
CHAPTER 8 Conclusions and Future Work
ture
sure
the
tant
the
iliza-

s to
ns.
the

lan
pli-
tion
This Chapter presents the main conclusions of this Thesis and the fu
work. In this Thesis, we have demonstrated that, to dynamically mea
and take into account the performance of parallel applications to decide
processor allocation improves the system performance. Another impor
point is the coordination between levels. It is shown that coordinating
different scheduling levels, the system performance and the system ut
tion are also improved.

As a future work we plan to export the ideas presented in this Thesi
other execution environments, with different architectures and applicatio
We also plan to evaluate the utilization of these techniques to reduce
power consumption without loss of performance. And finally, we also p
to dynamically measure the utilization of resources that can limit the ap
cation scalability, such as the memory bandwidth, and use this informa
to modify the processor scheduling.
215

216 CHAPTER 8
8.1 Goals and contributions of this Thesis

This Thesis had the main goal of improving the execution of workloads of parallel
applications in shared-memory multiprocessor architectures. In particular, our research
has been focused in the improvement of the processor allocation decisions based on these
points:

• The measurement of the application performance at run-time.
• The coordination among the different scheduling levels.
• The imposition of a target efficiency to ensure the efficient use of processors.
• The use of real performance information to decide or to adjust the processor
allocation.

To demonstrate the validity of our ideas, we have adopted a practical approach
consisting of implementing a complete research execution environment where we have
included and evaluated our contributions compared with some previous proposals to
evaluate the effectiveness of our work.

We have proposed several scheduling mechanisms and policies that have been
implemented and evaluated in this Thesis. The particular contributions and conclusions
extracted from their evaluation are presented in the next Section.

8.2 Conclusions of this Thesis

8.2.1 Dynamic performance measurement

The first objective of this Thesis was to demonstrate that the performance of parallel
applications could be measured at run-time.

We started from the idea that the system can not rely on users requirements. Based on
this premise, we propose that the system considers user requirements as hints, but that it
dynamically evaluates the real performance that applications are reaching.

We have proposed a run-time library, SelfAnalyzer, that measures the speedup of
OpenMP applications at run-time. SelfAnalyzer exploits the iterative behavior of most of
the scientific applications to predict the application behavior based on the speedup
achieved by few iterations. We assume that the behavior of several iterations can be
extrapolated to the behavior of the complete application. The speedup is measured as the
ratio between the average execution time of several iterations with a baseline number of
processors and the average execution time with the available number of processors.

Results show that the real application speedup actually has the same behavior than the
iteration speedup. We have demonstrated that we can measure the speedup of OpenMP
applications and that the overhead introduced is acceptable. We have shown that using a
baseline of four processors we can measure the application speedup with a small
overhead. Of course, both the overhead introduced and the speedup measurement

Conclusions and Future work 217
precision depends on the application characteristics. However, in all the evaluated
policies the shape of the speedup curve was correctly detected and the overhead was
acceptable.

8.2.2 Coordination between levels

In the initial planning of this Thesis, we planned to demonstrate the convenience of
coordinating the different scheduling levels. The aim was to avoid such situations where
decisions taken by a scheduling level negativelly affect the system performance because
they are not compatible with decisions taken at the other levels.

In this Thesis we propose that the coordination must be extended to all the scheduling
levels to achieve a good overall performance. Coordination means exchanging
information between different scheduling levels in such a way that this information will
be used to take future scheduling decisions. We have shown with the different policies
and methodologies proposed that it is relatively easy to coordinate the different levels.

We propose to include a multiprogramming level policy in the processor scheduler to
decide the number of applications that can be concurrently running in the system. With
this simple modification, the number of applications can be adapted to the workload
characteristics.

The coordination between levels has also shown us that some techniques that in the
literature were accepted as quite effective, are not necessary if the scheduling levels are
coordinated. This is the case of the two_minute_warning technique.

Moreover, once finished this work, we believe that the coordination should be
extended to all the parts of the system. Our experience has shown us that one of the
problems related to the coordination is the amount of information that the different levels
must manage.

8.2.3 Imposing a target efficiency to ensure the efficient use of resources

In this Thesis, we wanted to demonstrate the benefits in both the application and the
system performance of considering the real performance of parallel applications could
introduce.

With this aim we have designed and implemented a processor allocation policy that
establishes its processor allocation decisions on the speedup achieved by applications,
Performance-Driven Processor Allocation policy.

Results show us that PDPA is able to dynamically detect the optimal processor
allocation of running applications based on a main criterion: to allocate the maximum
number of processors that reaches a given target efficiency. PDPA maintains the processor
allocation of those applications that reach an acceptable performance with the number of
processors requested, and adjusts the allocation of those applications that do not reach it.

218 CHAPTER 8
In the worst cases, PDPA introduces a maximum slowdown around 10% in the
execution time of some workload respect to best execution time achieved by the rest of
policies, with an Equipartition. On the other hand, PDPA speedups the rest of evaluated
policies in up to a 400% in extreme cases.

