
29

Chapter 3

Approximation and Generation of

Digital Images Using Adaptive

Triangular Meshes

This chapter presents two new techniques for approximating digital images with adaptive

triangular meshes. The approximated images can represent gray-level images, range images

or digital elevation maps. The first technique approximates a given image with an adaptive

triangular mesh guaranteeing a maximum tolerance with respect to the original image. The

second technique approximates an image with an adaptive triangular mesh keeping image

discontinuities and avoiding optimization, although it does not ensure a maximum error.

Additionally, this chapter presents two new techniques for the generation of digital images

from triangular meshes. The first one samples the given adaptive triangular mesh uniformly

at as many pixels as pixels the original image has. The second technique generates an image

from an adaptive triangular mesh by taking advantage of graphics hardware acceleration.

This chapter is organized as follows. Section 3.1 introduces the proposed image

approximation techniques. Section 3.2 gives some basic definitions that will be used

throughout this dissertation. Section 3.3 describes two image approximation techniques by

30 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

using adaptive triangular meshes. Section 3.4 describes two techniques for the generation of

images from triangular meshes. The contents of this chapter are finally summarized in Sec-

tion 3.5.

3.1 Introduction

Images are commonly transferred and stored in a compact form through well-known repre-

sentations, such as gif and jpeg. Unfortunately, these representations are not well-suited for

applying further processing operations directly in the compressed domain. Therefore,

images codified in those formats must be uncompressed prior to being able to apply image

processing operations upon them, no matter how big and redundant the images are. None-

theless, some researchers have managed to apply various basic operations, such as

arithmetic, scaling and feature extraction, upon such compressed representations (Section

2.7).

An alternative solution to the problem of compactly representing images consists of the

utilization of geometric representations, such as triangular meshes. Those meshes allow to

model large areas of pixels with basic geometric primitives. For example, a large white

region can be represented by a few triangles instead of by tens of thousands of pixels. The

meshes obtained in this way adapt to the features of the input images by concentrating

points in areas of high curvature and by dispersing them over low variation regions. Geo-

metric representations are applicable since the pixels of an image can be considered to be

3D points in a space in which coordinates x and y are functions of the rows and columns of

the image, and coordinate z corresponds to the pixel’s property (such as gray level, range or

terrain elevation). Several algorithms have been proposed for approximating images by

using triangular meshes (see Section 2.6.1 and Section 2.6.2).

Besides being able to model digital images, triangular meshes can also be used for sim-

plifying and accelerating general image processing operations. The advantage of geometric

representations is that further processing operations can be directly applied in the 3D geo-

metric domain. For instance, scaling, translation and rotation operations can be simply

implemented by applying affine transformations to the 3D coordinates of the vertices that

BASIC DEFINITIONS 31

constitute the meshes. An algorithm that uniformly samples the resulting meshes suffices to

recover the corresponding images. Several fast techniques for processing images approxi-

mated by triangular meshes have been proposed in the literature, as described in Section 2.6.

The next section presents some definitions that will be used throughout this

dissertation.

3.2 Basic Definitions

A digital image is a two dimensional array I, where each array element ,

and , which is referred to as a pixel, is a scalar that represents a certain physical

magnitude (brightness, range, elevation, ...) measured by a sensor. R and C represent the

number of rows and columns of the digital image respectively.

When the sensor utilized to acquire the digital image allows to obtain pixel values rep-

resenting a certain gray level or intensity between black and white, the acquired digital

image is known as a gray-level image. Alternatively, if the pixel values represent the dis-

tance from a point on the surface of a 3D object to a virtual plane referred to the sensor

utilized to acquire the image, the digital image is known as a range image (also referred to

as a depth image). Another important type of digital images, typically used in digital photo-

grammetry, is known as digital elevation maps (DEM). The pixel values in a DEM model

represent terrain elevations from ground positions at regularly spaced horizontal intervals,

which allow to model terrain.

Each pixel of a digital image can be considered to be a point of coordinates ,

defined in a 3D space in which coordinates x and y represent the pixel’s column and row,

and coordinate z represents the pixel value: . The maximum value

that a pixel can take in a digital image will be referred to as . A digital image with all

its pixels being equal to zero defines a plane in the aforementioned 3D space. This plane

will be referred to as the reference plane of I (also referred to as the xy reference plane).

