Coordinated Scheduling and Dynamic
Performance Analysis in Multiprocessor
Systems

Julita Corbalan Gonzalez
Departament d’Arquitectura de Computadors
Universitat Politécnica de Catalunya (UPC)
Barcelona (SPAIN), June 2002
A THESIS SUBMITTED IN FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
Doctor per la Universitat Politécnica de Catalunya

Coordinated Scheduling and
Dynamic Performance Analysis Iin
Multiprocessor Systems

Author: Julita Corbalan Gonzalez
Advisor: Jesus José Labarta Mancho
Co-Advisor: Xavier Martorell Bofill

Approved, Thesis Committee

Its time...

to design and build computing systems capable of running
themselves, adjusting to varying circumstances, and
preparing their resources to handle most efficiently the
workloads we put upon them. These autonomic systems
must anticipate needs and allow users to concentrate on
what they want to accomplish rather than figuring how to
rig the computing systems to get them there.

AUTONOMIC COMPUTING

IBM’s Perspective on the State of Information Technology
IBM 2001

Coordinated Scheduling and Dynamic Performance Analysis in Multiprocessor Systems

Abtract

The performance of current shared-memory multiprocessor systems depends on both the
efficient utilization of all the architectural elements in the system (processors, memory,
etc), and the workload characteristics. This Thesis has the main goal of improving the ex-
ecution of workloads of parallel applications in shared-memory multiprocessor systems
by using real performance information in the processor scheduling.

In multiprocessor systems, users request for resources (processors) to execute their
parallel applications. The Operating System is responsible to distribute the available
physical resources among parallel applications in the more convenient way for both the
system and the application performance.

It is a typical practice of users in multiprocessor systems to request for a high number
of processors assuming that the higher the processor request, the higher the number of processors
allocated, and the higher the speedup achieved by their applications. However, this is not true.
Parallel applications have different characteristics with respect to their scalability. Their
speedup also depends on run-time parameters such as the influence of the rest of running
applications.

This Thesis proposes that the system should not base its decisions on the users requests
only, but the system must decide, or adjust, its decisions based on real performance
information calculated at run-time. The performance of parallel applications is an
information that the system can dynamically measure without introducing a significant
penalty in the application execution time. Using this information, the processor allocation
can be decided, or modified, being robust to incorrect processor requests given by users.
We also propose that the system use a target efficiency to ensure the efficient use of
processors. This target efficiency is a system parameter and can be dynamically decided
as a function of the characteristics of running applications or the number of queued
applications.

We also propose to coordinate the different scheduling levels that operate in the
processor scheduling: the run-time scheduler, the processor scheduler, and the queueing
system. We propose to establish an interface between levels to send and receive
information, and to take scheduling decisions considering the information provided by
the rest of levels. In particular, we propose that the processor scheduler decides when a
new application can be started and let the decision about which application to start to the
gueueing system.

vii

Viii ABSTRACT

The evaluation of this Thesis has been done using a practical approach. We have
designed and implemented a complete execution environment to execute OpenMP
parallel applications. We have introduced our proposals, modifying the three scheduling
levels (run-time library, processor scheduler, and queueing system): At the run-time level
we have implemented some techniques to improve the run-time behavior in a
multiprogrammed multiprocessor system, including the coordination with the O.S.
scheduler. We have also proposed a mechanism to dynamically measure the performance
of parallel applications. At the processor scheduling level, we have mainly proposed
several scheduling policies to include the performance information in the processor
allocation policy. We have also specified the mechanism to coordinate the processor
scheduler with the queueing system. At this level we have also done proposals to work
both in space-sharing and in gang scheduling policies. At the queueing system we have
mainly incorporated the coordination with the processor scheduling level.

Results show that the ideas proposed in this Thesis of (1) measuring the applications
performance at run-time to decide and/or adjust the processor allocation, (2) imposing a
target efficiency to ensure the efficient use of resources, and (3) coordinating the different
scheduling levels, significantly improve the system performance. If the evaluated
workload has been previously tuned, in the worst case, we have introduced an slowdown
around 5% in the workload execution time compared with the best execution time
achieved. However, in some extreme cases, with a workload and a system configuration
not previously tuned, we have improved the system performance in a 400%, also
compared with the next best time.

The main results achieved in this Thesis can be summarized as follows:

= The performance of parallel applications can be measured at run-time. The
requirements to apply the mechanism proposed in this Thesis is to have malleable
applications and shared-memory multiprocessor architectures.

