
llel-

use of

sists of

ism.

docu-
1
INTRODUCTION

Future processor generations will provide capabilities to exploit both instruction and thread level para

ism and will be able to execute multiple threads concurrently. In this chapter, an approach to make

such capabilities when there is a lack of non-speculative threads is presented: The technique con

relaxing the constraints to parallelize applications in order to exploit speculative thread level parallel

Finally, this chapter presents the main contributions of this thesis and details the organization of the

ment.





extract

l time

at dif-

ts and

This

ulta-

nd data

st popu-

allel-

detect

s well

cost of

llelism.

lify the

a non-

ion are

-order)

rred to

the

cuted

sults

lelism

be

ctions

which
Introduction 7

1.1. MOTIVATION

It is well-known that the performance of processors depends on the amount of parallelism they can

from the applications. As more tasks processors are able to correctly execute in parallel, the tota

needed to fulfill the execution of the applications is drastically reduced. Parallelism can be exploited

ferent levels, such as instruction level, application level, etc., but in latest years, almost all the effor

studies have been devoted to improve the ability to exploit fine-grain or instruction level parallelism.

kind of parallelism is characterized by the fact that different instructions are allowed to execute sim

neously each cycle with the only constraint that those imposed by the dependences, both control a

dependences. For instance, the main characteristic of superscalar processors[30], which are the mo

lar processor microarchitecture in the recent years, is their ability to exploit the instruction level par

ism that inherently exist in the programs.

To be able to exploit such parallelism, processors have to incorporate several mechanisms to

whether an instruction can start their execution without affecting the correct behavior of programs a

as schemes to store those instructions that cannot execute until their operands are available. The

these mechanisms depends on how aggressively the processor tries to extract instruction level para

In-order superscalar processors rely on the compiler to reorganize the code statically and then simp

hardware requirements. These processors look for independent instructions in program order until

independent instruction is found. Then, the issue process stalls until the operands of this instruct

available and it can be issued. On the other hand, dynamically-scheduled (also known as out-of

superscalar processors fetch instructions in program order and store them into a buffer (which is refe

instruction window). The run-time scheduler is then responsible for issuing those instructions from

instruction window whose operands are available independently of the program order.

Despite the theoretical performance of this kind of microarchitectures in terms of instructions exe

per cycle (IPC) can be high, in lots of applications, specially in non-numerical programs, the re

achieved are quite far from the peak performance since the exploitation of the instruction level paral

is much limited by several hurdles such as[85]:

• Control hazards: To exploit instruction level parallelism, a continuous flow of instructions has to

provided by the front-end of the processor to the issue mechanism. Conditional branch instru

affect the performance in the way that the front-end of the processor does not know exactly

would be their following instruction until the branch is solved.



lism

fact,

ved by

just the

ens of

l par-

nd data

g them

plied for

redict

d path

d if a

e cor-

aintain

and

pact on

ctions

nstruc-

ecula-

e (this

e data

ligible

rs since

can

ze of

dicted

tions
8 CHAPTER 1

• Data hazards: Data dependences are another important limitation for instruction level paralle

since instructions only can start their execution when they have all their operands available. In

the execution ordering imposed by data dependences strongly restricts the performance achie

superscalar processors. Experiments with ideal machines[21] with unbounded resources and

constraint of serializing data dependent instructions report an average IPC of just several t

instructions committed per cycle for some integer programs.

In order to minimize the impact of the above hurdles to achieve higher degrees of instruction leve

allelism, most of the processors use speculation techniques to reduce the penalties of both control a

dependences. Speculation techniques consist of predicting the result of instructions before executin

and using such results to start the execution of dependent ones. Speculation techniques can be ap

different purposes:

• Control speculation: To reduce the effect of conditional branch instructions, current processors p

the outcome of the branches and speculatively execute the instructions following the predicte

([67] among others). When the branch outcome is solved, the prediction is verified and, an

misprediction has occurred, the processor has to eliminate the incorrect instructions, recover th

rect state, and continue the execution starting at that correct point. In this way, processors can m

a continuous flow of instructions from the front-end of the processor to the instruction window

therefore, have more instructions to look for independent ones.