A 3D triangular mesh is a piecewise linear surface consisting of triangular faces con-

nected along their edges. Formally, a 3D triangular mesh M is a set , where

I r c,() r 0 R),[∈

c 0 C),[∈

x y z, ,()

x y z, ,() c r I r c,(), ,()=

ZMAX

V T,{ }

32 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

, m being the number of vertices in the mesh, is a set of vertex positions

that define the shape of the mesh in , and , n being the number of trian-

gles in the mesh, is a set of triangles that define the mesh topology. Each vertex is

defined by three coordinates , and each triangle is defined by three different

vertices.

A 21/2D triangular mesh is a particular case of a 3D triangular mesh in which all the

triangles are projectable without overlap onto the xy reference plane ().

An approximating image is a digital image generated from a 21/2D triangular mesh,

M, which approximates a given digital image I (the approximated image). Each element of

the approximating image, , is obtained as the intersection between the triangular

approximation, M, and a straight line orthogonal to the reference plane of I and passing

through point . If this intersection does not occur, the value of is set to zero.

The latter takes place when the boundary of the projection of M over the reference plane is

not a rectangle.

The approximation error associated with each digital image pixel is defined as

the difference between the approximated image point, , and the approximating

image point :

(3.1)

Figure 3.1 shows an example that illustrates the computation of the approximation error

 corresponding to a pixel of the triangular mesh M.

Considering the previous approximation error, the Root Mean Square Error (RMSE)

between the approximated image I and the approximating image is obtained as:

(3.2)

V v1 … vm, ,{ }=

R
3

T t1 … tn, ,{ }=

vi

x y z, ,() tj

z 0=

I
ˆ

I
ˆ

r c,()

c r 0, ,() I
ˆ

r c,()

ξ r c,()

I r c,()

I
ˆ

r c,()

ξ r c,() I r c,() Î r c,()–=

ξ r c,() I
ˆ

r c,()

I
ˆ

RMSE

ξ2
r c,()

c 0=

C 1–

∑
r 0=

R 1–

∑
R C⋅

---=

IMAGE APPROXIMATION WITH ADAPTIVE TRIANGULAR MESHES 33

3.3 Image Approximation with Adaptive Triangular Meshes

This section presents two new techniques to approximate digital images (images hereafter)

with adaptive triangular meshes. The obtained adaptive triangular meshes are compact rep-

resentations that model the original images with many fewer points. Hence, image

processing operations applied upon those triangular meshes may perform faster than upon

the original images.

The first technique applies a refinement algorithm in order to approximate a given

image with an adaptive triangular mesh. The proposed algorithm ensures a maximum RMS

error or tolerance with respect to the original image. Several algorithms have been proposed

in the literature to solve this problem, as it was described in Section 2.4. Those algorithms

apply split and merge techniques that decide what triangles are split or merged. They are

based on iterative optimization, in the sense that, at every iteration, they try to find the best

triangle to be subdivided or the best triangles to be merged. Such an approach is CPU

intensive.

Alternatively, the objective of the first proposed technique is the generation of an adap-

tive triangular mesh that approximates an image with a given tolerance, by applying an

Z

ξ r c,()

I
ˆ

r c,()

I r c,()

Figure 3.1. Computation of the approximation error . The thick polygonal line
represents a 2D section of the triangular mesh M that approximates the original image I.

ξ r c,()

M

I

34 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

iterative algorithm that utilizes a non-optimization adaptive sampling technique at each iter-

ation. This allows that the proposed technique converges faster than traditional mesh

refinement algorithms.

The second technique proposed in this dissertation approximates images with disconti-

nuity-preserving adaptive triangular meshes avoiding optimization techniques. In order to

tackle this problem, different techniques have been proposed in the literature. García, Sappa

and Basañez (1997b) propose an efficient algorithm for generating adaptive triangular

meshes from range images without optimization. This technique samples a predefined num-

ber of pixels by considering the curvatures present in the given range image. A problem of

this technique is that the discontinuities (contours) contained in the image are not specifi-

cally considered when the triangular mesh is generated. In this way, image contours are not

sufficiently preserved.

