
CHAPTER 3 Execution Environment
tly
tili-

ion
ed to
ch

nts
eu-
uler

le-
ing
ffect
ica-
Abstract
In a multiprocessor environment with parallel applications concurren
running, the Operating System is responsible for optimizing the system u
zation and the individual application execution. The system utilizat
depends on several factors such as the number of processors assign
each application, or which particular processors are assigned to ea
application.

In this work, we present the particular characteristics of the three eleme
that constitute our execution environment: the long-term scheduler or qu
ing system (Launcher), the medium-term scheduler or simply the sched
(CPUManager), and the runtime parallel library (NthLib). These three e
ments provide us a total control of how applications are scheduled. Hav
the control of these elements, we have a powerful tool to analyze the e
of the different scheduling issues of both the performance of the appl
tions and the system utilization.
45

46 CHAPTER 3
3.1 Introduction

In this Thesis, we use a practical approach. To do that, we have created our execution
environment to implement the coordinated scheduling and the processor scheduling
policies proposed in this Thesis. Figure 3.1 shows the elements that compound our
execution environment: the queuing system (Launcher), the processor scheduler
(CPUManager), and the run-time parallel library (NthLib [63][64]). In this Chapter, we
give a lot of details about the implementation of these elements. If the reader is not
interested in these details, the reading can be continued in Chapter 4.

The Launcher is the queueing system. It implements the job scheduling policy that
decides which particular application must be executed at any moment. The Launcher
controls the multiprogramming level, that can be defined by the administrator (if the
Launcher works uncoordinated with the CPUManager), or by the processor scheduling
policy (if it works coordinated with the CPUManager). The Launcher has been
implemented to introduce repeatability in the submission of workloads of parallel
applications with the aim of evaluating them under different execution environment
configurations.

The CPUManager is the user-level processor scheduler. Once the Launcher starts the
execution of a queued application, it enters under the CPUManager control. It
implements the processor scheduling policy, which (1) decides how many processors to
allocate to each application, and (2) enforces the processor scheduling policy decisions.
The CPUManager uses the native operating system interface to manage processes and
processors and provides the interface to communicate with the Launcher, see Figure 3.1.

CPUManager

Operating System

Shared-memory multiprocessor

Figure 3.1: Execution environment

Parallel applications

Queued applications

LauncherStart Appl.

NthLib

Native O.S (IRIX 6.5)

CPUManager-Launcher

interface
CPUManager-Run-time

interface

System
interface

Execution Environment 47
The NthLib [63][64] is the run-time library used in this Thesis to implement the policies
and mechanism needed at the loop scheduling level. The NthLib was developed in the
NANOS project [62][63][64] and modified in this Thesis. The NthLib supports the
parallelism specified by users through OpenMP directives. It requests for processors
using the CPUManager interface and reacts to changes in the number of processors
allocated to the application.

The remainder of this Chapter is organized as follows: Section 3.3 presents the
queueing system implemented in this work, the Launcher. Section 3.4 describes the
internal structure of the CPUManager and the execution environment offered to parallel
applications. Section 3.5 presents the characteristics that a parallel library should have to
cooperate with the CPUManager, and a particular implementation of these features in
NthLib. Finally, Section 3.6 presents the summary of this Chapter.

48 CHAPTER 3
3.2 Related work: Resource Managers

The motivation to implement our own resource manager is clear, we need to have a
complete control of this element. However, we comment in this Section some of the
commercial resource managers that we can found.

Several computing industries are releasing operating system-based resource managers
(RM). These RM have been designed and implemented under different operating systems
and with different goals but with common features. The main characteristic of a RM is
that it is designed to provide the administrator or the final user a major control over the
architectural resources: CPUS’s, virtual memory, I/O bandwidth, etc.

RM typically provide users or administrators an API to specify user requirements.
User requirements can be as simple as “to set aside specific CPUs to specific
applications”[101], or to “guarantee a minimum entitlement of CPU, memory, and disk
bandwidth available to a group of processes.”[100].

RM are usually implemented at user-level and they use the native operating system
tools to allocate and manage the resources. Most of them allow a great configurability but
they require a high knowledge about the system or the particular process to specify either
the resource allocation to a workload or the resource requirements of a process. For
instance, in the HP-UX Workload Manager [100], the administrator should specify
performance goals and priorities for the workloads, and assign a performance monitor to
the workload to measure its performance. The AIX WLM [45] allows the administrator to
define different classes of jobs and assign different level of resources to each one. The
Solaris RM [101] works in a similar way. These RM require that an administrator defines
the different classes of jobs, priorities among them and the amount of resources that each
one needs. They are oriented to guarantee a certain resource reservation from the point of
view of the user, to ensure a certain medium-term resource distribution.

Other RM attack the problem of the resource reservation from the point of view of the
thread. They are mainly RM oriented to real-time and multimedia applications
[21][71][72]. In this case, the resources are specified as a quality of service. This kind of RM
allow the co-existence of real-time and multimedia with time-sharing applications
ensuring the reservation of the resource.

The CPUManager differs from the previously proposed RM in two main points. First,
the CPUManager is application oriented. The unit of resource allocation and
management is the parallel application. Other RM (like the Solaris RM or the AIX WLM)
work at a workload or user granularity. Alternatively, RM oriented to real-time and
multimedia applications work at thread granularity. Second, the CPUManager works at
a different level than the rest of proposed RM. The CPUManager works at a similar level
than a traditional operating system does. The CPUManager not only reserve CPUS to a
particular application, but also performs the mapping between processes and processors
and controls the initial memory placement.

Execution Environment 49
3.3 The queueing system: The Launcher

The Launcher is the user-level queuing system used in our execution environment. It
implements the job scheduling policy, that decides which application to execute from a
list of queued applications. The aim of the Launcher is to be able to execute a workload of
parallel applications several times under different system conditions and processor
scheduling policies.

The Launcher executes a workload of parallel applications specified through a
workload trace file. It receives as parameters the workload trace file, the maximum
multiprogramming level, and a file with a list of applications. Using the workload trace
file, we are able to (1) execute the same set of applications under specified conditions
(submit time, initial request, etc.), (2) measure the system performance, and (3) compare
results achieved under the different conditions.

The workload trace file follows the Standard Workload Format(SWF) proposed by
Feitelson in [102]. Figure 3.2 shows a portion of a workload trace file. Columns different
from -1 are job_number, submit_time, and application_number. In our case, the application
number refers to the list of applications received by the Launcher. First application is
application 0, second application is application 1, and so on.

If the CPUManager is running, the Launcher will detect it and will work coordinated
with it. In this case, the multiprogramming level received as parameter is not used at all,
and it is decided by the multiprogramming level policy implemented by the
CPUManager. If the CPUManager implements a processor scheduling policy that does
not include a multiprogramming level policy, such as the Equipartition, the CPUManager
implements a policy that decides a fixed multiprogramming level.

If the CPUManager is not running, such as when executing the native SGI-MP
scheduling policy, the Launcher uses the multiprogramming level received as parameter.

3.3.1 Workloads used in this Thesis

We have used workloads that represent the execution of a system where applications
arrive following a Poisson inter-arrival process. Figure 3.3 shows the equation used to
compute the inter-arrival rate of applications. P is the number of processors in the system

#job_number submit_time application_number
0 12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1
1 20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1
2 21 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1-1 -1 -1 -1

Figure 3.2: Standard Workload Format

50 CHAPTER 3

/0.9
(64 in our case), U is the load of the system that we want to generate. It ranges from 0 to
1. T1

i is the execution time of the application i in sequential. And FRAC is the maximum
fraction of machine that we want this application uses (from 0 to 1).

For instance, if we execute four different applications and we want each one to demand
about the same amount of cpu time, FRAC will be equal to 0.25. With the last equation in
Figure 3.3, we calculate the inter-arrival frequency per application.