• Data value speculation: Relieve the penalties due to data dependences and minimize their im

the performance of the processor by means of predicting the input/output operands of instru

([37] among others). When a misprediction occurs, the processor has to squash the incorrect i

tions and recover the correct state. Execution can continue starting at the point where the missp

tion happened or just reexecuting those instructions that depend on the mispredicted on

technique is referred to as selective reissuing). In this way, data value prediction breaks th

dependence graph and instruction level parallelism can be improved since the number of e

instructions for starting execution will be greater.

Nevertheless, speculation techniques are not enough to boost the performance of such processo

in some applications, the amount of instruction level parallelism is very limited. Branch prediction

help to maintain a large instruction window, but the number of useful instruction, i.e, the effective si

the instruction window, depends on the accuracy of the branch prediction since a single mispre

branch prevents the instruction window from growing beyond the branch and the following instruc



h intro-

edicted.

many

, the

anches

le val-

More-

ssors is

nment

ues, are

olution

ement

hing to

s have

tech-

ia exten-

loads

of dif-

and

ssors

an make

above,

..) in

thread

n the

tudied
Introduction 9

become useless. This phenomenon is due to the sequential nature of the branch prediction whic

duces that the effective size depends on the number of consecutive branches that are correctly pr

Even though the overall performance of commercial branch predictors is quite high, above 95%, for

applications, specially in non-numerical programs, which have lots of difficult-to-predict branches

prediction rate is reduced causing a significant drop in the performance of the processor.

On the other hand, speculating on data values is harder than speculating on the outcome of br

since the range of values is huge compared with the branch prediction outcome, whose only possib

ues are taken or not taken. This wide range makes very difficult to design accurate value predictors.

over, recent studies have shown that the performance impact of this technique for superscalar proce

moderate, even though its impact on the performance may be higher on a more appropriate enviro

such as multithreaded architectures[22].

As a conclusion, the performance of superscalar processors, despite of the speculation techniq

still far away from the peak performance these processors can obtain. Also, although technology ev

allows computer architects to use an increasing number of transistors[66], the performance improv

achieved just by scaling up the current superscalar microarchitecture is decreasing and approac

diminishing return points. Wire delays, bypass logic, the issue and the rename logic among other

been identified as one of the most critical delays in such architectures[54].

These limits in instruction level parallelism have motivated researchers to look for alternative

niques to increase the performance of processors. Examples of these techniques are the multimed

sions ([56][74] among others) to reduce the execution time of the ever increasing multimedia work

(sound, video, etc...). Another approach considered by several vendors is combining the exploitation

ferent sources of parallelism, for instance exploiting both fine-grain (instruction level) parallelism

coarse-grain (thread-level) parallelism ([12][49][73][75] among others). With this technique, proce

include some hardware to manage several threads and run them simultaneously. These threads c

use of those resources of the processor that otherwise would remain idle since, as it is mentioned

instruction level parallelism is not enough to fulfill them (no independent instructions available, etc.

lots of applications. In this thesis, these processors that are able to exploit both instruction level and

level parallelism will be referred to asmultithreaded processors.

Exploiting thread level parallelism is not a novel idea and it has been widely studied, specially i

field of multiprocessor architectures. Traditional sources of thread level parallelism that have been s
are basically two: executing different applications in the same processor core and parallelizing the applica-



readed

in the

causing

tion of

appli-

r with

lower

solved

ously

if it is

cation

m the

gatively

ictors.

lar or

ently.

fail to

elized,

arallel-

ing is

arallel

rical

is fact

d that

nstraints

by the

ecu-
10 CHAPTER 1

tions with the compiler/programmer support. In the former case, each thread executed in the multith

processor corresponds to a different application in such a way the resources that would be idle

sequential execution of those processes, now are used to execute instructions of other applications

a beneficial increase of the throughput (number of processes finished per time unit) since the execu

the processes simultaneously will finish faster than the sum of the individual execution time of each

cation. In the latter case, programs are divided into threads that can run in parallel in the processo

some synchronization mechanisms. Here, the execution time of the parallelized application will be

than if the application would be executed sequentially.