Unlike the technique proposed by García, Sappa and Basañez (1997b), the second

technique proposed in this dissertation explicitly models discontinuities. Hence, it is more

suitable for approximating gray-level images, since it takes into account both image curva-

tures and discontinuities.

The adaptive triangular meshes generated with any of the proposed techniques model

the given image with the constraint that the triangles do not overlap when they are projected

onto the reference plane of the image. Hence, each image pixel has a unique value in the

generated mesh.

The next section describes a technique for approximating digital images with adaptive

triangular meshes ensuring a maximum RMS error.

3.3.1 Approximation of Digital Images with Bounded Error Adaptive

Triangular Meshes

This section presents an iterative algorithm for approximating digital images with 21/2D

adaptive triangular meshes, guaranteeing a maximum root-mean-square (RMS) error or tol-

erance with respect to the original image. At each iteration, the algorithm applies a non-

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 35

iterative adaptive meshing technique. In this way, the proposed technique converges faster

than traditional mesh refinement algorithms. This technique consists of four main stages

that are summarized below.

First, an initial triangular approximation of the given image is obtained through the

application of a non-iterative adaptive sampling technique proposed in (García, Sappa,

Basañez, 1997a). The initial adaptive triangular mesh is then converted (backprojected) to

an approximating image by sampling it regularly. Once the approximating image is gener-

ated, its RMS error with respect to the given image is obtained. If the RMS error is below a

specified tolerance, the iterative process concludes. Otherwise, the regions of the approxi-

mating image whose error is above the tolerance (error regions) are detected. Afterwards,

the same adaptive sampling process is applied upon every error region until the RMS error

of the approximating image with respect to the original image is below the given tolerance.

The previous steps are further described below.

3.3.1.1 Initial Adaptive Triangulation

Given an image I with R rows and C columns, an initial triangular approximation is

obtained in two stages. In the first stage a predefined number of pixels is chosen from the

image by applying a non-iterative adaptive sampling technique proposed in (García, Sappa,

Basañez, 1997a). In the second stage, the chosen pixels are triangulated through a 2D

Delaunay algorithm (Shewchuck, 1996a). These stages are described below.

Image Adaptive Sampling

First, a curvature image is computed from the original image I. gives, for every

pixel , an estimation of its curvature. is generated by merging two curvature

estimations obtained along the horizontal, , and vertical, , directions of the image.

Both and are calculated starting with two initial estimations proposed in

(Yamada, Ishiguro, Uchikawa, 1993):

K K r c,()

I r c,() K r c,()

Krc
R

Krc
C

Krc
R

Krc
C

36 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

(3.3)

Then, a threshold operator is applied

(3.4)

The curvature estimation is finally calculated as the logical addition of the binary rep-

resentation of the previous terms:

(3.5)

According to this formulation, is a scalar between zero and α. The larger that

value is, the larger the curvature at will be. Parameter α has been set to 255 in order

to store the curvature estimation as an 8-bit image while maintaining enough resolution.

Considering that the background pixels must also be sampled, they have been given a con-

stant curvature value to guarantee that background regions are sampled and also to prevent

large concentrations of pixels near discontinuities.

Figure 3.2 shows an example of a real gray-level image and its associated curvature

image computed according to this technique. White regions represent high values of

, which correspond to areas with high curvature. On the other hand, dark regions

represent low values of , which correspond to homogeneous regions.

After the curvature image has been computed, both the original image and the curva-

ture image are divided into a predefined number of rectangular tiles. In particular, the

images are divided into H horizontal and V vertical partitions.

Krc
C ′

I r c 1–,() 2I r c,()– I r c 1+,()+=

Krc
R ′

I r 1– c,() 2I r c,()– I r 1+ c,()+=

α 0>()

Krc
C Krc

C ′
 Krc

C ′ α≤
 α otherwiseî




= Krc
R Krc

R ′
 Krc

R ′ α≤
 α otherwiseî




=

K r c,() Krc
R

Krc
C∨=

K r c,()

I r c,()

K r c,()

K r c,()

I

K

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 37

Taking this into account, a tile or window , , is

defined by two 2D points: an upper-left corner and a bottom-right corner

. Considering integer division, their coordinates are computed as:

(3.6)

Let be the image tile defined by a window when the latter is applied to the

original image . Every pixel of the image tile is defined as follows:

(3.7)

Figure 3.2. (left) Original gray-level image with 262,144 pixels (512x512). (right)
Corresponding curvature image.

