
erfor-

epen-

d. This

hard-

he val-

a new

spec-

tively

kind
3
INTERTHREAD DATA DEPENDENCE

MANAGEMENT

In this chapter, interthread data dependences are shown to be one of the most limiting factors in the p

mance of speculative multithreaded processors. Two approaches for dealing with interthread data d

dences are presented. The first one consists in synchronizing the consumer and the producer threa

synchronization requires to identify which are the dependent values, when are to be produced and

ware some to forward them. The second proposal is based on data speculation and tries to predict t

ues that flow from the spawner to the spawned thread. Different value predictors are analyzed and

one, that is called increment predictor, is presented. This predictor uses the control-flow taken by the

ulative thread to make its predictions. Finally, the impressive performance of the processor with rela

small-sized value predictors leads to the conclusion that value prediction plays a crucial role on such

of architectures.

quential

hreads

control

revious

ssors

places

both con-

threads

lmost

to pro-

h depen-

rvative

to pro-

control

ne by

stance, if

t among

es the

occurs.

good

read-

ontrol

lative

specu-
Interthread Data Dependence Management 43

3.1. INTRODUCTION

Speculative multithreading has been presented as a technique to reduce the execution time of se

code by means of partitioning it into speculative threads that run concurrently. These speculative t

are obtained relaxing the constraints for parallelization, in such a way that those threads are both

and data dependents among them. That is, their execution may depend on the execution of the p

threads.

It will be shown in the next Chapter that the performance of speculative multithreaded proce

depends on the effectiveness of the partitioning mechanism. Anyway, it is quite obvious that the best

where speculative threads should be created are those where the resultant speculative threads are

trol and data independent on the previous ones. Thus, the concurrent execution of these speculative

will be completely in parallel. However, as it is expected, such kind of speculative threads are a

impossible to find, specially for irregular or non-numerical applications.

Therefore, as independent threads are rarely found, a speculative multithreaded processor has

vide mechanisms to deal with such dependences, both data and control dependences. The way suc

dences are managed will strongly affect the performance of such processors. Thus, very conse

mechanisms will override any possible benefit. Besides, speculative multithreaded processors have

vide roll-back mechanisms to return the processor to a safe state in case of misspeculations.

A speculative thread is control dependent on a previous thread if its execution depends on the

flow taken by the latter. The penalty for executing control-misspeculated threads is that the work do

such threads becomes useless and important resources such as the thread units are wasted. For in

the processor spawns speculative threads at loop iterations, these threads are control dependen

them since their execution is control dependent on the outcome of the backward branch that clos

loop. If any of the speculative threads does not take this backward branch, a control misspeculation

Then, all the following speculative threads have to be squashed.

The impact of interthread control misspeculations can be significantly reduced by means of a

partitioning policy. Spawning pairs have to meet some criterias to effectively provide speculative th

level parallelism and one of them is related to control independence: the probability to reach the c

quasi-independent point after visiting the spawning point should be very high. In this way, specu

threads are only spawned at parts of the program that are very likely to be executed and most of the

lative threads spawned are correctly control speculated.

y value

culative

dence is

y such

However,

e imple-

ad that

ired for

d com-

nalty

rthread

is more

elism

are the

data

al with

d. The

t is pro-

e inter-

he con-

can be

archi-

rform

cribes
44 CHAPTER 3

On the other hand, a speculative thread is data dependent on previous threads if it consumes an

produced by at least one of them. Thus, a interthread data misspeculation may occur when a spe

thread uses a value before an older thread produces it. Therefore, when an interthread data depen

violated, the offending thread executes instructions with incorrect values and the results produced b

thread are useless. In this case, the processor may squash the offending thread and its successors.

it is not necessary to squash the whole speculative thread and more aggressive mechanisms can b

mented. For instance, the processor can just reexecute those instructions of the offending thre

depend on the misspeculated value.

The penalty paid for misspeculating on interthread data dependences depends on the time requ

detecting the misspeculation. If dependent values are only verified when the non-speculative threa

mits, misspeculations will be detected very late and obviously, the penalty will be very high. Such pe

can be significantly reduced if misspeculations are checked as soon as values are produced.

As for interthread control dependences, spawning schemes can help to reduce the impact of inte

data dependences (shown in the next Chapter). However, analyzing interthread data dependences

difficult than interthread control dependence. In applications that present low instruction-level parall

such as irregular and non-numerical applications, data dependences are very common and they

most limiting factor on the performance of the processor. Therefore, partitioning the program into

quasi-independent threads is almost impossible in such kind of applications and mechanisms to de

such dependences have to be provided.

In this Chapter, two different proposals to deal with interthread data dependences are presente

first one forwards the dependent value from the producer thread to the consumer one as soon as i

duced. This mechanism will be referred to assynchronization mechanism. The latter proposal is more

aggressive and the potential results are also more promising. This proposal consists in breaking th

thread data dependences by means of predicting the values that flow from the producer threads to t

sumer ones. If all the data dependent values are correctly predicted for a given speculative thread, it

executed as if it was independent. The performance of different value predictors in this kind of micro

tecture are studied in this chapter. Besides, a new value predictor, theincrement value predictor, is pre-

sented. This predictor takes into account the control-flow followed by the speculative threads to pe

the value predictions. This scheme results in very huge performance results.