The main conclusion that we extract from PDPA is that the performance of parallel
applications can be and must be considered to decide the processor allocation. Results
also have shown that PDPA is a robust policy that is neither affected by incorrect user
requests nor by incorrect system decisions (multiprogramming level in this case).

The point that has been shown as main in the consideration of performance
information for processor scheduling is the imposition of a target efficiency. The use if this
target efficiency ensures the efficient use of resources.

8.2.4 Using performance information in multiprocessor scheduling

We have shown that the consideration of the speedup is not exclusive from other criteria.
Based on that, we have proposed a methodology that modifies processor scheduling
policies to include feedback based on performance information. This methodology,
Performance-Driven Multiprogramming Level, proposes to use the performance
information to adjust the processor allocation decisions taken by the original policy to
which PDML is applied. PDML also proposes to define what the system considers a stable
allocation, and in this situation modify the multiprogramming level. PDML has been
applied to the Equipartition and the Equal_efficiency resulting in the Equip++ and the
Equal_eff++. Results show that with simple modifications, the feedback based on
performance information, and the multiprogramming level policy, can be included in the
processor scheduling policy. In the evaluation we have shown that Equip++ and
Equal_eff++ improve the original policies in those cases where they fail in their processor
allocation decisions or where the workload execution was affected by the fixed
multiprogramming level used. Results also shown that the overhead introduced in those
cases where the original policies perform well is not significant (around the 5%).

We have also observed that it is important to take into account the processor
scheduling characteristics to decide parameters such as the default multiprogramming
level. For instance, if the policy considers the default multiprogramming level as a
minimum, it is better for the system performance to set it to a small value and let the
policy to increase it when necessary.

We have also evaluated the ideas of this Thesis in a gang scheduling execution
environment. We have tried to improve this kind of policies in two ways: by applying
PDML to a baseline gang scheduling policy, developping the Performance-Driven Gang
Scheduling, and by a new re-packing algorithm that reduces the number of slots based on
the performance achieved by running applications. Results show that both approaches
can be included in gang scheduling policies and that improve the execution time of

Conclusions and Future work 219
workloads. We have observed that in this kind of policies a critical point can be the time-
sharing quantum used because it can result in a degradation on both the applications and
system performance.

Another important point that we have observed in the evaluation of gang scheduling
contributions is that, under this kind of policies, the pressure that applications introduce
in the system resources is greater than under space-sharing policies because of the
resource sharing. In this case, the number of applications concurrently loaded (not
necessarily running) in the system is very high. We have observed that even receiving the
same number of processors, applications do not perform equal if they are running
concurrently with a small number of applications (2..6) than when they are running with
a high number of applications (20..25).

Related with the use of real performance information, we want to remark that the use
of extrapolated values must be done “with care” because some times this formulation can
result in incorrect values. We believe that these values must be always considered as
temporal and verified with real values. Another important point is the stability of the
processor scheduling policy. We have detected that one of the main problems of the
Equal_efficiency is that small variations in the performance of one application can result
in a global processor distribution. If this situation is very frequent, to completely re-
distribute processors is a bad approach for performance.

8.2.5 General remarks

The development of this Thesis has given us a valuable experience in the execution of
parallel applications in multiprocessor multiprogrammed execution environments. This
experience goes from the parallelization of applications, to the operating system design.
We want to include some remarks based on this experience.

The first point that we want to remark is the convenience of using a programming
model that provides malleability to applications. Malleability is a characteristic that gives
flexibility to the system decisions, and to the applications. To the system because its
decisions can be dynamically modified and not determined by the user requirements.
And to the applications because the number of chances to be executed and to receive
processors increases if the allocation of applications is not limited to a fixed number of
processors. Malleability is basic to improve the system performance and we have shown
that it can be exploited with any kind of policy: space-sharing and gang scheduling. All
the applications used in this Thesis use the OpenMP programming model that gives
applications this characteristic.

The second and third points are claims for Operating System vendors and compiler
developers. We believe that the O.S. should provide mechanisms to have an easy and
efficient access to the hardware counters that modern architectures provide. By the
moment, information provided by the hardware is very limited, in one hand, and on the
other hand, the cost to access to this information is very high (it is through operating
system calls). If this information was easily accessible, researchers will have a way to

220 CHAPTER 8
develop and evaluate their ideas based on this information. The third point is a claim for
compilers developers. It will be very interesting that the compiler provides the run-time
with information about the application structure such as the iterative structure and the
total number of iterations the application executes. We have found that there are several
information related with the sequential structure of the application that is very interesting
for the run-time parallel libraries.

Finally, we also want to remark the convenience to define what is considered a
workload of scientific application, with a well defined workload trace file. It is also
important to provide the applications binary code. The problem is that the available
workload trace files represent several months of the load of a real system, and are only
valid to use in simulations. If we want to be able to reproduce the same load, we need
reduced workload representative from real ones and also to have the application binary
codes.

8.3 Future work

Once finished this Thesis, there are several issues that remain opened related with the use
of performance information in multiprocessor scheduling, and new points that have
appeared as a result of the experience achieved doing this Thesis.

