
Chapter 1

The System

This Chapter describes the flywheel energy storage system. It includes a general description
of the system as well as the top level control requirements.

A survey of the literature about this plant and of the main components is also presented.
In particular, typical modes of operation, the widely used dq-transformation, and the dy-
namical equations of the doubly-fed induction machine are introduced. A similar study is
developed for the back-to-back converter.

Part of the results of this Chapter can also be found in [11][12].

1.1 The System

The system studied in this Thesis is an autonomous energy–switching system that regulates
the energy flow between a local prime mover (a flywheel) and the electrical power network,
in order to satisfy the demand of a time–varying electrical load. This system, used in
the CERN (Centre Européen pour la Recherche Nucléaire) to store electrical energy for a
particle accelerator or in the Okinawa Electric Power Company, has been also studied in
[3]. The main goal of the system is, basically, to store kinetic energy into a flywheel and
deliver it when an external load requires a high energy flow.

The system (see Figure 1.1) is composed by a doubly–fed induction machine (DFIM)
coupled to a flywheel and controlled through the rotor windings by a back-to-back con-
verter (B2B). This is the most common control architecture of the DFIM [3][44][68][69][70]
[71][85][89]. If the AC source of the B2B is connected to the 3-phase power grid, this archi-
tecture is also known as Scherbius drive [68], i.e. the power converter is in a closed–loop
with the DFIM. In practice, due to the fact that the power flowing through the power
converter is much smaller than the power flowing to the DFIM stator side, it is common to
neglect this feedback connection.

The DFIM is controlled through the rotor windings port (Vr, Ir ∈ R
3, where V and I

are the three-phase voltage1 and current variables, and subindex r refers to the rotor). It is
coupled to an energy–storing flywheel with port variables (τe electrical torque, ω mechanical
speed). An electrical network modelled by an ideal AC voltage source with port variables
(Vn, In ∈ R

3, subindex n refers to the network variables), and a generic electrical three-phase
load, represented by its impedance Zl, is connected to the stator port variables (Vs, Is ∈ R

3).

1In this work all the three-phase voltages are line-to neutral voltages. It is assumed that the neutral
references of all three-phase system are common.
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Figure 1.1: Doubly-fed induction machine coupled to a flywheel, controlled by a back-to-
back converter and connected to a power network and a load.

In this scheme the network equations are given by Kirchhoff laws

Il = In − Is, Vn = Vs.

In this work only equilibrated three-phase variables are considered. However most of the
considerations taken in the modelling section (see Section 1.2) can be assumed in a more
general setting.

As mentioned above, the main objective of the system is to supply the required power
to the load with a high network power factor. Depending on the load demands, the DFIM
acts as an energy–switching device between the flywheel and the electrical power network.
The control problem is to optimally regulate the power flow.

The performance objective, assuming a maximal active power of the network PMAX
n ,

can be summarized as follows:

• To supply the extra energy required by the load. Notice that this objective concerns
the active power, and considering a constant grid voltage, Vn = ct, this requirement
is achieved by the stator currents.

• To store kinetic energy in the flywheel while the load does not require all the grid
power.

• To compensate the power factor (cos φ), i.e., the whole system (load and local
source) acts as a pure resistor. That is cos φ ∼ 0, or, Qn ∼ 0.

These requirements can be achieved by commuting between different steady–state regimes.
The switching strategy is studied in Section 1.4.
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Figure 1.2: Basic electrical scheme of the doubly fed induction machine

1.2 The doubly-fed induction machine

Doubly–fed induction machines (DFIM) form a class of induction machines which have
become very popular for renewable energy applications. They have been proposed in the
literature, among other applications, for wind-turbine generators [68][82], hybrid engines [22]
or high performance storage systems [3]. The attractiveness of the DFIM stems primarily
from its ability to handle large speed variations around the synchronous speed (see [71] for an
extended literature survey and discussion). Another advantage is that the power electronic
equipment to control the machine only has to handle a fraction (maximum 20 − 30%) of
the total power [72]. Therefore, the losses in the power electronic converter can be reduced,
compared to a system where the converter has to handle the total power. In addition, the
cost of the converter becomes lower.

