

TECHNICAL UNIVERSITY OF CATALONIA

Doctoral Program:

ADVANCED AUTOMATION AND ROBOTICS

Doctoral Thesis

ASALBP: the Alternative Subgraphs Assembly Line

 Balancing Problem.

Formalization and Resolution Procedures

Liliana Capacho Betancourt

Thesis Advisor: Dr. Rafael Pastor Moreno

Institute of Industrial and Control Engineering

December 2007

© 2007 – Liliana Capacho Betancourt

I would like to dedicate this doctoral thesis to:

my mother Mariela

and to the beloved memory of my grandparents:

Enrique and Maria (as she liked to be called).

Acknowledgements

First of all, I would like to thank my supervisor Dr. Rafael Pastor for giving

the opportunity of developing my PhD thesis under his supervision. I am

grateful for his guidance and opportune suggestions. I also thank Dr. Pastor

for carefully reviewing a significant number of written works including this

dissertation and for his timely corrections. All the support provided helped me

to conclude this doctoral thesis successfully.

I express my gratitude to all members of the Institute for Control and

Industrial Engineering for creating a pleasant place to work and for providing

me with all the resources necessary to carry out this work. A thank goes to

Carma, Noemi and Marta for their continuous support and their assistance for

solving the administrative matters. Also, I want to thank Vicenc for keeping

under control the IT aspects of the Institute. Furthermore, I acknowledge the

library staff Pilar and Montse.

I also want to thank Dr. Alexander Dolgui for giving me the opportunity to

work with his research group, under his guidance, at the Division for

Industrial Engineering and Computer Sciences, Ecole des Mines, Saint

Etienne, France. I thank Dr. Dolgui as well as Dr. T. Jimenez for being co-

examiners of this doctoral thesis. A special thank goes to Olga Gunshinskaya

for her friendship, for offering her useful advice and for sharing with me long

hours writing research papers!. I also want to thank Sana, Natasha, Midhi,

Amellie, Hanane, Viviana and Vincent for making easier and more pleasant

my stay in Saint Etienne.

 i

Risking omitting someone, I will dare to mention some people that have

positively influenced me over these last years and that made my life more

enjoyable while I was carrying out my doctoral studies. I thank them all for

their support, for giving me a hand when facing difficult moments and for the

great times we spent together. In particular I thank Emmanuel, Ray, Ericka,

Gerrit, Israel, Orlando, Adolfo, Albert, Viviana, Marcelo, Mayra, Luis,

Meralys, Ronald, Antonio, Arturo, Cristina, Claudinha, Sandrita, Claudia,

Duarte and Mario. ... I will miss our meetings and our international dinners!.

I express my gratitude to my special friends Enric (Henk Jan): I thank my

little Dutch brother for taking care of me, I really enjoyed living with you

these last years; Greg: we share plenty of funny moments!; Juan Manuel

(Juamma): thanks for your support and for providing us with your remarkable

writings; and Liliana: thanks for being an unconditional friend and for your

support. I had many great times and a lot of fun with you and Luis, I will be

always grateful to both of you!.

A deep thank goes to my Portuguese sister Ritinha for sharing many special

moments, long and interesting conversations. Thanks for giving me the

opportunity to meet you lovely family, now also my family -my truthful

gratitude goes to the complete Marquez family! They took a good care of me

any time I was in Portugal.

I also want to thank Ramon and Gloria and Mr. Pompeyo, the kind owners of

the flat whom not only provided me with a home, for most of my stay in

Barcelona, but also with a friendship.

Finally and most importantly, I would like to thank my family: specially my

mother Mariela and my father Adolfo; my brothers Ricardo, Carlos and Fito;

and my sisters Nancy and Maricela. They always supported me and, from far

away, they motivated and encouraged me to continue towards the completion

of this thesis. This achievement is theirs. I thank them all for believing in me,

sometimes more than what I believe myself. Coming back home was always a

good motivator. I am deeply grateful to my mother for all her love,

unconditional support and for teaching me to be persevering and to have the

determination to accomplish any proposed goal.

This doctoral thesis has been financed by a Venezuelan grant by the

University of Los Andes. I am thankful to my Alma Mater for giving such an

opportunity. Additionally, this project has been supported by the project

DELIMER DPI2004-03472 from the Spanish Ministry of Science and

Technology.

 ii

Summary

Nowadays assembly line balancing problems are commonly found in most industrial and
manufacturing systems. Basically, these problems seek to assign a set of assembly tasks to
an ordered sequence of workstations in such a way that precedence constraints are
maintained and a given efficiency measure (e.g. the number of workstations or the cycle
time) is optimized.

Because of the computational complexity of balancing problems, research works
traditionally considered numerous simplifying assumptions in which, for example, a single
model of a unique product were processed in a single line; moreover, problems were
mainly restricted by precedence and cycle time constrains. Nevertheless, the current
availability of computing resources and the enterprises need to adapt to rapid changes in
production and manufacturing processes have encouraged researchers and decision-makers
to address more realistic problems. Some examples include problems that involve mixed
models, parallel workstations and parallel lines, multiple objectives and also further
restrictions such as workstation processing capacity and resource allocation constraints.

This doctoral thesis addresses a novel assembly line balancing problem, entitled here
ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem, which
considers alternative variants for different parts of an assembly or manufacturing process.
Each variant can be represented by a precedence subgraph that establishes the tasks
required to process a particular product, their precedence requirements and their
processing times.

Therefore, to efficiently solve the Alternative Subgraphs Assembly Line Balancing
Problem two subproblems need to be solved simultaneously: (1) the decision problem
that selects one assembly variant for each part that admit alternatives and (2) the
balancing problem that assigns the tasks to the workstations.

The analysis of the state-of-the-art carried out revealed that the Alternative Subgraphs
Assembly Line Balancing Problem has not been addressed before in literature studies,
which leaded to the characterization and definition of this new problem. Moreover, due
to the impossibility of representing assembly variants in a standard precedence graph, the
S-Graph is proposed here as a diagramming tool to represent all available assembly
alternatives in a unique graph.

Different approaches are used here to address the ASALBP. The problem is formalize
and optimally solved by means of two mathematical programming models. An
approximate approach is used to address industrial-scale problems. Furthermore, local
optimization procedures are proposed aiming at improving the quality of the solutions
provided by all heuristic methods developed here.

 iii

Resumen

Hoy en día, los problemas de equilibrado de líneas de montaje se encuentran
comúnmente en la mayoría de sistemas industriales y de manufactura. Básicamente, estos
problemas consisten en asignar un conjunto de tareas a una secuencia ordenada de
estaciones de trabajo, de manera que se respeten las restricciones de precedencia y se
optimice una medida de eficiencia dada (como, por ejemplo, el número de estaciones de
trabajo o el tiempo ciclo).

Dada la complejidad de los problemas de equilibrado de líneas, en los trabajos de
investigación tradicionalmente se consideraban numerosas simplificaciones en las que,
por ejemplo, una sola línea serial procesaba un único modelo de un solo producto.
Además, los problemas estaban principalmente restringidos por las relaciones de
precedencia y el tiempo ciclo. Sin embargo, la disponibilidad de recursos
computacionales de hoy en día, así como la necesidad de las empresas a adaptarse a los
rápidos cambios en los procesos de producción, han motivado tanto a investigadores
como a gerentes a tratar problemas más realistas. Algunos ejemplos incluyen problemas
que procesan modelos mixtos, estaciones de trabajo y líneas en paralelo, consideran
múltiples objetivos y restricciones adicionales, como la capacidad de proceso de las
estaciones de trabajo y la ubicación de los recursos en la línea.

Esta tesis doctoral trata un nuevo problema de equilibrado de líneas, que ha sido titulado
ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem, en el que se
consideran variantes alternativas para diferentes partes de un proceso de montaje o de
manufactura. Cada alternativa puede ser representada por un subgrafo de precedencias,
que determina las tareas requeridas para procesar un producto particular, las restricciones
de precedencia y los tiempos de proceso.

Para resolver eficientemente el ASALBP, se deben resolver dos problemas
simultáneamente: (1) el problema de decisión para seleccionar un subgrafo de montaje
para cada parte que admite alternativas y (2) el problema de equilibrado para asignar las
tareas a las estaciones de trabajo.

El análisis del estado del arte revela que este problema no ha sido estudiado previamente
en la literatura, lo que ha conducido a la caracterización y a la definición de un nuevo
problema. Por otra parte, dado que no es posible representar las variantes de montaje en
un diagrama de precedencias estándar, se propone el S-grafo como una herramienta de
diagramación, para representar en un único grafo todas las alternativas de montaje.

Para resolver el ASALBP se usan varios enfoques. El problema se formaliza y se resuelve
de manera óptima a través de dos modelos de programación matemática. Un enfoque
aproximativo es usado para resolver problemas de tamaño industrial. Además, se
proponen procedimientos de optimización local con el objetivo de mejorar la calidad de
las soluciones obtenidas por los métodos heurísticos desarrollados en este trabajo.

 iv

Table of Content

Acknowlegements………………………………………………………………. i

Summary …………………………………………………………………………. iii

Resumen ………………………………………………………………………….. iv

Table of Content ………………………………………………………………. v

Index of Figures ………………………………………………………………... vii

Index of Tables …………………………………………………………………. ix

Chapter 1. Introduction

 1.1 Presentation and Justification …………………………………………….. 1

 1.2 Objectives …………………………………………………………………… 4

 1.3 Structure of the Thesis …………………………...………………………. 5

Chapter 2. State of the Art

 2.1 Introduction ...……………………………………………………………… 6

 2.2 Assembly Lines ……………………………………………………………. 6

 2.2.1 Basic Concepts ………………………………………………………. 7

 2.2.2 Classification of Assembly Lines …………………………………… 9

 2.3 Assembly Lines Balancing Problems …………………………………….. 14

 2.3.1 Simple Assembly Line Balancing Problem (SALBP)……………... 16

 2.3.2 Generalized Assembly Line Balancing Problems (GALBP)……… 19

 2.4 Procedures to Solve Assembly Line Balancing Problems ………………. 23

 2.4.1 Exact procedures. …………………………………………………... 23

 2.4.2 Approximate procedures……………………………………………. 25

 2.5 Conclusions ………………………………………………………………… 30

Chapter 3. ASALBP: The Alternative Subgraphs Assembly Line
 Balancing problem

 3.1 Introduction ………………………………………………………………… 31

 3.2 Definition of the Problem .………………………………………………… 32

 3.3 The S-Graph: a diagramming scheme to depict assembly alternatives ... 39

 v

Table of Content

Chapter 4. Mathematical Models of the ASALBP

 4.1 Introduction …………………………………………………………………. 42

 4.2 Modelling Assumptions …………………………………………………….. 43

 4.2.1 Global Routes …………………………………………………………. 43

 4.2.2 Partial Routes ………………………………………………………… 44

 4.2.3 Task precedence relations typology …………………………………. 45

 4.3 The Preliminary Model ..…………………………………………………… 47

 4.4 The Enhanced Model ………………………………………………………. 49

 4.5 Computation of input parameters …………………………………………. 51

 4.5.1 Earliest and latest workstations …………………………………….. 51

 4.5.2 Lower bound on the number of workstations ………………………. 53

 4.5.3 Upper bound on the number of workstations ……………………… 54

 4.6 Computational Experiment ………………………………………………... 55

 4.6.1 Benchmark Selection …………………………………………………. 55

 4.6.2 Analysis of the results obtained with M1 and M2 …………………. 58

Chapter 5. Approximate Methods to Solve the ASALBP

 5.1 Introduction …………………………………………………………………. 59

 5.2 Heuristic Methods ..…………………………………………………………. 60

 5.2.1 Single-pass methods .…………………………………………………. 64

 5.2.2 Multi-pass methods ………………………………………………….. 67

 5.3 Local Optimization Procedures ………………………………………........ 70

 5.4 Computational Experiment ...……………………………………………… 72

 5.4.1 Experimental conditions …………………………………………….. 72

 5.4.2 Analysis of the results ...……………………………………………… 74

Chapter 6. Conclusions, Contributions and Future Research

 Proposals

 6.1 Main Results ………………………………………………………………... 94

 6.2 Proposals of Future Research Work ………………………………………. 98

 6.3 Contributions ……………………………………………………………….. 98

References ...……………………………………………………………………… 100

vi

Index of Figures

Chapter 2. State of the Art

 2.1: Single-model line …………………………………………………………… 9

 2.2: Mixed-model line ………………………………………………………….. 9

 2.3: Multi-model line …………………………………………………………… 9

 2.4: Serial line …………………………………………………………………… 10

 2.5: Two-sided lines ……………………………………………………………. 10

 2.6: Parallel lines ………………………………………………………………. 11

 2.7: U-shaped lines …………………………………………………………….. 11

 2.8: Closed line …………………………………………………………………. 11

 2.9: Synchronous line …………………………………………………………… 12

 2.10: Asynchronous line ………………………………………………………… 12

 2.11: Feeder lines ……………………………………………………………….. 12

 2.12: Manual line ……………………………………………………………….. 13

 2.13: Robotic line ………………………………………………………………. 13

Chapter 3. ASALBP: The Alternative Subgraphs Assembly Line
Balancing Problem

 3.1: Final phase in the process of assembling a motorbike ………………….. 34

 3.2: Assembly alternatives for the example of the motorbike ………………. 34

 3.3: S-Graph of the final phase of the process of assembling a motorbike …. 35

 3.4: Precedence S-Graph for the assembly process of the motorbike ………. 39

 3.5: S-Graph including fictitious tasks ………………………………………... 40

 3.6: Precedence S-Graph for an example of 47 tasks ………………………. 41

 vii

Index of Figures

Chapter 4. Mathematical Models of the ASALBP

 4.1: The precedence graph of a global route …………………………………. 44

 4.2: A partial route for an ASALBP example with 47 tasks ……………………….. 44

 4.3. Precedence relations of fixed and mobile tasks ………………………… 46

 4.4: S-Graph for a small ASALBP example involving seven tasks ………………… 52

Chapter 5. Approximate Methods to Solve the ASALBP

 5.1: Precedence S-Graph for an ASALBP involving 17 tasks ……………... 65

 5.2: Generation of a neighbour sequence using transformation a …………. 71

 5.3: Generation of a neighbour sequence using transformation b …………. 72

 5.4: Overall results of PBS for single-pass methods ………………................ 79

 5.5: Applying local optimization procedures and single-pass methods …….. 81

 5.6: Overall results for non-weighted multi-pass methods………………….. 83

 5.7: Overall results for weighted multi-pass methods ………………………. 86

5.8: Applying local optimization procedures and weighted multi-pass

methods ……………………………………………………………………..

88

 5.9: Multi-pass methods: percentage of best solutions for different CT ……. 92

 5.10: Overall performance of single-pass and multi-pass methods ………….. 93

 5.11: Method performance and solution quality comparison ………………... 93

viii

Index of Tables

Chapter 3. ASALBP: The Alternative Subgraphs Assembly Line

Balancing Problem

 3.1: Data for the example 3.2 ………………………………………………….. 36

 3.2: Results for ASALBP-1 for the example 3.2 ……………………………... 37

 3.3: Results for ASALBP-2 for the example 3.2 ……………………………… 37

 3.4: Results for ASALBP-1 with Fixed Times ……………………………….. 38

 3.5: Results for ASALBP-2 with Fixed Times ……………………………….. 38

Chapter 4. Mathematical Models of the ASALBP

 4.1: Task-predecessor relation typology ……………………………………… 46

 4.2: Data of the ASALBP instances …………………………………………... 56

 4.3: Results of optimally solving ASALBP instances ………………………... 57

Chapter 5. Approximate Methods to Solve the ASALBP

 5.1: Decision criteria for tasks …………………………………………………. 63

 5.2: Single-pass methods ……………………………………………………….. 64

 5.3: Priority rule values for the assembly subgraphs ………………………… 65

 5.4: Selected subgraphs, available and assignable tasks …………………….. 66

 5.5: Results of applying single-pass methods …………………………………. 67

 5.6: Non-weighted multi-pass methods ……………………………………….. 68

 5.7: Weighted multi-pass methods. …………………………………………… 69

 ix

Index of Tables

 5.8: Data sets ……………………………………………………………………. 73

5.9: Results for solving small-scale problems using single-pass methods

(NI=16) ……………………………………………………………………..

75

5.10: Results for solving medium-scale problems using single-pass methods

(NI=105) …………………………………………………………….........

76

5.11: Results for solving large-scale problems using single-pass methods

(NI=45) ……………………………………………………………..........

78

 5.12: Improving the solutions provided by single-pass methods (NI=166)…. 80

 5.13: Performance of non-weighted multi-pass methods, CT=0.1…………… 82

5.14: Improving the solutions provided by non-weighted multi-pass methods,

(NI=166)………………………………………………….........................

84

 5.15: Results of weighted multi-pass methods, CT=0.1 …………………….. 85

5.16: Improving the solutions provided by weighted multi-pass methods

(NI=166) …………………………………………………………………..

87

 5.17: Solution quality evaluation for single-pass methods (NI=44) ………... 89

5.18: Solution quality evaluation for non-weighted multi-pass methods

(NI=44, CT=0.1) …………………………………………………………

90

5.19: Solution quality evaluation for weighted multi-pass methods (NI=44,

CT=0.1) …………………………………………………………………...

91

 5.20: Results for RS_TTS considering different CT values (NI=166) …….. 92

x

Chapter 1

 Introduction

1.1 Presentation and Justification

Assembly lines are nowadays commonplace in many production and

manufacturing systems, particularly those entailing a large volume of a single

product. They maximize the division of labour, thereby maximizing system

productivity (Amen (2001)). Therefore, the configuration of the line and the

distribution of work along the line are fundamental to the system’s efficiency.

A complex optimization problem arises when technological constraints and a

given objective are also taken into account: the line balancing problem.

In an Assembly Line Balancing Problem (ALBP) a set of tasks have to be

assigned to an ordered sequence of workstations in such a way that precedence

constraints are maintained and a given efficiency measure is optimized, such

as, for example, the number of workstations or the workstation time (i.e. the

cycle time). In the simplest case, referred to in the literature as SALBP:

Simple Assembly Line Balancing Problem (e.g., Baybars (1986), Scholl and

Becker (2006)), a serial line processes a single model of one product. Basically,

the problem is restricted by technological precedence relations and the cycle

time constrains. On the other hand, GALBP: Generalized Assembly Line

Balancing Problems are considered to be those that take into account other

attributes and system restrictions. A great diversity of GALBP has been

considered in the literature, which include, for example, mixed-models, parallel

workstations, U-Shaped lines, unequally equipped workstation and multiple

objectives (see, for example, Becker and Scholl (2006)).

 Chapter 1: Introduction

A common feature of most assembly line balancing problems is that they

consider a unique and predetermined precedence graph that represents all

possible precedence relations among the tasks. However, in real-life problems,

several parts of an assembly process can admit alternative precedence

subgraphs that represent their corresponding assembly variants. This is true in

the assembly or disassembly of many industrial products for which several

valid plans may be available. Examples of this situation include car assembling

(Scholl et al. (2007)), the decoration of motorbike fairings (Capacho and

Pastor (2005)), the production of commercial hand-held drills (Senin et al.

(2000)), the manufacturing of toys from moulded plastic parts or by metal

stamping (Das and Nagendra (1997)) or in the disassembly process of complex

products (Gungor and Gupta, 1997).

Alternatives have essentially been a primary concern for the planning process

and, due to its importance, several approaches have been proposed to integrate

this strategic task into the balancing process (e.g., Tseng and Tang (2006),

Gaalman et al. (1999)).

The huge complexity of problems involving assembly alternatives has led to

the use of a two-stage based approach. In the initial stage, the system designer

selects one of the possible variants according to criteria such as total

processing time, cost, resource allocation, and task parallelism (e.g., Lambert

(2006) and Senin et al. (2000)). Once the assembly alternatives have been

selected, and a precedence graph is available (i.e. the assembly planning

problem has been already solved), the line is then balanced in the second

stage.

However, by following this two-stage procedure it cannot be guaranteed that

an optimal solution of the global problem can be obtained, because the

decisions taken by the system designer restrict the problem and cause

information loss; i.e., a priori selection of an alternative leaves the effects of

the other possibilities unexplored. For instance, if the system designer uses

total processing time as decision criterion, the alternative with largest total

processing time will be discarded notwithstanding it may provide the best

solution of the problem (i.e., it requires the minimum number of workstations

or minimum cycle time).

Therefore, it seems reasonable to consider that to solve efficiently an ALBP

that involves processing alternatives all possibilities must be considered within

the balancing process. For this purpose, in this thesis both the variant

selection problem and the balancing problem are jointly considered instead of

independently.

 2

Chapter 1: Introduction

The Alternative Subgraphs Assembly Line Balancing Problem (ASALBP),

the new problem firstly introduced, defined and studied in this doctoral thesis,

considers the possibility of alternative assembly variants. Each variant is

represented by a subgraph which determines the required assembly tasks, their

precedence relations and their processing times. In this way, the SALBP

hypothesis which states that tasks must be processed only once is relaxed; i.e.

a particular set of tasks is performed only if the assembly process to which the

tasks belong to is selected.

Therefore, apart from considering cycle time restrictions, subgraph constraints

have to be taken into account to assure that tasks belonging to a particular

subassembly are processed considering a unique assembly subgraph (i.e., the

same assembly variant). Furthermore, it is also considered that task processing

times may not be fixed, yet all known, but dependent on the assembly

subgraphs. Therefore, total processing time may vary from one processing

alternative to another.

A premise embraced by the problem addressed in this doctoral thesis considers

that better solutions can be obtained when all available assembly variants are

taken into account in the balancing process, rather than when selecting a

priory an assembly alternative, and then balancing the line considering only

the selected alternative. Therefore, solving the Alternative Subgraphs

Assembly Line Balancing Problem implies simultaneously solving both the

decision problem, to select one assembly subgraph for each subassembly that

allows alternatives, and the balancing problem, to assign the tasks to the

workstations.

Considering alternative precedence subgraphs imposes a higher level of

difficulty on an assembly line balancing problem as it is verified the NP-hard

condition of the problem -given that the simple case (SALBP) is NP-hard (see

e.g. Wee and Magazine (1982)). However, as real industrial processes may

involve assembly alternatives, the possibility of considering alternative

subgraphs not only enables more practical and realistic instances of ALBP to

be addressed, but also may favour an assignation of tasks to the workstations

in order to optimize a given objective. Regarding the conventional terminology

(e.g. Baybars (1986) or Scholl (1999)), when the objective is to minimize the

number of workstations given an upper bound on the cycle time, the problem

is referred to as ASALBP-1. If the objective is to minimize the cycle time

given the number of workstations, the problem is called ASALBP-2.

 3

 Chapter 1: Introduction

1.2 Objectives

This doctoral thesis addresses a new assembly line balancing problem that has

not been previously considered in the literature. Therefore, the core objectives

of this work are to define, to formalize and to solve this complex problem.

In order to accomplish the main objectives, the following specific objectives are

considered.

1. State of the Art of assembly systems focusing on problems considering

processing alternatives.

2. Definition and characterization of a new assembly line balancing

problem: the Alternatives Subgraphs Assembly Line Balancing Problem

(ASALBP). This problem is defined and characterized, giving some numerical

examples to illustrate its relevance.

3. Mathematical Formulation of the ASALBP. In order to formalize this

new problem, two different mathematical programming formulations are

developed. Such models are used to optimally solve small- and medium-scale

ASALBP instances.

4. Design and Implementation of Approximate Procedures. The NP-hard

condition of the ASALBP limits the potential of mathematical programming

models when industrial size problems are considered. In order to deal with

large-scale problems, a heuristic approach based on constructive procedures is

considered. Furthermore, several local optimization procedures based on two

different neighbourhood search strategies are developed.

5. Benchmark generation. Since the ASALBP is a new assembly line

balancing problem, benchmark problems must be generated.

6. Evaluation and Comparison of the Performance of the Developed

Solution Procedures. In order to evaluate the performance of the proposed

mathematical models and the solution procedures, a computational experiment

is designed based on the sets of benchmark problems generated in this thesis.

All procedures are applied to small-, medium- and large-scaled problems

instances. Conclusions are drawn from this evaluation as well as proposals for

future research work.

 4

Chapter 1: Introduction

1.3 Structure of the Thesis

This thesis consists of six chapters and is structured as follows.

Chapter 1 introduces the problem addressed in this thesis and outlines the

aims of this work.

Chapter 2 presents the State-of-the-art. It discusses the main concepts related

to assembly systems and gives an overview of the problems that have been

addressed in literatures studies, including the proposed solutions procedures.

Combinatorial optimization problems that involve assembly alternatives are

also discussed in this chapter.

Chapter 3 introduces, defines and characterizes the Alternative Subgraphs

Assembly Line balancing problem (ASALBP). Furthermore, some examples

are provided in order to illustrate the benefits that can be obtained by

considering assembly alternatives in the balancing process. The S-Graph, a

diagramming tool proposed to depict all assembly alternatives in a unique

precedence graph, is introduced here.

Chapter 4 presents the mathematical formulation of the Alternative

Subgraphs Assembly Line balancing problem. Two mathematical

programming models are proposed, and their performance is evaluated by

using the IPL solver CPLEX© (a commercial optimization software).

Chapter 5 deals with the approximate approach. This chapter describes both

the heuristics methods and the local optimizations procedures proposed to

solve the ASALBP. The computational experiment carried out to evaluate and

compare the proposed methods is also described here.

Finally, Chapter 6 presents the conclusions and further research proposals.

 5

Chapter 2

 State of the Art

2.1 Introduction

This chapter introduces the basic concepts and criterions habitually used in

the literature to classify assembly lines. It describes classical assembly line

balancing problems and presents some classification schemes that have been

proposed for problem identification. Furthermore, it gives an overview of the

variety of problems and solutions procedures that have been considered in

research studies. Finally, some optimization problems involving alternative

configurations are presented in order to outline the problem under study in

this doctoral thesis.

2.2 Assembly Lines

In its basic form, an assembly line consists of a sequence of m workstations,

usually connected by transportation mechanism such as a conveyor belt,

through which the product units flow. Each workstation repeatedly performs a

set of tasks in order to produced or manufacture a specific product. Tasks

require certain time to be processed and are related amongst one another

according to the existing technological constraints.

Chapter 2: State-of-the-art

Undoubtedly, the most famous example of an assembly

line is the production plant of Henry Ford. T-model

components were manufactured in the first moving line

using the ideas of work division to decrease the

production cost per unit and to allow massive production.

However, the work division ideas and this kind of

configurations date from much earlier times. The

Venetian Arsenal (considered the world first factory) for

instance, developed methods of mass-producing warships

which were much faster and required less wood. At the peak

the early 16th century, the Arsenal was able to produce n

day on a production-line basis not seen again until the Ind

In 1799, Eli Whitney introduced the assembly lines

manufacturing system. In 1901 Ransom Eli Olds patented

line concept and his Olds Motor Vehicle Company was t

America to mass-produce automobiles (Wikipedia (2003))

when Henry Ford perfected the assembly line concept; n

assembly line for building cars is attributed to him.

Although, assembly lines are most commonly found in

industry, many other sectors are also organized in assembly

case for most daily life goods, as, for example, the final ass

products such as coffee machines, washing machines, refrig

and personal computers (Amen (2001)). More recently, as

gained importance in low volume production of customized p

al. (2007)) as well as in service systems.

2.2.1 Basic Concepts

 Processing tasks: a processing task i (task, hereafter)

working unit which has associated a processing time t

required to manufacture a product in an assembly line is

of n tasks.

 Workstations: are the line component where tasks are p

involve a human or robotic operator, certain equi

specialized processing mechanisms.

 7
 of its efficiency in

early one ship per

ustrial Revolution.

in the American

the first assembly

he first factory in

. Was until 1913

owadays, the first

 the automotive

 lines. This is the

embly of electrical

erators, radio, TV

sembly lines have

roducts (Scholl et

 is an indivisible

i. The total work

 divided into a set

rocessed, and can

pment and some

http://en.wikipedia.org/wiki/Mass_production
http://en.wikipedia.org/wiki/16th_century
http://en.wikipedia.org/wiki/Ship
http://en.wikipedia.org/wiki/Assembly_line
http://en.wikipedia.org/wiki/Industrial_Revolution
http://en.wikipedia.org/wiki/Ransom_Eli_Olds

Chapter 2: State-of-the-art

 Cycle time ct: is the time available in each workstation to complete the

tasks required to process a unit of product -the production rate is equal to

1/ ct units of product per time unit. The cycle time is also defined (e.g.

Peeters (2006)) as the time interval between the processing of two

consecutive units.

 Precedence relations: are defined by the technological precedence

requirements that determine the partial order in which tasks can be

performed in the assembly line. A task cannot be processed until all its

immediate predecessors have already been processed. Precedence relations

are normally represented by a precedence diagram.

 Workstation load Sj: is the subset of tasks assigned to workstation j.

 Workstation time t(Sj): is the sum of the times ti of all tasks assigned to

workstation j.

() =
∈
∑j i

i S j

t S t [2.1]

 Workstation idle time Itj: is the difference between the cycle time and the

workstation load.

()j jIt = ct - t S , () <jt S ct [2.2]

 Line balancing: is the process of distributing the n tasks among the m

workstations in such a way that precedence constraints and other

constraints are satisfied; aiming at optimizing a given efficiency measure.

Classical objectives seek to minimize m for a desired cycle time ct, or to

minimize ct given m.

There exists a great variety of configurations involving assembly lines, which

are characterized according to diverse criteria. Amongst others, these include

the layout and shape of the line, the number of products and models being

processed in the line, types of workstation and the variability of the task

processing times.

Based on the research studies of Boysen et al. (2007a, 2007b), Becker and

Scholl (2006), Hao (2005), Miralles (2004), Rekiek (2001) and Scholl (1999),

the following classification (section 2.2.2) summarizes some of the most

relevant attributes of assembly lines.

 8

Chapter 2: State-of-the-art

2.2.2 Classification of Assembly Lines

What follows classifies assembly lines according to: the number of products or

models produced, tasks durations, shape or layout of the line, the flow of the

workpieces and the level of automation of the line.

According to the number of products or models

 Single-model line: is the classical configuration in which a single model of

a unique product type is produced (Figure 2.1).

Fig. 2.1: Single-model line

 Mixed-model line: several variants of a basic product, referred to as

models, are produced simultaneously in the line (see Figure 2.2). The

production process does not involve setup times since all models require

basically the same manufacturing tasks. Units of different models are

produced in a mixed sequence.

