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Summary 

Nowadays assembly line balancing problems are commonly found in most industrial and 
manufacturing systems. Basically, these problems seek to assign a set of assembly tasks to 
an ordered sequence of workstations in such a way that precedence constraints are 
maintained and a given efficiency measure (e.g. the number of workstations or the cycle 
time) is optimized. 

Because of the computational complexity of balancing problems, research works 
traditionally considered numerous simplifying assumptions in which, for example, a single 
model of a unique product were processed in a single line; moreover, problems were 
mainly restricted by precedence and cycle time constrains. Nevertheless, the current 
availability of computing resources and the enterprises need to adapt to rapid changes in 
production and manufacturing processes have encouraged researchers and decision-makers 
to address more realistic problems. Some examples include problems that involve mixed 
models, parallel workstations and parallel lines, multiple objectives and also further 
restrictions such as workstation processing capacity and resource allocation constraints.  

This doctoral thesis addresses a novel assembly line balancing problem, entitled here 
ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem, which 
considers alternative variants for different parts of an assembly or manufacturing process. 
Each variant can be represented by a precedence subgraph that establishes the tasks 
required to process a particular product, their precedence requirements and their 
processing times.  

Therefore, to efficiently solve the Alternative Subgraphs Assembly Line Balancing 
Problem two subproblems need to be solved simultaneously: (1) the decision problem 
that selects one assembly variant for each part that admit alternatives and (2) the 
balancing problem that assigns the tasks to the workstations. 

The analysis of the state-of-the-art carried out revealed that the Alternative Subgraphs 
Assembly Line Balancing Problem has not been addressed before in literature studies, 
which leaded to the characterization and definition of this new problem. Moreover, due 
to the impossibility of representing assembly variants in a standard precedence graph, the 
S-Graph is proposed here as a diagramming tool to represent all available assembly 
alternatives in a unique graph.  

Different approaches are used here to address the ASALBP. The problem is formalize 
and optimally solved by means of two mathematical programming models. An 
approximate approach is used to address industrial-scale problems. Furthermore, local 
optimization procedures are proposed aiming at improving the quality of the solutions 
provided by all heuristic methods developed here.  
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Resumen 

Hoy en día, los problemas de equilibrado de líneas de montaje se encuentran 
comúnmente en la mayoría de sistemas industriales y de manufactura. Básicamente, estos 
problemas consisten en asignar un conjunto de tareas a una secuencia ordenada de 
estaciones de trabajo, de manera que se respeten las restricciones de precedencia y se 
optimice una medida de eficiencia dada (como, por ejemplo, el número de estaciones de 
trabajo o el tiempo ciclo). 

Dada la complejidad de los problemas de equilibrado de líneas, en los trabajos de 
investigación tradicionalmente se consideraban numerosas simplificaciones en las que, 
por ejemplo, una sola línea serial procesaba un único modelo de un solo producto. 
Además, los problemas estaban principalmente restringidos por las relaciones de 
precedencia y el tiempo ciclo. Sin embargo, la disponibilidad de recursos 
computacionales de hoy en día, así como la necesidad de las empresas a adaptarse a los 
rápidos cambios en los procesos de producción, han motivado tanto a investigadores 
como a gerentes a tratar problemas más realistas. Algunos ejemplos incluyen problemas 
que procesan modelos mixtos, estaciones de trabajo y líneas en paralelo, consideran 
múltiples objetivos y restricciones adicionales, como la capacidad de proceso de las 
estaciones de trabajo y la ubicación de los recursos en la línea. 

Esta tesis doctoral trata un nuevo problema de equilibrado de líneas, que ha sido titulado 
ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem, en el que se 
consideran variantes alternativas para diferentes partes de un proceso de montaje o de 
manufactura. Cada alternativa puede ser representada por un subgrafo de precedencias, 
que determina las tareas requeridas para procesar un producto particular, las restricciones 
de precedencia y los tiempos de proceso.  

Para resolver eficientemente el ASALBP, se deben resolver dos problemas 
simultáneamente: (1) el problema de decisión para seleccionar un subgrafo de montaje 
para cada parte que admite alternativas y (2) el problema de equilibrado para asignar las 
tareas a las estaciones de trabajo.  

El análisis del estado del arte revela que este problema no ha sido estudiado previamente 
en la literatura, lo que ha conducido a la caracterización y a la definición de un nuevo 
problema. Por otra parte, dado que no es posible representar las variantes de montaje en 
un diagrama de precedencias estándar, se propone el S-grafo como una herramienta de 
diagramación, para representar en un único grafo todas las alternativas de montaje. 

Para resolver el ASALBP se usan varios enfoques. El problema se formaliza y se resuelve 
de manera óptima a través de dos modelos de programación matemática. Un enfoque 
aproximativo es usado para resolver problemas de tamaño industrial. Además, se 
proponen procedimientos de optimización local con el objetivo de mejorar la calidad de 
las soluciones obtenidas por los métodos heurísticos desarrollados en este trabajo. 
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Chapter 1 
 

 Introduction 
 

1.1 Presentation and Justification 

Assembly lines are nowadays commonplace in many production and 

manufacturing systems, particularly those entailing a large volume of a single 

product. They maximize the division of labour, thereby maximizing system 

productivity (Amen (2001)). Therefore, the configuration of the line and the 

distribution of work along the line are fundamental to the system’s efficiency. 

A complex optimization problem arises when technological constraints and a 

given objective are also taken into account: the line balancing problem. 

In an Assembly Line Balancing Problem (ALBP) a set of tasks have to be 

assigned to an ordered sequence of workstations in such a way that precedence 

constraints are maintained and a given efficiency measure is optimized,  such 

as, for example, the number of workstations or the workstation time (i.e. the 

cycle time). In the simplest case, referred to in the literature as SALBP: 

Simple Assembly Line Balancing Problem (e.g., Baybars (1986), Scholl and 

Becker (2006)), a serial line processes a single model of one product. Basically, 

the problem is restricted by technological precedence relations and the cycle 

time constrains. On the other hand, GALBP: Generalized Assembly Line 

Balancing Problems are considered to be those that take into account other 

attributes and system restrictions. A great diversity of GALBP has been 

considered in the literature, which include, for example, mixed-models, parallel 

workstations, U-Shaped lines, unequally equipped workstation and multiple 

objectives (see, for example, Becker and Scholl (2006)).  
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A common feature of most assembly line balancing problems is that they 

consider a unique and predetermined precedence graph that represents all 

possible precedence relations among the tasks. However, in real-life problems, 

several parts of an assembly process can admit alternative precedence 

subgraphs that represent their corresponding assembly variants. This is true in 

the assembly or disassembly of many industrial products for which several 

valid plans may be available. Examples of this situation include car assembling 

(Scholl et al. (2007)), the decoration of motorbike fairings (Capacho and 

Pastor (2005)), the production of commercial hand-held drills (Senin et al. 

(2000)), the manufacturing of toys from moulded plastic parts or by metal 

stamping (Das and Nagendra (1997)) or in the disassembly process of complex 

products (Gungor and Gupta, 1997). 

Alternatives have essentially been a primary concern for the planning process 

and, due to its importance, several approaches have been proposed to integrate 

this strategic task into the balancing process (e.g., Tseng and Tang (2006), 

Gaalman et al. (1999)).  

The huge complexity of problems involving assembly alternatives has led to 

the use of a two-stage based approach. In the initial stage, the system designer 

selects one of the possible variants according to criteria such as total 

processing time, cost, resource allocation, and task parallelism (e.g., Lambert 

(2006) and Senin et al. (2000)). Once the assembly alternatives have been 

selected, and a precedence graph is available (i.e. the assembly planning 

problem has been already solved), the line is then balanced in the second 

stage. 

However, by following this two-stage procedure it cannot be guaranteed that 

an optimal solution of the global problem can be obtained, because the 

decisions taken by the system designer restrict the problem and cause 

information loss; i.e., a priori selection of an alternative leaves the effects of 

the other possibilities unexplored. For instance, if the system designer uses 

total processing time as decision criterion, the alternative with largest total 

processing time will be discarded notwithstanding it may provide the best 

solution of the problem (i.e., it requires the minimum number of workstations 

or minimum cycle time).  

Therefore, it seems reasonable to consider that to solve efficiently an ALBP 

that involves processing alternatives all possibilities must be considered within 

the balancing process. For this purpose, in this thesis both the variant 

selection problem and the balancing problem are jointly considered instead of 

independently.  

 2
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The Alternative Subgraphs Assembly Line Balancing Problem (ASALBP), 

the new problem firstly introduced, defined and studied in this doctoral thesis, 

considers the possibility of alternative assembly variants. Each variant is 

represented by a subgraph which determines the required assembly tasks, their 

precedence relations and their processing times. In this way, the SALBP 

hypothesis which states that tasks must be processed only once is relaxed; i.e. 

a particular set of tasks is performed only if the assembly process to which the 

tasks belong to is selected.  

Therefore, apart from considering cycle time restrictions, subgraph constraints 

have to be taken into account to assure that tasks belonging to a particular 

subassembly are processed considering a unique assembly subgraph (i.e., the 

same assembly variant). Furthermore, it is also considered that task processing 

times may not be fixed, yet all known, but dependent on the assembly 

subgraphs. Therefore, total processing time may vary from one processing 

alternative to another.  

A premise embraced by the problem addressed in this doctoral thesis considers 

that better solutions can be obtained when all available assembly variants are 

taken into account in the balancing process, rather than when selecting a 

priory an assembly alternative, and then balancing the line considering only 

the selected alternative. Therefore, solving the Alternative Subgraphs 

Assembly Line Balancing Problem implies simultaneously solving both the 

decision problem, to select one assembly subgraph for each subassembly that 

allows alternatives, and the balancing problem, to assign the tasks to the 

workstations. 

Considering alternative precedence subgraphs imposes a higher level of 

difficulty on an assembly line balancing problem as it is verified the NP-hard 

condition of the problem -given that the simple case (SALBP) is NP-hard (see 

e.g. Wee and Magazine (1982)). However, as real industrial processes may 

involve assembly alternatives, the possibility of considering alternative 

subgraphs not only enables more practical and realistic instances of ALBP to 

be addressed, but also may favour an assignation of tasks to the workstations 

in order to optimize a given objective. Regarding the conventional terminology 

(e.g. Baybars (1986) or Scholl (1999)), when the objective is to minimize the 

number of workstations given an upper bound on the cycle time, the problem 

is referred to as ASALBP-1. If the objective is to minimize the cycle time 

given the number of workstations, the problem is called ASALBP-2. 

 3
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1.2 Objectives  

This doctoral thesis addresses a new assembly line balancing problem that has 

not been previously considered in the literature. Therefore, the core objectives 

of this work are to define, to formalize and to solve this complex problem.  

In order to accomplish the main objectives, the following specific objectives are 

considered. 

1. State of the Art of assembly systems focusing on problems considering 

processing alternatives.  

2. Definition and characterization of a new assembly line balancing 

problem: the Alternatives Subgraphs Assembly Line Balancing Problem    

(ASALBP). This problem is defined and characterized, giving some numerical 

examples to illustrate its relevance.   

3. Mathematical Formulation of the ASALBP.  In order to formalize this 

new problem, two different mathematical programming formulations are 

developed. Such models are used to optimally solve small- and medium-scale 

ASALBP instances.  

4. Design and Implementation of Approximate Procedures. The NP-hard 

condition of the ASALBP limits the potential of mathematical programming 

models when industrial size problems are considered. In order to deal with 

large-scale problems, a heuristic approach based on constructive procedures is 

considered. Furthermore, several local optimization procedures based on two 

different neighbourhood search strategies are developed. 

5. Benchmark generation. Since the ASALBP is a new assembly line 

balancing problem, benchmark problems must be generated.   

6. Evaluation and Comparison of the Performance of the Developed 

Solution Procedures. In order to evaluate the performance of the proposed 

mathematical models and the solution procedures, a computational experiment 

is designed based on the sets of benchmark problems generated in this thesis. 

All procedures are applied to small-, medium- and large-scaled problems 

instances. Conclusions are drawn from this evaluation as well as proposals for 

future research work. 

 

 4



Chapter 1: Introduction 

 

1.3 Structure of the Thesis 

This thesis consists of six chapters and is structured as follows. 

Chapter 1 introduces the problem addressed in this thesis and outlines the 

aims of this work. 

Chapter 2 presents the State-of-the-art. It discusses the main concepts related 

to assembly systems and gives an overview of the problems that have been 

addressed in literatures studies, including the proposed solutions procedures. 

Combinatorial optimization problems that involve assembly alternatives are 

also discussed in this chapter. 

Chapter 3 introduces, defines and characterizes the Alternative Subgraphs 

Assembly Line balancing problem (ASALBP). Furthermore, some examples 

are provided in order to illustrate the benefits that can be obtained by 

considering assembly alternatives in the balancing process. The S-Graph, a 

diagramming tool proposed to depict all assembly alternatives in a unique 

precedence graph, is introduced here. 

Chapter 4 presents the mathematical formulation of the Alternative 

Subgraphs Assembly Line balancing problem. Two mathematical 

programming models are proposed, and their performance is evaluated by 

using the IPL solver CPLEX© (a commercial optimization software).   

Chapter 5 deals with the approximate approach. This chapter describes both 

the heuristics methods and the local optimizations procedures proposed to 

solve the ASALBP. The computational experiment carried out to evaluate and 

compare the proposed methods is also described here. 

Finally, Chapter 6 presents the conclusions and further research proposals.  
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Chapter 2 
 

 State of the Art 

2.1 Introduction 

This chapter introduces the basic concepts and criterions habitually used in 

the literature to classify assembly lines. It describes classical assembly line 

balancing problems and presents some classification schemes that have been 

proposed for problem identification. Furthermore, it gives an overview of the 

variety of problems and solutions procedures that have been considered in 

research studies. Finally, some optimization problems involving alternative 

configurations are presented in order to outline the problem under study in 

this doctoral thesis. 

2.2 Assembly Lines 

In its basic form, an assembly line consists of a sequence of m workstations, 

usually connected by transportation mechanism such as a conveyor belt, 

through which the product units flow. Each workstation repeatedly performs a 

set of tasks in order to produced or manufacture a specific product. Tasks 

require certain time to be processed and are related amongst one another 

according to the existing technological constraints. 



Chapter 2: State-of-the-art 

Undoubtedly, the most famous example of an assembly 

line is the production plant of Henry Ford. T-model 

components were manufactured in the first moving line 

using the ideas of work division to decrease the 

production cost per unit and to allow massive production. 

However, the work division ideas and this kind of 

configurations date from much earlier times. The 

Venetian Arsenal (considered the world first factory) for 

instance, developed methods of mass-producing warships 

which were much faster and required less wood. At the peak

the early 16th century, the Arsenal was able to produce n

day on a production-line basis not seen again until the Ind

In 1799, Eli Whitney introduced the assembly lines 

manufacturing system. In 1901 Ransom Eli Olds patented 

line concept and his Olds Motor Vehicle Company was t

America to mass-produce automobiles (Wikipedia (2003))

when Henry Ford perfected the assembly line concept; n

assembly line for building cars is attributed to him. 

Although, assembly lines are most commonly found in

industry, many other sectors are also organized in assembly

case for most daily life goods, as, for example, the final ass

products such as coffee machines, washing machines, refrig

and personal computers (Amen (2001)). More recently, as

gained importance in low volume production of customized p

al. (2007)) as well as in service systems. 

2.2.1 Basic Concepts  

 Processing tasks: a processing task i (task, hereafter)

working unit which has associated a processing time t

required to manufacture a product in an assembly line is

of n tasks. 

 Workstations: are the line component where tasks are p

involve a human or robotic operator, certain equi

specialized processing mechanisms. 

 7
 of its efficiency in 

early one ship per 

ustrial Revolution. 

in the American 

the first assembly 

he first factory in 

. Was until 1913 

owadays, the first 

 

 the automotive 

 lines. This is the 

embly of electrical 

erators, radio, TV 

sembly lines have 

roducts (Scholl et 

 is an indivisible 

i. The total work 

 divided into a set 

rocessed, and can 

pment and some 

http://en.wikipedia.org/wiki/Mass_production
http://en.wikipedia.org/wiki/16th_century
http://en.wikipedia.org/wiki/Ship
http://en.wikipedia.org/wiki/Assembly_line
http://en.wikipedia.org/wiki/Industrial_Revolution
http://en.wikipedia.org/wiki/Ransom_Eli_Olds
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 Cycle time ct: is the time available in each workstation to complete the 

tasks required to process a unit of product -the production rate is equal to 

1/  ct units of product per time unit. The cycle time is also defined (e.g. 

Peeters (2006)) as the time interval between the processing of two 

consecutive units. 

 Precedence relations: are defined by the technological precedence 

requirements that determine the partial order in which tasks can be 

performed in the assembly line. A task cannot be processed until all its 

immediate predecessors have already been processed. Precedence relations 

are normally represented by a precedence diagram. 

 Workstation load Sj: is the subset of tasks assigned to workstation j. 

 Workstation time t(Sj): is the sum of the times ti of all tasks assigned to 

workstation j. 

( ) =
∈
∑j i

i S j

t S t          [2.1] 

 
 Workstation idle time Itj: is the difference between the cycle time and the 

workstation load. 

( )j jIt = ct - t S ,   ( ) <jt S ct [2.2] 

 

 Line balancing: is the process of distributing the n tasks among the m 

workstations in such a way that precedence constraints and other 

constraints are satisfied; aiming at optimizing a given efficiency measure. 

Classical objectives seek to minimize m for a desired cycle time ct, or to 

minimize ct given m.  

There exists a great variety of configurations involving assembly lines, which 

are characterized according to diverse criteria. Amongst others, these include 

the layout and shape of the line, the number of products and models being 

processed in the line, types of workstation and the variability of the task 

processing times.  

Based on the research studies of Boysen et al. (2007a, 2007b), Becker and 

Scholl (2006), Hao (2005), Miralles (2004), Rekiek (2001) and Scholl (1999), 

the following classification (section 2.2.2) summarizes some of the most 

relevant attributes of assembly lines. 
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2.2.2 Classification of Assembly Lines 

What follows classifies assembly lines according to: the number of products or 

models produced, tasks durations, shape or layout of the line, the flow of the 

workpieces and the level of automation of the line.   

According to the number of products or models  

 Single-model line: is the classical configuration in which a single model of 

a unique product type is produced (Figure 2.1).  

 

 

Fig. 2.1: Single-model line 

 
 Mixed-model line: several variants of a basic product, referred to as 

models, are produced simultaneously in the line (see Figure 2.2). The 

production process does not involve setup times since all models require 

basically the same manufacturing tasks. Units of different models are 

produced in a mixed sequence. 

 
 
 

Fig. 2.2: Mix

 Multi-model line: different models with significant differences amongst 

one another are process  sequences of batches are 

 
 

 

According to task durat

 Deterministic: all task processing times are fixed and known with certainty.  

 Stochastic line: task processing times may be significantly affected from 

ed-model line 
 

ed in the lin . Therefore,e

processed, containing either the same model or a group of similar models, 

involving intermediate setup tasks (Figure 2.3). 

Fig. 2.3: Multi-model line 

ions  

different sources of variability such as, for example, the ability or 

motivation of human operators. Therefore, the processing time of one or 

more tasks is considered to be probabilistic. 

*

setup

*

setup
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ch the task is assigned, on the 

 

n the assembly process or due to 

Ac

 Serial lines: products units are processed throughout a group of 

ed in a straight line such as, for 

 
Fig. 2.4: Serial line1

 
Two-sided lines: consist of two serial lines in parallel, in which pairs of 

opposite workstations (left-hand side and right-hand side) process 

 

 
 
 
 

Dependent line: tasks processing times are not fixed but dependent, for 

example, on the type of workstation to whi

operator or on the processing sequence.  

Dynamic line: processing times vary over time and can be reduced in 

successive cycles due to improvements i

learning effects (for example, when operators become familiar with the tasks). 

cording to the line shape or layout 

workstations that are consecutively arrang

example, a conveyor belt (Figure 2.4). 

 

    

simultaneously the same workpiece. This configuration is commonly found 

in the automotive industry (Figure 2.5). Some tasks can be assigned only to 

one side (e.g. mount the left car wheel), some tasks can be assigned to 

either side (e.g. install the hood ornament), and some tasks must be 

assigned to both sides of the line simultaneously (e.g. install the rear seat) 

Bartholdi (1993).  

 
 
 
     

Fig. 2.5: Two-sided lines2

                                                 
1 An assembly line of VCR units of Sony.   
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 Parallel workstations: in this case two o more workstations are put in 

parallel; hence, the work pieces can be distributed between several 

workstations that perform an identical set of tasks.  

 

ch each line is designed 

for one product or family of similar products (Figure 2.6). 

 

 

 

 
Fig. 2.6: Parallel lines 

 U-Shaped lines: the workstations are arranges in a U-shaped line. Both 

tops of the line are closed to each other forming a U (Figure 2.7, Lee 

(2000)). The workstations may work during the same cycle on two or more 

 

 

 Circle/closed lines e workstations are arranged 

around a circular conveyo chanism), as can be seen in 

Figure 2.8. A workpiece moves around being processed as it visits the 

 

                                     

Parallel lines: this type of configuration can be considered when the 

production system involves multiple products, in whi

 

workpieces at different positions on the line. 

 

 
  

Fig. 2.7: U-shape lines 

: in this type of lines th

r belt (or similar me

workstations, until the last task have been performed. 

 
 

 
 

2 The assembly line of the Toyot

 

Fig. 2.8: Closed line 

                                                                                                    

 

 
a Lexus, Canada. 
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According to the workpieces flow  

 Synchronous lines: in synchronous lines,  paced lines, all 

workstations have a common cycle time. Therefore, all workstations start 

processing at the same time and advance the workpieces simultaneously. 

Synchronous lines have a fixed production rate (Figure 2.9). 

 

 
 
 
 

Fig. 2.9: Synchronous line 
 
 

 Asynchronous lines: in these lines all workstations can work at different 

speeds; thus, workpieces are transferred whenever the required tasks are 

completed. The workstations are linked by buffers to store the workpieces 

that cannot advance to the next workstation due to it is processing another 

workpiece (Figure 2.10). 

 

 
 

Fig. 2.10: Asynchronous line 

 

 Feeder lines: feeder lines are supplementary lines that provide a main line 

with subassemblies. Figure 2.11 shows an example of an assembly process of 

an aeroplane, which consists of four lines feeding the main line. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11: Feeder lines 

 

 also referred to as

 

buffer buffer 

 

Feeder line 3 

Feeder line 1 

Feeder line 2 

 Feeder

Main line  

 line 4  
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According to the level of automation 

 Robotic li

 
 
 

 
 
 
 

 Fig. 2.12: Manual line   Fig. 2.13: Robotic line3

 
e type of 

l, 

paced, deterministic line merely entails the assignment of tasks to the 

workstations –the simplest balancing problem. However, for other line 

pr

seq  lot sizing 

problem. Parallel lines involve a decision problem concerning the number of 

volve the 

 

Despite that, in the last years a considerable effort has been done towards 

                                                

 Manual lines: in manual lines the tasks are performed by human 

operators.  These lines are common when workpieces are fragile or are of 

special importance. Harley Davidson’s motorcycles, for example, are 100% 

assembled by hand as shown in Figure 2.12. 

nes: robotic lines, commonplace in automotive industry, are lines 

fully automated and operated by robots (Figure 2.13). 

 

 

The characterization of the line, to a great extent, determines th

balancing problem that is to be solved. For example a single-model, seria

configurations the balancing problem comes together with additional decision 

oblems. A mixed model line, for example, is connected with a problem of 

uencing the models, whereas a multi-model line also implies a

lines that needs to be installed. Robotic lines, on the other hand, in

assignment of both tasks and robots to the workstations. Asynchronous lines 

requires of the positioning and dimensioning of buffers; and whenever feeder 

lines are considered, the production rates of the available lines have to be 

synchronized. 

It is evident that industrial systems involve a great variety of characteristics

and problem variations. However, due to their complexity, most literature 

studies on production and manufacturing have addressed problems which do 

not consider many of the requirements and constraints present in real systems. 

 
3 http://encarta.msn.com/media˙701765960/Robot˙Assembly˙Line.html (visited on February 2004) 
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filling the gap between problems addressed in research works and real-world 

ap

problems, its variatio

problems involving processing alternatives are also discussed. 