= The performance of parallel applications must be considered to decide the
processor allocation. The system must use this information to self-adjust its
decisions based on the achieved performance. Moreover, the system must impose a
target efficiency to ensure the efficient use of processors.

= The different scheduling levels must be coordinated to avoid interferences
between levels.

= Malleability is a desired application characteristic that benefits both the
application and the system. The application because applications do not have to
wait for a certain amount of resources to become available, and to the system
because it can better distribute the available resources among applications.

Dedicatoria

A mis padres y a Jose

Coordinated Scheduling and Dynamic Performance Analysis in Multiprocessor Systems

Agradecimientos

Es viernes, son las siete, y llevo desde las tres mirando ficheros en C. Creo que lo mejor es
gue lo deje y dedique la poca capacidad que me queda a escribir algo que sea facil, como
por ejemplo agradecerle a todas las personas que han hecho que esta tesis tenga sentido.

Podria empezar por mis directores de tesis como la mayoria de la gente pero creo que
el primer lugar se lo merecen mis padres y mi marido. Ellos son mi viday por lo tanto esta
tesis es tan suya como mia. A ellos no se lo agradezco, se la dedico. A mi familia en
general, a mis hermanos, a mis suegros, a mis cufiados, en fin, a todos ellos gracias por
hacer que todo esto tuviera sentido y apoyarme siempre, espero que sientan que en parte
esta tesis es suya también. A algunos amigos muy especiales, a Julio, Mari, y Rubén (su
peque), ellos también forman parte de mi familia.

Ahora si que podemos pasar al ambito mas "profesional”. Por supuesto se lo quiero
agradecer a mis dos directores de tesis, a JesUs y a Xavi. A Jesus mas que agradecerle que
confiara en mi, que seria lo tipico que podria decir, le agradezco que no me haya hecho
perder el tiempo, y el poder trabajar con él, ha sido muy constructivo. A Xavi tendria que
dedicarle un capitulo especial en mis agardecimientos, porque cuando llegué a las mil
horas que me habia dedicado dejé de contar.

También, aunque no sea mi jefe, me gustaria agradecerle a Nacho que confiara en mi,
ya que es posible que sea gracias a él que yo haya acabado siendo "de sistemas”. Me
gustaria agradecerle también a Mateo que me echara una mano en algunos momentos, y
también algunas palmaditas en la espalda que a veces vienen bien.

Y si repaso por orden cronolégico podria nombrar a mis compafieros del proyecto
NANOS, a todos en general, Marc, Toni, Eduard, Nacho, Jesus, Xavi, empiezo a repetirme
pero es que a algunos tengo mucho que agradecerles. A todos ellos tengo que
agradecerles que siempre han estado dispuestos a escuchar mis rollos, a veces incluso
voluntariamente :-). A algunos creo que incluso les debo parte del nombre de mi tesis. Si
no recuerdo mal Toni me inspird el nombre de mi primer articulo publicado.

A partir del momento en que me decidi a hacer la tesis también empecé a tratar con
otros companeros que al final se han convertido en una constante diaria: Ernest, Xavi,
Jesus (Corbal), Daniel, Ernest, Fernando, Ayose, Oliver, Fran, Xavi (Verdu). Algunos hace
poco tiempo que los conozco pero otros han dejado ya su huella. Por ejemplo Jesus,
gracias a él se que existe la palabra hilarante (y que sus gustos por el cine no coinciden con

Xi

Xi Agradecimientos

los mios). A Daniel le quiero agradecer que haya aumentado mi paciencia hasta niveles
gue rozan el pasotismo, ahora la vida es mas facil. Ernest, otro "de sistemas", un apoyo a
la hora de comer para que "los otros" no nos coman. Xavi es el mismo Xavi de siempre es
gue no se como me aguanta hasta para comer, creo que queda claro que le debo mucho :-
). Todos son buenos amigos.

Algunos compaferos también han contribuido con su granito de arena, Por ejemplo
Alex, que me dej6 una herramienta de lo mas Util para hacer gréficas, ay, si la hubiera
conocido antes. Felix, que también ha puesto su granito de arena con otra util libreria.
Otros que ya no estan, no es que les haya pasado nada es que se han ido a la privada,como
Albert, a él le debo un trocito de mi tesis, sus dituls son muy utiles, si algun dia lee esto
gue lo sepa. También a otros que han desarrollado algunas herramientas que sin ellas
hubiera sido una tarea mucho mas complicada evaluar la tesis, como a Nacho, gracias a
su scpus he podido sacar unas trazas muy utiles. Y como no a Jordi Caubet, que ha tenido
una paciencia infinita conmigo.