Wvh v 0 V 1–,[]∈ h 0 H 1–,[]∈,

ulrvh ulcvh,()

brrvh brcvh,()

ulrvh
R
V
--- v= ulcvh

C
H
---- h=

brrvh

R
V
--- v 1+() v V 1–<

 R 1 v V 1–=–î



=

brcvh

C
H
---- h 1+() h H 1–<

C 1 h H 1–=–î



=

Ivh Wvh

I Ivh

Ivh r ′ c′,() I r′ ulrvh+ c′ ulcvh+,()=

38 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

Both parameters are local to the tile: , . Let

also be the curvature image tile defined by the same window on the curvature image

.

The objective at this point consists of choosing a predefined array of pixels with
�

rows and ζ columns from every image tile . Taking advantage that each tile can be con-

sidered to be a small image with its corresponding curvature estimation, this process can be

run in parallel by using high-performance computer architectures. Following the technique

proposed in (García, Sappa, Basañez, 1997a; Sappa, 1999, pp. 44),
�

x ζ pixels are sampled

as follows.

A set of ζ pixels is selected from each row of pixels of the tile based on their curvature

estimation. Let be a row of pixels of a given image tile (is a pixel in that

row,) and let represent the curvatures corresponding to that row. By

using the algorithm proposed in (García, 1995a), the curvature profile is mapped to an

unnormalized probability density function that represents the probability of selecting each

pixel from the image tile, such that pixels with high curvature will have a higher probability

of being selected for the mesh. The discrete, unnormalized probability density function

 is defined by applying a transformation function to the curvature profile:

(3.8)

The transformation function determines the variation of pixel density with respect to

the variation of curvature and has been defined as:

(3.9)

where is a proportionality constant that determines the maximum value of the density

function.

r ′ c′,() r ′ 0 R V⁄,[]∈ c ′ 0 C H⁄,[]∈

Kvh

K

Ivh

Ivhr ′ Ivhr ′ c ′()

c′ 0 C H⁄,[]∈ Kvhr ′

fvhr ′ c′()

fvhr ′ c ′() � Kvhr ′ c ′()()=

�

� x() K � x 1+()=

K �

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 39

Next, a discrete, unnormalized probability distribution function is obtained

as:

(3.10)

If the image space of is sampled at ζ uniformly distributed points, the appli-

cation of the inverse distribution function to those points leads to a set of ζ

points that are adaptively distributed according to . This principle is illustrated in

Figure 3.3. In our case, since the probability distribution corresponds to the curvature esti-

mation, the density of selected pixels will be correlated to the image curvature and, hence,

to shape variations.

In order to obtain given the set of ζ pixels y uniformly distributed between

zero and the maximum , a table keeping the values for all the

 is computed. Then, a single iteration traverses this table, extracting those

positions such that . A vector of horizontal sampled pixels ,

, keeping the different s, is obtained in this way.

This process is repeated for every row of the image tile , producing an (R/V+1) x

ζ array:

(3.11)

For each value j, if we iterate over , we obtain a collection of pixels

that determine a “vertical” curve in the original image. Going over all the different j values,

we obtain a collection of vertical curves that tend to adapt to the shape of the underlying

objects contained in the image, coming closer in areas of fast shape variation. An example

that illustrates the previous process is shown in Figure 3.4. Figure 3.4(right) shows the set

of vertical curves obtained by applying a tessellation with 30 tiles (H = 5 and V = 6), with 8

Fvhr ′ c′()

Fvhr ′ c ′() fvhr ′ i()
i 0=

c ′

∑ fvhr ′ 0()–=

Fvhr ′ c ′()

F
1–

vhr ′ y()

fvhr ′ c′()

Fvhr′
1–

y()

Fvhr ′ c′() Fvhr ′ c′()

c′ 0 C H⁄,[]∈

c′ Fvhr ′ c′() y= HSvhr ′ j()

j 0 ζ),[∈ c′

r ′ Ivh

HSvh r′ j,() HSvhr ′ j() r ′ 0 R V⁄,[]∈ j 0 ζ),[∈, ,=

r′ r ′ HSvh r ′ j,(),()

40 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

columns per tile (ζ = 8), to both the original and curvature images, Figure 3.4(left) and Fig-

ure 3.4(middle) respectively.