Fig. 2.2: Mix

 Multi-model line: different models with significant differences amongst

one another are process sequences of batches are

According to task durat

 Deterministic: all task processing times are fixed and known with certainty.

 Stochastic line: task processing times may be significantly affected from

ed-model line

ed in the lin . Therefore,e

processed, containing either the same model or a group of similar models,

involving intermediate setup tasks (Figure 2.3).

Fig. 2.3: Multi-model line

ions

different sources of variability such as, for example, the ability or

motivation of human operators. Therefore, the processing time of one or

more tasks is considered to be probabilistic.

*

setup

*

setup

 9

Chapter 2: State-of-the-art

ch the task is assigned, on the

n the assembly process or due to

Ac

 Serial lines: products units are processed throughout a group of

ed in a straight line such as, for

Fig. 2.4: Serial line1

Two-sided lines: consist of two serial lines in parallel, in which pairs of

opposite workstations (left-hand side and right-hand side) process

Dependent line: tasks processing times are not fixed but dependent, for

example, on the type of workstation to whi

operator or on the processing sequence.

Dynamic line: processing times vary over time and can be reduced in

successive cycles due to improvements i

learning effects (for example, when operators become familiar with the tasks).

cording to the line shape or layout

workstations that are consecutively arrang

example, a conveyor belt (Figure 2.4).

simultaneously the same workpiece. This configuration is commonly found

in the automotive industry (Figure 2.5). Some tasks can be assigned only to

one side (e.g. mount the left car wheel), some tasks can be assigned to

either side (e.g. install the hood ornament), and some tasks must be

assigned to both sides of the line simultaneously (e.g. install the rear seat)

Bartholdi (1993).

Fig. 2.5: Two-sided lines2

1 An assembly line of VCR units of Sony.

 10

Chapter 2: State-of-the-art

 Parallel workstations: in this case two o more workstations are put in

parallel; hence, the work pieces can be distributed between several

workstations that perform an identical set of tasks.

ch each line is designed

for one product or family of similar products (Figure 2.6).

Fig. 2.6: Parallel lines

 U-Shaped lines: the workstations are arranges in a U-shaped line. Both

tops of the line are closed to each other forming a U (Figure 2.7, Lee

(2000)). The workstations may work during the same cycle on two or more

 Circle/closed lines e workstations are arranged

around a circular conveyo chanism), as can be seen in

Figure 2.8. A workpiece moves around being processed as it visits the

Parallel lines: this type of configuration can be considered when the

production system involves multiple products, in whi

workpieces at different positions on the line.

Fig. 2.7: U-shape lines

: in this type of lines th

r belt (or similar me

workstations, until the last task have been performed.

2 The assembly line of the Toyot

Fig. 2.8: Closed line

a Lexus, Canada.

11

Chapter 2: State-of-the-art

According to the workpieces flow

 Synchronous lines: in synchronous lines, paced lines, all

workstations have a common cycle time. Therefore, all workstations start

processing at the same time and advance the workpieces simultaneously.

Synchronous lines have a fixed production rate (Figure 2.9).

Fig. 2.9: Synchronous line

 Asynchronous lines: in these lines all workstations can work at different

speeds; thus, workpieces are transferred whenever the required tasks are

completed. The workstations are linked by buffers to store the workpieces

that cannot advance to the next workstation due to it is processing another

workpiece (Figure 2.10).

Fig. 2.10: Asynchronous line

 Feeder lines: feeder lines are supplementary lines that provide a main line

with subassemblies. Figure 2.11 shows an example of an assembly process of

an aeroplane, which consists of four lines feeding the main line.

Fig. 2.11: Feeder lines

 also referred to as

buffer buffer

Feeder line 3

Feeder line 1

Feeder line 2

 Feeder

Main line

 line 4

 12

Chapter 2: State-of-the-art

According to the level of automation

 Robotic li

 Fig. 2.12: Manual line Fig. 2.13: Robotic line3

e type of

l,

paced, deterministic line merely entails the assignment of tasks to the

workstations –the simplest balancing problem. However, for other line

pr

seq lot sizing

problem. Parallel lines involve a decision problem concerning the number of

volve the

Despite that, in the last years a considerable effort has been done towards

 Manual lines: in manual lines the tasks are performed by human

operators. These lines are common when workpieces are fragile or are of

special importance. Harley Davidson’s motorcycles, for example, are 100%

assembled by hand as shown in Figure 2.12.

nes: robotic lines, commonplace in automotive industry, are lines

fully automated and operated by robots (Figure 2.13).

The characterization of the line, to a great extent, determines th

balancing problem that is to be solved. For example a single-model, seria

configurations the balancing problem comes together with additional decision

oblems. A mixed model line, for example, is connected with a problem of

uencing the models, whereas a multi-model line also implies a

lines that needs to be installed. Robotic lines, on the other hand, in

assignment of both tasks and robots to the workstations. Asynchronous lines

requires of the positioning and dimensioning of buffers; and whenever feeder

lines are considered, the production rates of the available lines have to be

synchronized.

It is evident that industrial systems involve a great variety of characteristics

and problem variations. However, due to their complexity, most literature

studies on production and manufacturing have addressed problems which do

not consider many of the requirements and constraints present in real systems.

3 http://encarta.msn.com/media˙701765960/Robot˙Assembly˙Line.html (visited on February 2004)

 13

Chapter 2: State-of-the-art

filling the gap between problems addressed in research works and real-world

ap

problems, its variatio

problems involving processing alternatives are also discussed.

2.3

Assembly line balancing problems have been extensively studied, as can be

1986), Ghosh and Gagnon (1989), Erel and

arin (1

choll and Becker (2006).

s previously mentioned, the Assembly Line Balancing Problem (ALBP)

nsists in assigning a set of indivisible tasks to an ordered sequence of

orkstations in such a way that precedence constraints are maintained, the

orkload of each workstation does not exceed the cycle time and a given

ficiency measure is optimized. The term balancing arises from the fact that

 to be b 1)). Since a

erfect balance (i.e., an identical load for all workstations) is rarely achieved,

production rate can be maximized by minimizing the cycle time of a given

inimization criteria that have been considered in literature

(e.g. Pinto et al. (1981)), number of buffers, line stoppage time, and variances

in workstation times. Some maximization objectives include production rate

plications. What follows discusses main aspects of assembly line balancing

ns and proposed solution procedures. Furthermore,

 Assembly Line Balancing Problems

seen in the reviews of Baybars (

S 998), Rekiek et al. (2002), Dolgui (2006), Becker and Scholl (2006),

S

A

co

w

w

ef

the workload of each workstation is alanced (Rekiek (200

p

workstations idled time becomes a main optimization objective. On the other

hand, as the assembly line global cost is influenced by the number of

workstations, the classical objective of assembly line balancing problems is to

minimize the number of workstations for a given cycle time, which is referred

to as time-oriented line balancing (e.g. Amen (2001)). Furthermore,

number of workstations. Problems that seek to minimize costs are regarded to

as cost-oriented line balancing (e.g. Becker and Scholl (2006), Scholl and

Becker (2006), Amen (2000)). On the other hand, profit-oriented are those

which implicitly consider the profit attained by the line.

Generally, minimizing the number of workstations or the cycle time is the

primary objective of assembly line balancing problems. Nevertheless, most

often, more that one efficiency measure is to be optimized. The followings are

some of the m

studies: throughput time (i.e., the time interval between lunching a workpiece

and finishing the finished product form the line), cost of machinery and tools

(e.g. Bukchin and Tzur (2000)), inventory cost (e.g. Martin (1994)), dead time

(i.e. the time that takes to transport a workpiece from one workstation to

another) (e.g. Bard (1989)), cost of producing one unit of product, labour cost

 14

Chapter 2: State-of-the-art

(which is equivalent to minimize the cycle time), line efficiency and profit (e.g.

Becker and Scholl (2006)). A further objective considers that the workload of

each workstation needs to be as similar as possible (e.g. Martinez and Duff

(2004), Miralles et al. (2003)).

Considering the line system characteristics and the problem objectives, several

A well-known early classification of ALBP is the one proposed by Baybars

 is restricted by precedence relations and cycle time

he first field of such

codification is used to characterize the line: identifies the type of line

attempts have been done to categorize balancing problems.

(1986), which distinguish two classic problems: Simple Assembly Line

Balancing Problem (SALBP) and Generalized Assembly Line Balancing

Problem (GALBP). In the former case, only one model of a single product is

processed, and the problem

constraints. GALBP, on the other hand, compounds all problem variations

which take into account further restrictions and problem attributes. Ghosh

and Gagnon (1989) slightly extended the Baybar’s proposal by considering the

number of products being processed in the line and the variability of the task

processing times.

Notwithstanding the classification proposed by Baybars (1986) has been

habitually used as a guideline for many other proposals, it is yet too general

and restricted to reflect the increasing variety of real-word balancing problems.

Consequently, more detailed classifications schemes have been intended to

facilitate the communication between researches and practitioners. Such

proposals use a condensed notation which allows considering a significant

number of aspects to describe real assembly systems. Some of the most

relevant proposals include the following.

Plans (1999) presented in his doctoral thesis an exhaustive classification

scheme based in a five-field codification to identify and characterize assembly

balancing problems as well as its resolution procedures. T

considered (i.e. simple, mixed or multiple) and defines the existence of parallel

workstations or buffers. The second field specifies tasks durations, setup times

and, when applies, operator transportation times. The third field specifies the

constraints among the tasks (i.e. precedence, incompatibility, affinity or

parallelism) and indicates whether or not all workstations are equally

equipped. The fourth element indicates if movement of the product being

assembled is allowed over the line (e.g. rotated); and the last field specifies the

problem type and the optimization objectives.

A similar classification scheme is proposed by Hao (2005), in which a larger

number of the characteristics of the problem being studied are taken into

 15

Chapter 2: State-of-the-art

account. In this case, ALBP are classified considering four main groups: (1)

the product, which defines the range of products processed over the line, its

launching discipline and its position while being processed; (2) the line, which

defines the line layout, the type of workstations used, the degree of

 required) used to

describes the workstations and the line: it defines the

ider very simple problems, entirely

restricted by the technological precedence relations and the cycle time

automation, its length, type of setups, and the pattern (related to the speed of

the line and the allowance to stop the line processing when

manage the line; (3) the operator, which describes the people capabilities to

perform the tasks over the line; and the last group (4) defines the type of

problem and its objectives.

More recently, Boysen et al. (2007b) proposed an approach intended to typify

extensions of assembly systems by considering the following tripartite

notation: [α|Λ|γ]. The first element, α, uses a set of six attributes to determine

whether a unique product or model is being considered, to establish the

structure of the precedence graph, to identify processing times, assignment

restrictions and to establish whether there exist processing alternatives. The

second element, Λ,

movement of the workpieces, the line layout, level of (line, workstation, tasks,

and working places) parallelization, resource assignment restrictions, and

other configuration aspects, such as buffers or feeders. Finally, γ establishes

the objectives.

2.3.1 Simple Assembly Line Balancing Problems (SALBP)

As previously mentioned, SALBP cons

constraints.

A huge amount of research work has been devoted to this type of problem

(e.g. Baybars (1986), Ghosh and Gagnon (1989), Scholl (1999) and Becker and

Scholl (2006)).

Characteristics of the simple assembly line balancing problem

The following are the main assumptions of simple assembly line balancing

problems (Baybars (1986), Scholl (1999)).

A serial assembly line processes a unique model of a single product with all

input parameters known with certainty. Task processing times are

deterministic and independent on the workstation at which they are performed

and on the preceding or following tasks. None of the task processing times is

greater than the cycle time and setup times are considered to be negligible. All

 16

Chapter 2: State-of-the-art

workstations are equally equipped and manned, therefore, any workstation can

process (one at a time) any one of the tasks; furthermore, tasks can be

assigned to any workstation, and they are not incompatible between each

other. On the other hand, tasks must be process only once and cannot be split

among workstations; therefore, each task has to be completely processed in one

workstation only. Task cannot be processed in arbitrary sequences due to

technological precedence requirements; though all must be processed; and no

other assignments restrictions are considered apart from precedence cycle time

constraints.

Versions of SALBP

According to the optimization objective considered, four versions of SALBP

are distinguished (Scholl (1999)):

 SALBP-1: minimizes the number of workstations m given a cycle time ct.

 SALBP-2: aims at minimizing the cycle time ct given the number of

workstations m.

 SALBP-E: seeks to maximize the line efficiency E, where E=tsum/(m⋅ct)
and tsum is the summation of all task processing times.

 SALBP-F: is a feasibility problem that tries to establish whether a feasible

task assignment exists for a given cycle time ct and a number of

workstations m.

Although the great majority of published research work done on SALBP

ly when designing an assembly line and SALBP-2 appears every

There exist several mathematical formulations for the simple assembly line

as a

reference to many other models. According to Ghosh and Gagnon (1989), the

matical form by Salveson in 1955.

focuses on SALBP-1, it has been argued (e.g. Miralles (2004)) that SALBP-2

appears to be more relevant than its counterpart SALBP-1, because SALBP-1

is suitable on

time an existing line requires to be (re)balanced.

Mathematical model of SALBP

balancing problem, in particular for SALBP-1, which have been used

first analytical statement of this problem was made by Helgeson et al. in 1954

and published for the first time in mathe

Other models include the one proposed by Bowman (1960) who was the first

to incorporate integer variables. The model of Bowman was improved by

White (1961) and then further improved by Thangavelu and Shety (1971),

and Patterson and Albracht (1975). What follows present a basic mathematical

programming model for SALBP-1 and for SALBP-2.

 17

Chapter 2: State-of-the-art

Notation

 Indices

i for tasks

j for workstations

 Parameters

n number of tasks (i = 1,…,n)
m maximum number of workstations (j = 1,…,m)

ti processing time of task i (i = 1,…,n)

iven for SALBP-1 and a decision variable for

SALBP-2)

ct cycle time (it is g

PDi set of the immediate predecessors of task i (i = 1,…,n)

Decision variables

{ }0,1∈ ⎨
⎪⎩

=j
j j m

y
1, if there is any task assigned to workstation ⎧⎪ (= 1,...,)

0, otherwise

1, if{ }0,1
⎧⎪∈ ⎨
⎪⎩ij =

i j i n j m
x

 task is assigned to workstation (= 1,..., ; = 1,...,)

Mathematical Model of SALBP-1

Th

order to minimize the number of workstations given the cycle time ct.

workstations to be used in lexicographic order (i.e., tasks are assigned from the

0, otherwise

e following model for SALBP-1 assigns the tasks to the workstations in

The objective function [2.1] consists in minimizing the number of workstations.

Constraints [2.2] guarantee that every task i is assigned to one and only one

workstation. Constraints [2.3] ensure that the summation of the processing

times of the tasks assigned to workstation j does not exceed the cycle time.

Constraints [2.4] impose the precedence constraints. Relations [2.5] oblige the

first to the last workstation).

=

= ∑
m

j
j 1

Minimize z y [2.1]

1

1
=

=∑
m

i j
j

x ∀ i [2.2]

1

n

i ij j
i

t x c t y
=

⋅ ≤ ⋅∑ j∀ [2.3]

1 1

m m

p j ij
j j

j x j x
= =

⋅ ≤ ⋅∑ ∑ , ii p PD∀ ∀ ∈ [2.4]

1j jy y +≥ 1,..., 1j m= − [2.5]

 18

Chapter 2: State-of-the-art

Mathematical Model of SALBP-2

h tion for SALBP-2 is similar to the previous formulation for

SALBP-1 in which the cycle time is the variable to be optimized, i.e.,

ob tiv urthermore, as the number of workstations is a given

ced by [2.7] since all workstations existence

variables

T e formula

jec e function [2.6]. F

parameter, constraint [2.3] is repla

yj are equal to 1.

=Minimize z tc [2.6]

1
1

=

=∑
m

x i j
j

∀ i [2.2]

n

1
i i j

i
t x c t

=

⋅ ≤∑ j∀ [2.7]

1 1

m m

p j i j
j j

j x j x
= =

⋅ ≤ ⋅∑ ∑ , ii p PD∀ ∀ ∈ [2.4]

2.3.2 Generalized Assembly Line Balancing Problems (GALBP)

ancing problems are considered to be

ALBP

examples include the following main known groups.

lines a task can be assigned only when its

predecessors have been assigned. Regarding the conventional terminology used

for SALBP (e.g., Baybars (1986)), the following variants are distinguished:

UALBP-1, UALBP-2 and UALBP-E, respectively. Examples of this type of

problems can be found in Scholl and Klein (1999b), Miltenburg (1998, 2002),

Miltenburg and Wijngaard (1994), Ajenblit and Wainwright (1998).

Mixed-model Assembly Line Balancing Problem (M P)

This problem appears when a mixed-model line is considered. Different models

of the same product are inter-mixed to be assembled on the same line.

Therefore, apart from assigning the tasks to the workstations the sequence of

different models has to be determined. The problem versions MALPB-1,

Habitually, generalized assembly line bal

the problems in which one or more assumptions of the simple case are relaxed

(e.g. Baybars (1986), Scholl and Becker (2006)). Some common G

U-Shaped Assembly Line Balancing Problem (UALBP)

This kind of problems involves U-shaped lines. This configuration is considered

to be more flexible because the line disposition allows for more possibilities on

how to assign tasks to workstations. The reason for this is that tasks can be

assigned when either its predecessor or its successors have already been

assigned, whereas with serial

ALB

 19

Chapter 2: State-of-the-art

MALBP-2 and MALBP-E are also valid. Many literature studies have

Robotic Assembly Line Balancing Problem (RALBP)

In this case, a robotic line is consider

and the set of robots have to be assigned to workstations (e.g. Rubinovitz and

Bukchin (1993), Tsai and Yao (1993), H ng an Cho (1999)

Multi-objective Assembly Line Bala g Problem (MOALBP)

These problems consider several optimization objectives simultaneously. Agpak

and Gokcen (2005), for example, deal with a problem that seeks to minimize

both the number of workstations and t total assembling cost or the amount

of resources. According to Rekiek et al. (2002) most GALBP are multi-

objective (e.g. Kim et al. (1996), Malakooti and Kumar (1996), McMullen and

Bukchin and Rubinovitz (2003), for example, addressed a problem involving

xey (1974);

dditional

restrictions apart from cycle time and precede constraints. Park et al. (1997),

fore certain

addressed this problem, see, for example, Kubiak and Suresh (1991), Bard et

al. (1992), Bukchin (1998), Merengo et al. (1999), Bukchin et al. (2002),

Karabati and Sayin (2003), Ponnambalam et al. (2003), Spina et al. (2003),

Bukchin and Rabinowitch (2005).

ed, therefore, both the assembly tasks

o d).

ncin

he

Frazier (1998a), Bukchin and Masin (2004)).

Many other problems have been also addressed in the literature in which a

great diversity of aspects of the real problem has been taken into account.

Regarding the characteristics of the line and the layout of the system

parallel workstations; multiple workstations are considered by Bu

Pinto et al. (1975) tackled a problem involving parallel tasks. Other problems

include two-sided lines, commonly found when heavy work pieces such as cars

or aeroplanes are involved (e.g. Kim et al. (2000), Bartholdi (1993)); buffered

or parallel lines commonplace in a multi-model context (e.g. Suer (1998)),

multi-product lines (e.g. Pastor et al. (2002), Berger et al. (1992)); multiple

assembly lines as the N-UALBP of Miltenburg (1998); and complex layouts

involving lines with different shapes (e.g. Bukchin et al. (2006)).

Additional restrictions

Research works have also addressed problems that consider a

for example, considered a problem involving incompatibilities; there

tasks cannot be processed in the same workstation. Other examples include

workstation capacity constrained problems as in Moon et al. (2002); resource

constrained (e.g. Agpak and Gokcen (2005)); and workstations that are not

equally equipped (e.g. Nicosia et al. (2002)).

 20

Chapter 2: State-of-the-art

Task durations

With reference to duration of the tasks, literature studies include problems

that involve processing times that are dependent on the sequence (e.g. Spina

et al. (2003)) or on the operator (e.g. Corominas et al. (2006)), which are

stochastic (e.g. Sarin et al. (1999)) or fuzzy (e.g. Gen et al. (1996)).

ncerning either

d

Gokcen (2005) and Gamberini et al. (2005)).

ssigned to workstations; and, on

the other hand, the assignment of tasks considering workstation restrictions. In

 to

further considered parallel workstations.

n which the

assumption that one process plan is available for each job is relaxed. They

on scheduling performance and concluded

hes are proposed: (1)

Processing alternatives and equipment selection

Alternatives configurations have also been considered in literature studies,

which are mainly related to equipment selection. In this case, processing

alternatives are determined through task requirements co

machines or manpower (e.g. Pinto et al. (1983), Sawik (2002), Agpak an

Bukchin and Tzur (2000) addressed a problem that considers equipment

alternatives, with every workstation provided with one equipment chosen from

a set of equipment types. Each equipment type has an individual cost that

affects task processing times. Therefore, the problem implies, on the one hand,

the selection a proper equipment type to be a

this problem tasks are subject to fixed precedence restrictions; in the same

way, processing times are considered to be fixed. A similar problem related

equipment selection was undertaken by Bukchin and Rubinovitz (2003) which

Pinto et al. (1983) dealt with a problem involving processing alternatives.

According to Bukchin and Tzur (2000), this problem is related to the selection

of limited equipment, which may be added to the existing equipment in the

workstation. In this problem precedence relations between tasks are always

maintained.

Processing alternatives have also been considered in other optimization

problems, such as the scheduling of tasks in flexible manufacturing systems.

Ahn and Kusiak (1990), for example, dealt with a case i

analyzed the effects of process plans

that the quality of schedules, regarding makespan and utilization of resources,

improves when alternative processing plans are considered.

Sawik (2002) tackled a problem of balancing and scheduling several product

types which are produced in a flexible assembly line; i.e., a line that involves

workstations of various types in series, each one capable of simultaneously

producing a mix of product types. Two solution approac

 21

Chapter 2: State-of-the-art

is a sequential approach that at first assigns the tasks to the workstations

 required

tasks have been assigned subject to the precedence relations defined by its

rehand.

on the assembly subgraphs.

P), which extends the basic problem

y time increments that are added to the task time, defining the

different task processing times but also trough completely different sets of

regardless of the model type, and then afterwards determines the sequence for

each product type; and (2) a monolithic approach that simultaneously

considers the balancing and the scheduling problem. In both cases, each

product must be successively routed to the workstations where the

assembly plan, any of which is unique and prefixed befo

The problem addressed in this doctoral thesis, the Assembly Subgraphs

Assembly Line Balancing Problem (ASALBP), considers the possibility of

assembly alternatives, each of which consists of a particular task processing

order that is represented by a precedence subgraph. Consequently, precedence

relations are not fixed but dependent

Furthermore, each processing alternative involves a subset of tasks which may

be different for each assembly variant. In addition, task processing times are

not fixed but are also dependent on the assembly subgraphs.

The development of this thesis engenders the definition and formalization of

this new problem as exposed in the research works of Capacho and Pastor

(2005, 2006). Per se, previous to this thesis, the ASALB problem remained

unexplored.

In a recent work, Scholl et al. (2007) introduced the sequence-dependent

assembly line balancing problem (SDALB

by considering sequence-dependent task times. In that paper, the authors

adapt solution approaches for SALBP to SDALBP, generate test data and

perform some preliminary computational experiments. SDALBP can be

considered a special case of ASALBP, in which assembly alternatives are

represented b

interference of performing one task after certain other task. For instance, an

increment sdij corresponds to the additional time that a task j requires to be

performed given that a task i has been performed before it.

In the ASALBP the alternatives are explicitly defined by independent

precedence subgraphs which represent different processing alternatives; i.e.

assembly variants. Therefore, the alternatives can be defined not only trough

precedence requirements. Furthermore, assembly processes involving different

set of tasks are also allowed, which are not at all contemplated in the SDALB

Problem.

 22

Chapter 2: State-of-the-art

2.4 Procedures to Solve Assembly Line Balancing
Problems

Numerous procedures have been developed to solve assembly line balancing

problems. Due to the NP-hard nature of this type of combinatorial problem,

few exact methods have been developed to solve SALBP, in particularly

SALBP-1. Habitually, although guaranteeing an optimum solution, exact

roblems are the

heuristic approaches focussed on SALBP. Branch and bound

methods are compared by Scholl and Klein (1999a).

ve been used to

formally describe assembly line balancing problems, which may facilitate

methods have a problem size limitation, measured in terms of computing time;

therefore, they can only be applied to problem instances with small or medium

number of assembly tasks. Approximate methods (i.e., heuristics and

metaheuristics) have been developed in order to overcome such a limitation,

and aiming at providing good solutions that are as near as possible of the

optimal solution.

Amongst the more relevant review papers concerning both exact and

approximate procedures to solve assembly line balancing p

following proposals: Erel and Sarin (1998) and Baybars (1986) which present

exact methods developed for the simple case (SALBP); Talbot et al. (1986),

on the other hand, dealt with heuristics techniques. Scholl and Voss (1996)

also discuss

An analysis of the optimization methods for assembly lines design is provided

by Rekiek et al. (2002). Erel and Sarin (1998) provide a survey on the

procedures to solve ALBP. The most up to dated states of the art on both

exact and heuristics methods can be found in Scholl and Becker (2006) for the

simple case and in Becker and Scholl (2006) for the generalized case.

2.4.1 Exact Procedures

Generally, (mixed) integer linear programming models ha

designers and decision makers to have a better understanding of different

assembly systems. However, most often solving such models optimally has not

practical relevance because standard solvers proved to be inefficient when

considering real-world scaled problems (Scholl et al. (2007)). Therefore, most

exact methods considered in the literature to solve ALBP are based on

dynamic programming and branch-and-bound procedures.

 23

Chapter 2: State-of-the-art

Dynamic Programming (DP) procedures basically transform the problem into

a multi-stage decision process by breaking it into smaller subproblems, which

in turn are solved recursively; then the optimal solutions of the subproblems

 (B&B) is an enumeration technique developed by Little et

al. (1963), which finds the optimal solution by exploring subsets of feasible

solutions. Sub-regions are formed by branching the solution space. A bounding

process is recursively used to find lower or upper bounds of the optimal

solution within each sub-region, using different searching strategies (e.g., depth

are provided by Pinnoi and Wilhelm (1998) and Bockmayr and Pisaruk

t exact methods used to solve SALBP-2 are

based on repeatedly solving SALBP-F with m workstations and various trial

cycle times values within a given interval (Klein and Scholl (1996)). Only two

B&B procedures solve SALBP-2 directly: TBB2 and SALOME2 developed by

Klein and Scholl (1996).

 software). Sarin et

al. (1999) developed a B&B procedure for a problem with stochastic processing

are used to construct the optimal solution of the original problem. The first

dynamic programming procedure was developed by Jackson (1956) and

modified by Held et al. (1963). The main drawback of these procedures is their

large memory requirements. This limitation was improved by the procedures

proposed by Schrage and Baker (1978), Lawler (1979) and Kao and Queyranne

(1982). Although the latter DP proposals have resulted in greater

computational efficiency, time and storage requirements continues to be a

mayor inconvenient of this type of procedures.

Branch-and-bound

first search, minimal lower bound, best first search or minimal local lower

bound). Computational comparisons (e.g. Scholl and Klein (1999a)) have

revealed that branch-and-bound (B&B) procedures outperform DP. B&B

procedures are further discussed by Scholl (1999) and Becker and Scholl

(2006). Pastor (1999) presents a classification of such procedures as well as

different search and bounding strategies.

Some effective B&B methods developed to solve SALBP-1 include FABLE

proposed by Johnson (1988), EUREKA by Hoffmann (1992), and SALOME of

Scholl and Klein (1997). Similarly, contributions on Branch-and-cut algorithms

(2001). On the other hand, mos

In a much lesser extent, mainly justified by their problem size limitation,

exact methods have been also used to solve GALBP. Urban (1998), for

example, presented an integer programming formulation for UALBP-1, solving

problem instances with CPLEX (a commercial optimization

 24

Chapter 2: State-of-the-art

times. Scholl and Klein (1999b) developed a B&B procedure to address an

UALBP. Dynamic programming formulations, on the other hand, were

proposed by Miltenburg (1998) to solve a case with N U-lines and by Nicosia

et al. (2002) to solve a problem involving different workstations.

2.4.2 Approximate Procedures

There exist a great variety of approximate methods proposed in the literature

to solve assembly line balancing problems (e.g. Talbot et al. (1986), Amen

(2000, 2001), Scholl and Voss (1996)); most of which are constructive

methods, enumeration procedures and improving techniques. Two main groups

ed heuristic was Ranked Positional

Boctor (1995), Scholl (1999) and Gosh and Gagnon

following strategies.

are distinguished: heuristic and metaheuristic methods.

Heuristic methods

A common methodology used is the greedy approach, where, at each step of

the procedure, one element of the solution is chosen according to a given

criteria until a complete solution is obtained. The simplest method randomly

generates solutions, evaluates each one of them and keeps the best of all

solutions obtained (Silver (2002)).

Basically, constructive methods are based on priority rules, most of which are

measured considering the number of predecessors and successors, and the task

processing times. One of the first propos

Weight (RPW) by Helgeson and Bernie (1961), in which tasks are ranked in

descending order of the positional weight (the summation of the task time and

the processing times of all its successors). Other well-known priority rules

include maximum task time, maximum total number of successors, minimum

earliest and latest workstation and minimum slack. Some heuristics combine

several priority rules; such as, for example, TTS which considers the

maximum task time divided by the total number of successors.

Most efficient priority rules are described in detail in Talbot et al. (1986),

Hackman et al. (1989),

(1989).

Priority-rule based methods create a ranked list of the assignable tasks. A task

is assignable if all of its predecessors have already been assigned and if its time

plus the current workstation time does not exceed the cycle time. Then, tasks

are selected and assigned to the workstations considering one of the two

 25

Chapter 2: State-of-the-art

Station-oriented: this strategy starts with one workstation and then others are

consecutively considered one at a time. In each iteration tasks are orderly

selected from the ranked list and assigned to the current workstation. Once

the current workstation is fully loaded (the ranked list is empty) a new

workstation is opened.

k in the rank list (the one with the

highest priority) is selected and assigned to the earliest workstation to which

Computational experiments (e.g. Scholl and Voss (1996)) have shown that, in

ed provide better results than task-oriented methods.

turning the best of

case, a random search strategy must be also considered in which one of the

transfer lines

balancing.

