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Abstract
To consider the performance of parallel applications is critical to decide
efficient processor allocation. In this Chapter, we present the Performan
Driven Processor Allocation policy (PDPA). PDPA is a new coordinat
scheduling policy. It implements a processor allocation policy and a mu
programming level policy.

With respect to the processor allocation, PDPA is a dynamic policy t
tries to allocate the maximum number of processors that reaches a ta
efficiency to running applications.

With respect to the multiprogramming level, PDPA allows the execution o
new application when there are free processors and the allocation of all
running applications is stable (PDPA has allocated the maximum numbe
processors that reach the target efficiency), or if they show a bad per
mance (they do not need more processors at all).

Results show that PDPA dynamically adjusts the processor allocation
parallel applications to reach the target efficiency, and that it adjust t
multiprogramming level to the workload characteristics. PDPA improv
the system utilization resulting in a better individual application respon
time.
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5.1 Introduction

In this Chapter, we present our proposal for a coordinated scheduler. The processor
scheduler will be coordinated with the run-time library, and with the queueing system.

Performance-Driven Processor Allocation (PDPA) is a processor scheduling policy that
decides the processor allocation and the multiprogramming level in such a way that is
coordinated with the loop scheduling level (run-time library), and with the job
scheduling level (queueing system). Coordination means that PDPA informs about its
decisions, and is informed about decisions related to it: On one hand, PDPA informs the
run-time library about the number of processors available, preempted threads, etc, and,
on the other hand, it informs the queueing system about when it is possible to start a new
application. Coordination also means that PDPA takes into account the received
information to take its decisions.

Moreover, in this Thesis we also propose that the processor allocation policy must
consider the real performance of parallel applications and impose a target efficiency to
avoid the inefficient use of processors. The performance of parallel applications must be
calculated at run-time mainly because it depends on input data, influence of concurrently
running applications, and because users are usually non-expert users and the system can
not rely only on the information they provide.

With respect to the processor allocation policy, PDPA tries to find a processor allocation
per application that achieves an acceptable efficiency. PDPA considers that an efficiency
is acceptable if it is greater or equal than a given target efficiency.

With respect to the multiprogramming level, PDPA decides to start a new application
when all the running applications have an acceptable efficiency or they have a “bad”
efficiency. PDPA considers that the efficiency of an application is bad if it does not reach
the target efficiency.

If we average results for the five workloads evaluated, we will find that PDPA
outperforms the execution time of the evaluated workloads in a 245% compared with the
native IRIX, a 75% compared with the Equipartition, and a 238% compared with the
Equal_efficiency. If the workload reaches an efficient processor allocation with a simple
Equipartition, results show that PDPA, in the worst cases, introduces an slowdown
around the 10%. PDPA outperforms the evaluated policies because it dynamically adjust
the processor allocation of running applications to reach a target efficiency, and the
multiprogramming level to improve the system performance. Results also show that
imposing a target efficiency to applications, the application execution time is sometimes
increased, but the application response time is significantly improved.
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The rest of this Chapter is organized as follows: Section 5.2 presents some related work.
Section 5.3 describes the Performance-Driven Processor Allocation policy. Section 5.4
presents details about some implementation issues. Section 5.5 evaluates PDPA
compared with some dynamic processor allocation policies. And finally, Section 5.6
summarizes this Chapter.
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5.2 Related Work

Many researchers have studied the use of application characteristics to perform processor
scheduling. Majumdar et al.[59], Parsons et al.[80], Sevcik [89][90], Chiang et al.[20] and
Leutenegger et al.[55] have studied the usefulness of using application characteristics in
processor scheduling. They have demonstrated that parallel applications have very
different characteristics such as the speedup or the average of parallelism that must be
taken into account by the scheduler. All these works have been carried out using
simulations, not through the execution of real applications, and assuming a priori
information.

Some researchers propose that applications should monitor themselves and tune their
parallelism, based on their performance. Voss et al.[107] propose to dynamically detect
parallel loops dominated by overheads and to serialize them. Nguyen et al.[75][76]
propose SelfTuning, to dynamically measure the efficiency achieved in iterative parallel
regions and select the best number of processors to execute them considering the
efficiency. SelfTuning is applied at the run-time level.

Other authors propose to communicate these application characteristics to the a
centralized scheduler and let it to perform the processor allocation using this information.
Hamidzadeh [42] proposes to dynamically optimize the processor allocation by
dedicating a processor to search the optimal allocation. This proposal does not consider
application characteristics, only the system performance (throughput). Nguyen et
al.[75][76] also use the efficiency of the applications, calculated at run-time, to achieve an
Equal_efficiency in all the processors. The Equal_efficiency does not impose a target
efficiency to running applications and does not coordinate the different scheduling levels.
We will compare the Equal_efficiency with PDPA in the evaluation Section. Brecht et
al.[13] use parallel program characteristics in dynamic processor allocation policies,
(assuming a priori information). McCann et al.[65] propose Dynamic, a processor allocation
policy that dynamically adjusts the number of processors allocated to parallel
applications to improve the processor utilization. Their approach considers the
application-provided idleness to allocate processors, resulting in a large number of re-
allocations.

Our work has several characteristics that are different from the previously mentioned
proposals:

1. With respect to the parameters used by the scheduling policy, our proposal con-
siders two application characteristics: the speedup and the execution time, like
Eager et al. in [30]. However, they propose to work with a priori calculated values.

2. We impose a target efficiency to running applications to maintain the processor
allocation. This target efficiency has been shown very useful to ensure the efficient
use of resources.

3. We propose to consider the speedup variation compared to the variation in the
number of allocated processors, the relative speedup presented in Section 5.3.2.
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4. We present a practical approach. We have implemented and evaluated our pro-
posal using real applications and a real-commercial architecture, the SGI
Origin2000. In this way, simulations do not consider important issues of the archi-
tecture such as the data locality. Most of the previous proposals are based on simu-
lations and, in addition, they consider a priori information. We consider that this is
not a desirable pre-condition because (1) we can not assume that users will provide
this information, and (2) we can not assume that the information will be correct.
The use of synthetic loads and an evaluation based on simulations a lot of times
generates doubts about the validity of the results.

5. We propose a coordinated scheduler, where processor allocation decisions are
coordinated with job scheduling decisions. This coordination has been shown as
one of the most important sources of system improvement.
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5.3 Performance-Driven Processor Allocation (PDPA)

PDPA is a scheduling policy that coordinates decisions related to the processor allocation
with decisions related to the multiprogramming level. PDPA is executed periodically, (at
each quantum1 expiration). In this Section, we describe the PDPA processor allocation
policy and the PDPA multiprogramming level policy.

5.3.1 Processor allocation policy

PDPA is a dynamic space-sharing policy. This kind of policies partition the machine and
applications run in these partitions as in a dedicated machine.

PDPA allocates a minimum of one processor to each running application (run-to-
completion). It mainly applies a search algorithm to each parallel application looking for
the maximum processor allocation that achieves an acceptable efficiency. PDPA considers
that the efficiency of a parallel application is acceptable, if it is greater than a given target
efficiency. The goal of PDPA is to minimize the response time, while guaranteeing that the
allocated processors are achieving a good efficiency.

