CHAPTER 6 Performance-Driven
Multiprograming Level

In the previous Chapter, we presented a specific processor allocation policy
fully based on performance analysis. However, we believe that performance
analysis is a point that is not exclusive from other criterion used in proces-
sor scheduling policies. It can be included in processors scheduling policies
to self-evaluate processor scheduling decisions based on the performance
achieved by running applications.

For this reason, we present a new methodology to improve scheduling poli-
cies by including job performance analysis and coordination with the

queueing system. We call it Performance-Driven Multiprogramming Level
(PDML).

PDML has been applied to Equipartition and Equal_efficiency, we have
named the resulting policies Equip++ and Equal_eff++. Results show that
PDML introduces significant benefits in Equipartition. In the case of
Equal_eff++, it depends on the workload. Characteristics of the original
Equal_efficiency generates that the benefits depends on the workload and
the application.

153

154 CHAPTER 6

6.1 Introduction

In the previous Chapter, we have shown that by means of a scheduling policy that
coordinates the three different scheduling levels, and that considers the performance of
parallel applications to distribute processors, we can significantly improve the system
performance. The use of performance information ensures the efficient use of resources,
processors in this case. And the coordination between levels ensures the efficient system
utilization.

We have observed that the main points that constitute PDPA (use real performance
information/ensure target efficiency/coordinated scheduler), are orthogonal to other
criterion used in processor scheduling policies. We believe that the benefits provided by
the ideas defended in this Thesis can be added to those concepts exploited in other
scheduling policies.

To demonstrate it, we propose a new methodology that will transform processor
scheduling policies to include the ideas defended in this Thesis, Performance-Driven
Multiprogramming Level (PDML). PDML is a methodology that transforms policies in
iterative algorithms that self-evaluate their decisions and modify them based on (1) their
original criteria, and (2) the achieved application performance (efficiency). It also includes
a multiprogramming level policy to implement the coordination with the queueing
system.

We have applied PDML to two scheduling policies proposed so far, the Equipartition
and the Equal_efficiency. We refer to the modified Equipartition and Equal_efficiency
policies as Equip++ and Equal_eff++.

Results show that Equip++ is able to detect situations where the original Equipartition
fails in its decisions, improving its performance. In fact, in some workloads the Equip++
even improves PDPA. This could be expected because the Equip++ incorporates the
benefits of both PDPA and Equipartition.

On the other hand, the benefit that PDML introduces in the Equal_efficiency depends
on the workload and the application. The Equal_efficiency takes scheduling decisions
based on extrapolated values. These extrapolated values do not always correspond with
the real ones. This fact, combined with the fact that the Equal_eff++ limits the processor
allocation if the performance achieved does not reach the target efficiency, generates that
some applications receive a small number of processors, even though they do not have a
real bad scalability. This behavior is more frequent if applications extrapolate their
efficiency values based on a efficiency calculated with few processors. In any case, in
average, Equal_eff++ has improved the performance achieved by Equal_efficiency.

The remainder of this paper is organized as follows: Section 6.2 describes the
methodology presented in this Chapter. Section 6.3 describes the two scheduling policies
to which we have applied PDML, Equipartition and Equal_efficiency, and the resulting

Performance-Driven Multiprogramming Level 155

scheduling policies, Equip++ and Equal_eff++. Section 6.4 presents the resulting
processor scheduling policy taxonomy after including our policies. Section 6.5 presents
the evaluation of this proposal, and finally Section 6.6 summarizes this Chapter.

156 CHAPTER 6

6.2 Performance-Driven Multiprogramming Level

Performance-Driven Multiprogramming Level is a methodology that incorporates the
concepts of:

= Use of real performance information
= Ensure a target efficiency
= Coordination between scheduling levels

to previously proposed processor scheduling policies.

To do that, PDML transforms the processor scheduling policy in an iterative algorithm
that self-evaluates its decisions based on the performance achieved by running
applications. It also includes a default multiprogramming level policy.

The processor allocation is initially decided based on the original policy criteria. If the
performance achieved reaches the target efficiency, it will be considered acceptable.
Otherwise it is considered not acceptable. If the performance is acceptable, the processor
allocation will be kept up until the original re-allocation conditions given by the original
policy indicate that it must be changed. If these conditions become true, or the
performance is not acceptable, the processor allocation is adjusted based on both, the
performance information, and the policy criteria.

With respect to the multiprogramming level policy, we have implemented a default
policy that decides to allow the execution of a new application if there are free processors
and the efficiency of all the running applications is greater than the target efficiency.

6.2.1 Processor scheduling policy scheme

Usually, a dynamic processor allocation policy decides the processor distribution based
on a criteria and does not change it until the workload or the policy parameters change.
For instance, Equipartition does not change the processor distribution until a new
application arrives or a running application finishes. Figure 6.1 shows the general
behavior of dynamic space-sharing policies. These policies decide the processor
allocation and the scheduler, in our case the CPUManager, enforces it. Depending on the
policy, there are several conditions, such as the arrival of a new application, that
determine when the processor allocation policy must be re-applied.

Performance-Driven Multiprogramming Level 157

Jobs info processor R YES
1 i " -
— | Distribute allocation Enforce Re-alloc?

1w

Figure 6.1: Typical processor scheduling policies behavior

Performance-Driven Multiprogramming Level: Processor Allocation

Figure 6.2 summarizes the Performance-Driven Multiprogramming Level (PDML)
methodology, with respect to the processor allocation policy. We propose to periodically
check if policy decisions are acceptable considering the performance achieved by running
applications. When applications inform about their performance (speedup, efficiency),
the scheduler evaluates if the performance of running jobs reaches the target efficiency.
As in the case of PDPA, the target efficiency is a parameter and can be as simple as a static
value, or more elaborated such as a function of the number of queued jobs or the memory
utilization. The value of the target efficiency defines the aggressiveness of the policy. The
higher the target efficiency, the higher the scalability of application must be to receive
processors.

