclosure. The logarithm accounts
for the fact that in disclosure risk the focus is on small distances. Without the
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logarithm, a large distance for a single record x ∈ X could reduce in a significant
manner the perception of risk for the overall data set; the logarithm reduces the
influence of large distances.

6.4 Experimental results

In this section we apply the methodology described in Section 6.2 to analyze
the relative goodness of several anonymizations. Experiments are conducted by
taking as original data the “Census” and “EIA” data sets [9], which are usual
test sets in the SDC literature. The “Census” contains 13 numerical attributes
and 1080 records, and “EIA” contains 11 numerical attributes and 4092 records.

The anonymized data sets have been generated by applying the following
methods:

• Correlated noise addition. Multivariate normally distributed noise is added
to the records in the collected data set, that is

Y = X +N(0, γΣ),

where Σ is the covariance matrix of X and γ is an input parameter. Note
that the covariance matrix of Y is proportional to the covariance matrix
of X.

• Multiplicative noise. We have used Höhne’s variant [38]. In a first step,
each attribute value xij ∈ X is multiplied by 1 ± N(0, s), where s is an
input parameter. Then, a transformation is applied to preserve the first
and second-order moments.

• Multivariate microaggregation. We have used the MDAV heuristic [25]. In
microaggregation, we partition the records of X in groups of k or more
records, where records in a group are as similar as possible, and we replace
each record by the corresponding centroid.

• Rank swapping. Independently for each attribute, this method swaps the
attribute’s values within a restricted range: the ranks of two swapped
values cannot differ by more than p% of the total number of records,
where p is an input parameter.

More details about these methods can be found in Section 2.6.
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CHAPTER 6. RISK-UTILITY TRADE-OFF

Figure 6.1: Disclosure risk computed according to Eq. (6.1) for the anonymiza-
tion methods under test and several input parameters. The x-axis shows the
input parameter of the anonymization method (k, γ, p and s, respectively), so
its scale should be disregarded. The y-axis shows the disclosure risk value. Left,
“CENSUS” data set. Right, “EIA” data set.

6.4.1 Disclosure risk assessment

Recall that the comparison of anonymized data sets in Section 6.2 was per-
formed on data sets that had either the same level of risk or the same level
of utility. In this experimental work, we aim at determining which among the
previous anonymization approaches gives better utility at a given level of disclo-
sure risk. Thus, the first step is to find appropriate parameters for the previous
anonymization algorithms that result in a given level of disclosure risk.

Figure 6.1 shows the disclosure risk computed according to Equation (6.1)
for the anonymization methods under test:

1. The curve labeled “micro” shows the risk of multivariate microaggregation
for values of k ∈ {5, 10, 15, 20, 25, 50}.

2. The curve labeled “noise” shows the risk of correlated noise addition when
γ ∈ {0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 1, 3}.

3. The curve labeled “swap” shows the risk of rank swapping when p ∈ {0.01,
0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
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4. The curve labeled “Mnoise” shows the risk of multiplicative noise when
s ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1}.

For the “Census” data set, a possible match between methods occurs at
R(X,Y ) = 0.45 and is given by:

1. multivariate microaggregation with k = 5,

2. correlated noise addition with γ = 1,

3. rank swapping with p = 0.2, and

4. multiplicative noise with s = 0.5.

The microaggregation cluster size k = 5 may seem small compared to the pa-
rameter values that we get for the other methods. However, such a difference
in magnitude can be explained by the fact that multivariate microaggregation
is known to yield poorly homogeneous clusters when the number of dimensions
is large, even if the cluster size k is small.

For the “EIA” data set, a possible match between methods occurs atR(X,Y )
= 0.58 and is given by:

1. multivariate microaggregation with k = 5,

2. correlated noise addition with γ = 0.05,

3. rank swapping with p = 0.08, and

4. multiplicative noise with s = 0.3.

6.4.2 Utility assessment

We evaluate the utility of the anonymization methods for the parameters above
that were found to yield the same level of disclosure risk. The utility is evaluated
using the measures based on propensity scores and EMD, that were described
in Section 2.8.