2.3

Assembly line balancing problems have been extensively studied, as can be 

1986), Ghosh and Gagnon (1989), Erel and 

arin (1  

choll and Becker (2006). 

s previously mentioned, the Assembly Line Balancing Problem (ALBP) 

nsists in assigning a set of indivisible tasks to an ordered sequence of 

orkstations in such a way that precedence constraints are maintained, the 

orkload of each workstation does not exceed the cycle time and a given 

ficiency measure is optimized. The term balancing arises from the fact that 

 to be b 1)). Since a 

erfect balance (i.e., an identical load for all workstations) is rarely achieved, 

production rate can be maximized by minimizing the cycle time of a given 

inimization criteria that have been considered in literature 

(e.g. Pinto et al. (1981)), number of buffers, line stoppage time, and variances 

in workstation times. Some maximization objectives include production rate 

plications. What follows discusses main aspects of assembly line balancing 

ns and proposed solution procedures. Furthermore, 

 Assembly Line Balancing Problems 

seen in the reviews of Baybars (

S 998), Rekiek et al. (2002), Dolgui (2006), Becker and Scholl (2006),

S

A

co

w

w

ef  

the workload of each workstation is alanced (Rekiek (200

p

workstations idled time becomes a main optimization objective. On the other 

hand, as the assembly line global cost is influenced by the number of 

workstations, the classical objective of assembly line balancing problems is to 

minimize the number of workstations for a given cycle time, which is referred 

to as time-oriented line balancing (e.g. Amen (2001)). Furthermore, 

number of workstations. Problems that seek to minimize costs are regarded to 

as cost-oriented line balancing (e.g. Becker and Scholl (2006), Scholl and 

Becker (2006), Amen (2000)). On the other hand, profit-oriented are those 

which implicitly consider the profit attained by the line.  

Generally, minimizing the number of workstations or the cycle time is the 

primary objective of assembly line balancing problems. Nevertheless, most 

often, more that one efficiency measure is to be optimized. The followings are 

some of the m

studies: throughput time (i.e., the time interval between lunching a workpiece 

and finishing the finished product form the line), cost of machinery and tools 

(e.g. Bukchin and Tzur (2000)), inventory cost (e.g. Martin (1994)), dead time 

(i.e. the time that takes to transport a workpiece from one workstation to 

another) (e.g. Bard (1989)), cost of producing one unit of product, labour cost 
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(which is equivalent to minimize the cycle time), line efficiency and profit (e.g. 

Becker and Scholl (2006)). A further objective considers that the workload of 

each workstation needs to be as similar as possible (e.g. Martinez and Duff 

(2004), Miralles et al. (2003)).  

Considering the line system characteristics and the problem objectives, several 

A well-known early classification of ALBP is the one proposed by Baybars 

 is restricted by precedence relations and cycle time 

he first field of such 

codification is used to characterize the line: identifies the type of line 

attempts have been done to categorize balancing problems.  

(1986), which distinguish two classic problems: Simple Assembly Line 

Balancing Problem (SALBP) and Generalized Assembly Line Balancing 

Problem (GALBP). In the former case, only one model of a single product is 

processed, and the problem

constraints. GALBP, on the other hand, compounds all problem variations 

which take into account further restrictions and problem attributes. Ghosh 

and Gagnon (1989) slightly extended the Baybar’s proposal by considering the 

number of products being processed in the line and the variability of the task 

processing times.   

Notwithstanding the classification proposed by Baybars (1986) has been 

habitually used as a guideline for many other proposals, it is yet too general 

and restricted to reflect the increasing variety of real-word balancing problems. 

Consequently, more detailed classifications schemes have been intended to 

facilitate the communication between researches and practitioners. Such 

proposals use a condensed notation which allows considering a significant 

number of aspects to describe real assembly systems. Some of the most 

relevant proposals include the following. 

Plans (1999) presented in his doctoral thesis an exhaustive classification 

scheme based in a five-field codification to identify and characterize assembly 

balancing problems as well as its resolution procedures. T

considered (i.e. simple, mixed or multiple) and defines the existence of parallel 

workstations or buffers. The second field specifies tasks durations, setup times 

and, when applies, operator transportation times. The third field specifies the 

constraints among the tasks (i.e. precedence, incompatibility, affinity or 

parallelism) and indicates whether or not all workstations are equally 

equipped. The fourth element indicates if movement of the product being 

assembled is allowed over the line (e.g. rotated); and the last field specifies the 

problem type and the optimization objectives. 

A similar classification scheme is proposed by Hao (2005), in which a larger 

number of the characteristics of the problem being studied are taken into 

 15



Chapter 2: State-of-the-art 

 

account. In this case, ALBP are classified considering four main groups: (1) 

the product, which defines the range of products processed over the line, its 

launching discipline and its position while being processed; (2) the line, which 

defines the line layout, the type of workstations used, the degree of 

 required) used to 

describes the workstations and the line: it defines the 

ider very simple problems, entirely 

restricted by the technological precedence relations and the cycle time 

 

automation, its length, type of setups, and the pattern (related to the speed of 

the line and the allowance to stop the line processing when

manage the line; (3) the operator, which describes the people capabilities to 

perform the tasks over the line; and the last group (4) defines the type of 

problem and its objectives.  

More recently, Boysen et al. (2007b) proposed an approach intended to typify 

extensions of assembly systems by considering the following tripartite 

notation: [α|Λ|γ]. The first element, α, uses a set of six attributes to determine 

whether a unique product or model is being considered, to establish the 

structure of the precedence graph, to identify processing times, assignment 

restrictions and to establish whether there exist processing alternatives. The 

second element, Λ, 

movement of the workpieces, the line layout, level of (line, workstation, tasks, 

and working places) parallelization, resource assignment restrictions, and 

other configuration aspects, such as buffers or feeders. Finally, γ establishes 

the objectives. 

2.3.1 Simple Assembly Line Balancing Problems (SALBP) 

As previously mentioned, SALBP cons

constraints.  

A huge amount of research work has been devoted to this type of problem 

(e.g. Baybars (1986), Ghosh and Gagnon (1989), Scholl (1999) and Becker and 

Scholl (2006)). 

Characteristics of the simple assembly line balancing problem 

The following are the main assumptions of simple assembly line balancing 

problems (Baybars (1986), Scholl (1999)). 

A serial assembly line processes a unique model of a single product with all 

input parameters known with certainty. Task processing times are 

deterministic and independent on the workstation at which they are performed

and on the preceding or following tasks. None of the task processing times is 

greater than the cycle time and setup times are considered to be negligible. All 
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workstations are equally equipped and manned, therefore, any workstation can 

process (one at a time) any one of the tasks; furthermore, tasks can be 

assigned to any workstation, and they are not incompatible between each 

other. On the other hand, tasks must be process only once and cannot be split 

among workstations; therefore, each task has to be completely processed in one 

workstation only. Task cannot be processed in arbitrary sequences due to 

technological precedence requirements; though all must be processed; and no 

other assignments restrictions are considered apart from precedence cycle time 

constraints. 

Versions of SALBP 

According to the optimization objective considered, four versions of SALBP 

are distinguished (Scholl (1999)): 

 SALBP-1: minimizes the number of workstations m given a cycle time ct.  

 SALBP-2: aims at minimizing the cycle time ct given the number of 

workstations m. 

 SALBP-E: seeks to maximize the line efficiency E, where E=tsum/(m⋅ct) 
and tsum is the summation of all task processing times. 

 SALBP-F: is a feasibility problem that tries to establish whether a feasible 

task assignment exists for a given cycle time ct and a number of 

workstations m. 

Although the great majority of published research work done on SALBP 

ly when designing an assembly line and SALBP-2 appears every 

There exist several mathematical formulations for the simple assembly line 

as a 

reference to many other models. According to Ghosh and Gagnon (1989), the 

matical form by Salveson in 1955. 

focuses on SALBP-1, it has been argued (e.g. Miralles (2004)) that SALBP-2 

appears to be more relevant than its counterpart SALBP-1, because SALBP-1 

is suitable on

time an existing line requires to be (re)balanced.  

Mathematical model of SALBP 

balancing problem, in particular for SALBP-1, which have been used 

first analytical statement of this problem was made by Helgeson et al. in 1954 

and published for the first time in mathe

Other models include the one proposed by Bowman (1960) who was the first 

to incorporate integer variables. The model of Bowman was improved by 

White (1961) and then further improved by Thangavelu and Shety (1971), 

and Patterson and Albracht (1975). What follows present a basic mathematical 

programming model for SALBP-1 and for SALBP-2.  
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Notation 
 

 Indices  

i for tasks 

j  for workstations 

 Parameters 

n  number of tasks (i = 1,…,n)  
m  maximum number of workstations (j = 1,…,m) 

ti processing time of task i (i = 1,…,n) 

iven for SALBP-1 and a decision variable for 

SALBP-2) 

 

ct  cycle time (it is g

PDi set of the immediate predecessors of task i (i = 1,…,n) 

Decision variables 

{ }0,1∈ ⎨
⎪⎩

=j
j  j m

y
1,  if there is any task assigned to workstation ⎧⎪ ( = 1,..., ) 

0,  otherwise

1,  if{ }0,1
⎧⎪∈ ⎨
⎪⎩ij =

i j i n  j m
x

 task is assigned to workstation ( = 1,..., ; = 1,..., ) 
 

Mathematical Model of SALBP-1 

Th

order to minimize the number of workstations given the cycle time ct.  

workstations to be used in lexicographic order (i.e., tasks are assigned from the 

0,  otherwise

e following model for SALBP-1 assigns the tasks to the workstations in 

The objective function [2.1] consists in minimizing the number of workstations. 

Constraints [2.2] guarantee that every task i is assigned to one and only one 

workstation. Constraints [2.3] ensure that the summation of the processing 

times of the tasks assigned to workstation j does not exceed the cycle time. 

Constraints [2.4] impose the precedence constraints. Relations [2.5] oblige the 

first to the last workstation).  

=

= ∑
m

j
j 1

Minimize z y   [2.1] 

1

1
=

=∑
m

i j
j

x  ∀ i  [2.2] 

1

n

i ij j
i

t x c t y
=

⋅ ≤ ⋅∑  j∀  [2.3] 

1 1

m m

p j ij
j j

j x j x
= =

⋅ ≤ ⋅∑ ∑  , ii p PD∀ ∀ ∈  [2.4] 

1j jy y +≥  1,..., 1j m= −  [2.5] 
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Mathematical Model of SALBP-2 

h tion for SALBP-2 is similar to the previous formulation for 

SALBP-1 in which the cycle time is the variable to be optimized, i.e., 

ob tiv urthermore, as the number of workstations is a given 

ced by [2.7] since all workstations existence 

variables 

T e formula

jec e function [2.6]. F

parameter, constraint [2.3] is repla

yj are equal to 1. 

=Minimize z tc   [2.6] 

1
1

=

=∑
m

x  i j
j

∀ i  [2.2] 

n

1
i i j

i
t x c t

=

⋅ ≤∑  j∀  [2.7] 

1 1

m m

p j i j
j j

j x j x
= =

⋅ ≤ ⋅∑ ∑  , ii p PD∀ ∀ ∈  [2.4] 

2.3.2  Generalized Assembly Line Balancing Problems (GALBP) 

ancing problems are considered to be 

ALBP 

examples include the following main known groups. 

lines a task can be assigned only when its 

predecessors have been assigned. Regarding the conventional terminology used 

for SALBP (e.g., Baybars (1986)), the following variants are distinguished: 

UALBP-1, UALBP-2 and UALBP-E, respectively. Examples of this type of 

problems can be found in Scholl and Klein (1999b), Miltenburg (1998, 2002), 

Miltenburg and Wijngaard (1994), Ajenblit and Wainwright (1998).  

Mixed-model Assembly Line Balancing Problem (M P) 

This problem appears when a mixed-model line is considered. Different models 

of the same product are inter-mixed to be assembled on the same line. 

Therefore, apart from assigning the tasks to the workstations the sequence of 

different models has to be determined. The problem versions MALPB-1, 

Habitually, generalized assembly line bal

the problems in which one or more assumptions of the simple case are relaxed 

(e.g. Baybars (1986), Scholl and Becker (2006)). Some common G

U-Shaped Assembly Line Balancing Problem (UALBP)  

This kind of problems involves U-shaped lines. This configuration is considered 

to be more flexible because the line disposition allows for more possibilities on 

how to assign tasks to workstations. The reason for this is that tasks can be 

assigned when either its predecessor or its successors have already been 

assigned, whereas with serial 

ALB
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MALBP-2 and MALBP-E are also valid. Many literature studies have 

Robotic Assembly Line Balancing Problem (RALBP)  

In this case, a robotic line is consider

and the set of robots have to be assigned to workstations (e.g. Rubinovitz and 

Bukchin (1993), Tsai and Yao (1993), H ng an  Cho (1999)

Multi-objective Assembly Line Bala g Problem (MOALBP) 

These problems consider several optimization objectives simultaneously. Agpak 

and Gokcen (2005), for example, deal with a problem that seeks to minimize 

both the number of workstations and t  total assembling cost or the amount 

of resources. According to Rekiek et al. (2002) most GALBP are multi-

objective (e.g. Kim et al. (1996), Malakooti and Kumar (1996), McMullen and 

 

Bukchin and Rubinovitz (2003), for example, addressed a problem involving 

xey (1974); 

dditional 

restrictions apart from cycle time and precede constraints. Park et al. (1997), 

fore certain 

addressed this problem, see, for example, Kubiak and Suresh (1991), Bard et 

al. (1992), Bukchin (1998), Merengo et al. (1999), Bukchin et al. (2002), 

Karabati and Sayin (2003), Ponnambalam et al. (2003), Spina et al. (2003), 

Bukchin and Rabinowitch (2005). 

ed, therefore, both the assembly tasks 

o d ). 

ncin

he

Frazier (1998a), Bukchin and Masin (2004)). 

Many other problems have been also addressed in the literature in which a 

great diversity of aspects of the real problem has been taken into account.  

Regarding the characteristics of the line and the layout of the system

parallel workstations; multiple workstations are considered by Bu

Pinto et al. (1975) tackled a problem involving parallel tasks. Other problems 

include two-sided lines, commonly found when heavy work pieces such as cars 

or aeroplanes are involved (e.g. Kim et al. (2000), Bartholdi (1993)); buffered 

or parallel lines commonplace in a multi-model context (e.g. Suer (1998)), 

multi-product lines (e.g. Pastor et al. (2002), Berger et al. (1992)); multiple 

assembly lines as the N-UALBP of Miltenburg (1998); and complex layouts 

involving lines with different shapes (e.g. Bukchin et al. (2006)). 

Additional restrictions 

Research works have also addressed problems that consider a

for example, considered a problem involving incompatibilities; there

tasks cannot be processed in the same workstation. Other examples include 

workstation capacity constrained problems as in Moon et al. (2002); resource 

constrained (e.g. Agpak and Gokcen (2005)); and workstations that are not 

equally equipped (e.g. Nicosia et al. (2002)). 
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Task durations 

With reference to duration of the tasks, literature studies include problems 

that involve processing times that are dependent on the sequence (e.g. Spina 

et al. (2003)) or on the operator (e.g. Corominas et al. (2006)), which are 

stochastic (e.g. Sarin et al. (1999)) or fuzzy (e.g. Gen et al. (1996)). 

ncerning either 

d 

Gokcen (2005) and Gamberini et al. (2005)).  

ssigned to workstations; and, on 

the other hand, the assignment of tasks considering workstation restrictions. In 

 to 

further considered parallel workstations.  

n which the 

assumption that one process plan is available for each job is relaxed. They 

on scheduling performance and concluded 

hes are proposed: (1) 

Processing alternatives and equipment selection 

Alternatives configurations have also been considered in literature studies, 

which are mainly related to equipment selection. In this case, processing 

alternatives are determined through task requirements co

machines or manpower (e.g. Pinto et al. (1983), Sawik (2002), Agpak an

Bukchin and Tzur (2000) addressed a problem that considers equipment 

alternatives, with every workstation provided with one equipment chosen from 

a set of equipment types. Each equipment type has an individual cost that 

affects task processing times. Therefore, the problem implies, on the one hand, 

the selection a proper equipment type to be a

this problem tasks are subject to fixed precedence restrictions; in the same 

way, processing times are considered to be fixed. A similar problem related

equipment selection was undertaken by Bukchin and Rubinovitz (2003) which 

Pinto et al. (1983) dealt with a problem involving processing alternatives. 

According to Bukchin and Tzur (2000), this problem is related to the selection 

of limited equipment, which may be added to the existing equipment in the 

workstation. In this problem precedence relations between tasks are always 

maintained. 

Processing alternatives have also been considered in other optimization 

problems, such as the scheduling of tasks in flexible manufacturing systems. 

Ahn and Kusiak (1990), for example, dealt with a case i

analyzed the effects of process plans 

that the quality of schedules, regarding makespan and utilization of resources, 

improves when alternative processing plans are considered.  

Sawik (2002) tackled a problem of balancing and scheduling several product 

types which are produced in a flexible assembly line; i.e., a line that involves 

workstations of various types in series, each one capable of simultaneously 

producing a mix of product types. Two solution approac
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is a sequential approach that at first assigns the tasks to the workstations 

 required 

tasks have been assigned subject to the precedence relations defined by its 

rehand.  

on the assembly subgraphs. 

P), which extends the basic problem 

y time increments that are added to the task time, defining the 

different task processing times but also trough completely different sets of 

regardless of the model type, and then afterwards determines the sequence for 

each product type; and (2) a monolithic approach that simultaneously 

considers the balancing and the scheduling problem. In both cases, each 

product must be successively routed to the workstations where the

assembly plan, any of which is unique and prefixed befo

The problem addressed in this doctoral thesis, the Assembly Subgraphs 

Assembly Line Balancing Problem (ASALBP), considers the possibility of 

assembly alternatives, each of which consists of a particular task processing 

order that is represented by a precedence subgraph. Consequently, precedence 

relations are not fixed but dependent 

Furthermore, each processing alternative involves a subset of tasks which may 

be different for each assembly variant. In addition, task processing times are 

not fixed but are also dependent on the assembly subgraphs.  

The development of this thesis engenders the definition and formalization of 

this new problem as exposed in the research works of Capacho and Pastor 

(2005, 2006). Per se, previous to this thesis, the ASALB problem remained 

unexplored.  

In a recent work, Scholl et al. (2007) introduced the sequence-dependent 

assembly line balancing problem (SDALB

by considering sequence-dependent task times. In that paper, the authors 

adapt solution approaches for SALBP to SDALBP, generate test data and 

perform some preliminary computational experiments. SDALBP can be 

considered a special case of ASALBP, in which assembly alternatives are 

represented b

interference of performing one task after certain other task. For instance, an 

increment sdij corresponds to the additional time that a task j requires to be 

performed given that a task i has been performed before it.  

In the ASALBP the alternatives are explicitly defined by independent 

precedence subgraphs which represent different processing alternatives; i.e. 

assembly variants. Therefore, the alternatives can be defined not only trough 

precedence requirements. Furthermore, assembly processes involving different 

set of tasks are also allowed, which are not at all contemplated in the SDALB 

Problem. 
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2.4 Procedures to Solve Assembly Line Balancing 
Problems 

Numerous procedures have been developed to solve assembly line balancing 

problems. Due to the NP-hard nature of this type of combinatorial problem, 

few exact methods have been developed to solve SALBP, in particularly 

SALBP-1. Habitually, although guaranteeing an optimum solution, exact 

roblems are the 

heuristic approaches focussed on SALBP. Branch and bound 

methods are compared by Scholl and Klein (1999a).  

ve been used to 

formally describe assembly line balancing problems, which may facilitate 

methods have a problem size limitation, measured in terms of computing time; 

therefore, they can only be applied to problem instances with small or medium 

number of assembly tasks. Approximate methods (i.e., heuristics and 

metaheuristics) have been developed in order to overcome such a limitation, 

and aiming at providing good solutions that are as near as possible of the 

optimal solution. 

Amongst the more relevant review papers concerning both exact and 

approximate procedures to solve assembly line balancing p

following proposals: Erel and Sarin (1998) and Baybars (1986) which present 

exact methods developed for the simple case (SALBP); Talbot et al. (1986), 

on the other hand, dealt with heuristics techniques. Scholl and Voss (1996) 

also discuss 

An analysis of the optimization methods for assembly lines design is provided 

by Rekiek et al. (2002). Erel and Sarin (1998) provide a survey on the 

procedures to solve ALBP. The most up to dated states of the art on both 

exact and heuristics methods can be found in Scholl and Becker (2006) for the 

simple case and in Becker and Scholl (2006) for the generalized case.  

2.4.1  Exact Procedures 

Generally, (mixed) integer linear programming models ha

designers and decision makers to have a better understanding of different 

assembly systems. However, most often solving such models optimally has not 

practical relevance because standard solvers proved to be inefficient when 

considering real-world scaled problems (Scholl et al. (2007)). Therefore, most 

exact methods considered in the literature to solve ALBP are based on 

dynamic programming and branch-and-bound procedures. 
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Dynamic Programming    (DP) procedures basically transform the problem into 

a multi-stage decision process by breaking it into smaller subproblems, which 

in turn are solved recursively; then the optimal solutions of the subproblems 

 (B&B) is an enumeration technique developed by Little et 

al. (1963), which finds the optimal solution by exploring subsets of feasible 

solutions. Sub-regions are formed by branching the solution space. A bounding 

process is recursively used to find lower or upper bounds of the optimal 

solution within each sub-region, using different searching strategies (e.g., depth 

are provided by Pinnoi and Wilhelm (1998) and Bockmayr and Pisaruk 

t exact methods used to solve SALBP-2 are 

based on repeatedly solving SALBP-F with m workstations and various trial 

cycle times values within a given interval (Klein and Scholl (1996)). Only two 

B&B procedures solve SALBP-2 directly: TBB2 and SALOME2 developed by 

Klein and Scholl (1996). 

 software). Sarin et 

al. (1999) developed a B&B procedure for a problem with stochastic processing 

are used to construct the optimal solution of the original problem. The first 

dynamic programming procedure was developed by Jackson (1956) and 

modified by Held et al. (1963). The main drawback of these procedures is their 

large memory requirements. This limitation was improved by the procedures 

proposed by Schrage and Baker (1978), Lawler (1979) and Kao and Queyranne 

(1982). Although the latter DP proposals have resulted in greater 

computational efficiency, time and storage requirements continues to be a 

mayor inconvenient of this type of procedures.  

Branch-and-bound

first search, minimal lower bound, best first search or minimal local lower 

bound). Computational comparisons (e.g. Scholl and Klein (1999a)) have 

revealed that branch-and-bound (B&B) procedures outperform DP. B&B 

procedures are further discussed by Scholl (1999) and Becker and Scholl 

(2006). Pastor (1999) presents a classification of such procedures as well as 

different search and bounding strategies.  

Some effective B&B methods developed to solve SALBP-1 include FABLE 

proposed by Johnson (1988), EUREKA by Hoffmann (1992), and SALOME of 

Scholl and Klein (1997). Similarly, contributions on Branch-and-cut algorithms 

(2001). On the other hand, mos

In a much lesser extent, mainly justified by their problem size limitation, 

exact methods have been also used to solve GALBP. Urban (1998), for 

example, presented an integer programming formulation for UALBP-1, solving 

problem instances with CPLEX (a commercial optimization
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times. Scholl and Klein (1999b) developed a B&B procedure to address an 

UALBP. Dynamic programming formulations, on the other hand, were 

proposed by Miltenburg (1998) to solve a case with N U-lines and by Nicosia 

et al. (2002) to solve a problem involving different workstations. 

2.4.2  Approximate Procedures 

There exist a great variety of approximate methods proposed in the literature 

to solve assembly line balancing problems (e.g. Talbot et al. (1986), Amen 

(2000, 2001), Scholl and Voss (1996)); most of which are constructive 

methods, enumeration procedures and improving techniques. Two main groups 

ed heuristic was Ranked Positional 

Boctor (1995), Scholl (1999) and Gosh and Gagnon 

following strategies. 

are distinguished: heuristic and metaheuristic methods. 

Heuristic methods 

A common methodology used is the greedy approach, where, at each step of 

the procedure, one element of the solution is chosen according to a given 

criteria until a complete solution is obtained. The simplest method randomly 

generates solutions, evaluates each one of them and keeps the best of all 

solutions obtained (Silver (2002)).  

Basically, constructive methods are based on priority rules, most of which are 

measured considering the number of predecessors and successors, and the task 

processing times. One of the first propos

Weight (RPW) by Helgeson and Bernie (1961), in which tasks are ranked in 

descending order of the positional weight (the summation of the task time and 

the processing times of all its successors). Other well-known priority rules 

include maximum task time, maximum total number of successors, minimum 

earliest and latest workstation and minimum slack. Some heuristics combine 

several priority rules; such as, for example, TTS which considers the 

maximum task time divided by the total number of successors.  

Most efficient priority rules are described in detail in Talbot et al. (1986), 

Hackman et al. (1989), 

(1989). 

Priority-rule based methods create a ranked list of the assignable tasks. A task 

is assignable if all of its predecessors have already been assigned and if its time 

plus the current workstation time does not exceed the cycle time. Then, tasks 

are selected and assigned to the workstations considering one of the two 
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Station-oriented: this strategy starts with one workstation and then others are 

consecutively considered one at a time. In each iteration tasks are orderly 

selected from the ranked list and assigned to the current workstation. Once 

the current workstation is fully loaded (the ranked list is empty) a new 

workstation is opened. 

k in the rank list (the one with the 

highest priority) is selected and assigned to the earliest workstation to which 

Computational experiments (e.g. Scholl and Voss (1996)) have shown that, in 

ed provide better results than task-oriented methods.  

turning the best of 

case, a random search strategy must be also considered in which one of the 

transfer lines 

balancing.  

