CHAPTER 7

Contributions to Gang Scheduling

In this Chapter, we present two techniques to improve Gang Scheduling
policies by adopting the ideas of this Thesis. The first one, Performance-
Driven Gang Scheduling, is the result of applying PDML to a traditional
gang scheduling policy. The second one is the Compress&Join algorithm, a
new re-packing algorithm that exploits the job malleability of OpenMP
applications and the use of real performance information.

Performance-Driven Gang Scheduling mainly attacks the problem of the
inefficient use of resources by parallel applications, that indirectly results in
an excessive number of time slots.

Compressé&Join is totally oriented to reduce the number of time slots by
reducing the number of processors used by application proportionally to
their performance.

These two techniques are orthogonal among them and can be used with any
previously proposed scheme.
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7.1 Introduction

Gang Scheduling [33][34] is a combination of time-sharing and space-sharing approaches.
Characteristics of Gang Scheduling are: (1) threads are grouped into gangs, (2) threads in
a gang are executed simultaneously, and (3) time sharing is used among gangs.

Gang scheduling appeared as the solution to the problems of job scheduling policies in
those systems where the processor scheduling was a simple dispatch. In this kind of
systems, the main problem seems to be the fragmentation, then reasons to use gang
scheduling were presented as responsiveness and efficient use of resources. However,
gang scheduling still has the problem of the fragmentation [115][33], and the excessive
number of time slots [115]. These two problems result in an inefficient use of resources
(processors and memory).

In this Chapter, we present two new approaches to improve gang scheduling by
exploiting the ideas presented in this Thesis: use of real performance information,
imposing a target efficiency, and coordination with the queueing system.

Our first contribution consists of applying PDML to the traditional gang scheduling
scheme. This scheme has a scheduling phase that is a simple dispatch. We propose to self-
evaluate the allocation decided by this dispatch, to impose a target efficiency, and to
coordinate with the queueing system. We have called the resulting policy Performance-
Driven Gang Scheduling, PDGS.

The main goal of PDGS is to ensure the efficient use of resource. However, one of the
main problems of gang scheduling, the excessive number of time slots, is still a problem.
Our second approach to improve gang scheduling consist of a new re-packing algorithm,
Compress&Join, that combines two characteristics of our execution environment (the job
malleability and the use of real performance information). The Compress&Join algorithm
adjusts the processor allocation of applications based on their performance to fit the same
number of applications in less time slots.

Results show that PDGS and the Compress&Join algorithm outperform the gang
scheduling approach used as baseline. We will see that the ideas proposed in this Thesis
of (1) measuring the performance of applications at run-time and (2) adjust the processor
allocation based on this information, are also valid for gang scheduling policies. As in
previous Chapters, results show that with our proposals, the execution time of
applications is slightly increased because applications usually receive less processors
than with other approaches. However, we will see that by adjusting the allocation, the
system is efficiently used and that benefits both the system and the individual
applications.

The next of this Chapter is organized as follows: Section 7.2 describes modifications
introduced in the CPUManager to implement gang scheduling policies and the particular
implementation we have done. Section 7.3 presents Performance-Driven Gang
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Scheduling. Section 7.4 presents the Compress&Join algorithm. Section 7.5 evaluates
PDGS and the Compress&Join algorithm compared with the gang scheduling baseline
implemented. Finally, Section 7.6 summarizes this Chapter.
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7.2 Gang Scheduling

In this Section, we present characteristics of gang scheduling policies and the particular
implementation that we have used as baseline in this Thesis.

Figure 7.1 shows the behavior of generic gang scheduling policies. The different gangs
are grouped in time slots following some re-packing algorithm. The total number of
processors requested by gangs in a time slot must be less or equal than the total number
of processors of the machine. Periodically, at each quantum expiration, the scheduler
selects a new time slot to execute all of its gangs. If the workload has changed during the
execution of the last quantum, the re-packing algorithm will be re-applied. In any case,
the new slot selected is scheduled.

NewAppl or EndAppl Re-pack

new slot

.| Change
time-slot

Time-sharing quantum expired Schedule | =
new slot |

Figure 7.1: Gang scheduling generic scheme

7.2.1 Gang scheduling implementation

There are many versions of gang scheduling. The simplest version of gang scheduling
always allocates a gang in the same set of processors. However, most flexible versions
have been proposed [81]. One of them is migratable [32] preemptions, where jobs that are
preempted in a set of processors can be resumed in a different set of processors. A more
complex version is malleable [32] gang scheduling, where jobs can be resumed in a set of
processors of different size, however, malleable preemptions has not been used till now
because it is difficult to implement. For this reason, usually the scheduling of the slot is a
simple dispatch, where applications receive as many processors as they request. In this
Thesis, we will show that malleable gang scheduling is feasible and that to exploit this
feature, combined with performance information, improves the system performance.
Characteristics of our execution environment (OpenMP applications and space-sharing
architecture) make malleable gang scheduling a valid approach.
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The main difference among gang scheduling policies is the job re-packing algorithm.
Feitelson argues in [33] that the best option is to apply a buddy algorithm or to use
migration to re-map the jobs (based on a first-fit algorithm). In [88] Setia shows that gang
scheduling policies that support migration offer significant performance gains over
policies that do not support it.

In the next Section, we present the characteristics of the gang scheduling
implementation that we have used as baseline. We have tried to select the best
configuration presented in the literature to compare with our proposals. For this reason,
we have implemented migratable preemptions [88], that is, threads in a gang can be
preempted in a set of processors and resumed in another set based on a first-fit algorithm.