PDPA is activated each time a new application arrives to the system, an application
finishes, or a running application informs about its performance.

To apply the search algorithm, PDPA manages information related to the recent past of
the application. It remembers the last processor allocation different from the current
allocation and the efficiency achieved with it. PDPA uses this information to compare
with the actual allocation and performance.

5.3.2 Application state diagram

PDPA considers each application to be in one of the states shown in Figure 5.1. These
states correspond with the behavior of the application performance. These states and the
transitions among them are determined by the performance achieved by the application
and by some policy parameters.

The PDPA parameters are: (1) efficiency considered very good (high_eff), (2) target
efficiency (low_eff), and (3) number of processors that will be used to increment/
decrement the application processor allocation (step). In Section 5.3.3, we will present the
solution adopted in the current implementation to define these parameters.

PDPA can assign applications to four different states: NO_REF(initial state), DEC, INC,
and STABLE (Figure 5.1). Each different state means the knowledge that PDPA has about
the performance that each application had the last time PDPA evaluated it. Each time
PDPA is activated, PDPA evaluates the performance of each application and decides the
next state and the next allocation. Modifications in the processor allocation are associated
to state transitions (even if the next state is the same).

1. A typical quantum value is 100 ms.
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NO_REF state
Applications start in the NO_REF state. This state means that PDPA has no performance
knowledge about this application (it is in its starting point). PDPA initially allocates the
minimum between the number of processors requested and the number of free
processors.

Once the application informs about its speedup, PDPA compares the achieved
efficiency2 with high_eff and low_eff. If the efficiency is greater than high_eff, the next state
will be INC, (PDPA considers that the application performs well). If the efficiency is lower
than low_eff, the next state will be DEC (PDPA considers that the application performs
poorly). If the efficiency is between high_eff and low_eff, the next state will be STABLE
(PDPA considers that the application has an acceptable performance).

If the next state is INC, the application will receive more processors in the next quantum.
The number of additional processors will be the minimum between step and the number
of free processors. If the next state is DEC, the application will receive step less processors
in the next quantum. The application will receive a minimum of one processor. If the next
state is STABLE, the processor allocation will be maintained.

2. Calculated as the ratio between the speedup with P processors and P.

NO_REF

DEC INCSTABLE

Figure 5.1: PDPA: Application state diagram

NewAppl
P=min(free,requested)

Efficiency>high_eff
P=P+min(step,free)

MoreProcessors?=TRUE
P=P+min(step,free)

Efficiency<=high_eff

Efficiency>=low_eff
&&

MoreProcessors?=FALSE

System Changes

Efficiency<low_eff
P=max(P-step,1)

LesProcessors?=TRUE
P=max(P-step,1)

LessProcessors?=FALSE

System Changes
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INC state
Being in the INC state means that the application performed well the last time PDPA
evaluated it. In this state, PDPA has to evaluate the performance achieved with the
decision taken in the last quantum.

The MoreProcessors() function Figure 5.3, evaluates if the application performs better
with the actual allocation than with the last allocation (the last processor allocation less
than the actual). To decide that, PDPA evaluates (1) if the achieved efficiency is greater
than high_eff, (2) that the achieved speedup is greater than the last speedup, and (3) if the
RelativeSpeedup is greater than the percentage of additional processor multiplied by
high_eff.

The RelativeSpeedup measures if the scalability of the application has been maintained
with the last additional processors received. It is measured as the relationship between
the execution time with the last allocation and the actual processor allocation. If the
execution time is not available, the RelativeSpeedup is calculated as the relationship
between the speedup with the current allocation and the speedup with the last allocation.
With this formulation we detect and avoid situations where the speedup is super-linear
within a range of processors (that means a very high efficiency) but later the speedup
progression is not maintained.

For instance, consider the case of application 1 presented in Figure 5.2, which is just an
extreme case to illustrate how the RelativeSpeedup filter works. With a high_eff=0.9, and
without considering the RelativeSpeedup, PDPA will decide to allocate 32 processors to
application 1 because speedup(32) is greater than speedup(16), and efficiency(32) is
greater than high_eff. However, the RelativeSpeedup of Application 1 is only 1.02, even
receiving 2 times more processors. For this reason, PDPA decides that it is more efficient
for the system to limit the allocation of application 1 to 16 processors knowing that the
multiprogramming level policy will decide to increase the multiprogramming level. In
that case, assuming that there are queued applications, the queueing system will start a
new application. This decision does not significantly negatively affects the execution time
to application 1, and can significantly improve the performance of the system and the
response time of applications.

Application 1 characteristics

ExecTime(1)=100 sec.
Speedup(16)=28 -> Efficiency(16)=1.75 -> ExecTime(16)=1.5
Speedup(32)=30 -> Efficiency(32)=0.937 -> ExecTime(32)=1.125
RelativeSpeedup=1.5/1.12=1.071
IncrementProcessors=32/16=2

Figure 5.2: Relative speedup example
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If MoreProcessors() returns TRUE, the next state will be INC. Otherwise, the next state
will be STABLE.

If the next state is INC, the application will receive step additional processors in the next
quantum. If the next state is STABLE, the application will loose the step additional
processors (received in the last transition) and it will continue its execution.

DEC state
The DEC state means that the application has not reached the target efficiency the last
time PDPA evaluated it. The LessProcessors() function, presented in Figure 5.4, evaluates
whether the performance of the application is acceptable with the current allocation.

If LessProcessors() returns TRUE, the application has not still reached an acceptable
performance. In that case, the next state will be DEC. If LessProcessors() returns FALSE, the
next state will be STABLE. In this case, the only condition is that the application reaches
the target efficiency (low_eff).

If the next state is DEC, the application will receive the maximum between (P-step) and
1 processor. If the next state is STABLE, the application will keep the current allocation.

Uses last allocation per job (Last)
MoreProcessors (job)
{

current=jobs[job].current;
current_eff=jobs[job].Speedup[current]/current;
current_speedup=jobs[job].Speedup[current];
if (current>Last[job]){

RelativeSpeedup=jobs[job].ExcTime[Last[job]]/jobs[job].ExcTime[current];
IncrementProcessors=current/Last[job];

if (eff>= high_eff ) && current_speedup>jobs[job].Speedup[Last[job]] &&
RelativeSpeedup>=( Inc rementProcessors* high_eff )) return TRUE

else return FALSE
}else{

if (current_eff>=high_eff) return TRUE
else return FALSE

}

Figure 5.3: MoreProcessors() function

LessProcessors (job)
{

eff=jobs[job].Speedup[jobs[job].current]/jobs[job].current
if (eff< low_eff ) return TRUE
else return FALSE

}

Figure 5.4: LessProcessors() function
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STABLE state
The STABLE state means that the application has the maximum number of processors that
PDPA considers acceptable. The processor allocation in this state is maintained.

If the policy parameters are dynamically defined, PDPA could change the state of an
application from STABLE to either INC or DEC. If low_eff is increased, the efficiency
achieved with the current allocation could be not acceptable. In that case, the next state
will be DEC and application will loose step processors. In a symmetric way, if high_eff is
decreased, next state will be INC and the application will receive step additional
processors. In the same way, if the application performance changes, the next state and
processor allocation are modified.