(2004) involving an industrial case.  

The solution obtained by constructive methods can be improved by using 

Task-oriented: in this strategy, the first tas

the task can be assigned. Task-oriented methods are further divided into 

immediate-update-first or general-first-fit methods depending on whether the 

ranked list is immediately updated after a task has been assigned or after all 

tasks in the ranked list have already been assigned, respectively.  

general, station-orient

Constructive methods that consider a unique rule to generate a single feasible 

solution are also regarded to as single-pass methods (Rekiek (2001)). Their 

counterpart, multi-pass methods (also called multi-start methods, e.g. Martí 
and Moreno (2003), Fernandes and Ribeiro (2005)) generate multiple feasible 

solutions, applying repeatedly different priority rules, re

all solutions obtained when a stopping criterion is satisfied. In the latter 

assignable tasks is selected randomly, instead of selected the best considering 

a particular priority rule. Arcus (1966) proposed COMSOAL, the first multi-

pass procedure applied to SALBP. In this procedure, the next task to be 

assigned to the current workstation is randomly selected from the set of 

assignable tasks; furthermore, it is considered that all tasks have the same 

probability of being selected. Several solutions are generated keeping the one 

with lowest level of idle time. Other procedures have been proposed based on 

the ideas behind COMSOAL, e.g. DePuy and Whitehouse (2000) for a 

resource allocation problem, and Dolgui et al. (2005) for 

Heuristics based on priority rules and enumeration procedures have also been 

proposed by Lapierre and Ruiz 

local search procedures. These procedures start with a feasible solution which 

is progressively improved. Different strategies are used to generate neighbour 

solutions (e.g. two tasks are interchanged between each other) and then such 

solutions are evaluated based on a given objective. If one solution is better 
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than the current solution, it becomes the new solution and its neighbourhood 

is investigated until no further improvement can be obtained.  

Metaheuristics  

Falling in a local optimum is a main drawback of classical heuristic methods. 

Therefore, in the last years a group of methods, referred to as metaheuristics, 

tions can be 

d scheduling problem considering sequence-dependent setup times.   

have been developed to overcome such a limitation.   

The term metaheuristic was first introduced by Glover (1996). These 

procedures are based in constructive methods to find an initial solution (or a 

population of initial solutions) and local search algorithms to move to an 

improved neighbour solution. In contrast to local search approaches, 

metaheuristics do not stop when no improving neighbour solu

found. They allow movements to worsening solutions in order to avoid 

premature convergence to a local optimum solution. Metaheuristics use 

different concepts derived from artificial intelligence, evolutionary algorithms 

inspired from mechanisms of natural evolution (Pierreval et al. 2003).  

Further details on metaheuristics can be found in Reeves (1993, 1997), Osman 

and Laporte (1996) and Gottlieb et al. (2003). Most common metaheuristics 

include the following.  

GRASP (Greedy Randomized Adaptive Search Procedure) is an iterative 

process in which each iteration consists of two phases: the construction phase, 

which generates an initial solution; and the improving phase, which uses a 

local optimization procedure to find a local optimum. The initial solution is 

generated by probabilistically selecting the next element to be incorporated in 

a partial solution from a restricted candidate list (RCL). The RCL is 

composed of the best elements considering a given greedy function 

(Armentano and Bassi (2006)). It has been proven (e.g. Feo et al. (1994), 

Festa and Resende (2004)) that GRASP produces good quality solutions for 

hard combinatorial optimization problems, including line balancing problems. 

Andres et al. (2006), for example, proposed a GRASP procedure to solve a 

balancing an

Tabu search (TS) is a local search metaheuristic based on memory structures 

that prevents returning and keeping trap in a local optimum solution. To 

escape from a local optimum moves to worse solutions are allowed. A tabu list 

is used to avoid cycling back to recently visited solutions. The size of the list, 

a key parameter, determines the number of iterations during which a given 

solution is prevented to reoccur. The procedure finishes, for example, when a 

number of search movements has been performed and no further improvement 
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has been achieved. TS procedures have been proposed to solve assembly line 

balancing problems:  SALBP-1 (e.g. Chiang (1998)), SALBP-2 (e.g. Scholl and 

LBP (e.g. Voss (1994), Pastor et al. (2002)). Further 

details on TS are found in Glover (1990) and Glover and Laguna (1993, 1997).  

th (e.g. for food or real 

ants) which connects two different positions (Gottlieb et al. (2003)). The 

colony 

optimization to address a multi-objective assembly line balancing problem. 

e molecular structure of metals is 

disordered at high temperatures and ordered and crystalline at low 

Genetic algorithms (GA), an idea pioneered by John Holland, closely 

Voss (1996)) and GA

Ant colonies algorithms, first proposed by Dorigo et al. (1996), basically 

model the behaviour of ants searching an optimal pa

selection of paths is stochastic and it is influenced by both the quantity of 

pheromone that other ants have put on a path (i.e. desirability) and the local 

values of the objective function that can be determined if the path is selected 

(i.e. visibility). The level of desirability is updated according to the paths that 

ants use the most (Pierreval et al. (2003)).  Procedures based on ant colonies 

have been considered by Baykasoglu et al. (2003) and Bautista and Pereira 

(2002) to solve SALBP-1; and by Bautista and Pereira (2003) to solve an 

UALBP. McMullen and Tarasewich (2006) also considered ant 

Simulated Annealing (SA) is a technique inspired from the physical 

annealing of solids. It models how th

temperatures. A problem instance is formulated in such a way that it 

resembles disordered material. The temperature is gradually lowered such that 

ordered states correspond to good solutions of the problem. SA methods avoid 

getting trap in a local optimum by allowing uphill moves based on a model of 

the annealing process in the physical world (Flake (1999)). 

SA algorithms applied to assembly line balancing problems include, for 

example, the proposal of Suresh and Sahu (1994) for solving a stochastic 

variant of SALBP-1, and the one by McMullen and Frazier (1998a) for a 

GALBP involving parallel stations, stochastic task times and multiple 

objectives. 

simulate biological evolution as they map programs and data into DNA-like 

structures that express some notion of fitness (Goldberg (1989)). GA use a set 

of initial solutions, i.e. individuals, each of which represents a point in the 

search space of potential solutions to a particular problem. A given number of 

individuals conforms a population of potential solutions. The population is 

evolved by employing crossover and mutation operators along with an 

objective function (i.e. the fitness function) that determines how likely 

individual are to be reproduced (Flake (1999)).  
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Genetic algorithms have been proposed, for example, by Ji et al. (2001) to 

determine the cycle time for printed circuit board assembly lines (SALBP-2); 

Ruvinovitz and Levitin (1995) to solve a RALBP; Kim et al. (1996) to solve a 

MOALBP; Ponnambalam et al. (2003) to solve a MALBP; and Feyzbakhsh 

and Matsui (1999) to optimal design flexible assembly systems.  

Other approaches that have been also considered in research studies include 

the followings (see Pierreval et al. (2003) for more details on evolutionary 

algorithms applied to ALBP): expert systems, e.g. Phonganant et al. (2001) to 

solve a MALBP; and fuzzy logic, e.g. Gen et al. (1996). Erel and Gokcen 

(1999) also proposed a procedure using the shortest route model to solve a 

MALBP. Park et al. (1997) consider an algorithm based on networks theory to 

solve a problem with incompatibilities among the tasks. Tools for system 

modelling and analysis have been also used in combination with 

metaheuristics. For example, Mendes et al. (2005) use a simulated annealing 

procedure to derive configurations in a mixed-model assembly line, and then 

r solving assembly 

line balancing problems; Kilincci and Bayhan (2006, 2007), for example, 

such configurations are fine-tune via a simulation model. McMullen and 

Frazier (1998b) use simulation as a mean to compare the results of applying 

different line balancing strategies considering paralleling of workers within 

work centres.  Moberly and Wyman (1973) also use simulation to compare a 

set of assembly line balancing configurations.  

Heuristics based on Petri nets have been also considered fo

proposed an algorithm based on Petri nets to solve SALBP-1.   

Fluid models (eg. Avram et al. (1995)), on the other hand, have been proposed 

to analyze the behaviour of stochastic networks and large scale production 

systems involving a large number of tasks. Dai and Weiss (2002) and Weiss 

(1999), for example, considered a fluid approach for solving scheduling 

problems in manufacturing systems. In this type of problems it is assumed 

that work is composed of homogeneous fluid instead of discrete tasks, being 

the events occurring in the system associated with rate changes in fluid flows.  
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2.5 Conclusions 

Subgraphs Assembly Line Balancing Problem (ASALBP). Such a problem 

considers the possibility of assembly alternatives, any of which

This doctoral thesis addresses a new generalized problem: the Assembly 

 consists of a 

Precedence relations are dependent on the subgraph selected, which, in turn, 

precedence requirements dependent on the assembly alternatives, has not been 

It is important to mention that Pinto et al. (1983) commented about the 

possibility of having variable precedence relations: In practice it is possible 

e” (p. 823). However, as stated, 

ribe assembly 

alternatives. They presented a special case of the ASALBP, in which assembly 

the simplicity of the constructive methods and the fact that they have been 

nd random search strategies, are proposed here. Furthermore, since it has 

been proven that workstation-oriented methods perform better than task-

oriented ones, the proposed constructive procedures follow that assignment 

approach.  

particular task processing order and is represented by a precedence subgraph. 

determines task processing times. Furthermore, assembly variants may involve 

different and independent set of tasks that are executed only when the 

alternative which they belong to is selected.  

A comprehensive literature review have been carried out, and after analysing 

research works concerning generalized assembly line balancing problems, the 

following conclusion can be drawn: the problem that considers assembly 

variants, which may involve different sets of tasks with processing times and 

addressed before.  

“
that a particular processing alternative can change the nature of the 

precedence requirements such that the requirements for the replacing tasks 

are not the same as the union for the requirement of the replaced tasks… 

Such special situations are not dealt with her

this possibility is neither formalized nor developed. 

On the other hand, in a recent work Scholl et al. (2007) highlighted the 

importance of having flexible precedence constraints to desc

alternatives are represented by time increments that are added to the task 

time and which define the interference of performing one task after certain 

other task. Precedence constraints, however, are kept fixed.  

Consequently, in this doctoral thesis this unedited problem (ASALBP) is 

defined and formalized via two mathematical models. Moreover, considering 

successfully applied to assembly line balancing problems, a significant number 

of constructive methods, based on an adaptation of well-known priority rules 

a
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ASALBP: The Alternative 
Subgraphs Assembly Line 

Balancing Problem  

3.1 Introduction 

As previously mentioned, this doctoral thesis tackles a new generalized 

assembly line balancing problem, which has been entitled ASALBP: the 

Alternative Subgraphs Assembly Line Balancing Problem.  

The novel characteristic of such a problem is that it considers the possibility of 

having alternative assembly variants (represented by different assembly 

subgraphs) which determine how assembly tasks are to be performed. In 

ASALBP assembly variants may be defined by different task processing times 

and by different task precedence relations. Furthermore, as industrial problems 

may involve different assembly processes, assembly variants may also be 

defined by different and mutually exclusive sets of tasks. Therefore, task 

processing times, the precedence relations of certain tasks, and the tasks 

themselves are considered to be dependent on the available assembly variants. 

Then, apart from the problem of assigning the tasks to the workstations, a 

decision problem needs to be solved in order to fully determine the assembly 

or manufacturing process; i.e., one subgraph has to be selected for each 

subassembly of the system that allows alternatives.  
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3.2 Definition of the Problem 

The Alternative Subgraphs Assembly Line Balancing Problem can be stated 

as follows:  

There exists a set of tasks for which several alternative assembly variants (also 

called assembly routes) are available; the tasks have to be assigned to a group 

of workstations. Each variant for each subassembly is represented by an 

individual subgraph, which determines the required assembly/manufacturing 

tasks (hence the assembly variants may be defined by different and mutually 

exclusive sets of tasks) and the precedence relations among them.  

Furthermore, task processing times are considered to be dependent on the 

assembly subgraph. Therefore, total processing time may vary from one 

assembly alternative to another.  

Tasks processing times are generally considered to be fixed, however in many 

real applications this is not the case. For example, task times depend on the 

nature of the tasks, the skills of the operators and the reliability of the 

machines (Rekiek (2001)). Furthermore, the duration of a task can be 

determined by the complexity of performing a given task considering the 

current state of the system; i.e., it depends on the processing sequence. For 

example, it gets more difficult (it requires more time) to decorate the fairing of 

a motorbike after they have already been assembled onto the motorbike than 

when they are unassembled. 

Taking these assumptions into account, two problems have to be solved 

simultaneously: the decision problem, to select one assembly subgraph for each 

subassembly that allows alternatives; and the balancing problem, to assign the 

tasks to the workstations. 

Regarding conventional assembly line balancing terminology (see, for example, 

Baybars (1986) and Scholl (1999)), an ASALBP that aims to minimize the 

number of workstations for a given upper bound on cycle time is referred to as 

ASALBP-1. If the objective is to minimize the cycle time for a given number 

of workstations, the problem is called ASALBP-2.  

According to the classification of assembly line balancing problems proposed 

by Boysen et al. (2007a, 2007b), ASALBP is identified as [pasubgraph– – ]; 

where pasubgraph characterizes the precedence graph and indicates that 

processing alternatives exist, which alter complete parts of the production 

process, so that whole subgraphs are substitutable. 
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The ASALB Problem contains the following main characteristics: 

 The ASALBP considers a serial assembly line designed for a single model of 

a unique product, for which all alternative assembly variants are completely 

known in advanced.  

 None of the task processing times are larger than the cycle time.  

 Tasks have to be processed completely in one workstation only, i.e., they 

cannot be divided between workstations.  

 Workstations can process only one task at a time.  

 Tasks cannot be processed in an arbitrary order due to the existence of 

precedence constraints.  

 Several sets of precedence constraints are available, instead of a unique one, 

which represent the precedence relations among the tasks of the available 

assembly subgraphs.  

 All tasks belonging to a particular subgraph have to be performed according 

the specifications of the same assembly variant.  

 Tasks processing times are dependent on the assembly subgraph selected, 

but independent on the workstation where they are processed.  

 Setup times are considered to be negligible.  

 All workstations are equally equipped and manned; therefore, any task can 

be assigned to any workstation.  

 Tasks are not incompatible between each other; therefore, any combination 

of tasks can be assigned to any of the workstations.  

 Tasks must be processed at most once. Therefore, only those tasks 

belonging to the selected assembly subgraphs (or those that do not allow 

alternatives) must be performed. The remaining tasks will not be considered 

in the assembly process and, therefore, will not be carried out.  

The following example illustrates the ASALB Problem. 

Example 3.1: the final phase in the process of assembling a motorbike 

This example considers the final phase in the process of assembling a 

motorbike, which consists of three main sets of tasks: Z, which is the 

decoration of the motorbike’s fairing (it involves several subtasks, such as 

sticking different colour stickers and text labels onto the fairing); J, which 

entails attaching the fairing to the motorbike; and K, which involves making 

the final adjustments.  
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These three sets of tasks can be processed in two different ways (see Figure 

3.1), which determine two alternative assembly variants of this process. 

Alternative 1 

Alternative 2  

Decorating of fairing  
prior to assembly  

  Assembly of fairing 
   without any decoration 

       Decoration of the      
assembled fairing 

Assembly of the  
   decorated fairing Final 

adjustments 

 

 

Figure 3.1: Final phase in the process of assembling a motorbike 
 

 Alternative 1 implies the decoration (task Z) of the unassembled fairing 

first, then attaching (task J) the fairing to the motorbike, and then making 

the final adjustments (task K). 

 Alternative 2 consists in assembling the fairing first (task J), then 

decorating (task Z) the fairing provided they have already been assembled 

onto the motorbike, and lastly making the final adjustments (task K). 

As can be seen in Figure 3.2, each of these two assembly alternatives can be 

represented by using a standard precedence graph.  

In this thesis, a precedence graph consists of nodes to represent the tasks 

required by each assembly alternative and connecting arcs which indicate the 

corresponding task precedence relations; furthermore, task processing times are 

represented as node weights. 

 

13 25 7

KZJAlternative 2 

22 13 7

KJZAlternative 1   

 
 
 

 
 

Figure 3.2: Assembly alternatives for the example of the motorbike 

 

As can be observed in Figure 3.2, tasks Z and J allow two assembly 

alternatives whilst task K can be performed only after the execution of both Z 

and J have been completed.  
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Furthermore, tasks processing times are allowed to be dependent of the 

assembly alternatives. In this example, the processing time of task Z depends 

on the order in which it is processed: it requires 22 time units if it is performed 

before task J and 25 time units when it is performed afterwards (i.e., it takes 

longer time to decorate the fairing when they are already assembled). Task J, 

on the other hand, lasts 13 time units regardless of the assembly sequence. 

Task K always is processed at the end of the process and has a processing time 

of 7 time units. 

Assembly alternatives can also be represented by using precedence subgraphs 

which gather the tasks processed according to the same assembly variant. 

Using the standard diagramming representation, it is not possible to depict 

alternative precedence subgraphs. In order to overcome the limitation of the 

standard precedence graphs, a diagramming tool, entitled S-Graph (discussed 

in detail in section 3.4), has been proposed to represent in a unique graph all 

available assembly alternatives. Figure 3.3 shows the S-Graph for the example 

of Figure 3.1.  

K 

7 

S1 22 

Z 

13

J

Assembly of the 
decorated fairing 

Decoration of fairing 
prior to assembly 

13 

J Z

25

Decoration of the 
assembled fairing 

Assembly of fairing 
without any decoration 

Final  
adjustments 

Subgraph S2 

Subgraph S1 S2 

L 

 
Figure 3.3: S-Graph of the final phase of the process of assembling a motorbike  

 

As can be seen in Figure 3.3, there are two subgraphs representing the 

assembling alternatives for tasks Z and J: the first subgraph, S1, consists in 

performing task Z before task J which implies a total processing time of 35 

time units; the second subgraph, S2, consists in performing task J first and 

then task Z with a total processing time equal to 38 time units. 

It is valid to mention that task L of Figure 3.3 is considered to be a major 

task belonging to an intermediate phase in the process of assembling a 

motorbike. 
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As mentioned in the introduction, a two-stage procedure is normally used to 

solve a problem that involves assembly alternatives. In the initial stage, the 

system designer either decides, a priori, all the task durations (by fixing a 

precedence subgraph, which is equivalent to imposing additional precedence 

relations other than the existing technological ones), or selects (using a given 

criterion) one assembly subgraph from amongst the available alternatives. 

Once the alternative has been selected, the line is then balanced in a second 

stage considering that particular choice. By following such an approach, it 

cannot be guaranteed that the global problem can be solved optimally. 

However, better solutions can be obtained if the problem of selecting an 

assembly alternative and the balancing problem are solved simultaneously, 

rather than independently.  

The following example helps, on the one hand, to clarify the ideas previously 

introduced and, on the other hand, to illustrate how the assignment of tasks to 

the workstations can be favoured by considering assembly alternatives.  

Example 3.2: optimally solving ASALBP  

This example considers again the aforementioned final phase of the process of 

assembling a motorbike (see Figure 3.1). Additionally, task Z, which consists 

of the decoration of the fairing, has been further divided into four subtasks (F, 

G, H and I) that involve fixing to the fairing different colour stickers and text 

labels. Table 3.1 shows the description of the disaggregated tasks, and, for 

each of the two resulting assembly alternatives, the task processing times, the 

task predecessors, and total processing time. 

Table 3.1: Data for the example 3.2 

Alter. 1 (Subgraph S1) Alter. 2 (Subgraph S2) 
Task Processing 

time 
Predecessors Processing 

time 
Predecessors 

F: Decoration of fairing 
   with yellow stickers 

5 L 6 J 

G: Decoration of fairing 
    with blue stickers 

5 L 7 J 

H: Decoration of fairing 
    with text labels  

8 L 8 J 

 
Z 

I: Decoration of fairing  
   with black stickers  

4 L 4 J 

J Assembly of fairing 13 F, G, H, I 13 L 
K Final adjustment 7 J 7 F, G, H, I 

Total processing time 42  45  
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As can be seen in Table 3.1, some of the decorating tasks require longer 

processing times if they are performed on the attached fairing instead of on 

the unattached fairing.  

By balancing each of the two resulting problems optimally, one for each 

alternative subgraph, and aiming to minimize the number of workstations, 

given a cycle time upper bound that is equal to 17 time units, the solutions 

presented in Table 3.2 are obtained.  These results include task assignments 

(and workstation time), total processing time and number of workstations 

required per alternative. 

Table 3.2: Results for ASALBP-1 for the example 3.2 

Workstation load (workstation time)Alternative 
subgraph I II III IV 

Total 
processing 

time 

Number 
of 

stations 

1 F, H, I (17) G (5) J (13) K (7) 42 4 

2 J, I (17) G, H (15) F, K (13) - 45 3 

 

By following the argument on decision criteria used to select assembly variants 

discussed previously, it seems reasonable to consider S1 as a promising 

alternative for the assembly process because it entails less total processing 

time (42 time units), and would thus be chosen a priori over S2. However, as 

observed in Table 3.2, despite implying a greater total processing time (45 

time units), S2 provides the best solution to the problem because it requires 

three workstations instead of the four required by S1. Therefore, if S1 had 

been selected a priori, then a better solution would have been discarded. 

Similar results can be obtained for an ASALBP-2. Table 3.3 shows the results 

of optimally balancing the two resulting problems of Table 3.1 by considering 

three workstations. In this case, Alternative 2 provides the best solution to the 

problem since it requires a cycle time of 17 units instead of the 18 required by 

Alternative 1. 

Table 3.3: Results for ASALBP-2 for the example 3.2 

Workstation load (workstation time)Alternative 
subgraph I II III 

Total 
processing 

time 

Cycle 
time 

1 F, G, H (18) I, J (17) K (7) 42 18 

2 J, I (17) F, G (13) H, K (15) 45 17 

 

The results previously obtained showed that considering alternative assembly 

variants may favour the assignment of tasks to the workstations which 

minimizes the number of workstations or the cycle time.  
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The balancing process may also be benefited even when the available assembly 

alternatives involve fixed task processing times (i.e., independent on the 

precedence subgraphs). This case is illustrated in the next example.  

Example 3.3: solving optimally ASALBP with fixed times 

Considering again the example of Figure 3.1 but now assuming that task 

processing times are independent on the tasks processing sequence (and equal 

to 5 units for both tasks F and task G).   

Table 3.4 presents the results of optimally balancing each of the two ensuing 

problems and aiming at minimizing the number of workstations for a cycle 

time equal to 17 time units. Table 3.5, on the other hand, shows the results 

when the objective is to minimize the cycle time considering 3 workstations. 

Table 3.4: Results for ASALBP-1 with Fixed Times  

Workstation load (workstation time)Alternative 
subgraph I II III IV 

Total 
processing 

time 

Number of 
workstations

1 F, H, I (17) G (5) J (13) K (7) 42 4 

2 J, I (17) G, H (13) F, K (12) - 42 3 
 

Table 3.5: Results for ASALBP-2 with Fixed Times 

Workstation load (workstation time)Alternative 
subgraph I II III 

Total 
processing 

time 

Cycle 
time 

1 F, G, H (18) I, J (17) K (7) 42 18 

2 J, I (17) F, G (10) H, K (15) 42 17 

 

As can be seen in Table 3.4 and Table 3.5, the possibility of having alternative 

assembly subgraphs may favour an assignation of tasks to workstations, even 

when the processing times are not dependent on the tasks processing sequence; 

i.e., independent on the assembly subgraphs.  

Therefore, it can be expected that economical benefits can be achieved by 

simultaneously considering the decision problem that selects the assembly 

subgraphs, and the balancing problem that assigns the tasks to the 

workstations, underlining in this way the relevance of the ASALBP. 
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3.3 The S-Graph: a diagramming scheme to depict  

assembly alternatives 

In this doctoral thesis a diagramming tool, which has been entitled S-Graph, 

has been proposed with the aim of representing in a unique graph all available 

assembly alternatives (i.e., precedence subgraphs), which cannot be depicted in 

a standard precedence graph.  

Figure 3.4 shows the S-Graph for the example of the process of assembling a 

motorbike considering also the intermediate phase of such a process, which 

consists of attaching two parts of a piece, including the axle, to the 

motorbike’s main body. The intermediate phase can be carried out in two 

different ways which are represented in the S-Graph by the subgraphs S3 and 

S4, respectively. The assembly alternatives for the final phase of the process of 

assembling a motorbike, as previously described, are represented by subgraphs 

S1 and S2. 
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Figure 3.4: Precedence S-Graph for the assembly process of the motorbike 

 
As can be seen in Figure 3.4, the assembly alternatives in the S-Graph are 

specified by the arcs entering or exiting the subgraphs, which are indicated by 

the semicircles drawn on the corresponding arcs. In this way, the S-Graph 

allows to represent, via individual subgraphs, assembly variants which imply 

different precedence requirements, different processing times and/or different 

sets of assembly tasks.  
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In order to make a more comprehensive definition of the S-Graph as an 

alternative precedence diagramming tool, two aspects need to be discussed.  