Job organization: Ousterhout matrix

To implement Gang scheduling we have used the mechanism proposed by Ousterhout in
[78], the Ousterhout matrix. The Ousterhout matrix defines a two dimensional matrix
where one dimension represents processors and the other is time.

Figure 7.2 shows the main data used by the CPUManager to implement the gang
scheduling mechanism. The table is an example of a possible configuration of the
Ousterhout matrix in a system with eight processors. This table has as many rows as
processors and a maximum of columns (MAX_SLOTS). Each column is a time slot,
composed by a list of one or several gangs. In the example, slot 0 has one gang (Job_0),
slot 1 has one gang (Job_1), slot 2 has two gangs (Job_2,Job_3), and so on. Time-sharing is
performed between slots, and the sum of processors allocated to gangs in a slot must be
less or equal than the number of processors in the machine. In this particular example
there are five active_slots (with applications associated to them), and the current_slot is the
slot 3. Applications in the current slot are the only ones that are running, the rest of
applications are stopped.

/I Ousterhout matrix

MAX_SLOTS current_slot
- = - -
- active_slots >
PO J0 [ NULL] J2 J4 J5 [ NULL] NULL

Jo NULL | J2 Ja J5 | NULL| NULL
Jo NULL | J2 J4 J5 | NULL| NULL
Jo NULL [ J2 J4 J5 | NULL| NULL
Jo Ji J3 J4 J5 | NULL| NULL
JO J1l J3 J4 J5 | NULL| NULL
NULL J1 J3 NULL | NULL |NULL |NULL
P7 NULL J1 J3 NULL | NULL |NULL |NULL

Figure 7.2: CPUManager data structures
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In the CPUManager implementation we have introduced a small modification with
respect to the traditional Ousterhout matrix. In our execution environment, we have the
problem that applications start their execution requesting for one processor, and they
request for P processors when they open their first parallel region.

We have treated this case in a similar way to have two applications, a small sequential
application and a new parallel one. The problem is that it is possible that when the
application spawns parallelism, it does not fit in the slot. For this reason, we have defined
two limits in the Ousterhout matrix. The first one, set to 4 slots, determines the number of
slots to which the system will perform the time-sharing. The second one, set to 50 slots, is
similar to a buffer of applications that have been started but that do not fit in any of the
first four slots when they spawn parallelism. These applications are not scheduled until
any of the applications in the first slots finish their execution.

Figure 7.3 corresponds with the execution of the Ousterhout matrix presented in Figure
7.2. In the example, the matrix has five time slots, that means that each application will be
executed once every five slots. The system will execute the following sequence of
applications: (J0), (J1), (J2/J3), (J4), (35), (J0), (J1), (J2/J3), (J4), (J5), etc. The example
presented in Figure 7.3 does not include the job migration used in this Thesis because we
want to present the gang scheduling behavior in a progressive way. The execution
including job migration is shown in Figure 7.4, and the job migration algorithm is
presented in the next Section.

po [0 =323 [0 ~[J2]4] 35 iy
pr Fol =230 |23 55 idle processor
p2 [30[ ~[J2[d4 |50 * |J2] 34| 5
p3 [3of ~ 2[4 5|0 * | 2] 34] 5
P4 [ofJr[J3[ 3450 JL| 3] 34| 5
ps [0l 31| 33| 34| 5| Jo| J1| 33| 4] 5
pe [ >lot |33 ||~ |93 = | *
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Figure 7.3: Gang scheduling behavior

Job re-packing algorithm: first-fit + migrations

The job re-packing policy implemented is a first-fit algorithm [33], (combined with job
migrations) implemented in the following way:

= When a new job arrives to the system, it is placed in the first slot with a sufficient
number of idle processors.
= A job completion does not imply a job re-packing.

At each time-sharing quantum, the scheduler performs the following steps:

= |t stops the running gangs (this implies suspend all the threads)
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= |t advances the current_slot pointer and selects the next slot.

= |If there are free processors in current_slot, and some application has finished in
the last quantum, the job migration algorithm is applied. The job migration
mechanism tries to move jobs from low loaded slots to high loaded slots. The load
of the slot is computed as used processors divided by total number of processors.

At this point, we have selected a slot that can be dispatched by the scheduler. However,
to improve the system utilization, we have introduced a mechanism to fill the remaining
holes in the slot. To do that, we have introduced a phase of job replication. We generate a
temporal slot, initialized with applications in current_slot, and we look for applications
that can fit in the slot. The aim is to allow the execution of applications in more than one
slot, but maintaining it physically allocated to only one slot in the Oustherout matrix. The
Dispatch phase will receive this temporal slot to schedule.

po [J0f 31232 50 3) 2] 5 Y
PL [J0f 332 34| 5| 0fa3f 32|34 5 idle processor
P2 [Jofa3[32] 4| 5 o3[ 32|34 5
p3 [J0f 32| 32a| 50323 5
Pa [J0[ 0Tl 32| B 0| il 212 5
ps [0zl 3[4 5 0| xfazfa]| 5
p6 | * [azfaaf * |~ |~ [arfasl - |~

A FE R EREA FE R

Time >
Figure 7.4: Migratable gang scheduling

Figure 7.4 shows the behavior of execution of the Oustherout matrix shown in Figure
7.2 with migratable preemptions. We will allow the execution of J3 in two time slots, using
the processors more efficiently. Job 3 is only allocated to slot 1 but executed in slot 1 and
2.J3 is not migrated to J1 because the load of slot 1 (50%) is less than load of slot 2 (100%).
If the quantum of the time slot is well dimensioned, the system performance can be quite
acceptable.