Nonetheless, these traditional techniques to exploit thread level parallelism have not completely

the problem of boosting the performance of processors. Executing different applications simultane

produces a higher throughput but the execution time of the individual applications is also increased

compared with its execution alone. This feature is due to the fact that now, instructions of an appli

have to compete, in addition to the instructions of the same application, with those instructions fro

other applications for the same resources. Also, several subsystems of the processor can be ne

affected by the concurrent use of them by several processes, like cache memories and branch pred

On the other hand, partitioning applications into threads may be an straightforward task in regu

numerical applications. For those programs, current compiler technology can easily perform it effici

However, this task becomes much harder for irregular or non-numerical programs; compilers usually

discover the thread level parallelism that could be effectively exploited in this class of applications.

The benefits of thread level parallelism are impressive for those applications that can be parall

the execution time of them being drastically reduced. However, those applications that cannot be p

ized do not get any benefit at all. Compilers usually fail because they are quite conservative: partition

only performed on those parts of the program that at compile-time, the compiler is sure that their p

execution will not affect the final result of the program. This fact causes that in irregular or non-nume

applications, compiler is almost not able to find any thread that accomplish such heavy criterias. Th

causes that in irregular or non-numerical applications, compiler is almost not able to find any threa

accomplish such heavy criterias.

In the recent years, several studies (this thesis among others) have proposed to relax these co

to increase the benefits of thread level parallelism. The proposal is analogous to the way followed

instruction level parallelism, exploiting it speculatively. Instruction level parallelism is enhance by sp
lative execution if the path or values have been correctly predicted by the speculation engine. In the same



xecute

(data

and the

nisms

proces-

time of

reads

revious

thread

ing on

g para-

ms are

are man-

can com-

ies are:

the

branch

of pre-

rrect,

ever, if

orrect

waste

d by a

-

d, one
Introduction 11

way, if the partitioning constraints are relaxed and the processor is able to speculatively spawn and e

threads that may be in the wrong path (control dependent) or executed with incorrect input values

dependent), an extra gain could be achieved if the speculation engine correctly predicts the path

input values. This technique is referred to asspeculative thread level parallelismin opposition to the tradi-

tional techniques that exploit non-speculative thread level parallelism. Obviously, roll-back mecha

that take the processor back to the correct state in case of misspeculation will be necessary in these

sors.

1.2. EXPLOITING SPECULATIVE THREAD-LEVEL PARALLELISM

Speculative thread level parallelism can be defined as a technique targeted to reduce the execution

applications by means of running in parallel several threads that belong to a single application. Th

spawned by this technique are speculative in the sense they could be data or control dependent on p

threads and their correct execution and commitment are not guaranteed, unlike the non-speculative

level parallelism exploited by the traditional mechanisms.

Different strategies for exploiting speculative thread level parallelism can be considered depend

how the multithreaded processor try to reduce the execution time of programs. There are three bi

digms to achieve this goal, each one made up of lots of different variations depending on how progra

partitioned, when threads are spawned and the way data dependences among concurrent threads

aged by the processor. Previous strategies are not necessary to be considered alone. Processors

bine them to exploit speculative thread level parallelism in different ways. These three main strateg

• Eager execution: This technique is focused on minimizing the effect of branch mispredictions in

processor performance ([57] among others). As it was mentioned in the previous subsection,

prediction is a speculation technique used to increase the instruction level parallelism by means

dicting the outcome of a branch before this branch instruction is executed. If the prediction is co

instructions from the correct path have been fetched and may have started its execution. How

the branch predictor fails, all the instructions from the wrong path have to be squashed and a c

state has to be recovered. All the tasks involved in recovering a mispredicted branch usually

sever cycles that the processor cannot use to do useful work.

Studies done in branch behavior have shown that most of the mispredictions are just provoke

small number of static branches. Theeager executiontechnique tries to reduce the impact of mispre

dictions of such branches by means of spawning two speculative threads when a branch is foun
thread starting at the target instruction of the branch (as if the branch were taken) and the other in the



in the

ecution

omes

er of

tech-

overing

pro-

way in

l this

r from

ed to

these

nisms.