If any of the running applications does not reach the target efficiency, the processor
allocation of these applications is reduced in step processors. Step is also a policy
parameter that can be a static value such as one or four processors per turn. In some cases,
it can be more efficient to reduce the allocation more aggressively to avoid excessive
reallocations. It can be also proportional to the difference between the achieved efficiency
and the target efficiency, reducing its value when the efficiency is closer to the target
efficiency.

uoITed0| e J0ssa204d :[aAeT BulwwesBoidinN UsALIg-sdueWIOMSd 1Z'9 aInbi

jobs info.
—_——

Original
Policy

Proc.
——= | Enforce

Alloc.

Reduce
Allocation

Efficiency>=

Performance
I ————— Evaluate
Calculated performance
Efficiency<

target efficiency

Stable

target efficienc

Re-alloc?

84T

9 Y31dVHD

Performance-Driven Multiprogramming Level 159

Once reduced the processor allocation of those applications that do not reach the target
efficiency, the processor scheduling policy is re-applied. The processors that are freed by
those applications that do not reach the target efficiency are reallocated among the rest of
applications. Once all the applications reach the target efficiency, the system becomes
stable.

Performance-Driven Multiprogramming Level: Multiprogramming level policy

The multiprogramming level policy is applied when the system is stable. As we have
commented, the system becomes stable when the efficiency of all the running applications
reaches the target efficiency.

PDML includes a default multiprogramming level policy that returns true if the system
is stable and there are free processors. What the processor scheduling policy must decide
is what it considers a stable allocation.

The implementation of the dynamic multiprogramming level uses the same interface
proposed in the previous Chapter, then we will only present the specific
Policy_New_appl() function (it returns true when a new application can be started).

In next Sections, we present the resulting policies after applying PDML to the
Equipartition and the Equal_efficiency: the Equip++ and the Equal_eff++.

160 CHAPTER 6

6.3 Scheduling policies

We have applied PDML to two previously proposed processor scheduling policies:
Equipartition and Equal_efficiency. In next sub-sections, we describe these two policies in
detail and the resulting policies: Equip++ and Equal_eff++.

6.3.1 Equipartition

Equipartition is a dynamic space-sharing policy proposed by McCann et al. in [65]. Figure
6.3 shows the algorithm that implements the Equipartition algorithm in the
CPUManager. The main goal of the Equipartition is to perform an equal allocation among
running applications.

input: job_table(jobs)
output: table with number of processors per job (alloc)
void Equipartition 0
{
cpus_available=MAX_CPUS
cpus_requested=Sum_individual_request()
Reset_cpus_allocated()/* Set to zero the alloc structure*/
current_job=0
while ((cpus_available>0) && (cpus_requested>0)){
(1) if (jobs[current_job].requested>alloc[current_job]){
alloc[current_job]++
cpus_available--
cpus_requested--
}
current_job=(current_job+1)%active_jobs
}
}

Figure 6.3: Equipartition algorithm

Figure 6.4 shows the complete scheme that defines the Equipartition behavior. Once
decided the processor allocation, it is maintained until a new application starts its
execution or a running application finishes its execution. In that case, the Equipartition
algorithm, is re-applied. The problem of Equipartition is that in most cases an equal
allocation is not a synonym of neither equal performance nor good performance. If we apply
PDML to the Equipartition we achieve the Equip++.

Performance-Driven Multiprogramming Level 161

Re-alloc?

jobs info. processor
—>

L ew application?
Equipartition allocation

nd application?

Enforce

1w

YES

Figure 6.4: Equipartition scheme

6.3.2 EqQuip++

Figure 6.5 shows the resulting Equip++ algorithm: the processor allocation policy and the
multiprogramming level policy.

Before allocating a new processor to an application, (1) in Figure 6.3, the Equip++ not
only checks if the number of requested processors is greater than the number of allocated
processors, but also checks if the efficiency with (alloc[curr_job]+1) has been measured. If
it has been measured, the algorithm checks if the achieved efficiency is greater than target
efficiency. In that case, the processor is allocated to the application, and the algorithm goes
on with the next processor and application. Otherwise, the application will not receive
more processors in the next quantum.

If the efficiency of (alloc[curr_job]+1) is not calculated, the processor is allocated to the
application, being optimistic, and the process continues allocating processors.

162 CHAPTER 6

input: job_table(jobs),target_efficiency
output: table with number of processors per job (alloc), STABLE
void Equip++_processor_allocation 0
{
cpus_available=MAX_CPUS
cpus_requested=Sum_individual_request()
Reset_cpus_allocated()
current_=0; STABLE=1
while ((cpus_available>0) && (cpus_requested>0)){
if (jobs[current_job].requested>alloc[current_job])}{
if (SpeedupCalculated(current_job,alloc[current_job]+1)){
next_eff=jobs[current_job].Speeduplalloc[current_job]+1]/
(alloc[current_job]+1)
if (next_eff>=target_efficiency)
one_more=1
else{
one_more=0; STABLE=0
cpus_requested-=(jobs[current_job].requested-alloc[current_job])
}
lelse one_more=1
if (one_more){ \
alloc[current_job]++ \
cpus_available--
cpus_requested--

F———— —- —- — —- - - =

} main modifications
}
current_job=(current_job+1)%active_jobs
}
}
int EQuip++_New_appl 0
{

if ((cpus_availables>0) && (Stable_allocation()) NewAppl=1
else NewAppl=0

return NewAppl

}

Figure 6.5: Equip++ algorithm

With this simple modification, we can ensure that the efficiency achieved by parallel
applications reaches a minimum efficiency. Note that this algorithm also allocates a
minimum of one processor to running applications because, by definition, efficiency(1) is
1, and the target efficiency will be always less than 1.0. In this Chapter we have used a
target efficiency of 0.7.