To generate the workload trace file, we have implemented an application that receives
a list of applications, a 1/λi per application, and a maximum time per workload, max_time.
This application generates a workload trace file that represents a system where each
applicationi is submitted following a 1/λi and during max_timeseconds. Workloads
generated in this Thesis have been limited to 300 seconds. However, it is important to note
that max_timeonly limits the maximum submission time. The Launcher waits for the
complete finalization of all the jobs submitted, and all the jobs submitted are considered
in our evaluation.

We have generated five workloads using four applications. We have used the swim,
hydro2d, and apsi from the SPECFp95 [99] and the bt from the NASPB [48]. Table 3.1
shows the sequential execution time and the speedups of each one with 8, 16, and 32
processors. We have selected these applications because they have different speedup
characteristics. Swim has a super-linear speedup, bt has a high speedup, hydro2d has low
speedup, and apsi has very bad speedup. The complete performance analysis of these
applications and their speedup curves can be found in Chapter 4.

Workload 1 is composed by swim’s and bt’s. Each one fills the 50% of the system.
Workload 2 is composed by bt’s (50%) and hydro2d’s (50%). Workload 3 is composed by
bt’s (50%) and apsi’s (50%). Workload 4 is composed by swim’s (25%), bt’s (25%),
hydro2d’s (25%), and apsi’s (25%). Workload 5 is composed by only bt´s.

λi

P U× i

Ti
1

---------------=

Figure 3.3: Equation used to generate the inter-arrival rate of application i.

λi Ti
1× P Ui×= λi

P Ui× FRAC×

T
1
i

--------------------------------------=

Table 3.1: Parallel applications

Characteristic/Application(input) swim(ref) bt.A hydro2d(train) apsi(ref)

Exec.Time. in Sequential 212.2 sec. 1066.21 sec. 223.7 sec. 99 sec.

Speedup with 8/16/32/48 cpu´s. 14.5/26.5/32.7/26.2 5.9/12.1/20.5/24.1 6.7/7.4/5.5/3.6 0.93/0.93/0.92

Execution Environment 51
We have selected these workloads because each one is composed by applications with
different speedup characteristics. In workload 1, 100% of the applications are scalable,
swim´s with super-linear speedup and bt´s with good scalability. Workload 2 has a 50%
of scalable applications (bt´s) and a 50% of applications with a medium speedup
(hydro2d´s). Workload 3 is composed by a 50% of applications with good scalability and
a 50% of applications with very bad scalability (apsi´s). Workload 4 is a mix of 25% of
applications of each type: 25% of super-linear applications, 25% of scalable applications,
25% of applications with medium speedup, and 25% of no scalable applications. In
workload 5, 100% of the applications are scalable but they are not super-linear.

3.3.2 Interface between the CPUManager and the Launcher

In this Thesis, we propose to establish an interface between the processor scheduler and
the queueing system, coordinating the two levels. This coordination consists of sharing
information and to consider this information to take scheduling decisions. The portion of
the interface implemented by the CPUManager is presented in the CPUManager Section.

The Launcher informs the processor scheduler when a new application starts and
when an application finishes. And the processor scheduler informs the queueing system
when it can start a new application. Other information could be added such as the
number of free processors, or the expected execution time of applications.

In the current implementation, the CPUManager and the Launcher communicate
through named pipes. A more complete version of the interface could be implemented
using shared-memory but in this case it is efficient enough.

When the Launcher starts a new application, it sends the process identifier of the main
thread of the application to the CPUManager. When the application finishes, the
Launcher sends the process identifier of the main kernel thread to he application by other
named pipe.

The CPUManager sends a byte to the Launcher each time the multiprogramming level
policy decides that a new application can be started. Figure 3.4 shows the mechanism that
implements the CPUManager interface.

CPUManager

Launcher

Queued
Applications

Named pipe

Figure 3.4: CPUManager-Launcher interface

EndAppl()

NewAppl()

Policy_New_appl()

Launch_appl()

NewAppl()

EndAppl()

52 CHAPTER 3
3.4 The processor scheduler: The CPUManager

The CPUManager is a user-level scheduler. It implements the processor scheduling policy
and enforces its decisions. It also implements the interface to coordinate with the
Launcher and with the run-time library. The CPUManager uses the native operating
system interface to enforce the processor scheduling decisions. In particular, it has been
implemented on top of IRIX 6.5.

In order to implement a coordinated scheduler, the CPUManager and the other
scheduling levels that communicate with it must agree in several rules related to the
scheduling. The rules between CPUManager and the run-time library are the following:

•The run-time library has a list of work queues numbered from 0 to (maximum
parallelism-1). However, the run-time library generates only work in the first P
queues, where P is the number of processors available.
•The run-time library creates as many kernel threads as work queues. Therefore, it
associates each kernel thread with a single work queue. The kernel thread executes
the work inserted in the queue.
•When the CPUManager assigns one new processor to an application, the run-time
library associates this processor with the first unallocated work queue.

Based on these three points, the CPUManager takes scheduling decisions such as
deciding which kernel thread to associate to each processor, or deciding which kernel
thread is more convenient to suspend when the CPUManager reduces the processor
allocation of a running application. In the next subsections, we describe the CPUManager
implementation.

The CPUManager was initially designed to implement space-sharing policies. In this
Section, we explain the CPUManager under this kind of policies. Gang scheduling
policies were implemented adding a time-sharing mechanism among jobs. Particular
characteristics of Gang scheduling implementation are presented in Chapter 7.

3.4.1 CPUManager internal structure

The CPUManager wakes up periodically, at each quantum1 expiration, and applies the
processor allocation policy:

•It decides the processor allocation for the next quantum.
• It decideshow many processors to provide to each application.
• It decides which processors to assign to each application.
• It decides which kernel threads will run from each application.
• It mapskernel threads with physical processors.

•It communicates its decisions to the applications.
•It enforces the processor allocation.

1. A typical quantum value is 100ms

Execution Environment 53
Each one of these phases have several possibilities. The decisions concerning of which
physical processors and which kernel threads will run are quite related, but we will
consider them as independent phases.

Details about data used by the CPUManager are explained in Section 3.4.6. However,
to understand the different phases we present the main data used by the CPUManager in
Figure 3.5. The CPUManager has a physical processor table, with one entry per physical
processor. Each entry records the application to which the physical processor is allocated
(or NULL if it is free), and the last application to which it was allocated. The CPUManager
also has a job table, with one entry per job. Some of the data associated to each job are the
number of processors allocated, the number of processors requested, and a kernel thread
table. This kernel thread tablecorresponds with the work queues managed by the run-time:
the first entry corresponds to the first work queue, the second entry corresponds to the
second work queue, and so on. The CPUManager records, per kernel thread, the physical
processor identifier (if it is currently running), the last processor where it ran, the kernel
thread status (RUNNING, PREEMPTED, etc), and the (process identifier/thread
identifier). The per job table is allocated in a memory region shared by the run-time
library and the CPUManager, and used to implement the interface between the
CPUManager and the run-time library.

3.4.2 Processor allocation

Processor scheduling policy decisions (how many processors)
The CPUManager implements the processor scheduling policy which is in charge of
deciding how many processors will be allocated to each job in the next quantum.

Current_appl

Last_appl

Current_appl

Last_appl

Current_appl

Last_appl

Current_appl

Last_appl

.......

.......

Current_appl

Last_appl

processor 0 processor (P-1)
Physical
processors
table

cpus allocated
cpus requested
table of kernel threads

cpus allocated
cpus requested
table of kernel threads

......

......

......

cpus allocated
cpus requested
table of kernel threads

Job 0 Job (MAX_JOBS-1)

processor
last processor
status

processor
last processor
status

....

....

....

processor
last processor
status

Job´s
table

Figure 3.5: Main data structures managed by the CPUManager

pid pid pid

processor
last processor
status

processor
last processor
status

....