61]

it has

raph.

ources

a

orks.

e,

uction
12 CHAPTER 1

following instruction in static order (as if the branch were not taken). Once the branch is solved

main thread, the speculative threads corresponding to the wrong path are discarded and the ex

continues with the speculative thread that has followed the correct path (which at this point bec

the non-speculative thread or the main thread). To avoid the exponential growth of the numb

threads, this technique is just applied for those branches that are difficult to predict. With this

nique, if the cost of managing several speculative threads is less than the average cost of rec

from mispredicted branches, then a potential benefit can be achieved.

• Helper threads: Some types of instructions have a significant impact on the performance of the

cessor. Load instructions from memory can spend many cycles if the value requested is far a

the memory hierarchy and it will prevent dependent instructions to start their execution unti

instruction is completed. On the other hand, conditional branches may prevent the processo

fetching instructions beyond this instruction until it is solved. Speculation techniques can be us

predict the value of the load or the outcome of the branch, but it is still important to execute

instructions as soon as possible to early detect misspeculations and start the roll-back mecha

Helper threadsare focused on reducing the execution time of such critical instructions ([7][11][

among others). An instruction needs to have all their operands available to start its execution so

to wait for the completion of all the previous instructions in their data and control dependence g

These instructions have also to compete with others instructions of the program for using the res

of the processor. The technique ofhelper threadstries to give priority to these instructions in the dat

and control dependence graph of the critical instructions. Figure 1.1 shows how this strategy w

A critical instruction is detected by different methods (compiler, profiling, dynamically at run tim

etc...) and the previous instructions in the control and data dependence graph of this critical instr

Dynamic instruction stream

Contexti

Contextj

Figure 1.1. Execution model of a speculative multithreaded processor with helper threads.

Critical branch or load

Helper thread
This instruction will be executed faster

Instructions in the DFG and DDG of the
branch or load
are identified. Then, the processor proceeds as follows, contexti executes the main thread until it



raph of

pro-

in the

ince it

pact

spec-

e other

ut-

profil-

be

wo

e

d

grams

e

-spec-

nd
Introduction 13

detects that it will soon execute a critical instruction. Then ahelper threadis created in an idle context.

This speculative thread only executes those instructions in the control and data dependence g

the critical instruction. Meanwhile, the main thread continues executing sequentially the whole

gram. When the critical instruction is executed by the main thread, since it was executed before

helper thread, their execution will be faster (for instance, if the instruction is a load, thehelper thread

may have prefetched the value to cache, or if it is a branch, prediction may not be necessary s

has already been computed).

• Speculative Multithreading: In previous techniques, speculative threads are used to reduce the im

of several types of instructions in the overall performance of the processor, but in none of them

ulative threads reduce the amount of instructions that the main thread has to execute. On th

hand, in the technique ofspeculative multithreadingeach speculative thread is responsible for exec

ing a part of a program in parallel with some other threads ([16][44] among others).

Programs are partitioned into speculative threads by different techniques (compiler techniques,

ing, dynamically, etc.). This partitioning process tries to identify pairs of instructions (that will

referred asspawning pairs) that will provide the best performance. A spawning pair is made up by t

instructions, theSpawning Point, which is the instruction that will fire the creation of the speculativ

thread and theControl Quasi-Independent Pointwhich is the instruction where the speculative threa

will start its execution. Figure 1.2 shows how a speculative multithreaded processor works: Pro

run sequentially in a single hardware context until aSpawning Pointis reached. Then, a speculativ

thread is spawned in an idle context. The thread starts its execution at theControl Quasi-Independent

Point an both, the non-speculative and the speculative threads proceed in parallel until the non

ulative reaches theControl Quasi-Independent Point. Then, the non-speculative thread finishes a

Dynamic instruction stream

Contexti

Contextj

Spawning point

Control Quasi-Independent point

Figure 1.2. Execution model of a speculative multithreaded processor with speculative multithreading.
the following speculative thread in logical order becomes the non-speculative one. This model can be



his case,

ime.

t freed

nism is

ith its

tting

es pro-

be care-

mory

r or by

ent of

hroniza-

lative

among

ioneer

ort for

ong the

or with

k, etc...

tored in
14 CHAPTER 1

generalized and more speculative threads can be created even by other speculative threads. In t

when a speculative thread reaches theControl Quasi-Independent Pointof a future speculative thread

does not commit until it becomes non-speculative.