The behavior of Equip++ is different to the behavior of Equipartition just in those cases
where applications do not reach the target efficiency. In these cases, the Equip++ moves
processors from applications that do not scale well to applications that scale well while
they reach the target efficiency. Once distributed, if there are free processors, Equip++ will
increase the multiprogramming level.

Performance-Driven Multiprogramming Level 163

6.3.3 Equal_efficiency

Equal_efficiency is a processor scheduling policy proposed by Nguyen et al. in [76]. The
goal of the Equal_efficiency [76] is to maximize the system efficiency. The idea is to
allocate more processors to those applications that have better efficiency and less
processors to applications with worse efficiency.

The Equal_efficiency assumes that all the applications have the same efficiency, then it
allocates the same number of processors to all of them during a quantum (an equal
allocation). In this quantum, applications measure their efficiency and inform the
scheduler. Once informed about application’s efficiency, the scheduler moves processors
from applications with low efficiency to applications with high efficiency, and repeat the
process.

- (d+p)
_ (p+B)
Figure 6.6: Extrapolated efficiency formulation

Efficiency(p)

In order to avoid a great number of re-allocation, that will imply a great overhead, the
Equal_efficiency extrapolates the efficiency curve, see Figure 6.6, from the most recently
measured efficiency. This formulation was proposed by Dowdy in [25], and calculates the
complete efficiency curve based on one measurement. It assumes that all the applications
have a similar behavior but with different slope, see Figure 6.7.

1.0
2 1
& 08
= —e— Eff(4)=0.9
LS —=— Eff(4)=0.7
8 04 —— Eff(4)=0.5
5 —— Eff(4)=03
= 0.2+
L|>j i

0.0

1 4 8 12 16 20 24 28 32
Figure 6.7: Extrapolated efficiency curves

Figure 6.7 shows the resulting efficiency curves calculated with the formulation
presented in Figure 6.6 for different cases. We have calculated the curves assuming that
the efficiency with four processors is known and that itis 0.9, 0.7, 0.5, and 0.3 respectively.
The x axis shows processors, and the y axis shows the extrapolated efficiency values.

164 CHAPTER 6

Looking at the graph shown in Figure 6.7, it seems that this formulation works quite
well. However, we have found several problems when using it. The two main problems
related with its use is that it does not accept efficiency values greater or equal to 1.0, and
that it does not accept the efficiency of one processor as initial value to extrapolate the
curve. For instance, if we introduce as initial value efficiency(4)=1.0, the efficiency values
calculated are invalid floating points values (nan’s). If we introduce as initial value the
efficiency of one processor?, the extrapolated curve calculates all the values equal to 0.0.
Finally, if we introduce the initial value of (for instance) four processors set to 1.1, the
extrapolated efficiency with 32 processors is 16.5.

Once extrapolated, the Equal_efficiency works in the following way: it initially assigns
a single processor to each application, and then it assigns the remaining processors, one
by one, to the application with the currently highest (extrapolated) efficiency. The
Equal_efficiency has been implemented following the algorithm of Figure 6.8.

input: job_table(jobs),target_efficiency
output: table with number of processors per job (alloc)
void Equal_efficiency()
cpus_available=MAX_CPUS
cpus_requested=Sum_individual_request()
Allocate_one_processor_per_application()
cpus_availables=MAX_CPUS-active_jobs;
Extrapolate_efficiency_curves()
while ((cpus_available>0) && (cpus_requested>0) {
(1) current_job=Seach_appl_higher_eff() (*)
cpus_allocated[current_job]++
cpus_available--
cpus_requested--
}

}
(*) Search the appl. that have the higher efficiency with (cpus_allocated[appl]+1)

processors, among those applications that have
(cpus_allocated[appl]<cpus_requested[appl]).

Figure 6.8: Equal_efficiency algorithm

The Extrapolate_efficiency_curves() function has been implemented in such a way that
only not calculated values are extrapolated, and that we have treated as special cases the
commented previously. In those cases where the efficiency achieved by the application is
super-linear, we have substituted this value by 0.999.

Note that the Equal_efficiency initially allocates a minimum of one processor per
application. This is because it assumes that the efficiency of any application with one
processor is 1.0. This is a common approach in processor scheduling policies that

1. In this case, the efficiency value does not matter

Performance-Driven Multiprogramming Level 165

considers application performance since by definition the efficiency of a parallel
application with one processor is one, and this is always an acceptable value. Figure 6.9
shows the complete Equal_efficiency scheme.

Re-alloc?

jobs info. processor
—>

- New aPpIication?
Equal_efficiency allocation

Efficiency!=Extrapolated >
En pp'I:Tcat%)n?

Enforce

.

YES

Figure 6.9: Equal_efficiency scheme

The Equal_efficiency has the problem that it considers that an equal efficiency is equal
to a good efficiency, it does not impose a minimum efficiency. Applying PDML to the
Equal_efficiency it becomes the Equal_eff++, ensuring the efficient use of processors.

6.3.4 Equal_eff++

If all the running applications achieve an acceptable efficiency, the Equal_eff++ will have
the same behavior than the original policy. Otherwise, the algorithm will limit the
processor allocation to those applications that do not reach the target efficiency.

Figure 6.10 shows the Equal_eff++ algorithm. Before allocating a processor to an
application, (1) in Figure 6.8, the Equal_eff++ evaluates if the application efficiency
reaches the target efficiency. In that case, the processor is allocated and the process goes
on. Otherwise, no more processors will be allocated to any application because we know
that this application has the higher (extrapolated or calculated) efficiency.

