
CHAPTER 8 Conclusions and Future Work
ture
sure
the
tant
the
iliza-

s to
ns.
the

lan
pli-
tion
This Chapter presents the main conclusions of this Thesis and the fu
work. In this Thesis, we have demonstrated that, to dynamically mea
and take into account the performance of parallel applications to decide
processor allocation improves the system performance. Another impor
point is the coordination between levels. It is shown that coordinating
different scheduling levels, the system performance and the system ut
tion are also improved.

As a future work we plan to export the ideas presented in this Thesi
other execution environments, with different architectures and applicatio
We also plan to evaluate the utilization of these techniques to reduce
power consumption without loss of performance. And finally, we also p
to dynamically measure the utilization of resources that can limit the ap
cation scalability, such as the memory bandwidth, and use this informa
to modify the processor scheduling.
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8.1 Goals and contributions of this Thesis

This Thesis had the main goal of improving the execution of workloads of parallel
applications in shared-memory multiprocessor architectures. In particular, our research
has been focused in the improvement of the processor allocation decisions based on these
points:

• The measurement of the application performance at run-time.
• The coordination among the different scheduling levels.
• The imposition of a target efficiency to ensure the efficient use of processors.
• The use of real performance information to decide or to adjust the processor
allocation.

To demonstrate the validity of our ideas, we have adopted a practical approach
consisting of implementing a complete research execution environment where we have
included and evaluated our contributions compared with some previous proposals to
evaluate the effectiveness of our work.

We have proposed several scheduling mechanisms and policies that have been
implemented and evaluated in this Thesis. The particular contributions and conclusions
extracted from their evaluation are presented in the next Section.

8.2 Conclusions of this Thesis

8.2.1 Dynamic performance measurement

The first objective of this Thesis was to demonstrate that the performance of parallel
applications could be measured at run-time.

We started from the idea that the system can not rely on users requirements. Based on
this premise, we propose that the system considers user requirements as hints, but that it
dynamically evaluates the real performance that applications are reaching.

We have proposed a run-time library, SelfAnalyzer, that measures the speedup of
OpenMP applications at run-time. SelfAnalyzer exploits the iterative behavior of most of
the scientific applications to predict the application behavior based on the speedup
achieved by few iterations. We assume that the behavior of several iterations can be
extrapolated to the behavior of the complete application. The speedup is measured as the
ratio between the average execution time of several iterations with a baseline number of
processors and the average execution time with the available number of processors.

Results show that the real application speedup actually has the same behavior than the
iteration speedup. We have demonstrated that we can measure the speedup of OpenMP
applications and that the overhead introduced is acceptable. We have shown that using a
baseline of four processors we can measure the application speedup with a small
overhead. Of course, both the overhead introduced and the speedup measurement
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precision depends on the application characteristics. However, in all the evaluated
policies the shape of the speedup curve was correctly detected and the overhead was
acceptable.

8.2.2 Coordination between levels

In the initial planning of this Thesis, we planned to demonstrate the convenience of
coordinating the different scheduling levels. The aim was to avoid such situations where
decisions taken by a scheduling level negativelly affect the system performance because
they are not compatible with decisions taken at the other levels.

In this Thesis we propose that the coordination must be extended to all the scheduling
levels to achieve a good overall performance. Coordination means exchanging
information between different scheduling levels in such a way that this information will
be used to take future scheduling decisions. We have shown with the different policies
and methodologies proposed that it is relatively easy to coordinate the different levels.

We propose to include a multiprogramming level policy in the processor scheduler to
decide the number of applications that can be concurrently running in the system. With
this simple modification, the number of applications can be adapted to the workload
characteristics.

The coordination between levels has also shown us that some techniques that in the
literature were accepted as quite effective, are not necessary if the scheduling levels are
coordinated. This is the case of the two_minute_warning technique.

Moreover, once finished this work, we believe that the coordination should be
extended to all the parts of the system. Our experience has shown us that one of the
problems related to the coordination is the amount of information that the different levels
must manage.

8.2.3 Imposing a target efficiency to ensure the efficient use of resources

In this Thesis, we wanted to demonstrate the benefits in both the application and the
system performance of considering the real performance of parallel applications could
introduce.

With this aim we have designed and implemented a processor allocation policy that
establishes its processor allocation decisions on the speedup achieved by applications,
Performance-Driven Processor Allocation policy.