Processors that are able to exploit speculative thread level parallelism will be referred to asspeculative

multithreaded processors. Spawning instructions may be added by the compiler or inserted at run-t

When a thread finishes, if no misspeculations have occurred, the thread is committed and its contex

for future use of other speculative threads. Otherwise, the thread is discarded and a roll-back mecha

used to recover a correct state.

Speculative multithreaded processors include support for multiple hardware contexts, each one w

own local values (register and memory values). Additional hardware for initializing and commi

threads is also required. Moreover, synchronization mechanisms are also required in case that valu

duced by one thread are to be consumed by other thread. Finally, some parts of the processor must

fully designed in order to avoid important penalties. For instance, the performance of the me

subsystem and the branch predictor may be affected by having multiple threads running in parallel.

The task of detecting the best points to spawn threads can be done at run-time by the processo

the compiler support. The strategy used to partition a program into threads will be referred to as thethread

spawning policy.

1.2.1. Related Work

Multithreaded architectures have been studied for long but so far the focus has been the improvem

throughput by executing several independent threads or dependent threads with the necessary sync

tion added by the compiler. Examples of architectural paradigms that exploit this kind of non-specu

thread level parallelism are multiprocessors and simultaneous multithreading processors[79][90]

others.

Multistream Processors[90] and SMT (Simultaneous Multithreading Processors)[79] were the p

works on simultaneous multithreading. They presented a hardware organization to provide supp

managing several threads (streams) simultaneously sharing the resources of the processors am

active threads. In both works, the microarchitecture is just an extension of a superscalar process

some components being replicated: the register map table, the program counter and the return stac

Instructions are fetched for each thread from a different program counter, renamed separately and s



f such

ormed

2[57]

pawns

ber of

e.

nly the

sed to

In that

hich is

re the

but

ap-

their

mplex

ds are

n per-

proces-

g to its

uk[39]

elected

ecula-

ed
Introduction 15

a shared instruction window. The wake up and selection logic is also shared. The main benefit o

architectures is a higher throughput due to the better usage of the computer resources.

Regarding the exploitation of speculative thread level parallelism, several works have been perf

in the last years for the alternative strategies outlined above.

Eager executionis an old paradigm. Pioneer work was presented by Riseman and Foster in 197

as a technique to extract high degrees of parallelism. In that work a multi-level eager execution that s

threads for every branch is analyzed. This approach has an exponential cost in terms of the num

simultaneous threads required. Later on, Uhtet al.[88][82] proposed the Disjoint Eager Execution schem

In that work, resources are assigned depending on the probability of the path in such a way that o

most likely paths at each moment are being executed. On the other hand, Heil and Smith[27] propo

use eager execution only for those branches difficult to predict, based on a confidence estimator.

work, only two threads can proceed in parallel. Klauseret al.[33] generalized the previous work for more

than two threads. The baseline architecture considered in that work was the PolyPath architecture w

quite close to the architectural model of the simultaneous multithreading processor. Similar work a

Threaded Multiple Path Execution[86] presented by Wallaceet al. and the Multipath Execution[1] pre-

sented by Ahujaet al.As in previous works, threads are spawned just for difficult-to-predict branches

only the thread in the most likely path can spawn new speculative threads.

Early work onhelper threadsis the Simultaneous Subordinate Microthreading[7], proposed by Ch

pel et al. In that work, microthreads are spawned and run in parallel with the main thread to help in

execution. These microthreads are implemented in microcode and perform a better or more co

branch predictions and/or data prefetching.