166 CHAPTER 6

input: job_table(jobs),target_efficiency
output: table with number of processors per job (alloc), STABLE
void Equal_eff++_Processor_allocation 0
{
cpus_available=MAX_CPUS
cpus_requested=Sum_individual_request()] o
Allocate_one_processor_per_application() main modifications
cpus_availables=MAX_CPUS-num_appls;
Extrapolate_efficicency_curves() |
follow=1; STABLE=1 I
while ((cpus_available>0) && (cpus_requested>0) && (follow)){ !
current_job=Seach_appl_higher_eff() (*)
next_eff=jobs[current_job].Speedup[alloc[current_job]+1]/(alloc[current_job]+1)
if (next_eff>=target_efficiency)
one_more=1

elsef

follow=0

one_more=0; STABLE=0

i (one_more){
alloc[current_job]++
cpus_available--
cpus_requested--

}

}

}

int Equal_eff++_New_appl 0

{

if ((cpus_available>0) && (Stable_allocation()) NewAppl=1
else NewAppl=0

return NewAppl

}

(*) Search the job that have the higher efficiency with (alloc[appl]+1) processors, among those
applications that have (alloc[appl]<cpus_requested[appl]).

Figure 6.10:Equal_eff++ algorithm

The Equal_eff++_New_appl() function implements the multiprogramming level policy.
It returns true if a new application can be started. The Stable allocation() function
evaluates if all the running applications have informed about their efficiencies with the
current distribution and all of them achieve the target efficiency. If Stable_allocation()
returns true and there are free processors, a new application can be started.

Performance-Driven Multiprogramming Level 167

6.4 Taxonomy

The taxonomy presented in Chapter 2 has been modified by the proposals made in this
Thesis. Figure 6.11 shows the resulting taxonomy once included the new classification to
differentiate between policies that do not impose a target efficiency and our policies, that
impose a target efficiency.

Space-sharing
policies

/ Centralized

server

Self-allocation / \

No performance Performance
information information

= = - Transformation

Figure 6.11:Processor scheduling taxonomy

Modifications introduced in the Equipartition includes the use of real performance
information, the imposition of a target efficiency, and the coordination with the queueing
system. Modification in the Equal_efficiency includes the imposition of a target efficiency
and the coordination with the queueing system.

168 CHAPTER 6

6.5 Evaluation

In this Chapter, we compare results achieved by Equipartition and Equal_efficiency with
results achieved by Equip++ and Equal_eff++. As in the previous Chapter, we have used
the five workloads presented in Chapter 3. Table 6.1 resumes their main characteristics.

Table 6.1: Workload characteristics

swim, super-linear bt, scalable hydro2d, medium scalable apsi, not s¢alable
req. [Y% ofcpl req.| % of cpu req. % Of cpu req. Y oflcpu
wl 30 50% 30 50% - - - -
w2 30 50% 30 50% - - - -
w3 30 50% 2 50% - - - -
w4 30 25% 30 25% 30 25% 2 259
w5 30 100% - - - -

Table 6.2 resumes characteristics of the different configurations evaluated in this
Chapter.

Table 6.2: Configurations

Policy Queueing system Processor scheduler Run-time ljbrary Multiprog. Level
Equip Launcher CPUManager NthLib Fixed =4

Equip++ Launcher CPUManager NthLib Dynamic, default=4
Equal_eff Launcher CPUManager NthLib Fixed = 4

Equal_eff++ Launcher CPUManaget NthLib Dynamic, defaylt=4

6.5.1 Workload 1

Figure 6.12 shows results for workload 1. Comparing the Equipartition and Equip++, we
can observe in this workload that both processor scheduling policies achieve the same
performance. This is because the same reasons presented in previous Chapter: the load
generated, and the number of processors requested by swim’s and bt’s, generate that they
receive a number of processors that reaches the target efficiency with a simple
Equipartition. The conclusion that we can extract from this workload is that we can apply
PDML without introducing significant overhead if the workload is directly well
dimensioned. The overhead introduced by Equip++ respect Equipartition in this
workload has been around 5%.

Comparing Equal_efficiency, line with circle marks, with Equal_eff++, line with box
marks, we can see that Equal_eff++ has outperformed the Equal_efficiency in both the
response time of swim’s (44%) and the execution time of swim’s (201%). On the other
hand, the Equal_efficiency has outperformed the Equal_eff++ in the response time of bt’s
(22%) and the execution time of (bt’s).

Performance-Driven Multiprogramming Level 169

We have analyzed results for the two policies and we have found that the
Equal_efficiency has allocated (in average) 14 processors to swim’s and 22 processors to
bt’'s. The Equal_eff++ has allocated 26 processors to swim’s (in average), and 12
processors to bt’s. Comparing these results we could conclude that the problem is that
Equal_eff++ has decided a different allocation.

However, the real problem is intrinsic to the policy: it takes decisions only based on
extrapolated values and it does not evaluate that these values correspond with real
values. We have noted that, due to the dynamic multiprogramming level, the Equal_eff++
has more tendency than the Equal_efficiency to allocate a small number of processor to
new applications, at least initially. As we have commented previously, the function used
to extrapolate does not accept several values as input. However, there are other valid
values that generate not realistic efficiency curves. For instance, if the measured efficiency
of an application with 2 processors is 0.8, the function generates that the efficiency with 4
processors will be 0.57 (less than the target efficiency). However, if the input value is 0.9,
such as in the case of the swim’s (because they are super-linear in this range of
processors), the extrapolated efficiency with 32 processors is 0.76 (greater than the target
efficiency). This behavior, intrinsic to the original policy, implies that bt’'s are more
affected to swim’s. Since the Equal_efficiency does not limit the processor allocation
based on the performance, bt’s under it have more chances to receive processors than
under Equal_eff++.