(2004) involving an industrial case.

The solution obtained by constructive methods can be improved by using

Task-oriented: in this strategy, the first tas

the task can be assigned. Task-oriented methods are further divided into

immediate-update-first or general-first-fit methods depending on whether the

ranked list is immediately updated after a task has been assigned or after all

tasks in the ranked list have already been assigned, respectively.

general, station-orient

Constructive methods that consider a unique rule to generate a single feasible

solution are also regarded to as single-pass methods (Rekiek (2001)). Their

counterpart, multi-pass methods (also called multi-start methods, e.g. Martí
and Moreno (2003), Fernandes and Ribeiro (2005)) generate multiple feasible

solutions, applying repeatedly different priority rules, re

all solutions obtained when a stopping criterion is satisfied. In the latter

assignable tasks is selected randomly, instead of selected the best considering

a particular priority rule. Arcus (1966) proposed COMSOAL, the first multi-

pass procedure applied to SALBP. In this procedure, the next task to be

assigned to the current workstation is randomly selected from the set of

assignable tasks; furthermore, it is considered that all tasks have the same

probability of being selected. Several solutions are generated keeping the one

with lowest level of idle time. Other procedures have been proposed based on

the ideas behind COMSOAL, e.g. DePuy and Whitehouse (2000) for a

resource allocation problem, and Dolgui et al. (2005) for

Heuristics based on priority rules and enumeration procedures have also been

proposed by Lapierre and Ruiz

local search procedures. These procedures start with a feasible solution which

is progressively improved. Different strategies are used to generate neighbour

solutions (e.g. two tasks are interchanged between each other) and then such

solutions are evaluated based on a given objective. If one solution is better

 26

Chapter 2: State-of-the-art

than the current solution, it becomes the new solution and its neighbourhood

is investigated until no further improvement can be obtained.

Metaheuristics

Falling in a local optimum is a main drawback of classical heuristic methods.

Therefore, in the last years a group of methods, referred to as metaheuristics,

tions can be

d scheduling problem considering sequence-dependent setup times.

have been developed to overcome such a limitation.

The term metaheuristic was first introduced by Glover (1996). These

procedures are based in constructive methods to find an initial solution (or a

population of initial solutions) and local search algorithms to move to an

improved neighbour solution. In contrast to local search approaches,

metaheuristics do not stop when no improving neighbour solu

found. They allow movements to worsening solutions in order to avoid

premature convergence to a local optimum solution. Metaheuristics use

different concepts derived from artificial intelligence, evolutionary algorithms

inspired from mechanisms of natural evolution (Pierreval et al. 2003).

Further details on metaheuristics can be found in Reeves (1993, 1997), Osman

and Laporte (1996) and Gottlieb et al. (2003). Most common metaheuristics

include the following.

GRASP (Greedy Randomized Adaptive Search Procedure) is an iterative

process in which each iteration consists of two phases: the construction phase,

which generates an initial solution; and the improving phase, which uses a

local optimization procedure to find a local optimum. The initial solution is

generated by probabilistically selecting the next element to be incorporated in

a partial solution from a restricted candidate list (RCL). The RCL is

composed of the best elements considering a given greedy function

(Armentano and Bassi (2006)). It has been proven (e.g. Feo et al. (1994),

Festa and Resende (2004)) that GRASP produces good quality solutions for

hard combinatorial optimization problems, including line balancing problems.

Andres et al. (2006), for example, proposed a GRASP procedure to solve a

balancing an

Tabu search (TS) is a local search metaheuristic based on memory structures

that prevents returning and keeping trap in a local optimum solution. To

escape from a local optimum moves to worse solutions are allowed. A tabu list

is used to avoid cycling back to recently visited solutions. The size of the list,

a key parameter, determines the number of iterations during which a given

solution is prevented to reoccur. The procedure finishes, for example, when a

number of search movements has been performed and no further improvement

 27

Chapter 2: State-of-the-art

has been achieved. TS procedures have been proposed to solve assembly line

balancing problems: SALBP-1 (e.g. Chiang (1998)), SALBP-2 (e.g. Scholl and

LBP (e.g. Voss (1994), Pastor et al. (2002)). Further

details on TS are found in Glover (1990) and Glover and Laguna (1993, 1997).

th (e.g. for food or real

ants) which connects two different positions (Gottlieb et al. (2003)). The

colony

optimization to address a multi-objective assembly line balancing problem.

e molecular structure of metals is

disordered at high temperatures and ordered and crystalline at low

Genetic algorithms (GA), an idea pioneered by John Holland, closely

Voss (1996)) and GA

Ant colonies algorithms, first proposed by Dorigo et al. (1996), basically

model the behaviour of ants searching an optimal pa

selection of paths is stochastic and it is influenced by both the quantity of

pheromone that other ants have put on a path (i.e. desirability) and the local

values of the objective function that can be determined if the path is selected

(i.e. visibility). The level of desirability is updated according to the paths that

ants use the most (Pierreval et al. (2003)). Procedures based on ant colonies

have been considered by Baykasoglu et al. (2003) and Bautista and Pereira

(2002) to solve SALBP-1; and by Bautista and Pereira (2003) to solve an

UALBP. McMullen and Tarasewich (2006) also considered ant

Simulated Annealing (SA) is a technique inspired from the physical

annealing of solids. It models how th

temperatures. A problem instance is formulated in such a way that it

resembles disordered material. The temperature is gradually lowered such that

ordered states correspond to good solutions of the problem. SA methods avoid

getting trap in a local optimum by allowing uphill moves based on a model of

the annealing process in the physical world (Flake (1999)).

SA algorithms applied to assembly line balancing problems include, for

example, the proposal of Suresh and Sahu (1994) for solving a stochastic

variant of SALBP-1, and the one by McMullen and Frazier (1998a) for a

GALBP involving parallel stations, stochastic task times and multiple

objectives.

simulate biological evolution as they map programs and data into DNA-like

structures that express some notion of fitness (Goldberg (1989)). GA use a set

of initial solutions, i.e. individuals, each of which represents a point in the

search space of potential solutions to a particular problem. A given number of

individuals conforms a population of potential solutions. The population is

evolved by employing crossover and mutation operators along with an

objective function (i.e. the fitness function) that determines how likely

individual are to be reproduced (Flake (1999)).

 28

Chapter 2: State-of-the-art

Genetic algorithms have been proposed, for example, by Ji et al. (2001) to

determine the cycle time for printed circuit board assembly lines (SALBP-2);

Ruvinovitz and Levitin (1995) to solve a RALBP; Kim et al. (1996) to solve a

MOALBP; Ponnambalam et al. (2003) to solve a MALBP; and Feyzbakhsh

and Matsui (1999) to optimal design flexible assembly systems.

Other approaches that have been also considered in research studies include

the followings (see Pierreval et al. (2003) for more details on evolutionary

algorithms applied to ALBP): expert systems, e.g. Phonganant et al. (2001) to

solve a MALBP; and fuzzy logic, e.g. Gen et al. (1996). Erel and Gokcen

(1999) also proposed a procedure using the shortest route model to solve a

MALBP. Park et al. (1997) consider an algorithm based on networks theory to

solve a problem with incompatibilities among the tasks. Tools for system

modelling and analysis have been also used in combination with

metaheuristics. For example, Mendes et al. (2005) use a simulated annealing

procedure to derive configurations in a mixed-model assembly line, and then

r solving assembly

line balancing problems; Kilincci and Bayhan (2006, 2007), for example,

such configurations are fine-tune via a simulation model. McMullen and

Frazier (1998b) use simulation as a mean to compare the results of applying

different line balancing strategies considering paralleling of workers within

work centres. Moberly and Wyman (1973) also use simulation to compare a

set of assembly line balancing configurations.

Heuristics based on Petri nets have been also considered fo

proposed an algorithm based on Petri nets to solve SALBP-1.

Fluid models (eg. Avram et al. (1995)), on the other hand, have been proposed

to analyze the behaviour of stochastic networks and large scale production

systems involving a large number of tasks. Dai and Weiss (2002) and Weiss

(1999), for example, considered a fluid approach for solving scheduling

problems in manufacturing systems. In this type of problems it is assumed

that work is composed of homogeneous fluid instead of discrete tasks, being

the events occurring in the system associated with rate changes in fluid flows.

 29

Chapter 2: State-of-the-art

2.5 Conclusions

Subgraphs Assembly Line Balancing Problem (ASALBP). Such a problem

considers the possibility of assembly alternatives, any of which

This doctoral thesis addresses a new generalized problem: the Assembly

 consists of a

Precedence relations are dependent on the subgraph selected, which, in turn,

precedence requirements dependent on the assembly alternatives, has not been

It is important to mention that Pinto et al. (1983) commented about the

possibility of having variable precedence relations: In practice it is possible

e” (p. 823). However, as stated,

ribe assembly

alternatives. They presented a special case of the ASALBP, in which assembly

the simplicity of the constructive methods and the fact that they have been

nd random search strategies, are proposed here. Furthermore, since it has

been proven that workstation-oriented methods perform better than task-

oriented ones, the proposed constructive procedures follow that assignment

approach.

particular task processing order and is represented by a precedence subgraph.

determines task processing times. Furthermore, assembly variants may involve

different and independent set of tasks that are executed only when the

alternative which they belong to is selected.

A comprehensive literature review have been carried out, and after analysing

research works concerning generalized assembly line balancing problems, the

following conclusion can be drawn: the problem that considers assembly

variants, which may involve different sets of tasks with processing times and

addressed before.

“
that a particular processing alternative can change the nature of the

precedence requirements such that the requirements for the replacing tasks

are not the same as the union for the requirement of the replaced tasks…

Such special situations are not dealt with her

this possibility is neither formalized nor developed.

On the other hand, in a recent work Scholl et al. (2007) highlighted the

importance of having flexible precedence constraints to desc

alternatives are represented by time increments that are added to the task

time and which define the interference of performing one task after certain

other task. Precedence constraints, however, are kept fixed.

Consequently, in this doctoral thesis this unedited problem (ASALBP) is

defined and formalized via two mathematical models. Moreover, considering

successfully applied to assembly line balancing problems, a significant number

of constructive methods, based on an adaptation of well-known priority rules

a

 30

Chapter 3

ASALBP: The Alternative
Subgraphs Assembly Line

Balancing Problem

3.1 Introduction

As previously mentioned, this doctoral thesis tackles a new generalized

assembly line balancing problem, which has been entitled ASALBP: the

Alternative Subgraphs Assembly Line Balancing Problem.

The novel characteristic of such a problem is that it considers the possibility of

having alternative assembly variants (represented by different assembly

subgraphs) which determine how assembly tasks are to be performed. In

ASALBP assembly variants may be defined by different task processing times

and by different task precedence relations. Furthermore, as industrial problems

may involve different assembly processes, assembly variants may also be

defined by different and mutually exclusive sets of tasks. Therefore, task

processing times, the precedence relations of certain tasks, and the tasks

themselves are considered to be dependent on the available assembly variants.

Then, apart from the problem of assigning the tasks to the workstations, a

decision problem needs to be solved in order to fully determine the assembly

or manufacturing process; i.e., one subgraph has to be selected for each

subassembly of the system that allows alternatives.

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

3.2 Definition of the Problem

The Alternative Subgraphs Assembly Line Balancing Problem can be stated

as follows:

There exists a set of tasks for which several alternative assembly variants (also

called assembly routes) are available; the tasks have to be assigned to a group

of workstations. Each variant for each subassembly is represented by an

individual subgraph, which determines the required assembly/manufacturing

tasks (hence the assembly variants may be defined by different and mutually

exclusive sets of tasks) and the precedence relations among them.

Furthermore, task processing times are considered to be dependent on the

assembly subgraph. Therefore, total processing time may vary from one

assembly alternative to another.

Tasks processing times are generally considered to be fixed, however in many

real applications this is not the case. For example, task times depend on the

nature of the tasks, the skills of the operators and the reliability of the

machines (Rekiek (2001)). Furthermore, the duration of a task can be

determined by the complexity of performing a given task considering the

current state of the system; i.e., it depends on the processing sequence. For

example, it gets more difficult (it requires more time) to decorate the fairing of

a motorbike after they have already been assembled onto the motorbike than

when they are unassembled.

Taking these assumptions into account, two problems have to be solved

simultaneously: the decision problem, to select one assembly subgraph for each

subassembly that allows alternatives; and the balancing problem, to assign the

tasks to the workstations.

Regarding conventional assembly line balancing terminology (see, for example,

Baybars (1986) and Scholl (1999)), an ASALBP that aims to minimize the

number of workstations for a given upper bound on cycle time is referred to as

ASALBP-1. If the objective is to minimize the cycle time for a given number

of workstations, the problem is called ASALBP-2.

According to the classification of assembly line balancing problems proposed

by Boysen et al. (2007a, 2007b), ASALBP is identified as [pasubgraph– –];

where pasubgraph characterizes the precedence graph and indicates that

processing alternatives exist, which alter complete parts of the production

process, so that whole subgraphs are substitutable.

 32

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

The ASALB Problem contains the following main characteristics:

 The ASALBP considers a serial assembly line designed for a single model of

a unique product, for which all alternative assembly variants are completely

known in advanced.

 None of the task processing times are larger than the cycle time.

 Tasks have to be processed completely in one workstation only, i.e., they

cannot be divided between workstations.

 Workstations can process only one task at a time.

 Tasks cannot be processed in an arbitrary order due to the existence of

precedence constraints.

 Several sets of precedence constraints are available, instead of a unique one,

which represent the precedence relations among the tasks of the available

assembly subgraphs.

 All tasks belonging to a particular subgraph have to be performed according

the specifications of the same assembly variant.

 Tasks processing times are dependent on the assembly subgraph selected,

but independent on the workstation where they are processed.

 Setup times are considered to be negligible.

 All workstations are equally equipped and manned; therefore, any task can

be assigned to any workstation.

 Tasks are not incompatible between each other; therefore, any combination

of tasks can be assigned to any of the workstations.

 Tasks must be processed at most once. Therefore, only those tasks

belonging to the selected assembly subgraphs (or those that do not allow

alternatives) must be performed. The remaining tasks will not be considered

in the assembly process and, therefore, will not be carried out.

The following example illustrates the ASALB Problem.

Example 3.1: the final phase in the process of assembling a motorbike

This example considers the final phase in the process of assembling a

motorbike, which consists of three main sets of tasks: Z, which is the

decoration of the motorbike’s fairing (it involves several subtasks, such as

sticking different colour stickers and text labels onto the fairing); J, which

entails attaching the fairing to the motorbike; and K, which involves making

the final adjustments.

 33

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

These three sets of tasks can be processed in two different ways (see Figure

3.1), which determine two alternative assembly variants of this process.

Alternative 1

Alternative 2

Decorating of fairing
prior to assembly

 Assembly of fairing
 without any decoration

 Decoration of the
assembled fairing

Assembly of the
 decorated fairing Final

adjustments

Figure 3.1: Final phase in the process of assembling a motorbike

 Alternative 1 implies the decoration (task Z) of the unassembled fairing

first, then attaching (task J) the fairing to the motorbike, and then making

the final adjustments (task K).

 Alternative 2 consists in assembling the fairing first (task J), then

decorating (task Z) the fairing provided they have already been assembled

onto the motorbike, and lastly making the final adjustments (task K).

As can be seen in Figure 3.2, each of these two assembly alternatives can be

represented by using a standard precedence graph.

In this thesis, a precedence graph consists of nodes to represent the tasks

required by each assembly alternative and connecting arcs which indicate the

corresponding task precedence relations; furthermore, task processing times are

represented as node weights.

13 25 7

KZJAlternative 2

22 13 7

KJZAlternative 1

Figure 3.2: Assembly alternatives for the example of the motorbike

As can be observed in Figure 3.2, tasks Z and J allow two assembly

alternatives whilst task K can be performed only after the execution of both Z

and J have been completed.

 34

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

Furthermore, tasks processing times are allowed to be dependent of the

assembly alternatives. In this example, the processing time of task Z depends

on the order in which it is processed: it requires 22 time units if it is performed

before task J and 25 time units when it is performed afterwards (i.e., it takes

longer time to decorate the fairing when they are already assembled). Task J,

on the other hand, lasts 13 time units regardless of the assembly sequence.

Task K always is processed at the end of the process and has a processing time

of 7 time units.

Assembly alternatives can also be represented by using precedence subgraphs

which gather the tasks processed according to the same assembly variant.

Using the standard diagramming representation, it is not possible to depict

alternative precedence subgraphs. In order to overcome the limitation of the

standard precedence graphs, a diagramming tool, entitled S-Graph (discussed

in detail in section 3.4), has been proposed to represent in a unique graph all

available assembly alternatives. Figure 3.3 shows the S-Graph for the example

of Figure 3.1.

K

7

S1 22

Z

13

J

Assembly of the
decorated fairing

Decoration of fairing
prior to assembly

13

J Z

25

Decoration of the
assembled fairing

Assembly of fairing
without any decoration

Final
adjustments

Subgraph S2

Subgraph S1 S2

L

Figure 3.3: S-Graph of the final phase of the process of assembling a motorbike

As can be seen in Figure 3.3, there are two subgraphs representing the

assembling alternatives for tasks Z and J: the first subgraph, S1, consists in

performing task Z before task J which implies a total processing time of 35

time units; the second subgraph, S2, consists in performing task J first and

then task Z with a total processing time equal to 38 time units.

It is valid to mention that task L of Figure 3.3 is considered to be a major

task belonging to an intermediate phase in the process of assembling a

motorbike.

 35

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

As mentioned in the introduction, a two-stage procedure is normally used to

solve a problem that involves assembly alternatives. In the initial stage, the

system designer either decides, a priori, all the task durations (by fixing a

precedence subgraph, which is equivalent to imposing additional precedence

relations other than the existing technological ones), or selects (using a given

criterion) one assembly subgraph from amongst the available alternatives.

Once the alternative has been selected, the line is then balanced in a second

stage considering that particular choice. By following such an approach, it

cannot be guaranteed that the global problem can be solved optimally.

However, better solutions can be obtained if the problem of selecting an

assembly alternative and the balancing problem are solved simultaneously,

rather than independently.

The following example helps, on the one hand, to clarify the ideas previously

introduced and, on the other hand, to illustrate how the assignment of tasks to

the workstations can be favoured by considering assembly alternatives.

Example 3.2: optimally solving ASALBP

This example considers again the aforementioned final phase of the process of

assembling a motorbike (see Figure 3.1). Additionally, task Z, which consists

of the decoration of the fairing, has been further divided into four subtasks (F,

G, H and I) that involve fixing to the fairing different colour stickers and text

labels. Table 3.1 shows the description of the disaggregated tasks, and, for

each of the two resulting assembly alternatives, the task processing times, the

task predecessors, and total processing time.

Table 3.1: Data for the example 3.2

Alter. 1 (Subgraph S1) Alter. 2 (Subgraph S2)
Task Processing

time
Predecessors Processing

time
Predecessors

F: Decoration of fairing
 with yellow stickers

5 L 6 J

G: Decoration of fairing
 with blue stickers

5 L 7 J

H: Decoration of fairing
 with text labels

8 L 8 J

Z

I: Decoration of fairing
 with black stickers

4 L 4 J

J Assembly of fairing 13 F, G, H, I 13 L
K Final adjustment 7 J 7 F, G, H, I

Total processing time 42 45

 36

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

As can be seen in Table 3.1, some of the decorating tasks require longer

processing times if they are performed on the attached fairing instead of on

the unattached fairing.

By balancing each of the two resulting problems optimally, one for each

alternative subgraph, and aiming to minimize the number of workstations,

given a cycle time upper bound that is equal to 17 time units, the solutions

presented in Table 3.2 are obtained. These results include task assignments

(and workstation time), total processing time and number of workstations

required per alternative.

Table 3.2: Results for ASALBP-1 for the example 3.2

Workstation load (workstation time)Alternative
subgraph I II III IV

Total
processing

time

Number
of

stations

1 F, H, I (17) G (5) J (13) K (7) 42 4

2 J, I (17) G, H (15) F, K (13) - 45 3

By following the argument on decision criteria used to select assembly variants

discussed previously, it seems reasonable to consider S1 as a promising

alternative for the assembly process because it entails less total processing

time (42 time units), and would thus be chosen a priori over S2. However, as

observed in Table 3.2, despite implying a greater total processing time (45

time units), S2 provides the best solution to the problem because it requires

three workstations instead of the four required by S1. Therefore, if S1 had

been selected a priori, then a better solution would have been discarded.

Similar results can be obtained for an ASALBP-2. Table 3.3 shows the results

of optimally balancing the two resulting problems of Table 3.1 by considering

three workstations. In this case, Alternative 2 provides the best solution to the

problem since it requires a cycle time of 17 units instead of the 18 required by

Alternative 1.

Table 3.3: Results for ASALBP-2 for the example 3.2

Workstation load (workstation time)Alternative
subgraph I II III

Total
processing

time

Cycle
time

1 F, G, H (18) I, J (17) K (7) 42 18

2 J, I (17) F, G (13) H, K (15) 45 17

The results previously obtained showed that considering alternative assembly

variants may favour the assignment of tasks to the workstations which

minimizes the number of workstations or the cycle time.

 37

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

The balancing process may also be benefited even when the available assembly

alternatives involve fixed task processing times (i.e., independent on the

precedence subgraphs). This case is illustrated in the next example.

Example 3.3: solving optimally ASALBP with fixed times

Considering again the example of Figure 3.1 but now assuming that task

processing times are independent on the tasks processing sequence (and equal

to 5 units for both tasks F and task G).

Table 3.4 presents the results of optimally balancing each of the two ensuing

problems and aiming at minimizing the number of workstations for a cycle

time equal to 17 time units. Table 3.5, on the other hand, shows the results

when the objective is to minimize the cycle time considering 3 workstations.

Table 3.4: Results for ASALBP-1 with Fixed Times

Workstation load (workstation time)Alternative
subgraph I II III IV

Total
processing

time

Number of
workstations

1 F, H, I (17) G (5) J (13) K (7) 42 4

2 J, I (17) G, H (13) F, K (12) - 42 3

Table 3.5: Results for ASALBP-2 with Fixed Times

Workstation load (workstation time)Alternative
subgraph I II III

Total
processing

time

Cycle
time

1 F, G, H (18) I, J (17) K (7) 42 18

2 J, I (17) F, G (10) H, K (15) 42 17

As can be seen in Table 3.4 and Table 3.5, the possibility of having alternative

assembly subgraphs may favour an assignation of tasks to workstations, even

when the processing times are not dependent on the tasks processing sequence;

i.e., independent on the assembly subgraphs.

Therefore, it can be expected that economical benefits can be achieved by

simultaneously considering the decision problem that selects the assembly

subgraphs, and the balancing problem that assigns the tasks to the

workstations, underlining in this way the relevance of the ASALBP.

 38

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

3.3 The S-Graph: a diagramming scheme to depict

assembly alternatives

In this doctoral thesis a diagramming tool, which has been entitled S-Graph,

has been proposed with the aim of representing in a unique graph all available

assembly alternatives (i.e., precedence subgraphs), which cannot be depicted in

a standard precedence graph.

Figure 3.4 shows the S-Graph for the example of the process of assembling a

motorbike considering also the intermediate phase of such a process, which

consists of attaching two parts of a piece, including the axle, to the

motorbike’s main body. The intermediate phase can be carried out in two

different ways which are represented in the S-Graph by the subgraphs S3 and

S4, respectively. The assembly alternatives for the final phase of the process of

assembling a motorbike, as previously described, are represented by subgraphs

S1 and S2.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

K

Alternative subgraphs

L

S1

S2

 P

S3

A

S4

Figure 3.4: Precedence S-Graph for the assembly process of the motorbike

As can be seen in Figure 3.4, the assembly alternatives in the S-Graph are

specified by the arcs entering or exiting the subgraphs, which are indicated by

the semicircles drawn on the corresponding arcs. In this way, the S-Graph

allows to represent, via individual subgraphs, assembly variants which imply

different precedence requirements, different processing times and/or different

sets of assembly tasks.

 39

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

In order to make a more comprehensive definition of the S-Graph as an

alternative precedence diagramming tool, two aspects need to be discussed.

On the one hand, it is assumed that assembly alternatives do not overlap

between each other; therefore, each alternative for each available subassembly

is represented by a unique and independent precedence subgraph. On the

other hand, fictitious tasks, with nil processing time, are used to facilitate the

representation of two subassemblies with processing alternatives that are

consecutive (this case is represented in Figure 3.5 by the fictitious task α).

S1
12 510 3

EB C D

11 3 10 4
S2

S3

7

I J

J I

8 10

10 9

S4

S5α

G

13 8

H

10

F

E B C D

12

A K

Figure 3.5: S-Graph including fictitious tasks

Figure 3.5 illustrates an example in which the available assembly alternatives

also imply mutually exclusive sets of assembly tasks.

As can be observed in Figure 3.5, subgraphs S1, S2 and S3 represent the

assembly alternatives for the first subassembly, in which S1 and S2 are

assembly variants for the same set of tasks (B, C, D and E); and subgraph S3

represents a sub-process which involves a complete different set of tasks (F, G

and H). Therefore, selecting a subgraph for the first subassembly not only

determines precedence requirements and task processing times but also the

required assembly tasks. The second subassembly represents the ASALBP case

considered in previous examples, in which the assembly alternatives (i.e. S4

and S5) involve the same group of task (I and J).

Therefore, a solution for this problem will consist of a choice of two subgraphs

(one per subassembly), a number of workstations, and the assignment of the

corresponding tasks to the workstations.

 40

Chapter 3: ASALBP: The Alternative Subgraphs assembly line Balancing Problem

The S-Graph of Figure 3.6 shows an example of a medium-scale ASALBP.

This example, which is based on the precedence diagram of Kilbrid’s

benchmark problem, consists of 47 tasks and seven subgraphs that represent

the assembly alternatives for three subassemblies.

The first subassembly allows two assembly variants which are represented in

the S-Graph of Figure 3.6 by subgraphs S1 and S2; both alternatives involve

tasks 1, 3, 5, 7 and 9. The second subassembly allows three assembly variants:

subgraphs S3 and S4 for tasks 20, 21 and 22, and S5 for tasks 46 and 47. For

the last subassembly there also available two assembly variants, which are

represented by subgraphs S6 and S7 both involving tasks 42, 44 and 45.

In this example, the combination of the assembly subgraphs available for each

subassembly, results in a total of 12 possible global assembly variants that are

allowed for this assembly process (= ⋅ ⋅12 2 3 2).

9

20

14

10

11

10

11

12

S1

S2

S5

S4

S6

S7

α
22

14

3

7

1 5

10 17 10

13

1 3

7

9 5

9 10 17

13

6

13 10

11

15 10

 3

18

10

27

23

10

29

24

10

7

19

10

19

16

10

29

29

10

3

31

10

27

30

10

19

32

10

4

37 10

6

43

10

26

25

10

12

17

10

6

26

10

15

33

10

5

27

20 21 22
4 55 14

46 47
35 36

21 20 22
50 5

10

24

28
14

10

9

36

10

7

35

10

3

34

10

7

38 10

21

40

10

21

41

10

12

42

10

5

39

10 44

10

5

45

10 β
10

5

45

10

5

44
10

10

42

20

9

4

8

201710

6

13

10

5

S3

2

Figure 3.6: Precedence S-Graph for an example of 47 tasks.

The capability of the S-Graphs to depict feasible assembly variants in a unique

graph may let practitioners to have a better understanding of the system as a

whole.

 41

Chapter 4

 Mathematical Models of
the ASALBP

4.1 Introduction

In its basic form, an assembly line balancing model consists of an objective

function than minimizes the number of workstations (i.e. SALBP-1) or the

cycle time (i.e. SALBP-2) and a set of constraints that guarantee that every

task i is assigned to one and only one workstation, constraints which ensures

that the total task processing time assigned to workstation j does not exceed

the upper bound on the cycle time, and constraints that guarantee that the

precedence relations among the tasks are maintained.

The ASALB Problem considers alternative assembly subgraphs, which in

addition may involve different sets of assembly tasks; therefore, apart from

cycle time and precedence constraints, subgraphs restrictions need to be taken

into account in order to be able to solve this problem: on the one hand, it is

necessary to ensure that only one assembly variant (i.e., a subgraph for each

subassembly) is selected from amongst the possible ones; on the other hand, it

must be guaranteed that only the tasks belonging to the selected subgraphs,

and those that do not allow alternatives, are always performed. Furthermore,

all tasks have to be performed considering its corresponding precedence

constraints.

Accordingly, and in order to formalize and optimally solve the ASALBP, two

linear mathematical programming (LMP) models have been developed, which

simultaneously solve the decision problem to select an assembly variant and

Chapter 4: Mathematical Models of the ASALBP

the problem of assigning the corresponding tasks to the workstations. In the

first model, assembly alternatives are represented by a complete precedence

graph, which involves the entire set of assembly tasks. The assembly

alternatives are thus obtained by making all possible combinations of the

available subgraphs. In the second model, referred to as enhanced model,

assembly alternatives are represented by an individual subgraph and,

therefore, involve only the reduced set of tasks that affected by such a

particular subgraph. As a result, the dimension of the model is considerably

reduced comparing with the former model.

This chapter describes in detail both the preliminary and the enhanced model.

It includes the main modelling assumptions considered in the formulation of

the problem and the approaches considered to compute bounds on the number

of workstations and other input parameters. The chapter ends by reporting

the results of a computational experiment carried out to evaluate and compare

the performance of both proposed mathematical models.

4.2 Modelling Assumptions

To facilitate the use of the terminology, in the both mathematical

formulations assembly alternatives are referred to as assembly routes1

undistinguished, any of which defines a known and feasible set of precedence

relations among the tasks and the corresponding task processing times. Two

different types of assembly routes are considered in the models, as follows.

4.2.1 Global Routes

Global routes are obtained by making all possible combinations of the

alternative subgraphs of each available subassembly. Therefore, each global

route is represented by a complete precedence graph which depicts the

precedence relations of the whole set of tasks required to assemble a given

product. In the S-Graph of Figure 3.6, introduced in the previous chapter, it

can be observed that there are 12 possible subgraph combinations and,

therefore, there are 12 global routes. Precedence graph of Figure 4.1 shows an

example of one of these global routes, which is composed by the tasks

belonging to subgraphs S1, S3, and S6 and the remaining tasks that do not

allow processing alternatives.