Other recent techniques that exploit speculative thread level parallelism by means of helper threa

based on identifying dynamic sequences of instructions that could potentially have a high impact o

formance and assign them to speculative threads. These works use a simultaneous multithreading

sor as the underlying hardware support for speculative threads. Honget al. [11][36] proposed to reduce the

impact of loads that miss in cache by executing on a speculative thread the instructions that belon

data dependence graph. In this way, the data was prefetched before the main thread requires it. L

attacked the same problem in a similar manner. The main differences lie on the way loads are s

(Honget al. use a profile mechanism to detect them, whereas Luk uses locality analysis) and how sp

tive threads are built. Rothet al. [61][69] proposed Speculative Data-Driven Multithreading which is bas
on executing the instructions that belong to the data dependence graph of some critical instruction (loads



ula-

dow

esign

hreads

such a

s are

dences

rk was

ution

er, but

ubey

re). In

started

Super-

cture,

ces, the

ere the

late the

ilable

explic-

its the

s them

work-

sors is

ecution

To detect

o restore
16 CHAPTER 1

and branches) on a helper thread. Zilleset al.‘s speculative slices[91][92] uses the same idea but spec

tive threads contain control flow instructions in addition to the data flow instructions.

Finally, on speculative multithreading, pioneer work on this topic was the Expandable Split Win

Paradigm[16] and the follow-up work, the Multiscalar[68]. This microarchitecture has a clustered d

and it is made up of several execution units which are responsible for executing the speculative t

(tasks). This execution units are interconnected among them by means of an unidirectional ring in

way that the communication is done from one thread to the following one in the logical order. Task

statically created by the compiler based on several heuristics that try to minimize the data depen

among active threads or maximize the workload balance, among other compiler criteria. Related wo

the Multithreaded Decoupled Architecture presented by Dorojevets and Oklobdzija[13]. Its exec

model is quite similar to the Multiscalar processor and programs are split into threads by the compil

here, speculative threads are constrained not to contain branches.

Other architectures that exploit speculative multithreading has been proposed in recent years. Det

al. presented the Single-Program Speculative Multithreading architecture[14] (the SPSM architectu

this proposal, programs are divided into threads at compile-time and the execution of a thread is not

until the dependent values from previous threads that it needs have been produced. Tsai and Yew´s

threaded architecture[76] also relies on the compiler to split the program into threads. In this archite

speculative threads are assigned to different loop iterations. To deal with inter-thread data dependen

Superthreaded architecture uses the thread pipelining model. In this model, the code of the loops wh

speculative threads are to be spawned are reorganized in such a way that the instructions that calcu

input values for the following iterations are promoted to the beginning of the thread to be early ava

for the consumer speculative threads. Inter-thread data communication is done in this architecture

itly by new instructions introduced in the instruction set.

A related approach is the scheme used by Trace Processors[59][83]. This architecture spl

sequential program into almost fixed-length traces with the help of the trace cache[60] and execute

into different processing elements, each one similar to a superscalar core. This fact maximizes the

load balance among the different processing elements. Another important feature of Trace Proces

that inter-thread dependent register values are predicted when the speculative thread starts its ex

whereas inter-thread memory dependences are assumed not to occur among concurrent threads.

misspeculations, a Trace Processor provides a mechanism to detect them and fire a recovery task t

the correct state by reexecuting only those instructions dependent on the mispredicted value.



l pro-

am that

ine call

ute the

spec-

at usu-

te the

to the

t of the

reads

er sig-

ltipro-

ploit

ubset

of this

thread

input

xt slave

nd the

have

essor

and to

y means

high

roces-

tive

ds are
Introduction 17

Dynamic Multithreaded Processors[2] rely only on hardware mechanisms to divide a sequentia

gram into threads. In this architecture, speculative threads are created in those parts of the progr

usually exhibit control independence. In particular, speculative threads are created for every subrout

and their execution starts at the following instruction in static order. These speculative threads exec

code that normally will be executed when the flow of the program returns from the subroutine. Also,

ulative threads are created for every backward branch (since a backward branch is the instruction th

ally closes a loop). Speculative threads start at the following instruction in static order and execu

continuation of the loop. The Dynamic Multithreaded Processor has a centralized design similar

simultaneous multithreaded processor and shares the most of its resources.