300 - X—- Equ|p 400
- —a&— Equip++ —~
§ - o—- Equal_eff § 300
© 2004 —=— Equal_eff++ » Y
i= E
= = 200
3)
& 100 S
§ @ 100
nd [
0 0
60 80 100 60 80 100
wl-swim wl-bt
20 — 300
: __-e
- r - [
E 15 7 E
Q])
E] £ 2%
+— lO] ; -
c 4
s] /! S 100
=} g _ -
4 === X——— =}
L (L
0 B0 80 TOO 0
) 60 80 100
wl-swim wl-bt

~igure 6.12:Results from workload 1, M.L.=4

170 CHAPTER 6

6.5.2 Workload 2

Figure 6.13 shows results for workload 2. In this second workload, we can see how
Equip++ also achieves a comparable performance to Equipartition. In fact, workloads
under Equip++ have a similar behavior than under PDPA. Equip++ allocates more
processors to bt’s than to hydro2d’s. However, this difference is not quite enough to result
in a significant difference in the response time of bt’s and in the total execution time of the
workload (see Section 6.5.6). This is mainly because of the difference in the execution time
between bt’s and hydro2d’s.

The higher execution time shown by hydro2d’s is due to the combination of the
overhead introduced by the SelfAnalyzer in this application and the reduction in the
processor allocation decided by the Equip++. On the other hand, bt’s receive more
processors because they scale better than hydro2d’s, resulting in a better execution time.

Comparing results achieved by the two policies, we can say that Equip++ outperforms
the response time of bt’s respect to Equipartition in a 4%, and the execution time by 14%.
The behavior of hydro2d’s, as we have commented, is quite different. Equip++
slowsdown by 9% the response time with respect to the Equipartition, and increases by
25% in the execution time. We have to note that results shown in Figure 6.13 corresponds
with a multiprogramming level set to four processors.

These results are similar to those achieved in the previous Chapter by PDPA. As in the
previous Chapter, the multiprogramming level used generates that the processor
allocation decided by Equipartition is directly acceptable.

Performance-Driven Multiprogramming Level 171

300 3- x— - Equip 2507
- I—a— Equipt++ n]
g8 1 -e- Equa_ef _» g 20
g - ++ .
g 200 E+ Equal _eff .g 150 3
3 8 100
S 1004 o]]
g 1 & so0-
2 e]

0 0
60 80 100 60 80 100
w2-bt w2-hydro2d

150 — 100 4
g 8 80
@ 100 o Xe——— o x A
S] E—<‘>——j E 604 =——®-—-_
= — — i .— -_— —_ -
5 1 5 40 A 4 — A
S 50 5 j X ————- S - X
g] g 20-
Ll L]

0] 0
60 80 100 60 80 100
w2-bt w2-hydro2d

Figure 6.13:Results from workload 2, M.L.=4

Comparing results achieved by Equal_efficiency and Equal_eff++ in this workload, we
can see that Equal_eff++ slightly outperforms Equal_efficiency. Equal_eff++ outperforms
Equal_eff++ by 12% in the response time of bt’s and 24% in the response time of
hydro2d’s. The execution time achieved by the two policies has been quite similar.

Equal_eff++ has limited the processor allocation and has increased the
multiprogramming level. This workload is also affected by the effect commented in the
previous workload related to the extrapolation function, then applications have received
much less processors under Equal_eff++ than under Equal_efficiency. The mean
allocation under Equal_eff++ is 12 processors to bt’s and 8 processors to hydro2d’s, and
under Equal_efficiency is 30 processors to bt’s and 10 processors to hydro2d’s. However,
note that the execution time has not been very affected by this reduction in the processor
allocation.

The multiprogramming level has been increased up to 9 applications under
Equal_eff++. This value is greater than the one decided by Equip++ because applications
under Equal_eff++ receive less processors, and there are free processors more frequently.

172 CHAPTER 6

Multiprogramming level set to two applications

Figure 6.14 shows results for workload 2 when executing with a multiprogramming level
of two applications under Equipartition and Equip++. Comparing the response time of
individual applications we can see how Equip++ clearly outperforms Equipartittion. This
is because Equipartition is allocating to applications as many processors as they request.
However, if we compare the execution time of applications under the two policies we can
see that Equip++ does not introduce a significant overhead compared with Equipartition
and the best utilization in the processor allocations results in an reduction around the 50%
in the response time of applications.

400
~ 300 _
8 8 300
T 2
€ a
= 200 - =
3 -7 g 200 .
5 - 5 -7
g 100 o g 100 __a
« —e—equip L —e— equip
0 - @- equiptt : : — #— equipt+
[[
60 80 100 60 80 100
w2-bt w2-hydro2d

80 R T a 40
% 60 ¢ 30
g 404 % 20
5 1 5
8 20 g 10 |
| —e— equip w —e— equip

0 — - equipt+ 0 : — @ equipt+
60 ! 80 ! 100 60 80 100
w2-bt w2-hydro2d

Figure 6.14:Workload 2, M.L.=2 Equipartition vs. Equip++

Figure 6.15 shows with different colors the application processor allocation decided by
Equipartition and Equip++. Dark-blue colors means many processors and light-green
colors means few processors. We have set the same time scale in both figures to compare
them. We can see that Equipartition allocates more processors to applications than
Equip++ and that all the applications receive the same number of processors. On the other
hand, Equip++ allocates more processors to bt’s than to hydro2d’s because bt’s scale
better than hydro2d’s. Moreover, Equip++ decides to increment the M.L.. This behavior
improves both the response time of applications and the throughput of the system.

173

Performance-Driven Multiprogramming Level

Figure 6.15:Processor allocation decided by Equipartition and Equip++, (M.L

load=100%)

=2

in the

Figure 6.16 shows the multiprogramming level decided by Equip++. We can see how

Equip++ dynamically adjust the number of running applications to variations

workload.