New architectures and programming models
This Thesis has been based on shared-memory multiprocessor architectures and OpenMP
applications. However, we believe that the ideas defended in this Thesis can be
extrapolated to other environments and to other programming models.

We have planned to analyze the main differences between shared-memory
architectures and clusters of SMP’s when executing OpenMP applications. As we
commented in Chapter 2, clusters of SMP’s have the characteristic that they have
hardware shared-memory inside each SMP node, and distributed memory between
nodes. However, there are some proposals to implement Software Distributed Shared-
Memory in clusters of SMP’s.

We want to analyze the impact of modifying the allocation of OpenMP applications in
this kind of architecture. Our policies and mechanisms already contemplate a step as
parameter. This parameter must be extensively tuned in these architectures based on the
size of the SMP node. We also have to evaluate the cost to expand the parallelism from
one node to more than one node. Probably, the benefit provided by the fact of increasing
the parallelism in this way will be lower than in a CC-NUMA architecture, and we have
to find solutions to that.

Another point is to complete the SelfAnalyzer in an environment such as a cluster
where the cost of modifying the allocation of an application could be significant. An
indirect approach could consist of providing the system with a different measure rather
than the speedup, and consider the currently number of available processors as the

Conclusions and Future work 221
baseline. A possible approach could be to measure the idleness of the application as a first
hint for the system, and only measure the relationship between two execution time
measures if the system decides to change the processor allocation of the application.

Computational power balancing based on run-time measurements
We have also planned to use some run-time measured information rather than the
speedup to improve the load balancing in non-OpenMP applications. In particular, we
want to evaluate the effectiveness of this approach in MPI+OpenMP applications, and a
possible useful information coud be the amount of load unbalance between MPI
processes.

The number of MPI processes is fixed because this programming model does not
consider to dynamically modify the application parallelism. However, if MPI is combined
with OpenMP, we can exploit the malleability of OpenMP applications to balance the
computational power of each MPI process.

Resource usage distribution
One of the points that we also plan to evaluate is the dynamic measurement of other types
of resources such as the memory bandwidth. If two applications that consume a lot of
memory bandwidth are concurrently executed, both applications will result negativelly
affected. If the memory bandwidth consumed is constant, maybe the best choice will be
execute them in serial. However, if these applications have bursts of high memory
bandwidth combined with bursts of low memory bandwidth, a good approach will be to
phase out their execution and distribute them in the time the moments where each
application accesses to memory.

We plan to dynamically measure the memory bandwidth consumed, and to propose
an automatic mechanism to detect the behavior of the application respect to the usage of
this resource. The goal is to modify the processor scheduling policy to take into account
this information and to solve this problem avoiding the system saturation.

Reduction in the power consumption by limiting the use of processors
Proposals made in this Thesis have been oriented to improve the system utilization. The
idea was to ensure the efficient use of resources. Using PDPA or applying PDML we can
ensure that applications are efficiently using their processors. If there are queued
applications, free processors are filled with new applications.

We have planned to evaluate the impact of our proposals in the power consumed by
the architecture. The idea is to stop those processors that are not used or even to stop not
efficiently used processors. We want to evaluate the impact of modifying the target
efficiency in the power consumed by the architecture and the performance achieved by
the system and the applications.

222 CHAPTER 8

Conclusions and Future work 223

ting

: ef-
Syst.

mput-

de-
Dev.

ation
Wat-

col-
tober

bug-

Job
1-289,

nti,
rszag,
Per-
-

r op-
, Jul

. In

sys-

loca-

po-
2000.
Bibliography

[1] G. M. Amdahl, “Validity of the single processor approach to achieving large-scale compu
capabilities”, in Proc. AFIPS, vol. 30, pp. 483-485, 1967.

[2] T. E. Anderson, B. N. Bershad, E. D. LAzowska, and H. M. Levy, "Scheduler activations
fective kernel support for the user-level management of parallelism", ACM Trans. Comput.
10(1), pp. 53-79, Feb 1992.

[3] W.C. Athas and C.L. Seitz, "Multicomputers: messae-passing concurrent computers". Co
er 21(8), pp. 9-24, Aug 1988.

[4] J.E. Bahr, S.B. Levenstein, L.A. McMahon, T.J. Mullins, and A.H. Wottreng, "Architecture,
sign, and performance of Application System/400 (AS/400) multiprocessors". IBM J. Res.
36(6), pp.1001-1014, Nov 1992.

[5] V. Bala and S. Kipnis. Process groups: a mechanism for the coordination of and communic
among processes in the Venus collective communication library. Technical report, IBM T. J.
son Research Center, October 1992.

[6] V. Bala, S. Kipnis, L. Rudolph, and Marc Snir. "Designing efficient, scalable, and portable
lective communication libraries". Technical report, IBM T. J. Watson Research Center, Oc
1992.

[7] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Visualization and de
ging in a heterogeneous environment. IEEE Computer, 26(6):88--95, June 1993.