It is usual to consider [23][50] that the machine is symmetric (all windings are equal) and
the stator-rotor cross inductances are smooth, sinusoidal functions of θ (the rotor angle)
with just the fundamental term. Figure 1.2 shows an electrical scheme of a doubly-fed,
three-phase induction machine. It contains 6 energy storage elements with their associated
dissipations and 6 ports (the 3 stator and the 3 rotor voltages and currents).

The parameter machines Ns, Nr are number of turns of the coils, where Rs, Rr represent
the losses (for the stator and rotor windings respectively), and the electrical variables are
the three-phase (abc) stator and rotor voltages and currents

V T
s = [vsa, vsb, vsc]

V T
r = [vra, vrb, vrc]

IT
s = [isa, isb, isc]

IT
r = [ira, irb, irc]

where three phase variables are defined as

fabc = F

[

cos(ωst), cos

(

ωst −
2

3
π

)

, cos

(

ωst +
2

3
π

)]T

.

The angle θ is the rotor position relative to the system.
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Figure 1.3: Basic mechanical scheme of a rotating machine

The mechanical part (see Figure 1.3) is basically composed by the rotor mass an its
corresponding inertia Jm, turning at the mechanical speed ω (ω = θ̇), with a certain loss
represented by the damping coefficient Br, and subjected to the action of the electrical
torque τe and of an external torque (or load torque, τL).

1.2.1 Dynamical equations of a DFIM

The doubly-fed induction machine is an electromechanical system. The two domains are
related by the magnetic field which produces forces and induces currents. Our presentation
starts from the well-known electrical and mechanical dynamical equations; see [23] for an
extended explanation on how AC machines operate.

For the electrical part the dynamical equations are given by

Λ̇s = RsI3Is + Vs (1.1)

Λ̇r = RrI3Ir + Vr (1.2)

where Λs, Λr are the inductor fluxes,

I3 =





1 0 0
0 1 0
0 0 1



 ∈ R
3×3

and the linear magnetic relationship of the fluxes and current is given, neglecting the satu-
ration effects, by the following θ-dependent matrix (in R

6)

[
Λs

Λr

]

= L̃(θ)

[
Is

Ir

]

where

L̃(θ) =

[
L̃s L̃sr(θ)

L̃T
sr(θ) L̃r

]

∈ R
6×6,

L̃sr(θ) = Lsr





cos θ cos
(
θ + 2

3π
)

cos
(
θ − 2

3π
)

cos
(
θ − 2

3π
)

cos θ cos
(
θ + 2

3π
)

cos
(
θ + 2

3π
)

cos
(
θ − 2

3π
)

cos θ



 ∈ R
3×3,

L̃s(θ) = Ls





1 cos
(

2
3π

)
cos

(
−2

3π
)

cos
(

2
3π

)
1 cos

(
2
3π

)

cos
(
−2

3π
)

cos
(

2
3π

)
1



 ∈ R
3×3,
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L̃r(θ) = Lr





1 cos
(

2
3π

)
cos

(
−2

3π
)

cos
(

2
3π

)
1 cos

(
2
3π

)

cos
(
−2

3π
)

cos
(

2
3π

)
1



 ∈ R
3×3,

where Ls, Lr are the so-called, respectively, stator and rotor inductances and Lsr the self-
inductance2

The mechanical equation comes from Newton laws. Considering a 2-pole machine it
takes the form

Jmω̇ = τe − Brω − τL

where

τe = IT
s L̃sr(θ)Ir. (1.3)

L̃sr(θ) = Lsr





− sin(θ) cos
(
θ − π

6

)
− cos

(
θ + π

6

)

− cos
(
θ + π

6

)
− sin(θ) sin

(
θ + π

3

)

cos
(
θ − π

6

)
sin

(
θ − π

3

)
− sin(θ)



 ∈ R
3×3

Notice that the electrical equations are highly nonlinear, due the dependence of the rotor
position θ.