5.3.3 PDPA parameters

As we have commented in the introduction of this Section, there are three parameters that
determine the PDPA aggressiveness. These parameters can be either statically or
dynamically defined. Statically defined, for instance by the system administrator, or
dynamically defined, for instance as a function of the number of running or queued
applications. In the current PDPA implementation, the three parameters are dynamically
defined as a function of the running applications. PDPA calculates values of high_eff and
low_eff at the start of each quantum, before processing applications. If the machine is
heavy loaded, high_eff is set to 0.9 and low_eff to 0.7. If the machine is low loaded, we will
set high_eff to 0.7 and low_eff to 0.5.

Step is a parameter that defines variations in the processor allocation. This parameter
is used to limit the number of re-allocations that are suffered by applications. Setting step
to a small value, we achieve more accuracy in the number of allocated processors, but the
overhead introduced by re-allocations could be significant. In the current
implementation, applications in the INC state defines step to four processors.

Applications in the DEC state use also a step of four processors except in some cases.
PDPA uses a different value of step in those cases where it detects that the achieved
speedup is significantly bad. For instance, if an application reaches an speedup of 2 with
32 processors, PDPA assumes that the speedup with 28 processors wont achieve an
acceptable efficiency. In that cases, we calculate the next allocation applying the equation
presented in Figure 5.5. With this formula, we allocate the maximum number of
processors that PDPA will consider acceptable to achieve this speedup.

NewAlloc
jobs job[ ]˙ speedup jobs job[ ]current[ ]˙

higheff
------------------------------------------------------------------------------------------------- DynStep, jobs job[ ]current NewAlloc–= =

Figure 5.5: Allocation decided in the case of a very bad
speedup
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5.3.4 Multiprogramming level policy

The multiprogramming level is the number of applications concurrently running in the
system. As we commented in Chapter 2, traditional approaches execute parallel
workloads (1) limiting the multiprogramming level, having the problem of the
fragmentation, or (2) without controlling it, having the problem of the overloading.

We want to control at any moment the load of the system. For this reason, in this Thesis
we discard the option of executing parallel workloads without controlling the
multiprogramming level. The alternative, suffers from fragmentation in (1) systems
where applications are rigid and can only be executed with the number of processors
requested, and (2) when the total number of processors requested does not fit the
complete machine.

However, in dynamic space-sharing policies, we have the advantage that we can
execute an application without having to wait until as many processors be free as the
application request.

Based on this consideration, we propose to coordinate the two scheduling levels and
leave the decision about when to start a new application to the processor scheduling
policy, and the decision about which application to the queueing system. This decision
could also be taken by the queueing system by observing the number of processors idle.
However, the queueing system does not know the application status. It only could base
its decisions based on a limited information. In an execution environment such as our
case, where applications start requesting for one processor, and request for P processors
when they enter in the first parallel region, the queuing system will probably take
incorrect decisions.

Figure 5.6 shows the PDPA_New_appl() function. The conditions that must be
accomplished to allow to start a new application are: (1) it must be not allocated
processors, and (2) the phase of all the applications must be STABLE or DEC. This is
because in that cases no application will need more processors (assuming that application
performance will not change).

int PDPA_New_appl()
{

if (free_processors() && || AllApplication_STABLE_OR_DEC())) return TRUE;
else return FALSE;

}

Figure 5.6: PDPA_New_appl() policy
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5.4 Implementation issues

Figure 5.7 shows the main functions of the processor scheduler process. It is mainly
composed by an infinite loop that activates the processor allocation policy, evaluates
whether the multiprogramming level must be modified, and finally enforces the
processor allocation policy decisions. This function implements the different phases
described in Chapter 3. Once enforced, the CPUManager sleeps for one quantum.

Even PDPA only needs be activated each time a new application arrive, finish, or
informs about its performance, we have implemented the PDPA activation by sampling.
At each quantum, PDPA checks if any of these conditions are true, and in that case it will
actuate. Since the quantum is quite fine, this sampling is quite enough to work in the same
way that an event-driven implementation.

Figure 5.8 shows the pseudocode that implements the PDPA policy. PDPA initially
checks the internal status of applications and maintains the processor allocation to those
applications that are in the PNC3 (Performance Not Calculated) state. Transitions in the state
diagram are only allowed either when applications are in the PC (Performance Calculated)
state. The aim of this decision is to maintain the allocation of those applications that are
calculating their speedup. If we modify the speedup of an application in PNC state as a
consequence of the processing of another application, it could result in inaccurate
allocations.

3. The application can be in Performance Calculated or Performance Not Calculated state, see Sec-
tion 4.5.

Processor_scheduler ()
{

....
Init_multiprogramming_level()
while(1){

PDPA_processor_allocation ()
Dynamic_multiprogramming_level ()
Enforce_processor_allocation()
sleep( quantum )

}
}

Figure 5.7: Processor scheduler main loop
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input: jobs_table(jobs),Last allocation per job (Last), Phase per job (Phase)
output: table with number of processors per job (alloc), Last allocation per job (Last)
void PDPA_Processor_allocation ()
{

if (All_appl_in_PC_state()){
Calculate_target_efficiency();
Allocate_one_processor_per_application();
for(current_job=0;current_job=active_jobs;current_job++){

current=jobs[current_job].current; current_speedup=jobs[current_job].Speedup[current];
last_speedup=jobs[current_job].Speedup[Last[current_job]];
current_eff=current_speedup/current;
switch(Phase[current_job]){
case NO_REF:

switch( Next_phase (current_job)){
case INC:alloc[current_job]=current;

Phase[current_job]=INC;
case DEC:

step=current- DynSTEP(current_job); alloc[current_job]=max(1,step);
Phase[current_job]=DEC;Last[current_job]=current;

case STABLE:alloc[current_job]=current;
Phase[current_job]=STABLE;

}
break;

case INC:
if ( MoreProcessors (current_job)){

alloc[current_job]=current;
}else{

if ((current_speedup>last_speedup) && (current_eff>high_eff)){
alloc[current_job]=current;

}else alloc[current_job]=Last[current_job];
Phase[current_job]=STABLE;

}
break;

case DEC:
if ( LessProcessors (current_job)){

alloc[current_job]=max(1,current- DynSTEP(current_job)); Last[current_job]=current;
}else{ alloc[current_job]=current; Phase[current_job]=STABLE;}
break;

case STABLE:
if ( SystemChanges ()){

if ( MoreProcessors (current_job){
alloc[current_job]=current;Phase[current_job]=INC

}else if ( LessProcessors (current_job)){
alloc[current_job]=max(1,current- DynSTEP(current_job));
Phase[current_job]=DEC;Last[current_job]=current;

}
}else alloc[current_job]=current;

}
}

}else{
Maintain_allocation_of_PC_applications ();

}
if (free_processors()) {

Allocate_processors_to_new_appls() ; // Equipartitioned
Allocate_more_processors_to_INC_appl (); // Equipartitioned

}
}

Figure 5.8: PDPA processor allocation code



120 CHAPTER 5
Applications in PC state are processed and their next phase and allocation are
calculated. PDPA maintains as much as possible stable allocations. For this reason, it
initially fixes the allocation to those applications that will be in NO_REF, INC, and
STABLE states. Processor allocation of applications that are, or will be, in DEC state is also
calculated at this point, because they do not need more processors.