Warg and Stenstrom[89] presented an approach to spawning speculative threads similar to tha

Dynamic Multithreading. Here, instead of creating threads at subroutine and loop continuations, th

are created when an invocation of a module is done (procedures, functions, methods, etc...). Anoth

nificant difference between these works is that the considered microarchitecture was an on-chip mu

cessor instead a centralized scheme.

Zilles´s et al Master/Slave Speculative Parallelization[93] represents a different scheme to ex

speculative thread level parallelism by means of distilled programs. The distilled program is a small s

of instructions of the program that calculate de input values of the threads. In the execution model

processor, the distilled program runs as a master thread and when the input values of a speculative

are calculated, then it is spawned on an idle context while the master thread starts calculating new

values for the next thread. When the least speculative slave thread finishes, input values of the ne

thread are verified and if misprediction has occurred, following speculative threads are discarded a

main thread rolls back to the correct state.

Some other works performing speculative thread-level parallelism on multiprocessor platforms

been done. The Altas multiprocessor proposed by Codrescu and Wills[9][10] is an on-chip multiproc

whose different processing elements are interconnected by means of a bidirectional ring topology

which support for thread and value speculation has been added. Speculative threads are obtained b

of the MEM-Slicing algorithm[9], which, instead of spawning threads at points of the program with

control independence, spawn threads at memory-access instructions. Similarly, the Hydra p

sor[24][26][54] is an on-chip multiprocessor with some capabilities that allow it to exploit specula

thread level parallelism by providing mechanisms for data dependence speculation. Here, threa



ay that

bigu-

-Level

isspec-

as

pecula-

of the

loiting

dman

esses

f them

allow

thread

m is

eate a

nd if it

specu-

ed and

.

18 CHAPTER 1

obtained at compile time, but the constraints imposed by data dependences are relaxed in such a w

more threads can be created and higher degrees of parallelization can be achieved.

Similarly, lots of works have appeared in the literature regarding the relaxation of memory disam

ation constraints to obtain more thread-level parallelism. Steffan and Mowry presented the Thread

Data Speculation scheme[71][72]. In this technique, threads are also created by the compiler and m

ulations are detected by means an extended mechanism of the cache coherence protocol. Torrellet al.

also relax the parallelization constraints to be able to create more parallel threads, but memory miss

tions are detected by means of the MDT (Memory Disambiguation Table), which keeps information

memory locations accessed by the speculative threads[34][6]. Another approach considered for exp

speculative thread level parallelism in on-chip multiprocessors was proposed by Rajwar and Goo

with the Speculative Lock Elision[57]. Multithreaded applications use locks to protect memory acc

that can cause conflicts. These locks are usually included conservatively by the compiler and lots o

are not necessary. In that work, they propose to eliminate some of these locks speculatively which

more threads to run concurrently.

Other similar works for dynamic parallelization in on-chip multiprocessors are [31][32].

1.3. THESIS OVERVIEW

This thesis is focused on how exploiting speculative multithreading as a main source of speculative

level parallelism. As it was mentioned above, the execution model to effectively exploit this parallelis

based on identifying which parts of the program are suitable to provide thread level parallelism. To cr

new thread two points of the program have to be identified, theSpawning Pointwhich is the instruction that

spawns the new thread and theControl Quasi-Independent Pointwhich is the instruction where the new

thread will start their execution[48]. The pairs ofSpawningand Control Quasi-Independent Pointsare

referred to asspawning pairs. Programs are executed sequentially until aSpawning Pointis reached, then a

new speculative thread starting at theControl Quasi-Independent Pointis spawned and both proceed in

parallel. When the non-speculative thread reaches the firstControl Quasi-Independent Point,which is also

the join point, it stops its execution and verifies if the speculative thread has been correctly created a

has been executed with the correct input values. Some verification can also be performed while the

lative threads are being executed. If so, the non-speculative thread is committed, their context is fre

the speculative thread becomes the non-speculative thread. If not, a recovery mechanism is started



ware

artition

. A key

everal

be pri-

he sys-

stered

reads

ources

depen-

register

sidered.

by the

t con-

perfor-

es into

o pro-

based

en-
Introduction 19

In addition to the execution model, the two principal topics considered in this thesis are the hard

support needed to implement this execution model and the proposal and the study of schemes to p

the programs into speculative threads.