1 The term route has been used previously in other works (e.g., Sawik (2002)) to make reference to assembly plans.

 43

Chapter 4: Mathematical Models of the ASALBP

10

12

42
10

5

44

10

22

14

1 3

7

9 5

9 10 17

13

10

27

23

10

29

24

10

29

29

10

3

31

10

27

30

10

19

32

10

26

25

10

12

17

10

6

26

10

15

33

10

5

27

14
14

10

11

10

11

12

6

13 10

11

15 10

 3

18

10

7

19

10

19

16 10

4

37 10

6

43

20 21 22
4 55

10

24

28
14

10

9

36

10

7

35

10

3

34

10

7

38 10

21

40

10

21

41

10

5

39

20

9

4

8

201710

6

13

102

45
5

Figure 4.1: The precedence graph of a global route

4.2.2 Partial Routes

A partial route refers to a set of precedence relations that only affects a group

of tasks which allow alternative assembly variants. In this case each route is

understood as a partial processing alternative which is represented by a

subgraph and, consequently, each one only involves a reduced subset of the

assembly tasks. For instance, the example of the S-Graph of Figure 3.6

consists of 7 subgraphs; hence, there are 7 partial routes: two represent the

processing alternatives for tasks 1, 3, 5, 7 and 9 (S1 and S2); there are two

alternatives for tasks 20, 21 and 22 (S3 and S4); one partial route for tasks 46

and 47 (S5); and there are two partial routes for tasks 42, 44, and 45 (S6 and

S7). Figure 4.2 shows one of the two processing alternatives available for tasks

1, 3, 5, 7 and 9, which corresponds to subgraph (partial route) S1.

Additionally, a basic route, named R0, is considered for those tasks that

cannot be performed through alternative routes. In the example of Figure 3.6

there are 34 of such tasks belonging to R0.

9 10

3

20

7

17

5

13

91

Figure 4.2: a partial route for an

ASALBP example with 47 tasks

 44

Chapter 4: Mathematical Models of the ASALBP

In a first attempt to mathematically formalize the Alternative Subgraphs

Assembly Line Balancing Problem, a preliminary model was built in which

global routes, represented by a complete precedence graph, were used to define

each overall assembly variant. This implies, as it has been previously

mentioned, that the whole set of assembling tasks is involved in each global

route, including those tasks which do not admit processing alternatives (as

shown in Figure 4.1). Consequently, a large number of task-workstation

assignment variables need to be defined even when only a small number of

assembly routes are available.

By analysing the preliminary model, it was observed that the dimension of the

mathematical program could be reduced by defining route-independent

assignment variables for those tasks not affected by subassemblies with

alternatives, and by considering partial routes for all other tasks. Accordingly,

an enhanced mathematical model was developed in which assembly variants

are represented by individual subgraphs. In this way, it is possible to reduce

the resulting number of variables involved within the model since task-

workstation assignment variables are defined per partial route, which involves

only a reduced subset of the assembly tasks.

It is valid to remark at this point that for the example of Figure 3.6, there

exist 12 global routes all involving 47 tasks, whereas there are only 7 partial

routes, each of which consists of at most 5 assembly tasks. Furthermore, the

difference between the preliminary and the enhanced model regarding the size

of the model to be solved is even greater because the number of assignment

variables increases exponentially with increasing number of partial routes and

assembly tasks.

On the other hand, considering partial routes complicates even more the

modelling process, in particular, when it relates to the precedence constraints.

This feature is commented in the following section.

4.2.3 Task precedence relations typology

When considering global routes, the immediate predecessors of a task are fixed

for each individual global route; therefore, precedence constraints can be easily

established. However, this is not the case when considering partial routes. The

difficulty arises due to the fact that an immediate predecessor, or a task itself,

may have processing alternatives, from amongst which one is to be selected.

Therefore, all possible immediate predecessors of a task have to be considered.

 45

Chapter 4: Mathematical Models of the ASALBP

In order to account for all possible precedence relations implied when

considering partial routes, and to facilitate its formalization, tasks have been

classified into two categories: fixed, which are those without alternatives

routes, processed throughout the base route (R0); and mobile, which are those

that contemplate alternative routes. Consider the example in Figure 4.3.

A

R0

R1

B C

R2

B

R3

R0
F G

D E

R4

DE

α

C

Figure 4.3. Precedence relations of fixed and mobile tasks.

As can be seen in Figure 4.3, tasks A, F and G are fixed, whereas tasks B, C,

D and E are mobile due to they can be processed throughout several

alternative routes: R1 and R2 for tasks B and C, and R3 and R4 for tasks D

and E. On the other hand, α, a fictitious task with nil processing time, is used

to represent in the S-Graph precedence relations involving a mobile task i with

a mobile predecessor p, which are affected by different alternative routes. This

case is represented in Figure 4.3 by tasks D and E, whose predecessors C and

B are also mobile tasks; being both groups of tasks affected by different routes:

R3 and R4 for D and E, and R1 and R2 for C and B.

Table 4.1 shows the five basic cases of task-predecessor relations, which arise

in the example of Figure 4.3.

Table 4.1: Task-predecessor relation typology

 Case i p

1 A fixed task i has a fixed predecessor p G F

2 A fixed task i has a mobile predecessor p F E,D

3 A mobile task i has a fixed predecessor p B A

4 A mobile task i has a mobile predecessor p, with i and p
belonging to the same route

C B

5 A mobile task i has a mobile predecessor p, with i and p
belonging to different routes

D C,B

 46

Chapter 4: Mathematical Models of the ASALBP

4.3 The Preliminary Model

As previously mentioned, in this model, hereafter referred to as M1, global

routes are used to represent each overall assembly variant. Therefore, the

model selects a unique global route which determined the precedence

constraints and processing times of all required assembly tasks, at the same

time assign the tasks to the workstations.

Notation for ASALBP-1

 Indices

i for tasks
j for workstations

r for routes

 Parameters

n number of tasks (i = 1,...,n)

mmax upper bound on the number of workstations (j = 1,...,mmax)

mmin lower bound on the number of workstations

nr number of alternative global routes (r = 1,...,nr)

tir duration of task i when processed through route r (i = 1,...,n;

 r= 1,...,nr); in some cases tir is independent on the route

Cmax upper bound on the cycle time

PDir set of the immediate predecessors of task i, if task i is processed through

route r (i = 1,…,n; r = 1, …,nr)

Eir earliest workstation that task i can be assigned to, if task i is processed

through route r (i = 1,…,n; r = 1,…,nr)

Lir latest workstation that task i can be assigned to, if task i is processed

through route r (i = 1,…,n; r = 1,…,nr)

Tjr set of tasks potentially assignable to workstation j, if the tasks are

processed through route r []{ }| ,ir iri j E L∈ , (j = 1,…,mmax; r = 1,…,nr)

 Decision variables

{ }0,1ijrx ∈ 1 if task i is assigned to workstation j and processed through route

r (i = 1,…,n; r = 1, …,nr; [],ir irj E L∈)

{ }0,1jy ∈ 1 if there is any task assigned to workstation j () = +1,...,min maxj m m

 47

Chapter 4: Mathematical Models of the ASALBP

Mathematical formulation for the ASALBP-1: to minimize the

number of workstations given Cmax.

= +

= ⋅∑
max

min

m

j
j m 1

Minimize z j y [4.1]

1
1

i r

i r

Ln r

i j r
r j E

x
= =

=∑ ∑ ∀ i [4.2]

1= ∀ ∈

⋅ ≤∑ ∑
jr

nr

ir ijr max
r i T

t x C 1, ...,= minj m [4.3]

1= ∀ ∈

⋅ ≤ ⋅∑ ∑
jr

n r

ir ijr m a x j
r i T

t x C y 1,...,min maxj m m= + [4.4]

= =

⋅ ≤ ⋅∑ ∑
p r ir

p r ir

L L

p jr ijr
j E j E

j x j x , ,∀ ∀ ∀ ∈ irr i p PD [4.5]

1

1

1

irr

r ir

LL

jr i jr
j E j E

x x
= =

≤∑ ∑ ; 2, ...,r i n∀ = [4.6]

{ 0 , 1}i j rx ∈ , , [,ir iri r]j E L∀ ∀ ∀ ∈ [4.7]

{ 0 , 1}jy ∈ 1,...,min maxj m m= + [4.8]

The objective function [4.1] consists in minimizing the number of workstations.

Constraints [4.2] guarantee that every task i is assigned to one and only one

workstation. Constraints [4.3] and [4.4] ensure that the total task processing

time assigned to workstation j does not exceed the upper bound on the cycle

time. Constraints [4.5] impose the precedence conditions. Route uniqueness

constraints [4.6] ensure that all the tasks are assigned to the same route.

Finally, [4.7] and [4.8] express the binary conditions of the variables.

If one analyzes the previous model, it can be observed that, if the precedence

graph is connected, then constraints [4.6] can be removed, due to the fact that

constraints [4.5] are sufficient to guarantee route uniqueness. Constraints [4.5]

oblige all tasks to be assigned to the same route as their immediate

predecessors. In a connected graph, all the tasks are related to one another,

direct or indirectly, through their predecessors and successors; therefore, all

the tasks are assigned to the same route. In any case, a connected graph can

be obtained by defining an initial (or final) fictitious task.

The mathematical formulation of ASALBP-2 can be easily obtained by

changing the objective function the formulation for ASALBP-1 by using cycle

time ct as the variable that is to be minimized.

 48

Chapter 4: Mathematical Models of the ASALBP

4.4 The Enhanced Model

This model, hereafter referred to as M2, considers partial routes to represent

the assembly variants that are allowed for each available subassembly. This

model selects a single partial route for each available subassembly. Therefore,

apart from those for tasks, workstations and routes, an index is required to

identify the groups of partial routes that are alternative between each other

since only one of those is to be selected. The notation used in this model is

presented next. It is valid to mention that tasks processed through route R0

are those which do not admit processing alternatives.

Notation for ASALBP-1

 Indices

i for tasks
j for workstations
r for partial routes
q for subsets of partial routes that are alternatives among one another

 Parameters

n number of tasks (i = 1,…,n)

nr number of partial routes (r = 0,…,nr)

nsr number of different sets of partial routes (subgraphs) such that the

routes within a set are alternatives to each other (q=1,…,nsr). In the

example of Figure 4.3 there are 2 such subsets (nsr=2)

mmin lower bound on the number of workstations

mmax upper bound on the number of workstations (j = 1,...,mmax)

Ri set of all routes through which task i can be processed (i = 1,…,n)

Cmax upper bound on the cycle time

tir duration of task i when processed through route r (i = 1,…,n;) iRr ∈

TRr Set of tasks that are affected by route r (r = 0,…,nr)

Pir Set of the possible immediate predecessors of task i, if task i is

processed through route r (i = 1,…,n; iRr ∈)

PTi Set of all possible immediate predecessors of task i ()
i r Ri

PT = U P∀ ∈ ir

Eir, Lir Earliest and latest station that task i can be assigned to, if task i is

processed through route r (i = 1,…,n; iRr∈).

SCRq Subset q of routes that are alternative among one another (q=1,…,nsr).

For the example in Figure 4.3, there are two of such subsets: SCR1

involving R1 and R2 and SCR2 involving R3 and R4.

 49

Chapter 4: Mathematical Models of the ASALBP

 Decision binary variables

{ }0,1ijrx ∈ 1 if task i is assigned to workstation j and processed through route

r 1 ii ,...,n; r R;= ∀ ∈([,]ir irj E L∀ ∈)

{ }0,1jy ∈ 1 if there is any task assigned to workstation j (j=mmin+1,…,mmax)

{ }0,1rar ∈ 1 if there is any task processed through route r (r = 1,…,nr)

Mathematical Model for the ASALBP-1: to minimize the number of

workstations given Cmax.

= +

= ⋅∑
m a x

m in

m

j
j m 1

M in im iz e Z j y [4.9]

0

0
0

1
L i

i j
j E i

x
=

=∑ 0|i i TR∀ ∈ [4.10]

L i r

i j r r
r R j E r Ri i r i

x a
∀ ∈ = ∀ ∈

=∑ ∑ ∑ r 0|i i TR∀ ∉ [4.11]

() []()0

nr

ir ijr max
r i r R j E ,Li ir ir

t x C
= ∀ ∈ ∧ ∈

⋅ ≤∑ ∑ 1 , . . . ,j m= m i n
 [4.12]

() []()0 ,

nr

ir ijr max j
r i r R j E Li ir ir

t x C y
= ∀ ∈ ∧ ∈

⋅ ≤ ⋅∑ ∑ 1, . . . ,j m m= +m in m a x [4.13]

0 0

0 0
0 0

L Lp i

pj ij
j E j Ep i

j x j x
= =

⋅ ≤ ⋅∑ ∑
0 0, |ii T R p P T p T R∀ ∈ ∀ ∈ ∈ [4.14]

0

0
0

L Lps i

pjs ij
s R j E j Ep ps i

j x j x
∀ ∈ = =

⋅ ≤ ⋅∑ ∑ ∑ 0 0, |ii TR p PT p TR∀ ∈ ∀ ∈ ∉ [4.15]

0

0
0

(1)
L Lp ir

pj ijr r
j E r R j E r Rp i ir i

j x j x m ar
= ∀ ∈ = ∀ ∈

⋅ ≤ ⋅ + ⋅ −∑ ∑ ∑ ∑max 0 0, |ii TR p PT p TR∀ ∉ ∀ ∈ ∈ [4.16]

L Lp r ir

p jr ijr
j E j Ep r ir

j x j x
= =

⋅ ≤ ⋅∑ ∑ 0 0, , |[]∀ ∉ ∀ ∈ ∀ ∈ ∉ ∧ ∈i ir pi TR r R p P p TR r R [4.17]

L Lp s ir

p js ijr
s R j E r R j Ep p s i ir

j x j x
∀ ∈ = ∀ ∈ =

⋅ ≤ ⋅∑ ∑ ∑ ∑ 0 0, | [(i i pi TR p PT p TR R R)]∀ ∉ ∀ ∈ ∉ ∧ =∅∩ [4.18]

1r
r S C R q

a r
∈

=∑ 1, ...,q nsr= [4.19]

Lir

i j r r r
i T R j Er i r

x a r T R
∀ ∈ =

= ⋅∑ ∑ 1, ...,r nr= [4.20]

 { 0 ,1}∈i j rx , , [,i iri r R j E L]ir∀ ∀ ∈ ∀ ∈ [4.21]

{ 0 , 1}∈jy 1,...,j m m= +min max [4.22]

{ 0 , 1}∈ra r 1, . . . ,r n r= [4.23]

 50

Chapter 4: Mathematical Models of the ASALBP

The objective function [4.9] minimizes the number of workstations for a given

upper bound on the cycle time. The constraints are: [4.10] and [4.11], which

ensure that all tasks belonging to a selected partial route are assigned to one

and only one workstation, and otherwise tasks are not assigned; [4.12] and

[4.13] ensure that the total processing time assigned to workstation j does not

exceed the cycle time; [4.14] to [4.18] are the precedence constraints, and

correspond to the five different cases presented in Table 4.1, which guarantee

that none task is assigned to an earlier workstation than an immediate

predecessor; [4.19] are the route uniqueness constraints that ensure that one

and only one route for each subassembly is selected from among the possible

routes; and [4.20] guarantees that tasks belonging to a particular precedence

subgraph are assigned to the same route. Finally, [4.21], [4.22] and [4.23]

express the binary conditions of the variables.

Similarly to the preliminary case, the mathematical formulation for the

ASALBP-2 version can also be easily obtained by using the enhanced

formulation but using the cycle time ct as the variable to minimize instead of

the number of workstations.

4.5 Computation of input parameters

This section presents the approaches used in this work to determine, on the

one hand, the earliest and latest workstations to which a task can be assigned;

and on the other hand, the lower and upper bounds on the number of

workstations that help to reduce the number of the variables and constraints

of both proposed mathematical models.

4.5.1 Earliest and latest workstations

The methods used to determine the values of the earliest and latest

workstation to which a task i can be assigned are based on a well-know

approach traditionally applied to SALBP (e.g. Talbot et al. (1986), Klein and

Scholl (1996) and Scholl (1999)).

According to this, a task i can not be assigned to a workstation before the

total time of all its predecessors has been already assigned, but should be

assigned before the remaining available time is less than the total time of all

its followers. Nonetheless, this concept should be adapted in order to

contemplate the available assembly alternatives that characterize a given

ASALB Problem.

 51

Chapter 4: Mathematical Models of the ASALBP

The following notation is considered:

APir is the summation of the processing times of all predecessors of task i,

when such tasks are processed according to the best assembly

alternative (i.e., the combination of subgraphs with the minimum total

time) and task i is processed thought route r.

 AFir is the summation of the processing times of all successors of task i,

when such tasks are processed according to the best assembly

alternative (i.e., the combination of subgraphs with the minimum total

time) and task i is processed thought route r.

For example, if the S-Graph of Figure 4.4 is considered:

2

R1
4
B

8

C

6
R2

B

5

4
R0

R3

G
10

R0

E F

F E

R4
59

89

D

C
R0

A

Figure 4.4: S-Graph for a small ASALBP example involving seven tasks

The following values are obtained:

APA0 = 0

AFA0 = min(4 + 8 ; 6 + 4) + 5 + min(9 + 8 ; 9 + 5) + 10 = 39

APC1 = 2 + 4 = 6

AFC1 = 5 + min(9 + 8 ; 9 + 5) + 10 = 29

APC2 = 2

AFC2 = 4 + 5 + min(9 + 8 ; 9 + 5) + 10 = 33

Thus, the earliest and latest workstation values to which task i can be

assigned when processed through route r are computed according to the

equations [4.24] and [4.25], respectively.

⎡ ⎤tcAPtE iririr /)(+= [4.24]

⎡ ⎤tcAFtmL irirmaxir /)(1 +−+= [4.25]

 52

Chapter 4: Mathematical Models of the ASALBP

4.5.2 Lower bound on the number of workstations

A simple theoretical minimum number of workstations, mmin, is defined in the

literature (e.g. Baybars (1986), Johnson (1988), Scholl and Klein (1997), Scholl

(1999) and Becker and Scholl (2006)), according to which the total time

available in the assembly line must not be smaller that the total load required

to process all tasks. Subsequently, this value is computed according to [4.26]

which is the integer equal or greater than the quotient between the total

processing time and the cycle time.

n

i
i 1

m t /
=

tc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥
∑m in [4.26]

In the ASALBP a new parameter, called Btsum, required to compute mmin, is

defined as the summation of all the processing times when tasks are processed

according to the best assembly alternative as defined previously. When

assembly alternatives affect mutually exclusive sets of tasks, only the time of

the alternative that lasts less is considered. Therefore, a lower bound on the

number of workstations is given by [4.27].

min summ Bt tc⎡ ⎤⎢ ⎥= / [4.27]

Considering the example of Figure 4.4 and a cycle time ct = 10:

Btsum = 2 + min (4 + 8 ; 6 + 4) + 5 + min (9 + 8 ; 9 + 5) + 10 = 41

mmin = =⎡ ⎤⎢ ⎥41/10 5

There exist other procedures to calculate lower bounds based on the analysis

of the processing times of the successors of a task i; for example, Johnson

(1988), Scholl and Klein (1997) and Scholl (1999) consider that mmin can be

the number of tasks that have a processing time greater than half of the cycle

time, since all of such tasks have to be assigned to different workstations. This

bound can be further improved by adding to it half of the number of tasks

with processing time equal to half of the cycle time, given that two of such

tasks can be processed in the same workstation.

 53

Chapter 4: Mathematical Models of the ASALBP

By following the same argument, a third value of mmin can be defined by

considering the fact that three tasks with processing time greater than tc/3

cannot be processed in the same workstation; furthermore, none of these can

share workstation with other tasks with time greater that 2tc/3. This bound

can be also further adjusted by considering that tasks with processing times

exactly equal to tc/3 or equal to 2tc/3 can share the same workstation (i.e.,

one task with ti =2tc/3 and other with tc/3 or three tasks with ti=tc/3).

For the ASALB Problem these values are computed by adapting these

concepts and by considering the Btsum parameter for the sum of processing

times, as discussed previously.

Other methods used to compute lower bounds on the number of workstations

are discussed, for example, in Scholl and Klein (1997) and in Fleszar and Hindi

(2003).

4.5.3 Upper bound on the number of workstations

The simplest upper bound on the number of workstations is the number of

tasks, since assigning only one task to each workstation is a feasible solution.

In the case of the ASALB Problem this upper bound [4.28] is obtained by

considering the combination of subgraphs that involves the maximum number

of required assembly tasks.

m n=max
[4.28]

More adjusted upper bounds on the number of workstations can be computed

following, for example, the procedures discussed in Scholl (1999) for the simple

case.

Another approach that can be considered to obtain an upper bound on the

number of workstations is to generate a feasible solution by applying an

heuristic procedure.

 54

Chapter 4: Mathematical Models of the ASALBP

4.6 Computational Experiment

To evaluate and compare the performance of the proposed mathematical

models, M1 and M2, previously described in sections 4.3 and 4.4, respectively;

a computational experiment was carried out. Both models were implemented

and several problem instances were solved by using the ILOG CPLEX©

optimization software, version 9.0. All computations were performed on a PC

Pentium 4, CPU 2.88 GHz with 512 Mb of RAM.

4.6.1 Benchmark Selection

Since the ASALBP is a new generalized assembly line balancing problem, the

data sets used in the computational experiment were designed by

incorporating various alternative assembly subgraphs to benchmark SALB

Problems available at www.assembly-line-balancing.de (the homepage focused

on assembly line balancing research).

The following 9 problems were considered: Bowman, Mansor, Mitchell, Buxey,

Gunther, Kilbrid, Hahn, Warnecke and Tonge; involving 8, 11, 21, 29, 35, 45,

53, 58 and 70 tasks, respectively. Two, three and four subassemblies were

incorporated to each original problem, for each of which several assembly

alternatives were generated (see Table 4.2): from 2 to 60 global routes were

considered for model M1, and from 3 to 11 partial routes for model M2.

Furthermore, up to three different cycle time values, also based on the

available benchmark data sets, were considered for each test problem.

Furthermore, new sets of tasks were added to the problems in order to account

for problems instances involving mutually exclusive assembly processes. Then,

a total of 44 problem instances were solved with both models.

All data for the problem instances solved are shown in Table 4.2, which

includes the name of the problem, the number of tasks n, the cycle time ct, the

number of global routes for model M1 and partial routes for model M2, and

the number of constraints and binary variables involved in each model.

 55

http://www.assembly-line-balancing.de/

Chapter 4: Mathematical Models of the ASALBP

Table 4.2: Data of the ASALBP instances

No. of routes Contraints Variables
Problem n ct

Global Partial M1 M2 M1 M2

Bowman-1 10 20 6 5 134 56 434 615

Bowman-2 12 20 18 8 152 76 1744 880

Mansor-1 11 48 6 5 164 62 544 541

Mansor-2 11 62 6 5 158 58 408 407

Mansor-3 11 94 6 5 152 54 272 273

Mansor-4 11 62 12 7 288 74 804 547

Mansor-5 11 62 15 8 352 78 1002 614

Mansor-6 11 48 15 8 358 75 1336 708

Mansor-7 11 94 15 8 346 68 668 408

Mitchel-1 21 14 6 5 347 111 1792 1783

Mitchel-2 21 21 6 5 333 101 1280 1275

Mitchel-3 21 35 6 5 319 92 640 640

Mitchel-4 21 14 15 8 770 130 4438 2668

Mitchel-5 21 21 15 8 756 120 3170 1908

Mitchel-6 21 35 15 8 742 111 1585 958

Buxey-1 29 54 6 5 444 134 1941 1936

Buxey-2 29 36 6 5 464 161 3168 3155

Buxey-3 29 54 12 7 861 147 3850 2581

Buxey-4 29 30 18 8 1308 159 11004 5510

Buxey-5 29 36 18 8 1298 152 9432 4724

Buxey-6 29 54 18 8 1278 139 5764 2890

Gunther-1 35 41 32 11 2633 205 25806 8911

Gunther-2 40 81 60 11 4287 189 28824 6276

Kilbrid-1 45 56 12 7 1383 204 10840 7247

Kilbrid-2 45 79 12 7 1365 191 7588 5173

Kilbrid-3 45 92 12 7 1359 185 6504 4435

Kilbrid-4 45 79 18 8 2001 191 11368 5173

Kilbrid-5 45 92 18 8 1995 185 9744 4435

Kilbrid-6 45 69 24 10 2505 217 17312 7241

Kilbrid-7 45 79 24 10 2499 220 15148 7416

Kilbrid-8 45 92 24 10 2493 214 12948 6358

Hahn-1 53 2004 6 5 851 236 4480 4471

Hahn-2 53 3507 6 5 833 218 2560 2557

Hahn-3 53 4676 6 5 829 210 1920 1600

Hahn-4 53 4676 12 7 1635 228 3190 2403

Hahn-5 53 3507 12 7 1646 236 5104 3407

Hahn-6 53 4676 18 8 2424 238 4780 2403

Hahn-7 53 3507 18 8 2432 235 7648 3976

Hahn-8 55 2004 18 8 2450 253 13384 6952

Hahn-9 58 2004 24 10 3400 263 19516 8157

Hahn-10 62 2806 36 11 5210 280 22340 7471

Warnecke-1 58 111 2 3 368 235 4754 3186

Warnecke-2 58 111 4 5 648 253 7888 6318

Tonge 70 185 8 7 1428 342 21356 18702

 56

Chapter 4: Mathematical Models of the ASALBP

Table 4.3 shows the results obtained by optimally solving the problems

characterized in table 4.2 with both proposed mathematical models. It

includes, for both models, the solution time (in seconds) and the percentage of

improvement of M2 over M1, concerning the solution time.

Table 4.3: Results of optimally solving ASALBP instances

Solution Time
Problem

 M1 M2

% of
improprement

Bowman-1 0.56 0.04 92.9
Bowman-2 0.17 0.03 82.4
Mansor-1 0.20 0.02 90.0
Mansor-2 0.04 0.02 50.0
Mansor-3 0.03 0.01 66.7
Mansor-4 0.09 0.06 33.3
Mansor-5 0.11 0.03 72.7
Mansor-6 0.80 0.40 50.0
Mansor-7 1.12 0.03 97.3
Mitchel-1 1.84 0.15 91.8
Mitchel-2 0.25 0.04 84.0
Mitchel-3 0.12 0.04 66.7
Mitchel-4 7.59 0.33 95.7
Mitchel-5 4.93 0.07 98.6
Mitchel-6 1.04 0.13 87.5
Buxey-1 61547 92.03 100
Buxey-2 18485 0.86 100
Buxey-3 806 10.23 100

Buxey-4 >>200000 862 100

Buxey-5 >>200000 6.99 100

Buxey-6 >>200000 2.82 100
Gunther-1 89558 14805 83.5
Gunther-2 467 0.31 100
Kilbrid-1 213 1.41 100
Kilbrid-2 20.85 1.56 92.5
Kilbrid-3 49.75 7.10 85.7
Kilbrid-4 830 1.06 100
Kilbrid-5 930 1.56 100
Kilbrid-6 110 0.56 100
Kilbrid-7 112 2.02 98.2
Kilbrid-8 114 1.81 98.4
Hahn-1 2.63 0.18 93.2
Hahn-2 11.80 0.09 99.3
Hahn-3 15.94 0.34 97.9
Hahn-4 35.35 0.14 100
Hahn-5 29.13 0.09 100
Hahn-6 114 0.13 100
Hahn-7 92.53 1.20 98.7
Hahn-8 1373 33.52 97.6
Hahn-9 8356 3.48 100
Hahn-10 19785 249 98.7
Warnecke-1 7200 638 91.1
Warnecke-2 17709 1410 92.0
Tonge >>200000 80122 100

 57

Chapter 4: Mathematical Models of the ASALBP

4.6.2 Analysis of the results obtained with M1 and M2

The computational experiment showed that optimal solutions can be obtained

and guaranteed in a reasonable amount of time, only for some of the small-

and medium-scaled problem instances considered in the experiment, e.g. test

problems involving from 10 to around 30 tasks and from 5 to 11 assembly

subgraphs (i.e. partial routes). Such results could be expected taking into

account the NP-hard nature of the ASALBP.

As can be observed in Table 4.2, the number of variables and constraints was

significantly reduced in model M2 (as it was intended). As a result (see Table

4.3), the computation time required by M2 to solve a problem instance was

considerably smaller comparing with the time required by the preliminary

model M1 to solve the same problem instance. Table 4.3 also revealed that in

all cases model M2 outperformed model M1: M2 achieved around 90.6% of

average improvement over M1; reaching a 100% of improvement in more than

a third of the problems solved.

Notwithstanding, most problems are optimally solved in a computing time

significantly small, as can be observed in Table 4.3, the time required by the

mathematical model to solve ASALB Problems increases exponentially with

the number of tasks and the number of processing alternatives that are

available. Furthermore, for some test problems the required computing time

was significantly large for both mathematical models, such as, for example,

Gunther-1 and Tonge. Bigger scale problems involving more than 70 tasks

(e.g., Lutz and Arcus2, involving 89 and 111 tasks, respectively) were also

intended to be optimally solved; however, neither M1 nor M2 were able to

obtain the optimal solution within one week of computing time. Therefore, it

is necessary to consider other methods, i.e. approximate procedures, in order

to efficiently solve real-scale ASALBP.

 58

Chapter 5

 Approximate Methods to
Solve the ASALBP

5.1 Introduction

Exact methods have a problem size limitation and can only be applied to solve

small and medium scale problems. Although, in some cases mathematical

programming models can provide the optimal solution to more realistic

problems, the required computation time may be too large to be of practical

use. As previously discussed, the ASALBP is more difficult to solve optimally,

comparing with the simple case which by nature is NP-hard, since the

inherent decision problem to selects the assembly subgraphs implies an even

bigger computational effort. Therefore, in this thesis a group of heuristics

methods are proposed to solve the Alternative Subgraphs Assembly Line

Balancing Problem, aiming at yielding reasonable solutions in a significantly

small computing time.

As previously mentioned, most heuristic techniques considered in the literature

(e.g. Scholl and Voss (1996), Amen (2001), Dolgui et al. (2005), Fernades and

Ribeiro (2005), Becker and Scholl (2006)) are constructive methods based on

single priority rules, which have been successfully applied to assembly line

balancing problems. Therefore, a significant number of constructive methods

to solve the ASALBP have been designed, implemented and evaluated in this

doctoral thesis (section 5.2).