Applications in INC state are post-processed after processing all the applications. If
there are free processors, they will receive more processors. In this post-process,
applications are sorted by speedup to give a certain priority to those applications that
perform better. PDPA distributes free processors equally among jobs in the INC state,
sorted in that way.

The SystemChanges() function checks if application performance or PDPA parameters
have changed. In that case, we check if the application must change its state and
allocation. To avoid possible ping-pong effects, we have limited the number of changes
per parallel region to three times. In fact, we have checked experimentally that the
behavior of a parallel region is usually stable. Note that small changes in application
performance are directly filtered by the SelfAnalyzer and they are not detected by the
scheduler.
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5.5 Evaluation

To evaluate the proposals of this Thesis, we have used the five workloads presented in
Chapter 3. These workloads differ in the percentage of each type of applications: super-
linear, highly scalable, medium scalable, and not scalable.

The scheduling policies that we have evaluated in this Chapter are: the native IRIX
scheduling (IRIX), the Equipartition (Equip), which is a good approach if no performance
information is used, the Equal_efficiency (Equal_eff), which is the only scheduling policy
found in the literature that uses performance information calculated at run-time, and
PDPA. The queuing system used has been the Launcher, and Equipartition,
Equal_efficiency, and PDPA are implemented in the CPUManager.

In the case of IRIX, the CPUManager has not been executed and we have used the
native SGI-MP library. This run-time library uses some environment variables that define
its behavior, such as the MP_SET_NUMTHREADS, OMP_DYNAMIC, the
MP_BLOCKTIME, or the _DSM_MIGRATION. The MP_SET_NUMTHREADS defines
the number of kernel threads to be created by the application. The OMP_DYNAMIC
enables or disables dynamic adjustment of the number of threads available for execution
of parallel regions. We have set OMP_DYNAMIC to TRUE. We have also set the
MP_BLOCKTIME environment variable. MP_BLOCKTIME controls the amount of time
a slave thread waits for work before giving up. The value of MP_BLOCKTIME specifies
the number of times to spin in the wait loop. This value was tuned experimentally and set
to 200.000 in [62]. We have used the same value for this variable. The _DSM_MIGRATION
environment variable which specifies aspects of automatic page migration, set to
ALL_ON enables migration for all data.

IRIX, Equipartition, and Equal_efficiency have been executed with a
multiprogramming level fixed set to four applications. PDPA uses a default
multiprogramming level of four applications. Table 5.1 shows the characteristics of the
four different execution environments evaluated in this Chapter.

All the workloads are executed as in a open system, that is, a system where
applications are submitted to the system following a Poison inter-arrival function. We
have generated workloads to simulate systems with an estimated demand of 60%, 80%,
and 100% of the total capacity of the system.

Table 5.1: Execution environments evaluated

Policy Queueing system Processor scheduler Run-time library Multiprog. Level

IRIX Launcher IRIX SGI-MP Fixed = 4

Equip Launcher CPUManager NthLib Fixed = 4

Equal_eff Launcher CPUManager NthLib Fixed = 4

PDPA Launcher CPUManager NthLib Dynamic, Def.=4
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u

As we commented in Chapter 3, we have used workload trace files that specify the
arrival sequence of applications to the system, then all the scheduling policies evaluated
have executed the same set of applications and with the same submission times.

We have calculated the average response time and the average execution time per
scheduling policy, workload, and application class. The response time of each application
is calculated as the difference between the finalization time and the submission time, the
number of seconds the application is in the system, time queued + time executing. The
execution time is calculated as the difference between the finalization time and the
starting time, the number of seconds the application is executing.

One important thing is that we have submitted applications only during 300 seconds,
but we have considered all the applications submitted to calculate the response time and
the execution time, not only those that have finished during this initial period. This
implies that, for instance, in workloads with a 100% of load, in fact the 100% of load is
only real during the first 300 seconds. After this time there is a queue of remaining
applications that are also considered but that are not executed under a 100% of load.

We have also measured the total execution time per workload. These results are shown
at the end of the evaluation, in Section 5.5.6.

Table 5.2 summarizes the main characteristics of the five workloads used in this Thesis.
In the next sections, we detail these characteristics and present the results for each
workload. Three of the workloads are composed by two types of applications, one is
composed by the four types of applications, and one by only one type of applications. The
% of cpu column is relative to the system load that generates the workload.

We have evaluated all these workloads in a SGI Origin2000 like the one described in
Chapter 2. It is a CC-NUMA machine with 64 processors. However, we have only used 60
processors to evaluate our workloads. We have used one of the idle processors to execute
a tracing tool, scpus, to monitorize the execution of the workloads. This tool generates a
trace file that can be visualized with the Paraver Tool [52].

Table 5.2: Workload characteristics

Application 1 Application 2 Application 3 Application 4
appl. req. % of cpu type req. % of cpu type req. % of cpu type req. % of cp

w1 swim 30 50% bt 30 50% - - - - - -
w2 bt 30 50% hydro 30 50% - - - - - -
w3 bt 30 50% apsi 2 50% - - - - - -
w4 swim 30 25% bt 30 25% hydro 30 25% apsi 2 25%
w5 bt 30 100% - - - - - - - - -
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5.5.1 Workload 1

Figure 5.9 shows results from workload 1. Graphs in the top of the figure show the
average response time (in seconds) of swim’s (super-linear), and bt’s (highly scalable). In
the x axis we represent the different loads of the system generated. Graphs in the bottom
of the figure show the average execution time (in seconds) of swim’s and bt’s. In this
workload, the request of all the applications has been set to 30 processors.

This workload has the characteristic that (1) applications are scalable, (2) they have
been previously tuned to select the number of processors that reaches the maximum
speedup, and (3) the multiprogramming level set to four is a good value for this
workload. The multiprogramming level set to four applications generates that
applications under the Equipartition execute with 15 processors (we have a total of 60
processors) when the machine is high loaded and with 30 processors if the machine is low
loaded. In the first case, 15 processors is the number of processors that achieves the best
ratio speedup/efficiency, and the second case, 30 processors, is the number of processors
that achieves the best speedup for the two applications. For all these reasons, this
workload could be a bad case for PDPA because there is “nothing” to improve.
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Figure 5.9: Results of workload 1, M.L.=4
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Results show that both the response time and the execution time of PDPA (line with
boxes) outperform the ones achieved by IRIX and Equal_efficiency, and it is slightly worse
than the performance achieved by Equipartition. Comparing the response time achieved
by PDPA and Equipartition, PDPA is a 10% worse than Equipartition in the case of bt´s,
and around a 30% worse than Equipartition in the case of swim´s.

The Equal_efficiency has the problem that it has a high sensitivity to small changes in
the efficiency measurements. Small variations in the efficiency generates high variances
in the processor allocation, resulting in a high number of processor reallocations. As we
commented in the introduction of this Thesis, the system has to be conscious that
applications are malleable but that reallocations are not free, and it is something that must
be done “with care”. Another problem related with the Equal_efficiency is that the
formulation used to extrapolate the values sometimes generates a lot of differences
between applications that have the same performance. For instance, in the case of the
load=100%, we have measured the processor allocation received by swim’s, and we have
found that the Equal_efficiency has allocated from 2 until 28 processors. This is an unfair
allocation because two applications with the same performance and requesting for the
same number of processors should received the same amount of processors.