....

....

processor
last processor
status

pid pid pid

Kernel thread

table

Kernel thread

table

54 CHAPTER 3
The processor scheduling policy uses the job table. The processor allocation policy
generates a new processor allocation, a temporal table, with an entry per job. This table
has the number of processors allocated to each job.

Figure 3.6 shows a possible processor allocation generated by a processor allocation
policy in a machine with 16 processors. The only information that this phase generates is
a number of processors that the job will receive during the next quantum.

The only condition that the CPUManager imposes to the processor allocation policy is
that the total number of processors allocated must be less or equal than the number of
physical processors of the machine.

This is the only phase of the CPUManager that we will modify and evaluate in this
Thesis. The particular processor scheduling policies implemented and evaluated are
presented in Chapters 5, 6, and 7. Other aspects of the CPUManager have been fixed
because they are out of the focus of this Thesis. However, to have a complete processor
scheduler it has been necessary to implement all the CPUManager phases. In next
sections we describe the different choices made at each one.

Allocating processors to jobs (which processors)
Once the scheduling policy has decided how many processors will assign to each
application for the next quantum, the following step is to decide which physical
processors will be allocated to each job. We will refer to the algorithm followed to decide
which processors are assigned to each application as the processor placement policy, see
Figure 3.7. This phase receives the processor allocation table generated in the previous
phase (alloc), the job table (jobs), and the physical processors table (phys_proc). Based on this
information, it generates a new physical processor table (next_phys_proc).Figure 3.7
presents the algorithm used for this purpose. In this phase, the physical processor tableis
not still modified, only a temporal version is generated. The physical processor tableis
effectively updated in the last phase of the CPUManager.

Job identifier

allocation

1 2 3 4 5

2 1 8 1 4

Figure 3.6: List of processor allocation

Processors=16

Execution Environment 55
In a CC-NUMA machine, like the Origin 2000, the placement of processors has a
significant influence in the execution time of parallel applications. For instance, if we
assign separated processors to a parallel application, it will pay the cost of accessing
remote pages. The aim of this phase is to select the more convenientset of processors per
application.

input: physical_processor_table (phys_proc) , job_table (jobs), table with number of
processors per job (alloc)
output: temporal physical processor table (next_phys_proc)
placement_policy()
{

for(cpu=0;cpu<MAX_CPUS;cpu++)next_phys_proc[cpu]=NULL;
for (current_job=0;current_job<active_jobs;current_job++){

if (jobs[current_job].current<=alloc[current_job]){
maintain_cpus=jobs[current_job].current; // receives equal or more processors

}else{
maintain_cpus=alloc[current_job]; // receives less processors

}
maintain_n_first_processors (current_job,maintain_cpus);

}
for (current_job=0;current_job<active_jobs;current_job++){

if (alloc[current_job]>jobs[current_job].current){ // The application receives more
processors

alloc_last_n_processors (current_job,alloc[current_job]-jobs[current_job].current);
}

}
}

input: physical_processor_table (phys_proc) , job_table (jobs), table with number of
processors per job (alloc)
output: temporal physical processor table (next_phys_proc)
maintain_n_first_processors(int job, int cpus)
{

for (kthread=0;kthread<cpus;kthread++){
curr_cpu=job_table[job].kernel_threads[kthread].cpu;
next_phys_proc[curr_cpu]=job;

}
}
input: physical_processor_table (phys_proc) , job_table (jobs), table with number of
processors per job (alloc)
output: temporal physical processor table (next_phys_proc)
alloc_last_n_processors(int job, int cpus)
{

for(kthread=job_table[cpu].current;kthread<job_table[cpu].current+cpus;kthread++){
curr_cpu=job_table[job].kernel_threads[kthread].last_cpu;
// if the job has never run previously, we look for a free cpu near the rest of cpus
// allocated to the job
if(curr_cpu==NULL)curr_cpu= select_new_cpu (job);
next_phys_proc[curr_cpu]=job;

}
}

Figure 3.7: CPUManager processor placement algorithm

56 CHAPTER 3
With the aim of exploiting, as much as possible, the data locality, the CPUManager
implements a placement policy oriented to maintain the processor affinity. It tries to
execute the job in the same set of processors that in the last quantum.

The placement_policyfunction calculates how many processors from the previous
quantum are kept for the next quantum per application. The maintain_n_first_processors
function looks into the kernel thread table of the job and selects the cpus allocated to the
first P work queues (from 0 to alloc[job]-1).

To those applications that will receive more processors, the alloc_last_n_processors
function selects those cpus where kernel threads, from current to the new allocation, ran
the last time. In the case that these kernel threads had never run, the function
select_new_cpuselects new cpus to run them. This function tries to allocate a new cpu
following three criteria: (1) a free cpu where the job has run previously, (2) a free cpu near
the rest of cpus of the job, and (3) any free cpu.

After this phase, The CPUManager will have a physical_processor_tablewith the
previous quantum distribution and a temporal physical_processor_tablewith the new
processor distribution. Next phases will suspend and resume kernel threads to enforce
the new processor distribution.

Selecting the set of kernel threads to execute each job (which kernel threads)
In the previous phase, the CPUManager has selected the set of physical processors that
will run on each application. In this phase, it selects the set of kernel threads that will run
from each application.

We have decided that, at any moment, each application will have as many kernel
threads running as physical processors assigned, trying to execute in a efficient operating
point, this is the “process control” approach proposed by Tucker and Gupta in [105].
Following the criteria commented in the introduction, the CPUManager will select the
kernel threads associated with the first N work queues.

Figure 3.8 shows the algorithm used by the CPUManager to decide which kernel
threads will run in the next quantum.

Execution Environment 57
Mapping the kernel threads to physical processors (map kernel threads)
Once decided which physical processors and which kernel threads will run in the next
quantum, the CPUManager must establish the mapping among them. This phase receives
the temporal physical processors table and the job_table,and modifies the kernel thread
table of each job to decide the mapping between each kernel thread and the physical
processor. The difference from the second phase is that in the second phase we select a set
of processors to run the application and in this phase we assign one processor to each
kernel thread. The two phases are very related but we have implemented it separately.

Figure 3.9 shows the algorithm used by the CPUManager to map kernel threads to
physical processors. The CPUManager will maintain in the same cpu those kernel threads
that were currently running. If the kernel thread is not currently running, The
CPUManager selects the last cpu where the kernel thread ran. In the last case (it is a new
kernel thread), the select_new_cpufunction selects a cpu from the temporal
physical_processors_table not yet allocated to any kernel thread.

Once finished this phase, the CPUManager has completely decided the new processor
distribution for the next quantum, but not yet enforced it. In the next Section, we will
describe the different CPUManager options to decide the moment at which the processor
allocation decisions are enforced.

input: job_table (jobs), temporal physical processor table (next_phys_proc), table with
number of processors per job (alloc)
output: job_table (jobs)
select_kernel_threads()
{

for(current_job=0;current_job<active_jobs;current_job++){
for(kthread=0;kthreads<alloc[job];kthreads++)

jobs[current_job].kernel_threads[kthread].tmp_status=SELECTED_TO_RUN;
for(kthread=alloc[job];kthreads<MAX_KTHREADS;kthreads++)

jobs[current_job].kernel_threads[kthread].tmp_status=SELECTED_TO_SUSPEND
}

}

Figure 3.8: Kernel thread selection algorithm

58 CHAPTER 3
3.4.3 Enforcing the CPUManager decisions

Before the end of each activation, the CPUManager should enforce the processor
allocation, which may involve suspending some running threads and resuming some
suspendedthreads. This enforcement is done by using the native operating system calls.
Table 3.2 shows the main system calls [46] provided by IRIX to manage processes. They
are part of the system interface shown in Figure 3.1.