In order to improve the solution of the approximate methods, two local

optimization procedures, based on an adaptation of two classical

neighbourhood search strategies, have been also implemented here (section

5.3). All these procedures are evaluated and compared via computational

experiment. The analysis of the results is reported at the end of this chapter

(section 5.4).

Chapter 5. Appproximate methods to solve the asalbp

5.2 Heuristic Methods

The heuristic methods proposed here systematically build the solution to the

ASALBP by selecting the assembly subgraphs and incrementally assigning the

tasks to the workstations. Such methods use priority-rule-based and random

strategies to select both the assembly subgraphs and the next task to be

assigned. In the former case, the selection is done considering a decreasing (or

increasing) value of a predetermined priority rule; in the latter case, tasks

and/or subgraphs are selected following either a uniform distribution or a

probability function based on weighted values of the priority rules.

A solution provided by these methods consists of a set of subgraphs (one for

each subassembly that allows assembly variants), which determines the

assembly tasks, the processing times, a number of required workstations and

the assignment of the corresponding tasks to the workstations. In order to

facilitate the evaluation of constructive methods involving most well-known

priority rules, the proposed procedures aim at minimizing the number of

workstations; therefore, they focus on resolving ASALBP-1.

To describe the proposed heuristic methods the following notation is

considered:

n Number of tasks

ct Cycle time

mmax Upper bound on the number of workstations

Ri Set of all subgraphs through which task i can be processed (i = 1,…,n)

tir Duration of task i when processed through subgraph r (i = 1,…,n ; r ∈ Ri)

Pir Set of immediate predecessors of task i if task i is processed through

subgraph r (i = 1,…,n ; r ∈ Ri)

Sir Set of all successors of task i if it is processed through subgraph r (i =

1,…,n ; r ∈ Ri)

SR Set of selected subgraphs. SR is generated once the priority rules to

select the subgraphs have been applied.

 60

Chapter 5. Approximate methods to solve the asalbp

Once set SR is known (i.e. the assembly subgraphs have been selected), the

following values can be defined:

AVT Set of available tasks, which is formed with the tasks that belong to the

selected subgraphs and those tasks that do not allow assembly variants.

AST Set of assignable tasks. A task is assignable if all its predecessors have

already been assigned and its time plus the time of the tasks assigned

to the current workstation does not exceed the cycle time.

sub(i) Subgraph chosen for task i (i AVT∀ ∈); in this way it is possible to

know ti,sub(i), which is the duration of task i. Since task i ∈ AVT, it is

verified that subgraph sub(i) ∈ SR.

Ei Earliest workstation to which task i can be assigned (i AVT∀ ∈).

Li Latest workstation to which task i can be assigned (i AVT∀ ∈).

SIi Set of immediate successors of task i (i AVT∀ ∈).

Si Set of total successors of task i (i AVT∀ ∈).

The general scheme for the proposed heuristic procedures is given in

Algorithm 1.

Algorithm 1

Step 1. Set the stopping condition.

Step 2. Select one subgraph for each available subassembly and build the
set of selected subgraphs SR.

Step 3. Form the set of available tasks, AVT.

Step 4. Set as current workstation the first workstation.

Step 5. If AVT is not empty, determine the set of assignable tasks, AST.

Step 6. Select the next task to be assigned to the current workstation
from AST.

Step 7. If there are no assignable tasks (i.e. AST is empty) but there are
remaining available tasks (i.e. AVT is not empty), then open a
new workstation.

Step 8. Remove the assigned task from AVT and update AST.

Step 9. Repeat from 6 to 8 until all assembly tasks have been assigned
(i.e. AVT is empty).

Step 10. If the solution obtained at the current iteration improves the best
stored solution, then store current solution.

Step 11. Repeat from 2 onwards as long as the stopping condition holds.

 61

Chapter 5. Appproximate methods to solve the asalbp

Regarding the selection criterion used to select the assembly subgraphs (at

step 2) and the tasks (at step 6), Algorithm 1 represents a single-pass method

that generates a single solution, or a multi-pass method, in which multiple

solutions are generated and compared keeping the best of all obtained

solutions. The stopping condition of the Algorithm 1 is defined by a single

iteration in the case of single-pass methods, and determined by a maximum

computing time in the case of a multi-pass methods.

The following are all selection criterions considered in the proposed

procedures.

Decision criteria for subgraphs

Four criteria are used to select the assembly subgraphs: three priority rules,

and random choice (RS).

As previously mentioned, in the case of random choice subgraphs can be

selected considering either a uniform distribution (i.e. all subgraphs of the

same subassembly have the same probability of being selected) or a

probability distribution based on weighted values of the priority rules.

The three priority rules considered are the following:

a. Minimum NP: this rule ranks the subgraphs of the same subassembly

according to ascending number of precedence relations involved in each

subgraph, which is the total number of arcs entering into and within the

subgraph.

b. Minimum TT: subgraphs are ranked according to ascending total processing

time.

c. Minimum NT: subgraphs are ranked according to ascending number of

tasks.

Decision criteria for tasks

The decision criteria used to select the next task to be assigned are presented

in Table 5.1, which shows an adaptation to the ASALBP of 13 well-known

priority rules (e.g. Talbot et al. (1986)) and random choice assignment.

Similarly to subgraphs, the random strategy can follow either a uniform

distribution or a function based on weighted values of the priority rules: f(pr).

 62

Chapter 5. Approximate methods to solve the asalbp

Priority rules values are basically determined by measuring task processing

times and precedence relations, and by considering the cycle time. For

instance, RPW (Rank Positional Weight) can be computed by adding to the

task time the sum of the times of all its successors. It is valid to mention at

this point that, according to Algorithm 1, set SR is defined before the

assembly tasks are selected.

Table 5.1: Decision criteria for tasks

No. Name Decision criteria Procedure

1 RPW Maximum Rank Positional
Weight

, () , ()
, ()

i i sub i j sub j
j Si sub i

RPW t t
∈

= + ∑

2 T Maximum Task Time , (i s u b it)

3 EW Minimum Earliest Workstation , () , ()
, ()

i i sub i j sub j
j Pi sub i

EW t t ct
∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= +
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

∑

4 LW Minimum Latest Workstation max , () , ()
, ()

1i i sub i j sub j
j Si sub i

LW m t t ct
∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − +
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

∑

5 N Minimum task Number i

6 Sk Minimum Slack i iSk LW EWi= −

7 TLW Minimum task time divided by
Latest Workstation

, ()i i sub i iTL t LW=

8 IS Maximum Number of
Immediate Successors

=i iS IIS

9 TS Maximum Number of total
successors

=i iST S

10 TTS
Maximum Task Time plus
Total Number of Successors , ()i i sub iTTS t TSi= +

11 STS Maximum Average Time of
Successors , ()

, ()
i j sub j

j Si sub i

STS t TS
∈

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∑ i

12 TSSk Maximum Number of Total
Successors divided by Sk /(1)T S Sk T S S ki i i= +

13 LWTS Minimum Average Latest
Workstation /(1)i i iLWTS LW TS= +

14 RT Random task assignment [0..] ()i U nt i f pr∨∼ ∼

 63

Chapter 5. Appproximate methods to solve the asalbp

5.2.1 Single-pass methods

Single-pass methods generate a single solution by exploring the solution space

only via single priority rules, whereby the subgraphs and tasks are selected

according to the descendant or ascendant values of the predetermined priority

rules. The stopping condition of Algorithm 1 is thus defined by a single

iteration that is completed once all tasks, which belong to the subgraphs

selected in Step 2, have been assigned to the workstations.

Table 5.2 lists the names and numbers of all 39 single-pass heuristic methods

that are obtained by combining the priority rules for tasks (defined in Table

5.1) with the decision rules considered for the assembly subgraphs.

Table 5.2: Single-pass methods

Rules for subgraphs

NP TT NT
Rules for

tasks
No. Label No. Label No. Label

RPW 1 NP_RPW 14 TT_RPW 27 NT_RPW

T 2 NP_T 15 TT_T 28 NT_T

EW 3 NP_EW 16 TT_EW 29 NT_EW

LW 4 NP_LW 17 TT_LW 30 NT_LW

N 5 NP_N 18 TT_N 31 NT_N

Sk 6 NP_Sk 19 TT_Sk 32 NT_Sk

TLW 7 NP_TLW 20 TT_TLW 33 NT_TLW

IS 8 NP_IS 21 TT_IS 34 NT_IS

TS 9 NP_TS 22 TT_TS 35 NT_TS

TTS 10 NP_TTS 23 TT_TTS 36 NT_TTS

STS 11 NP_STS 24 TT_STS 37 NT_STS

TSSk 12 NP_TSSk 25 TT_TSSk 38 NT_TSSk

LWTS 13 NP_LWTS 26 TT_LWTS 39 NT_LWTS

As seen in Table 5.2, each method is labelled according to the following

notation: [SubgraphRule_TaskRule]. For example, TT_RPW selects a

combination of subgraphs that requires the minimum total processing time

(TT) and ranks the tasks to be assigned considering descending Rank

Positional Weight (RPW) values. Descending values are considered when the

 64

Chapter 5. Approximate methods to solve the asalbp

rule refers to a maximization criterion, and ascending values, when it refers to

a minimization criterion. Additionally, all methods use task index (N) as a tie-

breaker rule for tasks. In the case of subgraphs, TT is used as a tie-breaker

rule for the [NT_TaskRule] and [NP_TaskRule] methods, and NT for the

[TT_TaskRule] methods.

The following example illustrates how subgraphs and tasks are selected in the

single-pass procedures proposed here.

Example 5.1: Single-pass procedures

The S-Graph of Figure 5.1 depicts an ASALBP that involves 17 tasks and 7

subgraphs, which represent the assembly variants for three parts of the system

that allow alternatives: S1 and S2 for the first subassembly; S3 and S4 for the

second; and S5, S6 and S7 for the third.

4

6

S5

1

5 11

7 9

9 7

108

S2 12 7

12 13 14

S7
5 5 5

8 10

10 8

S6

12 3

1158

2

6

3

17

5

5

15

 6

16

10 S4

S3

17

4

5

11

S1

Figure 5.1: Precedence S-Graph for an ASALBP involving 17 tasks.

Table 5.3 shows the computed priority rule values for each available subgraph

of Figure 5.1.

Table 5.3: Priority rule values for the assembly subgraphs

Subgraph
Priority rule

S1 S2 S3 S4 S5 S6 S7

TT 18 19 22 20 15 16 15

NP 2 2 1 2 2 2 3

NT 2 2 2 3 2 2 3

 65

Chapter 5. Appproximate methods to solve the asalbp

Considering that priority rule TT is used at step 2 of Algorithm 1, then S1

will be selected for the first subassembly, since it involves the minimum total

processing time of 18 time units, whereas S2 requires 19 time units. Similarly,

for the second subassembly, the selected subgraph will be S4. For the third

subassembly, however, more than one subgraph matches the selection criteria,

meaning that a tie-breaker rule must be applied; application of the tie-breaker

rule NT thus yields S5 as the selected subgraph.

Therefore, by using the [TT_TaskRule] family of methods, regardless of the

rule used for tasks, the selected subgraphs are S1, S4 and S5, and the

corresponding available tasks (i.e. the set AVT formed at step 3 of Algorithm

1) are 1, 2, 4, 6, 7, 8, 9, 10, 11, 15, 16, and 17. Similarly, when the

[NT_TaskRule] or [NP_TaskRule] methods are applied, the selected subgraphs

are S1, S3 and S5, and the corresponding available tasks are 1, 2, 3, 4, 5, 6, 7,

8, 9, 10 and 11.

Table 5.4 summarizes the results of using different methods to select the

subgraphs at step 2 of Algorithm 1. It includes the method notation, the

selected subgraphs, the resulting available assembly tasks (i.e., set AVT) and

the first set of assignable tasks (i.e., AST) generated at step 5 of Algorithm 1.

Table 5.4: Selected subgraphs, available and assignable tasks

Methods SR AVT AST

[TT_TaskRule] S1, S4, S5 1, 2, 4, 6, 7, 8, 9, 10, 11, 15, 16, 17 1, 2, 15

[NT_TaskRule] S1, S3, S5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1, 2, 3

[NP_TaskRule] S1, S3, S5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1, 2, 3

If method TT_T is applied, then the set of assignable tasks comprises tasks 1,

2 and 15, which should be ranked according to descending values of task times

-in this case 2, 15 and 1. It can be observed that tasks 2 and 15 have the same

processing time. However, according to the tie-breaker rule, task 2 will be the

first task to be assigned because it meets the tie-break condition (i.e. it has the

smallest task index). If method TT_N is being used (i.e. N is considered as a

primary rule), then task 1 will be the first to be assigned instead of task 2.

 66

Chapter 5. Approximate methods to solve the asalbp

Table 5.5 includes the results obtained by applying four of the decision rules

for tasks (RPW, T, EW and LW), taking, for example, NT as the decision

rule for subgraphs, and assuming that ct=20 and mmax=9. It lists the

computed priority rules values for each assignable task of the first set AST

(i.e. 1, 2, 3), the first task to be assigned (1st at), the number of required

workstations (m), the resulting task assignment and the corresponding

workstation time (shown in parentheses).

Table 5.5: Results of applying single-pass methods

 Task assignment (workstation time) Rule
for

tasks 1 2 3

1st

at
m

I II III IV V VI

RPW 39 63 45 2 6 2, 1 (11) 3 (17) 4, 5 (16) 6, 7 (16) 8, 10 (15) 9, 11 (15)

T 5 6 17 3 5 3 (17) 2, 1, 5 (16) 4, 6 (19) 8, 7 (20) 9, 11, 10 (18) -

EW 1 1 1 1 6 1, 2 (11) 3 (17) 4, 5 (16) 6, 7 (16) 9, 11 (15) 8,10 (15)

LW 8 6 7 2 6 2, 1 (11) 3 (17) 4, 5 (16) 6, 7 (16) 8, 10 (15) 9, 11 (15)

Table 5.5 reveals that different results can be obtained by using different

decision rules. In this example, method NT_T requires five workstations,

whereas the other methods require six workstations.

5.2.2 Multi-pass methods

Multi-pass methods solve several times the same problem instance by using a

stochastic mechanism to select either the subgraphs or the tasks, or both.

Therefore, multiple solutions are generated by repeating the general scheme

given by Algorithm 1 and returning the best of all solutions obtained during

the available computing time, which is the stopping condition.

Four classes of multi-pass heuristic procedures are distinguished:

a. [Random_TaskRule]: at step 2 of Algorithm 1, a set of subgraphs (i.e. one

for each subassembly) is selected randomly, having all subgraphs for the

same subassembly the same probability of being selected. Then, at step 6,

tasks are assigned by applying one of the thirteen single-pass priority rules.

The whole procedure is then repeated by randomly selecting at any

iteration a new set of assembly subgraphs and generating a line balance.

 67

Chapter 5. Appproximate methods to solve the asalbp

b. [SubgraphRule_Random]: at step 2 of Algorithm 1, subgraphs are selected

by using one of the three priority rules for subgraphs; therefore, the selected

subgraphs remain fixed during the given length of computing time. At each

iteration a new balance is generated by randomly selecting (following a

uniform probability distribution) the next task to be assigned, considering

only the tasks belonging to the selected subgraphs.

c. [Random_Random]: both subgraphs and the next task to be assigned to

the current workstation are selected randomly both following a uniform

probability distribution.

d. W-[SubgraphRule_TaskRule]: both subgraphs and tasks are randomly

selected. The probability distributions are built using weighted values that

are proportional or inversely proportional, when using a maximizing or

minimizing criterion, respectively, to the values obtained considering a

given priority rule.

A total of 56 multi-pass heuristic methods have been proposed. Methods using

single rule values, hereafter referred to as non-weighted multi-pass methods,

are summarized in Table 5.6: methods 40 to 52 are of class a, 53 is of class c,

and methods 54 to 56 are of class b.

Table 5.6: Non-weighted multi-pass methods

Rule for subgraph: Random (RS)

Rule for
tasks No. Label No. Rule for

tasks Label

RPW 40 RS_RPW 47 IS RS_IS

T 41 RS_T 48 TS RS_TS

EW 42 RS_EW 49 TTS RS_TTS

LW 43 RS_LW 50 STS RS_STS

N 44 RS_N 51 TSSk RS_TSSk

Sk 45 RS_Sk 52 LWTS RS_LWTS

TLW 46 RS_TLW 53 RT RS_RT

Rule for tasks: Random (RT)

Rule for
subgraph No. Label Rule for

subgraph No. Label Rule for
subgraph No. Label

NP 54 NP_RT TT 55 TT_RT NT 56 NT_RT

 68

Chapter 5. Approximate methods to solve the asalbp

The combination of the resulting probability distributions based on the

various priority rules for subgraphs and tasks produces 39 class-d multi-pass

methods, hereafter also referred to as weighted multi-pass methods, which are

listed in Table 5.7 (i.e. methods 57 to 95).

Table 5.7: Weighted multi-pass methods

Rule for subgraphs

NP TT ENT
Rule for

tasks

No. Label No. Label No. Label

RPW 57 W-NP_RPW 70 W-TT_RPW 83 W-NT_RPW

T 58 W-NP_T 71 W-TT_T 84 W-NT_T

EW 59 W-NP_EW 72 W-TT_EW 85 W-NT_EW

LW 60 W-NP_LW 73 W-TT_LW 86 W-NT_LW

N 61 W-NP_N 74 W-TT_N 87 W-NT_N

Sk 62 W-NP_Sk 75 W-TT_Sk 88 W-NT_Sk

TLW 63 W-NP_TLW 76 W-TT_TLW 89 W-NT_TLW

IS 64 W-NP_IS 77 W-TT_IS 90 W-NT_IS

TS 65 W-NP_TS 78 W-TT_TS 91 W-NT_TS

TTS 66 W-NP_TTS 79 W-TT_TTS 92 W-NT_TTS

STS 67 W-NP_STS 80 W-TT_STS 93 W-NT_STS

TSSk 68 W-NP_TSSk 81 W-TT_TSSk 94 W-NT_TSSk

LWTS 69 W-NP_LWTS 82 W-TT_LWTS 95 W-NT_LWTS

Example 5.2: Multi-pass procedures

Considering the S-Graph of Figure 5.1 and that method W-TT_T is applied,

then, the cumulative probability distribution for selecting a subgraph ss1, ss2

and ss3 for subassembly 1, 2 and 3, respectively, are as follows (r ² [0,1) is a

random value):

1
1 if 0 0.514
2 if 0.514 1

S r
ss

S r

⎧
⎨
⎩

≤ <
=

≤ <
; 2

3 if 0 0.476
4 if 0.476 1

S r
ss

S r

⎧
⎨
⎩

≤ <
=

≤ <
; 3

5 if 0 0.34
6 if 0.34 0.66
7 if 0.66 1

S r

ss S r

S r

⎧
⎪
⎨
⎪
⎩

≤ <
= ≤ <

≤ <

Similarly, probability functions are built for the resulting available tasks

obtained at step 6 of Algorithm 1. Therefore, supposing that the selected

subgraphs are S1, S4 and S5, then the available tasks are 1, 2 and 15. The

cumulative probability distribution for selecting the next task st to be assigned

is the following (r ² [0,1) is a random value):

1 if 0 0 .2 9
2 if 0 .2 9 0 .6 5
1 5 if 0 .6 5 1

⎧
⎪
⎨
⎪
⎩

≤ <
= ≤ <

≤ <

r
s t r

r

 69

Chapter 5. Appproximate methods to solve the asalbp

5.3 Local Optimization Procedures

Two local optimization procedures based on two neighbourhood search

strategies have been developed, aiming at improving the solution generated by

the proposed approximate methods. At this point, it is valid to comment that

a solution to the problem is represented by a sequence of tasks, which results

from orderly assigning the tasks to the workstations.

The following notation is used to describe such search strategies:

mk Number of workstations required for a given sequence (solution) k

ISq Initial task sequence generated by a given heuristic method

WS Working sequence (the first WS is ISq)

SS Stored sequence (the first SS is ISq)

NS Neighbour sequence

Slkj Slack (cycle time minus workstation time) of workstation j

α Weight parameter

The local optimization procedures generate the neighbourhood of the working

sequence WS by using a transformation or exchange movement. Each

exchange k generates a neighbour sequence NS. Then, task are orderly

assigned to the workstations resulting in a number of required workstation mk.

If NS improves SS (i.e., it requires fewer workstations), the neighbour sequence

becomes the stored sequence SS.

When a neighbour sequence requires the same number of workstations as the

store sequence, a secondary objective function [5.1] is used as a tie-breaker.

This function gives more importance to solutions that load the first

workstations at maximum capacity and the last ones at minimum capacity. To

achieve this objective, the weight parameter α of f is set to 10 (it was

confirmed that equivalent results can be obtained using α =10e, where e is an

integer greater than 1).

1=
= ⋅∑ α

km
j

j
j

max f Slk [5.1]

The local search ends when all feasible exchanges have been made for each

task in WS, i.e., when all neighbours have been generated and evaluated. For

the next iteration, the stored sequence SS is assigned to the working sequence

WS. The whole procedure is repeated until a predetermined computing time

has been completed. The final solution is the best of all solutions generated.

 70

Chapter 5. Approximate methods to solve the asalbp

Exchange movements

An adaptation of two classical transformations (see, for example, Armentano

and Bassi (2006)) has been considered to generate the neighbourhood of a

given solution:

a. The exchange of the positions in WS of a pair of tasks.

In this case, the exchange movement tries to exchange the position in the

sequence WS of two tasks i and k, provided it is feasible; i.e., the precedence

relations among the tasks are maintained. Furthermore, task i and task k

should have been assigned to different workstations. When task i and task k

belong to the same subgraph s, new neighbour sequences are searched by

interchanging s with each one of the remaining subgraphs available for such

tasks (which can affect the order of all tasks belonging to such subgraphs).

b. The movement of task i to another position of the working sequence WS

(i.e., a task is yielded to a different workstation).

A task i can be moved to the position of task k when the tasks precedence

relations are maintained and when task k and task i have been assigned to

different workstations. In this case, all tasks between the positions of task i

and k including task k are moved in the sequence one position backwards. For

each movement, neighbour sequences are generated by interchanging the

alternative subgraphs available for the moved task.

When a movement exchange type a is applied the local optimization procedure

is regarded as LOP-1; otherwise, it is referred to as LOP-2.

Example 5.3. Exchange movements

The following initial sequence is obtained by applying the heuristic method

NT_RPW to the example of Figure 5.1 with a ct=20 (see Table 5.5):

ISq = 2, 1, 3, 4, 5, 6, 7, 8, 10, 9, 11

Let consider transformation a: then a neighbour sequence is generated by

interchanging, for example, tasks 2 and 3 since neither task 2 nor task 1 are

predecessors of task 3, neither task 1 nor task 3 are successors of task 2 (i.e.

precedence constraints are kept), and (as can be seen in Table 5.5) both tasks

are assigned to different workstations (task 2 is assigned to workstation I and

task 3 to workstation II). Therefore, one of the resulting neighbour sequences

is illustrated in Figure 5.2.

2 1 3 4 5 6 7 8 10 9 11 3 1 2 4 5 6 7 8 10 9 11

 Initial Sequence Neighbour Sequence

Figure 5.2: Generation of a neighbour sequence using transformation a.

 71

Chapter 5. Appproximate methods to solve the asalbp

If transformation b is considered, then a neighbour sequence is generated by

moving, for example, task 2 to the position of task 3 (see Figure 5.3), which is

a feasible movement since neither task 1 nor task 2 are predecessors of task 3.

In this case, the neighbour sequence is as follows:

2 1 3 4 5 6 7 8 10 9 11 1 3 2 4 5 6 7 8 10 9 11

 Initial Sequence Neighbour Sequence

Figure 5.3: Generation of a neighbour sequence using transformation b.

At this point, it is valid to comment on a class of metaheuristic method, called

GRASP (Greedy Randomized Adaptive Search Procedure), which consists in

two phases: a first phase that generates an initial solution by applying a

constructive method (as previously described) and a second phase which

improves such a solution by applying local optimization procedures. A

stochastic mechanism is introduced to generated multiples initial solutions

during a given computing time or for a predetermined number of iterations.

An adaptation of this approach is distinguished in this work when any of the

proposed local optimization procedures are iteratively applied using, in the

constructive phase, a multi-pass method. In particular, methods which use

probability distributions based on weighted values of various priority rules to

select the assembly subgraphs and the assembly tasks can be considered.

5.4 Computational Experiment

To evaluate and compare the performance of the heuristic procedures

described in the previous sections, a computational experiment was carried

out, for which small-, medium- and large-scale ASALBP instances were

considered. Even though small-scaled problems can be solved optimally in

significantly low computing times with exact methods (i.e., mathematical

programming models) their solutions are considered as a mean to measure the

quality of the solutions provided by the proposed heuristic methods.

5.4.1 Experimental conditions

The data sets used in this computational experiment are also based on an

adaptation of benchmark SALB Problems that are available at www.assembly-

line-balancing.de. The experiment involved the following small-, medium- and

large-scale problems: Bowman, Mansor, Mitchell, Buxey, Gunther, Kilbrid,

 72

http://www.assembly-line-balancing.de/
http://www.assembly-line-balancing.de/

Chapter 5. Approximate methods to solve the asalbp

Hahn, Warnecke, Tonge, Wee-Mag, Lutz3, Arcus2, Bartholdi and Scholl; with

8, 11, 21, 29, 35, 45, 53, 58, 70, 75, 89, 111, 149 and 297 tasks, respectively.

Benchmark problems were subdivided into two, three and four subassemblies

(involving five, eight and eleven subgraphs, respectively) and from 1 to 5

different cycle time values were considered. Furthermore, to consider

alternative assembly processes involving different sets of tasks, new assembly

tasks were also added to the problems.

Table 5.8 shows the data sets considered in the computational experiment. It

includes the name of the benchmark problem, the cycle time values used, and

the number of tasks involved for each group of mutually exclusive assembly

subgraphs. It is noteworthy that the first four data sets in Table 5.8 are

considered as small-scale problems, the following seven data sets are medium-

scale, whereas the remaining sets are considered as large-scale problems. As

can be also observed in Table 5.8, small-scale problems involve from one to

three cycle time values and from five to eight subgraphs (the dashes in Table

5.8 indicate that those values do not apply for the corresponding problems). A

total of 166 (i.e.) problem instances, involving from

10 to 305 tasks, were solved with each of the 95 heuristics procedures.

+ + ⋅ + ⋅ + ⋅ ⋅1 3 3 2 3 2 5 3 10

All heuristic methods were implemented using C++ programming language,

and the experiments were carried out on a Pentium IV, 3 GHz CPU with 512

Mb of RAM.

Table 5.8: Data sets

Cycle time values Number of subgraphs

5 8 11 Problem
ct1 ct2 ct3 ct4 ct5 Number of tasks

Bowman 20 - - - - 10 - -

Mansor 48 62 94 - - 11 - -

Mitchell 14 21 35 - - 21 21 -

Buxey 30 36 54 - - 29 29 -

Gunther 41 44 49 61 81 37 37 37

Kilbrid 57 79 92 138 184 45 46 48

Hahn 2004 2338 2806 3507 4676 56 56 63

Warnecke 54 62 74 92 111 63 63 67

Tonge 160 176 207 251 320 73 75 75

Wee-Mag 28 33 39 46 56 77 81 83

Lutz3 75 83 97 118 150 93 98 101

Arcus2 5785 6540 7916 9400 11570 115 121 125

Bartholdi 403 470 564 705 805 151 157 160

Scholl 75 83 97 118 150 299 302 305

 73

Chapter 5. Appproximate methods to solve the asalbp

5.4.2 Analysis of the results

To present the results obtained in the computational experiment, the following

notation is used: NI: number of the tested instances; CT: computing time;

NBS: number of best solutions obtained; PBS: percentage of best solutions

obtained; , max∆ ,av∆ min∆ , maximal, average and minimal deviation from the

best solution BS respectively; Tmax, Tav, Tmin, maximal, average and minimal

solution time, respectively. For each problem instance, the relative deviation

from the best value is computed, for each heuristic solution HS, as follows: ∆

100 HS BS

BS

−
∆ = ⋅ .

The evaluation was based on the number of best solutions provided by all the

methods. The best solution for each problem instance, the basis for the

comparative analysis, is the best of all solutions found by the compared

heuristic methods. For instance, the best solution found by any single-pass

method is used to evaluate the efficiency of single-pass methods. Similarly, the

best solution found by any multi-pass method is used to evaluate the efficiency

of all multi-pass methods. The overall performance of all methods is evaluated

by considering the best solution found by the best single-pass heuristic or by

the best multi-pass heuristic method.

The application of the 39 single-pass methods (see Table 5.2) implied 6474

computational experiments. On the other hand, the proposed 56 multi-pass

procedures (see Tables 5.6 and 5.7) conducted 9296 experiments. Furthermore,

two local optimization procedures were applied to each of the proposed

heuristic methods, which considering a single CT value (60 seconds), entailed

31540 additional computational tests. Finally, to evaluate the effect of

different computing times, CT, in the percentage of best solutions, 1162

further experiments were realized.

Applying simple-pass methods to solve small-scale problems

Table 5.9 presents the results obtained by using all single-pass methods

defined in Table 5.2 to solve small-scale problems (15 test instances). As

observed in Table 5.9, the methods NP−TTS, TT−TTS and NT−TTS

significantly outperformed all other methods, achieving the best solutions in

93.3% of the cases, and having the lowest ∆max (12.5%) and ∆av (0.8%). Other

methods that had a relatively good performance include NP−T, NP−TLW,

NP−TS, NP−STS, NP−LWTS, TT−T, TT−TLW, TT−TS, TT−STS,

TT−LWTS, NT−T, NT−TLW, NT−TS, NT−STS and TT−LWTS, which

 74

Chapter 5. Approximate methods to solve the asalbp

provided the best solutions in 66.7% of the cases, having a ∆max of 33.3% and a

∆av between 7.2 and 9.1%. On the other hand, the methods [SubgraphRule_EW]

performed the worst, generating the best solutions in only 26.7% of the small-

scale instances tested, furthermore, ∆max is considerable high (50%). As it could

be expected, single-pass-methods require a very low solution time, on average,

only 0.001 seconds (maximum 0.002 sec) to solve small-scale problems.