Observe that, in this type of workloads, it could be beneficial to reduce the
multiprogramming level to improve the execution time of running applications.
However, in this Thesis we give priority to the overall system performance rather than to
the individual application performance. To reduce the multiprogramming level to
improve the individual application speedup is something that it remains as a future work,
but we believe that this kind on modification could be easily introduced in PDPA.

We have executed this workload by varying the multiprogramming level and we have
found that PDPA always set it to four applications. This is the reason because PDPA does
not improves the execution of this workload, because the static configuration is the same
than PDPA dynamically decides.

Multiprogramming level set to three applications
We have executed the same workload varying the baseline multiprogramming level to
compare the behavior of PDPA with the Equipartition behavior, which is the policy that
reaches the best results.

Figure 5.10 shows the response time and execution time for swim’s and bt’s under
Equipartition and PDPA when using a default multiprogramming level of three. Graphs
on the top of the figure show the average response time of swim’s and bt’s, and graphs on
the bottom of the figure show the average execution time of swim’s and bt’s.

PDPA reaches the same performance than Equipartition comparing the response time.
If we compare the execution time, the Equipartition outperforms PDPA in the case of
swim’s and in the case of bt’s it seems that PDPA slightly outperforms the Equipartition.
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We have calculated the multiprogramming decided by PDPA. It has been set to four
applications, the same that the one defined statically in the previous experiment.

Multiprogramming level set to two applications
Figure 5.11 shows the same comparison when setting the multiprogramming level to two
applications. In this case results are very similar to the previously presented, but in this
case it seems that the Equipartition slightly outperforms PDPA in the average execution
time (not in the response time).
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Figure 5.10:Results of workload 1, M.L.=3
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Figure 5.12 shows the workload execution time when executed under Equipartition
and PDPA with multiprogramming levels set to four, three, and two applications.

When the load is equal to the 60%, Equipartition and PDPA reach the same
performance and the M.L. does not influence on the total execution time. In the case of the
load set to the 80%, Equipartition slightly outperforms PDPA, but PDPA is slightly more
stable considering changes in the multiprogramming level. The execution time of the
workload under Equipartition is a 20% slower with M.L.=2 than with M.L.=4, and only a
10% with PDPA. When the load is equal to the 100%, the percentage is 13% slower with
M.L.=2 than with M.L.=4, in the case of PDPA, and 28% in the case of Equipartition.

We can see in this graph that the best choice for the system is to use a higher
multiprograming level because processors are more efficiently used. With PDPA we can
set the default M.L. to a small value and let the policy to adjust it automatically.
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Figure 5.11:Results from workload 1, M.L.=2
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Related issues that affect the system performance
As we have previously commented, there are several issues that affect the performance of
parallel applications, not only the processor allocation.

We have observed that both Equipartition and PDPA significantly improve results
achieved by IRIX and the Equal_efficiency. In the case of IRIX, the main reasons are the
unresponsiveness of the native run-time to changes in the system load, and the
coordination with the Launcher. But it also has a significant influence the placement
policy used by IRIX. This placement policy is based on maintaining the processor affinity
as much as possible. However, sometimes it generates that two kernel threads can be
allocated to the same processor, degrading the application performance and generating a
lot of process migrations.

Figure 5.13 shows the trace file visualization for the workload 1 executed under IRIX,
PDPA, and the Equipartition (load=100%, M.L.=4). This graph has been generated with
the Paraver Tool [52]. We have used Paraver to study the behavior of multiprocessor
multiprogrammed environments, to debug our execution environment once
implemented, and to evaluate the different system configurations. Each line represents
the activity of a CPU and each color represents a different application. The x axis
represents time, and we have set the same x scale to compare the three trace files.

We can appreciate that the look of the execution under the native IRIX scheduler is
chaotic. The other two traces show that the respective executions are quite stable. We can
clearly differentiate the execution of the different applications on them. We will show that
this stability is very important to help the rest of mechanisms of the operating system
(such as the memory migration) to do their work efficiently.
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Figure 5.13:Execution views for workload 1 under IRIX, PDPA, and Equipartition (load=100%)
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Also using Paraver, we have measured the total number of processes migrations, the
duration of the bursts executed by each cpu, and the number of bursts executed per cpu.
Table 5.3 shows the results obtained from the three policies. As we can see, the native IRIX
scheduler generates much more kernel threads migrations. The time each cpu is executing
the same application under IRIX is around 50 times less than under PDPA or
Equipartition.

This behavior is not resulting from the processor allocation policy, it is generated by the
rest of phases of the IRIX processor scheduler and by the IRIX run-time library
characteristics. In this particular workload, we have measured the number of cpus
allocated under IRIX and under Equipartition and in both cases they are around 15
processors.

We have performed a second experiment to measure the effect of the processor
scheduler quality in the system performance. We have not activated the memory page
migrations to see how this mechanism influences in the execution time of both
applications and the workload.

Figure 5.15 shows the execution time of workload 1 with and without memory
migrations under the native IRIX scheduler, Equipartition, and PDPA (load=100%).
Comparing Figure 5.15 with Figure 5.13, we can see that memory migrations has a
significant and positive influence in the execution time of the workload. We can also
observe the different effect depending on the policy. In the case of the native IRIX
scheduler the memory migrations mechanism improves the execution time of the
workload in only a 6%, whereas in the Equipartition the speedup has been 72%, and in
PDPA 38%.

Table 5.3: IRIX vs. PDPA and Equipartition, workload 1 (load=100%)

Migrations Average exec. time burst per cpu Average number of bursts per cpu

IRIX 159.865 243 ms. 2882

PDPA 66 10.782 ms. 41

Equipartition 325 11.375 ms. 43
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This is because the memory migration mechanism can only improve those workloads
that keep stable enough the processor allocation of the applications and, as we show in
Table 5.3, this is not a characteristic of the native IRIX scheduler. Figure 5.15 shows the
visualization of the execution of the workload 1 under the native IRIX scheduler,
Equipartition, and PDPA, without memory migrations (load=100%). Although the
execution view has a similar behavior to that shown in Figure 5.13, the execution times of
the workload without memory page migrations are very different. With these
measurements we want only to give a hint about the importance for the system of having
a common goal in all the components (processor scheduler, memory management). We
have executed the rest of workloads with and without memory migrations, and we have
found that the dynamic memory migration mechanism improves the system performance
in all the workloads and with all the policies evaluated.
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5.5.2 Workload 2

Figure 5.16 shows results from workload 2. Graphs in the top of the figure show the
average response time (in seconds) of bt’s applications (highly scalable), and hydro2d’s
(medium scalability). In the x axis, we represent the different loads of the system
generated. Graphs in the bottom of the figure show the average execution time (in
seconds) of bt’s and hydrod2d’s. In this workload, the request of all the applications has
been set to 30 processors.

Figure 5.15: Execution of workload 1 without memory migrations under IRIX, Equipartition, and
PDPA (load=100%)
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This workload has been designed to evaluate the behavior of the evaluated policies
when executing a workload where the 50% of the load consists of applications with high
scalability, and the rest have a medium scalability.