NewAppl or EndAppl _ first-fit +
migratable preemptions

.| Change
time-slot
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jobs |«

Quantum expired Dispatch |——

Figure 7.5: Gang scheduling baseline scheme
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Figure 7.5 shows the gang scheduling scheme that represents our gang scheduling
baseline: first-fit algorithm+migratable preemptions as job re-packing algorithm, and a
simple dispatch as scheduling.
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7.3 Performance-Driven Gang Scheduling

In this Section, we present Performance-Driven Gang Scheduling policy, PDGS. PDGS is the
result of applying PDML to a traditional gang scheduling. Figure 7.6 shows the PDGS
scheme. In PDGS, scheduling decisions are self-evaluated and corrected based on the
performance achieved by running applications compared with the target efficiency. As in
dynamic space-sharing policies, PDML introduces a space-sharing quantum to
periodically evaluate the application performance. At each space-sharing quantum, the
scheduler is activated and it evaluates the achieved performance. The processor
allocation of those applications that do not reach the target efficiency is reduced as
presented in Chapter 6. In fact, we have applied a processor allocation policy equal to the
implemented in PDPA, a bit more complicated than to the one implemented in PDML.

PDGS also modifies the conditions to apply the re-packing algorithm. In this case, the
re-packing algorithm must be also applied when the allocation has been adjusted because
we consider changes in the processor allocation as a new application arrival.

new_appl Re-pack
e’&d. _apgl new slot
Change Adjuste
time-slot
Time-sharing ' d'_ ____________ 1
uantum | Adjust |
gxpired | if (eff<target efficiency |
| | vy
I : | |Replicate
Measure Space-sharing : <!
- Dispatch obs
4:— Performance quantum expired P : J

Schedule

Figure 7.6: Performance-Driven Gang Scheduling scheme

To simplify the implementation, the time-sharing quantum is a multiple of the space-
sharing quantum. In the current implementation we have set the space-sharing quantum
to 100 ms, as in the previous chapters, and the time-sharing quantum in 6 sec. The space-
sharing quantum set to 100 ms. does not imply a re-allocation at each 100 ms. It implies
that, at each 100 ms., the processor allocation policy will be applied and, if the
performance of running applications have been calculated, the algorithm will evaluate
their performance and will adjust their processor allocation to reach the target efficiency
(if needed).
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Figure 7.7 shows an example about the different behavior of a system with a traditional
gang scheduling and a system with PDGS. Initially, there are six jobs executing in a
machine with eight processors. The red (dark) color means that the application does not
reach the target efficiency and the yellow (light) color means that application reaches the
target efficiency.

Traditional Gang scheduling

1 1 1 1 time >

| | | | . i

I I I I Performance-Driven Gang Scheduling
J1[31[31[32[32[32[35[35]35
J1192(32(32[32[32]35[35(35

*1*|* 92)92/92)35|35|J5
**|* 92)92)92)35/I5|J5
J0]J0]J0}J31J31J31J0]J0|J0,
J0]J0]J01J31J31J31J0]J0|J0,
J41J4(34{33|133(J3(J4{J4|J4
J4134\34|33|33|33|34|34|94

1 1 1 1 : >
time

I Does not reach the target efficiency
|:|Reaches the target efficiency

Figure 7.7: PDGS behavior

In a traditional gang scheduling policy, the scheduler is not conscious of the
application performance. It executes each job with the number of processors requested.
The number of active slots is five because job 2 and job 3 are executed in the same time
slot. Then each job is executed one out of every five time slots. The utilization of the
system is the 75% and processors of JO, J1, J4, and J5 are not efficiently used. The
percentage of cpus that each job receives is: JO (15%), J1 (10%), J2 (10%), J3(10%), J4 (15%),
and J5(15%).
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In this example, each time-sharing quantum has been divided into three space-sharing
guanta and the step has been set to two processors. PDGS initially allocates to each job as
many processors as they request. At each space-sharing quantum, PDGS evaluates the
achieved performance. If it does not reach the target efficiency, the processor allocation
will be reduced in step processors. Once finished the time sharing quantum, the slot is
changed. The processor allocation of Job_2 and Job_3 is not changed because they reach
the target efficiency. The reduction in the processor allocation indirectly favours the
migration of jobs and the reduction in the number of time slots. In the example, when
Job_1 is started, the re-packing algorithm notes that Job_0 now only uses 2 processors,
and that it can be migrated to this slot. This process (evaluation/adjust/migration/re-
packing) is continuously repeated. In this example, the stable configuration has only three
time slots, the system utilization is 91%, and the utilization per job is: Job_0 (16%),
Job_1(8%), Job_2 (16%), Job_3(16%), Job_4 (16%), and Job_5(16%). Even receiving less
processors than in the traditional gang scheduling, most of the jobs receives a higher
percentage of cpu. The system utilization is better, and cpus are more efficiently used.
This is just an example to show the expected benefits due the PDGS. In the evaluation
Section we will really demonstrate that PDGS improves gang scheduling approaches that
do not consider the application performance.