A mi amigo Pepe, que cuando estuvo aqui haciendo tesis fue el mejor amigo, cuando
se fue a Murcia fue el mejor amigo y cuando ha vuelto sigue siendo el mejor amigo,pero
ahora tiene més secretos porque es un chico Intel :-). En fin, gracias Pepe.

También por supuesto a gente de esa que esta en la sombra, que parece que no tienen
nada que ver, pero que si no fuera por ellos seria més dificil. En general a todos los de
sistemas, en especial a Victor, que son mucho afios :-), y a los del CEPBA, que han tenido
mails mios a diario durante unos cuantos afos.

This work has been supported by the Spanish Ministry of Education under grant CYCIT
TIC98-0511, TIC2001-0995, the ESPRIT Project NANOS (21907) and the Direccié General
de Recerca of the Generalitat de Catalunya under grant 1999F1 00554 UPC APTIND. The
research described in this work has been developed using the resources of the European
Center for Parallelism of Barcelona (CEPBA).

Index

CHAPTER 1 Introduction
0 11 Yo [T 1 U S 2
1.2 The scheduling problem ... e 3
1.3 OUN TRESIS .ttt ettt ettt e e e e e e e e e e e e e e e e e e e s snnaebeeeeeees 5
1.4 Contributions Of thisS TRESIScccoiiiiiiee e 7
1.5 Overview of the Thesis enviroNMENt ... 9
1.6 Organization of the Thesis dOCUMENLuvviiiiiiiiie e 11
CHAPTER 2 General Overview of Shared-Memory Multiprocessor
Systems
P20 R g 1 {0 To (3 Tod 1o o RN PP PSPPI 14
2.2 MUItiproCeSSOr arChitECIUIESccceeeieeieeeeeeee e e e e e e e e e e eaaees 15
2.2.1 Shared-memory arChitECIUIESuueeiiiiiiiiiiiiieeee e 15
2.2.2 Distributed-memory arChiteCturescceeeeiiiiiiieeeeeeeeeeeeee e 17
2.2.3 MiXed @PPrOACNESoovviiiiiiieiii e e et e e e e et eaaaans 18
2.2.4 CC-NUMA architecture: SGI Origin 2000coooiiiiiiiiiiiiiiiiiieeeeeeeeeeee 19
2.3 SCheduling POIICIEScciiiiiiie e e aa 23
2.4 Coordinating scheduling I8VEISooorrerieeee e 26
2.4.1 Coordinating the processor scheduler and the run-timeccccvvveeeee. 26
2.4.2 Coordinating the queueing system and the processor scheduler 26

Xiii

2.5 J0b SCheduling POIICIESuuiiiiiiiiiei e 28

2.5.1 FIXEd POLCIES ..ot e e e 28
2.5.2 Variable POLCIESooviiiiiiiiiie e 29
2.6 Processor Scheduling POIICIESueiiiiiiiiiieeee e 30
2.6.1 Time-sharing POCIESccoiiiiiieeee e 30
2.6.2 Space-sharing POlICIEScoooiiiiiiiiii e 33
2.6.3 GaNg SChEdUIINGcooiiiiiiii e 36
2.7 Programming MOUEISoooiiiiiiiiiiiiiiii et 39
2.7.1 Message Passing Interface: MPI ... 39
2.7. 2 OPENMP .. 40
2.7.3 OPENMP QIFECLIVESeveiiieiiiiiiiiiee et e e 41
2.7 4 MPIHOPENMP ...t eaaaeaea s 43
2.8 SUMMIAIY ..ottt ettt ettt e e et e e e e e e e e et e e e e e e e e bbb e e e e e e eaes 44
CHAPTER 3 Execution Environment
G 200 I 1 1 o o (3 T3 1 o S 46
3.2 Related work: REeSOUICE MaNAQEISuuuuuuuuuiiiiaieeeeeeeeeeeeeeeeeiitbenna e e e e e e e e e e eeeeeeees 48
3.3 The queueing system: The LaunCheroooooviiiiiiiii e 49
3.3.1 Workloads used in this TRESIScccooeiiiiiiieieeccrr e 49
3.3.2 Interface between the CPUManager and the Launchercccccovvvnnee. 51
3.4 The processor scheduler: The CPUMAaNAJENuuuueiiiiiiieeeeeeeeeeeeeeeeevenne e 52
3.4.1 CPUManager internal SITUCIUIEouuuuueiiiiiiiieeeeeeeeeeeeeeeeeeee e 52

