
ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION OF TRIANGULAR MESHES 95

4.2.4 Algebraic Operations upon 21/2D Triangular Meshes

This section describes a set of algorithms to apply algebraic operations to 21/2D triangular

meshes. The algebraic operations have been classified into two basic categories: arithmetic

and logic operations. The developed arithmetic operations include addition and subtraction,

while the logic operations include: AND, NAND, OR, NOR, XOR and NOT. These opera-

tions are performed upon a pair of triangular meshes, except for the NOT logic operation,

which only requires a single mesh.

The proposed techniques utilize an algorithm that allows to perform boolean opera-

tions between 2D polygons (Murta, 1999). A public implementation of that algorithm is

available. It supports four boolean operations: intersection (AND), difference, exclusive-or

(XOR) and union (UNION). The application of these operations to two simple polygons is

shown in Figure 4.16. In each case, the resulting polygons after applying the respective

boolean operation are displayed in dark. Similar algorithms can also be found in (Schutte,

1995; Zalik, Gombosi, Podgorelec, 1998).

4.2.4.1 Arithmetic Operations: Addition and Subtraction

The addition and subtraction operations described in this section are applied to a pair of tri-

angular meshes. These operations combine the given meshes into a single mesh.

The proposed algorithm consists of three main stages. The first stage identifies the

intersection bounding box between the two triangular meshes to be operated, such as in Fig-

ure 4.17(top left). Taking into account this bounding box, the algorithm labels the triangles

of both meshes according to their position. The triangles that are totally inside the intersec-

tion bounding box are labeled as interior, while the triangles that are outside the intersection

bounding box are labeled as exterior. The triangles that have a part inside and another part

outside the intersection bounding box are labeled as frontier. Figure 4.17(top right) shows

an example of the different types of triangles that are considered by the proposed algorithm.

The second stage of the algorithm intersects the triangles of both meshes that have

been labeled as interior or frontier. This stage assumes that each triangle of a mesh repre-

sents a polygon that should be intersected with its corresponding intersection triangle

96 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

(polygon) of the other mesh. The intersection between both triangles is performed through

an algorithm that performs an AND boolean operation between two 2D polygons (Murta,

1999). After the AND operation has been applied, a set of intersection points is generated.

Each intersection point must be added or subtracted (only its z coordinate), by computing

the plane equations that correspond to the intersected triangles and by evaluating the

coordinates of the intersection point in those plane equations. The z coordinates obtained in

this way are added or subtracted according to the specified mathematical operation. The

segments that define the boundaries of the intersection regions are kept as constraints for

the next triangulation process, Figure 4.17(bottom left).

Figure 4.16. Polygons (dark regions) obtained after applying boolean operations between
two 2D polygons by using the algorithm presented in (Murta, 1999): (top left)
intersection, (top right) difference, (bottom left) exclusive-or and (bottom right) union.

x y,()

ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION OF TRIANGULAR MESHES 97

The third stage of the algorithm generates the final triangular mesh. This stage uses as

input data the vertices of the exterior triangles and the previously obtained intersection

points. Additionally, the topology of the exterior triangles and the segments that define the

boundaries of the found intersection regions are considered as constraints for the triangula-

tion. Those data are triangulated by applying the 2D Delaunay triangulation algorithm

described in (Shewchuk, 1996). Figure 4.17(bottom right) illustrates the final mesh

obtained for the current example.

Figure 4.17. Illustration of the addition or subtraction process between two triangular
meshes, M1 and M2. (top left) Detection of the intersection bounding box. (top right)
Labeling of triangles according to their position in the intersection bounding box.
(bottom left) Intersection regions and intersection points generated between intersected
triangles. (bottom right) Resulting triangular mesh after applying the arithmetic
operation.

intersection regions

intersection bounding box

M1 M2

intersection
points

frontier triangles

exterior triangles
interior triangles

M1 M2

98 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

The different stages of this algorithm are further described below.