[8] F. Bellosa, "Locality-information-based scheduling in shared-memory multiprocessors". In
Scheduling Strategies for Parallel Processing, D.G. feitelson and L.Rudolph (eds.), pp. 27
Springer-Verlag, 1996. Lecture Notes in Computer Science Vol 1162.

[9] M. Berry, D. Chen, P.Koss, D.Kuck, S.Lo, Y.Pang,L.Pointer, R. Roloff, A. Sameh, E. Cleme
S.Chin, D. Schneider, G. Fox. P. Messina, D. Walker, C. Hsiung, J. Scharzmeier, K. Lue, S. O
F. Seidl, O. Johnson, R. Goodrum and J, Martin. “The PERFECT Club Benchmarks: Effective
formance Evaluation of Supercomputers”.The International Journal of Supercomputer Applica
tions, 3(3):5-40,1989.

[10] G.E. Bier and M.K. Vernon, "Measurement and prediction of contention in multiprocesso
erating systems with scientific application workloads". In Intl. Conf. Supercomputing, pp. 9-15
1988.

[11] D.L. Black, "Processors, priority, and policy: Mach scheduling for new environments"
Proc. Winter USENIX Technical Conf., pp. 1-12, Jan 1991.

[12] D.L. Black, "Scheduling support for concurrency and parallelism in the Mach operating
tem". Computer 23(5), pp. 35-43, May 1990.

[13] T. B. Brecht, K. Guha. ”Using Parallel Program characteristics in dynamic processor al
tion”, Performance Evaluation, 27&28, pp. 519-539, 1996.

[14] J. Corbalan, X. Martorell, J. Labarta. "Performance-Driven Processor Allocation". In Sym
sium on Operating Systems Design and Implementation (OSDI 2000), pp. 59-71, October

224 CHAPTER 8

d Ef-
), pp.

rfor-
, pp.

nical

nical

and
c. of

ni-

s mi-
uted

ing",

ports

bilt

ling
erlag,

ed

istrib-

ating
put.

ms”,

load
ience,
[15] J. Corbalán and J. Labarta. "Improving Processor Allocation through Run-Time Measure
ficiency". In 15th International Parallel and Distributed Processing Symposium (IPDPS’2001
74-80, April 2001.

[16] J. Corbalán, X. Martorell and J. Labarta. "Improving Gang Scheduling through Job Pe
mance Analysis and Malleability". In 15th ACM International Conference on Supercomputing
303-311, June 2001.

[17] J. Corbalán, J. Labarta, “Dynamic Speedup Calculation through Self-Analysis”, Tech
Report number UPC-DAC-1999-43, Dep. d’Arquitectura de Computadors, UPC, 1999.

[18] J. Corbalán, X. Martorell, J. Labarta, “A Processor Scheduler: The CpuManager “, Tech
Report UPC-DAC-1999-69 Dep. d’Arquitectura de Computadors, UPC, 1999.

[19] Cray T3E.http://www.psc.edu/machines/cray/t3e/t3e.html

[20] S.-H. Chiang, R. K. Mansharamani, M. K. Vernon. “Use of Application Characteristics
Limited Preemption for Run-To-Completion Parallel Processor Scheduling Policies”, In Pro
the ACM SIGMETRICS Conference, pp. 33-44, May 1994.

[21] H. Chu, . Nahrstedt, ‘A Soft Real-Time Scheduling Server in UNIX Operating System”, U
versity of Illinois at Urbana Champaign, UIUCDS-R-97-1990.

[22] D. De Paoli, A. Gonscinski, M. Hobbs, and P. Joyce, "Performance comparison of proces
gration with remote process creation mechanism in RHODOS". In 16th Intl. Conf. Distrib
Comput. Syst., pp. 554-561, May 1996.

[23] M. Devarakonda and A. Mukherjee, "Issues in implementation of cache-affinity schedul
In Proc. Winter USENIX technical Conf., pp. 345-357, Jan 1992.

[24] J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Integrated PVM framework sup
heterogeneous network computing. Computers in Physics, 7(2):166--75, April1993.

[25] L. Dowdy. “On the Partitioning of Multiprocessor Systems”. Technical Report, Vander
University, June 1988.

[26] A.B. Downey, "Using queue time predictions for processor allocation", In Job Schedu
Strategies for Parallel Processing, D.G. Feitelson and L.Rudolph (eds), pp. 35-57, Springer V
1997. Lectures Notes in Computer Science Vo. 1291.

[27] D. L. Eager, R. B. Bunt, “Characterization of programs for scheduling in multiprogramm
parallel systems”.Performance evaluation 13 (1991) pp. 109-130.

[28] D.L. Eager, E.D. Lazowska, and J. Zahorjan. "Adaptive load sharing in homogeneous d
uted systems". IEEE Trans. Softw. Eng. SE-12(5), pp. 662-675, May 1986.

[29] D.L. Eager, E.D. Lazowska, and J. Zahorjan. " The limited performance benefits of migr
active processes for load sharing". In SIGMETRICS Conf. Measurement & Modeling of Com
Syst., pp. 63-72, May 1988.