1.2.2 The dq-transformation

The dq-transformation (also known as Blondel-Park Transformation) is widely used in the
study of power systems [50]. This mathematical transformation is used to decouple vari-
ables, to facilitate the solution of difficult equations with time-varying coefficients, or to
refer all variables to a common reference frame. In addition, the θ-depending model of the
machine (as is explained in the previous subsection), is simplified using the dq-model.

yabc yαβγ ydq

T K(θ, δ)

Figure 1.4: Basic scheme of the dq-transformation.

2In the literature a 2

3
factor is added in the expressions of L̃s, L̃r and L̃sr. In this Thesis the coefficients

are defined as

Ls =
πµ0l1l2N

2

s

8g

Lr =
πµ0l1l2N

2

r

8g

Lsr =
πµ0l1l2NsNr

8g

where µ0 is the magnetic permeability of the air, l1 is the length of the rotor, l2 is the rotor diameter, g is
the air gap length and Ns, Nr are the number of turns of stator and rotor windings respectively. See [23]
for further details.
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The dq-transformation can be split in two steps (see Figure 1.4). First the original
three-phase variables yabc (currents, voltages or magnetic fluxes) are transformed to the
αβγ static reference by means of

yαβγ = Tyabc (1.4)

where

T =






√
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3




 ∈ R

3×3.

Remark 1.1. Notice that, since T T = T−1, this is a power–preserving transformation:

〈iαβγ , vαβγ〉 = 〈iabc, vabc〉.

△
For three-phase equilibrated systems, i.e. ya + yb + yc = 0, this transformation allows to

work only with the two first transformed components (αβ) and neglect the third one (the
homopolar, γ) which is zero for any balanced set and which, in any case, is decoupled from
the remaining dynamical equations.

Secondly, if the output variables are periodic orbits (sinusoidal functions), they can be
transformed into equilibrium points rotating in a reference framework. This procedure also
eliminates the θ-dependence of the dynamical equations of the DFIM. Let us define the
dq-variables as

[
ysαβ

yrαβ

]

= K(θ, δ)

[
ysdq

yrdq

]

(1.5)

with

K(θ, δ) =

[
eJ2δ O2

O2 eJ2(δ−θ)

]

∈ R
4×4

where δ is an arbitrary function of time (usually δ̇ is the stator frequency, ωs), and

eJ2η =

[
cos(η) − sin(η)
sin(η) cos(η)

]

∈ R
2×2,

O2 =

[
0 0
0 0

]

∈ R
2×2,

J2 =

[
0 −1
1 0

]

∈ R
2×2.

1.2.3 The dq-model of the DFIM

From the dynamical equations of the DFIM described in subsection 1.2.1, and using the
dq-transformation, the dq-model of the DFIM can be obtained.

Applying the T transformation (equation (1.4)) to the electrical variables, equations
(1.1) and (1.2) yields
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λ̇sαβ + RsI2isαβ = vsαβ (1.6)

λ̇rαβ + RrI2irαβ = vrαβ (1.7)

where λsαβ , λrαβ, isαβ , irαβ ∈ R
2 are fluxes and currents in the αβ framework (neglecting

the homopolar component). The electrical torque (1.3) is transformed into

τe = Lsri
T
sαβJ2irαβ (1.8)

Linking fluxes and currents are now related by

λαβ = Lαβ(θ)iαβ (1.9)

where

λαβ =

[
λsαβ

λrαβ

]

∈ R
4, iαβ =

[
isαβ

irαβ

]

∈ R
4, Lαβ(θ) =

[
LsI2 Lsre

J2θ

Lsre
−J2θ LrI2

]

∈ R
4×4.