Determination of the Intersection Bounding Box

Given two 21/2D triangular meshes, M1 and M2, referred to the same global coordinate sys-

tem, the first stage of the algorithm consists of determining the intersection bounding box

between M1 and M2 on the xy reference plane. Afterwards, the algorithm labels the triangles

of both M1 and M2 by taking into account the position of those triangles with respect to the

bounding box. These steps are described below.

Several cases of intersection between the two input meshes may occur. Figure 4.18

shows those cases in considering different relative positions between them. The first step of

this stage determines the intersection bounding box between M1 and M2 on the xy reference

plane, such as it is shown in Figure 4.17(top left).

Afterwards, the algorithm labels the triangles of every mesh by taking into account

whether their vertices are inside or outside the found intersection bounding box. Three

labels are given: a triangle is labeled as interior if its three vertices are totally contained

inside the intersection bounding box; if all the vertices are outside the intersection bounding

box, the triangle is labeled as exterior; the triangle is labeled as a frontier if at least one of its

vertices is interior and the others are exterior to the intersection bounding box. If one or

more vertices of the triangle are on the border of the intersection bounding box and the

other vertices are exterior or interior to it, the triangle is labeled either as exterior or interior,

Figure 4.17(top right).

Generation of Intersection Regions

The aim of this stage is to obtain the regions generated after intersecting the triangles over-

lapped between M1 and M2. These regions are generated over the triangles that have been

labeled either as interior or frontier as follows.

Consider two overlapped triangles, T1 and T2, belonging to M1 and M2 respectively.

Both triangles are intersected by projecting them onto the xy reference plane, Figure

4.19(left), and then, by using an algorithm that allows to perform boolean operations

ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION OF TRIANGULAR MESHES 99

between 2D polygons (Murta, 1999). An AND operation is performed upon both projected

triangles. Their intersection generates an intersection region that is defined on the xy plane,

Figure 4.19(right). This region contains a set of intersection points and a set of segments

that delimit the region boundaries. Those segments are considered as constraints in the next

triangulation process.

Finally, the coordinates of every obtained intersection point are evaluated in the

plane equations corresponding to T1 and T2 in order to determine the z coordinates inside T1

and T2. The found z coordinates are added or subtracted according to the desired operation,

Figure 4.19(right).

The previous steps are applied until all the overlapped triangles have been considered.

Figure 4.18. Determination of the intersection bounding box (shaded box) between two
triangular meshes, M1 and M2. (top left) When M1 and M2 are partially intersected. (top
right) When M1 (M2) is totally contained inside M2 (M1). (bottom left) When M1 and M2

are totally intersected and have the same bounding box size. (bottom right) When M1

and M2 are not intersected.

X

Y

X

Y

M1 = M2

M1 (M2)

M2 (M1)

X

Y

M1 (M2) M2 (M1)

X

Y M1 (M2)
M2 (M1)

x y,()

100 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

Generation of the Triangular Mesh

The final aim of this algorithm is the generation of a triangular mesh from the set of vertices

that have been labeled as exterior and from the points obtained after applying the intersec-

tion process. The triangulation process utilizes the exterior triangles as constraints, as well

as the segments that delimit the boundaries of the intersection regions obtained before. The

resulting mesh is obtained by using the 2D constrained Delaunay triangulation proposed in

(Shewchuk, 1996). Figure 4.17(bottom right) displays the final triangular mesh generated

for the current example.

Experimental Results

Different adaptive triangular meshes have been processed by using the aforementioned

arithmetic operations. Those meshes were generated with the algorithm described in Sec-

tion 3.3.2. In particular, this section presents the results obtained after applying the addition

operation upon two triangular meshes, and after performing an integration process upon a

group of triangular meshes. In both cases, the CPU times were measured on a SGI Indigo II

with a 175MHz R10000 processor.