When the CPUManager suspends a thread, it could be executing the application code
or the run-time code. If the kernel thread is executing application code, the CPUManager
may suspend a kernel thread when holding a lock or just before ending its work.
Suspending a kernel thread in one of these points could be critical, since it may cause the
remaining threads to be delayed.

In order to avoid such problems, the CPUManager can work in two different modes,
according to the moment when its decisions are enforced:

Table 3.2: IRIX system calls used in the CPUManager to manage processes

Functionality System call

Resume kernel thread unblockproc(pid)

Suspend kernel thread blockproc(pid)

Bind kernel thread to processor sysmp (MP_MUSTRUN_PID, cpu, pid)

Unbind kernel thread sysmp (MP_RUNANYWHERE_PID, pid)

input:job_table (jobs), temporal physical processors (next_phys_proc), table with number of
processors per job (alloc)
output: job_table (jobs)
map_kernel_threads()
{

for (current_job=0;current_job<active_jobs;current_job++){
for(kthread=0;kthread<alloc[current_job];current_job++){

cpu=jobs[current_job].kernel_threads[kthread].cpu;
if (cpu==NULL){

cpu=jobs[current_job].kernel_threads[kthread].last_cpu;
if (cpu==NULL) cpu= select_new_cpu ();

}
jobs[current_job].kernel_threads[kthread].cpu=cpu;
}

}
}

}

Figure 3.9: CPUManager mapping algorithm

Execution Environment 59
•Immediate mode: the allocation is effective before the end of the current activation of
the CPUManager. CPUManager decisions are enforced in a synchronous way before
sleeping for the next quantum.
•Deferred mode: the allocation is effective, at least, at the beginning of the next
CPUManager activation. Changes have to be carried out by the applications
themselves. At the beginning of each activation, the CPUManager checks that all
their decisions made at the previous activation have been accomplished. This mode
corresponds to the two_minute_warning mechanism proposed by Markatos et al. in
[61].

Figure 3.10 shows the different points at which the CPUManager decisions are
enforced in the immediate mode and in the deferred mode.

Immediate mode
When the CPUManager works in immediate mode, it enforces the allocation decided just
before the end of the current activation. When the CPUManager decides to take out some
processors from an application, it changes the status of the selected threads from running
to suspended (we refer to this situation as a preemption, and to these threads as preempted).
Preempted threads must be recovered by the parallel library because they could be
executing application code at the time of the preemption. To recover a preempted thread
means that a running thread from the same application has to handoffits processor to the
preempted thread until it finishes the work that it was executing. Figure 3.11 shows the
function that enforces the CPUManager when executing in immediate mode.

Time

decision+enforcement

quantum

Figure 3.10:Immediate mode vs. Deferred mode

Time

CPUManager

decision enforcement

grace time=quantum

Deferred
mode

Immediate
mode

activation

60 CHAPTER 3
If the number of processors assigned to an application changes frequently2, the
immediate mode can cause a significant number of thread migrations in order to recover
preempted threads. To minimize these inopportune preemptions, we have implemented
the deferred mode.

Deferred mode
The deferredmode is implemented through the two_minute_warningtechnique. It is a
technique to minimize undesirable preemptions. The idea of this technique is to inform
parallel applications that they have to release some processors, and give them the
opportunity to release the processors while running in a safe state. The CPUManager
informs applications setting a flag indicating that they have to release some of their
processors, and applications have to check this flag.

2. This is not a desirable situation but depends on the scheduling policy

input: jobs_table(jobs), physical_processor_table (phys_procs), temporal
physical_processor_table (next_phys_procs)
output: jobs_table(jobs), physical_processor_table (phys_procs)
enforce()
{

for(cpu=0;cpu<MAX_CPUS;cpu++){
phys_procs[cpu].last_appl=phys_procs[cpu].current_appl;
phys_procs[cpu].current_appl=next_phys_procs[cpu];

}
for (current_job=0;current_job<active_jobs;current_job++){

for(kthread=0;kthread<MAX_KTHREADS;kthread++){
cpu=jobs[current_job].kernel_threads[kthread].cpu;
pid=jobs[current_job].kernel_threads[kthread].pid;
// One more processor
if ((jobs[current_job].kernel_threads[kthread].tmp_status==SELECTED_TO_RUN) &&

 (jobs[current_job].kernel_threads[kthread].status==PREEMPTED)){
jobs[current_job].kernel_threads[kthread].status=RUNNING;
jobs[current_job].current++;
sysmp (MP_MUSTRUN_PID, cpu,pid); // Binds the kernel thread to the cpu
unblockproc(pid); // Resumes the kernel thread

}
// One less processor
if ((jobs[current_job].kernel_threads[kthread].tmp_status==SELECTED_TO_SUSPEND) &&

 (jobs[current_job].kernel_threads[kthread].status==RUNNING)){
jobs[current_job].kernel_threads[kthread].last_cpu=cpu;
jobs[current_job].kernel_threads[kthread].cpu=NULL;
jobs[current_job].current--;
jobs[current_job].kernel_threads[kthread].status=PREEMPTED;
sysmp (MP_RUNANYWHERE_PID, cpu,pid); // Unbinds the kernel threads
blockproc(pid); // Suspends the kernel thread

}
}

}
}

Figure 3.11:CPUManager enforcement function

Execution Environment 61
Applications are granted a grace-timeby the CPUManager to release the processors. If
this grace-time expires, and any application has not released its processors, the
CPUManager will preempt its processors and will enforce the re-allocation.

Deciding which processors must be released is not a trivial task. The first option is that
the CPUManager decide the set of processors to be released. The second option is that the
parallel application selects the processors itself.

In our particular implementation, we have implemented the first approach. We have
taken this decision because the CPUManager has a more global view of the system and
its capacity to decide which processors have to migrate is better than the local view of the
application.

The CPUManager provides applications with a list specifying the processors that they
have to release, and a list with the applications that will receive each processor. With this
information, applications can release a processor and allocate it to the new owner. In
order to make easy the implementation, we have considered that the grace-timebe equal
to a quantum. We also assume that all the applications behave friendly and they will
respond to the CPUManager request as soon as possible.

This technique involves cooperation among the CPUManager and parallel
applications. The communication between the CPUManager and the run-time library has
been implemented using shared-memory.

Since the two_minute_warningdoes not entirely avoid the inopportune preemptions, a
recovery mechanism is still needed.

The two_minute_warningreduces the number of preemptions, which means less
preempted threads and less thread migrations to recover the preempted threads. On the
other hand, this technique works asynchronously. That means that the recovery
mechanism must be very accurate. If the recovery mechanism is not very accurate, there
is a risk that it enters in a cyclic phase, all the threads recovering all the threads. The part
of the recovery mechanism implemented in the NthLib is explained in Section 3.5.1 .

We have selected the two_minute_warningmechanism because it is an accepted proposal
in the bibliography. However, we have observed that in our execution environment, and
with the processor scheduling policies implemented, the two-minutes warning
mechanism does not introduce significant benefits. We have observed the behavior of
some workload executions to see why this mechanism does not introduce significant
benefits. The two-minutes warning mechanism was designed for an execution
environment without coordination and where processor re-allocations where frequent. In
our execution environment, processor scheduling policies try to maintain stable, as much
as possible, the processor allocation and to coordinate the different scheduling levels. This
observation demonstrate us, with a real example, that in an execution environment with
coordination between levels and inside levels, some techniques that shown very

62 CHAPTER 3
important in other environments, in our case are not needed. This result, enforces our
Thesis about the necessity of a coordinated execution environment and a global design of
scheduling policies.

For these reasons, even we have implemented it, we have not used the
two_minute_warning mechanism in the evaluation of this Thesis.

3.4.4 Interface between the CPUManager and the Launcher

The CPUManager implements five functions to control the multiprogramming level:
Init_Multiprogramming_Level(), Dynamic_Multiprogramming_Level(), StartAppl(), NewAppl(),
and EndAppl().