Table 5.9: Results for solving small-scale problems using single-pass

methods (NI=16)

Method NBS PBS ∆max ∆av
T max T av

1 NP_RPW 8 53.3 50.0 15.8 0.01 0.001
2 NP_T 10 66.7 33.3 7.4 0.00 0.000
3 NP_EW 4 26.7 50.0 19.5 0.00 0.000
4 NP_LW 8 53.3 50.0 15.8 0.01 0.001
5 NP_N 7 46.7 50.0 16.6 0.00 0.000
6 NP_Sk 8 53.3 50.0 15.8 0.01 0.001
7 NP_TLW 10 66.7 33.3 7.2 0.01 0.001
8 NP_IS 7 46.7 50.0 16.6 0.00 0.000
9 NP_TS 10 66.7 33.3 9.1 0.00 0.000

10 NP_TTS 14 93.3 12.5 0.8 0.00 0.000
11 NP_STS 10 66.7 33.3 8.3 0.00 0.000
12 NP_TSSk 7 46.7 50.0 16.6 0.01 0.001
13 NP_LWTS 10 66.7 33.3 9.1 0.00 0.000
14 TT_RPW 8 53.3 50.0 15.8 0.00 0.000
15 TT_T 10 66.7 33.3 7.4 0.00 0.000
16 TT_EW 4 26.7 50.0 19.5 0.00 0.000
17 TT_LW 8 53.3 50.0 15.8 0.00 0.000
18 TT_N 7 46.7 50.0 16.6 0.00 0.000
19 TT_Sk 8 53.3 50.0 15.8 0.01 0.001
20 TT_TLW 10 66.7 33.3 7.2 0.01 0.001
21 TT_IS 7 46.7 50.0 16.6 0.00 0.000
22 TT_TS 10 66.7 33.3 9.1 0.01 0.001
23 TT_TTS 14 93.3 12.5 0.8 0.01 0.001
24 TT_STS 10 66.7 33.3 8.3 0.01 0.001
25 TT_TSSk 7 46.7 50.0 16.6 0.01 0.002
26 TT_LWTS 10 66.7 33.3 9.1 0.01 0.001
27 NT_RPW 8 53.3 50.0 15.8 0.00 0.000
28 NT_T 10 66.7 33.3 7.4 0.01 0.001
29 NT_EW 4 26.7 50.0 19.5 0.01 0.001
30 NT_LW 8 53.3 50.0 15.8 0.00 0.000
31 NT_N 7 46.7 50.0 16.6 0.01 0.001
32 NT_Sk 8 53.3 50.0 15.8 0.01 0.002
33 NT_TLW 10 66.7 33.3 7.2 0.01 0.001
34 NT_IS 7 46.7 50.0 16.6 0.01 0.001
35 NT_TS 10 66.7 33.3 9.1 0.01 0.001
36 NT_TTS 14 93.3 12.5 0.8 0.01 0.001
37 NT_STS 10 66.7 33.3 8.3 0.01 0.001
38 NT_TSSk 7 46.7 50.0 16.6 0.01 0.001
39 NT_LWTS 10 66.7 33.3 9.1 0.00 0.000

∆min and Tmin = 0 in all cases

 75

Chapter 5. Appproximate methods to solve the asalbp

Applying single-pass methods to solve medium-scale problems

Table 5.10 presents the results obtained by using all single-pass methods to

solve medium-scale problems (105 test instances).

Table 5.10: Results for solving medium-scale problems using single-

pass methods (NI=105)

Method NBS PBS ∆max ∆av
Tmax Tav

1 NP_RPW 75 71.4 33.3 2.8 0.02 0.01
2 NP_T 83 79.0 33.3 2.2 0.02 0.01
3 NP_EW 35 33.3 33.3 7.3 0.02 0.01
4 NP_LW 69 65.7 33.3 3.1 0.02 0.01
5 NP_N 44 41.9 33.3 6.5 0.02 0.01
6 NP_Sk 59 56.2 33.3 4.2 0.02 0.01
7 NP_TLW 90 85.7 33.3 1.8 0.02 0.01
8 NP_IS 46 43.8 33.3 6.2 0.02 0.01
9 NP_TS 64 61.0 33.3 3.5 0.02 0.01

10 NP_TTS 89 84.8 33.3 2.1 0.02 0.01
11 NP_STS 55 52.4 33.3 4.6 0.02 0.01
12 NP_TSSk 45 42.9 33.3 6.4 0.02 0.01
13 NP_LWTS 70 66.7 33.3 3.2 0.02 0.01
14 TT_RPW 80 76.2 33.3 1.8 0.02 0.01
15 TT_T 88 83.8 25.0 1.5 0.02 0.01
16 TT_EW 36 34.3 33.3 7.1 0.02 0.01
17 TT_LW 74 70.5 33.3 2.6 0.02 0.01
18 TT_N 46 43.8 33.3 6.1 0.02 0.01
19 TT_Sk 60 57.1 33.3 3.9 0.02 0.01
20 TT_TLW 94 89.5 25.0 1.1 0.02 0.01
21 TT_IS 49 46.7 33.3 5.9 0.02 0.01
22 TT_TS 66 62.9 33.3 3.3 0.02 0.01
23 TT_TTS 94 89.5 33.3 1.3 0.02 0.01
24 TT_STS 57 54.3 33.3 4.3 0.02 0.01
25 TT_TSSk 47 44.8 33.3 6.0 0.02 0.01
26 TT_LWTS 72 68.6 33.3 3.0 0.02 0.01
27 NT_RPW 76 72.4 33.3 2.5 0.02 0.01
28 NT_T 83 79.0 33.3 2.2 0.02 0.01
29 NT_EW 35 33.3 33.3 7.3 0.02 0.01
30 NT_LW 69 65.7 33.3 3.1 0.02 0.01
31 NT_N 44 41.9 33.3 6.5 0.02 0.01
32 NT_Sk 59 56.2 33.3 4.2 0.02 0.01
33 NT_TLW 90 85.7 33.3 1.8 0.02 0.01
34 NT_IS 46 43.8 33.3 6.2 0.02 0.01
35 NT_TS 64 61.0 33.3 3.5 0.02 0.01
36 NT_TTS 91 86.7 33.3 1.7 0.02 0.01
37 NT_STS 55 52.4 33.3 4.6 0.02 0.01
38 NT_TSSk 45 42.9 33.3 6.4 0.02 0.01
39 NT_LWTS 70 66.7 33.3 3.2 0.02 0.01

∆min and Tmin = 0 in all cases

 76

Chapter 5. Approximate methods to solve the asalbp

As observed in Table 5.10, the methods TT_TLW and TT_TTS performed the

best, achieving the best solutions in 89.5% of the cases. Similar results were

obtained with the methods NP_TLW, NP_TTS, TT_T, NT_TLW and

NT_TTS, which provided the best solutions in 83.8 to 86.7% of the cases. On

the other hand, even they behave slightly better, methods [SubgraphRule_EW]

again performed the worst, generating best solutions in a maximum of only

34.3% (36 out of 105) of the medium-scale instances tested. Other methods

with low performance include NP_N, NP_IS, NP_TSSk, TT_N, NT_N, NT_IS

and NT_TSSk, which all provided best solutions at most in 43.8% of the cases.

Table 5.10 also shows that although ∆av is small, for most problems ∆max is

rather high (i.e. 33.3%).

Regarding solution time, single-pass methods required an average of only 0.01

seconds (maximum 0.02 sec) to solve medium-scale problems.

Applying single-pass methods to solve large-scale problems

Table 5.11 shows the results obtained using all single-pass methods to solve

large-scale problems (45 test instances). In this case, method TT_RPW

performed the best, which generated best solutions in 88.9% of the problems

solved. In general, methods [SubgraphRule_RPW] had the best performance:

both NP_RPW and NT_RPW found the best solutions in 77.8% of the cases.

These results indicate much higher performance of these methods for large-

scale problems than for small- and medium-scale problems (e.g., the PBS of

TT_RPW for large-scale problems is 88.9%, whereas for medium-scale it is

76.2 and only 53.3% for small-scale problems). Methods [SubgraphRule_LW]

presented a similar high performance: TT_LW, NP_LW and NT_LW

generated best solutions in 71.1, 75.6%, 71.1%, respectively. Good solutions

were also obtained with TT_TS, TT_TTS and TT_LWTS, which each

provided the best solutions for more than 71% of the cases. For large-scale

problems, methods [SubgraphRule_EW] again performed poorly (i.e. maximum

PBS=26.7%). Furthermore, as can be observed in Table 5.11, ∆

av, and

particularly ∆max, were much smaller for large-scale problems; i.e., ∆max was

12.5% for most methods, and the maximum was 22.2% (which for medium-

and small-scale problems was 33.3% and 50%, respectively). On the other

hand, solution time is also relatively small for large-scale problems: averaged

Tav=0.07 seconds.

 77

Chapter 5. Appproximate methods to solve the asalbp

Table 5.11: Results for solving large-scale problems using single-pass

methods (NI=45)

Method NBS PBS ∆max ∆av
Tmax Tav

1 NP_RPW 35 77.8 12.5 1.9 0.6 0.07

2 NP_T 26 57.8 12.5 2.6 0.6 0.07

3 NP_EW 12 26.7 22.2 6.7 0.6 0.07

4 NP_LW 32 71.1 12.5 2.1 0.6 0.07

5 NP_N 12 26.7 22.2 6.6 0.7 0.07

6 NP_Sk 28 62.2 12.5 2.4 0.6 0.07

7 NP_TLW 29 64.4 12.5 1.7 0.6 0.07

8 NP_IS 19 42.2 22.2 5.2 0.6 0.07

9 NP_TS 30 66.7 12.5 2.4 0.6 0.07

10 NP_TTS 30 66.7 12.5 2.2 0.6 0.07

11 NP_STS 23 51.1 12.5 2.7 0.6 0.07

12 NP_TSSk 12 26.7 22.2 6.6 0.6 0.07

13 NP_LWTS 30 66.7 12.5 2.3 0.6 0.07

14 TT_RPW 40 88.9 12.5 1.0 0.7 0.09

15 TT_T 29 64.4 12.5 2.1 0.8 0.09

16 TT_EW 12 26.7 15.0 6.0 0.8 0.09

17 TT_LW 34 75.6 12.5 1.5 0.8 0.09

18 TT_N 13 28.9 20.0 5.6 0.8 0.09

19 TT_Sk 31 68.9 12.5 1.8 0.8 0.09

20 TT_TLW 28 62.2 12.5 2.2 0.8 0.09

21 TT_IS 20 44.4 12.5 4.1 0.8 0.09

22 TT_TS 32 71.1 12.5 1.5 0.8 0.09

23 TT_TTS 33 73.3 12.5 1.4 0.8 0.09

24 TT_STS 22 48.9 12.5 2.9 0.8 0.09

25 TT_TSSk 13 28.9 20.0 5.6 0.8 0.09

26 TT_LWTS 33 73.3 12.5 1.7 0.8 0.09

27 NT_RPW 35 77.8 12.5 1.9 0.6 0.07

28 NT_T 26 57.8 12.5 2.6 0.6 0.07

29 NT_EW 12 26.7 22.2 6.7 0.6 0.07

30 NT_LW 32 71.1 12.5 2.1 0.7 0.07

31 NT_N 12 26.7 22.2 6.6 0.7 0.07

32 NT_Sk 28 62.2 12.5 2.4 0.6 0.07

33 NT_TLW 29 64.4 12.5 1.7 0.6 0.07

34 NT_IS 19 42.2 22.2 5.2 0.6 0.07

35 NT_TS 30 66.7 12.5 2.4 0.6 0.07

36 NT_TTS 30 66.7 12.5 2.2 0.6 0.07

37 NT_STS 23 51.1 12.5 2.7 0.6 0.07

38 NT_TSSk 12 26.7 22.2 6.6 0.6 0.07

39 NT_LWTS 30 66.7 12.5 2.3 0.6 0.07

∆min and Tmin = 0 in all cases

 78

Chapter 5. Approximate methods to solve the asalbp

Single-pass methods – Overall results

Overall Results - Single-pass Methods

0

10

20

30

40

50

60

70

80

90

100

RPW T EW LW N Sk TLW IS TS TTS STS TSSk LWTS

PBS NP TT NT

Figure 5.4: Overall results of PBS for single-pass methods.

Figure 5.4 summarizes the PBS for all single-pass methods based on a total of

166 small-, medium- and large-scale problems. The results are grouped by task

priority rule. This Figure reveals that the methods perform similarly for the

same rule using different criteria for subgraphs. Additionally, it can be

observed in Figure 5.4 that methods [SubgraphRule_TSS] provided the highest

percentage of best solutions. Therefore, TT is, on average, the best rule for

selecting subgraphs; being TT_TTS the best performing of all single-pass

methods. Other methods with similar good performance are

[SubgraphRule_RPW], [SubgraphRule_T], [SubgraphRule_LW], [SubgraphRule_TLW]

and [SubgraphRule_LWTS]. Furthermore, as seen in the partial results,

[SubgraphRule_EW] are the worst of all proposed methods, which were able to

find best solutions in less than 32% of the problems solved. Other families of

methods with similarly poor results include [SubgraphRule_N],

[SubgraphRule_IS] and [SubgraphRule_TSSk].

Improving the solution provided by single-pass methods

Table 5.12 shows the results obtained by applying the proposed local

optimization procedures to improve the solutions provided by single-pass

methods, considering all 166 data sets and a computing time of 60 seconds

(the base of the comparison). It includes the number and percentage of

solutions improved in k workstations (NSkstat and PSkstat, respectively) with

both LOP-1 and LOP-2 (in this case, a maximum of only one workstation

improvement was obtained; therefore, NSkstat and PSkstat=0 for k ≥2). As

can be observed in Table 5.12, the highest improvements were obtained, as

expected, for methods with low performance, namely [SubgraphRule_EW],

[SubgraphRule_N], [SubgraphRule_IS] and [SubgraphRule_TSSk].

 79

Chapter 5. Appproximate methods to solve the asalbp

Table 5.12: Improving the solutions provided by single-

pass methods (NI=166)

LOP-1 LOP-2
Method

NS1stat PS1stat NS1stat PS1stat

NP_RPW 2 1.2 2 1.2
NP_T 0 0.0 6 3.6
NP_EW 34 20.6 59 35.8
NP_LW 7 4.2 10 6.1
NP_N 32 19.4 44 26.7
NP_Sk 14 8.5 17 10.3
NP_TLW 0 0.0 4 2.4
NP_IS 25 15.2 32 19.4
NP_TS 9 5.5 12 7.3
NP_TTS 1 0.6 2 1.2
NP_STS 11 6.7 18 10.9
NP_TSSk 35 21.2 45 27.3
NP_LWTS 5 3.0 7 4.2
TT_RPW 1 0.6 2 1.2
TT_T 0 0.0 5 3.0
TT_EW 41 24.8 58 35.2
TT_LW 7 4.2 10 6.1
TT_N 38 23.0 45 27.3
TT_Sk 14 8.5 18 10.9
TT_TLW 0 0.0 2 1.2
TT_IS 23 13.9 32 19.4
TT_TS 13 7.9 8 4.8
TT_TTS 0 0.0 2 1.2
TT_STS 10 6.1 16 9.7
TT_TSSk 41 24.8 46 27.9
TT_LWTS 5 3.0 9 5.5
NT_RPW 2 1.2 2 1.2
NT_T 0 0.0 6 3.6
NT_EW 34 20.6 59 35.8
NT_LW 7 4.1 10 6.1
NT_N 32 19.4 44 26.7
NT_Sk 14 8.5 17 10.3
NT_TLW 0 0.0 4 2.4
NT_IS 25 15.2 32 19.4
NT_TS 9 5.5 12 7.3
NT_TTS 1 0.6 2 1.2
NT_STS 11 6.7 18 10.9
NT_TSSk 35 21.2 45 27.3
NT_LWTS 5 3.0 7 4.2

Table 5.12 reveals that solutions could be improved up to 24.8 and 35.8% (on

average, 8.4 and 12%) with LOP-1 and LOP-2, respectively. However, better

results were obtained when LOP-2 (i.e. an exchange movement of one task

that implies its assignment to a different workstation) was used; which

outperformed most methods applying LOP-1 (see Figure 5.5).

 80

Chapter 5. Approximate methods to solve the asalbp

0

5

10

15

20

25

30

35

40

N
P_

R
PW

N
P_

T

N
P_

EW

N
P_

LW

N
P_

N

N
P_

Sk

N
P_

TL
W

N
P_

IS

N
P_

TS

N
P_

TT
S

N
P_

ST
S

N
P_

TS
Sk

N
P_

LW
TS

TT
_R

PW

TT
_T

TT
_E

W

TT
_L

W

TT
_N

TT
_S

k

TT
_T

LW

TT
_I

S

TT
_T

S

TT
_T

TS

TT
_S

TS

TT
_T

SS
k

TT
_L

W
TS

N
T_

R
PW

N
T_

T

N
T_

EW

N
T_

LW

N
T_

N

N
T_

Sk

N
T_

TL
W

N
T_

IS

N
T_

TS

N
T_

TT
S

N
T_

ST
S

N
T_

TS
Sk

N
T_

LW
TS

LOP-1 LOP-2PS1stat

Figure 5.5: Applying local optimization procedures and single-pass methods.

On the other hand, Figure 5.5 also shows that methods employing different

local search procedures behave very similarly when the same heuristic method

is used to build the initial solution.

Applying non-weighted multi-pass methods – class a, b and c

Table 5.13 presents the results obtained by using all multi-pass methods

defined in Table 5.6 to solve small-, medium- and large-scale problems. Since

multi-pass methods generate multiple solutions within a given computing time,

the average solution time required by single-pass methods to solve the tested

instances was employed as stopping criteria: 0.1 seconds (which, for simplicity,

is the average value, 0.069, rounded up to a single decimal number). In this

way, all single-pass and multi-pass methods can be compared evenly. The

impact of considering longer computing times on the solution quality is

discussed later in this section.

Regarding small-scale problems, the best results were obtained with methods

RS_TTS and RS_TS, which found best solutions in 100% of the cases.

Furthermore, methods [SubgraphRule_RT] were able to provide best solutions

in 80% of the cases. Method RS_EW performed the worst (i.e. PBS=26.7%).

For most methods ∆max and ∆av are considerably large (i.e. maximum ∆max and

∆av is 50 and 21.8%, respectively).

Considering medium-scale problems, method RS_TTS performed the best,

providing best solutions in 87.6%. Good results were also obtained with

methods RS_TLW, RS_T and RS_RPW that were able to find the best

solutions in 80, 76.2 and 67.6% of the cases, respectively. Although ∆av is much

smaller than for small-scale ones, for the majority of problems ∆max is

considerably large: 33.3%. On the other hand, the worst performing method

was RS_EW (i.e. PBS=31.4%).

 81

Chapter 5. Appproximate methods to solve the asalbp

Table 5.13: Performance of non-weighted multi-pass methods, CT=0.1

Small (NI=16) Medium (NI=105) Large (NI=45)
Method

NBS PBS ∆max ∆av NBS PBS ∆max ∆av NBS PBS ∆max ∆av

RS_RPW 6 40.0 50.0 19.3 71 67.6 33.3 2.1 42 93.3 14.3 0.4

RS_T 13 86.7 33.3 4.4 80 76.2 25.0 2.1 34 75.6 14.3 1.5

RS_EW 4 26.7 50.0 21.8 33 31.4 33.3 7.3 15 33.3 15.0 5.1

RS_LW 6 40.0 50.0 19.3 66 62.9 33.3 2.9 38 84.4 14.3 1.1

RS_N 5 33.3 50.0 20.2 52 49.5 33.3 5.5 24 53.3 14.3 3.3

RS_Sk 6 40.0 50.0 19.3 56 53.3 33.3 4.0 34 75.6 14.3 1.4

RS_TLW 13 86.7 33.3 4.4 84 80.0 25.0 1.8 31 68.9 14.3 1.6

RS_IS 5 33.3 50.0 20.2 50 47.6 33.3 5.7 28 62.2 14.3 2.9

RS_TS 8 53.3 33.3 12.7 62 59.0 33.3 3.7 35 77.8 12.5 1.1

RS_TTS 15 100 0.0 0.0 92 87.6 33.3 1.6 37 82.2 14.3 1.0

RS_STS 8 53.3 33.3 11.8 52 49.5 33.3 4.5 25 55.6 14.3 2.1

RS_TSSk 5 33.3 50.0 20.2 52 49.5 33.3 5.4 24 53.3 14.3 3.3

RS_LWTS 8 53.3 33.3 12.7 63 60.0 33.3 3.7 38 84.4 12.5 0.9

NP_RT 12 80.0 33.3 4.4 61 58.1 33.3 4.4 14 31.1 18.5 5.0

TT_RT 12 80.0 33.3 4.4 61 58.1 33.3 4.2 17 37.8 14.3 4.3

NT_RT 12 80.0 33.3 4.4 61 58.1 33.3 4.4 14 31.1 18.5 5.0

RS_RT 15 100 0.0 0.0 59 56.2 33.3 3.7 17 37.8 14.3 4.1

∆min = 0 in all cases

For large-scale problems, methods RS_RPW performed the best, providing

the best solutions in 93.3%. Good results were also obtained with methods

RS_LW, RS_LWTS, RS_TTS, RS_TS, RS_T and RS_Sk, which found the

best solutions in 84.4, 84.4, 82.2, 77.8, 75.6 and 75.6% of the cases,

respectively. In contrast, class b methods (i.e. [RuleSubgraphs_RT]) performed

worse for large-scale problems than for small- and medium-scale problems,

which only provided the best solutions in 37.8% or less of the cases. Such

results could be expected since a larger number of tasks need to be assigned;

therefore, only few iterations of the heuristic procedure can be performed.

Furthermore, by fixing the subgraphs at the beginning of the procedure, the

best combination of subgraphs may remain unexplored. Bad results were also

obtained with methods RS_EW and RS_RT, which provided the best

solutions for only 33.3 and 37.8%, respectively. Table 5.13 also reveals that the

results imply a much smaller ∆max (i.e. 18.5% or less).

 82

Chapter 5. Approximate methods to solve the asalbp

Non-weighted multi-pass methods – Overall results

Figure 5.6 summarizes the overall results obtained for multi-pass methods

class-a: [Random_TaskRule], class-b: [SubgraphRule_Random] and class-c:

[Random_Random] used to solve all data sets (i.e. 166 ASALBP instances). As

can be observed in Figure 5.6, the highest-performing procedure was a class-a

method: RS_TTS which obtained the best solutions in 87.3% of the cases.

Similar results were obtained with methods RS_TLW, RS_T, RS_RPW, which

were able to find the best solutions in more that 72.1% of the cases. In

average, RS_EW is the worst performing method (i.e. PBS=31.5%), which

confirms the condition of EW as a very inefficient rule for selecting tasks in an

ASALBP. Other methods with poor results include RS_N, RS_IS and

RS_TSSk, which provided the best solutions in less than 50% of the cases.

Overall results - multi-pass methods using single-priority-rule values

0

10

20

30

40

50

60

70

80

90

100

R
S_

R
PW

R
S_

T

R
S_

EW

R
S_

LW

R
S_

N

R
S_

Sk

R
S_

TL
W

R
S_

IS

R
S_

TS

R
S_

TT
S

R
S_

ST
S

R
S_

TS
Sk

R
S_

LW
TS

N
P_

R
T

TT
_R

T

N
T_

R
T

R
S_

R
T

PBS

Figure 5.6: Overall results for non-weighted multi-pass methods.

Improving the solution provided by non-weighted multi-pass

methods

Table 5.14 shows the results obtained by applying the proposed local

optimization procedures to improve the solutions provided by non-weighted

multi-pass methods (class a, b and c), taking into account all available data

sets. It includes the number and percentage of solutions improved with both

LOP-1 and LOP-2. As can be observed in Table 5.14, solutions were improved

in up to 2 workstations with both methods. Highest improvements were

obtained for methods with low performance (see Figure 5.6): RS_EW, RS_N,

RS_IS, RS_STS, and RS_TSSk. Furthermore, in all cases LOP-2 outperformed

LOP-1: for the former averaged PS1st1at and PS2stat were 8 and 0.3%,

respectively; whereas for LOP-1 these values were 3.8 and 0.1%, respectively.

 83

Chapter 5. Appproximate methods to solve the asalbp

Table 5.14: Improving the solutions provided by non-weighted multi-pass methods
(NI=166)

LOP-1 LOP-2
Method

NS1stat PS1stat NS2stat PS2stat NS1stat PS1stat NS2stat PS2stat

RS_RPW 0 0 0 0 1 0.6 1 0.6
RS_T 0 0 0 0 7 4.2 0 0
RS_EW 26 15.8 2 1.2 43 26.1 4 2.4
RS_LW 4 2.4 0 0 5 3.0 0 0
RS_N 11 6.7 0 0 22 13.3 1 0.6
RS_Sk 9 5.5 0 0 11 6.7 0 0
RS_TLW 0 0 0 0 5 3.0 0 0
RS_IS 11 6.7 0 0 22 13.3 0 0
RS_TS 5 3.0 0 0 7 4.2 0 0
RS_TTS 0 0 0 0 0 0.0 1 0.6
RS_STS 1 0.6 0 0 14 8.5 0 0
RS_TSSk 11 6.7 0 0 22 13.3 1 0.6
RS_LWTS 4 2.4 0 0 6 3.6 0 0
NP_RT 5 3.0 0 0 15 9.1 0 0
TT_RT 10 6.1 0 0 14 8.5 0 0
NT_RT 5 3.0 0 0 15 9.1 0 0
RS_RT 4 2.4 0 0 16 9.7 1 0.6

Applying weighted multi-pass methods – class d

Table 5.15 presents the results obtained by all weighted multi-pass methods

(defined in Table 5.7) to solve small-, medium- and large-scale problems.

Small-scale problems: 23% of the weighted multi-pass methods were able to

find the best solutions in 100% of the problems solved: W-

[SubgraphRule_RPW], W-[SubgraphRule_TLW], W-[SubgraphRule_TTS], W-

[SubgraphRule_LWTS], W-NP_Sk, W-TT_STS and W-NT_STS. In general,

most methods had a very high performance, producing, on average, 91.1% of

best solutions. The worth method of all was W-[NP_N] which found best

solutions in 53.3% of the cases. For most methods ∆max and ∆av are

considerably low, which are much smaller values comparing with other

methods solving small-scale problems.

Medium-scale problems: best performing methods for medium-scale problem

are W-[SubgraphRule_T], which provided the best solutions in 81.9 to 84.8%

of the cases. Good results were also obtained with methods W-

[SubgraphRule_RPW], W-[SubgraphRule_TS], W-[SubgraphRule_TTS], which

were able to find the best solutions for more that 73.3% of the cases. Methods

W-[SubgraphRule_TSSk] and W-[SubgraphRule_LWTS] performed the worst:

maximum PBS of 47.6%. For medium-scale problems ∆ave is larger than for

small-scale ones; furthermore, for most problems ∆max is considerably large:

33.3%.

 84

Chapter 5. Approximate methods to solve the asalbp

Large-scale problems: best performing methods for large-scale problems are

W-[SubgraphRule_TS] which provided the best solutions from 88.9 to 93.3%

of the cases. Similar good results were obtained by applying W-

[SubgraphRule_RPW] methods, which generated the best solutions for more

than 75.6% of the cases. On average weighted-multi-pass methods worked on

large-scale problems similarly to on medium-scale ones; however, for the

former the methods implied a much smaller ∆max (maximum=11.8% and

averaged=8%). The worst performing methods for large-scale problems were

W-[SubgraphRule_LWTS], with PBS equal to 44.4%.

Table 5.15: Results of weighted multi-pass methods, CT=0.1

SMALL (NI=16) MEDIUM (NI=105) LARGE (NI=45)
Method

NBS PBS ∆max ∆av NBS PBS ∆max ∆av NBS PBS ∆max ∆av

W-NP_RPW 15 100 0.0 0.0 80 76.2 25.0 1.6 34 75.6 6.7 0.8
W-NP_T 14 93.3 12.5 0.8 86 81.9 33.3 1.8 31 68.9 8.0 1.2
W-NP_EW 13 86.7 12.5 1.7 58 55.2 33.3 4.1 30 66.7 8.0 1.6
W-NP_LW 14 93.3 12.5 0.8 61 58.1 33.3 3.8 25 55.6 8.0 2.0
W-NP_N 8 53.3 33.3 11.7 64 61.0 33.3 3.7 24 53.3 8.0 2.0
W-NP_Sk 15 100 0.0 0.0 61 58.1 33.3 3.9 25 55.6 8.0 2.0
W-NP_TLW 15 100 0.0 0.0 58 55.2 33.3 4.1 28 62.2 8.0 1.6
W-NP_IS 12 80.0 33.3 4.9 70 66.7 33.3 2.2 26 57.8 8.0 1.7
W-NP_TS 13 86.7 20.0 2.7 80 76.2 33.3 1.7 42 93.3 4.8 0.2
W-NP_TTS 15 100 0.0 0.0 77 73.3 33.3 2.6 27 60.0 8.0 1.6
W-NP_STS 14 93.3 12.5 0.8 64 61.0 33.3 3.7 24 53.3 8.0 1.9
W-NP_TSSk 13 86.7 20.0 2.7 50 47.6 33.3 4.7 24 53.3 8.0 2.1
W-NP_LWTS 15 100 0.0 0.0 49 46.7 33.3 4.8 20 44.4 11.8 2.4
W-TT_RPW 15 100 0.0 0.0 79 75.2 33.3 2.0 35 77.8 4.8 0.7
W-TT_T 14 93.3 20.0 1.3 88 83.8 33.3 1.7 30 66.7 8.0 1.4
W-TT_EW 12 80.0 20.0 3.0 58 55.2 33.3 4.1 30 66.7 8.0 1.6
W-TT_LW 14 93.3 20.0 1.3 61 58.1 33.3 3.8 25 55.6 8.0 2.1
W-TT_N 11 73.3 33.3 6.4 65 61.9 33.3 3.6 23 51.1 8.0 2.0
W-TT_Sk 13 86.7 20.0 2.2 61 58.1 33.3 3.9 25 55.6 8.0 2.1
W-TT_TLW 15 100 0.0 0.0 59 56.2 33.3 4.0 28 62.2 8.0 1.6
W-TT_IS 13 86.7 20.0 2.7 71 67.6 11.1 2.0 27 60.0 8.0 1.6
W-TT_TS 13 86.7 20.0 2.7 78 74.3 14.3 1.5 40 88.9 7.7 0.4
W-TT_TTS 15 100 0.0 0.0 78 74.3 33.3 2.5 27 60.0 8.0 1.6
W-TT_STS 15 100 0.0 0.0 66 62.9 33.3 3.6 24 53.3 8.0 2.0
W-TT_TSSk 13 86.7 20.0 2.7 50 47.6 33.3 4.7 24 53.3 8.0 2.3
W-TT_LWTS 15 100 0.0 0.0 50 47.6 33.3 4.7 20 44.4 11.8 2.6
W-NT_RPW 15 100 0.0 0.0 80 76.2 14.3 1.4 35 77.8 7.7 0.7
W-NT_T 14 93.3 20.0 1.3 89 84.8 33.3 1.9 30 66.7 8.0 1.4
W-NT_EW 12 80.0 20.0 3.0 59 56.2 33.3 4.0 29 64.4 8.0 1.7
W-NT_LW 14 93.3 20.0 1.3 61 58.1 33.3 3.9 24 53.3 8.0 2.3
W-NT_N 11 73.3 33.3 6.4 64 61.0 33.3 3.6 23 51.1 8.0 2.0
W-NT_Sk 14 93.3 20.0 1.3 61 58.1 33.3 3.9 24 53.3 8.0 2.3
W-NT_TLW 15 100 0.0 0.0 59 56.2 33.3 4.0 28 62.2 8.0 1.6
W-NT_IS 13 86.7 20.0 2.7 71 67.6 11.1 2.0 27 60.0 8.0 1.6
W-NT_TS 13 86.7 20.0 2.7 79 75.2 14.3 1.4 40 88.9 7.7 0.4
W-NT_TTS 15 100 0.0 0.0 77 73.3 33.3 2.5 27 60.0 8.0 1.6
W-NT_STS 15 100 0.0 0.0 66 62.9 33.3 3.7 24 53.3 8.0 2.0
W-NT_TSSk 13 86.7 20.0 2.7 50 47.6 33.3 4.7 25 55.6 8.0 2.1
W-NT_LWTS 15 100 0.0 0.0 49 46.7 33.3 4.7 20 44.4 11.8 2.6

 85

Chapter 5. Appproximate methods to solve the asalbp

Weighted Multi-pass methods – Overall results

Figure 5.7 summarizes the overall results (averaged PBS) obtained for multi-

pass methods class-d, considering all data sets (166 tested problems). As can

be observed in Figure 5.7, best performing methods were W-

[SubgraphRule_TS], in particular W-NP_TS, which provided best solutions in

more than 80% of the problems solved. Methods W-[SubgraphRule_RPW], W-

[SubgraphRule_T] and W-[SubgraphRule_TTS] also performed well, all of

which were able to find the best solutions in more than 70% of the cases.