Xiv

3.4.2 ProCeSSOr AllOCALION ...cveeeee ittt e e e e e e e e e e e e e e e e eneenaens 53

3.4.3 Enforcing the CPUManager deCiSIONSeuuieiiiiieeeeeeeeieeeeeeeeeiinniiee s 58
3.4.4 Interface between the CPUManager and the Launcherccccccceeeeieennn. 62
3.4.5 Interface between the CPUManager and the Run-Time library 63
3.4.6 Shared Data SrUCIUIEScuiiiiiiiieeeeeeeii e e e e e e e e e e e e e 64
3.5 RUN-time liDrary fFEAtUIESooiiiiiiiiiie e 67
3.5.1 NthLib MOdifiCatioNScooviuiiiiiiiiiee s 67
3.5.2 Work recovery mechaniSmcoooiiiiiiiiiieie e 67
3.5.3 Two_minute_warning MechaniSMcccceiiiiiiiieeeeeee e 71
3.5.4 Demand based thread Creationuuuuuiiiiiiiiineee e 73
3.5.5 Memory ManagEMENTuuuuuiiiiiieei e e e e e ee ettt e ettt e e e e e e e e e e e eeeennneees 76
3.0 SUIMIMIAIY ..ottt e e ettt et e e e e et e et e e e e e e e et e e e e e esaan e e e eeennnnnaas 79
CHAPTER 4 Dynamic Performance Analysis: SelfAnalyzer
v R [1 oo [¥ o 1o IR PSPPSR 82
4.2 RelAted WOTK ...t e e e e e e e e e e e 83
4.3 Dynamic Performance Analysis: The SelfAnalyzer ..., 85
4.3.1 Dynamic speedup COMPULALIONuuuiiiiiiiiiiiiie e 85
4.3.2 Execution time eStMALIONuuuiiiiiieeee e e e e e e e e e e eeeeeeeeees 88
4.4 Application INStrUMENTALIONccovviiiiie e e e e eaeens 89
4.4.1 SelfAnalyzer iNterfaceooooviiiiiiicc e 89
4.4.2 StatiC INSIIUMENTALION ...eeiiiiiiiiiiiiir ettt e e e e e e e e e e e eeeeaeenannes 90
4.4.3 DynamicC iNStrUMENTATIONcccuuuiiiiiiiiiiiiieeee e e e e e e e 91
4.5 Integration in the execution eNVIFONMENTuuiiiiiiiiiiiiii e 94

XV

4.6 EVAIUBLION .o e e e e et B 9

G 0t R o] o o= Y 97
4.6.2 HYAIO2d ...t a e e e e 99
Z.B.3 Bl ittt ittt it e e e e e e e e e e e e e e e 100
S 1 o P PPRPERPPRPRR 101
B.B.5 APSI i ——————————————————aaaaaaaaaaaaan 103
A7 SUMIMATY .ttt e e e e e e et e e et e e e e e s e e e e e e e e e e e e e e et e e e e e s e ebbab e nn e e e e e e eees 105
CHAPTER 5 Performance-Driven Processor Allocation
T8 g 0T (3 Tox 1 o] o [SRR 8...... 10
5.2 Related WOTK ...t a e 110
5.3 Performance-Driven Processor Allocation (PDPA)uuuuiiiiiiiiiiiiiiiiieeeeeee 112
5.3.1 Processor allocation POCYcoooiiiiiiiiiiiiiic e 112
5.3.2 Application state diagramooooiiiiiiiiiiiiii e 112
5.3.3 PDPA PAraMELEIS ...ceviiiiiiiee ittt e et s et e e e e eaa e 116
5.3.4 Multiprogramming level POlICYoooiiiiiiiiiiiiii e 117
5.4 IMPIEMENTALION ISSUESuuiiiiiii e e e e et e e e e e e e e e e e e e e e e e e e s s e e e e e e eaaaeeaees 118
5.5 EVAIUALION ...t e e e e e 21...... 1
LR T8 A VLY 0] ([0 = Lo I PR 123
Lo TE IZA VLY 0] [0 = Lo O 131
5.5.3WOrKIOAA 3 ... ——————— 140
5.5, 4 WOIKIOBA 4 ... 143
TR TR TN VA 0] [0 = To 1< TP 147
5.5.6 Workload exeCution tIMEScovviiiiiiiiiiiiieie e eeeeee e e e e e e e e 148