[30] D. L. Eager, J. Zahorjan, E. D. Lawoska. “Speedup Versus Efficiency in Parallel Syste
IEEE Trans. on Computers, Vol. 38,(3), pp. 408-423, March 1989.

[31] D. G. Feitelson, B. Nitzberg. “Job Characteristics of a Production Parallel Scientific Work
on the NASA Ames iPSC/860”, in JSSPP Springer-Verlag, Lectures Notes in Computer Sc
vol. 949, pp. 337-360, 1995.

Conclusions and Future work 225

Re-

r Par-
e, vol.

dul-
. Lec-

com-
. Lec-

Dis-
96)

th

eed-
(IP-

e for

gies
1997.

h-
, pp.

ions

lti-

ical

and

MD

cube
[32] D. G. Feitelson. “Job Scheduling in Multiprogrammed Parallel Systems”. IBM Research
port RC 19790 (87657), October 1994, rev. 2 1997.

[33] D. G. Feitelson, “Packing Schemes for Gang Scheduling”, Job Scheduling Strategies fo
allel Processing, pp. 89-110, Springer-Verlag, 1996. Lectures Notes in Computer Scienc
1162.

[34] D. G. Feitelson, M. A. Jette, “ Improved Utilization and Responsiveness with Gang Sche
ing”, Job Scheduling Strategies for Parallel Processing, pp. 238-261. Springer-Verlag, 1997
tures Notes in Computer Science vol. 1291.

[35] D. G. Feitelson, L. Rudolph, “Distributed Hierarchical Control for Parallel Processing”,

[36] D. G. Feitelson, L. Rudolph, “Toward Convergence in Job Schedulers for Parallel Super
puters”, Job Scheduling Strategies for Parallel Processing, pp. 1-26. Springer-Verlag 1996
tures Notes in Computer Science vol. 1162.

[37] D. G. Feitelson, L. Rudolph, “Evaluation of Design Choices for Gang Scheduling Using
tributed Hierarchical Control”, journal of Parallel and Distributed Computing 35, pp. 18-34 (19

[38] D. G. Feitelson, A. M. Weil, “Utilization and predictability in scheduling the IBM SP2 wi
backfilling”, In 12th International Parallel Processing Symposium, pp. 542-546, April 1998.

[39] F. Freitag, J. Corbalán and J. Labarta. "A Dynamic Periodicity Detector: Application to Sp
up Computation". In 15th International Parallel and Distributed Processing Symposium
DPS’2001), pp. 2-8, April 2001.

[40] G. Ghare, S. Leutenegger, “The effect of Correlating Quantum Allocation and Job Siz
Gang Scheduling”, Job Scheduling Strategies for Parallel Processing 1999.

[41] R. Gibbons, "A historical profiler for use by parallel schedulers". In Job Scheduling Strate
for Parallel Processing, D.G. Feitelson and L. Rudolph (eds.), pp. 58-77, Springer Verlpag,
Lecture Notes in Computer Science Vol. 1291.

[42] B. Hamidzadeh, D. J. Lilja, ”Self-Adjusting Scheduling: An On-Line Optimization Tec
nique for Locality Management and Load Balancing”, Int. Conf. on Parallel Processing, vol II
39-46, 1994.

[43] D. P. Helmbold, Ch. E. McDowell, “Modeling Speedup (n) greater than n”, IEEE Transact
Parallel and Distributed Systems 1(2) pp. 250-256, April 1990.

[44] M. Herlihy, B-H. Lim, and N. Shavit, "Low contention load balancing on large-scale mu
processors", In 4th Symp. Parallel Algorithms & Architectures, pp. 219-227, Jun 1992.

[45] International Business Machines Corporation. AIX V4.3.3 Workload Manager. Techn
White Paper. February 2000.

[46] IRIX 6.5 - Man pages.

[47] H. Jin, M. Frumkin, J. Yan. “The OpenMP Implementation of NAS Parallel Benchmarks
Its Performance”. Technical Report: NAS-99-011, 1999.

[48] D. Klappholz and H-C. Park, "Parallelized process scheduling for a tightly-coupled MI
machine", In Intl. Conf. Parallel Processing, pp. 315-321, Aug 1984.

[49] S. Krakoviac, "Principles of Operating Systems". MIT Press, 1988.

[50] P. Krueger, T-H. Lai, and V.A. Radiya, "Processor allocation vs. job scheduling on hyper
computers". In 11th Intl. Conf. Distributed Comput. Syst., pp. 394-401, May 1991.

226 CHAPTER 8

ng",

ent

4th

es",

ssor
90.

llel
tures

ns.

ys-

ul-

". In

”. In

es-

ple-
PC-

no-
yon,

ro-
. 146-

e

De-
[51] P. krueger and M. Livny, "A comparison of preemptive and non-preemptive load distributi
In 8th Intl. Conf. Distributed Comput. Syst., pp. 123-130, Jun 1988.