Overall Results - Weighted Multi-pass Methods

0

10

20

30

40

50

60

70

80

90

W-RPW W-T W-EW W-LW W-N W-Sk W-TLW W-IS W-TS W-TTS W-STS W-TSSk W-LWTS

PBS W-NP W-TT W-NT

Figure 5.7: Overall results for weighted multi-pass methods

Improving the solution provided by weighted multi-pass methods

Table 5.16 presents the results obtained by applying the proposed local

optimization procedures to solve all data sets, being the solutions generated by

applying multi-pass methods that used weighted values of the priority rules to

select both subgraphs and tasks. As can be observed in Table 5.16, solutions

provided by all methods were improved in one workstation by both local

optimization procedures: minimum improvement obtained with LOP-1 and

LOP-2 is 2.4 and 3.6%, respectively. Figure 5.8 shows that LOP-2

outperformed in all cases LP0-1: average and maximum PS1stat are 10.4 and

20%, respectively; whereas for LOP-1 these values are 6.1 and 10.9%,

respectively.

 86

Chapter 5. Approximate methods to solve the asalbp

Table 5.16: Improving the solutions provided by weighted
multi-pass methods (NI=166)

LOP-1 LOP-2
Method

NS1stat PS1stat NS1stat PS1stat

W-NP_RPW 6 3.6 7 4.2

W-NP_T 4 2.4 11 6.7

W-NP_EW 14 8.5 21 12.7

W-NP_LW 12 7.3 19 11.5

W-NP_N 10 6.1 17 10.3

W-NP_Sk 12 7.3 17 10.3

W-NP_TLW 10 6.1 18 10.9

W-NP_IS 7 4.2 15 9.1

W-NP_TS 5 3.0 7 4.2

W-NP_TTS 6 3.6 11 6.7

W-NP_STS 8 4.8 15 9.1

W-NP_TSSk 14 8.5 25 15.2

W-NP_LWTS 18 10.9 30 18.2

W-TT_RPW 11 6.7 13 7.9

W-TT_T 5 3.0 10 6.1

W-TT_EW 15 9.1 21 12.7

W-TT_LW 11 6.7 18 10.9

W-TT_N 13 7.9 21 12.7

W-TT_Sk 11 6.7 18 10.9

W-TT_TLW 9 5.5 18 10.9

W-TT_IS 6 3.6 13 7.9

W-TT_TS 4 2.4 9 5.5

W-TT_TTS 8 4.8 13 7.9

W-TT_STS 8 4.8 17 10.3

W-TT_TSSk 17 10.3 27 16.4

W-TT_LWTS 16 9.7 32 19.4

W-NT_RPW 10 6.1 10 6.1

W-NT_T 4 2.4 10 6.1

W-NT_EW 16 9.7 21 12.7

W-NT_LW 12 7.3 18 10.9

W-NT_N 12 7.3 20 12.1

W-NT_Sk 11 6.7 17 10.3

W-NT_TLW 9 5.5 18 10.9

W-NT_IS 6 3.6 13 7.9

W-NT_TS 4 2.4 9 5.5

W-NT_TTS 8 4.8 13 7.9

W-NT_STS 8 4.8 17 10.3

W-NT_TSSk 16 9.7 27 16.4

W-NT_LWTS 17 10.3 33 20.0

 87

Chapter 5. Appproximate methods to solve the asalbp

0

3

6

9

12

15

18

21

W
-N

P_
R

PW
W

-N
P_

T
W

-N
P_

EW
W

-N
P_

LW
W

-N
P_

N
W

-N
P_

Sk
W

-N
P_

TL
W

W
-N

P_
IS

W
-N

P_
TS

W
-N

P_
TT

S
W

-N
P_

ST
S

W
-N

P_
TS

Sk
W

-N
P_

LW
TS

W
-T

T_
R

PW
W

-T
T_

T
W

-T
T

_E
W

W
-T

T
_L

W
W

-T
T

_N
W

-T
T

_S
k

W
-T

T
_T

LW
W

-T
T

_I
S

W
-T

T
_T

S
W

-T
T

_T
TS

W
-T

T
_S

TS
W

-T
T

_T
SS

k
W

-T
T

_L
W

TS
W

-N
T_

R
PW

W
-N

T
_T

W
-N

T
_E

W
W

-N
T

_L
W

W
-N

T
_N

W
-N

T
_S

k
W

-N
T

_T
LW

W
-N

T_
IS

W
-N

T
_T

S
W

-N
T

_T
TS

W
-N

T
_S

TS
W

-N
T

_T
SS

k
W

-N
T

_L
W

TS

PS1stat LOP-1 LOP-2

Figure 5.8: Applying local optimization procedures and weighted multi-pass methods

Figure 5.8 that presents the behaviour of applying both optimization

procedures and weighted multi-pass methods, shows that methods employing

different local search procedures behave very similarly when the same heuristic

method is used to build the initial solution (similar results are obtained when

considering single-pass methods - as shown in Figure 5.5.).

Joint evaluation of the quality of the obtained solutions

To evaluate the quality of the obtained solutions, and therefore, the efficiency

of all heuristic methods, a set of 44 test-ASALBP instances, for which the

optimal solution is known, has been considered. This set includes an

adaptation of the problems of Bowman, Mansor, Mitchell, Buxey, Gunther,

Kilbrid, Hahn and Tonge, with 10, 11, 21, 29, 41, 45, 56 and 70 tasks,

respectively; from 1 to 5 different cycle time values and 5, 8 and 11 subgraphs

were considered. The optimal solution of each tested problem instance is

compared with the solution obtained with each of the heuristic methods. In

this way, the percentage of obtained solutions equal to the optimal solution

(i.e. POS) and the average deviation from the optimum are computed.

Single-pass methods

Table 5.17 presents the analysis of the results for single-pass methods. It

includes the POS, the percentage of solutions (%S) with 1 and 2 workstations

deviation from the optimum; and Opt∆min, Opt∆ave and Opt∆max, which are

minimum, average and maximum deviation from the optimum, respectively.

 88

Chapter 5. Approximate methods to solve the asalbp

Table 5.17: Solution quality evaluation for single-pass methods (NI=44)

%S with difference
from optimum Deviation from optimum

Method POS
1 station 2 stations Opt∆max Opt∆ave

NP_RPW 47.7 52.3 0 50.0 11.6
NP_T 50.0 45.5 4.5 33.3 9.9
NP_EW 29.5 63.6 6.8 50.0 14.6
NP_LW 47.7 52.3 0 50.0 11.6
NP_N 43.2 54.5 2.3 50.0 12.2
NP_Sk 45.5 54.5 0 50.0 12.2
NP_TLW 50.0 45.5 4.5 33.3 9.8
NP_IS 40.9 56.8 2.3 50.0 13.0
NP_TS 50.0 50.0 0 33.3 9.9
NP_TTS 59.1 40.9 0 33.3 7.1
NP_STS 47.7 50.0 2.3 33.3 9.9
NP_TSSk 43.2 54.5 2.3 50.0 12.2
NP_LWTS 50.0 50.0 0 33.3 9.9
TT_RPW 52.3 47.7 0 50.0 10.8
TT_T 52.3 47.7 0 33.3 9.1
TT_EW 29.5 68.2 2.3 50.0 14.1
TT_LW 52.3 47.7 0 50.0 10.8
TT_N 47.7 50.0 2.3 50.0 11.4
TT_Sk 47.7 52.3 0 50.0 12.0
TT_TLW 52.3 47.7 0 33.3 9.0
TT_IS 43.2 56.8 0 50.0 12.4
TT_TS 52.3 47.7 0 33.3 9.7
TT_TTS 68.2 31.8 0 33.3 5.2
TT_STS 50.0 47.7 2.3 33.3 9.6
TT_TSSk 47.7 50.0 2.3 50.0 11.4
TT_LWTS 52.3 47.7 0 33.3 9.7
NT_RPW 47.7 52.3 0 50.0 11.6
NT_T 50.0 45.5 4.5 33.3 9.9
NT_EW 29.5 63.6 6.8 50.0 14.6
NT_LW 47.7 52.3 0 50.0 11.6
NT_N 43.2 54.5 2.3 50.0 12.2
NT_Sk 45.5 54.5 0 50.0 12.2
NT_TLW 50.0 45.5 4.5 33.3 9.8
NT_IS 40.9 56.8 2.3 50.0 13.0
NT_TS 50.0 50.0 0 33.3 9.9
NT_TTS 63.6 36.4 0 33.3 6.0
NT_STS 47.7 50.0 2.3 33.3 9.9
NT_TSSk 43.2 54.5 2.3 50.0 12.2
NT_LWTS 50.0 50.0 0 33.3 9.9

Opt∆min = 0 in all cases

As can be seen in Table 5.17, single-pass methods with larger POS were

[SubgraphRule_TT], in particular TT_TTS which was able to find the optimal

solution for 68.2% of the instances solved (this method was the one that

performed the best in the computing experiment involving the 166 test

instances –see Figure 5.4). Furthermore, method TT_TTS implied a

minimum, average, and maximum deviation from the optimum of 0, 5.2 and

33%, respectively. These results indicate that good solutions can be expected

by applying method TT_TTS. On the other hand, single-pass methods

 89

Chapter 5. Appproximate methods to solve the asalbp

generated solutions with one and, for 46% of the methods, two workstations

deviation from the optimal solution. Although, average deviation from the

optimum is relatively low, for most methods, maximum deviation is high. The

analysis of the results also revealed that methods with the lowest performance

are [SubgraphRule_EW], which were able to obtain the optimal solution for

only 29.5% of the problems solved (similar result was obtained when working

with all data sets, i.e., 166 problem instances).

Non-weighted multi-pass methods

Table 5.18 presents the analysis of the results for non-weighted multi-pass

methods (i.e. methods based on single priority rule values and random choice).

The best performance was recorded for method RS_TTS (as previously seen in

the analysis involving the 166 problem instances), which was able to find the

optimal solution for 75% of the instances solved, yielding comparatively small

Opt∆ave and Opt∆max: 3.7 and 16.7%, respectively. On average, multi-pass

methods were able to find 56.3% of the tested problems, most of which implied

a relatively high Opt∆max. Multi-pass methods generated solutions with a

maximum of two workstations deviation from the optimal solution; however,

most methods implied a deviation of only one workstation. The worst

performance was recorded for method RS_EW (POS=34.1%).

Table 5.18: Solution quality evaluation for non-weighted multi-pass methods

(NI=44, CT=0.1)

%S with difference
from optimum

Deviation from optimum
Method POS

1 station 2 stations Opt∆max Opt∆ave

RS_RPW 59.1 1.0 0 50.0 9.9

RS_T 63.6 36.4 0 33.3 6.9

RS_EW 34.1 63.6 2.3 50.0 12.4

RS_LW 59.1 40.9 0 50.0 9.9

RS_N 47.7 50.0 2.3 50.0 11.4

RS_Sk 54.5 45.5 0 50.0 11.0

RS_TLW 63.6 36.4 0 33.3 6.9

RS_IS 43.2 56.8 0 50.0 12.4

RS_TS 52.3 47.7 0 33.3 9.7

RS_TTS 75.0 25.0 0 16.7 3.7

RS_STS 50.0 47.7 2.3 33.3 9.6

RS_TSSk 47.7 50.0 2.3 50.0 11.4

RS_LWTS 52.3 47.7 0 33.3 9.7

NP_RT 61.4 38.6 0 33.3 6.5

TT_RT 63.6 36.4 0 33.3 6.5

NT_RT 61.4 38.6 0 33.3 6.8

RS_RT 68.2 31.8 0 25.0 5.4

Opt∆min = 0 in all cases

 90

Chapter 5. Approximate methods to solve the asalbp

Weighted multi-pass methods

Table 5.19 presents the analysis of the results for methods using probability

distributions based on weighted values of the priority rules (methods class d).

As can be observed in Table 5.19, the best results were obtained with methods

W-TT_LWTS, W-TT_RPW and W-NT_LWTS, which were able to find the

optimal solution for 84.1, 81.8 and 81.8% of the problems solved, respectively.

Furthermore, these methods yielded an average and maximum deviation from

the optimum of up to 2.6 and 17%, respectively. On average, all methods were

able to find the optimal solution in 70.7% of the problems solved. It is

unexpected that methods [SubgraphRule_LWTS] be that effective since when

considering the 166 test instances they performed the worst.

Table 5.19: Solution quality evaluation for weighted multi-pass
methods (NI=44, CT=0.1)

Deviation from optimum
Method POS

%S 1 station
diff. from opt. Opt∆max Opt∆ave

W-NP_RPW 77.3 22.7 17 3.3
W-NP_T 68.2 31.8 25 5.3
W-NP_EW 61.4 38.6 25 6.1
W-NP_LW 65.9 34.1 25 5.7
W-NP_N 52.3 47.7 33 8.9
W-NP_Sk 68.2 31.8 25 5.4
W-NP_TLW 72.7 27.3 25 4.2
W-NP_IS 65.9 34.1 33 5.5
W-NP_TS 79.5 20.5 20 3.1
W-NP_TTS 75.0 25.0 17 3.7
W-NP_STS 65.9 34.1 25 5.3
W-NP_TSSk 79.5 20.5 20 3.2
W-NP_LWTS 77.3 22.7 17 3.3
W-TT_RPW 81.8 18.2 17 2.6
W-TT_˙T 72.7 27.3 25 4.6
W-TT_EW 63.6 36.4 25 5.8
W-TT_LW 68.2 31.8 25 5.3
W-TT_N 59.1 40.9 33 7.6
W-TT_Sk 63.6 36.4 25 6.1
W-TT_TLW 75.0 25.0 25 3.9
W-TT_IS 68.2 31.8 25 5.3
W-TT_TS 70.5 29.5 25 4.8
W-TT_TTS 75.0 25.0 17 3.7
W-TT_STS 72.7 27.3 25 4.2
W-TT_TSSk 72.7 27.3 20 4.2
W-TT_LWTS 84.1 15.9 17 2.3
W-NT_RPW 79.5 20.5 17 3.0
W-NT_T 70.5 29.5 25 4.9
W-NT_EW 61.4 38.6 25 6.4
W-NT_LW 65.9 34.1 25 5.8
W-NT_N 63.6 36.4 33 6.4
W-NT_Sk 65.9 34.1 25 5.8
W-NT_TLW 75.0 25.0 25 3.9
W-NT_IS 65.9 34.1 25 5.9
W-NT_TS 72.7 27.3 25 4.4
W-NT_TTS 75.0 25.0 17 3.7
W-NT_STS 70.5 29.5 25 4.8
W-NT_TSSk 75.0 25.0 20 3.9
W-NT_LWTS 81.8 18.2 17 2.6

Opt∆min = 0 in all cases

 91

Chapter 5. Appproximate methods to solve the asalbp

The worth of all results was obtained with method W-NP_N which was able to

find the optimal solution for 52.3% of the problems solved. A noteworthy

result is that all methods generated solutions with at maximum one

workstation deviation from the optimum. These results indicate that good

solutions can be expected by applying this type of heuristic method.

Nevertheless, if a single computing time is used, all heuristic procedures can be

evenly compared, since they can be evaluated based on the same reference

value: the optimal solution. In this way, the best method can be identified.

Effects of longer computing times on solution quality

To study the effects of longer computing times on solution quality, all data

sets were solved by using multi-pass method RS_TTS (the non-weighted

multi-pass method with highest percentage of best solutions: PBS=87.3%) and

computing times of 0.1, 1, 5, 30 60, 180, 300 and 600 seconds. The results

obtained are presented in Table 5.20.

Table 5.20: Results for RS_TTS considering different CT values (NI=166)

Computing time in seconds
Measure

0.1 1 5 30 60 180 300 600

NBS 144 145 145 146 148 150 151 152
PBS 87.3 87.3 87.9 88.5 89.7 90.9 91.5 92.1

As shown in Table 5.20, for 0.1 seconds, the heuristic was able to find the best

solutions for 87.3% of the cases solved; the same result was obtained for 1

second. For 5 seconds (a 5000% bigger computation time) the percentage

increased to 87.9%, which represents only 0.6% of improvement. Furthermore,

for 30, 60, 180 and 600 seconds an improvement of 1.2, 2.4, 3.6, 4.2, and 4.8%,

respectively, was achieved over the solution provided with 0.1 second. It is

noteworthy, that the percentage of the improvement is not proportional to the

computing time increments; since, for example, only a 4.8% of improvement is

achieved over the solution obtained with a 600000% smaller computing time.

However, as illustrated in Figure 5.9, the results provided by multi-pass

methods can be expected to improve with much longer computing times.

PBS

84
85
86
87
88

89
90
91
92
93

0.1 1 5 30 60 180 300 600 sec

Figure 5.9: Multi-pass methods: percentage of best solutions for
different CT

 92

Chapter 5. Approximate methods to solve the asalbp

Comparison of the performance of simple- and multi-pass methods

Figure 5.10 shows the percentage of best solutions generated by all proposed

methods. The comparison is carried out considering again three categories: 1)

single-pass, 2) non-weighted multi-pass and 3) weighted multi-pass methods.

As can be seen in Figure 5.10, the best result was obtained with a class-d

multi-pass method: W-TT_RPW, which found the best solutions in 84.8% of

the cases. In general, weighted multi-pass methods performed better than all

other methods, the majority of which provided the best solutions for at

minimum 60% of the tested problems. On the other hand, single-pass methods

performed the worst, for most of which the PBS only yielded less than 50%.

Comparison of all proposed Heuristic Methods

0

10

20

30

40

50

60

70

80

90
PBS

 Single-pass Non-weighted multi-pass Weighted multi-pass

Figure 5.10: Overall performance of single-pass and multi-pass methods

Figure 5.11 shows, per category, the percentage of the best solutions (PBS),

the average deviation (Ave_dev), the percentage of solutions equal to the

optimal solution (POS) and maximum average deviation from the optimal

solution (Dev_opt). Figure 5.11 corroborates the low performance of single-pass

methods, which obtained the lowest PBS (52.7%) and POS (68.2%) and the

highest deviations (Ave˙dev=8.5%, Dev_opt=14.6%). Furthermore, weighted

multi-pass methods obtained the highest PBS (84.8%) and the highest POS

(84.1%). Furthermore, the solutions provided by weighted multi-pass methods

implied the lowest deviations (Ave˙dev=2.4%, Dev_opt=8.9%). Therefore, it

can be stated that weighted multi-pass methods performed the best.
Performance and Quality Comparison

0
10
20
30
40
50
60
70
80
90

PBS Ave_dev POS Dev_opt

Single-pass Non-weighted multi-pass Weighted multi-pass

Figure 5.11: Method performance and solution quality comparison

 93

Chapter 6

 Conclusions,
Contributions and Future

Research Proposals

This doctoral thesis addressed a new generalized assembly line balancing

problem with practical relevance that has been defined and entitled here

ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem. The

core feature of such a problem is that it considers alternative variants for

different parts of an assembly or manufacturing process. Each variant is

represented by a precedence subgraph that defines the tasks to be performed,

their precedence relations and their corresponding processing times.

Furthermore, mutually exclusive assembly processes, involving different sets of

assembly tasks, are also considered. To solve the ASALBP efficiently, two

problems have to be solved simultaneously: (1) the decision problem to select

the assembly alternative and (2) the balancing problem that assigns the tasks

to the workstations. This problem implies a high level of difficulty since for

the simple case it is verified the NP-hard condition.

6.1 Main Results

Many real-life assembly line balancing problems involve assembly variants.

Therefore, there is an increasing interest of addressing problems that consider

assembly alternatives. The comprehensive analysis of the state-of-the-art on

assembly line balancing problems showed that most studies deal with the

simple case (SALBP) and problems involving assembly variants are not often

 Chapter 6. Conclusions, Contributions and Future Research Proposals

considered in the literature. When processing alternatives exist they are

mainly related to the problem of equipment selection. On the other hand,

strategies have been proposed aiming at integrating the sequence planning into

the balancing process. However, due to its complexity, a two-stage approach is

usually considered to select, according to a given criterion, one of the available

alternatives; and then the line is balanced considering that choice. In this work

it was illustrated how, by following such an approach, a problem involving

assembly alternatives can be sub-optimized since the effect of the unselected

variants remains unexplored. Furthermore, the best solution can be discarded

due to it does not match the decision criterion considered.

The literature review also revealed that the Alternative Subgraphs Assembly

Line Balancing Problem, which considers the variants that different parts of

an assembly process may admit, has not been addressed before. Only the

works of Pinto et al. (1983) and, much more recently, Scholl et al. (2007)

considered a similar problem involving processing alternatives. In the former

case, the alternatives are defined by the assignment of a given equipment type

to the workstations; furthermore, they mentioned the possibility of having

variable precedence requirements but they did not considered such a case. The

latter work considered a special case of the ASALBP in which the alternatives

are represented by time increments that are added to the processing times,

which are dependent on the task processing sequence. However, none of the

cases treated the problem in which alternative sets of precedence constraints

are allowed but instead they considered them fixed. Thus, a new GALB

Problem has been defined.

Due to the impossibility to depict all available assembly variants in a standard

precedence graph, in this work the S-Graph has been proposed as a

diagramming tool to represent in a unique graph all available alternatives.

In order to formalize the new ASALBP, two mathematical programming

models were proposed in this work. In a preliminary model (M1) assembly

alternatives were regarded as global routes, which were represented by a

complete precedence graph and determined by the combination of the

available subgraphs. By analysing this model, it was considered that its

dimension could be reduced by considering each individual subgraph as a

partial route, involving only a reduce set of the assembly tasks. Therefore, an

enhanced model (M2) was developed considering partial routes.

 95

Chapter 6. Conclusions, Contributions and Future Research Proposals

Different test problems were generated considering small-, medium- and large-

scale benchmark SALBP. ASALBP test instances, which can themselves be

considered benchmarks, were generated by adapting the original problems in

such a way that assembly alternatives were involved. The computational

experiment carried out revealed that the number of variables and constraints

were significantly reduced with M2, which resulted in a considerable reduction

on the computation time comparing with M1. Furthermore, in all cases M2

outperformed M1, yielding in 33% of the cases a 100% of improvement. The

analysis of the results also indicates that mathematical programming models

can be applied to optimally solve only small- and medium-scale ASALBP

instances; i.e., from 10 to around 30 assembly tasks and from 5 to 11

subgraphs.

This new combinatorial optimization problem thus required of the design and

development of approximate methods to solve industrial-scale problems.

Several heuristic methods to solve the ASALBP were proposed in this thesis.

As discussed earlier, constructive methods based on priority rules have been

successfully applied to assembly line balancing problems; therefore, this type of

methods were considered here. Due to it has been proven that workstation-

oriented methods perform better than task-oriented ones, all proposed

procedures followed such an approach; therefore, a new workstation is open

only once the current workstation is fully loaded.

Several criteria were considered to select the assembly subgraphs. In order to

be able to evaluate the impact of a priori selection of a given assembly

alternative on the solution of the problem, three single-priority rules were

considered. Random search mechanisms were also used to allow a more flexible

exploration of the solution space. On the other hand, decision criteria for

selecting the tasks were based on an adaptation to the ASALBP of 13 of the

most well-known priority rules used to solve SALBP, and on random choice.

Furthermore, both subgraphs and tasks were selected by using probability

distributions based on weighted, instead of nominal, values of the priority

rules. The combination of all decision criteria gave rise to a total of 95

heuristic procedures, divided into single-pass and multi-pass methods (the

latter further divided into non-weighted and weighted multi-pass methods),

being able to provide a single solution and multiples solutions, respectively.

The performance of all methods was evaluated via a computational experiment

based on the number of best solutions generated, involving 48472 experiments.

Furthermore, the optimal solutions found with the mathematical models were

used to evaluate the quality of the provided solutions; i.e., the deviation from

the optimal solution.

 96

 Chapter 6. Conclusions, Contributions and Future Research Proposals

The analysis of the results showed that single-pass and multi-pass methods

using EW (Minimum Earliest Workstation), N (Minimum Task Number) and

IS (Maximum Number of Immediate Successors) as decision rules for tasks

proved to be inefficient at solving ASALB problems (i.e. maximum PBS is less

than 50.5%); being TTS (Maximum Task Time plus Total number of

Successors) one of the most efficient priority rules. Furthermore, the results

obtained revealed that multi-pass methods outperformed single-pass ones;

particularly, weighted multi-pass methods were able to find best solutions in

84.8% of the cases. When subgraphs are selected randomly, the solution space

is explored more exhaustively; therefore, there is a better chance of selecting

the subgraphs that provide the best solution.

Additionally, the comparison of the obtained solutions with the found optimal

solution corroborated the results obtained when considering the percentage of

best solution (PBS) as the evaluation measure. Multi-pass methods using

probability distributions based on weighted values of the priority rules

performed the best having the highest POS (i.e. 84.1%) and the lowest

deviations from both the best solution and the optimal solution (2.4 and 8.9%,

respectively). Therefore, the application of weighted multi-pass methods can

be recommended.

In order to improve the solution of the proposed heuristic methods, two local

optimization procedures were also proposed here, which are based on an

adaptation of two classical neighbourhood search strategies: LOP-1 that

considers the exchange of the positions in the solution sequence of a pair of

tasks, i and k; and LOP-2 that is based on the movement of one task i to the

position of another task k, which also implies the movement of task k and all

tasks in between tasks i and k. A computational experiment designed to

evaluate the performance of both procedures revealed that improved solutions

could be obtained in which up to two workstations less were required, which

indicates that a financial benefit can be obtained by applying the proposed

local optimization methods. On the other hand, the results also showed that in

all cases LOP-2 outperformed LOP-1, yielding improved solutions in one and

two workstations in 35.8 and 26.1%, respectively. Thus, all proposed methods

that used LOP-2 could be applied to solve an ASALBP to select the best

overall solution.

On the other hand, it was shown that the results provided by multi-pass

methods can be expected to improve with much longer computing times.

Therefore, if there are no time constraints, multi-pass heuristics could be

applied with much greater available computing time, considering for example

3600 or 18000 seconds, which are realistic time-windows considering industrial-

size problems.

 97

Chapter 6. Conclusions, Contributions and Future Research Proposals

6.2 Proposals for Future Research Work

The Alternative Subgraphs Assembly Line Balancing Problem introduced and

defined in this thesis is a new GALBP with practical relevance. Therefore,

future research work will mainly involve exploring other methods to solve

efficiently this new problem. Furthermore, and aiming at closing the gap

between research works and real applications, other relevant characteristics

can be included to the ASALB Problem.

Exact approaches

Branch and bound procedures has been successfully applied to solve hard

optimization problems. Therefore, this strategy can be considered to optimally

solve the ASALBP. Another optimization approach that can be explored refers

to disjunctive programming models, which have been used to solve problems

involving alternative constraints.

Metaheuristic procedures

The growing interest on using Evolutionary Algorithms (e.g. Genetic

Algorithms) to solve optimization problems in industry makes the use of such

procedures an attractive approach, which, in addition, has been successfully

applied to complex assembly line balancing problems.

Additional characteristics

In order to increase the practicality of the problem, its definition can be

extended by including new features such as, for example, stochastic processing

times.

6.3 Contributions

The following written contributions are part of the research work undertaken

in this doctoral thesis.

1. Capacho, L. and Pastor, M. (2004). Generación de secuencias de montaje y
equilibrado de líneas, Technical Report IOC-DT-P-2004-04, Technical
University of Catalonia, Barcelona, Spain.

2. Capacho, L. and Pastor, R. (2005). ASALBP: the Alternative Subgraphs

Assembly Line Balancing Problem. Technical Report: IOC-DT-P-2005-5.

UPC. Barcelona, Spain. International Journal of Production Research (to

appear).

3. Capacho, L. and Pastor, R. (2005). Modelo de Programación Matemática
del Problema de Equilibrado de Líneas con Subgrafos de Montaje
Alternativos. IX Congreso de Ingeniería de Organización Gijón, 8 y 9 de

Septiembre de 2005.