7.3.1 Multiprogramming level policy

PDGS also includes a multiprogramming level policy. In this case, the policy adopted is
the same than in PDPA. Inside each space-sharing quantum, the scheduler evaluates if all
the applications assigned to this slot are stable and there are free processors in the current
slot. PDGS also evaluates if the number of active slots does not exceed a maximum. If
these two conditions are TRUE, a new application is allowed to join the slot. We have set
the maximum number of time slots to 4.

We have experimentally observed that it is important to limit to a small number of slots
the Ousterhout matrix because of two main reasons. The first one is that the amount of
resources used by running applications can saturate the system. We have executed some
experiments that show very bad results because the system does not have more processes
to execute applications, even when there are empty slots in the Ousterhout matrix. This
situation is not so strange because parallel libraries usually generate more processes than
they really use. This was our main motivation to modify the NthLib to include the
dynamic thread creation (to adjust the number of processes created to the number of
allocated processors). The second problem is related to the amount of memory used . We
have observed that an application executes faster when executed in standalone mode
than when executed inside a multiprogrammed workload because of the interferences
that the rest of applications generate, mainly in memory. In gang scheduling policies,
memory interferences are generated by running and active applications, which are
proportional to the number of time slots.
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7.4 Compress&Join: Malleability based on performance information

With PDGS, the number of time slots can be still a problem because the reduction in the
number of slots that PDGS generates depends on the performance of running
applications. Itis possible to get a resulting Ousterhout matrix equal to the original matrix
if the performance of running application reaches the target efficiency with the number of
requested processors. Moreover, PDGS does not modify the allocation to fit applications
in the resulting holes.

In an execution environment with malleable applications, the system fragmentation
has no sense because jobs can adapt their parallelism and fit holes in the Ousterhout
matrix. Based on this consideration, we propose a new re-packing algorithm that
“compresses” applications to fit them in a reduced number of slots. The “application
compression” is made based on the achieved performance and to “compress” an application
means to reduce its processor allocation.

Compress&Join re-generates the complete Ousterhout matrix. The goal of this
algorithm is to minimize the delay introduced by the alternation between slots by
reducing their number. We are assuming the benefit provided by reducing the number of
slots is greater than the slowdown produced by the reduction in the number of processors
allocated to each application.

For instance, consider a simple case when we have one time slot that runs a parallel
application with 64 processors. In that case this application does not suffer slowdown
because with one time slot there are not context switches. If a new application arrives
requesting 64 processors, a normal packing algorithm opens a new time slot and performs
time-sharing between the two applications. In that case each one receives 50% of the cpu
time and suffers and slowdown of 2. The Compress&Join algorithm will adjust the
processor allocation of each application to 32 processors, reducing the number of slots
from two to one. After applying the Compress&Join each application will receive half of
the number of processors that in a normal algorithm, but (1) they will suffer no context
switches, and (2) their efficiency will be also greater with 32 processors than with 64
processors. We assume that the benefit generated by reducing the number of time slots is
greater than the penalty by reducing the processor allocation. One important thing is that
all the applications collaborate to reduce the number of slots, not only those applications
that we try to fit in holes, the rest of applications in the slot are also compressed.

In a general case, this algorithm will significantly reduce the number of context
switches, and will eliminate most of the holes in the Ousterhout matrix because the
algorithm will try to compress applications in these holes.

Since theoretically a malleable application could be reduced until it only uses one
processor, we define a limit in the compression that an application can suffer. This limit is
based on the speedup that the application will reach compressed (this may be an
extrapolated value), compared with the speedup achieved with the current allocation
(which is a calculated value).
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Figure 7.8 shows the scheme that results of including the Compress&Join algorithm in
a gang scheduling policy. Note that Compress&Join substitutes the re-packing algorithm
but that it is totally compatible with the fact of applying a gang scheduling policy such as

PDGS.
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Figure 7.8: Compress&Join scheme
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Figure 7.9 shows the main loop that re-generates the Ousterhout matrix in the
Compress&Join algorithm. It starts by removing the complete matrix, then it tries to fit
each application in some of the active slots. The number of active slots is initially set to
zero since the matrix has been cleared. If the job can be compressed in the slot currently
processed, the algorithm will go on with the next job. Otherwise, the algorithm tries to
compress the job in the next active slot. Finally, if the job has not been compressed in any
active slot, the algorithm will activate a new slot and will fit the job in this new slot. Each
time the algorithm processes a new job it starts from the first slot. The idea is to first fit
holes, rather than to compress jobs.

}

void Compress_and_join ()

{

last_slot=0
RemoveTimeSlotTable()
for(job=0;job<total_jobs;job++){

for (slot=0;slot<last_slot;slot++){

if ( Compressed(job,slot )break;

}
if (slot==last_slot){

last_slot++

new_slot(appl,slot)

}

Figure 7.9: Main Compress&Join loop
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Figure 7.10 shows the algorithm that implements the compression of a particular job in
a time slot, the Compressed(...) function in Figure 7.9. This function receives as parameter
aslot identifier and a job identifier. A slot has a set of applications associated to it. This set
always will have at least one job because new slots are initialized through the new_slot(...)
function.