Figure 4.19. (left) Projection of T1 and T2 on the xy reference plane. (right) Intersection
region between T1 and T2 on the xy reference plane. This intersection region is mapped
to the 3D space by evaluating the coordinates of every obtained intersection point
in the plane equations corresponding to T1 and T2 in order to determine the z coordinates
inside T1 and T2. The found z coordinates are added or subtracted according to the
desired arithmetic operation.

x y,()

T1

T2

P3

P0 P1

P2

P3′
Z

X

Y
X

Y

Z

intersection
region

P2′

P1′
P0′

ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION OF 3D TRIANGULAR MESHES 101

Figure 4.20(left column) illustrates the two triangular meshes to be added. These

meshes are approximations of 8-bit images. Their respective approximating images are

shown in Figure 4.20(right column). Those input meshes contain 2,461 and 2,624 points

respectively. The CPU time after applying the addition operation was 21.18 sec. The result-

ing mesh is displayed in Figure 4.21(left). This mesh contains 19,776 points. The same

addition operation was applied to the corresponding 8-bit images by using CVIPtools

(Umbaugh, 1998), a conventional image processing software. In this case, the addition

Figure 4.20. (left column) Input triangular meshes to be merged with the proposed addition
operator: (top) 2,461 and (bottom) 2,624 points. (right column) Approximating images
generated from the previous meshes. Both images contain 262,144 pixels (512x512).

+

102 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

operation with CVIPtools was performed much faster than with the proposed technique. For

example, the CPU time with CVIPtools was 0.14 sec.

As with the image quantization algorithm, the arithmetic operations are much more

costly in the geometric domain than in the image domain. Therefore, they are only useful

when the input data are triangular meshes representing, for instance, terrain surfaces.

The proposed technique can also be used as a tool for integrating triangular meshes,

such as it is shown in the following example. Figure 4.22 shows a group of triangular

meshes that are representations of DEM,s corresponding to the Balearic Islands. Those

meshes contain 1,828 and 1,673 points, Figure 4.22(top left) and Figure 4.22(top right), and

1,654 and 1,307 points, Figure 4.22(bottom left) and Figure 4.22(bottom right). These

meshes were integrated in pairs: First the two top meshes, then the two bottom meshes and

finally the two resulting meshes obtained before.

The total CPU time after applying the whole integration process was 22.98 sec., giving

Figure 4.21. (left) Resulting triangular mesh obtained after applying the addition operation
to the meshes shown in Figure 4.20(left column). This mesh contains 19,776 points.
(right) Approximating image generated from the previous mesh.

LOGIC OPERATIONS: AND, NAND, OR, NOR, XOR, NOT OF TRIANGULAR MESHES 103

rise to a triangular mesh with 13,369 points. That mesh is displayed in Figure 4.23(top). The

corresponding rendered triangular mesh is shown in Figure 4.23(bottom).

4.2.4.2 Logic Operations: AND, NAND, OR, NOR, XOR and NOT

Given two triangular meshes, M1 and M2, which have been obtained after applying the

thresholding algorithm proposed in Section 4.2.2, this section describes an algorithm to per-

form AND, NAND, OR, NOR and XOR logic operations upon them, and an algorithm to

perform the NOT logic operation, which only requires a single mesh.

Figure 4.22. Group of triangular meshes to be integrated with the proposed addition
operator. Those meshes contain: (top left) 1,828, (top right) 1,673, (bottom left) 1,654
and (bottom right) 1,307 points respectively. The given meshes are DEM
representations of the Balearic Islands.

+

++

+

104 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

The NOT logic algorithm simply consists of finding the negative version of a given

mesh. In this way, it only modifies the position of the z coordinate of every mesh point. For

example, if the given mesh represents an 8-bit gray level image, the new coordinate for

every mesh point is calculated as , where , represents

the maximum z coordinate corresponding to the points of the given mesh and is the

maximum gray level value for 8-bit images. An example that illustrates this process is

shown in Figure 4.24.