On the one hand, it is assumed that assembly alternatives do not overlap 

between each other; therefore, each alternative for each available subassembly 

is represented by a unique and independent precedence subgraph. On the 

other hand, fictitious tasks, with nil processing time, are used to facilitate the 

representation of two subassemblies with processing alternatives that are 

consecutive (this case is represented in Figure 3.5 by the fictitious task α).  

S1 
12 510 3

EB C D

11 3 10 4
S2 

S3 

7 

I J 

J I 

8 10 

10 9 

S4

S5α

G 

13 8 

H

10

F 

E B C D

12 

A K 

 

Figure 3.5: S-Graph including fictitious tasks 

 
Figure 3.5 illustrates an example in which the available assembly alternatives 

also imply mutually exclusive sets of assembly tasks.  

As can be observed in Figure 3.5, subgraphs S1, S2 and S3 represent the 

assembly alternatives for the first subassembly, in which S1 and S2 are 

assembly variants for the same set of tasks (B, C, D and E); and subgraph S3 

represents a sub-process which involves a complete different set of tasks (F, G 

and H). Therefore, selecting a subgraph for the first subassembly not only 

determines precedence requirements and task processing times but also the 

required assembly tasks. The second subassembly represents the ASALBP case 

considered in previous examples, in which the assembly alternatives (i.e. S4 

and S5) involve the same group of task (I and J).  

Therefore, a solution for this problem will consist of a choice of two subgraphs 

(one per subassembly), a number of workstations, and the assignment of the 

corresponding tasks to the workstations. 
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The S-Graph of Figure 3.6 shows an example of a medium-scale ASALBP. 

This example, which is based on the precedence diagram of Kilbrid’s 

benchmark problem, consists of 47 tasks and seven subgraphs that represent 

the assembly alternatives for three subassemblies.  

The first subassembly allows two assembly variants which are represented in 

the S-Graph of Figure 3.6 by subgraphs S1 and S2; both alternatives involve 

tasks 1, 3, 5, 7 and 9. The second subassembly allows three assembly variants: 

subgraphs S3 and S4 for tasks 20, 21 and 22, and S5 for tasks 46 and 47. For 

the last subassembly there also available two assembly variants, which are 

represented by subgraphs S6 and S7 both involving tasks 42, 44 and 45.  

In this example, the combination of the assembly subgraphs available for each 

subassembly, results in a total of 12 possible global assembly variants that are 

allowed for this assembly process ( = ⋅ ⋅12 2 3 2 ). 
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Figure 3.6: Precedence S-Graph for an example of 47 tasks. 

The capability of the S-Graphs to depict feasible assembly variants in a unique 

graph may let practitioners to have a better understanding of the system as a 

whole. 
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Chapter 4 
 

 Mathematical Models of 
the ASALBP  

4.1 Introduction 

In its basic form, an assembly line balancing model consists of an objective 

function than minimizes the number of workstations (i.e. SALBP-1) or the 

cycle time (i.e. SALBP-2) and a set of constraints that guarantee that every 

task i is assigned to one and only one workstation, constraints which ensures 

that the total task processing time assigned to workstation j does not exceed 

the upper bound on the cycle time, and constraints that guarantee that the 

precedence relations among the tasks are maintained.  

The ASALB Problem considers alternative assembly subgraphs, which in 

addition may involve different sets of assembly tasks; therefore, apart from 

cycle time and precedence constraints, subgraphs restrictions need to be taken 

into account in order to be able to solve this problem: on the one hand, it is 

necessary to ensure that only one assembly variant (i.e., a subgraph for each 

subassembly) is selected from amongst the possible ones; on the other hand, it 

must be guaranteed that only the tasks belonging to the selected subgraphs, 

and those that do not allow alternatives, are always performed. Furthermore, 

all tasks have to be performed considering its corresponding precedence 

constraints. 

Accordingly, and in order to formalize and optimally solve the ASALBP, two 

linear mathematical programming (LMP) models have been developed, which 

simultaneously solve the decision problem to select an assembly variant and 
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the problem of assigning the corresponding tasks to the workstations. In the 

first model, assembly alternatives are represented by a complete precedence 

graph, which involves the entire set of assembly tasks. The assembly 

alternatives are thus obtained by making all possible combinations of the 

available subgraphs. In the second model, referred to as enhanced model, 

assembly alternatives are represented by an individual subgraph and, 

therefore, involve only the reduced set of tasks that affected by such a 

particular subgraph. As a result, the dimension of the model is considerably 

reduced comparing with the former model. 

This chapter describes in detail both the preliminary and the enhanced model. 

It includes the main modelling assumptions considered in the formulation of 

the problem and the approaches considered to compute bounds on the number 

of workstations and other input parameters. The chapter ends by reporting 

the results of a computational experiment carried out to evaluate and compare 

the performance of both proposed mathematical models.  

4.2 Modelling Assumptions 

To facilitate the use of the terminology, in the both mathematical 

formulations assembly alternatives are referred to as assembly routes1 

undistinguished, any of which defines a known and feasible set of precedence 

relations among the tasks and the corresponding task processing times. Two 

different types of assembly routes are considered in the models, as follows. 

4.2.1  Global Routes  

Global routes are obtained by making all possible combinations of the 

alternative subgraphs of each available subassembly. Therefore, each global 

route is represented by a complete precedence graph which depicts the 

precedence relations of the whole set of tasks required to assemble a given 

product. In the S-Graph of Figure 3.6, introduced in the previous chapter, it 

can be observed that there are 12 possible subgraph combinations and, 

therefore, there are 12 global routes. Precedence graph of Figure 4.1 shows an 

example of one of these global routes, which is composed by the tasks 

belonging to subgraphs S1, S3, and S6 and the remaining tasks that do not 

allow processing alternatives.  

 
 

                                                 
1 The term route has been used previously in other works (e.g., Sawik (2002)) to make reference to assembly plans. 
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Figure 4.1: The precedence graph of a global route 

4.2.2  Partial Routes  

A partial route refers to a set of precedence relations that only affects a group 

of tasks which allow alternative assembly variants. In this case each route is 

understood as a partial processing alternative which is represented by a 

subgraph and, consequently, each one only involves a reduced subset of the 

assembly tasks. For instance, the example of the S-Graph of Figure 3.6 

consists of 7 subgraphs; hence, there are 7 partial routes: two represent the 

processing alternatives for tasks 1, 3, 5, 7 and 9 (S1 and S2); there are two 

alternatives for tasks 20, 21 and 22 (S3 and S4); one partial route for tasks 46 

and 47 (S5); and there are two partial routes for tasks 42, 44, and 45 (S6 and 

S7). Figure 4.2 shows one of the two processing alternatives available for tasks 

1, 3, 5, 7 and 9, which corresponds to subgraph (partial route) S1. 

Additionally, a basic route, named R0, is considered for those tasks that 

cannot be performed through alternative routes. In the example of Figure 3.6 

there are 34 of such tasks belonging to R0.  
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Figure 4.2: a partial route for an 

ASALBP example with 47 tasks 
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In a first attempt to mathematically formalize the Alternative Subgraphs 

Assembly Line Balancing Problem, a preliminary model was built in which 

global routes, represented by a complete precedence graph, were used to define 

each overall assembly variant. This implies, as it has been previously 

mentioned, that the whole set of assembling tasks is involved in each global 

route, including those tasks which do not admit processing alternatives (as 

shown in Figure 4.1). Consequently, a large number of task-workstation 

assignment variables need to be defined even when only a small number of 

assembly routes are available.  

By analysing the preliminary model, it was observed that the dimension of the 

mathematical program could be reduced by defining route-independent 

assignment variables for those tasks not affected by subassemblies with 

alternatives, and by considering partial routes for all other tasks. Accordingly, 

an enhanced mathematical model was developed in which assembly variants 

are represented by individual subgraphs. In this way, it is possible to reduce 

the resulting number of variables involved within the model since task-

workstation assignment variables are defined per partial route, which involves 

only a reduced subset of the assembly tasks. 

It is valid to remark at this point that for the example of Figure 3.6, there 

exist 12 global routes all involving 47 tasks, whereas there are only 7 partial 

routes, each of which consists of at most 5 assembly tasks. Furthermore, the 

difference between the preliminary and the enhanced model regarding the size 

of the model to be solved is even greater because the number of assignment 

variables increases exponentially with increasing number of partial routes and 

assembly tasks. 

On the other hand, considering partial routes complicates even more the 

modelling process, in particular, when it relates to the precedence constraints. 

This feature is commented in the following section. 

4.2.3  Task precedence relations typology   

When considering global routes, the immediate predecessors of a task are fixed 

for each individual global route; therefore, precedence constraints can be easily 

established. However, this is not the case when considering partial routes. The 

difficulty arises due to the fact that an immediate predecessor, or a task itself, 

may have processing alternatives, from amongst which one is to be selected. 

Therefore, all possible immediate predecessors of a task have to be considered.  
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In order to account for all possible precedence relations implied when 

considering partial routes, and to facilitate its formalization, tasks have been 

classified into two categories: fixed, which are those without alternatives 

routes, processed throughout the base route (R0); and mobile, which are those 

that contemplate alternative routes. Consider the example in Figure 4.3. 
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Figure 4.3. Precedence relations of fixed and mobile tasks. 

As can be seen in Figure 4.3, tasks A, F and G are fixed, whereas tasks B, C, 

D and E are mobile due to they can be processed throughout several 

alternative routes: R1 and R2 for tasks B and C, and R3 and R4 for tasks D 

and E. On the other hand, α, a fictitious task with nil processing time, is used 

to represent in the S-Graph precedence relations involving a mobile task i with 

a mobile predecessor p, which are affected by different alternative routes. This 

case is represented in Figure 4.3 by tasks D and E, whose predecessors C and 

B are also mobile tasks; being both groups of tasks affected by different routes: 

R3 and R4 for D and E, and R1 and R2 for C and B.  

Table 4.1 shows the five basic cases of task-predecessor relations, which arise 

in the example of Figure 4.3.  

Table 4.1: Task-predecessor relation typology 

 Case i p 

1 A fixed task i has a fixed predecessor p G F 

2 A fixed task i has a mobile predecessor p  F E,D 

3 A mobile task i has a fixed predecessor p  B A 

4 A mobile task i has a mobile predecessor p, with i and p 
belonging to the same route 

C B 

5 A mobile task i has a mobile predecessor p, with i and p 
belonging to different routes 

D C,B 
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4.3 The Preliminary Model 

As previously mentioned, in this model, hereafter referred to as M1, global 

routes are used to represent each overall assembly variant. Therefore, the 

model selects a unique global route which determined the precedence 

constraints and processing times of all required assembly tasks, at the same 

time assign the tasks to the workstations.  

Notation for ASALBP-1 
 

 Indices 

i for tasks  
j for workstations  

r  for routes 

 Parameters 

n number of tasks (i = 1,...,n) 

mmax  upper bound on the number of workstations (j = 1,...,mmax) 

mmin  lower bound on the number of workstations 

nr number of alternative global routes (r = 1,...,nr) 

tir duration of task i when processed through route r (i = 1,...,n;  

 r= 1,...,nr); in some cases tir is independent on the route  

Cmax upper bound on the cycle time 

PDir set of the immediate predecessors of task i, if task i is processed through 

route r   (i = 1,…,n; r = 1, …,nr) 

Eir earliest workstation that task i can be assigned to, if task i is processed 

through route r (i = 1,…,n; r = 1,…,nr) 

Lir latest workstation that task i can be assigned to, if task i is processed 

through route r (i = 1,…,n; r = 1,…,nr) 

Tjr set of tasks potentially assignable to workstation j, if the tasks are 

processed through route r  [ ]{ }| ,ir iri j E L∈ , (j = 1,…,mmax; r = 1,…,nr) 

 Decision variables 

{ }0,1ijrx ∈   1 if task i is assigned to workstation j and processed through route 

r (i = 1,…,n; r = 1, …,nr; [ ],ir irj E L∈ ) 

{ }0,1jy ∈    1 if there is any task assigned to workstation j ( ) = +1,...,min maxj  m m
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Mathematical formulation for the ASALBP-1: to minimize the 

number of workstations given Cmax. 

= +

= ⋅∑
max

min

m

j
j m 1

Minimize z j y   [4.1] 

1
1

i r

i r

Ln r

i j r
r j E

x
= =

=∑ ∑  ∀ i  [4.2] 

1= ∀ ∈

⋅ ≤∑ ∑
jr

nr

ir ijr max
r i T

t x C  1, ...,= minj m  [4.3] 

1= ∀ ∈
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n r

ir ijr m a x j
r i T

t x C y  1,...,min maxj m m= +  [4.4] 
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⋅ ≤ ⋅∑ ∑
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j x j x  , ,∀ ∀ ∀ ∈ irr i p PD   [4.5] 

1

1

1

irr

r ir

LL

jr i jr
j E j E

x x
= =

≤∑ ∑  ; 2, ...,r i n∀ =  [4.6] 

{ 0 , 1}i j rx ∈  , , [ ,ir iri r ]j E L∀ ∀ ∀ ∈  [4.7] 

{ 0 , 1}jy ∈  1,...,min maxj m m= +  [4.8] 

 

The objective function [4.1] consists in minimizing the number of workstations. 

Constraints [4.2] guarantee that every task i is assigned to one and only one 

workstation. Constraints [4.3] and [4.4] ensure that the total task processing 

time assigned to workstation j does not exceed the upper bound on the cycle 

time. Constraints [4.5] impose the precedence conditions. Route uniqueness 

constraints [4.6] ensure that all the tasks are assigned to the same route. 

Finally, [4.7] and [4.8] express the binary conditions of the variables. 

If one analyzes the previous model, it can be observed that, if the precedence 

graph is connected, then constraints [4.6] can be removed, due to the fact that 

constraints [4.5] are sufficient to guarantee route uniqueness. Constraints [4.5] 

oblige all tasks to be assigned to the same route as their immediate 

predecessors. In a connected graph, all the tasks are related to one another, 

direct or indirectly, through their predecessors and successors; therefore, all 

the tasks are assigned to the same route. In any case, a connected graph can 

be obtained by defining an initial (or final) fictitious task. 

The mathematical formulation of ASALBP-2 can be easily obtained by 

changing the objective function the formulation for ASALBP-1 by using cycle 

time ct as the variable that is to be minimized. 
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4.4 The Enhanced Model 

This model, hereafter referred to as M2, considers partial routes to represent 

the assembly variants that are allowed for each available subassembly. This 

model selects a single partial route for each available subassembly. Therefore, 

apart from those for tasks, workstations and routes, an index is required to 

identify the groups of partial routes that are alternative between each other 

since only one of those is to be selected. The notation used in this model is 

presented next. It is valid to mention that tasks processed through route R0 

are those which do not admit processing alternatives. 

Notation for ASALBP-1 

 Indices  

i for tasks 
j for workstations 
r for partial routes  
q for subsets of partial routes that are alternatives among one another 

 Parameters 

n number of tasks (i = 1,…,n) 

nr number of partial routes (r = 0,…,nr) 

nsr number of different sets of partial routes (subgraphs) such that the 

routes within a set are alternatives to each other (q=1,…,nsr). In the 

example of Figure 4.3 there are 2 such subsets (nsr=2) 

mmin  lower bound on the number of workstations  

mmax  upper bound on the number of workstations (j = 1,...,mmax) 

Ri set of all routes through which task i can be processed (i = 1,…,n) 

Cmax upper bound on the cycle time 

tir duration of task i when processed through route r (i = 1,…,n; ) iRr ∈

TRr Set of tasks that are affected by route r (r = 0,…,nr) 

Pir Set of the possible immediate predecessors of task i, if task i is 

processed through route r (i = 1,…,n; iRr ∈ ) 

PTi Set of all possible immediate predecessors of task i ( ) 
i r Ri

PT = U P∀ ∈ ir

Eir, Lir Earliest and latest station that task i can be assigned to, if task i is 

processed through route r (i = 1,…,n; iRr∈ ). 

SCRq Subset q of routes that are alternative among one another (q=1,…,nsr). 

For the example in Figure 4.3, there are two of such subsets: SCR1 

involving R1 and R2 and SCR2 involving R3 and R4. 
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 Decision binary variables 

{ }0,1ijrx ∈  1 if task i is assigned to workstation j and processed through route 

r 1 ii ,...,n; r R;= ∀ ∈( [ , ]ir irj E L∀ ∈ )  

{ }0,1jy ∈  1 if there is any task assigned to workstation j (j=mmin+1,…,mmax) 

{ }0,1rar ∈  1 if there is any task processed through route r (r = 1,…,nr) 

Mathematical Model for the ASALBP-1: to minimize the number of 
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The objective function [4.9] minimizes the number of workstations for a given 

upper bound on the cycle time. The constraints are: [4.10] and [4.11], which 

ensure that all tasks belonging to a selected partial route are assigned to one 

and only one workstation, and otherwise tasks are not assigned; [4.12] and 

[4.13] ensure that the total processing time assigned to workstation j does not 

exceed the cycle time; [4.14] to [4.18] are the precedence constraints, and 

correspond to the five different cases presented in Table 4.1, which guarantee 

that none task is assigned to an earlier workstation than an immediate 

predecessor; [4.19] are the route uniqueness constraints that ensure that one 

and only one route for each subassembly is selected from among the possible 

routes; and [4.20] guarantees that tasks belonging to a particular precedence 

subgraph are assigned to the same route. Finally, [4.21], [4.22] and [4.23] 

express the binary conditions of the variables. 

Similarly to the preliminary case, the mathematical formulation for the 

ASALBP-2 version can also be easily obtained by using the enhanced 

formulation but using the cycle time ct as the variable to minimize instead of 

the number of workstations. 

4.5 Computation of input parameters  

This section presents the approaches used in this work to determine, on the 

one hand, the earliest and latest workstations to which a task can be assigned; 

and on the other hand, the lower and upper bounds on the number of 

workstations that help to reduce the number of the variables and constraints 

of both proposed mathematical models. 

4.5.1  Earliest and latest workstations 

The methods used to determine the values of the earliest and latest 

workstation to which a task i can be assigned are based on a well-know 

approach traditionally applied to SALBP (e.g. Talbot et al. (1986), Klein and 

Scholl (1996) and Scholl (1999)).  

According to this, a task i can not be assigned to a workstation before the 

total time of all its predecessors has been already assigned, but should be 

assigned before the remaining available time is less than the total time of all 

its followers. Nonetheless, this concept should be adapted in order to 

contemplate the available assembly alternatives that characterize a given 

ASALB Problem.  
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The following notation is considered: 

APir is the summation of the processing times of all predecessors of task i, 

when such tasks are processed according to the best assembly 

alternative (i.e., the combination of subgraphs with the minimum total 

time) and task i is processed thought route r. 

 AFir is the summation of the processing times of all successors of task i, 

when such tasks are processed according to the best assembly 

alternative (i.e., the combination of subgraphs with the minimum total 

time) and task i is processed thought route r. 

For example, if the S-Graph of Figure 4.4 is considered:  
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Figure 4.4: S-Graph for a small ASALBP example involving seven tasks 

The following values are obtained: 

APA0 = 0   

AFA0 = min(4 + 8 ; 6 + 4) + 5 + min( 9 + 8 ; 9 + 5) + 10 = 39 

APC1 = 2 + 4 = 6   

AFC1 = 5 + min(9 + 8 ; 9 + 5) + 10 = 29 

APC2 = 2 

AFC2 = 4 + 5 + min(9 + 8 ; 9 + 5) + 10 = 33 

Thus, the earliest and latest workstation values to which task i can be 

assigned when processed through route r are computed according to the 

equations [4.24] and [4.25], respectively. 

⎡ ⎤tcAPtE iririr /)( += [4.24] 

⎡ ⎤tcAFtmL irirmaxir /)(1 +−+=  [4.25] 
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4.5.2 Lower bound on the number of workstations  

A simple theoretical minimum number of workstations, mmin, is defined in the 

literature (e.g. Baybars (1986), Johnson (1988), Scholl and Klein (1997), Scholl 

(1999) and Becker and Scholl (2006)), according to which the total time 

available in the assembly line must not be smaller that the total load required 

to process all tasks. Subsequently, this value is computed according to [4.26] 

which is the integer equal or greater than the quotient between the total 

processing time and the cycle time. 

 

n

i
i 1

m t /
=

tc
⎡ ⎤

= ⎢ ⎥
⎢ ⎥
∑m in [4.26]  

 

In the ASALBP a new parameter, called Btsum, required to compute mmin, is 

defined as the summation of all the processing times when tasks are processed 

according to the best assembly alternative as defined previously. When 

assembly alternatives affect mutually exclusive sets of tasks, only the time of 

the alternative that lasts less is considered. Therefore, a lower bound on the 

number of workstations is given by [4.27].  

min summ Bt tc⎡ ⎤⎢ ⎥= / [4.27] 

 

Considering the example of Figure 4.4 and a cycle time ct = 10: 

Btsum = 2 + min (4 + 8 ; 6 + 4) + 5 + min (9 + 8 ; 9 + 5) + 10 = 41 

mmin =  =⎡ ⎤⎢ ⎥41/10 5

There exist other procedures to calculate lower bounds based on the analysis 

of the processing times of the successors of a task i; for example, Johnson 

(1988), Scholl and Klein (1997) and Scholl (1999) consider that mmin can be 

the number of tasks that have a processing time greater than half of the cycle 

time, since all of such tasks have to be assigned to different workstations. This 

bound can be further improved by adding to it half of the number of tasks 

with processing time equal to half of the cycle time, given that two of such 

tasks can be processed in the same workstation.  
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By following the same argument, a third value of mmin can be defined by 

considering the fact that three tasks with processing time greater than tc/3 

cannot be processed in the same workstation; furthermore, none of these can 

share workstation with other tasks with time greater that 2tc/3. This bound 

can be also further adjusted by considering that tasks with processing times 

exactly equal to tc/3 or equal to 2tc/3 can share the same  workstation (i.e., 

one task with ti =2tc/3 and other with tc/3 or three tasks with ti=tc/3).  

For the ASALB Problem these values are computed by adapting these 

concepts and by considering the Btsum parameter for the sum of processing 

times, as discussed previously.  

Other methods used to compute lower bounds on the number of workstations 

are discussed, for example, in Scholl and Klein (1997) and in Fleszar and Hindi 

(2003). 

4.5.3 Upper bound on the number of workstations  

The simplest upper bound on the number of workstations is the number of 

tasks, since assigning only one task to each workstation is a feasible solution. 

In the case of the ASALB Problem this upper bound [4.28] is obtained by 

considering the combination of subgraphs that involves the maximum number 

of required assembly tasks.  

m n=max
[4.28] 

 

More adjusted upper bounds on the number of workstations can be computed 

following, for example, the procedures discussed in Scholl (1999) for the simple 

case.  

Another approach that can be considered to obtain an upper bound on the 

number of workstations is to generate a feasible solution by applying an 

heuristic procedure.

 54



Chapter 4: Mathematical Models of the ASALBP 
 

 

4.6 Computational Experiment 

To evaluate and compare the performance of the proposed mathematical 

models, M1 and M2, previously described in sections 4.3 and 4.4, respectively; 

a computational experiment was carried out. Both models were implemented 

and several problem instances were solved by using the ILOG CPLEX© 

optimization software, version 9.0. All computations were performed on a PC 

Pentium 4, CPU 2.88 GHz with 512 Mb of RAM.  

4.6.1 Benchmark Selection 

Since the ASALBP is a new generalized assembly line balancing problem, the 

data sets used in the computational experiment were designed by 

incorporating various alternative assembly subgraphs to benchmark SALB 

Problems available at www.assembly-line-balancing.de (the homepage focused 

on assembly line balancing research).  

The following 9 problems were considered: Bowman, Mansor, Mitchell, Buxey, 

Gunther, Kilbrid, Hahn, Warnecke and Tonge; involving 8, 11, 21, 29, 35, 45, 

53, 58 and 70 tasks, respectively. Two, three and four subassemblies were 

incorporated to each original problem, for each of which several assembly 

alternatives were generated (see Table 4.2): from 2 to 60 global routes were 

considered for model M1, and from 3 to 11 partial routes for model M2. 

Furthermore, up to three different cycle time values, also based on the 

available benchmark data sets, were considered for each test problem. 

Furthermore, new sets of tasks were added to the problems in order to account 

for problems instances involving mutually exclusive assembly processes. Then, 

a total of 44 problem instances were solved with both models. 