Slot={appl1,...,appin}
new_appl
YES

Fit without compression? ¥

l Slot'=Slot U new_appl
OapplAlloc” (appl)=Alloc(appl)
add_to_slot(new_appl,slot) TotalReq=Req(Slot)+Req(new_appl)
RETURN TRUE +

For needed=1,TotalReqg-P
Victim=SelectVictim(Slot’)
Alloc’(Victim)--

endfor

it Jappl Speedup Allog’ app)
l Speedup Allo¢ app) LU

¢No

YES

Update changes in slot
RETURN TRUE RETURN FALSE

Figure 7.10: Algorithm to compress one application in one time slot

The algorithm initially tries to directly fit the application in the slot. If it fits, the slot
will be updated with the new information and the Compressed function will return TRUE
indicating that the job has been “compressed” in the slot. If the application requests for
more processors than the currently available in the slot, the algorithm will try to fit it in
the slot by compressing all the applications in the slot. This compression is proportional
to the performance of applications in the slot. We compute a temporal slot, Slot’,
composed by the new application and all the applications in Slot, and a temporal
allocation, Alloc’, initialized to the current allocation of each application, Alloc. We also
compute the total number of processors requested by Slot”, which is the sum of the
processors requested by applications in Slot and the processors requested by new_appl.
This value gives us an idea about how many processors we need, which is the difference
between TotalReq and P. For instance, if we have eight processors in our system, six
processors allocated to the processed slot, and the new application requests for four
processors, we have a total request of ten processors, that means that we need to reclaim
two processors to jobs in Slot’ to have eight processors as maximum allocation. The
guestion now is to check whether we can reduce the allocation of some applications in the
slot, including the new one, to fit the new application in this slot.
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The criteria used is to select, one by one, the application in Slot’ with the small
efficiency, and to reduce its processor allocation in one processors. The idea is that we will
always increase the efficiency of an application if we reduce its allocation®. We repeat this
process as many times as processors needed. Since the complete efficiency could be not
known at this point, the algorithm extrapolates those values that have not been calculated
by SelfAnalyzer.

Once computed the new (even temporal) allocation, we evaluate if the reduction in the
speedups that this compression will generate is considered acceptable by the algorithm.
To decide if a compression is acceptable the Compress&Join defines a threshold. If the
ratio between the speedup achieved with the new allocation and the original allocation
achieved by all the applications in Slot’ is greater than this threshold, the compression will
be considered acceptable. Otherwise, it is discarded. If it has been acceptable, the Slot is
updated with the changes, the new application and the new allocation associated to
applications in the Slot, and the algorithm returns TRUE. If changes has been discarded,
the algorithm will return FALSE.

The threshold is a parameter of the algorithm. In our current implementation we have
set it to a reduction in 50% in speedup.

The last question is how do we know the speedup achieved with the new allocation. A
possible solution is to maintain the compressed allocation until the application informs
about its new speedup. However, this solution has the problem that we have to apply the
changes in any case, then measure, and then undo the compression if we found that it was
an incorrect decision. To do something more "intelligent”, we have used the formulation
proposed by Dowdy in [25] and used in the Equal_efficiency policy. We are conscious
that, in some cases, this function can not be representative of the real behavior of the
application, but we use it just as a hint to take an initial decision. In any case, once the real
performance information is available, we check our decisions. In addition, if the real
performance information is available, we use this information, not the extrapolated value.

1. Thisis not always true but it is a good approximation
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Figure 7.11: Ousterhout Matrix generated by the Compress&Join

Figure 7.11 shows the resulting matrix after applying the Compress&Join algorithm to
the matrix presented in Figure 7.2. We can see how after applying the Compress&Join
algorithm jobs have been proportionally reduced. In this example, system utilization goes
from 75% to 100%, and the cpu percentage that each application receives is shown in
Table 7.1. In this case, the different colors do not represent any efficiency values, they are
only to better differentiate the different jobs.

Table 7.1: Cpu percentage per job

JO J1 J2 J3 J4 J5
Gang 15% 10% 10% 10% 15% 15%
Compress&Join 20.8% 12.5% 16.6% 16.69 16.6% 16.6%0

Observe that, even receiving less processors, each job has increased its percentage of
cpu utilization. This is because the number of cpus that each application receives per unit
of time is greater than in the Gang version with a simple first-fit algorithm.

Rather than the PDGS that is applied to any running application, the Compress&Join
algorithm should be executed when the system conditions require it. These conditions
are:

= A new application arrives to the system

= An application finishes its execution

= New real performance information is available and there are significant
differences with some extrapolated values

= The allocation of some of the running applications has changed

The two firsts conditions are traditional conditions to re-apply any job re-packing
algorithm. The two last are specific of the Compress&Join algorithm.
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7.5 Evaluation

In this Section, we compare results achieved by the gang scheduling policy selected for
baseline, with results achieved by PDGS and gang scheduling plus the Compress&Join
algorithm. As in the previous Chapter, we have used the five workloads presented in
Chapter 3. Table 7.2 resumes their main characteristics.

Table 7.2: Workload characteristics

swim, super-linear  bt, scalable hydro2d, medium scalgble apsi, not s¢alable
req. Y% ofcpll req.| % of cpu req. %% of cpU req. Y oiflcpu
wl 30 50% 30 50% - - - -
w2 30 50% 30 50% - - - -
w3 30 50% 2 50% - - - -
w4 30 25% 30 25% 30 25% 2 259
w5 30 100% - - - -

Table 7.3 resumes characteristics of the different configurations evaluated in this

Chapter. The multiprogramming level is not fixed because gang scheduling always
includes a variable multiprogramming level. The Compress&Join configuration includes
the gang scheduling policy presented in this Chapter and used as baseline plus the
Compress&Join algorithm.