Results show us that PDPA is able to dynamically detect the optimal processor
allocation of running applications based on a main criterion: to allocate the maximum
number of processors that reaches a given target efficiency. PDPA maintains the processor
allocation of those applications that reach an acceptable performance with the number of
processors requested, and adjusts the allocation of those applications that do not reach it.
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In the worst cases, PDPA introduces a maximum slowdown around 10% in the
execution time of some workload respect to best execution time achieved by the rest of
policies, with an Equipartition. On the other hand, PDPA speedups the rest of evaluated
policies in up to a 400% in extreme cases.

The main conclusion that we extract from PDPA is that the performance of parallel
applications can be and must be considered to decide the processor allocation. Results
also have shown that PDPA is a robust policy that is neither affected by incorrect user
requests nor by incorrect system decisions (multiprogramming level in this case).

The point that has been shown as main in the consideration of performance
information for processor scheduling is the imposition of a target efficiency. The use if this
target efficiency ensures the efficient use of resources.

8.2.4 Using performance information in multiprocessor scheduling

We have shown that the consideration of the speedup is not exclusive from other criteria.
Based on that, we have proposed a methodology that modifies processor scheduling
policies to include feedback based on performance information. This methodology,
Performance-Driven Multiprogramming Level, proposes to use the performance
information to adjust the processor allocation decisions taken by the original policy to
which PDML is applied. PDML also proposes to define what the system considers a stable
allocation, and in this situation modify the multiprogramming level. PDML has been
applied to the Equipartition and the Equal_efficiency resulting in the Equip++ and the
Equal_eff++. Results show that with simple modifications, the feedback based on
performance information, and the multiprogramming level policy, can be included in the
processor scheduling policy. In the evaluation we have shown that Equip++ and
Equal_eff++ improve the original policies in those cases where they fail in their processor
allocation decisions or where the workload execution was affected by the fixed
multiprogramming level used. Results also shown that the overhead introduced in those
cases where the original policies perform well is not significant (around the 5%).

We have also observed that it is important to take into account the processor
scheduling characteristics to decide parameters such as the default multiprogramming
level. For instance, if the policy considers the default multiprogramming level as a
minimum, it is better for the system performance to set it to a small value and let the
policy to increase it when necessary.

We have also evaluated the ideas of this Thesis in a gang scheduling execution
environment. We have tried to improve this kind of policies in two ways: by applying
PDML to a baseline gang scheduling policy, developping the Performance-Driven Gang
Scheduling, and by a new re-packing algorithm that reduces the number of slots based on
the performance achieved by running applications. Results show that both approaches
can be included in gang scheduling policies and that improve the execution time of
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workloads. We have observed that in this kind of policies a critical point can be the time-
sharing quantum used because it can result in a degradation on both the applications and
system performance.

Another important point that we have observed in the evaluation of gang scheduling
contributions is that, under this kind of policies, the pressure that applications introduce
in the system resources is greater than under space-sharing policies because of the
resource sharing. In this case, the number of applications concurrently loaded (not
necessarily running) in the system is very high. We have observed that even receiving the
same number of processors, applications do not perform equal if they are running
concurrently with a small number of applications (2..6) than when they are running with
a high number of applications (20..25).

Related with the use of real performance information, we want to remark that the use
of extrapolated values must be done “with care” because some times this formulation can
result in incorrect values. We believe that these values must be always considered as
temporal and verified with real values. Another important point is the stability of the
processor scheduling policy. We have detected that one of the main problems of the
Equal_efficiency is that small variations in the performance of one application can result
in a global processor distribution. If this situation is very frequent, to completely re-
distribute processors is a bad approach for performance.

8.2.5 General remarks

The development of this Thesis has given us a valuable experience in the execution of
parallel applications in multiprocessor multiprogrammed execution environments. This
experience goes from the parallelization of applications, to the operating system design.
We want to include some remarks based on this experience.

The first point that we want to remark is the convenience of using a programming
model that provides malleability to applications. Malleability is a characteristic that gives
flexibility to the system decisions, and to the applications. To the system because its
decisions can be dynamically modified and not determined by the user requirements.
And to the applications because the number of chances to be executed and to receive
processors increases if the allocation of applications is not limited to a fixed number of
processors. Malleability is basic to improve the system performance and we have shown
that it can be exploited with any kind of policy: space-sharing and gang scheduling. All
the applications used in this Thesis use the OpenMP programming model that gives
applications this characteristic.