Regarding the hardware support, in this thesis different microarchitectural models are discussed

requirement to exploit thread level parallelism at processor level is providing support for managing s

contexts simultaneously taking into account that some values used can be shared while others can

vate. Note also that each thread may have a different value for the same variable. In other words, t

tem needs to be able to manage multiple versions of the same variable concurrently. Clu

microarchitectures are good for wire delays, power and complexity but communications among th

can suffer from delays[43][44]. On the other hand, centralized architectures are suitable to share res

and speed up communication among threads[40][42][45].

Related to the hardware support, this thesis pays special attention to the way inter-thread data

dences are managed in speculative multithreaded processors. Different proposals to deal with both

and memory data dependences among threads as well as techniques for thread initialization are con

In both cases, synchronization (the consumer thread has to wait for the computation of the value

producer thread) and value prediction mechanisms are analyzed [44][46][47].

Finally, regarding the spawning policies, different proposals based on heuristics that try to exploi

trol independence are analyzed[47]. The relationship between the spawning policy and the overall

mance of the processor is studied. A new proposal that in addition to control independence also tak

account other important factors such as data independence and data value predictability is als

posed[48]. A systematic method to find the best spawning pairs for splitting the program into threads

on an off-line analysis that uses profiling data is proposed in this thesis.

1.3.1. Thesis Contributions

The main contributions of this thesis are:

1) On the execution model and their hardware support:

• An execution model based on creating threads atspawning pairs is proposed (pairs of spawn-

ing and control quasi-independent points).

• A family of microarchitectures to exploit speculative multithreading, either clustered or c

tralized.
2) On managing inter-thread data dependences:



el is

t

ndent

level

ecially

is also

ffective

diction

a new

tech-

ode of

.

nd value

ain con-
20 CHAPTER 1

• A new value predictor (the increment predictor) specially targeted for this execution mod

presented.

• The MultiValue Cache, a special first level architecture of the memory hierarchy to detec

memory misspeculations and fast forwarding of dependent memory values among depe

concurrent threads.

3) On the spawning policies:

• Formalize the criteria required by good spawning pairs.

• A systematic method to identify the parts of the code most suitable for speculative thread

parallelism. This scheme is based on an off-line analysis that uses profiling data.

1.4. DOCUMENT ORGANIZATION

The rest of this thesis is organized as follows:

• Chapter 2 identifies the hardware requirements of speculative multithreaded processors sp

those referred to the creation and commit of the speculative threads. The execution model

detailed. Different proposals to maintain the speculative state of the threads are analyzed.

• Chapter 3 studies the microarchitectural part related to inter-thread data dependences. An e

mechanism to manage them is necessary in order to achieve good performance and value pre

is shown to be an effective approach. Different conventional value predictors are analyzed and

one, the increment predictor is proposed.

• Chapter 4 studies different spawning policies and their impact on performance. Partitioning

niques based on heuristics are initially considered, and then, policies based on studying the c

the programs and looking for those points suitable to provide best performance are developed

• Chapter 5 evaluates the impact on the performance of several subsystems such as branch a

predictors.

• Chapter 6 outlines some future steps and the open research areas and finally summarizes the m

clusions of this thesis.


	1
	Introduction

	1.1. Motivation
	1.2. Exploiting Speculative Thread-Level Parallelism
	Figure 1.1. Execution model of a speculative multithreaded processor with helper threads.
	Figure 1.2. Execution model of a speculative multithreaded processor with speculative multithread...
	1.2.1. Related Work

	1.3. Thesis Overview
	1.3.1. Thesis Contributions
	1) On the execution model and their hardware support:
	2) On managing inter-thread data dependences:
	3) On the spawning policies:


	1.4. Document Organization