XVi

5.6 SUMIM@IY ..ottt ettt e e e e e e e e e e e et e e e ee e se e b b a s e e e e e e eeaeeeeeennnnnn 151
CHAPTER 6 Performance-Driven Multiprograming Level
00 I 1 o T 3 Tox 1 o o P PPPPURRR 4..... 15
6.2 Performance-Driven Multiprogramming Levelccccooooiiiiiiiiiiie e, 156
6.2.1 Processor scheduling policy SChemecccccooeeeeiiiiiiiieecce e, 156
6.3 SCheduling POLICIES ... e e 160
6.3.1 EQUIPAITITION ...ceiiiiiiiiicceiee e e e e e e 160
LR T o [1] o s R 161
6.3.3 EqQUal_EffICIEBNCYcoeiiiieeeeee e ———— 163
6.3. 4 Equal_efft+ . e 165
LSRR = V(0] (] 1 1) PSPPSR 167
6.5 EVAIUALION ... e e s 8...... 16
6.5. 1 WOIKIOAA 1 ...t e e e e e e e e e e e nenneaanaa 168
6.5.2 WOIKIOBA 2o e e e e e e e e e e e e e e e e ner 170
6.5.3WOTKIOAA 3 ..ot 174
6.5. 4 WOIKIOAA 4 ... 177
B6.5.5 WOIKIOAA 5 ... e e e e e e e e 179
6.5.6 Workload eXeCution tIMEScooeiiiiiiiiiiiiiiiiiiiiie e 180
5.6 SUMIMIGIY ...iiiiiiiiiett ettt e ettt e e e e e e e e e e e ettt e e e e s et e b e st e e e e e eeaeeeeeennnnnns 183

Xvii

CHAPTER 7 Contributions to Gang Scheduling

4880 R 1 o o (3 Tox 1 o o P G...... 18
7.2 GaNg SCHEAUIINGuuuiiiiiiiiii e e e e e e e eees 188
7.2.1 Gang scheduling implementationiiiiiiiiiiiiie e 188
7.3 Performance-Driven Gang Schedulingeeiiiiiieeeee 193
7.3.1 Multiprogramming level POlICYoooviiiiiiiiiiii 195
7.4 Compress&Join: Malleability based on performance information 196
4 == 1[5 = 1T o 0l...... 2
4 70 R VLY 0] 14 [0 = Lo I PR 201
A 32 V. 0] 4 [0 = Lo O 202
A T TR VA 0] 1 o = Lo 0 U 206
T.5. 4 WOTKIOGA 4 ... e e e e e s 207
4 38 T 1A 0] [0 = To 1< TS 210
7.5.6 Workload exeCution tIMEScevviiiiiiiiiiiiie s e e e e e e e e e 211
7.6 SUMIMIATY ..ottt e e e e e et e et et e et e et s e e e e e e e e e e e e e e e e e e e s e et ne e nn e e e e e eeeeas 213
CHAPTER 8 Conclusions and Future Work
8.1 Goals and contributions oOf this THESISuiiiiiiiiiiiiiere e 216
8.2 Conclusions Of thiS TRESISiiiiiiii e 216
8.2.1 Dynamic performance measuremMeENtceeeeiieeeeeeeeeeeeeeeeeeieenrns 216
8.2.2 Coordination between [eVeIS ... 217

XVili

8.2.3 Imposing a target efficiency to ensure the efficient use of resources 217

8.2.4 Using performance information in multiprocessor scheduling 218

8.2.5 General reMArKScoooiiiiiii e 219
8.3 FULUIE WOTK ..t e e e e e e e e e e e e e e e e e e s e nnnnes 220

XiX

XX

CHAPTER 1

Introduction

Abstract

This Thesis focuses on the efficient execution of workloads of parallel appli-
cations in multiprogrammed multiprocessor environments. In particular, we
will defend two main ideas: the first one is that all the scheduling levels
must be coordinated to achieve a good system performance. The second one
is that the processor scheduling must consider real performance informa-
tion to decide the processor allocation, and to impose a target efficiency to
running applications to ensure the efficient use of resources.

In this Chapter, we introduce the main subjects of this Thesis, its motivation,
and our contributions.

2 CHAPTER1

1.1 Introduction

Multiprocessor architectures appeared as the natural extension to uniprocessor systems.
The common characteristics among all the multiprocessor systems is that they have mul-
tiple processors that may be used to execute multiple applications at the same time, one
application in multiple processors (parallel application), or combinations of the two cases
(multiprogrammed systems that execute parallel applications).