Figure 4.23. (top) Resulting triangular mesh obtained after applying the integration process
to the previous triangular meshes. The final mesh contains 13,369 points. (bottom)
Rendered triangular mesh.

z′

z′ ZMAX z–= z 0 Zmax,[]∈ Zmax

ZMAX

LOGIC OPERATIONS: AND, NAND, OR, NOR, XOR, NOT OF TRIANGULAR MESHES 105

On the other hand, the algorithm for implementing the AND, NAND, OR, NOR and

XOR logic operations in the geometric domain consists of two stages that are described

below.

Logic Operations Among Polygons

This stage considers that the given meshes, M1 and M2, are representations of binary images

that have been generated with the thresholding algorithm presented in Section 4.2.2. Fur-

thermore, it considers that those meshes should be overlapped and that the z coordinate

values of their points can only be either 0 or . The two examples of these meshes

shown in Figure 4.25(left column) will be used to illustrate the application of the proposed

logic operations.

Figure 4.24. NOT logic operation. (top row) Input triangular mesh with 1,649 points, and
the respective approximating image. The given mesh approximates a gray level image
with 65,536 pixels. (bottom row) Mesh obtained after applying the NOT logic operation
and its approximating image.

ZMAX

106 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

Initially, the algorithm determines and labels the triangles that represent the vertical

walls of the given meshes (vertical triangles). Those triangles are determined by computing

the angle of the normal vector of every triangle with respect to the xy reference plane. If this

angle is close to 0, the triangle is labeled as a vertical triangle. Figure 4.26(left column)

shows an example of the vertical triangles obtained from the test meshes.

Afterwards, starting with the vertical triangles previously found, the algorithm obtains

a set of closed polygons that represent the white areas of the given meshes. Each closed

polygon is obtained by starting with a single segment (edge) of a vertical triangle. The z

coordinates of the endpoints of this segment (the initial segment) are equal to . Start-

ing with this initial segment, an adjacent segment belonging to another vertical triangle is

linked to it by taking into account that two segments are adjacent if both of them share an

endpoint. This last step is applied until the closed polygon is formed. The previous steps are

Figure 4.25. (left column) Input triangular meshes to which the proposed logic operations
are applied. (right column) Approximating images generated from the previous
triangular meshes.

ZMAX

LOGIC OPERATIONS: AND, NAND, OR, NOR, XOR, NOT OF TRIANGULAR MESHES 107

iterated in order to generate the remaining closed polygons. When all the vertical triangles

of both meshes, M1 and M2, have been analyzed, a set of polygons is generated for every

mesh, P1 and P2. Figure 4.26(right column) shows the polygons obtained for the current

example. They represent the white areas of the given meshes.

Once both sets of polygons, P1 and P2, have been obtained, the next step consists of

applying the required logical operation to them. In this way, the algorithm initially projects

P1 and P2 onto the xy reference plane (), such as illustrated in Figure 4.27(left). Then,

depending on the specified logical operation, the algorithm proceeds as follows:

AND and NAND Operations

In this case the AND operation proposed in (Murta, 1999) is applied as many times as inter-

sections between the projected polygons P1 and P2 there are. The resulting intersection

regions are mapped to the 3D space by changing the z coordinate value of the intersection

Figure 4.26. (left column) Triangles representing the vertical walls of the input meshes.
(right column) Polygons representing the black and white areas of the input meshes.

triangles - vertical walls

triangles - vertical walls

polygon - black area

polygon - black area

polygon P1 - white area

polygon P2 - white area

z 0=

108 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

points to . Thus, these regions define a set of polygons Pw , which represent the new

white areas in the final mesh. Figure 4.27(middle) shows an example of this process.

Finally, the algorithm generates the respective polygons Pb that define the new black

areas. In the first place, the bounding box between M1 and M2 is generated. Then, the differ-

ence operation proposed in (Murta, 1999) between that bounding box and the polygons Pw

is applied onto the xy reference plane. The regions obtained after the difference operation

constitute the polygons Pb that define the black areas. The z coordinate of all the points that

belong to Pb is set to 0. Figure 4.27(right) shows the polygons Pb obtained for the current

example.