All data for the problem instances solved are shown in Table 4.2, which 

includes the name of the problem, the number of tasks n, the cycle time ct, the 

number of global routes for model M1 and partial routes for model M2, and 

the number of constraints and binary variables involved in each model.  
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Table 4.2: Data of the ASALBP instances  

No. of routes Contraints Variables 
Problem n ct 

Global Partial M1 M2 M1 M2 

Bowman-1 10 20 6 5 134 56 434 615 

Bowman-2 12 20 18 8 152 76 1744 880 

Mansor-1 11 48 6 5 164 62 544 541 

Mansor-2 11 62 6 5 158 58 408 407 

Mansor-3 11 94 6 5 152 54 272 273 

Mansor-4 11 62 12 7 288 74 804 547 

Mansor-5 11 62 15 8 352 78 1002 614 

Mansor-6 11 48 15 8 358 75 1336 708 

Mansor-7 11 94 15 8 346 68 668 408 

Mitchel-1 21 14 6 5 347 111 1792 1783 

Mitchel-2 21 21 6 5 333 101 1280 1275 

Mitchel-3 21 35 6 5 319 92 640 640 

Mitchel-4 21 14 15 8 770 130 4438 2668 

Mitchel-5 21 21 15 8 756 120 3170 1908 

Mitchel-6 21 35 15 8 742 111 1585 958 

Buxey-1 29 54 6 5 444 134 1941 1936 

Buxey-2 29 36 6 5 464 161 3168 3155 

Buxey-3 29 54 12 7 861 147 3850 2581 

Buxey-4 29 30 18 8 1308 159 11004 5510 

Buxey-5 29 36 18 8 1298 152 9432 4724 

Buxey-6 29 54 18 8 1278 139 5764 2890 

Gunther-1 35 41 32 11 2633 205 25806 8911 

Gunther-2 40 81 60 11 4287 189 28824 6276 

Kilbrid-1 45 56 12 7 1383 204 10840 7247 

Kilbrid-2 45 79 12 7 1365 191 7588 5173 

Kilbrid-3 45 92 12 7 1359 185 6504 4435 

Kilbrid-4 45 79 18 8 2001 191 11368 5173 

Kilbrid-5 45 92 18 8 1995 185 9744 4435 

Kilbrid-6 45 69 24 10 2505 217 17312 7241 

Kilbrid-7 45 79 24 10 2499 220 15148 7416 

Kilbrid-8 45 92 24 10 2493 214 12948 6358 

Hahn-1 53 2004 6 5 851 236 4480 4471 

Hahn-2 53 3507 6 5 833 218 2560 2557 

Hahn-3 53 4676 6 5 829 210 1920 1600 

Hahn-4 53 4676 12 7 1635 228 3190 2403 

Hahn-5 53 3507 12 7 1646 236 5104 3407 

Hahn-6 53 4676 18 8 2424 238 4780 2403 

Hahn-7 53 3507 18 8 2432 235 7648 3976 

Hahn-8 55 2004 18 8 2450 253 13384 6952 

Hahn-9 58 2004 24 10 3400 263 19516 8157 

Hahn-10 62 2806 36 11 5210 280 22340 7471 

Warnecke-1 58 111 2 3 368 235 4754 3186 

Warnecke-2 58 111 4 5 648 253 7888 6318 

Tonge 70 185 8 7 1428 342 21356 18702 
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Table 4.3 shows the results obtained by optimally solving the problems 

characterized in table 4.2 with both proposed mathematical models. It 

includes, for both models, the solution time (in seconds) and the percentage of 

improvement of M2 over M1, concerning the solution time.  

Table 4.3: Results of optimally solving ASALBP instances 

Solution Time 
Problem 

   M1  M2 

% of 
improprement 

Bowman-1 0.56 0.04 92.9 
Bowman-2 0.17 0.03 82.4 
Mansor-1 0.20 0.02 90.0 
Mansor-2 0.04 0.02 50.0 
Mansor-3 0.03 0.01 66.7 
Mansor-4 0.09 0.06 33.3 
Mansor-5 0.11 0.03 72.7 
Mansor-6 0.80 0.40 50.0 
Mansor-7 1.12 0.03 97.3 
Mitchel-1 1.84 0.15 91.8 
Mitchel-2 0.25 0.04 84.0 
Mitchel-3 0.12 0.04 66.7 
Mitchel-4 7.59 0.33 95.7 
Mitchel-5 4.93 0.07 98.6 
Mitchel-6 1.04 0.13 87.5 
Buxey-1 61547 92.03 100 
Buxey-2 18485 0.86 100 
Buxey-3 806 10.23 100 

Buxey-4 >>200000 862 100 

Buxey-5 >>200000 6.99 100 

Buxey-6 >>200000 2.82 100 
Gunther-1 89558 14805 83.5 
Gunther-2 467 0.31 100 
Kilbrid-1 213 1.41 100 
Kilbrid-2 20.85 1.56 92.5 
Kilbrid-3 49.75 7.10 85.7 
Kilbrid-4 830 1.06 100 
Kilbrid-5 930 1.56 100 
Kilbrid-6 110 0.56 100 
Kilbrid-7 112 2.02 98.2 
Kilbrid-8 114 1.81 98.4 
Hahn-1 2.63 0.18 93.2 
Hahn-2 11.80 0.09 99.3 
Hahn-3 15.94 0.34 97.9 
Hahn-4 35.35 0.14 100 
Hahn-5 29.13 0.09 100 
Hahn-6 114 0.13 100 
Hahn-7 92.53 1.20 98.7 
Hahn-8 1373 33.52 97.6 
Hahn-9 8356 3.48 100 
Hahn-10 19785 249 98.7 
Warnecke-1 7200 638 91.1 
Warnecke-2 17709 1410 92.0 
Tonge >>200000 80122 100 
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4.6.2 Analysis of the results obtained with M1 and M2 

The computational experiment showed that optimal solutions can be obtained 

and guaranteed in a reasonable amount of time, only for some of the small- 

and medium-scaled problem instances considered in the experiment, e.g. test 

problems involving from 10 to around 30 tasks and from 5 to 11 assembly 

subgraphs (i.e. partial routes). Such results could be expected taking into 

account the NP-hard nature of the ASALBP.  

As can be observed in Table 4.2, the number of variables and constraints was 

significantly reduced in model M2 (as it was intended). As a result (see Table 

4.3), the computation time required by M2 to solve a problem instance was 

considerably smaller comparing with the time required by the preliminary 

model M1 to solve the same problem instance. Table 4.3 also revealed that in 

all cases model M2 outperformed model M1: M2 achieved around 90.6% of 

average improvement over M1; reaching a 100% of improvement in more than 

a third of the problems solved.  

Notwithstanding, most problems are optimally solved in a computing time 

significantly small, as can be observed in Table 4.3, the time required by the 

mathematical model to solve ASALB Problems increases exponentially with 

the number of tasks and the number of processing alternatives that are 

available. Furthermore, for some test problems the required computing time 

was significantly large for both mathematical models, such as, for example, 

Gunther-1 and Tonge. Bigger scale problems involving more than 70 tasks 

(e.g., Lutz and Arcus2, involving 89 and 111 tasks, respectively) were also 

intended to be optimally solved; however, neither M1 nor M2 were able to 

obtain the optimal solution within one week of computing time. Therefore, it 

is necessary to consider other methods, i.e. approximate procedures, in order 

to efficiently solve real-scale ASALBP. 
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 Approximate Methods to 
Solve the ASALBP 

5.1 Introduction 

Exact methods have a problem size limitation and can only be applied to solve 

small and medium scale problems. Although, in some cases mathematical 

programming models can provide the optimal solution to more realistic 

problems, the required computation time may be too large to be of practical 

use. As previously discussed, the ASALBP is more difficult to solve optimally, 

comparing with the simple case which by nature is NP-hard, since the 

inherent decision problem to selects the assembly subgraphs implies an even 

bigger computational effort. Therefore, in this thesis a group of heuristics 

methods are proposed to solve the Alternative Subgraphs Assembly Line 

Balancing Problem, aiming at yielding reasonable solutions in a significantly 

small computing time.  

As previously mentioned, most heuristic techniques considered in the literature 

(e.g. Scholl and Voss (1996), Amen (2001), Dolgui et al. (2005), Fernades and 

Ribeiro (2005), Becker and Scholl (2006)) are constructive methods based on 

single priority rules, which have been successfully applied to assembly line 

balancing problems. Therefore, a significant number of constructive methods 

to solve the ASALBP have been designed, implemented and evaluated in this 

doctoral thesis (section 5.2).  

In order to improve the solution of the approximate methods, two local 

optimization procedures, based on an adaptation of two classical 

neighbourhood search strategies, have been also implemented here (section 

5.3). All these procedures are evaluated and compared via computational 

experiment. The analysis of the results is reported at the end of this chapter 

(section 5.4).  
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5.2 Heuristic Methods 

The heuristic methods proposed here systematically build the solution to the 

ASALBP by selecting the assembly subgraphs and incrementally assigning the 

tasks to the workstations. Such methods use priority-rule-based and random 

strategies to select both the assembly subgraphs and the next task to be 

assigned. In the former case, the selection is done considering a decreasing (or 

increasing) value of a predetermined priority rule; in the latter case, tasks 

and/or subgraphs are selected following either a uniform distribution or a 

probability function based on weighted values of the priority rules. 

A solution provided by these methods consists of a set of subgraphs (one for 

each subassembly that allows assembly variants), which determines the 

assembly tasks, the processing times, a number of required workstations and 

the assignment of the corresponding tasks to the workstations. In order to 

facilitate the evaluation of constructive methods involving most well-known 

priority rules, the proposed procedures aim at minimizing the number of 

workstations; therefore, they focus on resolving ASALBP-1. 

To describe the proposed heuristic methods the following notation is 

considered: 

n Number of tasks 

ct Cycle time 

mmax  Upper bound on the number of workstations 

Ri Set of all subgraphs through which task i can be processed (i = 1,…,n) 

tir Duration of task i when processed through subgraph r (i = 1,…,n ; r ∈ Ri) 

Pir Set of immediate predecessors of task i if task i is processed through 

subgraph r (i = 1,…,n ; r ∈ Ri)  

Sir Set of all successors of task i if it is processed through subgraph r (i = 

1,…,n ; r ∈ Ri) 

SR Set of selected subgraphs. SR is generated once the priority rules to 

select the subgraphs have been applied.  
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Once set SR is known (i.e. the assembly subgraphs have been selected), the 

following values can be defined: 

AVT Set of available tasks, which is formed with the tasks that belong to the 

selected subgraphs and those tasks that do not allow assembly variants. 

AST Set of assignable tasks. A task is assignable if all its predecessors have 

already been assigned and its time plus the time of the tasks assigned 

to the current workstation does not exceed the cycle time. 

sub(i) Subgraph chosen for task i ( i AVT∀ ∈ ); in this way it is possible to 

know ti,sub(i), which is the duration of task i. Since task i ∈  AVT, it is 

verified that subgraph sub(i) ∈ SR. 

Ei Earliest workstation to which task i can be assigned ( i AVT∀ ∈ ). 

Li Latest workstation to which task i can be assigned ( i AVT∀ ∈ ). 

SIi Set of immediate successors of task i ( i AVT∀ ∈ ). 

Si Set of total successors of task i ( i AVT∀ ∈ ). 

 
The general scheme for the proposed heuristic procedures is given in 

Algorithm 1. 

Algorithm 1 

Step 1.  Set the stopping condition. 

Step 2. Select one subgraph for each available subassembly and build the 
set of selected subgraphs SR. 

Step 3.  Form the set of available tasks, AVT. 

Step 4.  Set as current workstation the first workstation. 

Step 5.  If AVT is not empty, determine the set of assignable tasks, AST. 

Step 6. Select the next task to be assigned to the current workstation 
from AST. 

Step 7. If there are no assignable tasks (i.e. AST is empty) but there are 
remaining available tasks (i.e. AVT is not empty), then open a 
new workstation. 

Step 8. Remove the assigned task from AVT and update AST. 

Step 9. Repeat from 6 to 8 until all assembly tasks have been assigned 
(i.e. AVT is empty). 

Step 10.  If the solution obtained at the current iteration improves the best 
stored solution, then store current solution. 

Step 11.  Repeat from 2 onwards as long as the stopping condition holds. 
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Regarding the selection criterion used to select the assembly subgraphs (at 

step 2) and the tasks (at step 6), Algorithm 1 represents a single-pass method 

that generates a single solution, or a multi-pass method, in which multiple 

solutions are generated and compared keeping the best of all obtained 

solutions. The stopping condition of the Algorithm 1 is defined by a single 

iteration in the case of single-pass methods, and determined by a maximum 

computing time in the case of a multi-pass methods. 

The following are all selection criterions considered in the proposed 

procedures. 

Decision criteria for subgraphs  

Four criteria are used to select the assembly subgraphs: three priority rules, 

and random choice (RS).  

As previously mentioned, in the case of random choice subgraphs can be 

selected considering either a uniform distribution (i.e. all subgraphs of the 

same subassembly have the same probability of being selected) or a 

probability distribution based on weighted values of the priority rules.  

The three priority rules considered are the following:  

a. Minimum NP: this rule ranks the subgraphs of the same subassembly 

according to ascending number of precedence relations involved in each 

subgraph, which is the total number of arcs entering into and within the 

subgraph.   

b. Minimum TT: subgraphs are ranked according to ascending total processing 

time. 

c. Minimum NT: subgraphs are ranked according to ascending number of 

tasks. 

Decision criteria for tasks  

The decision criteria used to select the next task to be assigned are presented 

in Table 5.1, which shows an adaptation to the ASALBP of 13 well-known 

priority rules (e.g. Talbot et al. (1986)) and random choice assignment. 

Similarly to subgraphs, the random strategy can follow either a uniform 

distribution or a function based on weighted values of the priority rules: f(pr). 
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Priority rules values are basically determined by measuring task processing 

times and precedence relations, and by considering the cycle time. For 

instance, RPW (Rank Positional Weight) can be computed by adding to the 

task time the sum of the times of all its successors. It is valid to mention at 

this point that, according to Algorithm 1, set SR is defined before the 

assembly tasks are selected. 

Table 5.1: Decision criteria for tasks 

No. Name Decision criteria Procedure 

1 RPW Maximum Rank Positional 
Weight

, ( ) , ( )
, ( )

i i sub i j sub j
j Si sub i

RPW t t
∈

= + ∑  

2 T Maximum Task Time , (i s u b it )  

3 EW Minimum Earliest Workstation , ( ) , ( )
, ( )

i i sub i j sub j
j Pi sub i

EW t t ct
∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= +
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

∑  

4 LW Minimum Latest Workstation max , ( ) , ( )
, ( )

1i i sub i j sub j
j Si sub i

LW m t t ct
∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − +
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

∑  

5 N Minimum task Number  i 

6 Sk Minimum Slack i iSk LW EWi= −  

7 TLW Minimum task time divided by 
Latest Workstation

, ( )i i sub i iTL t LW=  

8 IS Maximum Number of 
Immediate Successors

=i iS IIS  

9 TS Maximum Number of  total 
successors

=i iST S  

10 TTS
Maximum Task Time plus  
Total Number of Successors , ( )i i sub iTTS t TSi= +  

11 STS Maximum Average Time of 
Successors , ( )

, ( )
i j sub j

j Si sub i

STS t TS
∈

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∑ i  

12 TSSk Maximum Number of Total 
Successors divided by Sk  /( 1)T S Sk T S S ki i i= +  

13 LWTS Minimum Average Latest 
Workstation  /( 1)i i iLWTS LW TS= +  

14 RT Random task assignment [0.. ] ( )i U nt i f pr∨∼ ∼  
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5.2.1 Single-pass methods 

Single-pass methods generate a single solution by exploring the solution space 

only via single priority rules, whereby the subgraphs and tasks are selected 

according to the descendant or ascendant values of the predetermined priority 

rules. The stopping condition of Algorithm 1 is thus defined by a single 

iteration that is completed once all tasks, which belong to the subgraphs 

selected in Step 2, have been assigned to the workstations. 

Table 5.2 lists the names and numbers of all 39 single-pass heuristic methods 

that are obtained by combining the priority rules for tasks (defined in Table 

5.1) with the decision rules considered for the assembly subgraphs.  

Table 5.2: Single-pass methods 

Rules for subgraphs 

NP TT NT
Rules for 

tasks 
No.  Label No. Label No.   Label 

RPW 1 NP_RPW 14 TT_RPW 27 NT_RPW

T 2 NP_T 15 TT_T 28 NT_T

EW 3 NP_EW 16 TT_EW 29 NT_EW

LW 4 NP_LW 17 TT_LW 30 NT_LW

N 5 NP_N 18 TT_N 31 NT_N

Sk 6 NP_Sk 19 TT_Sk 32 NT_Sk

TLW 7 NP_TLW 20 TT_TLW 33 NT_TLW 

IS 8 NP_IS 21 TT_IS 34 NT_IS

TS 9 NP_TS 22 TT_TS 35 NT_TS

TTS 10 NP_TTS 23 TT_TTS 36 NT_TTS

STS 11 NP_STS 24 TT_STS 37 NT_STS

TSSk 12 NP_TSSk 25 TT_TSSk 38 NT_TSSk

LWTS 13 NP_LWTS 26 TT_LWTS 39 NT_LWTS

 

As seen in Table 5.2, each method is labelled according to the following 

notation: [SubgraphRule_TaskRule]. For example, TT_RPW selects a 

combination of subgraphs that requires the minimum total processing time 

(TT) and ranks the tasks to be assigned considering descending Rank 

Positional Weight (RPW) values. Descending values are considered when the 
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rule refers to a maximization criterion, and ascending values, when it refers to 

a minimization criterion. Additionally, all methods use task index (N) as a tie-

breaker rule for tasks. In the case of subgraphs, TT is used as a tie-breaker 

rule for the [NT_TaskRule] and [NP_TaskRule] methods, and NT for the 

[TT_TaskRule] methods. 

The following example illustrates how subgraphs and tasks are selected in the 

single-pass procedures proposed here. 

Example 5.1: Single-pass procedures 

The S-Graph of Figure 5.1 depicts an ASALBP that involves 17 tasks and 7 

subgraphs, which represent the assembly variants for three parts of the system 

that allow alternatives: S1 and S2 for the first subassembly; S3 and S4 for the 

second; and S5, S6 and S7 for the third.  
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Figure 5.1: Precedence S-Graph for an ASALBP involving 17 tasks. 

Table 5.3 shows the computed priority rule values for each available subgraph 

of Figure 5.1. 

Table 5.3: Priority rule values for the assembly subgraphs 

Subgraph 
Priority rule 

S1 S2 S3 S4 S5 S6 S7 

TT 18 19 22 20 15 16 15

NP 2 2 1 2 2 2 3

NT 2 2 2 3 2 2 3
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Considering that priority rule TT is used at step 2 of Algorithm 1, then S1 

will be selected for the first subassembly, since it involves the minimum total 

processing time of 18 time units, whereas S2 requires 19 time units. Similarly, 

for the second subassembly, the selected subgraph will be S4. For the third 

subassembly, however, more than one subgraph matches the selection criteria, 

meaning that a tie-breaker rule must be applied; application of the tie-breaker 

rule NT thus yields S5 as the selected subgraph.  

Therefore, by using the [TT_TaskRule] family of methods, regardless of the 

rule used for tasks, the selected subgraphs are S1, S4 and S5, and the 

corresponding available tasks (i.e. the set AVT formed at step 3 of Algorithm 

1) are 1, 2, 4, 6, 7, 8, 9, 10, 11, 15, 16, and 17. Similarly, when the 

[NT_TaskRule] or [NP_TaskRule] methods are applied, the selected subgraphs 

are S1, S3 and S5, and the corresponding available tasks are 1, 2, 3, 4, 5, 6, 7, 

8, 9, 10 and 11. 

Table 5.4 summarizes the results of using different methods to select the 

subgraphs at step 2 of Algorithm 1. It includes the method notation, the 

selected subgraphs, the resulting available assembly tasks (i.e., set AVT) and 

the first set of assignable tasks (i.e., AST) generated at step 5 of Algorithm 1. 

Table 5.4: Selected subgraphs, available and assignable tasks 

Methods SR  AVT AST

[TT_TaskRule] S1, S4, S5 1, 2, 4, 6, 7, 8, 9, 10, 11, 15, 16, 17   1, 2, 15 

[NT_TaskRule] S1, S3, S5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11  1, 2, 3 

[NP_TaskRule] S1, S3, S5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11  1, 2, 3 

 
 

If method TT_T is applied, then the set of assignable tasks comprises tasks 1, 

2 and 15, which should be ranked according to descending values of task times 

-in this case 2, 15 and 1. It can be observed that tasks 2 and 15 have the same 

processing time. However, according to the tie-breaker rule, task 2 will be the 

first task to be assigned because it meets the tie-break condition (i.e. it has the 

smallest task index). If method TT_N is being used (i.e. N is considered as a 

primary rule), then task 1 will be the first to be assigned instead of task 2. 
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Table 5.5 includes the results obtained by applying four of the decision rules 

for tasks (RPW, T, EW and LW), taking, for example, NT as the decision 

rule for subgraphs, and assuming that ct=20 and mmax=9. It lists the 

computed priority rules values for each assignable task of the first set AST 

(i.e. 1, 2, 3), the first task to be assigned (1st at), the number of required 

workstations (m), the resulting task assignment and the corresponding 

workstation time (shown in parentheses). 

Table 5.5: Results of applying single-pass methods 

 Task assignment (workstation time) Rule 
for 

tasks 1 2 3 

1st 

at 
m 

I II III IV V VI 

RPW 39 63 45 2 6 2, 1 (11) 3 (17) 4, 5 (16) 6, 7 (16) 8, 10 (15) 9, 11 (15)

T 5 6 17 3 5 3 (17) 2, 1, 5 (16) 4, 6 (19) 8, 7 (20) 9, 11, 10 (18) - 

EW 1 1 1 1 6 1, 2 (11) 3 (17) 4, 5 (16) 6, 7 (16) 9, 11 (15) 8,10 (15)

LW 8 6 7 2 6 2, 1 (11) 3 (17) 4, 5 (16) 6, 7 (16) 8, 10 (15) 9, 11 (15)

 

Table 5.5 reveals that different results can be obtained by using different 

decision rules. In this example, method NT_T requires five workstations, 

whereas the other methods require six workstations. 

5.2.2 Multi-pass methods  

Multi-pass methods solve several times the same problem instance by using a 

stochastic mechanism to select either the subgraphs or the tasks, or both. 

Therefore, multiple solutions are generated by repeating the general scheme 

given by Algorithm 1 and returning the best of all solutions obtained during 

the available computing time, which is the stopping condition.  

Four classes of multi-pass heuristic procedures are distinguished: 

a. [Random_TaskRule]: at step 2 of Algorithm 1, a set of subgraphs (i.e. one 

for each subassembly) is selected randomly, having all subgraphs for the 

same subassembly the same probability of being selected. Then, at step 6, 

tasks are assigned by applying one of the thirteen single-pass priority rules. 

The whole procedure is then repeated by randomly selecting at any 

iteration a new set of assembly subgraphs and generating a line balance.  
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b. [SubgraphRule_Random]: at step 2 of Algorithm 1, subgraphs are selected 

by using one of the three priority rules for subgraphs; therefore, the selected 

subgraphs remain fixed during the given length of computing time. At each 

iteration a new balance is generated by randomly selecting (following a 

uniform probability distribution) the next task to be assigned, considering 

only the tasks belonging to the selected subgraphs. 

c. [Random_Random]: both subgraphs and the next task to be assigned to 

the current workstation are selected randomly both following a uniform 

probability distribution. 

d. W-[SubgraphRule_TaskRule]: both subgraphs and tasks are randomly 

selected. The probability distributions are built using weighted values that 

are proportional or inversely proportional, when using a maximizing or 

minimizing criterion, respectively, to the values obtained considering a 

given priority rule. 

A total of 56 multi-pass heuristic methods have been proposed. Methods using 

single rule values, hereafter referred to as non-weighted multi-pass methods, 

are summarized in Table 5.6: methods 40 to 52 are of class a, 53 is of class c, 

and methods 54 to 56 are of class b.  

 

Table 5.6: Non-weighted multi-pass methods  

Rule for subgraph: Random (RS) 

Rule for 
tasks No.   Label No. Rule for 

tasks   Label 

RPW 40 RS_RPW 47 IS RS_IS 

T 41 RS_T 48 TS RS_TS 

EW 42 RS_EW 49 TTS RS_TTS 

LW 43 RS_LW 50 STS RS_STS 

N 44 RS_N 51 TSSk RS_TSSk 

Sk 45 RS_Sk 52 LWTS RS_LWTS 

TLW 46 RS_TLW 53 RT RS_RT 

Rule for tasks: Random (RT) 

Rule for 
subgraph No. Label Rule for 

subgraph No. Label Rule for 
subgraph No. Label 

NP 54 NP_RT TT 55 TT_RT NT 56 NT_RT 
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The combination of the resulting probability distributions based on the 

various priority rules for subgraphs and tasks produces 39 class-d multi-pass 

methods, hereafter also referred to as weighted multi-pass methods, which are 

listed in Table 5.7 (i.e. methods 57 to 95). 