4. Capacho, L., Guschinskaya, O., Dolgui, A., Pastor, R. (2006).
Approximation Methods to Solve the Alternative Subgraphs Assembly

 98

 Chapter 6. Conclusions, Contributions and Future Research Proposals

Line Balancing Problem, Research Report, G2I-EMSE 2006-500-003, Ecole
des Mines, SE, France, April 2006.

5. Capacho, L., Guschinskaya, O., Dolgui, A., Pastor, R. (2006). A

Comprehensive Comparative Analysis of Heuristic Methods for the

Alternative Subgraphs Assembly Line Balancing Problem, Research Report,

G2I-EMSE 2006-500-005, Ecole des Mines de Saint Etienne, France, 2006.

6. Capacho, L. and Pastor, R. (2006). The ASALB Problem with Processing

Alternatives Involving Different Tasks: Definition, Formalization and

Resolution, in The 2006 International Conference on Computational Science

and its Applications, ICCSA 2006, Lecture Notes in Computer Science, Eds.

M. Gavrilova et al.: Springer-Verlag, Berlin, May 2006, 3982, pp. 554–563.

7. Capacho, L. and Pastor, R. (2006). Equilibrado de Líneas con Alternativas de
Montaje. SEIO 2006: Contribuciones a la Estadística y a la Investigación
Operativa, Tenerife, 15-19 de Mayo de 2006.

8. Capacho, L. and Pastor, R. (2006). Formalización matemática del problema
de equilibrado de líneas con procesos de montaje mutuamente excluyentes. X
Congreso de Ingeniería de Organización Valencia, 7 y 8 de Septiembre de 2006.

9. Capacho, L., Guschinskaya, O., Dolgui, A., Pastor, R. (2006). An

Evaluation Study of Approximate Methods for a Line Balancing Problem

with Assembly Alternatives. 8th International Conference on The Modern

Information Technology in the Innovation Processes of the Industrial

Enterprises, 11-12 September, 27-30, Budapest, Hungary, 2006.

10. Capacho, L., Pastor, R., Guschinskaya, O. and Dolgui, A. (2006).

Heuristic Methods to Solve the Alternative Subgraphs Assembly Line

Balancing Problem. IEEE Conference on automation Science and

Engineering CASE 2006, Shanghai-China, 8-11 October 2006.

11. Capacho, L., Guschinskaya, O., Dolgui, A., Pastor, R. (2006). A

Comparative Analysis of Heuristic Methods for the Alternative Subgraphs

Assembly Line Balancing, XIII Congreso Latino-Iberoamericano de
Investigación Operativa CLAIO2006, Montevideo-Uruguay, 27-30 November,

2006.

12. Capacho, L., Pastor, R., Dolgui, A., Guschinskaya, O. (2007). An

Evaluation of Constructive Heuristic Methods to Solve the Alternative

Subgraphs Assembly Line Balancing Problem. Journal of Heuristics (to

appear).

13. Capacho, L. and Pastor, R. (2007). A Metaheuristic Approach to Solve

the ASALBP: an Assembly Line Balancing Problem Involving Assembly

Alternatives (in preparation).

 99

References

Agpak, K. and Gokcen, H. (2005). Assembly line balancing: Two resource
constrained cases. International Journal of Production Economics, 96, 129–
140.

Ahn, J. and Kusiak, A. (1990). Scheduling with Alternatives Process Plans. Modern
Productions concepts. Theory and Applications in Proceedings of an Int.
Conference, Fernunniversitat, Hagen, August 20–24, Springer–Verlag.

Ajenblit, D. and Wainwright, R. (1998). Applying genetic algorithms to the U–
shaped assembly balancing problem, Proceedings of the 1998 IEEE Int.
Conference on Evolutionary Computation, Anchorage, Alaska, 96−101.

Amen, M. (2000). Heuristic methods for cost–oriented assembly line balancing: A
survey. International Journal of Production Economics, 68, 1−14.

Amen, M. (2001). Heuristic methods for cost–oriented assembly line balancing: A
comparison on solution quality and computing time. International Journal of
Production Economics, 69, 255−264.

Andres, C., Miralles, C. and Pastor, R. (2006). Balancing and sequencing tasks in
assembly lines with sequence–dependent setup times. European Journal of
Operational Research (to appear).

Arcus, A. (1966). COMSOAL: A computer method of sequencing operations for
assembly lines. International Journal of Production Research, 4, 259−277.

Armentano, A. and Bassi, O. (2006). Graph with Memory-based Mechanisms for
Minimizing Total Tardiness in Single Machine Scheduling with Setup Times.
Journal of Heuristics, 12, 427−446.

References

Avram, F., Bertsimas, D. and Ricard, M. (1995). Fluid models of sequencing
problems in open queuing networks: an optimal control approach. In
Stochastic Networks, Mathematics and its Applications, 71, 199-234.

Bard, J. (1989). Assembly line balancing with parallel workstations and dead time.
International Journal of Production Research, 27, 1005−1018.

Bard, J., Dar–El, E. and Shtub, A. (1992). An analytic framework for sequencing
mixed model assembly lines. International Journal of Production Research, 30,
35−48.

Bartholdi, J. (1993). Balancing two–sided assembly lines: A case study.
International Journal of Production Research, 31, 2447−2461.

Bautista, J. and Pereira, J. (2002). Ant algorithms for assembly line balancing. In:
Dorigo, M., Di Caro, G., Sampels, M. (Eds.). Lecture Notes in Computer
Science, Springer, Berlin, 2463, 65−75.

Bautista, J. and Pereira, J. (2003). Algoritmos de hormigas para un problema de
equilibrado de líneas. V Congreso de Ingeniería de Organización, Valladolid–
Burgos. 2003.

Baybars, I. (1986). A survey of exact algorithms for the simple assembly line
balancing problem. Management Science, 32, 909−932.

Baykasoglu, A., Dereli, T., Erol, R. and Sabuncu, I. (2003). An ant colony based
optimization algorithm for solving assembly line balancing problems.
International XII Turkish Symposium on Artificial Intelligence and Neural
Networks.TAINN 2003.

Becker, C. and Scholl, A. (2006). A survey on problems and methods in generalized
assembly line balancing. European Journal of Operational Research, 168,
694−715.

Berger, I., Bourjolly, J. and Laporte, G. (1992). Branch–and–bound algorithms for
the multi–product assembly line balancing problem. European Journal of
Operations Research, 58, 215−222.

Bockmayr, A. and Pisaruk, N. (2001). Solving assembly line balancing problems by
combining IP and CP. Proceedings of the 6th Annual Workshop of the
ERCIM Working Group on Constraints, Prague, Czech Republic.

Boctor, F. (1995). A Multiple–Rule Heuristic for Assembly Line Balancing.
Journal of the Operational Research Society, 46, 62−69.

Bowman, E. (1960). Assembly Line Balancing by Linear Programming. Operations
Research, 8, 385−389.

 101

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VCT-4D98KSM-3-D&_cdi=5963&_user=2138235&_orig=browse&_coverDate=02%2F01%2F2006&_sk=998319996&view=c&wchp=dGLbVtb-zSkWA&md5=f67641a3a100d96883a2afb326734f26&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VCT-4D98KSM-3-D&_cdi=5963&_user=2138235&_orig=browse&_coverDate=02%2F01%2F2006&_sk=998319996&view=c&wchp=dGLbVtb-zSkWA&md5=f67641a3a100d96883a2afb326734f26&ie=/sdarticle.pdf

References

Boysen, N., Fliedner, M. and Scholl, A. (2007a). Assembly line balancing: Which
model to use when?. International Journal of Production Economics (to
appear, doi: 10.1016/j.ijpe.2007.02.026).

Boysen, N., Fliedner, M. and Scholl, A. (2007b). A classification of assembly line
balancing problems. European Journal of Operational Research, 183, 674−693.

Bukchin, J. (1998). A comparative study of performance measures for throughput
of a mixed model assembly line in a JIT environment. International Journal of
Production Research, 36, 2669−2685.

Bukchin, J. and Masin, M. (2004). Multi–objective design of team oriented
assembly. European Journal of Operational Research, 156, 326−352.

Bukchin, J. and Rubinovitz, J. (2003). A weighted approach for assembly line
design with station paralleling and equipment selection. IIE Transactions, 35,
73−85.

Bukchin, J. and Tzur, M. (2000). Design of flexible assembly line minimize
equipment cost. IIE Transactions, 32, 585−598.

Bukchin, J., Dar–El, E. and Rubinovitz, J. (2002). Mixed–model assembly line
design in a make–to–order environment. Computers & Industrial Engineering,
41, 405−421.

Bukchin, Y. and Rabinowitch, I. (2005). A branch–and–bound based solution
approach for the mixed–model assembly line–balancing problem for
minimizing stations and task duplication costs. European Journal of
Operational Research (to appear).

Bukchin, Y., Meller, R. and Liu, Q. (2006). Assembly system facility design. IEE
Transactions, 38, 53−65.

Buxey, G. (1974). Assembly line balancing with multiple Stations. Management
Science, 20, 1010−1021.

Capacho, L. and Pastor, R. (2005). ASALBP: the Alternative Subgraphs Assembly
Line Balancing Problem. Technical Report: IOC−DT−P−2005−5. UPC.
Barcelona, Spain. To appear in: International Journal of Production Research.

Capacho, L. and Pastor, R. (2006). The ASALB Problem with Processing
Alternatives Involving Different Tasks: Definition, Formalization and
Resolution. Lecture Notes in Computer Science, Springer, 3982, 554−563.

Chiang, W–C. (1998). The application of a tabu search metaheuristic to the
assembly line balancing problem. Annals of Operations Research, 77, 209−227.

Corominas, A., Pastor, R. and Plans, J. (2006). Balancing assembly line with skilled
and unskilled workers. OMEGA (In Press, Corrected Proof).

 102

References

Dai, J. G. and Weiss, G. (2002). A fluid heuristic for minimizing makespan in job-
shops. Operations Research, 50, 692–707.

Das, S. and Nagendra, P. (1997). Selection of routes in a flexible manufacturing
facility. International Journal of Production Economics, 48, 237−247.

DePuy, G. and Whitehouse, G. (2000). Applying the COMSOAL computer
heuristic to the constrained resource allocation problem. Computers and
Industrial Engineering, 38, 3, 413−422.

Dolgui, A. (2006). Balancing Assembly and Transfer Lines. European Journal of
Operational Research, 168, 663−665.

Dolgui, A., Finel, B., Guschinsky, N. and Levin, G. (2005). A heuristic approach
for transfer line balancing. Journal of Intelligence Manufacturing, 16, 159−171.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). The Ant System: Optimization
by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man and
Cybernetics - Part B, 26, 1, 29−41.

Erel, E. and Gokcen H. (1999). Theory and Methodology: Shortest–route
formulation of mixed–model assembly line balancing problem. European
Journal of Operational Research, 116, 194−204.

Erel, E. and Sarin, S. (1998). A survey of the assembly line balancing procedures.
Production Planning & Control, 9, 414−434.

Feo, T., Resende, M. and Smith, S. (1994). A greedy randomized adaptive search
procedure for maximum independent set. Operations Research, 42, 860−878.

Fernades, E.R and Ribeiro, C.C (2005). A Multistart Constructive Heuristic for
Sequencing by Hybridization Using Adaptive Memory. Electronic Notes in
Discrete Mathematics, 19, 41−47.

Festa, P. and Resende, M. (2004). An Annotated Bibliography of GRASP.
Technical Report, TD-5WYSEW, AT&T Labs, February 2004.

Feyzbakhsh, S.A. and Matsui, M. (1999). Adam–Eve–like genetic algorithm: A
methodology for optimal design of a simple flexible assembly system.
Computers and Industrial Engineering, 36, 233−258.

Flake, G.W. (1999). The computacional beuty of Nature. Computer Explorations
of Fractals, Chaos, Complex Systems and Adaptation. The MIT Press.

Fleszar, K. and Hindi, K. (2003). An enumerative heuristic and reduction methods
for the assembly line balancing problem. European Journal of Operational
Research, 145, 606–620.

 103

http://www.ingentaconnect.com/content/els/03608352
http://www.ingentaconnect.com/content/els/03608352

References

Gaalman, G., Slomp, J. and Suresh, N. (1999). Towards an Integration of process
planning and Control for Flexible Manufacturing Systems. The International
Journal of Flexible Manufacturing Systems, 11, 5−17.

Gamberini, R., Grassi, A. and Rimini, B. (2005). A new multi–objective heuristic
algorithm for solving the stochastic assembly line re–balancing problem.
International Journal of Production Economics, 102, 226−243.

Gen, M., Tsujimura, Y. and Li, Y. (1996). Fuzzy assembly line balancing using
genetic algorithms. Computers and Industrial Engineering, 31, 3/4, 631−634.

Ghosh, S. and Gagnon, R. (1989). A comprehensive literature review and analysis
of the design, balancing and scheduling of assembly systems. International
Journal of Production Research, 27, 4, 637−670.

Glover, F. (1990). Tabu search: a tutorial. Interfaces, 20, 74−94.

Glover, F. (1996). Tabu search and adaptive memory programming. Advances,
applications and challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington
(eds.). Interfaces in Computer Science and Operations Research, pages 1-75.
Kluwer.

Glover, F. and Laguna, M. (1993). Tabu Search. In Modern Heuristic Techniques
for Combinatorial Problems, Reeves (ed.), Blackwell, Oxford. 70−150.

Glover, F. and Laguna, M. (1997). Tabu search. Kluwer Academia Publishers,
Boston.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization Learning,
Addison Wesley Publishing Company.

Gottlieb, J., Puchta, M. and Solnon, C. (2003). A study of greedy, local search, and
ant colony optimization approaches for car sequencing problems. Lecture
Notes in Computer Science, Springer, 2611, 246−257.

Gungor, A. and Gupta S. (1997). An Evaluation Methodology For Disassembly
Processes. Computers in industrial Engineering, 33, 1−4.

Hackman, S., Magazine, M. and Wee, T. (1989). Fast, Effective Algorithms for
Simple Assembly Line Balancing Problems. Operations Research, 37, 916−924.

Hao, N. (2005). Sequencing and Balancing Problem of Mixed–Model–Assembly–
Line with Window Cycle Time. Doctoral Thesis. UPC. Barcelona. Spain.

Held, M., Karp, R. and Shareshian, R. (1963). Assembly line balancing–dynamic
programming with precedence constraints. Operations Research, 11, 3, 442-459.

Helgeson, W. and Birnie, D. (1961). Assembly line balancing using the ranked
positional weight technique. Journal of Industrial Engineering, 12, 394−398.

 104

http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5695&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3254696bd6319134f729255d35001ed5
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235695%232003%23999549995%23474900%23FLA%23display%23Volume_45,_Issue_4,_Pages_545-737_(December_2003)%23tagged%23Volume%23first%3D45%23Issue%23first%3D4%23Pages%23first%3D545%23last%3D737%23date%23(December_2003)%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=572a4144774c6418ca61320e13a9aedb

References

Hoffmann, T.R. (1992). EUREKA: A hybrid system for assembly line balancing,
Management Science, 38, 39−47.

Hong, D. and Cho, H. (1999). A genetic–algorithm–based approach to the
generation of robotic assembly sequences. Control Eng. Practice, 7, 151−159.

Jackson, J. (1956). A computing Procedure for a Line Balancing Problem.
Management Science, 2, 261−271.

Ji, P., Sze, M.T. and Lee, W.B. (2001). A genetic algorithm of determining cycle
time for printed circuit board assembly lines. European Journal of Operational
Research, 128, 175−184.

Johnson, R.V. (1988). Optimally balancing large assembly lines with "FABLE".
Management Science, 34, 240−253.

Kao, E. and Queyranne, M. (1982). On dynamic programming methods for
assembly line balancing. Operations Research, 30, 375−390.

Karabati, S. and Sayin, S. (2003). Assembly line balancing in a mixed–model
sequencing environment with synchronous transfers. European Journal of
Operational Research, 149, 417−429.

Kilincci, O. and Bayhan, G. (2006). A Petri net approach for simple assembly line
balancing problems. The International Journal of Advanced Manufacturing
Technology, 30, 1165-1173.

Kilincci, O. and Bayhan, G. (2007). A P-invariant-based algorithm for simple
assembly line balancing problem of type-1. The International Journal of
Advanced Manufacturing Technology (to appear, doi: 10.1007/s2007.02.026
00170-007-0975-2).

Kim, Y.K., Kim Y.J. and Kim, Y. (1996). Genetic algorithms for assembly line
balancing with various objectives. Computers & Industrial Engineering, 30, 3,
397−409.

Kim, Y.K., Kim, Y. and Kim, Y.J. (2000). Two–sided assembly line balancing: a
genetic algorithm approach. Production Planning & Control, 11, 44−53.

Klein, R. and Scholl, A. (1996). Maximizing the production rate in simple
assembly line balancing – A branch and bound procedure. European Journal of
Operations Research, 91, 367−385.

Kubiak, W. and Suresh, S. (1991). A note on level schedules for mixed model
assembly lines in Just in Time Production Systems. Management Science, 37,
121−122.

Lambert, A. (2006). Generation of assembly graphs by systematic analysis of
assembly structures. European Journal of Operational Research, 168, 932−951.

 105

http://www.ingentaconnect.com/content/klu/170;jsessionid=56rel8nuugrjh.henrietta
http://www.ingentaconnect.com/content/klu/170;jsessionid=56rel8nuugrjh.henrietta
http://www.ingentaconnect.com/content/klu/170;jsessionid=56rel8nuugrjh.henrietta
http://www.ingentaconnect.com/content/klu/170;jsessionid=56rel8nuugrjh.henrietta

References

Lapierre, S. and Ruiz, A. (2004). Balancing assembly lines: an industrial case study.
Journal of the Operational Research Society, 55, 559−597.

Lawler, E.L. (1979). Efficient implementation of dynamic programming algorithms
for sequencing problems. Report BW 106/79, Stichting Mathematisch
Centrum, Amsterdam.

Lee, Q. (2000). How to balance manufacturing work cell. Institute of Industrial
Engineers – IE Solutions Conference, May 21−23, Cleveland, Ohio.

Little, J., Murty, K., Sweeney, D. and Karel, C. (1963). An algorithm for the
traveling salesman problem. Operations Research, 11, 972−989.

Malakooti, B. and Kumar, A. (1996). A knowledge–based system for solving
multi–objective assembly line balancing problem. International Journal of
Production Research, 34, 9, 2533−2552.

Martí, R. and Moreno, M. (2003). Multistart methods. Inteligencia Artificial,
Revista Iberoamericana de Inteligencia Artificial, 19, 49−60.

Martin, G.E. (1994). Optimal design of production lines. International Journal of
Production Research, 32, 989−1000.

Martinez, U. and Duff, W. (2004). Heuristic approaches to solve the U–shaped
line balancing problem augmented by genetic algorithms. Proc. of the 2004
Systems and Information Eng. Design Symposium. Mattew H. Jones, Stephen
D. Patek, and Barbara E. Tawney. Eds.

McMullen, P. and Frazier, G. (1998a). Using simulated annealing to solve a multi–
objective assembly line balancing problem with parallel workstations.
International Journal of Production Research, 36, 2717−2741.

McMullen, P. and Frazier, G. (1998b). Using Simulation and Data Envelopment
Analysis to compare assembly line balancing solutions. Journal of Productivity
Analysis, 11, 149−168.

McMullen, P. and Tarasewich, P. (2006). Multi-objective assembly line balancing
via a modified ant colony optimization technique. International Journal of
Production Research, 44, 27−42.

Mendes, A., Ramos, A., Simaria, A. and Vilarino, P. (2005). Combining heuristic
procedures and simulation models for balancing a PC camera assembly line.
Computers and Industrial Engineering, 49, 3, 413-431.

Merengo, C., Nava, F. and Pozetti, A. (1999). Balancing and sequencing manual
mixed–model assembly lines. International Journal of Production Research,
37, 2835−2860.

 106

References

Miltenburg, J. (1998). Balancing U–lines in a multiple U−line facility. European
Journal of Operational Research, 109, 1−23.

Miltenburg, J. (2002). Balancing and scheduling mixed–model U–shaped
production lines. International Journal of Flexible Manufacturing Systems, 14,
119−151.

Miltenburg, J. and Wijngaard, J. (1994). The U–line line balancing problem.
Management Science, 40, 1378−1388.

Miralles, C. (2004). Modelos, métodos y algoritmos de resolución para el problema
de asignación de puestos y equilibrado en líneas con tiempos dependientes del
operario. Aplicación en centros especiales de empleo para personas con
discapacidades. Tesis Doctoral; UPV.

Miralles, C., Capó, J., García, J.P. and Andrés C. (2003). Equilibrado de Líneas de
Montaje considerando variables los tiempos de operación y las habilidades de
los operarios. 27 Congreso Nacional de Estadística e Investigación Operativa.
Lleida, 8−11 de Abril de 2003.

Moberly, L.E. and Wyman, F.P. (1973). An application of simulation to the
comparison of assembly line configurations. Decision Sciences, 4, 505-516.

Moon, C., Lee, M., Seo, Y. and Lee, Y.H. (2002). Integrated machine tool
selections and operation sequencing capacity and precedence constraints using
genetic algorithm. Computers & Industrial Engineering, 43, 605−621.

Nicosia, G., Pacciarelli, D. and Pacifici, A. (2002). Optimally balancing assembly
lines with different Workstations. Discrete Applied Mathematics, 118, 99−113.

Osman, I.H. and Laporte, G. (1996). Metaheuristics: a bibliography. Annals of
Operations Research, 63, 513−623.

Park, K., Park, S. and Kim, W. (1997). A heuristic for an assembly line balancing
problem with incompatibility, range, and partial precedence constraints.
Computers & Industrial Engineering, 32, 2, 321−332.

Pastor R. (1999). Metalgoritmo de optimizacion combinatoria mediante la
exploracion de grafos, Tesis doctoral, Universitat Politecnica de Catalunya.

Pastor, R., Andres, C., Duran, A. and Perez, M. (2002). Tabu search algoritms for
an industrial multi–product, multi–objective assembly line balancing problem,
with reduction of task dispertion. Journal of Operations Research Society, 53,
1317−1323.

Patterson, J. and Albracht, J. (1975). Assembly Line Balancing: 0−1 Programming
with Fibonacci Search. Operations Research, 23, 166−174.

 107

References

Peeters, A. (2006). Linear programming based lower bound for the simple
assembly line balancing problem. European Journal of Operations Research,
168, 716−731.

Phonganant, S., Yang, Y.N., Leep, H.R. and Parsaei, H.R. (2001). Expert System
for Mixed–Model Assembly Line Balancing. Dallas, TX: 10th Annual
Industrial Engineering Research Conference.

Pierreval, H., Caux, C., Paris, J. and Viguier, F. (2003). Evolutionary approaches to
the design and organization of manufacturing systems. Computers & Industrial
Engineering, 44, 339−364.

Pinnoi, A. and Wilhelm, W.E. (1998). Assembly system design: A branch and cut
approach. Management Science, 44, 103−118.

Pinto, P., Dannenbring, D. and Khumawala, B. (1975). A branch and bound
algorithm for assembly line balancing with paralleling. International Journal of
Production Research, 13, 183−196.

Pinto, P., Dannenbring, D. and Khumawala, B. (1981). Branch and bound and
heuristic procedures for assembly line balancing with paralleling of stations.
International Journal of Production Research, 19, 565−576.

Pinto, P., Dannenbring, D. and Khumawala, B. (1983). Assembly line balancing
with processing alternatives: an application. Management Science, 29, 817−830.

Plans, J. (1999). Classificació, modelització i resolució dels problemes de disseny i
assignació de tasques en línies de producció.Tesis Doctoral; UPC.

Ponnambalam, S.G., Aravindan, P. and Subba Rao, M. (2003). Genetic algorithms
for sequencing problems in mixed model assembly lines. Computers &
Industrial Engineering, 45, 4, 669−690.

Reeves, C. (1993). Modern Heuristics Techniques for Combinatorial Problems.
McGraw Hill.

Reeves, C. (1997). Genetic algorithms for the operations researcher. INFORMS
Journal of Computers, 9, 231−250.

Rekiek, B. (2001). Assembly Line Design, multiple objective grouping genetic
algorithm and the balancing of mixed–model hybrid assembly line. Doctoral
Thesis. Universite Libre de Bruxelles.

Rekiek, B., Dolgui, A., Delchambre, A. and Bratcu, A. (2002). State of art of
optimization methods for assembly line design. Annual Reviews in Control,
26, 163−174.

Rubinovitz, J. and Bukchin, J. (1993). RALB – A heuristic algorithm for design
and balancing of robotic assembly lines. Annals of the CIRP, 42, 497−500.

 108

http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5695&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3254696bd6319134f729255d35001ed5
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5695&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3254696bd6319134f729255d35001ed5
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235695%232003%23999549995%23474900%23FLA%23display%23Volume_45,_Issue_4,_Pages_545-737_(December_2003)%23tagged%23Volume%23first%3D45%23Issue%23first%3D4%23Pages%23first%3D545%23last%3D737%23date%23(December_2003)%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=572a4144774c6418ca61320e13a9aedb

References

Rubinovitz, J. and Levitin, G. (1995). Genetic algorithm for assembly line
balancing. International Journal of Production Economics, 41, 343−354.

Sarin, S., Erel, E. and Dar–El, E. (1999). A methodology for solving single–model,
stochastic assembly line balancing problem. International Journal of
Management Science, 27, 525−535.

Sawik, T. (2002). Monolithic vs. hierarchical balancing and scheduling of a flexible
assembly line. European Journal of Operational Research, 109, 1−23.

Scholl, A. (1999). Balancing and sequencing assembly lines, 2nd. edition, Physica–
Verlag, Heidelberg.

Scholl, A. and Becker, C. (2006). State–of–the–art exact and heuristic solution
procedures for simple assembly line balancing. European Journal of
Operational Research, 168, 666−693.

Scholl, A. and Klein, R. (1997). SALOME: A bidirectional branch and bound
procedure for assembly line balancing. INFORMS Journal on Computing, 9,
319−334.

Scholl, A. and Klein, R. (1999a). Balancing assembly lines effectively –A
computational comparison. European Journal of Operational Research, 114,
50−58.

Scholl, A. and Klein, R. (1999b). ULINO: Optimally balancing U–shaped JIT
assembly lines. International Journal of Production Research, 37, 721−736.

Scholl, A. and Voss, S. (1996). Simple assembly line balancing–Heuristic
approaches. Journal of Heuristics, 2, 217−244.

Scholl, A., Boysen, N. and Fliedner, M. (2007). The sequence-dependent assembly
line balancing problem. Operations Research Spectrum (to appear, doi:
10.1007/s00291-006-0070-3).

Schrage, L. and Baker, K.R. (1978). Dynamic programming solution of sequencing
problems with precedence constraints. Operations Research, 26, 444−449.

Senin, N., Groppetti, R. and Wallace, D. (2000). Concurrent assembly planning
with genetic algorithms. Robotics and Computer Integrated Manufacturing,
16, 65−72.

Silver E. (2002). An overview of heuristic solution methods. Working paper
2002−15, Haskayne School of Business, University of Calgary.

Spina, R., Galantucci, M. and Dassisti, M. (2003). A hybrid approach to the single
line scheduling problem with multiple products and sequence–dependent time.
Computers & Industrial Engineering, 45, 4, 573−583.

 109

http://www.wiwi.uni-jena.de/Entscheidung/alb/Scholl et al. (2006) - The sequence-dependent assembly line balancing problem.pdf
http://www.wiwi.uni-jena.de/Entscheidung/alb/Scholl et al. (2006) - The sequence-dependent assembly line balancing problem.pdf
http://www.springerlink.com/content/625vj7844p317869/?p=30a49111c15f437cbfccee09e5b03be8&pi=0
http://www.springerlink.com/content/625vj7844p317869/?p=30a49111c15f437cbfccee09e5b03be8&pi=0
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5695&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3254696bd6319134f729255d35001ed5
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235695%232003%23999549995%23474900%23FLA%23display%23Volume_45,_Issue_4,_Pages_545-737_(December_2003)%23tagged%23Volume%23first%3D45%23Issue%23first%3D4%23Pages%23first%3D545%23last%3D737%23date%23(December_2003)%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=572a4144774c6418ca61320e13a9aedb

References

Suer, G. (1998). Designing Parallel assembly lines. Computers & Industrial
Engineering, 35, 3−4, 467−470.

Suresh, G. and Sahu, S. (1994). Stochastic assembly line balancing using simulated
annealing. International Journal of Production Research, 32, 1801−1810.

Talbot, F.B, Patterson, J.H. and Gehrlein, W.V. (1986). A comparative evaluation
of heuristic line balancing techniques. Management Science, 32, 431−453.

Thangavelu, S. and Shetty, C. (1971). Assembly Line by Zero–One Integer
Programming. AIIE Transactions, 3, 61−68.

Tsai, D. and Yao, M. (1993). A line–balanced base capacity planning procedure
for series–type robotic assembly line. International Journal of Production
Research, 31, 1901−1920.

Tseng, H.E. and Tang, C.E. (2006). A sequential consideration for assembly
sequence planning and assembly line balancing using the connector concept.
International Journal of Production Research, 44, 1, 97−166.

Urban, T. (1998). Note: Optimal balancing of U-shaped assembly lines.
Management Science, 44, 738-741.

Voss, S. (1994). Tabu search in manufacturing. In H. Dyckhoff, U. Derigs, M.
Salomon and H. C. Tijms (eds.). Operational Research Proceedings, 183−194.

Wee, T. and Magazine M. (1982). Assembly line balancing as generalized Bin
Packing. Operations Research Letters, 1, 56−58.

Weiss, G. (1999). Scheduling and Control of Manufacturing Systems --- a Fluid
Approach. Proceedings of the 37 Allerton Conference, 577-586.

White, W. (1961). Comments on a Paper by Bowman. Operations Research, 9,
274−276.

Wikipedia, Assembly line (2003). http://www.wikipedia.org/wiki/Assembly_line.
Visited: September 2003.

 110

http://www.wikipedia.org/wiki/Assembly_line

	10_CH5_Approx_Methods_v3.pdf
	10_CH5_Approx_Methods_v3.pdf
	Algorithm 1

	12_REFERENCES.pdf
	Kilincci, O. and Bayhan, G. (2006). A Petri net approach for