Results show a behavior similar to workload 1. Equipartition and PDPA significantly
improve IRIX and Equal_efficiency, and the two policies show a very smooth increment
in the response time when increasing the system load.

To see the benefits provided by PDPA in this workload we have to analyze the
workload execution in more detail. The percentage of cpu’s that, in average, receives each
type of application is 20 cpus to bt’s and 9 cpus to Hydro2d’s. The allocation decided by
Equipartition is the same to both applications (around 15). This better distribution results
in a better execution time of bt’s executed under PDPA compared with bt’s executed
under Equip. In this workload, PDPA outperforms Equipartition by 10% in the response
time and execution time of bt’s, but in the case of hydro2d’s, Equipartition outperforms
PDPA between 23% and 30%.
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Figure 5.16:Results from workload 2, M.L.=4
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In the case of the hydro2d’s, even if the response time is quite the same under PDPA
and Equipartition, the execution time is slightly worse with PDPA due to two reasons, the
small number of processors allocated to them, and that the hydro2d is an application that
suffers overhead due to the measurement process.

Comparing results achieved by PDPA with the Equal_efficiency we can see that PDPA
outperforms the Equal_efficiency both in the response time and in the execution time.
However, in this workload, the difference between PDPA and Equal_efficiency is less
significant than in the previous workload. PDPA outperforms Equal_efficiency by 18% in
the case of the response time of bt’s and by 58% in the case of the response time of
hydro2d’s. In the case of load=100%, the Equal_efficiency has allocated 30 processors (in
average) to bt’s and 10 processors (in average) to hydro2d’s.

Till now, it seems that PDPA does not provide significant benefits to the workload
executions if a pervious tuning of both applications and system parameters have been
performed previously. However, we will see that if we change any of these parameters,
PDPA is able to maintain the system performance whereas the Equipartition is not. PDPA
is quite robust to both changes of the application request (which depends on users), and
on the system parameters.

Multiprogramming level set to three applications
As in the previous workload, we have also executed this workload with the
multiprogramming level set to three and two. Figure 5.17 shows results for workload 2
executed with a multiprogramming level set to three applications. Graphs in the top of
the figure show the response time achieved by bt’s and hydro2d’s executed under
Equipartition and PDPA, and graphs in the bottom of the figure show the execution time
for bt’s and hydro2d’s.
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If we compare the response time, PDPA outperforms Equipartition. This is because
PDPA distributes processors proportionally to the application performance, not
proportionally to the number of running applications (as the Equipartition does).
Observing the execution time, the Equipartition outperforms PDPA in the case of
hydro2d’s, and this is because of two reasons: PDPA assigns less processors to hydro2d’s
than Equipartition, and hydro2d is the application with more overhead introduced by
SelfAnalyzer.

Multiprogramming level set to two applications
Figure 5.18 shows results for workload 2 executed with a multiprogramming level set to
two applications. In this case, applications under the Equipartition are receiving as many
processors as they request, because the multiprogramming level is set to two, and they
request for 30 processors. This is the reason why the execution times under Equipartition
are better than under PDPA. However, PDPA significantly outperforms Equipartition
when analyzing the response time achieved by applications. PDPA allocates less
processor to applications than Equipartition, and increases the multiprogramming level,
improving the efficient use of the system.
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Figure 5.17:Results from workload 2, M.L.=3
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Figure 5.19 shows the processor allocation dynamically decided by PDPA in a subset
of applications. This figure only shows the task view of a portion of the workload. We can
see that PDPA implements a search for the maximum number of processors that reaches
the target efficiency, and also some moments where it tries to allocate more processors. In
the case of the first application (hydro2d), PDPA allocates a number of processors that
achieves an acceptable performance, then its allocation is maintained till the application
finishes. In the case of the second application (bt), PDPA detects that it can use more
processors and when it is possible, it increases its allocation, finally it receives 28
processors. The three last applications are hydro2d’s. They initially receive a number of
processors that PDPA considers not acceptable, then their allocation is reduced. Note that
the reduction in the processor allocation has not been in four processors, this is because
the dynamic step used by PDPA.
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Figure 5.18:Results from workload 2, M.L.=2
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We have also measured the standard deviation in the processor allocation and in the
execution time of applications in the case of Equipartition and PDPA.

Table 5.4 shows the standard deviation generated in the workload of load=100%. We
can see that PDPA generates roughly the same deviation than Equipartition.

Figure 5.20 shows the complete list of applications for Equipartition and PDPA. In this
case we show the processor allocation as colors with different gradient: dark-blue colors
mean many processors, and light-green colors mean few processors. We can see that
Equipartition allocates more processors to applications than PDPA. However, we can also
see that Equipartition does not differenciate between bt’s and hydro2d’s. PDPA detects
that bt’s scale better than hydro2d’s and it allocates more processors than hydro2d’s. We

Table 5.4: Standard deviation

bt hydro2d

Allocation Execution Time Allocation Execution time

Equip 2.09 7.18 3.09 9.04

PDPA 2.72 8.59 3.3 9.67

Figure 5.19:Processor allocation decided by PDPA (subset of applications)
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have calculated the average processor allocation for the execution of this workload and
we have found that PDPA has allocated (in average) 8 processors to hydro2d’s, and 23
processors to bt’s.

We have set the same time scale (x axis) in both graphs to compare them. We can
observe that PDPA outperforms Equipartition because (1) PDPA decides a better
processor distribution, and (2) since processor are efficiently used, more applications can
be executed concurrently, improving the throughput of the system.
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The multiprogramming level decided by PDPA has reached up to six applications
during the workload execution (in the case of load=100%).

Figure 5.20:Workload 2, processor allocation decided by Equipartiton and PDPA (M.L=2, load=100%)
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Figure 5.21 shows the dynamic multiprogramming level decided by PDPA in the case
of load=100%. The x-axis is the time axis and the y-axis is the multiprogramming level
value. As we can see, PDPA adapts the multiprogramming level to the characteristics of
running applications, and it is not fixed during the complete execution of the workload.

Figure 5.22 shows the workload execution time under Equipartition and PDPA when
using different multiprogramming levels and with different system load (60%, 80%, and
100%). From this graph, we can extract two main conclusions. The first one is that PDPA
is more robust than Equipartition to the multiprogramming level decided by the system
administrator: PDPA dynamically detects the optimal value at each moment. In fact, the
ideal decision in a system with PDPA is to set the multiprogramming level to a small
value and let PDPA to dynamically adjust it. We have compared the execution time
achieved by this workload when using a multiprogramming level of four vs. using a
multiprograming level of two applications, in the cases of load=80% and load=100%.

Table 5.5 shows the slowdown introduced by Equipartition and PDPA when executing
with multiprogramming level set to two applications. It is calculated as the relationship
between the execution time when the multiprogramming level was set to two and the
execution time when the multiprogramming level was set to four. As we can see PDPA is
more robust than Equipartition the value of the multiprogramming level.