Table 5.7: Weighted multi-pass methods  

Rule for subgraphs 

NP TT ENT 
Rule for 

tasks 

No. Label No. Label No. Label 

RPW 57 W-NP_RPW 70 W-TT_RPW 83 W-NT_RPW 

T 58 W-NP_T 71 W-TT_T 84 W-NT_T 

EW 59 W-NP_EW 72 W-TT_EW 85 W-NT_EW 

LW 60 W-NP_LW 73 W-TT_LW 86 W-NT_LW 

N 61 W-NP_N 74 W-TT_N 87 W-NT_N 

Sk 62 W-NP_Sk 75 W-TT_Sk 88 W-NT_Sk 

TLW 63 W-NP_TLW 76 W-TT_TLW 89 W-NT_TLW 

IS 64 W-NP_IS 77 W-TT_IS 90 W-NT_IS 

TS 65 W-NP_TS 78 W-TT_TS 91 W-NT_TS 

TTS 66 W-NP_TTS 79 W-TT_TTS 92 W-NT_TTS 

STS 67 W-NP_STS 80 W-TT_STS 93 W-NT_STS 

TSSk 68 W-NP_TSSk 81 W-TT_TSSk 94 W-NT_TSSk 

LWTS 69 W-NP_LWTS 82 W-TT_LWTS 95 W-NT_LWTS 

Example 5.2: Multi-pass procedures 

Considering the S-Graph of Figure 5.1 and that method W-TT_T is applied, 

then, the cumulative probability distribution for selecting a subgraph ss1, ss2 

and ss3 for subassembly 1, 2 and 3, respectively, are as follows (r ²  [0,1) is a 

random value): 

1
1 if 0 0.514
2 if 0.514 1

S r
ss

S r

⎧
⎨
⎩

≤ <
=

≤ <
; 2

3 if 0 0.476
4 if 0.476 1

S r
ss

S r

⎧
⎨
⎩

≤ <
=

≤ <
;  3

5 if 0 0.34
6 if 0.34 0.66
7 if 0.66 1

S r

ss S r

S r

⎧
⎪
⎨
⎪
⎩

≤ <
= ≤ <

≤ <

Similarly, probability functions are built for the resulting available tasks 

obtained at step 6 of Algorithm 1. Therefore, supposing that the selected 

subgraphs are S1, S4 and S5, then the available tasks are 1, 2 and 15. The 

cumulative probability distribution for selecting the next task st to be assigned 

is the following (r ²  [0,1) is a random value): 

1 if 0 0 .2 9
2 if 0 .2 9 0 .6 5
1 5 if 0 .6 5 1

⎧
⎪
⎨
⎪
⎩

≤ <
= ≤ <

≤ <

r
s t r

r
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5.3 Local Optimization Procedures 

Two local optimization procedures based on two neighbourhood search 

strategies have been developed, aiming at improving the solution generated by 

the proposed approximate methods. At this point, it is valid to comment that 

a solution to the problem is represented by a sequence of tasks, which results 

from orderly assigning the tasks to the workstations. 

The following notation is used to describe such search strategies: 

mk Number of workstations required for a given sequence (solution) k 

ISq Initial task sequence generated by a given heuristic method 

WS Working sequence (the first WS is ISq)  

SS Stored sequence (the first SS is ISq)  

NS Neighbour sequence 

Slkj Slack (cycle time minus workstation time) of workstation j  

α  Weight parameter  

 
The local optimization procedures generate the neighbourhood of the working 

sequence WS by using a transformation or exchange movement. Each 

exchange k generates a neighbour sequence NS. Then, task are orderly 

assigned to the workstations resulting in a number of required workstation mk. 

If NS improves SS (i.e., it requires fewer workstations), the neighbour sequence 

becomes the stored sequence SS.  

When a neighbour sequence requires the same number of workstations as the 

store sequence, a secondary objective function [5.1] is used as a tie-breaker. 

This function gives more importance to solutions that load the first 

workstations at maximum capacity and the last ones at minimum capacity. To 

achieve this objective, the weight parameter α  of f is set to 10 (it was 

confirmed that equivalent results can be obtained using α =10e, where e is an 

integer greater than 1).  

1=
= ⋅∑ α

km
j

j
j

max f Slk  [5.1] 

 
The local search ends when all feasible exchanges have been made for each 

task in WS, i.e., when all neighbours have been generated and evaluated. For 

the next iteration, the stored sequence SS is assigned to the working sequence 

WS. The whole procedure is repeated until a predetermined computing time 

has been completed. The final solution is the best of all solutions generated. 
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Exchange movements 

An adaptation of two classical transformations (see, for example, Armentano 

and Bassi (2006)) has been considered to generate the neighbourhood of a 

given solution: 

a. The exchange of the positions in WS of a pair of tasks. 

In this case, the exchange movement tries to exchange the position in the 

sequence WS of two tasks i and k, provided it is feasible; i.e., the precedence 

relations among the tasks are maintained. Furthermore, task i and task k 

should have been assigned to different workstations. When task i and task k 

belong to the same subgraph s, new neighbour sequences are searched by 

interchanging s with each one of the remaining subgraphs available for such 

tasks (which can affect the order of all tasks belonging to such subgraphs). 

b. The movement of task i to another position of the working sequence WS 

(i.e., a task is yielded to a different workstation).  

A task i can be moved to the position of task k when the tasks precedence 

relations are maintained and when task k and task i have been assigned to 

different workstations. In this case, all tasks between the positions of task i 

and k including task k are moved in the sequence one position backwards. For 

each movement, neighbour sequences are generated by interchanging the 

alternative subgraphs available for the moved task.  

When a movement exchange type a is applied the local optimization procedure 

is regarded as LOP-1; otherwise, it is referred to as LOP-2. 

Example 5.3. Exchange movements 

The following initial sequence is obtained by applying the heuristic method 

NT_RPW to the example of Figure 5.1 with a ct=20 (see Table 5.5):  

ISq = 2, 1, 3, 4, 5, 6, 7, 8, 10, 9, 11 

Let consider transformation a: then a neighbour sequence is generated by 

interchanging, for example, tasks 2 and 3 since neither task 2 nor task 1 are 

predecessors of task 3, neither task 1 nor task 3 are successors of task 2 (i.e. 

precedence constraints are kept), and (as can be seen in Table 5.5) both tasks 

are assigned to different workstations (task 2 is assigned to workstation I and 

task 3 to workstation II). Therefore, one of the resulting neighbour sequences 

is illustrated in Figure 5.2. 

2 1 3 4 5 6 7 8 10 9 11 3 1 2 4 5 6 7 8 10 9 11 

            Initial Sequence                               Neighbour Sequence 

Figure 5.2: Generation of a neighbour sequence using transformation a. 
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If transformation b is considered, then a neighbour sequence is generated by 

moving, for example, task 2 to the position of task 3 (see Figure 5.3), which is 

a feasible movement since neither task 1 nor task 2 are predecessors of task 3. 

In this case, the neighbour sequence is as follows:  

2 1 3 4 5 6 7 8 10 9 11 1 3 2 4 5 6 7 8 10 9 11 

            Initial Sequence                               Neighbour Sequence 

Figure 5.3: Generation of a neighbour sequence using transformation b. 

 

At this point, it is valid to comment on a class of metaheuristic method, called 

GRASP (Greedy Randomized Adaptive Search Procedure), which consists in 

two phases: a first phase that generates an initial solution by applying a 

constructive method (as previously described) and a second phase which 

improves such a solution by applying local optimization procedures. A 

stochastic mechanism is introduced to generated multiples initial solutions 

during a given computing time or for a predetermined number of iterations. 

An adaptation of this approach is distinguished in this work when any of the 

proposed local optimization procedures are iteratively applied using, in the 

constructive phase, a multi-pass method. In particular, methods which use 

probability distributions based on weighted values of various priority rules to 

select the assembly subgraphs and the assembly tasks can be considered.  

5.4 Computational Experiment 

To evaluate and compare the performance of the heuristic procedures 

described in the previous sections, a computational experiment was carried 

out, for which small-, medium- and large-scale ASALBP instances were 

considered. Even though small-scaled problems can be solved optimally in 

significantly low computing times with exact methods (i.e., mathematical 

programming models) their solutions are considered as a mean to measure the 

quality of the solutions provided by the proposed heuristic methods. 

5.4.1 Experimental conditions  

The data sets used in this computational experiment are also based on an 

adaptation of benchmark SALB Problems that are available at www.assembly-

line-balancing.de. The experiment involved the following small-, medium- and 

large-scale problems: Bowman, Mansor, Mitchell, Buxey, Gunther, Kilbrid, 
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Hahn, Warnecke, Tonge, Wee-Mag, Lutz3, Arcus2, Bartholdi and Scholl; with 

8, 11, 21, 29, 35, 45, 53, 58, 70, 75, 89, 111, 149 and 297 tasks, respectively. 

Benchmark problems were subdivided into two, three and four subassemblies 

(involving five, eight and eleven subgraphs, respectively) and from 1 to 5 

different cycle time values were considered. Furthermore, to consider 

alternative assembly processes involving different sets of tasks, new assembly 

tasks were also added to the problems.  

Table 5.8 shows the data sets considered in the computational experiment. It 

includes the name of the benchmark problem, the cycle time values used, and 

the number of tasks involved for each group of mutually exclusive assembly 

subgraphs. It is noteworthy that the first four data sets in Table 5.8 are 

considered as small-scale problems, the following seven data sets are medium-

scale, whereas the remaining sets are considered as large-scale problems. As 

can be also observed in Table 5.8, small-scale problems involve from one to 

three cycle time values and from five to eight subgraphs (the dashes in Table 

5.8 indicate that those values do not apply for the corresponding problems). A 

total of 166 (i.e. ) problem instances, involving from 

10 to 305 tasks, were solved with each of the 95 heuristics procedures.  

+ + ⋅ + ⋅ + ⋅ ⋅1 3 3 2 3 2 5 3 10

All heuristic methods were implemented using C++ programming language, 

and the experiments were carried out on a Pentium IV, 3 GHz CPU with 512 

Mb of RAM. 

Table 5.8: Data sets 

Cycle time values Number of subgraphs 

5 8 11 Problem 
ct1 ct2 ct3 ct4 ct5 Number of tasks 

Bowman 20 - - - - 10 - - 

Mansor 48 62 94 - - 11 - - 

Mitchell 14 21 35 - - 21 21 - 

Buxey 30 36 54 - - 29 29 - 

Gunther 41 44 49 61 81 37 37 37 

Kilbrid 57 79 92 138 184 45 46 48 

Hahn 2004 2338 2806 3507 4676 56 56 63 

Warnecke 54 62 74 92 111 63 63 67 

Tonge 160 176 207 251 320 73 75 75 

Wee-Mag 28 33 39 46 56 77 81 83 

Lutz3 75 83 97 118 150 93 98 101 

Arcus2 5785 6540 7916 9400 11570 115 121 125 

Bartholdi 403 470 564 705 805 151 157 160 

Scholl 75 83 97 118 150 299 302 305 
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5.4.2 Analysis of the results 

To present the results obtained in the computational experiment, the following 

notation is used: NI: number of the tested instances; CT: computing time; 

NBS: number of best solutions obtained; PBS: percentage of best solutions 

obtained; , max∆ ,av∆ min∆ , maximal, average and minimal deviation from the 

best solution BS respectively; Tmax, Tav, Tmin, maximal, average and minimal 

solution time, respectively. For each problem instance, the relative deviation 

from the best value  is computed, for each heuristic solution HS, as follows: ∆

100 HS BS

BS

−
∆ = ⋅ . 

The evaluation was based on the number of best solutions provided by all the 

methods. The best solution for each problem instance, the basis for the 

comparative analysis, is the best of all solutions found by the compared 

heuristic methods. For instance, the best solution found by any single-pass 

method is used to evaluate the efficiency of single-pass methods. Similarly, the 

best solution found by any multi-pass method is used to evaluate the efficiency 

of all multi-pass methods. The overall performance of all methods is evaluated 

by considering the best solution found by the best single-pass heuristic or by 

the best multi-pass heuristic method.  

The application of the 39 single-pass methods (see Table 5.2) implied 6474 

computational experiments. On the other hand, the proposed 56 multi-pass 

procedures (see Tables 5.6 and 5.7) conducted 9296 experiments. Furthermore, 

two local optimization procedures were applied to each of the proposed 

heuristic methods, which considering a single CT value (60 seconds), entailed 

31540 additional computational tests. Finally, to evaluate the effect of 

different computing times, CT, in the percentage of best solutions, 1162 

further experiments were realized. 

Applying simple-pass methods to solve small-scale problems 

Table 5.9 presents the results obtained by using all single-pass methods 

defined in Table 5.2 to solve small-scale problems (15 test instances). As 

observed in Table 5.9, the methods NP−TTS, TT−TTS and NT−TTS 

significantly outperformed all other methods, achieving the best solutions in 

93.3% of the cases, and having the lowest ∆max (12.5%) and ∆av (0.8%). Other 

methods that had a relatively good performance include NP−T, NP−TLW, 

NP−TS, NP−STS, NP−LWTS, TT−T, TT−TLW, TT−TS, TT−STS, 

TT−LWTS, NT−T, NT−TLW, NT−TS, NT−STS and TT−LWTS, which  
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provided the best solutions in 66.7% of the cases, having a ∆max of 33.3% and a 

∆av between 7.2 and 9.1%. On the other hand, the methods [SubgraphRule_EW] 

performed the worst, generating the best solutions in only 26.7% of the small-

scale instances tested, furthermore, ∆max is considerable high (50%). As it could 

be expected, single-pass-methods require a very low solution time, on average, 

only 0.001 seconds (maximum 0.002 sec) to solve small-scale problems.  

 

Table 5.9: Results for solving small-scale problems using single-pass 

methods (NI=16) 

Method NBS PBS ∆max ∆av
T max T av

1 NP_RPW 8 53.3 50.0 15.8 0.01 0.001 
2 NP_T 10 66.7 33.3 7.4 0.00 0.000 
3 NP_EW 4 26.7 50.0 19.5 0.00 0.000 
4 NP_LW 8 53.3 50.0 15.8 0.01 0.001 
5 NP_N 7 46.7 50.0 16.6 0.00 0.000 
6 NP_Sk 8 53.3 50.0 15.8 0.01 0.001 
7 NP_TLW 10 66.7 33.3 7.2 0.01 0.001 
8 NP_IS 7 46.7 50.0 16.6 0.00 0.000 
9 NP_TS 10 66.7 33.3 9.1 0.00 0.000 

10 NP_TTS 14 93.3 12.5 0.8 0.00 0.000 
11 NP_STS 10 66.7 33.3 8.3 0.00 0.000 
12 NP_TSSk 7 46.7 50.0 16.6 0.01 0.001 
13 NP_LWTS 10 66.7 33.3 9.1 0.00 0.000 
14 TT_RPW 8 53.3 50.0 15.8 0.00 0.000 
15 TT_T 10 66.7 33.3 7.4 0.00 0.000 
16 TT_EW 4 26.7 50.0 19.5 0.00 0.000 
17 TT_LW 8 53.3 50.0 15.8 0.00 0.000 
18 TT_N 7 46.7 50.0 16.6 0.00 0.000 
19 TT_Sk 8 53.3 50.0 15.8 0.01 0.001 
20 TT_TLW 10 66.7 33.3 7.2 0.01 0.001 
21 TT_IS 7 46.7 50.0 16.6 0.00 0.000 
22 TT_TS 10 66.7 33.3 9.1 0.01 0.001 
23 TT_TTS 14 93.3 12.5 0.8 0.01 0.001 
24 TT_STS 10 66.7 33.3 8.3 0.01 0.001 
25 TT_TSSk 7 46.7 50.0 16.6 0.01 0.002 
26 TT_LWTS 10 66.7 33.3 9.1 0.01 0.001 
27 NT_RPW 8 53.3 50.0 15.8 0.00 0.000 
28 NT_T 10 66.7 33.3 7.4 0.01 0.001 
29 NT_EW 4 26.7 50.0 19.5 0.01 0.001 
30 NT_LW 8 53.3 50.0 15.8 0.00 0.000 
31 NT_N 7 46.7 50.0 16.6 0.01 0.001 
32 NT_Sk 8 53.3 50.0 15.8 0.01 0.002 
33 NT_TLW 10 66.7 33.3 7.2 0.01 0.001 
34 NT_IS 7 46.7 50.0 16.6 0.01 0.001 
35 NT_TS 10 66.7 33.3 9.1 0.01 0.001 
36 NT_TTS 14 93.3 12.5 0.8 0.01 0.001 
37 NT_STS 10 66.7 33.3 8.3 0.01 0.001 
38 NT_TSSk 7 46.7 50.0 16.6 0.01 0.001 
39 NT_LWTS 10 66.7 33.3 9.1 0.00 0.000 

∆min and Tmin = 0 in all cases 
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Applying single-pass methods to solve medium-scale problems 

Table 5.10 presents the results obtained by using all single-pass methods to 

solve medium-scale problems (105 test instances).  

Table 5.10: Results for solving medium-scale problems using single-

pass methods (NI=105) 

Method NBS PBS ∆max ∆av
Tmax Tav

1 NP_RPW 75 71.4 33.3 2.8 0.02 0.01 
2 NP_T 83 79.0 33.3 2.2 0.02 0.01 
3 NP_EW 35 33.3 33.3 7.3 0.02 0.01 
4 NP_LW 69 65.7 33.3 3.1 0.02 0.01 
5 NP_N 44 41.9 33.3 6.5 0.02 0.01 
6 NP_Sk 59 56.2 33.3 4.2 0.02 0.01 
7 NP_TLW 90 85.7 33.3 1.8 0.02 0.01 
8 NP_IS 46 43.8 33.3 6.2 0.02 0.01 
9 NP_TS 64 61.0 33.3 3.5 0.02 0.01 

10 NP_TTS 89 84.8 33.3 2.1 0.02 0.01 
11 NP_STS 55 52.4 33.3 4.6 0.02 0.01 
12 NP_TSSk 45 42.9 33.3 6.4 0.02 0.01 
13 NP_LWTS 70 66.7 33.3 3.2 0.02 0.01 
14 TT_RPW 80 76.2 33.3 1.8 0.02 0.01 
15 TT_T 88 83.8 25.0 1.5 0.02 0.01 
16 TT_EW 36 34.3 33.3 7.1 0.02 0.01 
17 TT_LW 74 70.5 33.3 2.6 0.02 0.01 
18 TT_N 46 43.8 33.3 6.1 0.02 0.01 
19 TT_Sk 60 57.1 33.3 3.9 0.02 0.01 
20 TT_TLW 94 89.5 25.0 1.1 0.02 0.01 
21 TT_IS 49 46.7 33.3 5.9 0.02 0.01 
22 TT_TS 66 62.9 33.3 3.3 0.02 0.01 
23 TT_TTS 94 89.5 33.3 1.3 0.02 0.01 
24 TT_STS 57 54.3 33.3 4.3 0.02 0.01 
25 TT_TSSk 47 44.8 33.3 6.0 0.02 0.01 
26 TT_LWTS 72 68.6 33.3 3.0 0.02 0.01 
27 NT_RPW 76 72.4 33.3 2.5 0.02 0.01 
28 NT_T 83 79.0 33.3 2.2 0.02 0.01 
29 NT_EW 35 33.3 33.3 7.3 0.02 0.01 
30 NT_LW 69 65.7 33.3 3.1 0.02 0.01 
31 NT_N 44 41.9 33.3 6.5 0.02 0.01 
32 NT_Sk 59 56.2 33.3 4.2 0.02 0.01 
33 NT_TLW 90 85.7 33.3 1.8 0.02 0.01 
34 NT_IS 46 43.8 33.3 6.2 0.02 0.01 
35 NT_TS 64 61.0 33.3 3.5 0.02 0.01 
36 NT_TTS 91 86.7 33.3 1.7 0.02 0.01 
37 NT_STS 55 52.4 33.3 4.6 0.02 0.01 
38 NT_TSSk 45 42.9 33.3 6.4 0.02 0.01 
39 NT_LWTS 70 66.7 33.3 3.2 0.02 0.01 

∆min and Tmin = 0 in all cases 
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As observed in Table 5.10, the methods TT_TLW and TT_TTS performed the 

best, achieving the best solutions in 89.5% of the cases. Similar results were 

obtained with the methods NP_TLW, NP_TTS, TT_T, NT_TLW and 

NT_TTS, which provided the best solutions in 83.8 to 86.7% of the cases. On 

the other hand, even they behave slightly better, methods [SubgraphRule_EW] 

again performed the worst, generating best solutions in a maximum of only 

34.3% (36 out of 105) of the medium-scale instances tested. Other methods 

with low performance include NP_N, NP_IS, NP_TSSk, TT_N, NT_N, NT_IS 

and NT_TSSk, which all provided best solutions at most in 43.8% of the cases. 

Table 5.10 also shows that although ∆av is small, for most problems ∆max is 

rather high (i.e. 33.3%). 

Regarding solution time, single-pass methods required an average of only 0.01 

seconds (maximum 0.02 sec) to solve medium-scale problems.  

Applying single-pass methods to solve large-scale problems 

Table 5.11 shows the results obtained using all single-pass methods to solve 

large-scale problems (45 test instances). In this case, method TT_RPW 

performed the best, which generated best solutions in 88.9% of the problems 

solved. In general, methods [SubgraphRule_RPW] had the best performance: 

both NP_RPW and NT_RPW found the best solutions in 77.8% of the cases. 

These results indicate much higher performance of these methods for large-

scale problems than for small- and medium-scale problems (e.g., the PBS of 

TT_RPW for large-scale problems is 88.9%, whereas for medium-scale it is 

76.2 and only 53.3% for small-scale problems). Methods [SubgraphRule_LW] 

presented a similar high performance: TT_LW, NP_LW and NT_LW 

generated best solutions in 71.1, 75.6%, 71.1%, respectively. Good solutions 

were also obtained with TT_TS, TT_TTS and TT_LWTS, which each 

provided the best solutions for more than 71% of the cases. For large-scale 

problems, methods [SubgraphRule_EW] again performed poorly (i.e. maximum 

PBS=26.7%). Furthermore, as can be observed in Table 5.11, ∆

 

av, and 

particularly ∆max, were much smaller for large-scale problems; i.e., ∆max was 

12.5% for most methods, and the maximum was 22.2% (which for medium- 

and small-scale problems was 33.3% and 50%, respectively). On the other 

hand, solution time is also relatively small for large-scale problems: averaged 

Tav=0.07 seconds. 
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Table 5.11: Results for solving large-scale problems using single-pass 

methods (NI=45) 

Method NBS PBS ∆max ∆av
Tmax Tav

1 NP_RPW 35 77.8 12.5 1.9 0.6 0.07 

2 NP_T 26 57.8 12.5 2.6 0.6 0.07 

3 NP_EW 12 26.7 22.2 6.7 0.6 0.07 

4 NP_LW 32 71.1 12.5 2.1 0.6 0.07 

5 NP_N 12 26.7 22.2 6.6 0.7 0.07 

6 NP_Sk 28 62.2 12.5 2.4 0.6 0.07 

7 NP_TLW 29 64.4 12.5 1.7 0.6 0.07 

8 NP_IS 19 42.2 22.2 5.2 0.6 0.07 

9 NP_TS 30 66.7 12.5 2.4 0.6 0.07 

10 NP_TTS 30 66.7 12.5 2.2 0.6 0.07 

11 NP_STS 23 51.1 12.5 2.7 0.6 0.07 

12 NP_TSSk 12 26.7 22.2 6.6 0.6 0.07 

13 NP_LWTS 30 66.7 12.5 2.3 0.6 0.07 

14 TT_RPW 40 88.9 12.5 1.0 0.7 0.09 

15 TT_T 29 64.4 12.5 2.1 0.8 0.09 

16 TT_EW 12 26.7 15.0 6.0 0.8 0.09 

17 TT_LW 34 75.6 12.5 1.5 0.8 0.09 

18 TT_N 13 28.9 20.0 5.6 0.8 0.09 

19 TT_Sk 31 68.9 12.5 1.8 0.8 0.09 

20 TT_TLW 28 62.2 12.5 2.2 0.8 0.09 

21 TT_IS 20 44.4 12.5 4.1 0.8 0.09 

22 TT_TS 32 71.1 12.5 1.5 0.8 0.09 

23 TT_TTS 33 73.3 12.5 1.4 0.8 0.09 

24 TT_STS 22 48.9 12.5 2.9 0.8 0.09 

25 TT_TSSk 13 28.9 20.0 5.6 0.8 0.09 

26 TT_LWTS 33 73.3 12.5 1.7 0.8 0.09 

27 NT_RPW 35 77.8 12.5 1.9 0.6 0.07 

28 NT_T 26 57.8 12.5 2.6 0.6 0.07 

29 NT_EW 12 26.7 22.2 6.7 0.6 0.07 

30 NT_LW 32 71.1 12.5 2.1 0.7 0.07 

31 NT_N 12 26.7 22.2 6.6 0.7 0.07 

32 NT_Sk 28 62.2 12.5 2.4 0.6 0.07 

33 NT_TLW 29 64.4 12.5 1.7 0.6 0.07 

34 NT_IS 19 42.2 22.2 5.2 0.6 0.07 

35 NT_TS 30 66.7 12.5 2.4 0.6 0.07 

36 NT_TTS 30 66.7 12.5 2.2 0.6 0.07 

37 NT_STS 23 51.1 12.5 2.7 0.6 0.07 

38 NT_TSSk 12 26.7 22.2 6.6 0.6 0.07 

39 NT_LWTS 30 66.7 12.5 2.3 0.6 0.07 

∆min and Tmin = 0 in all cases 
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Single-pass methods – Overall results 

Overall Results - Single-pass Methods

0

10

20

30

40

50

60

70

80

90

100

RPW T EW        LW          N          Sk     TLW      IS       TS         TTS     STS    TSSk    LWTS 

PBS NP TT NT

 
Figure 5.4: Overall results of PBS for single-pass methods. 