[52] J. Labarta, S.Girona, V. Pillet, T. Cortes, L.Gregoris. "DiP : A Parallel Program Developm
Environment". 2ond Intl. EuroPar Conf. (EuroPar 96), Lyon (France), August 1996.

[53] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly Scalable Server”. Proc. 2
Int. Symp. on Computer Architecture, pp. 241-251, 1997.

[54] S.T. Leutenegger and M.K. Vernon, "Multiprogrammed Multiprocessor Scheduling Issu
Research report RC 17642 (#77699), IBM T.J. Watsin Research Center, Nov 1992.

[55] S. T. Leutenegger and M. K. Vernon. “The Performance of Multiprogrammed Multiproce
Scheduling Policies”, In Proc. of the ACM SIGMETRICS Conference, pp. 226-236, May 19

[56] D. Lifka, "The ANL/IBM SP scheduling system". In Job Scheduling Strategies for Para
Processing", D.G. feitelson and L. Rudolph (eds.), pp. 295-303, Springer-Verlag, 1995. Lec
Nostes in Computer Science Vol. 949.

[57] F.C.H. Lin and R.M. Keller, "The gradient model load balancing method". IEEE TRa
Softw. Eng. SE-13(1), pp. 32-38, Jan 1987.

[58] M. Madhukar, J. D. Padhye, L. W. Dowdy, ”Dynamically Partitioned Multiprocessor S
tems”, Computer Science Department, Vanderbilt University, TN 37235, 1995.

[59] S. Majumdar, D. L. Eager, R. B. Bunt, ”Characterisation of programs for scheduling in m
tiprogrammed parallel systems”, Performance Evaluation 13, pp. 109-130, 1991.

[60] S. Majumdar, D. L. Eager, R. B. Bunt, "Scheduling in multiprogrammed parallel systems
SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 104-113, May 1988.

[61] B. D. Marsh, T. J. LeBlanc, M. L. Scott, E. P. Markatos, “First-Class User-Level Threads
13th Symp. Operating Systems Principles, pp. 110-121, Oct. 1991.

[62] X. Martorell, "Dynamic Scheduling of Parallel Applications on Shared-memory Multiproc
sors". PhD Thesis, Universitat Politècnica de Catalunya (UPC), July 1999.

[63] X. Martorell, J. Labarta, N. Navarro and E. Ayguade, “Nano-Threads Library Design, Im
mentation and Evaluation”. Dept. d’Arquitectura de Computadors - UPC, Technical Report: U
DAC-1995-33, September 1995.

[64] X. Martorell, J. Labarta, N. Navarro and E. Ayguade, “A Library Implementation of the Na
Threads Programming Model”. Proc. of the Second Int. Euro-Par Conf., vol. 2, pp. 644-649, L
France, August 1996.

[65] C. McCann, R. Vaswani, J. Zahorjan. “A Dynamic Processor Allocation Policy for Multip
grammed Shared-Memory Multiprocessors”. ACM Trans. on Computer Systems, 11(2), pp
178, May 1993.

[66] Message Passing Interface Forum. http://www.mpi-forum.org

[67] A. W. Mu’alem, D. G. Feitelson, "Utilization, Predictability, Workloads, and User Runtim
Estimates in Scheduling the IBM SP2 with Backfilling". Tech. Report 2000-33, July 2000.

[68] "MIPS R10000 Microprocessor", http://www.sgi.com/processors/r10k/

[69] NANOS Consortium, “Nano-Threads Compiler”, ESPRIT Project No 21907 (NANOS),
liverable M3D1. Also available at http://www.ac.upc.es/NANOS, July 1999.

Conclusions and Future work 227

g".

for
les,

e

yn-
00".

ces-

ces-
ringer-

istics
ience.

en-

onal

ral-

ulti-

Job
6-192,

rcube

llel

orou
f the

y

arta,
red
ting
[70] T.M. Ni, C-W. Xu, and T.B. Gendreau. " A distributed drafting algorithm for load balancin
IEEE Trans. Softw. Eng. SE-11(10), pp. 1153-1161, Oct 1985.

[71] J. Nieh, M. Lam, “The Design, Implementation and Evaluation of SMART: A Scheduler
Multimedia Applications”, Proc. of the 16th ACM Symposium on Operating Systems Princip
St. Malo, France, October, 1997.

[72] J. Nieh, M. Lam, “SMART UNIX SVR4 Support for Multimedia Applications”, Proc. of th
IEEE Int. Conf. on Multimedia Computing and Systems, Ottawa, Canada, June 1997.

[73] D. S. Nikolopoulos, T. S. Papatheodorou. "A Quantitative Architectural Evaluation of S
chronization Algorithms and Disciplines on ccNUMA Systems: The Case of the SGI Origin 20
Proc. of the 13th Intl. Conf. on Supercomputing, Rhodes (Greece), June 1999.