The first approach to schedule concurrent applications on these systems was to directly
apply uniprocessor policies extended to the case of several processors. However, users,
system administrators, and researchers, quickly observed that uniprocessor policies do
not exploit the potential of these systems.

The problem was to consider that a multiprocessor system had the same characteristics
and problems that a uniprocessor system. Multiprocessor systems have their own goals,
applications, and architectural characteristics, and they must be taken into account to
schedule, not only processors, but any physical resource. Goals, because multiprocessor
systems are oriented to increase the throughput of the system and the speedup of individ-
ual applications. Applications, because parallel applications have frequent synchroniza-
tions. These synchronizations imply that the delay of some of the processes can result in
a delay of the complete application. Architectural characteristics, because multiprocessors
have two elements that in most of the cases determine the application and the system per-
formance: the memory system and the interconnection network. In multiprocessor sys-
tems, the different memory and network organizations have a direct effect in how
applications must be scheduled.

For these reasons, since multiprocessor systems appeared, the scheduling of applica-
tions has been an important research subject in this kind of systems, from the point of
view of job scheduling, to the point of view of run-time libraries that schedule parallel
loops.

As we have commented, all the components of the system (processors, memory, net-
work, and 170) influence in the performance of a multiprocessor system. In this Thesis,
we will focus in the problem of how to schedule workloads of parallel applications in
shared-memory multiprocessor systems, taking into account all the elements of the sys-
tem, but focusing in the processor scheduling.

Introduction 3

1.2 The scheduling problem

The scheduling problem consists of how to assign physical processors to application
threads. The scheduling problem can be divided in three levels: job scheduling, processor
scheduling, and loop scheduling.

Decision leel Implemented by

Job Queueing system
scheduling

Processor

scheduling @ Processor scheduler
Loop Run-time
e @ ® ® ® =

Figure 1.1: Scheduling levels

Figure 1.1 shows the three scheduling levels. The first one, the most external, is the job
scheduling. At this level the problem consists of deciding which job should be executed.
This level of decision is implemented by the queueing system. These decisions are taken
at a low frequency compared with the other levels. The second decision level is the pro-
cessor scheduling. It decides how many processors to allocate at any moment to each run-
ning application. This level of decision is implemented by the processor scheduler. The
last one is the loop scheduling problem, and it decides how to distribute the computation
among the processors allocated to the application. It is implemented by the run-time
library that controls the application parallelism. This very short-term scheduler is nor-
mally not considered by the O.S, but it is a responsibility of the application itself.

In commercial systems, these three levels are loosely coordinated. Decisions taken by
each level are taken without cooperation with the others levels. This behavior generates
situations such as applications running with more kernel threads than available proces-
sors, or that there are free processors and queued applications at the same time.

In some previous research works, it was proposed an interface between the processor
scheduling level and the loop scheduling level to adjust the number of running threads
to the number of physical processors. In some of these proposals, the run-time level

4 CHAPTER1

informs the processor scheduler about the number of processors requested, and the pro-
cessor scheduler informs the run-time about the number of processors allocated to the
application. With this first level of interaction, the overall performance was significantly
improved. These proposals are described in Chapter 2.

Introduction 5

1.3 Our Thesis

In this Thesis, we propose to extend other proposals with three main points:

e To achieve the best overall system performance, and the best individual
application performance, all the scheduling decisions must be coordinated. That
means, to provide an interface between the queueing system and the processor
scheduler, and an interface between the processor scheduler and the run-time
library allowing such coordination.

e It is necessary to include real performance information in the processor
scheduling decisions. We consider real performance information those values
measured at run-time.

= It is necessary to impose a target efficiency to running applications to ensure
the efficient use of processors.

The first point is the coordination between levels. Coordination means that each sched-
uling level will provide information about its internal status to levels that communicate
with it, and that it will receive information from them. Coordination also means that
scheduling decisions taken at each level will consider all this information. Coordination
will allow the system to avoid incorrect situations that degrade the system performance
such as the ones commented previously, where there can be free processors and queued
applications at the same time. Or the inverse situation, where the queueing system can
start a new application when the system is heavily loaded.