Table 7.3: Configurations

Policy Queueing system Processor scheduler Run-time ljbrary

Gang Launcher CPUManage NthLib

PDGS Launcher CPUManage NthLib
Compress&Joif Launcher CPUManager NthLib

7.5.1 Workload 1

Figure 7.12 shows results for workload 1. Workload 1 is a mix of a 50% of super-linear
applications (swim’s), and a 50% of highly scalable applications (bt’s). The number of
processors requested by these applications (30 each one of them), implies that the
workload does not generate fragmentation with Gang scheduling. The two graphs in the
top of the figure show the average response time of swim’s and bt’s. The two graphs in
the bottom of the figure shows the average execution time of swim’s and bt’s.

PDGS ensures the efficient use of resources by imposing a target efficiency. The
reduction in the resulting processor allocation, sometimes generates the indirect benefit
of a reduction in the number of slots in the Ousterhout matrix. However, this is not the
goal of PDGS. Taking into account that this workload does not generates fragmentation,
and applications have been previously tuned, we do not expect significant benefits such
as in the previous chapters. Results show that PDGS reaches the same performance than
gang in the response time of applications, and slightly worse than gang comparing the
execution time of applications. This is quite normal because if (1) the reduction in the
allocation does not imply a reduction in the number of slots, and (2) does not imply an
improvement in the execution time, the benefit will not be significant.
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The Compress&Join algorithm introduces benefits in the system performance.
Nevertheless, in this case, we have introduced some undesired fragmentation. After
compressing applications and joining slots, some applications have not been reduced and
have been executed using one slot for a single application, whereas in the baseline gang
scheduling there is no fragmentation in this workload.
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Figure 7.12:Results from workload 1

7.5.2 Workload 2

Figure 7.13 shows results for workload 2. Workload 2 is a mix of a 50% of highly scalable
applications (bt’s), and a 50% of applications with medium scalability (hydro2d’s). In this
workload, applications also request for 30 processors each one. As in the previous
workload, this workload does not generate fragmentation during its execution. The
reason is that all the applications request for 30 processors and the system has 60
processors, then any combination of applications fits in the system.
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Figure 7.13:Results from workload 2
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Comparing the results achieved by PDGS with gang scheduling, we can see that PDGS
outperforms gang. In the response time of applications, PDGS outperforms gang by 58%
(on average). Gang scheduling improves the execution time of bt’s by 10% (on average)
compared with PDGS. And PDGS improves the execution time of hydro2d’s by 38% (on

average) compared with gang scheduling.

In the case of the Compress&Join algorithm, we can observe that it has reduced the
response time of applications but at the expense of increasing the execution time by 50%
(on average). The response time of applications has been reduced also by 50% (on

average).

Table 7.4: PDGS vs. Compress&Join (load=100%)

PDGS Compress&Join
cpus time running cpus time running
bt's 24 91 17 160
hydro2d’s 10 59 10 81

Table 7.4 compares PDGS with Compress&Join. The cpus column shows the number of
cpus allocated on average by each policy to each application. The time running column
shows the time the application has been executing, that is, it is not considered the time
that the application has been active but not running. As we can see, PDGS allocates more
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processors to bt’s than gang+Compress&Join. This is because the goal of PDGS is to
ensure that applications reach the target efficiency, and the goal of the Compress&Join is
to reduce the number of slots, at the expense of reducing the allocation of running
applications.

An interesting effect is that PDGS and Compress&Join has allocated the same number
of cpus to hydro2d’s, but hydro2d’s under Compress&join has consumed a 37% more cpu
time that under PDGS. This is because the influence of the number of simultaneously
running applications. Figure 7.14 shows the multiprogramming level during the
execution of the workload under gang+Compress&Join (top of the figure), and under
PDGS (bottom of the figure). The x axis is time and the y axis is the number of applications
concurrently running at each moment. We have fit the x scale to the duration of the
workload but the y scale is the same in both graphs. We can appreciate how under PDGS
there are less applications than under gang+Compress&Join.
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Figure 7.14:Multiprogramming level with Compress&Join and PDGS (load=100%)

Effect of the fragmentation in the workload execution

Workloads used in this Thesis do not generate fragmentation because in most of them
applications request for 30 processors and the system uses 60 processors. To give an
insight about the potential of exploiting the job malleability, we have executed the
workload 2 in such a way that we have generated a bad case for a traditional gang
scheduling policy: we have set the request of bt’s and hydro2d’s to 32 processors. With
this modification, a traditional gang scheduling policy is not able to run more than one
job per time slot. This situation is possible because in a real system, applications are
submitted by different users, and they are not going to tune the request of their
applications to fit with the rest of jobs. However, it is obvious that just by reducing in two
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processors the allocation of each application we could run, at least, two jobs per time slot.
We have performed this experiment with gang scheduling and with
gang+Compress&Join.

Figure 7.15 shows the trace file visualization of the execution of the workloads with the
two configurations. Each line shows the cpu activity, each color represents a different
application. We have set the same x scale to compare them. The first trace file corresponds
with the execution with gang scheduling. Blue light color means that the corresponding
cpu is idle and each other color represents a different job. The system utilization under
gang is the 52% and under Gang+Compress&Join is the 91%.