Putting together (1.6) and (1.7)

λ̇αβ + Riαβ = vαβ (1.10)

where

vαβ =

[
vsαβ

vrαβ

]

∈ R
4, R =

[
RsI2 O2

O2 RrI2

]

∈ R
4×4, I2 =

[
1 0
0 1

]

∈ R
2×2

The steady–state for the equations above are periodic orbits that can be transformed
into equilibrium points by means of the (1.5), where δ is, for convenience, selected as

δ̇ = ωs,

with ωs the line frequency, which is assumed constant3. From the electrical equation (1.10)
and using (1.5)

K̇(θ, δ)λdq + K(θ, δ)λ̇dq + RK(θ, δ)idq = K(θ, δ)vdq

where

λdq =

[
λs

λr

]

∈ R
4, idq =

[
is
ir

]

∈ R
4, vdq =

[
vs

vr

]

∈ R
4,

or

λ̇dq = −K(θ, δ)−1K̇(θ, δ)λdq − K(θ, δ)−1RK(θ, δ)idq + K(θ, δ)−1K(θ, δ)vdq.

Notice that defining

Ω(ω) = K(θ, δ)−1K̇(θ, δ) =

[
δ̇J2 O2×2

O2×2 (δ̇ − θ̇)J2

]

∈ R
4×4

3This is the so–called synchronous reference frame.
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where δ̇ = ωs and θ̇ = ω, the dynamical equations of the electrical variables can be written
as

λ̇dq = −Ωλdq − Ridq + vdq, (1.11)

The relationship between fluxes and currents (1.9) can be written in the dq-frame as

K(θ, δ)λdq = Lαβ(θ)K(θ, δ)idq

or
λdq = Lidq, (1.12)

where

L = K(θ, δ)−1Lαβ(θ)K(θ, δ) =

[
LsI2 LsrI2

LsrI2 LrI2

]

∈ R
4×4. (1.13)

The T transformation (1.5) also modifies the electrical torque (1.8) as follows

τe = Lsri
T
sαβJ2e

J2θirαβ =

= Lsri
T
s (eJ2δ)T J2e

J2θeJ2(δ−θ)ir =

= Lsri
T
s J2ir. (1.14)

and finally the mechanical equation can be written as

Jmω̇ = Lsri
T
s J2ir − Brω − τL. (1.15)

The overall system consists of the fourth–order electrical dynamics (1.11) together with the
scalar mechanical dynamics (1.15). The electrical variables are either fluxes or currents
(related by (1.12)). Usually, in the study of the classical induction machine, the variables
are the stator currents and the rotor fluxes, due to the fact that the rotor currents are
not measurable. For the control of the DFIM, the ability to obtain directly the rotor
currents allows to use the four currents as electrical variables4. The control input is the two–
dimensional rotor voltage vr, and the stator voltage vs is viewed as a constant disturbance.

1.3 The back-to-back converter

Electronic power converters [32] are devices able to deliver electrical energy in a suitable
way for the applications, i.e., with prescribed frequency, voltage amplitude or any other
specification. They do the trick by periodically storing the energy in inductors and capac-
itors before releasing it in the desired form; in a given period the converter goes through
a series of topological circuit changes by means of controlled switches (for instance IGBT
switches).

The back-to-back converter consists of two converters, a machine-side converter and a
grid-side converter, that are connected ”back-to-back”. Between the two converters a dc-
link capacitor is placed, as energy storage, in order to keep the voltage variations (or ripple)
in the dc-link voltage small. With the machine-side converter it is possible to control the
torque or the speed of the DFIM and also the power factor at the stator terminals, while
the main objective for the grid-side converter is to keep the dc-link voltage constant.

4However in Chapter 2, using the Port-controlled Hamiltonian framework, the electrical variables are the
Hamiltonian variables, i.e. the fluxes.
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Figure 1.5: Back-to-back converter.