The second conclusion that we can extract from this experiment is that PDPA is able to
adjust the processor allocation of running applications taking into account their
performance. As we can see in the case of the multiprogramming level set to two

Table 5.5: Slowdown introduced, ML=4 vs. ML=2

Policy/Load 80% 100%

Equipartition 97% 86%

PDPA 2% 15%

Figure 5.21:Multiprogramming level decided by PDPA
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applications, Equipartition allocates the number of processors requested, resulting in
better execution times per application4. But this is not a good result neither for the system
performance nor for the response time of applications. In fact, for users of a heavy loaded
server, the response time is more important than the execution time because it includes
the total time the application is in the system.

5.5.3 Workload 3

Figure 5.23 shows results from workload 3. Graphs in the top of the figure show the
average response time (in seconds) of bt applications (highly scalable), and apsi’s (not
scalable). In the x axis we represent the different loads of the system generated. Graphs in
the bottom of the figure show the average execution time (in seconds) of bt’s and apsi’s.
In this workload, the request of bt’s has been set to 30 processors and the request for apsi’s
has been set to 2 processors.

This workload has been designed to evaluate the behavior of the evaluated policies
when executing a workload where the 50% of the workload is composed by scalable
applications, and the rest does not scale at all.

In this kind of workloads, PDPA can improve the processor scheduling by attacking
two points: the first one is improving the processor allocation, and the second one is by
coordinating with the queueing system. However, since we have performed a previous
manual tuning of the processor request, the processor allocation of running applications
can not be significantly improved (as maximum, apsi’s could receive one processor rather
than 2, but this is not a significant change). However, the system can be significantly
improved if the processor scheduler and the queueing system are coordinated to better
use the system in those moments that there are only one or zero bt’s executing.

4. In this workload, because of the previous tuning.

60 80 100
0

200

400

600

800

1000

E
xe

cu
ti

on
 t

im
e(

se
c.

)

w2

equip-ml=4
equip-ml=3
equip-ml=2
pdpa-ml=4
pdpa-ml=3
pdpa-ml=2

Figure 5.22:Workload 2, Equipartition vs. PDPA



Performance-Driven Processor Allocation 141
Results demonstrate our theory. If we observe the response time graphs, we can
observe that PDPA significantly improves the rest of evaluated policies because both bt’s
and apsi’s do not have to wait so many time queued before starting their execution. Those
policies that do not coordinate with the processor scheduler are not able to see that, in
some moments, the system is under utilized and that it could be started a new
application. We have analyzed results from PDPA and we have found that the
multiprogramming level has been set in some moments to 34 jobs (load=100%), see Figure
5.24.
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Analyzing results in detail, we can see that in this workload PDPA outperforms
Equipartition in a 600% in both the response time of bt’s and apsi’s, at the expense of only
the 30% of slowdown in the case of bt’s, and not slowdown in the case of the execution
time of apsi’s.

In this workload, the main problem for the Equal_efficiency is also the
multiprogramming level. In this workload, the Equal_efficiency has allocated 30
processors in average to bt’s and two processors to apsi’s. However, we can see that even
that bt’s have received more processors than under PDPA, the execution time of bt’s
under PDPA is better than under Equal_efficiency. In average, PDPA outperforms the
execution time of bt’s in a 20%. Comparing the response time, PDPA outperforms the
response time achieved by bt’s under the Equal_efficiency in a 558%.

We have also executed some experiments modifying the processor request of apsi’s to
evaluate a case where apsi’s were submitted without any previous tuning. The
experiment consists of executing the same workload, with the same submission times but
setting the apsi’s request to 30 processors.

We have only executed the first case, with the load set to the 60%, because results were
significant enough. Table 5.6 shows the results achieved in this case. We can see that
PDPA significantly improves the Equipartition performance.

Table 5.6: Results from w3, apsi’s requesting for 30 processors (not tuned) load=60%

Bt Apsi Workload ML

Resp. time Exec. time Resp. time Exec. time Exec. time

Equip 949 sec. 102 sec. 890 sec. 107 sec. 33 min. 13 sec. 4

PDPA 95 sec. 88 sec. 107 sec. 98 sec. 7 min. 7 sec. 29

PDPA speedup 998% 15% 831% 9% 466%

Figure 5.24:Multiprogramming level decided by PDPA, W3 M.L.=4, load=100%
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Figure 5.25 compares the execution time of workload 3 when tuning the application
request and without tuning it. A very important point is that the behavior of applications
under PDPA is not affected if users have or do not have previously tuned their
applications request. PDPA allow non-experts users to request for a high number of
processors without fear that they use an excessive number of processors. The processor
scheduling policy will be in charge of deciding the number of processors that they must
use. Note that results with a tuned and with a non tuned workload are more or less equal.
It does not happen the same with the Equipartition, which is not able to solve this
situation.

5.5.4 Workload 4

Figure 5.26 shows results from workload 4. We show the average response time for
swim’s, bt’s, hydro2d’s, and apsi’s, and the average execution time for the four
applications.

This workload is a mix of the four type of applications, and each type receives the same
amount of cpu percentage. The request of swim’s, bt’s, and hydro2d’s has been set to 30
processors, and the request of apsi’s has been set to two processors. As in the previous
workloads, this is not the best case for PDPA because the processor allocation has been
tuned and the load is quite enough to fill the complete machine. However, also in this case
we can observe how the response time achieved by applications when executing under
PDPA significantly improves results achieved by other policies, without significantly
increase the execution time.

We have analyzed the processor allocation decided in the case of load=80%, and we
have found that swim’s have received (in average), 17 processors, bt’s have received 20
processors, hydro2d’s have received 10 processors, and apsi’s 2 processors. Moreover, we
have observed that the maximum multiprogramming level has been set up to 14
applications in some moments of the workload execution.
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Figure 5.25:Workload 3, tuned vs. not tuned (load=60%)
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It can surprise that swim’s receive less processors than bt’s, having better speedup.
This is because swim achieves the super-linear speedup in the first range of processors
(between 8 and 16 processors). With the rest of processors the achieved speedup is also
super-linear, but the relative speedup is not so high. On the other hand, bt’s have a more
progressive scalability, and their relative speedup is better. For this reason it is more
beneficial for the system to allocate more processors to bt’s than to swim’s.

Analyzing results achieved by applications under the Equal_efficiency, we can see that
they are similar to those achieved by the Equipartition and the native IRIX scheduling
policy. We have calculated that, in average, Equal_efficiency has allocated 26 processors
to swim’s, 28 to bt’s, 27 to hydro2d’s, and 2 to apsi’s.

We have compared the response time and the execution time achieved by applications
under PDPA and Equal_efficiency. PDPA outperforms Equal_efficiency by 1095%, 502%,
and 442% in the response time of swim’s, bt’s, and hydro2d’s respectively. And
Equal_efficiency outperforms PDPA by 16%, 8%, and 1% in the execution time of swim’s,
bt’s, and hydro2d’s respectively. However, this is at the expense of 52% more processors
in the case of swim’s, 40% more processors in the case of bt’s, and 270% in the case of
hydro2d’s. Analyzing these results we can conclude that PDPA outperforms
Equal_efficiency in this workload because we have improved the response time of
application by (1000%..500%) at only the expense of an slowdown in the execution time
of the (16% .. 1%).
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Figure 5.26:Results of workload 4



146 CHAPTER 5

time

. 6sec.

6sec.
As in the previous workload, we have executed a different configuration of this
workload, assuming that no previous tuning of applications has been performed and
setting the request of all the applications to 30 processors (the only difference are apsi’s).