Figure 3.12 shows the functions implemented by the CPUManager. The
Init_Multiprogramming_level() function initializes the multiprogramming level value (ML)
to a Defaultvalue, defined by the administrator, sets the number of running applications
to 0 (TotalAppls), and initializes the number of pending applications to Default. This
function is executed only once. The Dynamic_multiprogramming_level() function is executed
at each activation of the CPUManager. This function executes the multiprogramming
level policy if there are not pending applications.

In this case, we have shown the example of a fixed multiprogramming level:
Fixed_New_appl(). This function returns TRUE if the multiprogramming level is less than
a given Default multiprogramming level. In that case, the ML is increased and the
queueing system is notified. The interface also includes two functions NewAppl(),
executed each time a new application is started, and EndAppl(), executed each time an
application finishes. These functions maintains consistent the values of ML and
TotalAppls.

This multiprogramming level policy, fixed, has been used with the Equipartition and
the Equal_efficiency evaluated in this Thesis.

Execution Environment 63

 on

rs

ly

 end
The Fixed_New_appl() function will be substituted by the particular multiprogramming
level policy implemented by the processor scheduling policy.

3.4.5 Interface between the CPUManager and the Run-Time library

The CPUManager basically implements the interface specified in the NANOS project to
communicate the run-time parallel library with the processor scheduler. The basic set of
functions that this interface defines is the following [63]:

This interface is offered by the CPUManager to the run-time library. It is implemented
through shared-memory between the CPUManager and the run-time library. In the next
sub-section, we present the data structures managed by the CPUManager that implement
this interface. Functions written in bold font have been implemented or modified in this
Thesis3.

Table 3.3: CPUManager-NthLib interface

Function Description

int cpus_request(int ncpus) Sets the number of processors the application would like to run

int cpus_requested() Informs about the number of requested processors

int cpus_current() Informs about the number of currently assigned physical processo

int cpus_askedfor() Returns TRUE if the calling thread is marked to be released

int cpus_release_self() Releases the current physical processor.

int cpus_preempted_work() Informs about the number of preempted kernel threads

work_t cpus_get_preempted_work() Returns the identifier of a previously preempted work

int cpus_processor_handoff(work_t work)
Attempts to transfer the current physical processor to the previous
preempted work

int cpus_future()
Returns the number of processors the application will have at the
of the current quantum

Init_Multiprogramming_level (int Default)
{

ML=Default; pendings=Default;
TotalAppls=0

}
Dynamic_multiprogramming_level ()
{

if (pending==0)
if (Fixed_New_appl ()) StartAppl ();

}
StartAppl ()
{

pending++;
ML++;
NotifyLauncher(); /* writes in the pipe */

}

NewAppl ()
{

pending--
TotalAppls++;

}
EndAppl ()
{

TotalAppls--;
ML--;

}
int Fixed_New_Appl ()
{

if (ML<Default) return TRUE;
else return FALSE;

}

Figure 3.12:CPUManager-Launcher interface

64 CHAPTER 3
We have introduced two modifications respect to the original NANOS specification.
The first change is the functionality of the cpus_askedfor(). In the original NANOS
specification cpus_askedfor() returns true if the application has to release some thread. In
the current implementation, it only refers to the calling thread. It returns true if the calling
thread is assigned to a physical processor selected by the CPUManager to be re-allocated
to another application. The second difference is that the CPUManager implements a new
function: cpus_future(), which informs about the number of processors that the application
will have at the end of the current quantum.

3.4.6 Shared Data Structures

The CPUManager manages three data structures: jobs, kernel threads, and physical
processors. The main fields associated to these data have been commented previously. In
this Section, we detail data associated with each one. Jobs and kernel threads are shared
between CPUManager and run-time. Physical processors are private to the CPUManager.

Jobs
The job is the unit of processor allocation. The CPUManager has a table of jobs, and each
job has the following information:

•Job identifier
•maximum parallelism
•requested number of processors, request
•number of running threads, current
•processors that the job will have at the end of the next quantum, future
•number of preempted4 threads, preempted
•list of processors to be released by the application
•speedup and execution time tables
•kernel threads table

Each job has a unique identifier automatically generated by the CPUManager. When
the application starts, it communicates its maximum parallelism to the CPUManager. The
maximum parallelism is the maximum number of processors that the application will
require. Therefore, the application can dynamically change its processor request from 1 to
its maximum parallelism. Its dynamic processor request is set in the requestfield, and it is
one of the parameters that the processor allocation policy takes into account when it
distributes processors. For instance, the application can set to 1 the requestwhen it enters
in a sequential phase or when it starts an I/O or it can reduce its requestwhen it executes
a loop with only a few iterations.

Current is the number of assigned/running processors that the application has at any
moment. Future is the number of processors that the application will have assigned/
running, by the end of the current quantum. When the CPUManager runs in immediate
mode, values of current and future are always equal because re-allocations are

3. Some of them had only been specified but not implemented.
4. A preempted thread is a thread that has been suspended by the CPUManager

Execution Environment 65
synchronous. On the other hand, when the CPUManager runs in deferredmode, the
number of assigned and running processors can be different during a grace-timeafter the
execution of the CPUManager. This is because the processors are asynchronously re-
allocated.

The CPUManager maintains a counter of preempted threads by application, set in
preempted. It does not maintain a list of preempted threads since this information is
available checking the status of each kernel thread. When the CPUManager preempts a
thread, its work has to be recovered by the application. The applications use the preempted
value to check whether they have any preempted thread. The CPUManager preempts a
thread either when it works in immediatemode and an application will receive less
processors in the next quantum, or when the CPUManager works in deferredmode and
the application has not reacted to the CPUManager requirements to release a processor.
Each application has associated a list of processors to be released. This list is empty when
working in immediate mode.

The CPUManager has the speedup and execution times tables in the shared memory.
This information is used by the processor allocation policies that consider performance
information. This table is modified by the run-time that measures the application
performance and read by the processor scheduling policy.

Finally, each application has a kernel threads table. As we pointed out in the
introduction, each kernel thread is associated to a work queue, numbered from 0 to
(maximum parallelism -1).

Kernel threads
A kernel thread is the unit of scheduling to which a CPU can be assigned to execute it. The
CPUManager associates the following information to each kernel thread:

•pid
•status
•cpu_id, if RUNNING, identifier of the physical processor, otherwise a NULL value.
•last cpu where it run

Each kernel thread has a unique identifier. In our case, it is the identifier that the
operating system assigns to the kernel thread (pid). If the kernel thread is RUNNING, the
CPUManager updates cpu_id with the identifier of the physical processors where it is
running.

66 CHAPTER 3
Kernel threads can be in four logical states: FREE5, RUNNING, PREEMPTED or
TERMINATED. Figure 3.13 shows the state diagram of a kernel thread. Kernel threads are
created FREE when the application starts. When the CPUManager selects a kernel thread
for execution, its status changes to RUNNING. If the application voluntarily releases the
physical processor associated to a kernel thread and suspends it, its status changes to
FREE. On the other hand, if the CPUManager suspends the thread, it becomes
PREEMPTED. When an application ends its execution all its kernel threads become
TERMINATED. A PREEMPTED thread must be recovered by a RUNNING thread from
the same application because it could be executing application code when preempted.
Finally, each kernel thread has a field that indicates the last cpu where it run.

Physical processors
The information associated to each physical processor is:

•current job, current_appl
•Identifier of the last application that runs in this processor, last_appl

If the physical processor is allocated to an application, the CPUManager will set in
current_applthe identifier of the application. Otherwise, it will have a NULL value. The
last_appl field contains the identifier of the last job that ran in this processor.