Figure 5.19 shows the back-to-back converter selected for this system. It differs from
the typical topology [68][69] in the grid-side converter; in this case the dc-link voltage
is controlled by a single-phase boost rectifier instead of a three-phase rectifier (the main
reason is to follow as close as possible the available experimental setup). The machine-side
converter is a three-phase dc/ac inverter. The whole converter has an ac single input and
its outputs are three-phase PWM (pulse width modulation) voltages which feed the rotor
windings of the electrical machine. This system can be split into two parts: a dynamical
subsystem (the full bridge rectifier, containing the storage elements) and an static subsystem
(the inverter, which, from the energy point of view, acts like a transformer).

A single-phase ac voltage source vi provides the energy in the direct operation mode. L
is the inductance, C is the capacitor of the dc-link, r takes into account all the resistance
losses (inductor, source and switches), sk and tk (k = 1, 2, 3, 5, 6). Switch states take values
in {−1, 1} and t-switches are complementary to s-switches: tk = s̄k = −sk. Additionally,
s2 = s̄1 = −s1.

One of the principal requirements is that the B2B converter has to allow a bidirectional
power flow. This is due to the fact that, in some stationary regimes and, obviously, in
the transient, the DFIM can extract energy through the rotor. This feature is achieved
using IGBT switches instead of the cheaper, but less versatile, diodes and thyristors option
implemented in [45].

1.3.1 Dynamical equations of a full bridge rectifier

As explained above, only the full-bridge rectifier has dynamics. The dynamical equations
of a full-bridge rectifier have the form

λ̇ = −SvDC − ri + vi

q̇ = Si − iDC

where the discrete variable S takes value +1 when s1 is closed (vs1 = 0), and −1 when
s1 is open (is1 = 0). λ and q are the inductor flux and the capacitor charge respectively.
Considering the inductor L and the capacitor C as ideal elements, the relationship between
the flux/charge and current/voltage is
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λ = Li

q = CvDC ,

which yields

L
di

dt
= −SvDC − ri + vi

C
dvDC

dt
= Si − iDC . (1.16)

Usually this discontinuous model is approximated by an averaged system, and S will take
values in a continuum set; the discrete implementation of the switch is recovered then by
means of a suitable sampling procedure, such as a pulse width modulation (PWM) scheme.

The control objectives of this part are:

• the DC value of vDC voltage should be equal to a desired constant vd
DC , and

• the power factor of the converter should be equal to one.

1.3.2 Equations of a three-phase inverter

The three-phase inverter can be described by means of a set of static equations,

vabc = fvDC

where

f =
1

2





s6 − s4

s5 − s6

s4 − s5



 .

1.4 Power management

In this Section the power flow management of the flywheel energy storage system is dis-
cussed. From the dq-power definitions an exhaustive study of the stator and rotor power
flows, in a steady-state, allows to define an optimal speed, which will be used, finally, to
determine the optimal management of the system. See Appendix A for electrical power
definitions.

It is important to note that in the flywheel energy storage system no-external torque τL

is applied in the mechanical equation (1.15). The only torque from the mechanical domain
is the one due to the linear damping Brω term.

1.4.1 Steady-state power study of a DFIM

To formulate mathematically the power flow strategy described above we need to express
the various modes in terms of equilibrium points. In this way, the control policy will be
implemented transferring the system from one equilibrium point to another. Towards this
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end, first the fixed points of the system (1.11) and (1.15) are computed, i.e. the values i∗dq,
ω∗, v∗r such that

0 = −Ω∗λ∗
dq − Ri∗dq + v∗dq

0 = Lsri
∗T
s J2i

∗
r − Brω

∗

where

Ω(ω)∗ =

[
ωsJ2 O2×2

O2×2 (ωs − ω∗)J2

]

∈ R
4×4.