174 CHAPTER 6

Multiprogramming level @ scpus._equips+.out_7711365.prv

Multiprogramming

Ll
TIME |

=l
REDR AW | I Comm _I Recy _I Send _I Flag _I Colar ﬁl il LI ﬂl ﬂl Ll

Figure 6.16: Dynamic multiprogramming level decided by Equip++, (M.L.=2, load=100%)

G261 74

Figure 6.17 shows the effect of the multiprogramming level under Equipartition and
under Equip++. In this case we have only executed the configuration with
multiprogramming level set to four and two applications. We can observe that rather than
Equipartition, Equip++ is not affected by the multiprogramming level decided by the
system administrator. Equip++ consumes around the 50% less cpu time than
Equipartition when the multiprogramming level is initially set to two applications. In the
case of the multiprogramming level set to four applications the cpu time consumed is the
same by the two policies.

1000 | === equip-ml=4
| == equip++-ml=4
800 - == equip-ml=2

{ = equip++-ml=2

Execution time(sec.)

60 80 100
Figure 6.17:Workload execution time, Equipartition vs. Equip++

As in the previous Chapter, results show that the best choice for those applications that
can dynamically adjust the multiprogramming level is to set the default
multiprogramming level to a small value and let the policy to modify it.

6.5.3 Workload 3

Figure 6.18 shows results for workload 3. Results achieved by workload 3 are quite
different from previous workloads. In this case, we can observe that Equip++ significantly
improves results achieved by Equipartition. Equip++ has improved the response time of

Performance-Driven Multiprogramming Level 175

Equipartition by 997% (in average) in the case of bt’s, and by 616% (in average) in the case
of apsi’s. With respect to the execution time, Equip++ has introduced a slowdown in
apsi’s around 2% and 15% in the case of bt’s.

1500 —
g g 1000 — e~
] @ T e _e-—-———m

o 1000 e o % ¢
g | P - T g

3] B 500

c c

6 5004 é_]
?g ly./' o .%.

0 0
60 80 100 60 80 100
300 w3-bt) w3-apsi

. —~ 100 — — e
g E 80 —

o 200 g :

g = 601 x— Equip

5 o 5 —a— Equip++

= ® — — _ _ - - 40—_ .

= -9 5 -o— - Equal_eff

3 100 — 5 ————8 8 J

§ _____ — Q59— Equal_eff++

N w]

0 0
60 80 100 60 80 100
w3-bt w3-aps

Figure 6.18:Results from workload 3

Workload 3 is the workload where the effect of using a dynamic multiprograming level
is more significant. In this case, the modification in the processor allocation is not very
high because bt’s are scalable and apsi’s request for only two processors.

Figure 6.19 shows the cpu utilization under Equipartition and Equip++. The dark blue
color means cpu in use, and the light blue color means cpu idle. We have defined the same
x scale to appreciate the difference in the execution time achieved by the two workloads.
The Equipartition uses the 23% of the machine during the 1800 sec. that the workload
takes. Moreover, bt’s under Equipartition receive 30 cpus in average, and consume 2480
seconds per application. On the other hand, Equip++ uses the 77% of the machine and the
workload consumes 596 seconds. Bt’s under Equip++ receive 22 cpus in average, and
consume 1786 seconds per application. We can see that processors are more efficiently
used with Equip++ than with Equipartition.

In this workload, the main advantage is introduced by the fact of using a
multiprogramming level policy that eliminates the idleness generated by the use of a
fixed multiprogramming level. The multiprogramming level value that can generate

176 CHAPTER 6

good results in some workloads, such as in the workload 1 and 2, can generate very bad
results in other workloads, such as in this case. PDML introduces robustness to the
Equipartition.

Figure 6.19:Cpu utilization in the case of Equipartition and Equip++, load=100%

In this workload, The Equal_eff++ has decided a mean allocation of 11 processors to
bt’'s and a multiprogramming level of up to 37 applications. This is because of the same
reason of previous workloads, the few number of processors allocated to bt’s. However,
even the Equal_eff++ has allocated less processors to bt’s than Equal_efficiency, the
execution time of bt’s under Equal_eff++ has been better. Equal_eff++ has outperformed
Equal_efficiency by 693% in the response time of bt’s and a 21% in the execution time of
bt’s. This is because when the bt is executed with a lot of processors is more affected by
the concurrent execution of other applications.

We have executed the same workload but without tuning the request of apsi’s, only
Equipartition and Equip++. Executing the not tuned version, we achieve the results
shown in Table 6.3. We can see that in this workload, where the request of applications
has not been tuned, Equip++ corrects the bad behavior shown by Equipartition.

Performance-Driven Multiprogramming Level 177

In the total execution time of the workload, Equip++ outperforms Equipartition by
461%. We have also measured the percentage of cpu received by applications under the
two policies. In the case of Equipartition, all the applications have received the same
amount of processors, around 15 processors. In the case of Equip++, bt’s have received
around 24 processors and apsi’s around 2 processors. Moreover, the maximum value of
the multiprogramming level has been set to 24 applications.

This demonstrates that modifications introduced by PDML are able to solve incorrect

allocations generated by policies that do not consider the application performance and to
dynamically adjust the multiprogramming level to improve the system performance.