Each vertical curve obtained above corresponds to one of the columns of the tile being

processed. In order to obtain the rows of the tile, each of these curves is adaptively sampled

at
�

positions (
�

is the input parameter that indicates the number of rows per tile). The pro-

cess is similar to the previous one, which leads to horizontal samples from rows of pixels

extracted from the tile. The difference now is that a curvature profile is obtained from the

positions of the pixels that belong to one of the curves, instead of from the positions corre-

sponding to a horizontal row of pixels. Again, each tile is processed separately.

fvhr ′ c′()

c′

Fvhr ′ c′()

ζ
un

if
or

m
 s

am
pl

es

ζ adaptive samples

c′

Figure 3.3. (top left) Curvatures associated with each row of an image tile. (top right)
Unnormalized probability density function that represents the curvature
associated with every pixel of row . (bottom right) Uniform sampling of the image
space of the corresponding unnormalized probability distribution function
gives a set of points whose density varies according to .

r ′
fvhr ′ c′()

c′ r ′
Fvhr ′ c′()

fvhr ′ c′()

c′

r ′

Curvature Tile

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 41

Let , , represent the vertical curve corre-

sponding to a certain column j, . The 2D positions of the pixels belonging to that

curve are .

The unnormalized probability density function corresponding to the curvature profile

associated with each curve is an adaptation of Equation (3.8):

. Similarly to Equation (3.10), an unnormalized probabil-

ity distribution function is computed. The image space of this distribution function

is uniformly sampled at
�

positions y, and the inverse distribution function is

applied to them in order to obtain a set of
�

pixels such that . A vector of

vertical sampled pixels , , keeping the different s, is obtained in this

way. In the end, we obtain an
�

x ζ array of horizontal and vertical sampled pixels for

every tile, whose elements are:

(3.12)

Figure 3.4. (left) Tiles superimposed on the original image. (middle) Tiles superimposed on
the curvature image. (right) Vertical curves computed after adaptive horizontal
sampling, whit H = 5, V = 6 and ζ = 8.

VCvhj r ′() HSvh r ′ j,()= r ′ 0 R V⁄,[]∈

j 0 ζ),[∈

r ′ VCvhj r′(),()

fvhj r ′() � Kvh r ′ VCvhj r ′(),()()=

Fvhj r ′()

Fvhj
1–

y()

r ′ Fvhj r ′() y=

VSvhj i() i 0
�),[∈ r ′

HVSvh i j,() VSvhj i() HS,
vh

VSvhj i() j,()()=

42 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

In summary, given an image tile and its associated curvature image ,

 contains the 2D coordinates of the pixel selected for each row i and

column j of the given tile.

Since the boundaries of adjacent tiles are overlapped along one line of pixels and the

pixels sampled in that line will coincide, the sampled pixels will be arranged as an array of

 rows and columns, with (
�

, ζ) being the number of rows and

columns per tile, and (V, H) being the number of vertical and horizontal partitions of the

original digital image into tiles. Therefore, the elements of the 2D array HVS, which keeps,

for every position, the coordinates of the sampled pixels, are computed as:

(3.13)

Figure 3.5(left) shows the set of vertical and horizontal sampled pixels obtained from

all the tiles in which the original test image has been partitioned, considering H = 5, V = 6

and
�

= ζ = 8. A similar number of uniformly sampled pixels is shown in Figure 3.5(right).

Notice that the sampled pixels in the adaptive distribution tend to concentrate in areas of

Ivh Kvh

HVSvh i j,() r′ c′,()

�
1–()V 1+ ζ 1–()H 1+

r c,()

HVS v
�

1–() i+ h ζ 1–() j+,() HVSvh i j,() ulrvh ulcvh,()+=

Figure 3.5. (left) Horizontal and vertical sampled pixels with H = 5, V = 6 and
�

= ζ = 8, by
applying the adaptive sampling process: 1,548 pixels. (right) Similar number of pixels
by applying uniform sampling: 1,521 pixels.

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 43

high curvature, highlighting the shape of the objects contained in the image, whereas the

chosen pixels are regularly sampled in the uniform distribution.