Figure 5.4 summarizes the PBS for all single-pass methods based on a total of 

166 small-, medium- and large-scale problems. The results are grouped by task 

priority rule. This Figure reveals that the methods perform similarly for the 

same rule using different criteria for subgraphs. Additionally, it can be 

observed in Figure 5.4 that methods [SubgraphRule_TSS] provided the highest 

percentage of best solutions. Therefore, TT is, on average, the best rule for 

selecting subgraphs; being TT_TTS the best performing of all single-pass 

methods. Other methods with similar good performance are 

[SubgraphRule_RPW], [SubgraphRule_T], [SubgraphRule_LW], [SubgraphRule_TLW] 

and [SubgraphRule_LWTS]. Furthermore, as seen in the partial results, 

[SubgraphRule_EW] are the worst of all proposed methods, which were able to 

find best solutions in less than 32% of the problems solved. Other families of 

methods with similarly poor results include [SubgraphRule_N], 

[SubgraphRule_IS] and [SubgraphRule_TSSk]. 

Improving the solution provided by single-pass methods  

Table 5.12 shows the results obtained by applying the proposed local 

optimization procedures to improve the solutions provided by single-pass 

methods, considering all 166 data sets and a computing time of 60 seconds 

(the base of the comparison). It includes the number and percentage of 

solutions improved in k workstations (NSkstat and PSkstat, respectively) with 

both LOP-1 and LOP-2 (in this case, a maximum of only one workstation 

improvement was obtained; therefore, NSkstat and PSkstat=0 for k ≥2). As 

can be observed in Table 5.12, the highest improvements were obtained, as 

expected, for methods with low performance, namely [SubgraphRule_EW], 

[SubgraphRule_N], [SubgraphRule_IS] and [SubgraphRule_TSSk].  
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Table 5.12: Improving the solutions provided by single-

pass methods (NI=166) 

LOP-1 LOP-2 
Method 

NS1stat PS1stat NS1stat PS1stat 

NP_RPW 2 1.2 2 1.2 
NP_T 0 0.0 6 3.6 
NP_EW 34 20.6 59 35.8 
NP_LW 7 4.2 10 6.1 
NP_N 32 19.4 44 26.7 
NP_Sk 14 8.5 17 10.3 
NP_TLW 0 0.0 4 2.4 
NP_IS 25 15.2 32 19.4 
NP_TS 9 5.5 12 7.3 
NP_TTS 1 0.6 2 1.2 
NP_STS 11 6.7 18 10.9 
NP_TSSk 35 21.2 45 27.3 
NP_LWTS 5 3.0 7 4.2 
TT_RPW 1 0.6 2 1.2 
TT_T 0 0.0 5 3.0 
TT_EW 41 24.8 58 35.2 
TT_LW 7 4.2 10 6.1 
TT_N 38 23.0 45 27.3 
TT_Sk 14 8.5 18 10.9 
TT_TLW 0 0.0 2 1.2 
TT_IS 23 13.9 32 19.4 
TT_TS 13 7.9 8 4.8 
TT_TTS 0 0.0 2 1.2 
TT_STS 10 6.1 16 9.7 
TT_TSSk 41 24.8 46 27.9 
TT_LWTS 5 3.0 9 5.5 
NT_RPW 2 1.2 2 1.2 
NT_T 0 0.0 6 3.6 
NT_EW 34 20.6 59 35.8 
NT_LW 7 4.1 10 6.1 
NT_N 32 19.4 44 26.7 
NT_Sk 14 8.5 17 10.3 
NT_TLW 0 0.0 4 2.4 
NT_IS 25 15.2 32 19.4 
NT_TS 9 5.5 12 7.3 
NT_TTS 1 0.6 2 1.2 
NT_STS 11 6.7 18 10.9 
NT_TSSk 35 21.2 45 27.3 
NT_LWTS 5 3.0 7 4.2 

 

Table 5.12 reveals that solutions could be improved up to 24.8 and 35.8% (on 

average, 8.4 and 12%) with LOP-1 and LOP-2, respectively. However, better 

results were obtained when LOP-2 (i.e. an exchange movement of one task 

that implies its assignment to a different workstation) was used; which 

outperformed most methods applying LOP-1 (see Figure 5.5).  
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Figure 5.5: Applying local optimization procedures and single-pass methods. 
 

On the other hand, Figure 5.5 also shows that methods employing different 

local search procedures behave very similarly when the same heuristic method 

is used to build the initial solution. 

Applying non-weighted multi-pass methods – class a, b and c  

Table 5.13 presents the results obtained by using all multi-pass methods 

defined in Table 5.6 to solve small-, medium- and large-scale problems. Since 

multi-pass methods generate multiple solutions within a given computing time, 

the average solution time required by single-pass methods to solve the tested 

instances was employed as stopping criteria: 0.1 seconds (which, for simplicity, 

is the average value, 0.069, rounded up to a single decimal number). In this 

way, all single-pass and multi-pass methods can be compared evenly. The 

impact of considering longer computing times on the solution quality is 

discussed later in this section.  

Regarding small-scale problems, the best results were obtained with methods 

RS_TTS and RS_TS, which found best solutions in 100% of the cases. 

Furthermore, methods [SubgraphRule_RT] were able to provide best solutions 

in 80% of the cases. Method RS_EW performed the worst (i.e. PBS=26.7%). 

For most methods ∆max and ∆av  are considerably large (i.e. maximum ∆max and 

∆av is 50 and 21.8%, respectively). 

Considering medium-scale problems, method RS_TTS performed the best, 

providing best solutions in 87.6%. Good results were also obtained with 

methods RS_TLW, RS_T and RS_RPW that were able to find the best 

solutions in 80, 76.2 and 67.6% of the cases, respectively. Although ∆av is much 

smaller than for small-scale ones, for the majority of problems ∆max is 

considerably large: 33.3%. On the other hand, the worst performing method 

was RS_EW (i.e. PBS=31.4%). 

 81



Chapter 5. Appproximate methods to solve the asalbp 

Table 5.13: Performance of non-weighted multi-pass methods, CT=0.1 

Small (NI=16) Medium (NI=105) Large (NI=45) 
Method 

NBS PBS ∆max ∆av NBS PBS ∆max ∆av NBS PBS ∆max ∆av

RS_RPW 6 40.0 50.0 19.3 71 67.6 33.3 2.1 42 93.3 14.3 0.4

RS_T 13 86.7 33.3 4.4 80 76.2 25.0 2.1 34 75.6 14.3 1.5

RS_EW 4 26.7 50.0 21.8 33 31.4 33.3 7.3 15 33.3 15.0 5.1

RS_LW 6 40.0 50.0 19.3 66 62.9 33.3 2.9 38 84.4 14.3 1.1

RS_N 5 33.3 50.0 20.2 52 49.5 33.3 5.5 24 53.3 14.3 3.3

RS_Sk 6 40.0 50.0 19.3 56 53.3 33.3 4.0 34 75.6 14.3 1.4

RS_TLW 13 86.7 33.3 4.4 84 80.0 25.0 1.8 31 68.9 14.3 1.6

RS_IS 5 33.3 50.0 20.2 50 47.6 33.3 5.7 28 62.2 14.3 2.9

RS_TS 8 53.3 33.3 12.7 62 59.0 33.3 3.7 35 77.8 12.5 1.1

RS_TTS 15 100 0.0 0.0 92 87.6 33.3 1.6 37 82.2 14.3 1.0

RS_STS 8 53.3 33.3 11.8 52 49.5 33.3 4.5 25 55.6 14.3 2.1

RS_TSSk 5 33.3 50.0 20.2 52 49.5 33.3 5.4 24 53.3 14.3 3.3

RS_LWTS 8 53.3 33.3 12.7 63 60.0 33.3 3.7 38 84.4 12.5 0.9

NP_RT 12 80.0 33.3 4.4 61 58.1 33.3 4.4 14 31.1 18.5 5.0

TT_RT 12 80.0 33.3 4.4 61 58.1 33.3 4.2 17 37.8 14.3 4.3

NT_RT 12 80.0 33.3 4.4 61 58.1 33.3 4.4 14 31.1 18.5 5.0

RS_RT 15 100 0.0 0.0 59 56.2 33.3 3.7 17 37.8 14.3 4.1

∆min = 0 in all cases 

 

For large-scale problems, methods RS_RPW performed the best, providing 

the best solutions in 93.3%. Good results were also obtained with methods 

RS_LW, RS_LWTS, RS_TTS, RS_TS, RS_T and RS_Sk, which found the 

best solutions in 84.4, 84.4, 82.2, 77.8, 75.6 and 75.6% of the cases, 

respectively. In contrast, class b methods (i.e. [RuleSubgraphs_RT]) performed 

worse for large-scale problems than for small- and medium-scale problems, 

which only provided the best solutions in 37.8% or less of the cases. Such 

results could be expected since a larger number of tasks need to be assigned; 

therefore, only few iterations of the heuristic procedure can be performed. 

Furthermore, by fixing the subgraphs at the beginning of the procedure, the 

best combination of subgraphs may remain unexplored. Bad results were also 

obtained with methods RS_EW and RS_RT, which provided the best 

solutions for only 33.3 and 37.8%, respectively. Table 5.13 also reveals that the 

results imply a much smaller ∆max (i.e. 18.5% or less). 
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Non-weighted multi-pass methods – Overall results 

Figure 5.6 summarizes the overall results obtained for multi-pass methods 

class-a: [Random_TaskRule], class-b: [SubgraphRule_Random] and class-c: 

[Random_Random] used to solve all data sets (i.e. 166 ASALBP instances). As 

can be observed in Figure 5.6, the highest-performing procedure was a class-a 

method: RS_TTS which obtained the best solutions in 87.3% of the cases. 

Similar results were obtained with methods RS_TLW, RS_T, RS_RPW, which 

were able to find the best solutions in more that 72.1% of the cases. In 

average, RS_EW is the worst performing method (i.e. PBS=31.5%), which 

confirms the condition of EW as a very inefficient rule for selecting tasks in an 

ASALBP. Other methods with poor results include RS_N, RS_IS and 

RS_TSSk, which provided the best solutions in less than 50% of the cases. 

Overall results - multi-pass methods using single-priority-rule values
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Figure 5.6: Overall results for non-weighted multi-pass methods. 

Improving the solution provided by non-weighted multi-pass 

methods 

Table 5.14 shows the results obtained by applying the proposed local 

optimization procedures to improve the solutions provided by non-weighted 

multi-pass methods (class a, b and c), taking into account all available data 

sets. It includes the number and percentage of solutions improved with both 

LOP-1 and LOP-2. As can be observed in Table 5.14, solutions were improved 

in up to 2 workstations with both methods. Highest improvements were 

obtained for methods with low performance (see Figure 5.6): RS_EW, RS_N, 

RS_IS, RS_STS, and RS_TSSk. Furthermore, in all cases LOP-2 outperformed 

LOP-1: for the former averaged PS1st1at and PS2stat were 8 and 0.3%, 

respectively; whereas for LOP-1 these values were 3.8 and 0.1%, respectively. 
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Table 5.14: Improving the solutions provided by non-weighted multi-pass methods 
(NI=166) 

LOP-1 LOP-2 
Method 

NS1stat PS1stat NS2stat PS2stat NS1stat PS1stat NS2stat PS2stat 

RS_RPW 0 0 0 0 1 0.6 1 0.6 
RS_T 0 0 0 0 7 4.2 0 0 
RS_EW 26 15.8 2 1.2 43 26.1 4 2.4 
RS_LW 4 2.4 0 0 5 3.0 0 0 
RS_N 11 6.7 0 0 22 13.3 1 0.6 
RS_Sk 9 5.5 0 0 11 6.7 0 0 
RS_TLW 0 0 0 0 5 3.0 0 0 
RS_IS 11 6.7 0 0 22 13.3 0 0 
RS_TS 5 3.0 0 0 7 4.2 0 0 
RS_TTS 0 0 0 0 0 0.0 1 0.6 
RS_STS 1 0.6 0 0 14 8.5 0 0 
RS_TSSk 11 6.7 0 0 22 13.3 1 0.6 
RS_LWTS 4 2.4 0 0 6 3.6 0 0 
NP_RT 5 3.0 0 0 15 9.1 0 0 
TT_RT 10 6.1 0 0 14 8.5 0 0 
NT_RT 5 3.0 0 0 15 9.1 0 0 
RS_RT 4 2.4 0 0 16 9.7 1 0.6 

 

Applying weighted multi-pass methods – class d 

Table 5.15 presents the results obtained by all weighted multi-pass methods 

(defined in Table 5.7) to solve small-, medium- and large-scale problems.  

Small-scale problems: 23% of the weighted multi-pass methods were able to 

find the best solutions in 100% of the problems solved: W-

[SubgraphRule_RPW], W-[SubgraphRule_TLW], W-[SubgraphRule_TTS], W-

[SubgraphRule_LWTS], W-NP_Sk, W-TT_STS and W-NT_STS. In general, 

most methods had a very high performance, producing, on average, 91.1% of 

best solutions. The worth method of all was W-[NP_N] which found best 

solutions in 53.3% of the cases. For most methods ∆max and ∆av are 

considerably low, which are much smaller values comparing with other 

methods solving small-scale problems.  

Medium-scale problems: best performing methods for medium-scale problem 

are W-[SubgraphRule_T], which provided the best solutions in 81.9 to 84.8% 

of the cases. Good results were also obtained with methods W-

[SubgraphRule_RPW], W-[SubgraphRule_TS], W-[SubgraphRule_TTS], which 

were able to find the best solutions for more that 73.3% of the cases. Methods 

W-[SubgraphRule_TSSk] and W-[SubgraphRule_LWTS] performed the worst: 

maximum PBS of 47.6%. For medium-scale problems ∆ave is larger than for 

small-scale ones; furthermore, for most problems ∆max is considerably large: 

33.3%.  
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Large-scale problems: best performing methods for large-scale problems are 

W-[SubgraphRule_TS] which provided the best solutions from 88.9 to 93.3% 

of the cases. Similar good results were obtained by applying W-

[SubgraphRule_RPW] methods, which generated the best solutions for more 

than 75.6% of the cases. On average weighted-multi-pass methods worked on 

large-scale problems similarly to on medium-scale ones; however, for the 

former the methods implied a much smaller ∆max (maximum=11.8% and 

averaged=8%). The worst performing methods for large-scale problems were 

W-[SubgraphRule_LWTS], with PBS equal to 44.4%. 

 
Table 5.15: Results of weighted multi-pass methods, CT=0.1 

SMALL (NI=16) MEDIUM (NI=105) LARGE (NI=45) 
Method 

NBS PBS ∆max ∆av NBS PBS ∆max ∆av NBS PBS ∆max ∆av

W-NP_RPW 15 100 0.0 0.0 80 76.2 25.0 1.6 34 75.6 6.7 0.8
W-NP_T 14 93.3 12.5 0.8 86 81.9 33.3 1.8 31 68.9 8.0 1.2
W-NP_EW 13 86.7 12.5 1.7 58 55.2 33.3 4.1 30 66.7 8.0 1.6
W-NP_LW 14 93.3 12.5 0.8 61 58.1 33.3 3.8 25 55.6 8.0 2.0
W-NP_N 8 53.3 33.3 11.7 64 61.0 33.3 3.7 24 53.3 8.0 2.0
W-NP_Sk 15 100 0.0 0.0 61 58.1 33.3 3.9 25 55.6 8.0 2.0
W-NP_TLW 15 100 0.0 0.0 58 55.2 33.3 4.1 28 62.2 8.0 1.6
W-NP_IS 12 80.0 33.3 4.9 70 66.7 33.3 2.2 26 57.8 8.0 1.7
W-NP_TS 13 86.7 20.0 2.7 80 76.2 33.3 1.7 42 93.3 4.8 0.2
W-NP_TTS 15 100 0.0 0.0 77 73.3 33.3 2.6 27 60.0 8.0 1.6
W-NP_STS 14 93.3 12.5 0.8 64 61.0 33.3 3.7 24 53.3 8.0 1.9
W-NP_TSSk 13 86.7 20.0 2.7 50 47.6 33.3 4.7 24 53.3 8.0 2.1
W-NP_LWTS 15 100 0.0 0.0 49 46.7 33.3 4.8 20 44.4 11.8 2.4
W-TT_RPW 15 100 0.0 0.0 79 75.2 33.3 2.0 35 77.8 4.8 0.7
W-TT_T 14 93.3 20.0 1.3 88 83.8 33.3 1.7 30 66.7 8.0 1.4
W-TT_EW 12 80.0 20.0 3.0 58 55.2 33.3 4.1 30 66.7 8.0 1.6
W-TT_LW 14 93.3 20.0 1.3 61 58.1 33.3 3.8 25 55.6 8.0 2.1
W-TT_N 11 73.3 33.3 6.4 65 61.9 33.3 3.6 23 51.1 8.0 2.0
W-TT_Sk 13 86.7 20.0 2.2 61 58.1 33.3 3.9 25 55.6 8.0 2.1
W-TT_TLW 15 100 0.0 0.0 59 56.2 33.3 4.0 28 62.2 8.0 1.6
W-TT_IS 13 86.7 20.0 2.7 71 67.6 11.1 2.0 27 60.0 8.0 1.6
W-TT_TS 13 86.7 20.0 2.7 78 74.3 14.3 1.5 40 88.9 7.7 0.4
W-TT_TTS 15 100 0.0 0.0 78 74.3 33.3 2.5 27 60.0 8.0 1.6
W-TT_STS 15 100 0.0 0.0 66 62.9 33.3 3.6 24 53.3 8.0 2.0
W-TT_TSSk 13 86.7 20.0 2.7 50 47.6 33.3 4.7 24 53.3 8.0 2.3
W-TT_LWTS 15 100 0.0 0.0 50 47.6 33.3 4.7 20 44.4 11.8 2.6
W-NT_RPW 15 100 0.0 0.0 80 76.2 14.3 1.4 35 77.8 7.7 0.7
W-NT_T 14 93.3 20.0 1.3 89 84.8 33.3 1.9 30 66.7 8.0 1.4
W-NT_EW 12 80.0 20.0 3.0 59 56.2 33.3 4.0 29 64.4 8.0 1.7
W-NT_LW 14 93.3 20.0 1.3 61 58.1 33.3 3.9 24 53.3 8.0 2.3
W-NT_N 11 73.3 33.3 6.4 64 61.0 33.3 3.6 23 51.1 8.0 2.0
W-NT_Sk 14 93.3 20.0 1.3 61 58.1 33.3 3.9 24 53.3 8.0 2.3
W-NT_TLW 15 100 0.0 0.0 59 56.2 33.3 4.0 28 62.2 8.0 1.6
W-NT_IS 13 86.7 20.0 2.7 71 67.6 11.1 2.0 27 60.0 8.0 1.6
W-NT_TS 13 86.7 20.0 2.7 79 75.2 14.3 1.4 40 88.9 7.7 0.4
W-NT_TTS 15 100 0.0 0.0 77 73.3 33.3 2.5 27 60.0 8.0 1.6
W-NT_STS 15 100 0.0 0.0 66 62.9 33.3 3.7 24 53.3 8.0 2.0
W-NT_TSSk 13 86.7 20.0 2.7 50 47.6 33.3 4.7 25 55.6 8.0 2.1
W-NT_LWTS 15 100 0.0 0.0 49 46.7 33.3 4.7 20 44.4 11.8 2.6
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Weighted Multi-pass methods – Overall results 

Figure 5.7 summarizes the overall results (averaged PBS) obtained for multi-

pass methods class-d, considering all data sets (166 tested problems). As can 

be observed in Figure 5.7, best performing methods were W-

[SubgraphRule_TS], in particular W-NP_TS, which provided best solutions in 

more than 80% of the problems solved. Methods W-[SubgraphRule_RPW], W-

[SubgraphRule_T] and W-[SubgraphRule_TTS] also performed well, all of 

which were able to find the best solutions in more than 70% of the cases.  

Overall Results - Weighted Multi-pass Methods
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Figure 5.7: Overall results for weighted multi-pass methods 

Improving the solution provided by weighted multi-pass methods 

Table 5.16 presents the results obtained by applying the proposed local 

optimization procedures to solve all data sets, being the solutions generated by 

applying multi-pass methods that used weighted values of the priority rules to 

select both subgraphs and tasks. As can be observed in Table 5.16, solutions 

provided by all methods were improved in one workstation by both local 

optimization procedures: minimum improvement obtained with LOP-1 and 

LOP-2 is 2.4 and 3.6%, respectively. Figure 5.8 shows that LOP-2 

outperformed in all cases LP0-1: average and maximum PS1stat are 10.4 and 

20%, respectively; whereas for LOP-1 these values are 6.1 and 10.9%, 

respectively. 
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Table 5.16: Improving the solutions provided by weighted 
multi-pass methods (NI=166) 

LOP-1 LOP-2 
Method 

NS1stat PS1stat NS1stat PS1stat 

W-NP_RPW 6 3.6 7 4.2 

W-NP_T 4 2.4 11 6.7 

W-NP_EW 14 8.5 21 12.7 

W-NP_LW 12 7.3 19 11.5 

W-NP_N 10 6.1 17 10.3 

W-NP_Sk 12 7.3 17 10.3 

W-NP_TLW 10 6.1 18 10.9 

W-NP_IS 7 4.2 15 9.1 

W-NP_TS 5 3.0 7 4.2 

W-NP_TTS 6 3.6 11 6.7 

W-NP_STS 8 4.8 15 9.1 

W-NP_TSSk 14 8.5 25 15.2 

W-NP_LWTS 18 10.9 30 18.2 

W-TT_RPW 11 6.7 13 7.9 

W-TT_T 5 3.0 10 6.1 

W-TT_EW 15 9.1 21 12.7 

W-TT_LW 11 6.7 18 10.9 

W-TT_N 13 7.9 21 12.7 

W-TT_Sk 11 6.7 18 10.9 

W-TT_TLW 9 5.5 18 10.9 

W-TT_IS 6 3.6 13 7.9 

W-TT_TS 4 2.4 9 5.5 

W-TT_TTS 8 4.8 13 7.9 

W-TT_STS 8 4.8 17 10.3 

W-TT_TSSk 17 10.3 27 16.4 

W-TT_LWTS 16 9.7 32 19.4 

W-NT_RPW 10 6.1 10 6.1 

W-NT_T 4 2.4 10 6.1 

W-NT_EW 16 9.7 21 12.7 

W-NT_LW 12 7.3 18 10.9 

W-NT_N 12 7.3 20 12.1 

W-NT_Sk 11 6.7 17 10.3 

W-NT_TLW 9 5.5 18 10.9 

W-NT_IS 6 3.6 13 7.9 

W-NT_TS 4 2.4 9 5.5 

W-NT_TTS 8 4.8 13 7.9 

W-NT_STS 8 4.8 17 10.3 

W-NT_TSSk 16 9.7 27 16.4 

W-NT_LWTS 17 10.3 33 20.0 
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Figure 5.8: Applying local optimization procedures and weighted multi-pass methods  
 

 
Figure 5.8 that presents the behaviour of applying both optimization 

procedures and weighted multi-pass methods, shows that methods employing 

different local search procedures behave very similarly when the same heuristic 

method is used to build the initial solution (similar results are obtained when 

considering single-pass methods - as shown in Figure 5.5.). 

Joint evaluation of the quality of the obtained solutions 

To evaluate the quality of the obtained solutions, and therefore, the efficiency 

of all heuristic methods, a set of 44 test-ASALBP instances, for which the 

optimal solution is known, has been considered. This set includes an 

adaptation of the problems of Bowman, Mansor, Mitchell, Buxey, Gunther, 

Kilbrid, Hahn and Tonge, with 10, 11, 21, 29, 41, 45, 56 and 70 tasks, 

respectively; from 1 to 5 different cycle time values and 5, 8 and 11 subgraphs 

were considered. The optimal solution of each tested problem instance is 

compared with the solution obtained with each of the heuristic methods. In 

this way, the percentage of obtained solutions equal to the optimal solution 

(i.e. POS) and the average deviation from the optimum are computed. 