Explicit separation of the rows corresponding to the stator, rotor, network and mechanical
equations yields the following system of equations:

ωsLsJ2i
∗
s + ωsLsrJ2i

∗
r + RsI2i

∗
s − vs = 0 (1.17)

(ωs − ω∗)[LsrJ2i
∗
s + LrJ2i

∗
r] + RrI2i

∗
r − v∗r = 0 (1.18)

Lsri
∗T
s J2i

∗
r − Brω

∗ = 0. (1.19)

It is clear that—assuming no constraint on vr—the key equations to be solved are (1.17)
and (1.19).

Using the power definitions it can be seen that the DFIM has an optimal mechanical
speed for which there is minimal power injection through the rotor (These calculus are
detailed in Appendix B). Indeed, from (1.18) one immediately gets

P ∗
r

△
= i∗Tr v∗r = (ωs − ω∗)Lsri

∗T
r J2i

∗
s + Rr|i∗r|2,

where | · | is the Euclidean norm. Further, using (1.19), we get

P ∗
r = Brω

∗(ω∗ − ωs) + Rr|i∗r|2. (1.20)

Although the ohmic term in (1.20) does depend also on ω, its contribution is small for
the usual range of parameter values, so |Pr| is small near ω∗ = ωs. Another consideration
that is made to justify the choice of ”optimal” rotor speed, ω∗, concerns the reactive power
supplied to the rotor—that we would like to minimize. It can be shown that

Q∗
r

△
= i∗Tr J2v

∗
r = (ω∗ − ωs)f(Qn, ω∗),

where f(·, ·) is a bounded function of its arguments. Consequently, Q∗
r = 0 for ω∗ = ωs.

Taking this into account, we will set the reference of the mechanical speed as ω∗ = ωs.

1.4.2 Power strategy

The power flow strategy of the flywheel energy storage system has been proposed in [12].
The power management schedule is determined according to the following considerations.
The general goal (described in Section 1.1) is to supply the required power to the load with
a high network power factor, i.e., Qn ∼ 0. On the other hand, as has been shown above, the
DFIM has an optimal mechanical speed for which there is minimal power injection through
the rotor. Combining these two factors suggests to consider the following three modes of
operation:
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• Generator mode. When the real power required by the local load is larger than
the maximum network power PMAX

n the DFIM is used as a generator. In this case
the references for the network real and reactive powers are fixed as P ∗

n = PMAX
n and

Q∗
n = 0.

• Storage (or motor) mode. When the local load does not need all the network
power and the mechanical speed is far from the optimal value the ”unused” power
network is employed to accelerate the flywheel. From the control point of view, this
operation mode coincides with the generator mode, and thus the same references are
fixed —but now the goal is to extract the maximum power from the network in order
to transfer it to the flywheel.

• Stand-by mode. Finally, when the local load does not need all the power network
and the mechanical speed is near the optimal one, we just compensate for the flywheel
friction losses by regulating the speed and the reactive power. Hence, the reference for
the mechanical speed is fixed at its minimum rotor losses value (to be defined below)
and Q∗

n = 0.

The operation modes boil down to two kinds of control actions as expressed in Table
1.1, where Pl is the load power and ǫ > 0 is some small parameter.

P ∗
n < Pl |ω − ωs| ≤ ǫ Mode References

True True Generator P ∗
n = PMAX

n and Q∗
n = 0

True False Generator P ∗
n = PMAX

n and Q∗
n = 0

False True Stand-by Q∗
n = 0 and ω∗ = ωs

False False Storage P ∗
n = PMAX

n and Q∗
n = 0

Table 1.1: Control action table.

The power references P ∗
n and Q∗

n will be achieved by means of the stator current control.
The value of is, expressed in appropriate coordinates and considering a constant voltage
amplitude of the power grid, translates directly into the value of the power flowing through
the stator. This indirect control of Ps and Qs, which will be detailed in Chapter 4, will
achieve maximum efficiency from the grid, both in terms of active power and power factor
compensation.