Table 6.3: Results from w3, apsi’s requesting for 30 processors (not tuned) load=60%

Bt Apsi Workload
Resp. time Exec. timg Resp. time Exec. time Exec. tine
Equip 949 sec. 102 sec 890 se¢. 107 sec. 33 min. 13 sec.
Equip++ 83sec. 75sec. 107sec, 97seq. 7min. 12|sec.
Equip++ speedup 1143% 36% 831% 10% 461%

6.5.4 Workload 4

Figure 6.20 shows results for workload 4. If we compare the execution time of applications
executed under Equip++ and under Equipartition, we can see that in some cases they are
better under Equipartition, a 20% in the case of swim’s and hydro2d’s. However, if we
compare the response time of applications under the two policies, we can see the
significant benefits provided by PDML: a 2500% in the case of swim’s, a 600% in the case
of bt’s, a 800% in the case of hydro2d’s, and a 400% in the case of apsi’s. The number of
processors allocated by Equip++, in the case of load=60%, has been: 18 processors to
swim’s, 23 processors to bt’s, 12 processors to hydro2d’s, and 1 processor to apsi’s. The
multiprogramming level has been increased up to 12 jobs in the same configuration.

CHAPTER 6

178

o o
x e g8 X g
, I A
/ ! A
/ / — N
C 5
/ \
X) 8 I o« 2
\ \ \\
// \ \
\ \\
AN n
\ \ \\
X @ 3 (% 3
T T "~ T " T _ T T T
o o o o o o o o o o o
8 8 8 ¥ R 8 3 S &
—
(-095) aW} asU0dsaYy (-09s) 8wy ssuodsey
+
f:.”
+
o.m.,a_,a_
228w
o R S s |
O O OO
WM O O W
| |
X x +) .’_ g8 X e 8
AV I v
\\ \ \
" E
1y W N
1, \
“ 3 & 0« 2
\\ = \
\ A\ W
A\ \\
AN N\
A\ F A\
® X 3 ' 3% 3
e L L L i b T T T T
o o o o o o o o o o o
L0 (92) N — [0e] © N
(03s) awi ssuodsay (08s) awi asuodsoy

‘D
i
<
=
|
|
8 8 8 § ~©°
m ™ N —
(098) awi11 UOIIN2BXT
o
o
| —
& ﬂ
o) I
.
<
o 2
<
=
o
©
(@] o (@] o
™ N —

(038) awi11 UOIIN2BX]

100

80

60

w4-bt

|

————n

80 100

w4-apsi

60

w4-swim

I I
Q Q
0 (=] Yol
B b

(098) awi11 UOIINJBXT

150 —

I
(@]
(=] Yol
i

(*08s) awiIl uonNXeXx3

100

80
w4-hydro2d

Figure 6.20:Results from workload 4

60

Performance-Driven Multiprogramming Level 179

Comparing the Equal _eff++ with the Equal_efficiency, the Equal_eff++ has
significantly improved the response time of the Equal_efficiency. Reasons are the same
than in the case of the Equip++, the reduction in the processor allocation combined with
the multiprogramming level policy. Comparing the execution times of applications,
swim’s and hydro2d’s has been slightly increased. However, bt’s and apsi’s have
achieved similar execution times under Equal_eff++ than under Equal_efficiency.

We have executed the same workload without tuning the number of processors
requested by applications. Table 6.4 shows results achieved in this case. The last row,
speedup, shows the Equip++ speedup with respect to Equipartition. Analyzing the
execution time, Equipartition outperforms Equip++ in the execution time of hydro2d’s by
18%, but Equip++ outperforms Equipartition in the execution time of bt’s by 24% and
apsi’s by 7%.

Analyzing the response time achieved, the differences between Equipartition and
Equip++ are more significant. EQuip++ outperforms Equipartition by 66% in the case of
apsi’s, by 2830% in the case of swim’s. In the case of the total execution time of the
workload, Equip++ has improved the system performance by 283%. If we measure the
number of processors allocated by each policy, we found that Equip++ has allocated in
average 18 processors to swim’s, 24 processors to bt’s, 12 processors to hydro2d’s, and 1
processor to apsi’s. The maximum multiprogramming level has been 12 jobs.

As we can see, results achieved by Equip++ either with or without tuning the request
of applications are quite the same (6min 49sec. without tuning). This is a very interesting
conclusion because it shows that we can use Equip++ rather than Equipartition and reach
the same performance independently of the way users submit their applications, only
depending on their real characteristics and the load of the system.

Table 6.4: Results from workload 4, without tuning, load=60%

swim, req=30 bt, req=30 hydro2d, req=30 apsi, req=3(Total
exec.time¢ resp. time exec.time resp. fime execjtime resp. time exec.time regp.time exgpc.time

Equip 6sec. 368se¢. 101sec. 568sec. 32sec. 458sec. 1p4sec. f73sec. 20min. 6sec.
Equip++ 6sec. 13sec| 81sec. 92sec. 383ec. 57sec. 97sec. l116sec. 7min.6sec.

speedup 0% 2830% 24% 617% -18% 794% 7% 66% 283%

6.5.5 Workload 5

Figure 6.21 shows results of workload 5. In this workload, Equipartition improves the
execution time of Equip++ by 10% both in the response time and the execution time of
bt’s. In this workload, the number of processors allocated to bt’s by the Equip++ is the
same than the Equipartition. In addition, the multiprogramming level has been
maintained. However, the measurement process introduces some overhead in running
applications, resulting in this small slowdown.

180 CHAPTER 6

300 - x— - Equip 200
o —a— Equip++ &]
§ _ - "®- - Equal_eff g 150 - -
> 200 -~ —a— Equal_eff++ o] -——_
£ E]
= _ — = 100 A————h=———— &
g _ —— - — X 5 . “ — — —
o 100 — - 5]
& x g 50
x n]

0 0
60 80 100 60 80 100
w5-bt w5-bt

Figure 6.21:Results from workload 5

As in the previous workloads, Equal_eff++ has slightly improved the Equal_efficiency
in both the execution time and the response time. Equal_eff++ outperforms
Equal_efficiency in 4% in the execution time of applications and 8% in the response time.