As mentioned above, the number of tiles (H and V) and the number of pixels per tile (
�

and ζ) are defined by the user. When a high number of tiles are considered, it leads to bad

distributions of vertical curves, which produces uniformly-sampled pixels. When few tiles

are considered, it leads to pixels concentrating in high curvature regions. Consequently, an

intermediate number of tiles must be experimentally set. Figure 3.6 shows examples of

these two cases.

Figure 3.6. (left column) Vertical curves sampled by setting: (top) H = V = 13 and
�

= ζ = 4,
and (bottom) H = V = 3 and

�
= ζ = 14. (right column) Sampled pixels from the

previous vertical curves: 1,600 pixels in both examples.

44 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

21/2D Triangulation of Sampled Pixels

After the previous adaptive sampling, a set of x pixels is

selected from the original image. The objective now is to apply a 21/2D triangulation to the

sampled pixels in order to obtain a triangular mesh that approximates the given image. This

is done as follows.

As described above, each sampled pixel has an associated position in the origi-

nal image. The value stored in that location represents a property of the pixel, such as a gray

level, range or terrain elevation. Thus, a 3D point is defined from each sampled

pixel by considering that both the x and y coordinates correspond to the pixel’s column, ,

and row, , respectively, and the z coordinate corresponds to the pixel’s property. A 21/2D

triangulation is applied to those 3D points by projecting them onto the xy image reference

plane. Then, a 2D Delaunay algorithm (Shewchuck, 1996a) is applied to their

coordinates. Finally, the 21/2D triangular mesh is obtained by linking the 3D points accord-

ing to the resulting 2D triangulation. The result of this process is illustrated in Figure

3.7(left), which shows the initial adaptive triangular mesh that approximates the given

image with 1,548 points.

R 1–()V 1+() ζ 1–()H 1+()

r c,()

x y z, ,()

c

r

x y,()

Figure 3.7. (left) Initial triangular mesh generated from the set of adaptively sampled pixels
in Figure 3.5(left). (right) Approximating image obtained from the previous triangular
mesh.

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 45

3.3.1.2 Generation of the Approximating Image

Once the initial adaptive triangular mesh has been computed, it is necessary to obtain its

corresponding approximating image in order to determine the accuracy with which that

mesh approximates the original image. This is done by uniformly sampling the 21/2D trian-

gular mesh at as many positions as pixels the original image has (mesh backprojection). A

detailed description of two methods to obtain approximating images from 21/2D triangular

meshes is presented in Section 3.4. The approximating image (with 262,144 pixels) corre-

sponding to the initial adaptive triangular mesh shown in Figure 3.7(left) is presented in

Figure 3.7(right).

3.3.1.3 Determination and Resampling of Error Regions

If the RMS error of the approximating image, computed according to Equation (3.2), is

below the specified tolerance, the algorithm concludes and the adaptive triangular mesh

obtained above is already the solution. Otherwise, the algorithm proceeds by identifying the

regions of the approximating image whose error with respect to the original image is above

the tolerance. This process is described below.

First, an error image is obtained by subtracting each pixel of the original image from

the corresponding pixel of the approximating image, and by taking the absolute value,

Equation (3.1). The result is shown in Figure 3.8(left). This error image is converted to a

binary image by thresholding it with the given tolerance. Figure 3.8(middle) shows the

binary image obtained for the current example.

All black regions in the binary image represent error regions that must be resampled.

The binary image is labelled in order to determine the different error regions contained in it.

Then, an enclosing rectangle for each separate error region is computed, such as it is illus-

trated in Figure 3.8(right). Very small enclosing rectangles (e.g., less than 3x3 pixels) are

discarded. If the horizontal size of an enclosing rectangle is larger than the horizontal size of

the initial tiles, that rectangle is horizontally subdivided into the minimum number of rect-

angles such that their corresponding horizontal sizes are less than or equal to the tile’s

horizontal size. The same procedure is applied to the vertical direction. Hence, the size of an

46 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

enclosing rectangle is guaranteed to be lower or equal to the size of a tile. Figure 3.9(left)

illustrates the enclosing rectangles corresponding to all the separate error regions superim-

posed on the binary image.

Each enclosing rectangle obtained above delimits a region that must be resampled.