© CPUS ® sepus, Fiaed, oot 393730, pry

Figure 7.15:Workload 2 (req.=32 proc., load=100%) Gang vs. Gang+Compress&Join

We have also measured the number of cpus allocated by the gang+Compress&Join
version. Bt’s have received 19 processors on average and hydro2d’s 11 processors. These
values are very similar to those achieved by the workload execution where applications
request for 30 processors. In the previous execution bt’s receive 17 processors and
hydro2d’s receive 10 processors, see Table 7.4. \We believe that the small difference is due
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to the different application speedup when executing in alone or with other applications
at the same time. As we have commented previously, the speedup of a parallel application
not only depend on the number of processors received to run.

Figure 7.16 shows the execution time of workload 2 when setting the request of
applications to 30 processors compared with the execution time when setting the request
of applications to 30 processors. In gang scheduling the execution time has been increased
by 33%. In the case of Compress&Join the execution time has been even reduced by 20%.
Comparing gang with gang+Compress&join, gang+Compress&Join has speedup the
execution of gang by 219%.

What is very important is that gang+Compress&Join is not significantly affected by the
user request. This is a common characteristic of all our proposals: they are very robust to
changes in the application request and to changes in the system parameters such as
multiprogramming level.
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Figure 7.16:Workload 2, (req.=30, load=100%). Gang vs. Gang+Compress&Join

With Compress&Join we can not only improve the system by reducing the number of
time slots, but also by reducing the fragmentation that can appear if applications are rigid
or the processor allocation policy is not dynamic.

7.5.3 Workload 3

Figure 7.17 shows results for workload 3. Workload 3 is composed by a mix of a 50% of
scalable applications (bt’s), and a 50% of not scalable applications (apsi’s).

Comparing PDGS with gang, we can see that PDGS reaches a similar performance to
gang in the response time of bt’s, but PDGS outperforms the response time of apsi’s. This
is because PDGS allocates less processors to bt’s, improving the response time of the rest
of applications because they can be started before. PDGS improves the response time of
bt’s by 10%, respect to gang, and the response time of apsi’s by 27%.
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Compress&Join has introduced an average slowdown of 1% in the response time of
bt’s, and has improved the response time of apsi’s by 22%. In this workload, the fact of
having applications requesting two processors generates that the multiprogramming

level is very high, in some moments of the workload execution up to 32 applications.
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Figure 7.17:Results from workload 3
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7.5.4 Workload 4

Figure 7.18 shows results for workload 4. Workload 4 is a mix of the four types of
applications: 25% of super-linear applications, 25% of scalable applications, 25% of
medium-scalable applications, and 25% of not scalable applications.

Results show that both approaches, PDGS and Compress&Join outperform the
baseline gang scheduling. When the load is set to 80%, the particular concurrency of
applications generates that results are slightly different than those achieved with the load
set to the 60% and 100%. However, on average, PDGS outperforms gang by 248% and the

Compress&Join algorithm outperforms gang by 188%.

Compress&Join, PDGS shows better results than gang+Compress&Join.

Comparing PDGS and
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Figure 7.18:Results from workload 4
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Table 7.5 shows the number of cpus allocated (on average) to each application per
policy, the running time (on average), and the cpu time consumed by these applications
when the load is set to the 100%. The cpu usage has been calculated as the number of cpus
multiplied by the running time. We have marked in bold font the best result per
application. We want to show that using a reduced number of processors, applications
can be executed using less total cpu time with a similar execution time. To show that we
have analyzed in detail results for workload 4 when the load is set to the 100%.

In the case of swim’s, the three policies allocate a high number of processors, and the
running times are similar. The policy that achieves the best cpu usage is the baseline, gang
scheduling. Swim’s under gang consume 11% less cpu time than under PDGS and 6% less
than Compress&Join. However, if we analyze the response time achieved by swim’s in
this workload, Figure 7.18, we can see that both PDGS and Compress&Join significantly
outperform gang. This is because PDGS and Compress&Join significantly improve the
cpu usage of the rest of applications, resulting in a benefit in the response time of swims.
We can see that in the other two policies PDGS and Compress&Join consume much less
cpu time than gang, 266% in the case of PDGS and 92% in the case of Compress&Join, and
that the running time is also better. We have not presented results for the apsi application
because it requests for two processors and then there are no chances to adjust its
allocation.

Table 7.5: Cpu usage and running time in workload 4, load=100%

SWIM HYDRO2D BT
cpus running time cpuusage cpus runningfime cpuusage | cpus running time cpulusage
CJOIN 28 5.65sec. 158.2dec. [12 61.3|sec. 735.psec| 18 114 se2052 set
PDGS 27 5.6sgc. 151.29ec. (11 48.22se630.4 se¢ 23 9lsec. 2093 sec.
GANG| 27 5.29 sef.142.8 se¢ 27 52.36 sec. 1413.7 sec. P6 104|sec. 2704 sec.

Figure 7.19 shows the multiprogramming level generated by each policy when the load
is set to the 100%. The x axis is the time and the y axis is the multiprogramming level. The
graph in the top shows the multiprogramming level generated by gang. Its maximum
value has been 20 applications. The second one shows the PDGS multiprogramming
level. Its maximum value has been 26 applications. And the last one shows the
Compress&Join multiprogramming level. Its maximum value has been 27 applications.