[74] T.D. Nguyen,J. Zahorjan, R. Vaswani, “Maximizing Speedup through Self-Tuning of Pro
sor Allocation”.IPPS 96, Technical report UW-CSE-95-09-02. University of Washington

[75] T.D. Nguyen, J. Zahorjan, R.Vaswani, “Parallel Application Characterization for multipro
sor Scheduling Policy Design”. JSSPP, vol.1162 of Lectures Notes in Computer Science. Sp
Verlag, 1996.

[76] T. D. Nguyen, J. Zahorjan, R. Vaswani, “Using Runtime Measured Workload Character
in Parallel Processors Scheduling”, in JSSPP volume 1162 of Lectures Notes in Computer Sc
Springer-Verlag, 1996.

[77] OpenMP Organization. “OpenMP Fortran Application Interface”, v. 2.0 http://www.op
mp.org, June 2000.

[78] J. K. Ousterhout, “Scheduling Techniques for Concurrent Systems”, In Third Internati
Conference on Distributed Computing Systems, pp. 22-30, 1982.

[79] K-H. Park and L.W. Dowdy, "Dynamic partitioning of multiprocessor systems". Intl. J. Pa
lel Programming 18(2), pp. 91-120, Apr 1989.

[80] E. W. Parsons, K. C. Sevcik. “Benefits of speedup knowledge in memory-constrained m
processor scheduling”, Performance Evaluation 27&28, pp.253-272, 1996.

[81] E. W. Parsons, K. C. Sevcik. “Implementing multiprocessor scheduling disciplines". In
Scheduling Strategies for Parallel Processing, D.G. Feitelson and L.Rudolph (eds.), pp. 16
Springer-Verlag 1997. Lecture Notes un Computer Science Vol. 1291.

[82] P. Pierce. The NX/2 operating system. In Proceedings of the Third Conference on Hype
Concurrent Computers and Applications, pages 384--390. ACM Press, 1988.

[83] C.D. Polychronopoulos, "Multiprocessing versus multiprogramming". In Intl. Conf. Para
Processing, vol. II, pp. 223-230, Aug 1989.

[84] E. D. Polychronopoulos, X. Martorell, D. S. Nikolopoulos, J. Labarta, T. S. Papatheod
and N. Navarro, “Kernel-level Scheduling for the Nano-Threads Programming Model” Proc. o
12thACM International Conference on Supercomputing, pp. 337-344, Melbourne, Australia, Jul
1998.

[85] E. D. Polychronopoulos, D. S. Nikolopoulos, T. S. Papatheodorou, X. Martorell, J. Lab
N. Navarro. "An Efficient Kernel-Level Scheduling Methodology for Multiprogrammed Sha
Memory Multiprocessors". Proc. of the 12th Intl. Conf. on Parallel and Distributed Compu
Systems. Fort Lauderdale, Florida, August 1999.

228 CHAPTER 8

mes

ion
225-

allel

llel

g”.

system
strib-

ide.

es
000.

ure-

ared

ob
41-47,

red-
143,

t http:/

UX
Soft-

s Ef-

ml

n per-
rog.
[86] E. Rosti, E. Smirni, L.W. Dowdy, G. Serazzi, and B.M.Carlson, "Robust partitioning sche
of multiprocessor systems". Performance Evaluation 19 (2-3), pp. 141-165, Mar 1994.

[87] A. Serra, N. Navarro, T. Cortes, “DITools: Application-level Support for Dynamic Extens
and Flexible Composition”, in Proceedings of the USENIX Annual Technical Conference, pp.
238, June 2000.

[88] S. K. Setia, “Trace-driven Analysis of Migration -based Gang Scheduling Policies for Par
Computers”, ICPP97, August 1997.

[89] K. C. Sevcik, ”Application Scheduling and Processor Allocation in Multiprogrammed Para
Processing Systems”. Performance Evaluation 19 (1/3), pp. 107-140, Mar 1994.

[90] K. C. Sevcik. “Characterization of Parallelism in Applications and their Use in Schedulin
In Proc. of the ACM SIGMETRICS Conference, pp. 171-180, May 1989.

[91] C. Severance, r. Enbody, and P. Petersen. "Managing the overall balance of operating
threads on a multiprocessor using automatic self-allocating threads (ASAT)". J. Parallel & Di
uted Comput. 37(1), pp. 106-112, Aug 1996.

[92] SGI Techpubs library,http://techpubs.sgi.com/

[93] Silicon Graphics Inc. Origin2000 and Onyx2 Performance Tuning and Optimization Gu
http://techpubs.sgi.com , Document Number 007-3430-002, 1998.

[94] F. A. B. Silva, I. D. Scherson, “Improving Throughput and Utilization in Parallel Machin
Through Concurrent Gang”, International Parallel and Distributed Processing Symposium 2

[95] F. A. B. Silva, I. D. Scherson, “Improving Parallel Job Scheduling Using Runtime Meas
ments”, 6th Workshop on Job Scheduling Strategies for Parallel Processing, 2000.

[96] J.P. Singh, W.D.Weber, and A. Gupta. “SPLASH: Standford Parallel Applications for Sh
Memory”. Computer Architecture News, 20(1):5-44, 1992.