This resampling process consists of applying the same adaptive sampling technique

described in Section 3.3.1.1, although with each enclosing rectangle being now considered

to be a single tile. The number of pixels adaptively sampled over each tile is not predefined

as it was before, but computed as k times the number of pixels previously sampled over it,

with k being a real larger than one. For instance if k = 1.5, the result will be a fifty per cent

increase of pixel density at each enclosing rectangle. The old pixels sampled in each enclos-

ing rectangle are substituted for the new ones.

The new set of sampled pixels is the result of merging the pixels resampled in the

enclosing rectangles and the old sampled pixels that did not belong to any enclosing rectan-

gle. Figure 3.9(right) shows the new adaptive pixel distribution obtained when the previous

process is applied to the found enclosing rectangles.

Figure 3.8. (left) Error image obtained by applying Equation (3.1) to the original gray-level
image, Figure 3.2(left), and the approximating image, Figure 3.7(right). (middle) Binary
image obtained from the error image by applying a threshold equal to the given
tolerance (12). (right) Enclosing rectangle corresponding to a certain error region.

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 47

3.3.1.4 Delaunay Retriangulation

The new resampled pixels and the old ones that did not belong to any enclosing rectangle

are retriangulated by applying the 2D Delaunay algorithm (Shewchuck, 1996a). At this

point, the image approximation algorithm proceeds to refine the obtained triangular mesh

by iterating from the approximating image generation step (Section 3.3.1.2) until the RMS

error of the approximating image is below the given tolerance. Figure 3.10(top middle)

shows the adaptive triangular mesh obtained from the final set of sampled pixels displayed

in Figure 3.10(top left). This mesh was generated after 4 iterations, given a tolerance equal

to 12. The total CPU time was 10.3 sec. on a SGI Indigo II with a 175MHz R10000 proces-

sor. The approximating image obtained from the previous mesh is shown in Figure 3.10(top

right). The results when a uniform sampling is applied to the original image, considering a

similar number of pixels, are shown in Figure 3.10(bottom). Notice that the uniform sam-

pling technique misses details (contours) which are captured by the proposed adaptive

sampling technique.

Figure 3.9. (left) Enclosing rectangles for detected error regions in the initial approximating
image. (right) New adaptive distribution of pixels obtained when the adaptive sampling
process is applied to the enclosing rectangles, and the new pixels are merged to the old
pixels that did not belong to any enclosing rectangle (2,645 pixels).

48 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

3.3.1.5 Experimental Results

The proposed algorithm has been tested upon various real images. All CPU time were mea-

sured on a SGI Indigo II with a 175MHz R10000 processor.

Figure 3.11 shows three of the test images. The left image, Cotopaxi volcano, was ini-

tially partitioned into 30 tiles (H = 5 and V = 6), and 64 pixels (
�

= ζ = 8) were adaptively

sampled over each tile. The given RMS error was set to 12. Taking into account the previ-

ous initial parameters, 9,546 pixels were finally sampled with the proposed technique in 5

iterations, Figure 3.12(left column, top). The adaptive triangular mesh generated from the

Figure 3.10. (top left) Final set of pixels obtained with the proposed adaptive sampling
technique, 7,772 pixels. (top middle) Adaptive triangular mesh generated from the
previous points. (top right) Approximating image obtained from the previous triangular
mesh, RMS = 11.2. (bottom left) Similar number of pixels obtained by applying the
uniform sampling technique, 7,921 pixels. (bottom middle) Triangular mesh generated
from the previous points. (bottom right) Approximating image obtained from the
previous triangular mesh, RMS = 14.2.

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 49

previous points is shown in Figure 3.12(middle column, top). The total CPU time was 11.81

sec. The approximating image obtained from the mesh shown in Figure 3.12(middle col-

umn, top) is displayed in Figure 3.12(right column, top). The RMS error of the previous

approximating image is 11.48. The middle image (Peppers), Figure 3.11(middle), was parti-

tioned into H = 5 and V = 6 tiles, and
�

= ζ = 8 pixels were adaptively sampled over each

tile. The maximum RMS error was set to 14. 7,644 pixels were finally sampled in 4 itera-

tions, Figure 3.12(left column, middle). The total CPU time was 7.86 sec. The

approximating image obtained from the mesh shown in Figure 3.12(middle column, middle)

is displayed in Figure 3.12(right column, middle). The RMS error of the approximating

image is 13.45. Finally, a range image (Bust), Figure 3.11(right), was partitioned into H = 6

and V = 4 tiles, and
�

= ζ = 8 pixels were adaptively sampled over each tile. The maximum

RMS error was set to 4. A total of 4,187 pixels were finally sampled after 7 iterations, Fig-

ure 3.12(left column, bottom). The total CPU time was 4.98 sec. The approximating image

obtained from the adaptive triangular mesh shown in Figure 3.12(middle column, bottom) is

presented in Figure 3.12(right column, bottom). Its RMS error is 3.89.