If the NAND logical operation is required, the NOT logical operator is applied to the

points (z coordinate) that constitute the resulting polygons Pw and Pb.

OR and NOR Operations

In this case, the algorithm performs a procedure similar to the one applied for the AND and

NAND operations. The only difference is that instead of applying the AND operation pro-

posed in (Murta, 1999) to the projected polygons P1 and P2, the UNION operation (Murta,

1999) between P1 and P2 is applied. Afterwards, the procedure is the same as before. Hence,

Figure 4.27. (left) Polygons that represent the white areas are projected onto the xy
reference plane. (middle) Generation of polygons Pw which represent the new white
areas in the final mesh. (right) Generation of polygons Pb which represent the new black
areas.

polygon Pw - new white areaP1 P2
polygon Pb - new black area

intersection region

ZMAX

LOGIC OPERATIONS: AND, NAND, OR, NOR, XOR, NOT OF TRIANGULAR MESHES 109

polygons Pb and Pw , which represent the new black and white areas of the final mesh, are

obtained.

Similarly to the NAND logical operation, if the NOR logical operation is required, the

NOT logical operator is applied to the points (z coordinate) that constitute the resulting

polygons Pw and Pb.

XOR Operation

In order to implement the XOR operation, the algorithm applies a procedure similar to the

one utilized for the AND and NAND logical operations. The only difference is that, instead

of applying the AND operation (Murta, 1999) to the projected polygons P1 and P2, the XOR

operation (Murta, 1999) is applied.

Triangular Mesh Generation

This stage is responsible for generating the final triangular mesh that represents the result

after applying the specified logical operation to the input meshes. It utilizes the triangula-

tion algorithm proposed in (Shewchuk, 1996) and consists of three steps. First, the points

that belong to the polygons Pw, which represent the new white areas, are triangulated. This

triangulation considers the segments of Pw as constraints.

The second step is similar to the previous one, but this time the points of the polygons

Pb, which represent the new black areas, are triangulated, keeping the segments of those

polygons as constraints. Finally, the resulting triangular mesh is obtained by integrating the

previous meshes. This is done by merging those meshes through the segments that form the

polygons Pw and Pb, creating thus new vertical triangles.

Three different meshes obtained after applying the AND, OR and XOR logical opera-

tors upon the two meshes shown in Figure 4.25(left column) are displayed in Figure

4.28(top row). The respective approximating images are also shown in Figure 4.28(bottom

row).

110 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

Experimental Results

The proposed logical operators have been evaluated by processing several adaptive triangu-

lar meshes generated with the thresholding algorithm described in Section 4.2.2. This

section presents the results obtained after applying the NOT operator to the triangular mesh

shown in Figure 4.24(top left), and after applying the AND, OR and XOR operations to the

triangular meshes shown in Figure 4.25(left column). The obtained CPU times were mea-

sured and compared to the times corresponding to the application of the same operations

with CVIPtools (Umbaugh, 1998). The CPU times were measured on a SGI Indigo II with a

175MHz R10000 processor.

The CPU time for the proposed NOT operator was 0.0001 sec., while the same opera-

tion applied with CVIPtools took 0.01 sec. The proposed technique is more efficient since

Figure 4.28. (top row) Resulting triangular meshes obtained after applying the: (left) AND,
(middle) OR and (right) XOR logic operation. (bottom row) Approximating images
obtained from the previous triangular meshes.

SELECTION OF REGION-OF-INTEREST UPON TRIANGULAR MESHES 111

only a small percentage of points are processed in the geometric domain, while, in the

image domain, all the pixels that constitute the image must be considered. Therefore, the

NOT operator is always more efficient in the geometric domain than by sequentially pro-

cessing all the image pixels.