Table 5.7 shows results for load=60%. The last row shows the ratio of PDPA vs.
Equipartition. In those cases that Equipartition has improved PDPA, we have noted it as
negative speedups. We can see how PDPA has outperformed the complete execution time
of the workload by 282%, and the individual response time of applications from a 109%
up to a 2830%. We can also see that all this benefits have been achieved by only sacrificing
a maximum of 30% in the execution time of some applications.

Figure 5.27 shows the trace file visualization of the execution of the workload 4 without
previous tuning when the load was set to the 80%. The x axis represesents time. We have
set the same scale in both views to compare the cpu time consumed by the workload
under the Equipartition and under PDPA. The dark blue color means cpu running and
each row shows the cpu activity.

We can observe that the workload under PDPA has consumed less of half the cpu time
to execute the same set of applications. This is a clear example that a high cpu utilization is
not equal to a good cpu utilization. PDPA detects that some of the applications do not need
so many processors, then it reduces their allocations and starts a new one. This policy
significantly improves the system performance.

Table 5.7: Results from workload 4 not tuned, load=60%

swim, req=30 bt, req=30 hydro2d, req=30 apsi, req=30 Total

exec.time resp. time exec.time resp. time exec.time resp. time exec.time resp. time exec.

Equip 6sec. 368sec. 101sec. 568sec. 32sec. 453sec. 104sec. 773sec. 20min

PDPA 8sec. 13sec. 81sec. 92sec. 37sec. 45sec. 98sec. 109sec. 7min. 

% -30% 2830% -24% 617% -15% 1006% 6% 109% 282%



Performance-Driven Processor Allocation 147
5.5.5 Workload 5

Figure 5.28 shows results for workload 5, which is composed by applications that have a
high scalability (bt’s). This workload is quite similar to workload 1. We designed it with
the goal of evaluate whether there was any difference if some of the applications were
super-linear or not.

Results do not show significant differences compared with conclusions extracted from
workload 1. We believe that the reason is that swim´s have an execution time small
compared with the execution time of bt´s and their performance do not have a clear
influence in the performance of neither bt´s nor in the workload performance.

However, since this workload have also been previously tuned in both the number of
processors request per application and the multiprogramming level, the processor
allocation generated by the Equipartition directly reaches a good efficiency. Then,
Equipartition outperforms PDPA by 10% (in average) in both the execution time and the
response time of bt’s.

Compared with the Equal_efficiency, PDPA outperforms its results in both the
response time and the execution time of bt’s. In the case of the response time, PDPA
outperforms Equal_efficiency by 40%. In the case of the execution time, PDPA

Figure 5.27:Workload 4. CPU utilization, Equipartition vs. PDPA, not tuned. Load=80%
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outperforms Equal_efficiency by 28%. The mean processor allocation when load=100%
decided by Equal_efficiency is 18 processors. However, we have found that the processor
allocation has a large standard deviation, ranging from 8 to 29 processors.

5.5.6 Workload execution times

Figure 5.29 shows execution times for the five workloads evaluated in this Thesis. As in
the previous graphs, in the x axis we show the system load, and in the y axis we show the
execution time of the complete workload. The execution time is calculated as the
difference between the time the last application finishes its execution and the time the
Launcher is started.We only show results for M.L.=4.

Workload execution times have a direct relationship with results observed in the
individual response times of applications. In those workloads that PDPA achieves a
similar performance, or slightly worse than Equipartition in the response time of
applications, it also achieves a similar performance in the execution time of workloads. In
particular, Equipartition outperforms PDPA by 10% in the first workload, workload 2
shows the same performance (in the case of M.L.=4). In workload 3 PDPA outperforms
Equipartition in a 400% (at least), in workload 4 PDPA outperforms Equipartition by
240%, and in workload 5 Equipartition outperforms PDPS by 5%.

The speedup of PDPA with respect to the Equipartition in workload 3 is approximated
because the execution of the workload was aborted. We decided to abort the execution of
this workload because the more important thing was to demonstrate the validity of the
ideas of the Thesis, not to know the execution time of the workload. Results presented in
previous Sections have been calculated with applications that have finished before
aborting the workload execution.
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Figure 5.28:Results from workload 5
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The expected performance of IRIX was equal or even better than the Equipartition
(because it is the native parallel library and without the possible overhead introduced by
the CPUManager). However, results show that Equipartition outperforms results
achieved by the IRIX scheduler. This is also because of the coordination. We have
experimentally observed that execution times of applications executed with the native
parallel library, but executed in standalone mode, sometimes achieve slightly better
results than the same experiment with the NthLib. However, when executing a
multiprogrammed workload, the combination NthLib and CPUManager outperforms
the native execution environment. All the scheduling policies executed under the
CPUManager and the NthLib include coordination between the processor scheduler and
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Figure 5.29:Execution time of the five workloads evaluated in this Thesis with M.L.=4
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the run-time library. In addition, the NthLib includes specific mechanisms to provide an
efficient execution of applications, such as the recovering mechanism, when executing in
a multiprogrammed system.

As we have commented previously, the problem of the Equal_efficiency is not only the
lack of coordination between the processor scheduler and the queueing system, but also
the sensibility to changes in the performance values. We have observed that changes in
the performance of one application can generate changes in the allocation of the complete
workload, and also that two applications with the same speedup characteristics receive
very different number of processors. Taking into account that the Equal_efficiency uses
extrapolated values, this is a very usual situation.
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5.6 Summary

In this Chapter, we have presented PDPA, a coordinated scheduling policy fully based on
the performance of applications calculated at run-time. With respect to the processor
allocation, PDPA tries to allocate to each application the maximum number of processors
that reaches a target efficiency (low_eff). PDPA implements a multiprogramming level
policy that decides to allow the execution of a new application if there are idle processors,
and the allocation of all the running applications is stable or they do not need more
processors.

Results show that in workloads composed by applications that scale well, previously
tuned, and where the load is quite enough to fill the system, PDPA has improved results
compared with IRIX and Equal_efficiency. Compared to the Equipartition, PDPA has
introduced a maximum overhead of the 10% in the total execution time of the workload,
and a maximum of a 30% in the individual response time of some applications.

In workloads that include not scalable applications, PDPA improves the system
performance in two ways. The first one is by adjusting the processor allocation of
applications to reach the target efficiency, ensuring the efficient use of processors. The
second one is through dynamically adjusting the multiprogramming level, adapting it to
the workload characteristics. We have executed these kind of workloads with and
without previous tuning, and we have observed that benefits provided by the two points
are orthogonal and complementary. In this kind of workloads, PDPA has outperformed
Equipartition 400% in the total execution time. For these reasons, we can conclude that
the fact of dynamically measuring the performance of applications and imposing a target
efficiency gives PDPA a robustness that do not have the rest of evaluated policies.

Results also show that the first level of coordination between the processor scheduler
and the run-time library, and the quality of the processor scheduler, are also very
important, as demonstrates the differences between the Equipartition and the native IRIX
scheduler. The processor allocation must be maintained, as much as possible, stable,
because a high number of reallocations degrades the application and the system
performance.

We have observed that it is very important that scheduling policies that use
extrapolated values verify that these values correspond with the real ones.
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