5. In both, free and preempted states, the kernel thread is suspended

FREE

RUNNING

PREEMPTED

TERMINATED

Creation

Selected to
Run

Preemption

End of the application

End of the
Application

Recovered

Released
by the
application

Figure 3.13:State diagram of a kernel thread

by the
Application

Execution Environment 67
3.5 Run-time library features

Parallel applications interact with the CPUManager through a run-time library. In this
Section, we present the main features that a parallel library must include to coordinate
with the CPUManager, and the main improvements introduced in this Thesis to NthLib
[63][64], the run-time library used in this Thesis.

The parallel library communicates with the CPUManager in order to provide
scheduling information: processor requirements, etc. And the CPUManager informs the
parallel library about the number of processors assigned to it, and about the thread
preemption.

The run-time library follows the rules specified in the introduction of Section 3.4.

Since the CPUManager can preempt application kernel threads, the run-time library
has to provide a work recovery mechanism. The work recovery mechanism implies that
some of the remaining threads must finish the pending work. This event also implies that
the parallel library has to periodically check whether it has some preempted threads in
order to recover it.

3.5.1 NthLib modifications

The nano-threads library, NthLib, is a user-level thread package mainly designed to
support efficient parallel execution and good adaptability to the varying system
conditions. It is designed primarily to support fine-grain parallelization and multiple
levels of parallelism in shared-memory multiprocessors. It is further described in [63][62].

In this Thesis, we have modified the work recovery mechanism, implemented the two-
minutes warning mechanism, the dynamic kernel thread creation/destruction, and
activated the dynamic memory migration mechanism.

3.5.2 Work recovery mechanism

The work recovery mechanism is needed when a running thread is suspended by the
CPUManager, becoming preempted. The work recovery mechanism has to guarantee that
the pending work of the preempted thread is finished by another processor. This
mechanism must be implemented “with care”, avoiding entering in recovering cycles. In
this Section, when we refer to kernel thread 0 (kt0), we mean the kernel thread associated
to work queue 0, and so on.

68 CHAPTER 3
,

Figure 3.14 shows an example about a possible problem related with the work-
recovery mechanism. In this example, kt3 has detected that kt4 is preempted. It handoffs
its processor to kt4 to finish its work. If kt1 detects that kt3 does not have processor
(because it is recovering kt4), it could conclude that kt3 needs help to finish its work,
when this is not the case.

This set of possibilities implies that the work recovery mechanism must specify:

•which thread can recover a preempted thread
•what recovering a thread means
•which threads need to be recovered

To specify the work recovery mechanism, we classify the kernel threads into two
groups: those that are associated to work queues with identifier less than the current
number of processors allocated, and those that are associated to work queues with
identifier greater or equal than current. We will refer to the first set as the “allocated zone”
and to the rest as the “unallocated zone”.

The work recovery mechanism also introduces two new thread states: Recovering
another thread and Being Recovered. The list of thread states then is the following:
RUNNING, FREE, PREEMPTED, Recovering another thread (RECOVERING) and Being
Recovered (BEING_RECOVERED).

kt0 kt4

Figure 3.14: kt0 will handoff its processor to kt4 to finish its pending work.

RUNNING
PREEMPTED current=4

HandoffHandoff ?

Execution Environment 69
Figure 3.15 shows the state diagram of a kernel thread after incorporating the new
states resulting of the work recovering mechanism. We specify that only threads in the
allocated zone and in state RUNNING can recover another thread. And the only threads
that need to be recovered are threads in the unallocated zone in state PREEMPTED.

When a thread finishes its pending work, it executes a piece of code called idle loop.The
idle loop continuously checks whether there is pending work and whether there are
preempted threads.

When the kernel thread enters in the idle loop, it can be in four different situations
(each kernel thread must check these situations and in this order):

•Marked as BEING_RECOVERED
•RUNNING, and there are PREEMPTED threads that need help
•RUNNING, and there are not PREEMPTED threads, (the normal/stable situation)

If the kernel thread is BEING_RECOVERED, it must handoff its processor to the kernel
thread that previously helped it. To know that, the run-time has a per thread field
(return_to) that specifies to which kernel thread it has to return.

If the kernel thread is RUNNING, it has to check if there are PREEMPTED threads that
need help. In that case, if the work queue of the thread is in the allocated zone, it will get
the first PREEMPTED thread, it will mark itself as RECOVERING, the PREEMPTED
thread as BEING_RECOVERED (setting the return_tofield), and finally, it will handoff its
processor to the PREEMPTED thread.

If the thread is RUNNING and there is not PREEMPTED work, the thread has to iterate
in the idle loop until it receives new work to execute.

FREE

RUNNING

PREEMPTED

TERMINATED

Creation

Selected to
Run

Preemption

End of the application

End of the
Application

Released
by the
application

Figure 3.15:State diagram of a kernel thread with recovering mechanism modifications

BEING RECOVERED RECOVERING

Recovered by a running Thread

End of pending wok

Recovering/
End recovering

New states

70 CHAPTER 3
Figure 3.16 shows an example about how the work recovery mechanism works. When
kt0 detects that kt2 is preempted, it handoffs its processor and marks kt4 to return to work
queue 0. When kt2 finishes its pending work and enters in the idle loop, it detects that it
has to return to work queue 0, and then it handoffs its processor to kt0.

Figure 3.17 shows the work recovery algorithm: the idle loop, and the
cpus_get_preempted_work() function.

kt0 kt4

Figure 3.16: Recovery mechanism, kt0 recovers the work of the kt4 and returns to its queue.

RUNNING
PREEMPTED

current=2

allocated zone unallocated zone

kt0 kt4current=2

allocated zone unallocated zone

recover

kt0 kt4current=2

allocated zone unallocated zone
return

RECOVERING
BEING_RECOVERED

FREE

Execution Environment 71
3.5.3 Two_minute_warning mechanism

The two_minute_warning mechanism implies modifications in the CPUManager and in
the run-time library: Decisions that in the immediate mode are executed synchronously
by the CPUManager, in the deferred mode are executed asynchronously by the run-time
library. These modifications introduce two main problems: in one hand the asynchronous
behavior, and in the other hand the fact of giving responsibility to the run-time.

The deferred mode modifies the idle loop. In this mode, kernel threads have also to
check if they are marked to be released. They will check this condition before checking if
there are PREEMPTED threads.

The fact of releasing the processor to another application is much more complicated
that it initially seems. There are several possible implementations of this technique, but
we have decided that the run-time library will implement the same policy than the
CPUManager. To do that, the run-time library needs access to the information of the rest
of applications to have access to their kernel thread tables (pid, status, etc). The run-time
also needs a new information: the CPUManager informs it about which specific kernel
threads must be released and to which job it must be allocated. Since this is a research

idle_code ()
{

...
// If I was being_recovered I must return to the original work queue
if (myself->status==BEING_RECOVERED){

myself->status=FREE;
my_job->kernel_threads[myself->return_to]->status=RUNNING;
cpus_handoff(myself,my_job->kernel_threads[myself->return_to]);

}
// If there are preempted threads I must recover it,
if ((cpus_preempted()>0) && (myself->wq_id<cpus_current())){

// Only stable threads can recover preempted threads
work_preempted=cpus_get_preempted_work();
myself->status=RECOVERING;
// The kernel thread must return to the original work queue
work_preempted->return_to=myself->wq_id;
work_preempted->status=BEING_RECOVERED;
my_job->preempteds--
// The kernel thread is lended
cpus_handoff(myself,work_preempted);

}
....

}
kthread * cpus_get_preempted_work()
{

// The algorithm look for a thread in the unallocated zone and PREEMPTED
for (kthread=cpus_current();kthread<MAX_THREADS;kthread++){

if (my_job->kernel_threads[kthread]->status==PREEMPTED)
return my_job->kernel_threads[kthread]

}
}

Figure 3.17:Work recovery mechanism

72 CHAPTER 3
environment, we have not taken into account security issues and we have made
accessible all the CPUManager data structures to the run-time library. Another approach
could consist of allocating the application kernel thread to an idle thread of the
CPUManager and that this thread performs the context switch to the new job. However,
we have adopted the first approach: allocation decisions have been moved from the
CPUManager to the run-time library.