On the other hand, when the AND, OR and XOR operators were applied upon the

given triangular meshes, the CPU times in the geometric domain were higher than with

CVIPtools. For example, the CPU times corresponding to the AND, OR and XOR opera-

tions in the geometric domain were 0.12 sec., 0.11 sec. and 0.11 sec., while in the image

domain were 0.01 sec. in all cases. The reason is that the number of operations performed in

the geometric domain is very superior to the number of operations performed in the image

domain, although a small percentage of points is only processed in the geometric domain.

4.2.5 Selection of Regions-of-Interest from Triangular Meshes

This section presents an algorithm to select a region-of-interest (ROI) from a given 21/2D

triangular mesh. The selected region-of-interest is specified by the user and is defined by a

list of points that determine the segments of a closed polygon within the mesh. The pro-

posed algorithm consists of two stages that are described below.

4.2.5.1 Dissection of a Region-of-Interest in a Triangular Mesh

The first stage dissects the given triangular mesh with a set of segments that define a closed

polygon representing the region-of-interest. The result of this dissection is a set of intersec-

tion points that are obtained as follows.

First, each segment of the specified ROI generates a vertical dissection plane. This dis-

section plane contains that segment and is orthogonal to the xy reference plane. Figure

4.29(left) shows the segments of a predefined ROI as thickened lines.

The next step dissects the given triangular mesh by using the previously obtained

orthogonal planes. This dissection process is similar to the one applied in Section 4.2.2.1 in

order to threshold triangular meshes, but, in this case, the number of dissections depends on

the number of dissection planes that represent the ROI. Furthermore, the intersection points

112 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

between the triangular mesh and the orthogonal planes do not have to be projected onto any

plane.

4.2.5.2 Generation of the Final Triangular Mesh

Once the intersection points have been generated, the next step consists of obtaining the

resulting triangular mesh. This mesh is generated in three steps.

First, the triangles of the given mesh that are contained in the selected ROI are pre-

served. The topology of those triangles generates an interior triangular mesh inside the

ROI. The second step generates an exterior triangular mesh by triangulating the obtained

intersection points and the points that delimit the boundaries of the interior triangular mesh.

The segments that define the specified ROI as well as the edges that delimit the boundaries

of the interior triangular mesh are kept as constraints in the triangulation. Figure 4.29(mid-

dle) and Figure 4.29(right) show both the interior and exterior triangular meshes generated

for the current example.

Finally, the resulting triangular mesh is obtained by merging the previously obtained

exterior and interior triangular meshes, such as shown in Figure 4.30(left).

Figure 4.29. (left) Selected ROI on the input triangular mesh. The given mesh contains
7,492 points and approximates a gray level image with 262,144 pixels. (middle) Interior
triangular mesh defined inside the selected ROI. (right) Exterior triangular mesh
generated from the intersection points and the points that delimit the boundaries of the
previous interior triangular mesh.

SELECTION OF REGION-OF-INTEREST UPON TRIANGULAR MESHES 113

The approximating image generated from the resulting triangular mesh is obtained

through any of the algorithms presented in Section 3.4. Figure 4.30(right) shows the

approximating image generated from the previous triangular mesh.

4.2.5.3 Experimental Results

The CPU times to perform the ROI operation were measured and compared to the perfor-

mance of CVIPtools (Umbaugh, 1998). Several adaptive triangular meshes were processed

in the geometric domain, while in the image domain, the respective approximated images

were utilized. The processed triangular meshes were generated with the algorithm presented

in Section 3.3.2. The CPU times were measured on a SGI Indigo II with a 175MHz R10000

processor.

Two types of regions-of-interest were considered with the proposed technique. The

first type defines a rectangular region, while the second type defines a polygonal region.

When the selected ROI was defined as a rectangular region, the CPU times with the pro-

posed technique were much larger than with CVIPtools.