The second point, the use of real performance information in addition to other user
provided information, will allow the processor scheduler to improve its scheduling deci-
sions. Our third point is not only to consider the application performance, but also to
impose a target efficiency to be achieved by running applications. The goal of this target
efficiency is to ensure the efficient use of resources. Not to consider the application per-
formance could result in an inefficient processor allocation such as to allocate a small
number of processors to a parallel application that scales very well and a lot of processors
to a parallel application that does not scale at all. This last case even can result in an incre-
ment in the execution time of the application.

6 CHAPTER1

Job < NewAppl? Queueing system
scheduling

Coordination

Y

Processor
scheduling Processor scheduler
+ Performance info—__\

Coordination

Loop
e (D @ @

Figure 1.2: Coordinated scheduling

Run-time
library

Figure 1.2 shows the main proposals of this Thesis: coordinate the three scheduling lev-
els to improve the system performance, and include performance related information to
decide the processor scheduling.

Some works have previously proposed to allocate processors as a function of the appli-
cation performance. They always assume that application performance is known before
the application execution, a priori. Details about these proposals are presented in Chapter
5. However, we believe that the system can not rely on users be neither experts nor honest.
There are also some other related problems to the use of a priori information:

= Sometimes, it is not possible to evaluate parallel applications because their
performance depends on input data and the number of combinations makes it
impossible to calculate all the possibilities.

= Sometimes, the optimal number of processors for a particular application may
not be optimal for the overall system performance, for instance if the load is very
high.

e The performance of a high number of applications depends on run-time
parameters such as the memory mapping, the number of process migrations, or the
influence of the rest of running applications (concurrently executed).

To demonstrate our Thesis, we propose an execution environment with the following
characteristics: The performance of parallel applications will be measured at run-time, the
processor scheduler will impose a target efficiency to running applications to receive pro-
cessors, and finally, parallel applications will be malleable to be able to react to the pro-
cessor scheduling decisions.

Introduction 7

1.4 Contributions of this Thesis

To demonstrate our ideas, we present a practical approach based on implementing mech-
anisms and policies in a real system. The particular contributions that demonstrate the
main points of this Thesis are divided into three parts.

In the first part of this Thesis, we propose a complete execution environment that
includes a run-time library that performs a dynamic performance analysis, and a new
scheduling policy that incorporates the concepts of: use of real performance information,
impose a target efficiency, and coordination with the queueing system.

The dynamic performance analysis is implemented by the SelfAnalyzer. SelfAnalyzer
is a run-time library that measures the speedup of parallel applications at run-time, and
also estimates the execution time of parallel applications. SelfAnalyzer exploits the itera-
tive behavior that have a lot of parallel applications, which have a predictable behavior
since they repeat the same code several times. The SelfAnalyzer measures the execution
time of several iterations with different number of processors and calculates the speedup
as the ratio between two of these measurements.

The new coordinated scheduling policy is called Performance-Driven Processor Allo-
cation Policy (PDPA). PDPA takes two decisions: the processor allocation and the multi-
programming level. Regarding the processor allocation, PDPA is a dynamic space-
sharing policy that decides a processor allocation based on the performance of running
applications, and imposes a target efficiency. With respect to the multiprogramming level,
PDPA decides to increment the multiprogramming level when there are free processors
and all the running applications have an stable allocation. PDPA will show us the poten-
tial and the benefits of a policy that considers application performance and ensures a tar-
get efficiency in parallel applications in front of policies that do not consider this point.

In the second part of this Thesis, we present a new methodology to incorporate these
three points to any previously proposed processor scheduling policy. The goal of this
methodology is to incorporate the concepts of (use real performance information/ensure
target efficiency/coordinated scheduler) to other criteria exploited by other policies. With
this aim, we present Performance-Driven Multiprogramming Level (PDML). We have
applied PDML to two space-sharing policies: Equipartition and Equal_efficiency. We
have named the resulting policies Equip++ and Equal_eff++. Results will show that after
applying PDML, the resulting policies detect and correct situations where applications
with bad performance were using a high number of processors due to inefficient alloca-
tions decided by the original policies.

In the last part of this Thesis, we incorporate the concepts of (use of real performance
information/ensure target efficiency/coordinated scheduler) to a different set of policies,
gang scheduling policies. Gang scheduling policies perform time-sharing among applica-
tions. Applications are grouped into slots, and at each quantum expiration the scheduler
selects a new slot to execute in a round-robin way. Traditionally, these policies apply a

8 CHAPTER1

simple dispatch, that means that applications receive as many processors as they request.
We will show that the ideas proposed in this Thesis are also valid in gang scheduling pol-
icies.