The mean processor allocation decided by the Equal_eff++ has been 15 processors to
bt’s. Figure 6.22 shows the processor allocation decided by Equal_eff++ of some of the bt’s
under Equal_eff++ in the case of load=100%. We can see the re-allocations decided by
Equal_eff++ that are generated by the use of the extrapolation function. As we have
commented in previous workloads, the criteria used by the Equal_efficiency, and also by
the Equal_eff++, to allocate processors to applications with the higher efficiency, one by
one, can generate that small changes in the measurement of one application imply global
re-allocations.

Figure 6.22:Re-allocations decided by Equal_eff++ because of the extrapolation function

6.5.6 Workload execution times

Figure 6.23 shows the execution time of the five workloads evaluated in this Thesis. We
can see how in the case of Equip++, it reaches the same or better performance than with
the original Equipartition. It is important to note that it is normal that in those
configurations where the resulting allocation from Equipartition (due to the load, the

Performance-Driven Multiprogramming Level 181

request, and the policy) is directly efficient with an Equipartition, PDML has “nothing to
improve”. This is the case of workloads 1, 2, and 5 (with M.L=4). In those cases, Equip++
has consumed the same time than Equipartition. However, in workload 3 and 4, Equip++
significantly outperforms the original Equipartition policy.

71 =3 Equip 1500 7
_ 1000—_ = Equip++ ~
8 = Equal_eff g 1
< 800 2 1
o | == Equal_eff++ @ 1000
= 600 é]
5 l 5 |
% 4007 S 500
< 200 . §]
L] Ll i
0 0
60 80 100 60 80 100
wl w2
8 3 3 3 3] —
1 5 5 & 5 & ~]
—~ 2000 < I < I < 8 1500 - B
i inm nOm T O
© 1500 £ 1000-
£] =]
= 1000 2]
c — — 4
2] g 500
=] <]
8 500 []
x 1 i
L] 0
0 60 80 100
60 80 100 W 4
w3
g 1000 —
Py
E 1
S 500-
-05 4
8 4
"4 i
Lu -
0
60 80 100
wbh

Figure 6.23:Execution time of the complete workloads

Comparing the Equal_efficiency and the Equal_eff++ we can see that in most of the
workloads Equal_eff++ has improved the Equal_efficiency. Workload 1 has reached very
different results than the rest of workloads. This is because, in the case of load=100%, the
Equal_eff++ has allocated only one processor to one bt, then the execution time of the
workload has been significantly increased. We do not have modified the values generated

182 CHAPTER 6

by the extrapolation function in the case of initial value equal to one processor because
we want to remark the negative influence that this kind of formulations can generate if
they are not explicitly considered. Authors of the Equal_efficiency do not have the
problem to work with super-linear applications because, even they exist, their mechanism
does not consider them. Moreover, they do not comment any additional problem and
then do not provide any solution.

This effect is more usual under the Equal_eff++ than under the Equal_efficiency
because the multiprogramming level is higher under Equal_eff++ than under the
Equal_efficiency. Then, the probability to receive less processors is higher with
Equal_eff++.

Performance-Driven Multiprogramming Level 183

6.6 Summary

In this Chapter, we have presented Performance-Driven Multiprogramming Level
(PDML). PDML is a methodology that transforms processor scheduling policies to
include feedback based on performance information with the aim of avoiding the
inefficient use of processors. PDML modifies processor scheduling policies by
periodically evaluating the performance achieved by running applications. If
applications reach a given target efficiency, their allocation will be maintained, otherwise
it will be adjusted.

PDML also includes a multiprogramming level policy based on the system stability. If
all the applications are stable, that is, all of them reach the target efficiency, and there are
free processors, the multiprogramming level will be increased. PDML has been applied
to the Equipartition and the Equal_efficiency, resulting in the Equip++ and the
Equal_eff++.

Results show that the performance of a policy not only depends on the number of
processors allocated to each application, but also in the stability of the system, and in the
number of reallocations that applications suffer. In the case of Equip++, it reaches the
same performance that Equipartition in those workloads that directly perform well in
Equipartition, and outperforms Equipartition in those workloads in which Equipartition
does not decide an efficient processor allocation.

In the case of Equal_eff++, we can conclude that the main goal of PDML is achieved:
to ensure the efficient use of processors and to coordinate the different scheduling levels.
However, in some cases the behavior of the original policy generates that some
pathological situations are more frequent under Equal_eff++ than under Equal_efficiency,
resulting in some incorrect allocations. This situation mainly appears when the
performance of parallel applications are initially measured with a small number of
processors. In some of the workloads, the benefit is mainly generated by the stability that
PDML introduces in the Equal_efficiency. This stability does not have the same impact in
the case of the Equipartition because it is much more stable than the Equal_efficiency. In
some other workloads the benefit is also due to the multiprogramming level policy. We
could conclude that the use of formulations to extrapolate values is possible, but it must
be done with care and always being conscious that they are not real values.

A difference that we have found between PDPA and these policies is that PDPA has
more control about the behavior of the applications and that PDPA is more conscious that
the behavior of the application can change. PDPA gives more chances to running
applications to receive more processors. This behavior, in some workloads could
introduce some overhead, but in other cases could solve incorrect allocations due a
punctual bad measurement or medium scalability in a certain range of processors.

184 CHAPTER 6

	CHAPTER 6 Performance-Driven Multiprograming Level
	6.1 Introduction
	6.2 Performance-Driven Multiprogramming Level
	6.2.1 Processor scheduling policy scheme

	6.3 Scheduling policies
	6.3.1 Equipartition
	6.3.2 Equip++
	6.3.3 Equal_efficiency
	6.3.4 Equal_eff++

	6.4 Taxonomy
	6.5 Evaluation
	6.5.1 Workload 1
	6.5.2 Workload 2
	6.5.3 Workload 3
	6.5.4 Workload 4
	6.5.5 Workload 5
	6.5.6 Workload execution times

	6.6 Summary