[97] J. Skovira, W. Chan, H. Zhou, and D. Lifka, "The EASY- LoadLeveler API project". In J
Scheduling Strategies for Parallel Processing, D.G Feitelson and L. Rudolph (eds.), pp.
Springer-Verlag, 1996. Lectures Notes in Computer Science Vol. 1162.

[98] M.S. Squillante and E.D. Lazowska, "Using processor-cache affinity information in sha
memory multiprocessor scheduling", IEEE Trans. Parallel & Distributed Syst. 4(2), pp.131-
Feb 1993.

[99] Standard Performance Evaluation Corporation. SPEC CPU95 Benchmarks. Available a
/www.spec.org/osg/cpu95, 1995.

[100] I. Subramanian, C. McCarthy, M. Murphy. “Meeting Performance Goals with the HP-
Workload Manager”, Proc. of the First Workshop on Industrial Experiences with Systems
ware, WIESS 2000, pp. 79-80. October 2000, San Diego, California.

[101] Sun Microsystems. “Solaris Resource Manager [tm] 1.0: Controlling System Resource
fectively”, technical white paper, http://www.sun.com/software/white-papers/wp-srm, 2000.

[102] The Standard Workload Format”, http://www.cs.huji.ac.il/labs/parallel/workload/swf.ht

[103] J. Torrellas, A. Gupta, and J. Henessy, "Characterizing the caching and synchronizatio
formance of a multiprocessor operating system". In 5th Intl. Conf. Architect. Support for P
Lang. & Operating Syst., pp. 162-174, Oct 1992.

Conclusions and Future work 229

ems".
tes in

ared-
, De-

g for
rinci-

tion”,

oach
an-

pp.

multi-

licy
arallel
ctures

rs". In

rib-

, Job
otes in

dul-
[104] S.K. Tripathi, G. Serazzi, and D. Ghosal. "Processor scheduling in multiprocessor syst
In Parallel Computation, H.P. Zima (ed), pp. 208-255, Springer-Verlag, 1992. Lectures No
Computer Science Vol 591.

[105] A. Tucker, A. Gupta, “Process control and scheduling issues for multiprogrammed sh
memory multiprocessors”. In 12th Symposium Operating Systems Principles. pp. 159-166
cember 1989.

[106] R. Vaswani and J. Zahorjan, "The implications of cache affinity on processor schedulin
multiprogrammed, shared-memory multiprocessors". In 13th Symp. Operating Systems P
ples, pp. 26-40, Oct 1991.

[107] M. J. Voss, R. Eigenmann, ”Reducing Parallel Overheads Through Dynamic Serializa
Proc. of the 13th Int. Parallel Processing Symposium, pp. 88-92, 1999.

[108] B. Weissman, “Performance Counters and State Sharing Annotations: A Unified Appr
to Thread Locality”, Proc. of the 8th Int. Conf. on Architectural Support for Programming L
guages and Operating Systems, pp. 127 - 138, 1998.

[109] Workload logs, http://www.ac.upc.es/homes/juli

[110] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor”. IEEE Micro vol. 16, 2
28-40, 1996.

[111] I-L. Yen and F.B. Bastani, "Robust parallel resource management in shared memory
processor systems". In 9th Intl. Parallel Processing Symp., pp. 458-465, apr 1995.

[112] K.K. Yue and D.J. Lilja, "Loop-level process control: an effective processor allocation po
for multiprogrammed shared-memory multiprocessors". In Job Scheduling strategies for P
Processing, D.G. Feitelson and L. Rudolph (eds.), pp. 182-199, Springer-Verlag, 1995. Le
Notes in Computer Science Vol. 949.

[113] J. Zahorjan and C. McCann, "Processor scheduling in shared memory multiprocesso
SIGMETRICS conf. Measurement & Modeling of Comput. Syst., pp. 214-255, May 1990.

[114] Y. Zhu and M. Ahuja, "On job scheduling on a hypercube", IEEE TRans. Parallel & Dist
uted Syst. 4(1), pp. 62-69, Jan 1993.

[115] B. B. Zhou, D. Walsh, R. P. Brent, “Resource Allocation Schemes for Gang Scheduling”
Scheduling Strategies for Parallel Processing, pp. 74-86, Springer-Verlag 2000, Lectures N
Computer Science vol. 1911.

[116] Y. Zhang, H. Franke, J. E. Moreira, A. Sivasubramaniam, “ Improving Parallel Job Sche
ing by Combining Gang Scheduling and Backfilling Techniques”, IPDPS 2000, Cancun.

230 CHAPTER 8

	CHAPTER 8 Conclusions and Future Work
	8.1 Goals and contributions of this Thesis
	8.2 Conclusions of this Thesis
	8.2.1 Dynamic performance measurement
	8.2.2 Coordination between levels
	8.2.3 Imposing a target efficiency to ensure the efficient use of resources
	8.2.4 Using performance information in multiprocessor scheduling
	8.2.5 General remarks

	8.3 Future work