The second and third points are claims for Operating System vendors and compiler
developers. We believe that the O.S. should provide mechanisms to have an easy and
efficient access to the hardware counters that modern architectures provide. By the
moment, information provided by the hardware is very limited, in one hand, and on the
other hand, the cost to access to this information is very high (it is through operating
system calls). If this information was easily accessible, researchers will have a way to
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develop and evaluate their ideas based on this information. The third point is a claim for
compilers developers. It will be very interesting that the compiler provides the run-time
with information about the application structure such as the iterative structure and the
total number of iterations the application executes. We have found that there are several
information related with the sequential structure of the application that is very interesting
for the run-time parallel libraries.

Finally, we also want to remark the convenience to define what is considered a
workload of scientific application, with a well defined workload trace file. It is also
important to provide the applications binary code. The problem is that the available
workload trace files represent several months of the load of a real system, and are only
valid to use in simulations. If we want to be able to reproduce the same load, we need
reduced workload representative from real ones and also to have the application binary
codes.

8.3 Future work

Once finished this Thesis, there are several issues that remain opened related with the use
of performance information in multiprocessor scheduling, and new points that have
appeared as a result of the experience achieved doing this Thesis.

New architectures and programming models
This Thesis has been based on shared-memory multiprocessor architectures and OpenMP
applications. However, we believe that the ideas defended in this Thesis can be
extrapolated to other environments and to other programming models.

We have planned to analyze the main differences between shared-memory
architectures and clusters of SMP’s when executing OpenMP applications. As we
commented in Chapter 2, clusters of SMP’s have the characteristic that they have
hardware shared-memory inside each SMP node, and distributed memory between
nodes. However, there are some proposals to implement Software Distributed Shared-
Memory in clusters of SMP’s.

We want to analyze the impact of modifying the allocation of OpenMP applications in
this kind of architecture. Our policies and mechanisms already contemplate a step as
parameter. This parameter must be extensively tuned in these architectures based on the
size of the SMP node. We also have to evaluate the cost to expand the parallelism from
one node to more than one node. Probably, the benefit provided by the fact of increasing
the parallelism in this way will be lower than in a CC-NUMA architecture, and we have
to find solutions to that.

Another point is to complete the SelfAnalyzer in an environment such as a cluster
where the cost of modifying the allocation of an application could be significant. An
indirect approach could consist of providing the system with a different measure rather
than the speedup, and consider the currently number of available processors as the
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baseline. A possible approach could be to measure the idleness of the application as a first
hint for the system, and only measure the relationship between two execution time
measures if the system decides to change the processor allocation of the application.

Computational power balancing based on run-time measurements
We have also planned to use some run-time measured information rather than the
speedup to improve the load balancing in non-OpenMP applications. In particular, we
want to evaluate the effectiveness of this approach in MPI+OpenMP applications, and a
possible useful information coud be the amount of load unbalance between MPI
processes.

The number of MPI processes is fixed because this programming model does not
consider to dynamically modify the application parallelism. However, if MPI is combined
with OpenMP, we can exploit the malleability of OpenMP applications to balance the
computational power of each MPI process.

Resource usage distribution
One of the points that we also plan to evaluate is the dynamic measurement of other types
of resources such as the memory bandwidth. If two applications that consume a lot of
memory bandwidth are concurrently executed, both applications will result negativelly
affected. If the memory bandwidth consumed is constant, maybe the best choice will be
execute them in serial. However, if these applications have bursts of high memory
bandwidth combined with bursts of low memory bandwidth, a good approach will be to
phase out their execution and distribute them in the time the moments where each
application accesses to memory.

We plan to dynamically measure the memory bandwidth consumed, and to propose
an automatic mechanism to detect the behavior of the application respect to the usage of
this resource. The goal is to modify the processor scheduling policy to take into account
this information and to solve this problem avoiding the system saturation.

Reduction in the power consumption by limiting the use of processors
Proposals made in this Thesis have been oriented to improve the system utilization. The
idea was to ensure the efficient use of resources. Using PDPA or applying PDML we can
ensure that applications are efficiently using their processors. If there are queued
applications, free processors are filled with new applications.

We have planned to evaluate the impact of our proposals in the power consumed by
the architecture. The idea is to stop those processors that are not used or even to stop not
efficiently used processors. We want to evaluate the impact of modifying the target
efficiency in the power consumed by the architecture and the performance achieved by
the system and the applications.
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