We found in Section 6.4.1 that, for the “Census” data set, the SDC methods
being compared with parameters k = 5, γ = 1, p = 0.2 and s = 0.5, respectively,
yielded the same risk of disclosure. By comparing the utility measures for
these methods, we can determine which among them is preferable in this case.
Table 6.1 shows the results for the propensity scores and EMD measures. Both
utility measures are consistent and tell us that microaggregation has the best
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Table 6.1: Utility loss measured using propensity scores (Equation (2.10)) and
the earth mover’s distance (Equation (2.11)) for the anonymization methods
under test and for input parameters that were found to yield the same level of
disclosure risk.

Methods
CENSUS EIA

Propensity EMD Propensity EMD

Microaggregation 4.28× 10−4 0.16 2.17× 10−5 0.040
Correlated noise addition 3.83× 10−2 0.38 4.22× 10−5 0.065

Rank swapping 3.51× 10−3 0.28 9.01× 10−4 0.091
Multiplicative noise 6.3× 10−3 0.29 9.85× 10−5 0.066

utility, followed by rank swapping, multiplicative noise and, finally, correlated
noise addition.

For the “EIA” data set, the SDC methods being compared with parameters
k = 5, γ = 0.05, p = 0.08 and s = 0.3, respectively, yielded the same risk
of disclosure. The utility results for the propensity scores and EMD measures
for this data set are shown in Table 6.1. Like in the other data set, meth-
ods are consistently ranked by the both measures, but the ranking is different:
multivariate microaggregation has the best utility, followed by correlated noise
addition, multiplicative noise, and, finally, rank swapping.

The results have shown that the SDC methods under comparison perform
differently in different situations. Multivariate microaggregation always had the
best utility (at the given level of disclosure risk), but the relative utility perfor-
mance of the other methods changed between “Census” and “EIA”. This shows
that, unless there are good reasons for using a given anonymization method, it is
usually better to make several anonymizations at the desired level of disclosure
risk and select the one that has the greatest utility.

6.5 Summary

We have described a methodology to compare different anonymizations in terms
of the risk-utility trade-off they attain. It is not enough to compare methods
based on the level of risk or the utility they provide, because this gives only a
partial picture.

We have proposed a disclosure risk measure based on record linkage and in
the spirit of the permutation paradigm (which tells that disclosure risk control
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comes essentially from rank permutation)
We have contributed an experimental analysis for two well-known data sets

and four well-known anonymization methods. The results differ between data
sets. As a conclusion from the experimental analysis, the best strategy seems
to be to make several anonymizations at the desired level of disclosure risk and
select the one that has the greatest utility.
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Chapter 7

Conclusions and future
work

7.1 Conclusions

In this thesis, we have presented several protocols (two of them variants of ex-
isting protocols, four of them new, plus two trivial benchmark protocols) for
outsourcing two basic operations on sensitive numerical data vectors to un-
trusted clouds: scalar products and matrix products. Based on these opera-
tions, more complex data analyses can be performed, such as correlations and
contingency tables. The goal is to minimize the amount of work that needs to
be performed locally by the controller, who wants to use the cloud as much as
possible to compute on her outsourced sensitive data. For the sake of flexibility
and efficiency, we have considered non-cryptographic methods for data protec-
tion, such as data splitting and anonymization, rather than the heavier fully
homomorphic encryption. A distinguishing feature of our approach is that the
outsourced data on which the clouds compute retain some of the utility of the
original data, which entails added value with respect to outsourcing encrypted
or otherwise gibberish data.

If clouds can be assumed not to share information (perhaps because they
do not know each other), data splitting is probably the best choice, due to
simplicity and flexibility. We have proposed four protocols to compute on split
data. In case clouds can share information but have no side knowledge on the
original data set, we have proposed a sharing-resistant protocol based on orthog-
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onal noise matrices that shifts most of the computational burden to the clouds.
Finally, for the worst case, in which clouds share information and have side
knowledge allowing them to recognize the original data set, we have proposed
a sharing-resistant protocol relying on noise matrices derived via anonymiza-
tion. Although the latter protocol is heavier, it still substantially relieves the
controller (CLARUS) in computational terms.

If the data are nominal, multivariate analyses are even more challenging; the
reason is not just their potentially large computational cost, but also the diffi-
culty of performing the calculations involving data fragments stored in different
clouds. In this thesis, we propose efficient protocols to securely compute sta-
tistical dependence analyses on split outsourced data for frequency-based and
semantic-based tests.