The triangular meshes obtained with the proposed technique do not have to store the

mesh topology, since they can be directly recovered by triangulating the sampled pixels. In

this way, the generated triangular meshes are kept in a compact representation by only sav-

Figure 3.11. Some test images. (left) Gray-level image (Cotopaxi volcano) with 262,144
pixels (512x512). (middle) Gray-level image (Peppers) with 262,144 pixels (512x512).
(right) Range image (Bust) with 104,937 pixels (399x263).

50 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

ing the coordinates of each sampled vertex: . For example, for 512x512x256

images, 4 bytes per vertex are necessary. After downloading the vertices into memory, they

are triangulated by applying a 2D Delaunay algorithm. Considering the previous compact

representation, the compression ratios corresponding to the meshes shown in Figure

3.12(middle column) are: (top) 6.9:1, (middle) 8.6:1 and (bottom) 6.3:1.

Figure 3.12. (left column) Final set of sampled points: (top) 9,546, (middle) 7,644 and
(bottom) 4,187 points. (middle column) Adaptive triangular meshes generated from the
previous points. (right column) Approximating images with RMS errors: (top) 11.5,
(middle) 13.4 and (bottom) 3.9.

c r I r c,(), ,()

APPROXIMATION OF DIGITAL IMAGES WITH BOUNDED ERROR ADAPTIVE TRIANGULAR MESHES 51

The proposed algorithm has been compared with a mesh refinement algorithm based

on iterative optimization (Ciampalini et at., 1997). An implementation of the latter, called

JADE (Just Another Decimator), is publicly available. JADE starts with a dense triangular

mesh, which in our case contains all the pixels of the given image, and obtains a decimated

mesh with a predefined number of vertices that minimizes the approximation error. The tri-

angular meshes generated with JADE (and with optimization-based algorithms in general)

can not be recovered from the vertices themselves. Hence, each triangle must also be saved

as three integers containing indices to its vertices. In the optimistic case that the number of

sampled vertices is lower than 65,536, short integers (2 bytes) can be utilized.

Figure 3.13 displays compression ratios versus RMS errors for Lenna, considering

both JADE and the proposed technique. The proposed technique was run for various toler-

ances. JADE was run to decimate the original images until it produced the same number of

vertices as the proposed technique. In all cases, the RMS error with the proposed technique

was slightly lower than with JADE. Moreover, the proposed technique was up to two orders

of magnitude faster than JADE. For instance, the approximation of Lenna for tolerance 12

took 10.3 sec. with the proposed technique and 2,626 sec. with JADE. Figure 3.14 shows

Figure 3.13. Compression ratio vs. RMS error for a gray-level image (Lenna) with 512x512
pixels, by considering a fine-to-coarse optimization technique (JADE) and the proposed
adaptive sampling technique.

52 APPROXIMATION AND GENERATION OF DIGITAL IMAGES USING ADAPTIVE TRIANGULAR MESHES

the CPU time versus RMS error considering both approaches. Notice that, when an adaptive

triangular mesh with a low RMS error is required, the decimation technique behaves better

than the proposed technique. This occurs because the final triangular mesh is similar to the

original mesh, the latter being the starting point of the decimation algorithm. On the other

hand, when a coarse adaptive triangular mesh is required, the proposed technique is more

suitable than the decimation approaches. In this case, the solution is closer to the coarse

mesh utilized as the starting point of the proposed technique.

Figure 3.14. (top) CPU time vs. RMS error for Figure 3.13(left), by considering a fine-to-
coarse optimization technique (JADE) and the proposed adaptive sampling technique.
(bottom left) CPU time vs. RMS error with JADE. (bottom right) CPU time vs. RMS
error with the proposed technique.