If the physical processor is marked to be released, the executing thread has to allocate
its processor to the new owner and deallocate itself, see Figure 3.18. The cpus_asked_for()
function returns TRUE if the kernel thread has been marked to be released. In that case, it
executes the cpus_release_self() function. This function looks into the temporal processor
allocation table to see the target application associated with it and applies the same
processor placement algorithm implemented by the CPUManager presented in Section
3.4.2.

The two_minute_warning mechanism also affects the work recovery mechanism.
When working in deferred mode, the criteria to differentiate between the allocated and
unallocated zone can not be the value of cpus_current()because there is a fraction of time
in which this value changes frequently (when the application is releasing threads).

The solution is to use the value of the cpus_future() function to differentiate the allocated
zone and the unallocated zone. The cpus_future() function returns the number of
processors that will be allocated to the application at the end of the current quantum. In
this case, threads that can recover PREEMPTED threads are those that are allocated to
work queues with identifier less than cpus_future().

while (application not finished){
...

if (cpus_asked_for())
cpus_release_self()

....
if (pending_work())execute(work)

}

Figure 3.18:Modifications in the idle loop

kt0 kt4

Figure 3.19: Modifications in the work recovery mechanism introduced by the deferred mode.

RUNNING
PREEMPTED current=4 future=2

allocated zone unallocated zone

recover

return

kt0 kt4
current=4 future=2

allocated zone unallocated zone

recover

return

VALIDNOT VALIDFREE

Execution Environment 73
Figure 3.19 shows an example about the necessity of modifying the work recovery
mechanism. In the left side, there is an example about a possible situation when executing
in deferred mode and directly applying the work recovering mechanism explained in the
previous Section. In this case, kt3 is in the allocated zone and it detects that there is a
PREEMPTED thread. However, kt2 is a kernel thread that has to release its processor, and
it can not recover PREEMPTED kernel threads.

On the right side of Figure 3.19, there is an example about how the work recovery
mechanism works when executing in deferred mode with the modification introduced in
this Section. The allocated zone is determined by cpus_future(), not cpus_current(). The
cpus_future() value is fixed during the complete quantum. Using this value, the only
kernel threads that can recover PREEMPTED threads are kt0 and kt1.

3.5.4 Demand based thread creation

We have also incorporated a mechanism to dynamically create and destroy the kernel
threads in NthLib. The aim of this technique is to adjust, as much as possible, the number
of kernel threads to the number of processors allocated.

This technique is motivated by the fact that it is a common practice to statically
generate kernel threads. Usually, run-time libraries create as many kernel threads as the
maximum parallelism specified by the user at the submission time. This implementation
is efficient enough if the total number of requested processor by active applications is not
very high. The problem is that in the case of dynamic processor scheduling policies, it is
possible to reach situations such as a job executing in 4 processors and with 64 kernel
threads created. In this kind of extreme situations, it can result in a system saturation due
to the lack of resources, for instance filling the complete process table.

Our proposal is to dynamically create and destroy the kernel threads. We propose to
create a few more kernel threads than processors allocated to the job, limited by the
maximum parallelism specified by the job.

The CPUManager implementation is affected by this modification because we decided
that the CPUManager performs the allocation of processors to processes. With this new
mechanism, the CPUManager can try to allocate a processor to a work queue and it can
find that the associated kernel thread is not yet created. To manage this new situation, we
have modified the status diagram associated to kernel threads, and we have included
more information in the interface between the CPUManager and the run-time library.

74 CHAPTER 3
CPUManager modifications
We have included three new states: NOT_CREATED, PENDING_TO_CREATE, and
PENDING_TO_DESTROY, see Figure 3.20.

We have also included two new fields per job in the job table, cpus_pendingand
cpus_pending_to_release. The cpus_pendingis the number of kernel threads pending to be
created by the application. This value will be consulted by the run-time through a new
function in the CPUManager-run-time interface: cpus_pending(). The
cpus_pending_to_releaseis a boolean that indicates that the application has an excessive
number of kernel threads, compared with the number of cpus allocated, and that it must
destroy some kernel threads. This value is consulted by the run-time library through the
cpus_pending_to_release() function.

When the application starts, NthLib initializes the data associated with the first work
queue with the information of the main process. The rest of work queues, do not have
kernel threads associated to them. These work queues are initialized as NOT_CREATED.

When the CPUManager allocates more processors to the application, it follows the
algorithm presented in Section 3.4.2. However, it checks, per work queue, if the associated
kernel thread is created or not. If the kernel thread is not created, the CPUManager marks
the kernel thread as PENDING_TO_CREATE and increments the cpus_pending value.

The last state, PENDING_TO_DESTROY, is set by the NthLib. When the CPUManager
considers that the application has an excessive number of kernel threads (compared with
the number of cpus allocated). In that case, the CPUManager sets the
cpus_pending_to_releasefield. Then, when the NthLib detects that it has to release some
kernel threads, it selects some of them and marks them as PENDING_TO_DESTROY.

FREE

RUNNING

PREEMPTED

TERMINATED

Selected to
Run

Preemption

End of the application

End of the
Application

Released
by the
application

BEING RECOVERED RECOVERING

Recovered by a running Thread

End of pending wok

Recovering/
End recovering

NOT_CREATED

PENDING_TO_CREATE

kernel thread created by the application

New states

PENDING_TO_DESTROY

End of
Application

Figure 3.20:Kernel thread state diagram with dynamic thread creation

creation

resume/exit

cpu allocated

Number of kernel threads exceeded

Execution Environment 75
We have implemented the decision of what is an excessive number of kernel threads
using two different thresholds: a global and a local threshold. If the ratio between the total
number of processes created and the number of physical processors is greater than the
global threshold, the CPUManager will consider that the system is heavily loaded. In that
case, it calculates the ratio of (processes created / processors allocated) per application. If
this second ratio is greater than the local threshold, the CPUManager sets the
cpus_pending_to_releaseof this application. In the current implementation, the global
threshold has been set to 2 and the local threshold to 1.25.

Moreover, we use a third level of system load control. The CPUManager implements a
security thresholdto avoid a system crash due to lack of resources (kernel threads in this
case). The CPUManager calculates the relationship between number of kernel threads
and number of cpus. If this ratio is greater than the security threshold, no new applications
are allowed to execute. This security threshold works coordinated with the
multiprogramming level and modifies any multiprogramming level decision. In the
current implementation, the security threshold has been set to 6.

Run-time library modifications
We have also modified the run-time library to periodically check if the job has kernel
threads pending to create, or if it has to destroy kernel threads. This code has been
introduced in the idle loop. If cpus_pending() returns a value greater than zero, the run-
time will look for all the kernel threads in PENDING_TO_CREATE state, and it will create
one kernel thread per work queue. Once created, the run-time decrements the counter
cpus_pending, changes the thread state from PENDING_TO_CREATE to RUNNING, and
resumes the kernel thread.

More complicated is the dynamic destruction of kernel threads. As in the previous
case, we have introduced some code in the idle loop to detect if the job has to reduce the
number of kernel threads (checking the cpus_pending_to_release() function). In that case,
kernel threads associated with work queues identified with the highest numbers are
selected to be destroyed. The number of kernel threads selected are calculated using the
local threshold. Each kernel must destroy itself: the run-time marks selected threads as
PENDING_TO_DESTROY, and resumes it. When kernel threads enter in the idle loop,
they detect that they must exit.

Table 3.4 shows the IRIX system calls used to create and destroy kernel threads.