If we observe Table 7.5, the execution time achieved by applications under the different
approaches, we will see that PDGS achieves the best results, and that gang reaches better
execution times than gang+Compress&Join. As we have commented previously, this is
because applications receive less processors when using the Compress&Join algorithm.
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Figure 7.19: Multiprogramming level decided by Gang, PDGS, and Compress&Join, load=100%

7.5.5 Workload 5

Figure 7.20 shows the results for workload 5. Workload 5 is composed by only bt’s. As in
the previous workloads, the best results are achieved by PDGS. On average, gang+
Compress&Join outperforms gang by 32%, and PDGS outperforms gang by 19%.
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Figure 7.20:Results from workload 5

Table 7.6 shows the number of cpus allocated ( on average) by each policy to bt’s in the
workload 5. As in the previous workloads, PDGS allocates less processors than Gang to
applications but consumes less cpu time than Gang, and also consumes less cpu time than



Contributions to Gang Scheduling 211

Gang+Compress&Join.  Under gang+Compress&Join, applications receive less
processors than with the other approaches. If we compare the cpu usage we can see that
the best result is achieved by Compress&Join. However, PDGS consumes a 1% more cpu
time than Compress&Join, but PDGS outperforms Compress&Join by 11%.

Table 7.6: Cpu allocation and running time in workload 5, load=100%

BT
cpus (avg.) running time (seq.) Cpu usage
GANG 29 100.51 sec. 2900 sec.
PDGS 24 94.8 sec. 2256 sec.
Compress&Join 21 106 sec. 2226 sec

7.5.6 Workload execution times

Figure 7.21 shows the execution time of the five workloads evaluated in this Thesis. We
can see that both approaches, PDGS and the Compress&Join algorithm introduce benefits
in the execution time of the workload, which is the main goal of this Thesis. We have
shown that PDGS and Compress&Join improve the response time of applications, and
this has a direct effect in the total workload execution time.

Table 7.7 compares the execution time under gang compared with the execution time
under PDGS and Gang+Compress&Join. We show the ratio of the execution time with
Gang scheduling and the execution time under each policy. We show the percentage of
improvement of our approaches with respect to Gang scheduling. For instance, in the first
row, PDGS executes the workload 1 a 14% faster than Gang with load=60%, and a 5%
slower with load=80%.

Table 7.7: Percentage of improvement, PDGS and Compress&Join vs. Gang

60% 80% 100% AVG.
w1-Gang/PDGS 14% -5% -71% 0%
wl-Gang/Gang+CJoin 13% -3% -3% 2%
w2-Gang/PDGS 75% 36% 56% 55%
w2-Gang/Gang+CJoin 76% 25% 35% 45%
w3-Gang/PDGS 42% 17% 21% 26%
w3-Gang/Gang+CJoin 38% 7% 13% 19%
w4-Gang/PDGS 54% 38% 54% 48%
w4-Gang/Gang+CJoin 45% 21% 40% 35%
wh-Gang/PDGS 15% 0% 25% 13%
w5-Gang/Gang+CJoin 32% -1% 27% 19%
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As we can see, both approaches outperform the baseline Gang scheduling, showing the
benefit that results from measuring the performance of running applications and
adjusting the allocation based on this information in Gang scheduling policies. We have
marked in bold type the approach the reaches the best performance (on average) per
workload. In three of the five workloads the best performance is reached by PDGS and in
two of them by gang+Compress&Join.
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Figure 7.21:Execution time of the complete workloads
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7.6 Summary

In this Chapter, we have presented two approaches to improve gang scheduling. Our first
proposal consist of adjusting the allocation of running applications based on the
performance achieved by them. Applications initially receive the number of processors
requested and the system adjust their allocation until they achieve the target efficiency.
Once the target efficiency is achieved, the application becomes stable and the system re-
applies the re-packing algorithm with the new allocation. This approach is called
Performance-Driven Gang Scheduling, PDGS.

The second approach is a job re-packing algorithm, Compress&Join, totally oriented to
reduce the number of time-slots in the system. The Compress&Join algorithm reduces the
application processor allocation based on the performance achieved. The algorithm
imposes a maximum slowdown with respect to the speedup achieved with the requested
number of processors. With this reduction, the same set of application can be placed in a
reduced number of slots. The aim of this algorithm is both to reduce the fragmentation
and to reduce the number of time slots.

We have compared both approaches with a gang scheduling used as baseline that
includes a first-fit algorithm, job migration, and the execution of jobs in multiple slots.
Results show that both approaches introduce benefits in the execution of the workloads.
In some of the cases, the execution time of applications has been increased, but the
response time of applications has been improved, resulting in a better workload
execution time. We have also shown that the cpu usage is better under PDGS and
Compress&Join than under the baseline gang scheduling. This is because processors are
more efficiently used.

Finally, an observation based on our experience is that this kind of policies can solve
some of the problems presented by space-sharing policies that have a fixed
multiprogramming level, such as Equipartition, or Equal_efficiency. On the other hand,
results achieved in previous Chapters show that, comparing gang scheduling with
dynamic space-sharing policies that have a dynamic multiprogramming level such as
PDPA, or Equip++, dynamic space-sharing policies reach better results and are easier to
implement.

Our experience also demonstrates us that it is important to dimension the time-sharing
guantum to a relatively high value because, otherwise applications can significantly
degrade their performance. In the evaluation presented in this Chapter we have used a
guantum of six seconds, showing good results. However, in previous evaluations we
used a quantum of three seconds and most of them showed bad execution due to a system
performance degradation. Reasons were that the overhead generated by the context
switch of applications, mainly because of the loss of memory locality, was more
significant than the benefit introduced by having a single time slot to execute.
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