We have provided complexity analyses and benchmarking for all proposed
protocols, in order to show their computational advantages for the outsourcing
controller. Further, we have provided experimental evidence that the new pro-
tocols take less effort from CLARUS than the benchmark protocols consisting of
downloading and local processing. In this way, clouds are not only used to store
sensitive data, but also to perform computations on these data in a privacy-
aware manner. This is especially interesting for large sensitive data sets. For
categorical data, experimental results clearly show that outsourcing the calcu-
lations to the cloud considerably decreases the workload of the data controller,
who can save more than 99.999 per cent of the runtime for the most demanding
test we considered.

Finally, we have described a methodology to compare different anonymiza-
tions in terms of the risk-utility trade-off they attain. It is not enough to
compare methods based on the level of risk or the utility they provide, because
that gives only a partial picture. We have proposed a disclosure risk measure
based on record linkage and in the spirit of the permutation paradigm (which
tells that disclosure risk control comes essentially from rank permutation). We
have contributed an experimental analysis for two well-known data sets and four
well-known anonymization methods. The results differ between data sets. As
a conclusion from the experimental analysis, the best strategy seems to be to
make several anonymizations at the desired level of disclosure risk and select
the one that has the greatest utility.

7.2 Publications

Next, we enumerate the publications that back the contents of this thesis:
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1. Domingo-Ferrer, J., Soria-Comas J., Ricci, S.: Disclosure risk assessment
via record linkage by a maximum-knowledge attacker. In 13th Annual In-
ternational Conference on Privacy, Security and Trust–PST 2015, Izmir,
Turkey, July 21-23, pp. 28-35. IEEE Computer Society (2015).

2. Calviño, A., Ricci, S., Domingo-Ferrer, J.: Privacy-preserving distributed
statistical computation to a semi-honest multi-cloud. In IEEE Conf. on
Communications and Network Security – CNS 2015, pp. 506-514. IEEE
(2015).

3. Ricci S., Domingo-Ferrer J., Sánchez D.: Privacy-preserving cloud-based
statistical analyses on sensitive categorical data. In Modeling Decisions for
Artificial Intelligence – MDAI 2016, LNCS 9880, pp. 227–238. Springer
(2016).

4. Domingo-Ferrer, J., Ricci, S., Soria-Comas, J.: A methodology to compare
anonymization methods regarding their risk-utility trade-off. In Modeling
Decisions for Artificial Intelligence – MDAI 2017, LNCS 10571, pp. 132-
143. Springer (2017).

5. Domingo-Ferrer, J., Ricci, S., Domingo-Enrich, C.: Outsourcing scalar
products and matrix products on privacy-protected unencrypted data
stored in untrusted clouds. Information Sciences, vol. 436-437, pp. 320-
342 (2018). Impact factor 4.832 (first decile).

6. Ricci, S., Muñoz-Batista, M., Sánchez, D., Domingo-Ferrer, J.: Outsourc-
ing analyses on privacy-protected multivariate categorical data stored in
untrusted clouds. In Knowledge-Based Systems (journal, second round of
review).

7.3 Future work

Concerning scalar products and matrix products, we plan to combine the numer-
ical methods presented in Chapter 3 to deal with data sets with heterogeneous
attribute types. Other scenarios more challenging than the honest-but-curious
CSPs assumption may also be considered for heterogeneous data, e.g., malicious
or colluding clouds as in the case of numerical data (Chapter 4). Furthermore,
we also intend to tackle outsourcing additional multivariate analyses for nom-
inal data, such as multidimensional scaling, multiple correspondence analysis
and non-linear principal component analysis.
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Optimizing the splitting process is another research avenue worth pursuing.
In our scenario, each CSP or CSP account stores a fragment of the orginal
data set. In this thesis, we did not discuss the right number of attributes in
each fragment. In fact, a fragment may contain one or several attributes. The
number of attributes per fragment is related to some privacy and processing
constraints. For instance, if we consider a medical data set, storing in the same
fragment ZIP code, gender and ethnicity can be disclosive. In fact, this is shown
in [68], where a 1990 federal census reports that in Dekalb, Illinois there were
only two black women who resided in that town. Moreover, some attributes need
to be stored in the same fragment for statistical analysis purposes. Therefore,
as future work we can try to minimize the number of CSPs that are needed to
store a data set using data splitting.
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