Table 3.4: IRIX system calls

Functionality System call

Create kernel thread sproc(...)

Delete kernel thread exit(..)

76 CHAPTER 3
3.5.5 Memory management

In CC-NUMA architectures, processes should be scheduled in processors near their
memory pages to achieve a good system performance. There are two ways to enforce that:
doing a good initial memory mapping, and using memory page migrations. The first
choice is only valid if the application memory accesses follow a static pattern. This
technique needs an individual analysis of each parallel application, and the processor
allocation must be fixed during the complete execution of the application. The second
choice, memory migrations, will allow us to work without any knowledge about the
application memory behavior.

The native operating system used in this Thesis, IRIX 6.5, has a dynamic page migration
mechanism. Dynamic page migration is a mechanism that provides adaptive memory
locality to applications that execute in a NUMA machine. The migration mechanism
checks the memory pages and decides whether a page must be migrated, depending on
a migration policy. In this Section, we present the modification that we have introduced
in the run-time to activate the dynamic page migration mechanism.

Policy Modules
Users are allowed to select a policy from a set of available policies for each virtual
memory operation. Virtual memory operations are: Initial allocation (Placement policy,
page size policy, and fallback policy), Dynamic relocation (migration policy and
replication policy), and paging policy. Any portion of a virtual address space, down to the
level of a page, may be connected to a specific policy via a Policy Module.

When the operating system needs to execute an operation to manage a Section of a
process address space, it uses the methods specified by the Policy Module connected
(attached) to that Section.

In this Thesis, we have modified the placement policy and the migration policy
associated with all the code, data, and stacks of parallel applications.

Table 3.5 shows the Policy Module functions used in the run-time library to modify the
placement policy and the migration policy. The pm_filldefault() function fills a policy_set_t
structure with the predefined values in the system. A policy_set_t structure has fields to

Table 3.5: Policy modules functions

Function name Description

pm_filldefault(...) Fills a policy_set with predefined default values

pm_create(...) Creates a policy module

pm_setdefault(...) Selects a new default policy for stack, text, or heap.

pm_attach(...) Connects a policy module to a virtual address space range

Execution Environment 77
specify the following policies: placement policy name and arguments, fallback policy
name and arguments, replication policy name and arguments, migration policy name and
arguments, paging policy name and arguments, and page size.

Once we have a default Policy Module we can modify it. In this Thesis, we have
modified the placement policy fields and the migration policy fields. We have set the
placement policy to PlacementFirstTouchand the migration policy to MigrationControl.
PlacementFirstTouchindicates that memory will be allocated in the node where creation
happened. MigrationControl indicates that users can specify different migration
parameters. The MigrationControlpolicy receives as argument a data structure that defines
these user parameters. Once modified the Policy Module, we have to create the handle
that we will use to associate to the memory regions. The Policy Module creation is done
using the pm_create(..) system call, that receives as a parameter the Policy Module
previously filled up.

Once created, it only remains to attach the Policy Module with the memory regions. In
this case, we have created only one Policy Module because we want to apply the same
policy to all the application memory regions. The association of a Policy Module with a
memory region is done through the pm_attach() function. This function receives as
parameter the Policy Module, the address of the memory region, and the size of the
memory region.

The pm_setdefault() function associates a policy module to the stack, text, or heap
memory regions. This function has been used to modify the default policy associated to
these memory regions.

Migration parameters
The SGI Origin2000 hardware implements a competitive algorithm based on comparing
the remote memory access counters to the local memory access counters. When the
difference between remote and local accesses is greater than a tunable threshold, an
interrupt is generated to inform the Operating System than the physical memory page is
suffering an excessive number of remote references. The interrupt handler decides
whether the page has to be migrated or not. The final decision depends on several
controls that can limit the page migration.

Figure 3.21 shows the sequence of code used in the NthLib to create a PM with the
dynamic memory migration mechanism activated. We first fill the Policy Module with the
default values, and modify the placement and migration policies. Once filled up, we
create it with the pm_create() function. The Policy Module created is used to modify the
policy associated to code, data, and stacks. This default policy is inherited at fork or sproc
time, and a new one is created at exec time.

The last memory regions that we have to modify are user stacks. These stacks are not
allocated from the heap, then we have to attach them explicitly using the pm_attach()
function. The pm_attach() function must be executed once per allocated user stack.

78 CHAPTER 3
Activating the dynamic page migration mechanism, memory pages can be
automatically migrated by the system. Experiments done in this Thesis have been
performed activating this mechanism because it has been shown useful. Our experience
also shows that this mechanism is useful in those environments where the process
reallocation frequency is not very high. Otherwise, the mechanism is not able to migrate
memory pages to follow the movements of the processors.

migr_policy_uparms migr_args;
policy_set polset;
pmo_handle_t PM;
pm_filldefault (&polset);

migr_args.migr_base_enabled = 1; // The rest of fields are default values
migr_args.migr_base_threshold = 50;
migr_args.migr_freeze_enabled = 0x0;
migr_args.migr_freeze_threshold = 0x14;
migr_args.migr_melt_enabled = 0;
migr_args.migr_melt_threshold = 0x32;
migr_args.migr_enqonfail_enabled = 0;
migr_args.migr_dampening_enabled = 0;
migr_args.migr_dampening_factor = 0x5A;
migr_args.migr_refcnt_enabled = 0;
polset.placement_policy_name=” PlacementFirstTouch ";
polset.placement_policy_args =NULL;
polset.migration_policy_name = “ MigrationControl ”;
polset.migration_policy_args = & migr_args ;
PM = pm_create (&polset);
pm_setdefault (PM,MEM_STACK);
pm_setdefault (PM,MEM_TEXT);
pm_setdefault (PM,MEM_DATA);
....
pm_attach (PM,stack_address,page_size);
....

Figure 3.21:Policy Module creation and migration mechanism activation

Execution Environment 79
3.6 Summary

In this Chapter, we have described the three main elements in our execution environment:
The queueing system (Launcher), the scheduler (CPUManager), and the run-time library
(NthLib).

The Launcher controls the arrival of parallel applications and implements the job
scheduling policy. The job scheduling policy decides the order of application execution.
The Launcher has allowed us to execute workloads in a controlled way, that means under
certain load conditions and with a specified job scheduling policy. Using the Launcher we
have evaluated the processor scheduling policies presented in this Thesis under the same
execution conditions.

The CPUManager is a user-level scheduler that implements the processor allocation
policy and enforces its decisions. In this Chapter, we described the different phases that
implements the CPUManager and the decisions adopted on each one.

Finally, we presented characteristics that a run-time library must accomplish to interact
with the CPUManager. We present the particular case of the NthLib, the run-time library
used in this Thesis. We have introduced several modification such as the implementation
of the two_minute_warning mechanism, the work recovering mechanism, the memory
page migration, or the dynamic thread creation. We have give a lot of details about our
processor scheduler implementation and about issues that usually are not described, such
as the processor placement function, but that in fact, have a great influence in the
performance of the scheduling policies.

80 CHAPTER 3

	CHAPTER 3 Execution Environment
	3.1 Introduction
	3.2 Related work: Resource Managers
	3.3 The queueing system: The Launcher
	3.3.1 Workloads used in this Thesis
	3.3.2 Interface between the CPUManager and the Launcher

	3.4 The processor scheduler: The CPUManager
	3.4.1 CPUManager internal structure
	3.4.2 Processor allocation
	3.4.3 Enforcing the CPUManager decisions
	3.4.4 Interface between the CPUManager and the Launcher
	3.4.5 Interface between the CPUManager and the Run-Time library
	3.4.6 Shared Data Structures

	3.5 Run-time library features
	3.5.1 NthLib modifications
	3.5.2 Work recovery mechanism
	3.5.3 Two_minute_warning mechanism
	3.5.4 Demand based thread creation
	3.5.5 Memory management

	3.6 Summary