We propose two contributions to this kind of policies. In the first one, we propose to
apply the PDML methodology to a traditional gang scheduling policy. We call the result-
ing policy Performance-Driven Gang Scheduling (PDGS). PDGS evaluates the perfor-
mance of active applications every a certain quantum, and adjust their allocation if they
do not reach the target efficiency.

The second proposal to improve gang scheduling is a new re-packing algorithm. Re-
packing algorithms decide how applications are grouped in the different slots. We pro-
pose the Compress&Join algorithm. The goal of Compress&Join is to reduce the number
of slots, which is one of the main sources of overhead of gang scheduling policies. Com-
press&Join reduces the processor allocation of applications in a proportional way to the
application performance. With this reduction in the processor allocation, it is possible to
fit the same number of applications in a small number of slots. In both cases, PDGS and
Compress&Join, we coordinate the processor scheduler with the queueing system to
decide when a new application can be started.

Introduction 9

1.5 Overview of the Thesis environment
Since we will demonstrate our ideas using a practical approach, we believe that it is im-

portant to briefly describe the characteristics of the Thesis execution environment. Figure
1.3 shows its main elements, and it is fully described in Chapter 3.

Queueing
system
Queued
g;rzﬂg/llP @ } applications

applications R Processor
/ scheduler
@ Native O.S

IRIX 6.5

Shared-memory multiprocessor

Figure 1.3: Thesis execution environment

This Thesis has been developed in an shared-memory multiprocessor environment. In
particular, ina CC-NUMA machine with 64 processors. We have selected this architecture
because of its availability, and because it is representative of systems with a medium-high
number of processors used in commercial environments and supercomputing centers.

One of the characteristics of our proposed environment is that applications must be
malleable to adapt their parallelism to the number of processors available. In this Thesis,
we have used the OpenMP programming model because in OpenMP the parallelization
does not only depend on the number of physical processors, but also it depends on the
algorithm and the loop scheduling policy applied. With the OpenMP model, and the sup-
port of the run-time library, applications can be malleable. In this Thesis, we have used
the NthLib as run-time library. The NthLib uses the processor scheduler interface to
request for processors and to check the number of processors allocated to the application.
The NthLib is able to react to changes in the number of processors allocated to the appli-
cation.

The last elements in the execution environment are the processor scheduler and the
gueueing system. These two elements have been implemented at user level to implement
and evaluate all the proposals presented in this Thesis. The processor scheduler imple-
ments the processor scheduling policy and enforces its decisions by means of the native
operating system. As we have commented, it provides an interface used by the run-time
library. In this Thesis, the processor scheduler also provides another interface used by the
gueueing system. The queueing system implements the job scheduling policy, that

10 CHAPTER1

decides when to start the execution of jobs submitted to the system. In our proposed exe-
cution environment, the processor scheduler will inform the queueing system about the
convenience of starting a new application, and the job scheduling policy (implemented
by the queuing system) will decide which particular application to start. In this Thesis,
the job scheduling policy implemented is a FIFO, and the job selected is always the first
gqueued job.

Introduction 11

1.6 Organization of the Thesis document

This Thesis is organized as follows: Chapter 2 describes the main elements of a multipro-
cessor system: multiprocessor architectures, scheduling policies, and programming mod-
els. We focus on elements that are more related to this Thesis such as CC-NUMA
architectures or space-sharing policies.

Chapter 3 presents the particular characteristics of our execution environment. We
describe the queueing system, Launcher, the processor scheduler, CPUManager, and the
improvements introduced in this Thesis in the run-time library, NthLib.

Chapter 4 presents SelfAnalyzer, a run-time library that dynamically calculates the
performance of parallel applications.

Chapter 5 presents Performance-Driven Processor Allocation (PDPA), a coordinated
scheduling policy that decides both the processor allocation and the multiprogramming
level.

Chapter 6 describes Performance-Driven Multiprogramming Level (PDML), a new
methodology that transforms previously proposed processor allocation policies to
include job performance analysis and coordination with the queueing system.

Chapter 7 presents two new techniques based on the use of job performance analysis
and job malleability to improve gang scheduling policies: Performance-Driven Gang
Scheduling (PDGS) and Compress&Join algorithm.

Finally, Chapter 8 presents the conclusions and the future work of this Thesis.

12

CHAPTER1

	CHAPTER 1 Introduction
	1.1 Introduction
	1.2 The scheduling problem
	1.3 Our Thesis
	1.4 Contributions of this Thesis
	1.5 Overview of the Thesis environment
	1.6 Organization of the Thesis document