Figure 4.30. (left) Resulting triangular mesh obtained after linking the interior and exterior
triangular meshes. (right) Approximating image generated from the previous triangular
mesh.

114 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

For example, Figure 4.31(middle) illustrates the selected ROI applied to the triangular

mesh shown in Figure 4.31(left). The CPU time with the proposed technique was 0.17 sec.,

while with CVIPtools it was 0.01 sec. The reason is that, with a conventional algorithm, it is

not necessary to perform any operations to select a ROI. The user simply defines the coordi-

nates of the bounding box that contains the region, and the algorithm simply copies this area

to a new image. However, with the proposed algorithm, the triangular mesh must be dis-

sected and, furthermore, the number of dissections depends on the number of triangles that

are dissected with the segments that define the desired ROI.

Figure 4.32 shows a ROI that defines a polygonal region. The CPU time to process the

given triangular mesh with this ROI was 0.78 sec. CVIPtools does not have the possibility

of defining non-rectangular ROIs.

4.2.6 Generation of Synthetic Triangular Meshes

This section presents a set of tools to generate simple synthetic triangular meshes from user

specified data. Four types of triangular meshes with different boundaries have been defined:

rectangles, circles, ellipses and closed polygons. The triangulation of the data that define the

Figure 4.31. (left) Rectangular ROI superimposed over the given triangular mesh. (middle)
Resulting triangular mesh obtained after applying the desired ROI by means of the
proposed technique. (right) Approximating image generated from the previous
triangular mesh.

GENERATION OF SYNTHETIC TRIANGULAR MESHES 115

specified boundary is obtained by applying the 2D constrained Delaunay algorithm pro-

posed in (Shewchuk, 1996), by using that boundary as a constraint for the triangulation.

These meshes are generated as follows:

Rectangular Bounded Mesh

The user defines the minimum and maximum coordinates for the desired rectangular

bounded triangular mesh: and respectively. Furthermore, the

range of z values in which the mesh is defined is also specified by defining a value for

the points with coordinate and a value for those points with coordinate . If

 the obtained mesh defines a plane parallel to the xy reference plane. On the

other hand, if these values are different, the generated mesh defines a ramp.

Circular or Elliptical Bounded Mesh

This function receives the coordinates of the center of the circle or ellipse, and the

value of the radius r or the biggest and smallest axis, and . The z coordinate of all the

mesh points is set to a given constant, . Those points are computed with the following

equation:

Figure 4.32. (left) Desired polygonal ROI superimposed over the given triangular mesh.
(middle) Resulting triangular mesh obtained after selecting the desired ROI with the
proposed technique. (right) Approximating image generated from the previous
triangular mesh.

Xmin Ymin,() Xmax Ymax,()

Zmin

Xmin Zmax Xmax

Zmin Zmax=

xc yc,()

ab as

Zmax

116 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

(4.9)

where for the circular bounded mesh or and for the

elliptical bounded mesh; is the angle for every point of the required mesh, computed as:

, where s represents the number of points that are sampled on the circle or

ellipse and . It is advisable that in order that the generated mesh approxi-

mates the circular or elliptical bounded mesh in an acceptable way.

Free-Form Bounded Mesh

This algorithm generates a triangular mesh bounded by a polygonal contour. The algorithm

receives as input data a list of points that define a closed polygon. This polygon is approxi-

mated by a cubic spline. This curve is evaluated at new points that define a new closed

polyline whose points are then triangulated. The segments of that polyline are utilized as

constraints. A z coordinate value, , for the vertices of the resulting triangular mesh is

predefined by the user.

Several synthetic triangular meshes generated with the functions proposed in this sec-

tion are illustrated in Figure 4.33.

x′ Rx β xc+cos=

y′ Ry βsin yc+=

z′ Zmax=

Rx Ry r= = Rx ab 2⁄= Ry as 2⁄=

β

β 2πn s⁄=

n 1 s,[]∈ s 15≥

Zmax