Single-pass methods 

Table 5.17 presents the analysis of the results for single-pass methods. It 

includes the POS, the percentage of solutions (%S) with 1 and 2 workstations 

deviation from the optimum; and Opt∆min, Opt∆ave and Opt∆max, which are 

minimum, average and maximum deviation from the optimum, respectively. 
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Table 5.17: Solution quality evaluation for single-pass methods (NI=44) 

%S with difference 
from optimum Deviation from optimum 

Method POS 
1 station 2 stations Opt∆max Opt∆ave

NP_RPW 47.7 52.3 0 50.0 11.6 
NP_T 50.0 45.5 4.5 33.3 9.9 
NP_EW 29.5 63.6 6.8 50.0 14.6 
NP_LW 47.7 52.3 0 50.0 11.6 
NP_N 43.2 54.5 2.3 50.0 12.2 
NP_Sk 45.5 54.5 0 50.0 12.2 
NP_TLW 50.0 45.5 4.5 33.3 9.8 
NP_IS 40.9 56.8 2.3 50.0 13.0 
NP_TS 50.0 50.0 0 33.3 9.9 
NP_TTS 59.1 40.9 0 33.3 7.1 
NP_STS 47.7 50.0 2.3 33.3 9.9 
NP_TSSk 43.2 54.5 2.3 50.0 12.2 
NP_LWTS 50.0 50.0 0 33.3 9.9 
TT_RPW 52.3 47.7 0 50.0 10.8 
TT_T 52.3 47.7 0 33.3 9.1 
TT_EW 29.5 68.2 2.3 50.0 14.1 
TT_LW 52.3 47.7 0 50.0 10.8 
TT_N 47.7 50.0 2.3 50.0 11.4 
TT_Sk 47.7 52.3 0 50.0 12.0 
TT_TLW 52.3 47.7 0 33.3 9.0 
TT_IS 43.2 56.8 0 50.0 12.4 
TT_TS 52.3 47.7 0 33.3 9.7 
TT_TTS 68.2 31.8 0 33.3 5.2 
TT_STS 50.0 47.7 2.3 33.3 9.6 
TT_TSSk 47.7 50.0 2.3 50.0 11.4 
TT_LWTS 52.3 47.7 0 33.3 9.7 
NT_RPW 47.7 52.3 0 50.0 11.6 
NT_T 50.0 45.5 4.5 33.3 9.9 
NT_EW 29.5 63.6 6.8 50.0 14.6 
NT_LW 47.7 52.3 0 50.0 11.6 
NT_N 43.2 54.5 2.3 50.0 12.2 
NT_Sk 45.5 54.5 0 50.0 12.2 
NT_TLW 50.0 45.5 4.5 33.3 9.8 
NT_IS 40.9 56.8 2.3 50.0 13.0 
NT_TS 50.0 50.0 0 33.3 9.9 
NT_TTS 63.6 36.4 0 33.3 6.0 
NT_STS 47.7 50.0 2.3 33.3 9.9 
NT_TSSk 43.2 54.5 2.3 50.0 12.2 
NT_LWTS 50.0 50.0 0 33.3 9.9 

Opt∆min = 0 in all cases 

 

As can be seen in Table 5.17, single-pass methods with larger POS were 

[SubgraphRule_TT], in particular TT_TTS which was able to find the optimal 

solution for 68.2% of the instances solved (this method was the one that 

performed the best in the computing experiment involving the 166 test 

instances –see Figure 5.4). Furthermore, method TT_TTS implied a 

minimum, average, and maximum deviation from the optimum of 0, 5.2 and 

33%, respectively. These results indicate that good solutions can be expected 

by applying method TT_TTS. On the other hand, single-pass methods 
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generated solutions with one and, for 46% of the methods, two workstations 

deviation from the optimal solution. Although, average deviation from the 

optimum is relatively low, for most methods, maximum deviation is high. The 

analysis of the results also revealed that methods with the lowest performance 

are [SubgraphRule_EW], which were able to obtain the optimal solution for 

only 29.5% of the problems solved (similar result was obtained when working 

with all data sets, i.e., 166 problem instances).   

Non-weighted multi-pass methods  

Table 5.18 presents the analysis of the results for non-weighted multi-pass 

methods (i.e. methods based on single priority rule values and random choice). 

The best performance was recorded for method RS_TTS (as previously seen in 

the analysis involving the 166 problem instances), which was able to find the 

optimal solution for 75% of the instances solved, yielding comparatively small 

Opt∆ave and Opt∆max: 3.7 and 16.7%, respectively. On average, multi-pass 

methods were able to find 56.3% of the tested problems, most of which implied 

a relatively high Opt∆max. Multi-pass methods generated solutions with a 

maximum of two workstations deviation from the optimal solution; however, 

most methods implied a deviation of only one workstation. The worst 

performance was recorded for method RS_EW (POS=34.1%). 

Table 5.18: Solution quality evaluation for non-weighted multi-pass methods 

(NI=44, CT=0.1) 

%S with difference 
from optimum 

Deviation from optimum 
Method POS 

1 station 2 stations Opt∆max Opt∆ave

RS_RPW 59.1 1.0 0 50.0 9.9 

RS_T 63.6 36.4 0 33.3 6.9 

RS_EW 34.1 63.6 2.3 50.0 12.4 

RS_LW 59.1 40.9 0 50.0 9.9 

RS_N 47.7 50.0 2.3 50.0 11.4 

RS_Sk 54.5 45.5 0 50.0 11.0 

RS_TLW 63.6 36.4 0 33.3 6.9 

RS_IS 43.2 56.8 0 50.0 12.4 

RS_TS 52.3 47.7 0 33.3 9.7 

RS_TTS 75.0 25.0 0 16.7 3.7 

RS_STS 50.0 47.7 2.3 33.3 9.6 

RS_TSSk 47.7 50.0 2.3 50.0 11.4 

RS_LWTS 52.3 47.7 0 33.3 9.7 

NP_RT 61.4 38.6 0 33.3 6.5 

TT_RT 63.6 36.4 0 33.3 6.5 

NT_RT 61.4 38.6 0 33.3 6.8 

RS_RT 68.2 31.8 0 25.0 5.4 

Opt∆min = 0 in all cases 
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Weighted multi-pass methods  

Table 5.19 presents the analysis of the results for methods using probability 

distributions based on weighted values of the priority rules (methods class d). 

As can be observed in Table 5.19, the best results were obtained with methods 

W-TT_LWTS, W-TT_RPW and W-NT_LWTS, which were able to find the 

optimal solution for 84.1, 81.8 and 81.8% of the problems solved, respectively. 

Furthermore, these methods yielded an average and maximum deviation from 

the optimum of up to 2.6 and 17%, respectively. On average, all methods were 

able to find the optimal solution in 70.7% of the problems solved. It is 

unexpected that methods [SubgraphRule_LWTS] be that effective since when 

considering the 166 test instances they performed the worst. 

Table 5.19: Solution quality evaluation for weighted multi-pass 
methods (NI=44, CT=0.1) 

Deviation from optimum 
Method POS 

%S 1 station 
diff. from opt. Opt∆max Opt∆ave

W-NP_RPW 77.3 22.7 17 3.3 
W-NP_T 68.2 31.8 25 5.3 
W-NP_EW 61.4 38.6 25 6.1 
W-NP_LW 65.9 34.1 25 5.7 
W-NP_N 52.3 47.7 33 8.9 
W-NP_Sk 68.2 31.8 25 5.4 
W-NP_TLW 72.7 27.3 25 4.2 
W-NP_IS 65.9 34.1 33 5.5 
W-NP_TS 79.5 20.5 20 3.1 
W-NP_TTS 75.0 25.0 17 3.7 
W-NP_STS 65.9 34.1 25 5.3 
W-NP_TSSk 79.5 20.5 20 3.2 
W-NP_LWTS 77.3 22.7 17 3.3 
W-TT_RPW 81.8 18.2 17 2.6 
W-TT_˙T 72.7 27.3 25 4.6 
W-TT_EW 63.6 36.4 25 5.8 
W-TT_LW 68.2 31.8 25 5.3 
W-TT_N 59.1 40.9 33 7.6 
W-TT_Sk 63.6 36.4 25 6.1 
W-TT_TLW 75.0 25.0 25 3.9 
W-TT_IS 68.2 31.8 25 5.3 
W-TT_TS 70.5 29.5 25 4.8 
W-TT_TTS 75.0 25.0 17 3.7 
W-TT_STS 72.7 27.3 25 4.2 
W-TT_TSSk 72.7 27.3 20 4.2 
W-TT_LWTS 84.1 15.9 17 2.3 
W-NT_RPW 79.5 20.5 17 3.0 
W-NT_T 70.5 29.5 25 4.9 
W-NT_EW 61.4 38.6 25 6.4 
W-NT_LW 65.9 34.1 25 5.8 
W-NT_N 63.6 36.4 33 6.4 
W-NT_Sk 65.9 34.1 25 5.8 
W-NT_TLW 75.0 25.0 25 3.9 
W-NT_IS 65.9 34.1 25 5.9 
W-NT_TS 72.7 27.3 25 4.4 
W-NT_TTS 75.0 25.0 17 3.7 
W-NT_STS 70.5 29.5 25 4.8 
W-NT_TSSk 75.0 25.0 20 3.9 
W-NT_LWTS 81.8 18.2 17 2.6 

Opt∆min = 0 in all cases 
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The worth of all results was obtained with method W-NP_N which was able to 

find the optimal solution for 52.3% of the problems solved. A noteworthy 

result is that all methods generated solutions with at maximum one 

workstation deviation from the optimum. These results indicate that good 

solutions can be expected by applying this type of heuristic method.  

Nevertheless, if a single computing time is used, all heuristic procedures can be 

evenly compared, since they can be evaluated based on the same reference 

value: the optimal solution. In this way, the best method can be identified. 

Effects of longer computing times on solution quality 

To study the effects of longer computing times on solution quality, all data 

sets were solved by using multi-pass method RS_TTS (the non-weighted 

multi-pass method with highest percentage of best solutions: PBS=87.3%) and 

computing times of 0.1, 1, 5, 30 60, 180, 300 and 600 seconds. The results 

obtained are presented in Table 5.20. 

Table 5.20: Results for RS_TTS considering different CT values (NI=166) 

Computing time in seconds 
Measure 

0.1 1 5 30 60 180 300 600 

NBS 144 145 145 146 148 150 151 152 
PBS 87.3 87.3 87.9 88.5 89.7 90.9 91.5 92.1 

 

As shown in Table 5.20, for 0.1 seconds, the heuristic was able to find the best 

solutions for 87.3% of the cases solved; the same result was obtained for 1 

second. For 5 seconds (a 5000% bigger computation time) the percentage 

increased to 87.9%, which represents only 0.6% of improvement. Furthermore, 

for 30, 60, 180 and 600 seconds an improvement of 1.2, 2.4, 3.6, 4.2, and 4.8%, 

respectively, was achieved over the solution provided with 0.1 second. It is 

noteworthy, that the percentage of the improvement is not proportional to the 

computing time increments; since, for example, only a 4.8% of improvement is 

achieved over the solution obtained with a 600000% smaller computing time. 

However, as illustrated in Figure 5.9, the results provided by multi-pass 

methods can be expected to improve with much longer computing times.  
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Figure 5.9: Multi-pass methods: percentage of best solutions for 
different CT  
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Comparison of the performance of simple- and multi-pass methods 

Figure 5.10 shows the percentage of best solutions generated by all proposed 

methods. The comparison is carried out considering again three categories: 1) 

single-pass, 2) non-weighted multi-pass and 3) weighted multi-pass methods. 

As can be seen in Figure 5.10, the best result was obtained with a class-d 

multi-pass method: W-TT_RPW, which found the best solutions in 84.8% of 

the cases. In general, weighted multi-pass methods performed better than all 

other methods, the majority of which provided the best solutions for at 

minimum 60% of the tested problems. On the other hand, single-pass methods 

performed the worst, for most of which the PBS only yielded less than 50%. 

Comparison of all proposed Heuristic Methods
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Figure 5.10: Overall performance of single-pass and multi-pass methods 

Figure 5.11 shows, per category, the percentage of the best solutions (PBS), 

the average deviation (Ave_dev), the percentage of solutions equal to the 

optimal solution (POS) and maximum average deviation from the optimal 

solution (Dev_opt). Figure 5.11 corroborates the low performance of single-pass 

methods, which obtained the lowest PBS (52.7%) and POS (68.2%) and the 

highest deviations (Ave˙dev=8.5%, Dev_opt=14.6%). Furthermore, weighted 

multi-pass methods obtained the highest PBS (84.8%) and the highest POS 

(84.1%). Furthermore, the solutions provided by weighted multi-pass methods 

implied the lowest deviations (Ave˙dev=2.4%, Dev_opt=8.9%). Therefore, it 

can be stated that weighted multi-pass methods performed the best. 
Performance and Quality Comparison
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Figure 5.11: Method performance and solution quality comparison 
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Chapter 6 
 

 Conclusions, 
Contributions and Future 

Research Proposals 

This doctoral thesis addressed a new generalized assembly line balancing 

problem with practical relevance that has been defined and entitled here 

ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem. The 

core feature of such a problem is that it considers alternative variants for 

different parts of an assembly or manufacturing process. Each variant is 

represented by a precedence subgraph that defines the tasks to be performed, 

their precedence relations and their corresponding processing times. 

Furthermore, mutually exclusive assembly processes, involving different sets of 

assembly tasks, are also considered. To solve the ASALBP efficiently, two 

problems have to be solved simultaneously: (1) the decision problem to select 

the assembly alternative and (2) the balancing problem that assigns the tasks 

to the workstations. This problem implies a high level of difficulty since for 

the simple case it is verified the NP-hard condition.  

 

6.1 Main Results 

Many real-life assembly line balancing problems involve assembly variants. 

Therefore, there is an increasing interest of addressing problems that consider 

assembly alternatives. The comprehensive analysis of the state-of-the-art on 

assembly line balancing problems showed that most studies deal with the 

simple case (SALBP) and problems involving assembly variants are not often 
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considered in the literature. When processing alternatives exist they are 

mainly related to the problem of equipment selection. On the other hand, 

strategies have been proposed aiming at integrating the sequence planning into 

the balancing process. However, due to its complexity, a two-stage approach is 

usually considered to select, according to a given criterion, one of the available 

alternatives; and then the line is balanced considering that choice. In this work 

it was illustrated how, by following such an approach, a problem involving 

assembly alternatives can be sub-optimized since the effect of the unselected 

variants remains unexplored. Furthermore, the best solution can be discarded 

due to it does not match the decision criterion considered.  

The literature review also revealed that the Alternative Subgraphs Assembly 

Line Balancing Problem, which considers the variants that different parts of 

an assembly process may admit, has not been addressed before. Only the 

works of Pinto et al. (1983) and, much more recently, Scholl et al. (2007) 

considered a similar problem involving processing alternatives. In the former 

case, the alternatives are defined by the assignment of a given equipment type 

to the workstations; furthermore, they mentioned the possibility of having 

variable precedence requirements but they did not considered such a case. The 

latter work considered a special case of the ASALBP in which the alternatives 

are represented by time increments that are added to the processing times, 

which are dependent on the task processing sequence. However, none of the 

cases treated the problem in which alternative sets of precedence constraints 

are allowed but instead they considered them fixed. Thus, a new GALB 

Problem has been defined.  

Due to the impossibility to depict all available assembly variants in a standard 

precedence graph, in this work the S-Graph has been proposed as a 

diagramming tool to represent in a unique graph all available alternatives.  

In order to formalize the new ASALBP, two mathematical programming 

models were proposed in this work. In a preliminary model (M1) assembly 

alternatives were regarded as global routes, which were represented by a 

complete precedence graph and determined by the combination of the 

available subgraphs. By analysing this model, it was considered that its 

dimension could be reduced by considering each individual subgraph as a 

partial route, involving only a reduce set of the assembly tasks. Therefore, an 

enhanced model (M2) was developed considering partial routes.  
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Different test problems were generated considering small-, medium- and large-

scale benchmark SALBP. ASALBP test instances, which can themselves be 

considered benchmarks, were generated by adapting the original problems in 

such a way that assembly alternatives were involved. The computational 

experiment carried out revealed that the number of variables and constraints 

were significantly reduced with M2, which resulted in a considerable reduction 

on the computation time comparing with M1. Furthermore, in all cases M2 

outperformed M1, yielding in 33% of the cases a 100% of improvement. The 

analysis of the results also indicates that mathematical programming models 

can be applied to optimally solve only small- and medium-scale ASALBP 

instances; i.e., from 10 to around 30 assembly tasks and from 5 to 11 

subgraphs. 

This new combinatorial optimization problem thus required of the design and 

development of approximate methods to solve industrial-scale problems. 

Several heuristic methods to solve the ASALBP were proposed in this thesis. 

As discussed earlier, constructive methods based on priority rules have been 

successfully applied to assembly line balancing problems; therefore, this type of 

methods were considered here. Due to it has been proven that workstation-

oriented methods perform better than task-oriented ones, all proposed 

procedures followed such an approach; therefore, a new workstation is open 

only once the current workstation is fully loaded. 

Several criteria were considered to select the assembly subgraphs. In order to 

be able to evaluate the impact of a priori selection of a given assembly 

alternative on the solution of the problem, three single-priority rules were 

considered. Random search mechanisms were also used to allow a more flexible 

exploration of the solution space. On the other hand, decision criteria for 

selecting the tasks were based on an adaptation to the ASALBP of 13 of the 

most well-known priority rules used to solve SALBP, and on random choice. 

Furthermore, both subgraphs and tasks were selected by using probability 

distributions based on weighted, instead of nominal, values of the priority 

rules. The combination of all decision criteria gave rise to a total of 95 

heuristic procedures, divided into single-pass and multi-pass methods (the 

latter further divided into non-weighted and weighted multi-pass methods), 

being able to provide a single solution and multiples solutions, respectively. 

The performance of all methods was evaluated via a computational experiment 

based on the number of best solutions generated, involving 48472 experiments. 

Furthermore, the optimal solutions found with the mathematical models were 

used to evaluate the quality of the provided solutions; i.e., the deviation from 

the optimal solution.  
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The analysis of the results showed that single-pass and multi-pass methods 

using EW (Minimum Earliest Workstation), N (Minimum Task Number) and 

IS (Maximum Number of Immediate Successors) as decision rules for tasks 

proved to be inefficient at solving ASALB problems (i.e. maximum PBS is less 

than 50.5%); being TTS (Maximum Task Time plus Total number of 

Successors) one of the most efficient priority rules. Furthermore, the results 

obtained revealed that multi-pass methods outperformed single-pass ones; 

particularly, weighted multi-pass methods were able to find best solutions in 

84.8% of the cases. When subgraphs are selected randomly, the solution space 

is explored more exhaustively; therefore, there is a better chance of selecting 

the subgraphs that provide the best solution.  

Additionally, the comparison of the obtained solutions with the found optimal 

solution corroborated the results obtained when considering the percentage of 

best solution (PBS) as the evaluation measure. Multi-pass methods using 

probability distributions based on weighted values of the priority rules 

performed the best having the highest POS (i.e. 84.1%) and the lowest 

deviations from both the best solution and the optimal solution (2.4 and 8.9%, 

respectively). Therefore, the application of weighted multi-pass methods can 

be recommended.  

In order to improve the solution of the proposed heuristic methods, two local 

optimization procedures were also proposed here, which are based on an 

adaptation of two classical neighbourhood search strategies: LOP-1 that 

considers the exchange of the positions in the solution sequence of a pair of 

tasks, i and k; and LOP-2 that is based on the movement of one task i to the 

position of another task k, which also implies the movement of task k and all 

tasks in between tasks i and k. A computational experiment designed to 

evaluate the performance of both procedures revealed that improved solutions 

could be obtained in which up to two workstations less were required, which 

indicates that a financial benefit can be obtained by applying the proposed 

local optimization methods. On the other hand, the results also showed that in 

all cases LOP-2 outperformed LOP-1, yielding improved solutions in one and 

two workstations in 35.8 and 26.1%, respectively. Thus, all proposed methods 

that used LOP-2 could be applied to solve an ASALBP to select the best 

overall solution. 

On the other hand, it was shown that the results provided by multi-pass 

methods can be expected to improve with much longer computing times. 

Therefore, if there are no time constraints, multi-pass heuristics could be 

applied with much greater available computing time, considering for example 

3600 or 18000 seconds, which are realistic time-windows considering industrial-

size problems.  
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6.2 Proposals for Future Research Work 

The Alternative Subgraphs Assembly Line Balancing Problem introduced and 

defined in this thesis is a new GALBP with practical relevance. Therefore, 

future research work will mainly involve exploring other methods to solve 

efficiently this new problem. Furthermore, and aiming at closing the gap 

between research works and real applications, other relevant characteristics 

can be included to the ASALB Problem. 

Exact approaches 

Branch and bound procedures has been successfully applied to solve hard 

optimization problems. Therefore, this strategy can be considered to optimally 

solve the ASALBP. Another optimization approach that can be explored refers 

to disjunctive programming models, which have been used to solve problems 

involving alternative constraints.  

Metaheuristic procedures  

The growing interest on using Evolutionary Algorithms (e.g. Genetic 

Algorithms) to solve optimization problems in industry makes the use of such 

procedures an attractive approach, which, in addition, has been successfully 

applied to complex assembly line balancing problems. 

Additional characteristics 

In order to increase the practicality of the problem, its definition can be 

extended by including new features such as, for example, stochastic processing 

times.  

6.3 Contributions 

The following written contributions are part of the research work undertaken 

in this doctoral thesis. 

1. Capacho, L. and Pastor, M. (2004). Generación de secuencias de montaje y 
equilibrado de líneas, Technical Report IOC-DT-P-2004-04, Technical 
University of Catalonia, Barcelona, Spain. 

2. Capacho, L. and Pastor, R. (2005). ASALBP: the Alternative Subgraphs 

Assembly Line Balancing Problem. Technical Report: IOC-DT-P-2005-5. 

UPC. Barcelona, Spain. International Journal of Production Research (to 

appear). 

3. Capacho, L. and Pastor, R. (2005). Modelo de Programación Matemática 
del Problema de Equilibrado de Líneas con Subgrafos de Montaje 
Alternativos. IX Congreso de Ingeniería de Organización Gijón, 8 y 9 de 

Septiembre de 2005. 

4. Capacho, L., Guschinskaya, O., Dolgui, A., Pastor, R. (2006). 
Approximation Methods to Solve the Alternative Subgraphs Assembly 
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Line Balancing Problem, Research Report, G2I-EMSE 2006-500-003, Ecole 
des Mines, SE, France, April 2006. 

5. Capacho, L., Guschinskaya, O., Dolgui, A., Pastor, R. (2006). A 

Comprehensive Comparative Analysis of Heuristic Methods for the 

Alternative Subgraphs Assembly Line Balancing Problem, Research Report, 

G2I-EMSE 2006-500-005, Ecole des Mines de Saint Etienne, France, 2006. 

6. Capacho, L. and Pastor, R. (2006). The ASALB Problem with Processing 

Alternatives Involving Different Tasks: Definition, Formalization and 

Resolution, in The 2006 International Conference on Computational Science 

and its Applications, ICCSA 2006, Lecture Notes in Computer Science, Eds. 

M. Gavrilova et al.: Springer-Verlag, Berlin, May 2006, 3982, pp. 554–563. 

7. Capacho, L. and Pastor, R. (2006). Equilibrado de Líneas con Alternativas de 
Montaje. SEIO 2006: Contribuciones a la Estadística y a la Investigación 
Operativa, Tenerife, 15-19 de Mayo de 2006. 

8. Capacho, L. and Pastor, R. (2006). Formalización matemática del problema 
de equilibrado de líneas con procesos de montaje mutuamente excluyentes. X 
Congreso de Ingeniería de Organización Valencia, 7 y 8 de Septiembre de 2006. 

9. Capacho, L., Guschinskaya, O., Dolgui, A., Pastor, R. (2006). An 

Evaluation Study of Approximate Methods for a Line Balancing Problem 

with Assembly Alternatives. 8th International Conference on The Modern 

Information Technology in the Innovation Processes of the Industrial 

Enterprises, 11-12 September, 27-30, Budapest, Hungary, 2006. 

10. Capacho, L., Pastor, R., Guschinskaya, O. and Dolgui, A. (2006). 

Heuristic Methods to Solve the Alternative Subgraphs Assembly Line 

Balancing Problem. IEEE Conference on automation Science and 

Engineering CASE 2006, Shanghai-China, 8-11 October 2006. 

11. Capacho, L., Guschinskaya, O., Dolgui, A., Pastor, R. (2006). A 

Comparative Analysis of Heuristic Methods for the Alternative Subgraphs 

Assembly Line Balancing, XIII Congreso Latino-Iberoamericano de 
Investigación Operativa CLAIO2006, Montevideo-Uruguay, 27-30 November, 

2006. 

12. Capacho, L., Pastor, R., Dolgui, A., Guschinskaya, O. (2007). An 

Evaluation of Constructive Heuristic Methods to Solve the Alternative 

Subgraphs Assembly Line Balancing Problem. Journal of Heuristics (to 

appear). 

13. Capacho, L. and Pastor, R. (2007). A Metaheuristic Approach to Solve 

the ASALBP: an Assembly Line Balancing Problem Involving Assembly 

Alternatives (in preparation). 
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