This Chapter is organized as follows. Section 3.2 introduces the concept of live-in value and des
different mechanisms to deal with interthread data dependences. The synchronization mechanisms for both

edictors

in con-

e con-

be pro-

ey are

oment

ased on

0]. Data

of the

e code is

. When

ion.

a spec-

depen-

us, data

endence

at may

cially

cted

read. In

ot pro-
Interthread Data Dependence Management 45

register and memory values are discussed in section 3.3. Section 3.4 analyzes the use of value pr

and presents a new one that is the increment value predictor. Finally, section 3.5 summarizes the ma

clusions of the Chapter.

3.2. INTERTHREAD DATA DEPENDENCES

Speculative threads execute different pieces of the dynamic instruction stream in different hardwar

texts. In order to produce any benefit, such speculative threads have to use the input values that will

duced by its predecessor threads. That is, speculative threads will only produce a correct result if th

executed with a concrete state of the architected registers and the memory.

A problem occurs when any of these values, either register or memory, are not available at the m

of the thread spawn. In this thesis, two approaches to deal with interthread data dependences b

speculation techniques are studied. The first one is based on data dependence speculation[13][5

dependence speculation allows the speculative execution of instructions without an exact knowledge

dependences with previous instructions. Those dependences that are unknown are predicted and th

speculatively executed obeying the predicted dependences, in addition to the known dependences

actual dependences become known, a recovery action is initiated in case of any dependence violat

The second approach is based on data speculation ([37][13][64][8] among others). Note that dat

ulation is different from data dependence speculation. Data dependence speculation predicts the

dences whereas data speculation predicts the value that flows through the dependences. Th

speculation is a more powerful technique since it can eliminate the dependence whereas data dep

speculation does not break the dependence chain, it just avoids the execution of an instruction th

cause a wrong execution.

Predicting the initial values for each logical register or any memory location is unfeasible, espe

for all the memory locations. However, it is not necessary to know the initial value for all the archite

registers or memory locations. For instance, some of them are not consumed by the speculative th

this thesis, we will refer to those values that are consumed by a speculative thread and they are n

duced by itself aslive-in input valuesor thread input values.

ms of

proces-

mber of

is cre-

ume it,

used,

cessor

hreads.

s is in

verage

hmarks

and

ure of

that are

eads at
46 CHAPTER 3

The left bar of figure 3.1 shows the average number of thread input values for each of the progra

the SpecInt95. Statistics have been collected for a 4-thread unit clustered speculative multithreaded

sor that spawns speculative threads at each loop iteration. It can be observed that the average nu

thread input values is on average greater than 10 and for some benchmarks likevortex , these number is

considerably high (slightly higher than 20 thread input values).

Nevertheless, there is no need to predict all the thread input values when a speculative thread

ated. Only those thread input values that are not available when the speculative thread is to cons

have to be predicted. In other words, if a given thread input value is already available at the time it is

the right value will be used regardless of the prediction outcome. That is, the performance of the pro

is related to the prediction accuracy of those input values that are produced by the latest previous t

As an approximation of this, we have computed the average number ofdistance-3 input values(input val-

ues produced by any of the previous 3 threads).

It can be observed in figure 3.1 (the right-most bar) that the average number of distance-3 value

average only 3.7, significantly lower than the thread input values. It is also remarkable than the a

number of distance-3 memory values has dramatically dropped off to less than 1 and in some benc

like go , ijpeg andvortex is almost negligible. The reduction for register values is less impressive

just goes down from 4.8 to 3.1.

This significant reduction in the average number of distance-3 memory values is due to the nat

the spawning scheme. Usually, registers are used to store intermediate computations or values

being used soon since their access time is much faster than memory. Spawning speculative thr

co
m

pr
es

s

gc
c

go

ij
pe

g li

m
88

ks
im pe
rl

vo
rt

ex

A
m

ea
n

0

5

10

15

20

it

er
at

io
ns memory inputs

register inputs
distance-3 memory inputs
distance-3 register inputs

Figure 3.1. Average number of input and live-in input values (through register and memory) for the
loop-iteration spawning scheme.

close in

wards

echa-

mber of

other

ues per

esides

Thread

of the

irreg-

mory

r that a

culative

ach is

mecha-

imple-

ation, that

ad, or

ister

d for both

or regis-

live-in

erfor-

as soon
Interthread Data Dependence Management 47

innermost loop iterations causes that the instructions executed by the speculative threads are very

the dynamic instruction stream. So, for this spawning scheme, it is expected that the compiler for

most of the dependent values through registers rather than for memory. For different partitioning m

nisms where speculative threads are further apart one from the other, the behavior regarding the nu

dependences and their distribution between registers and memory locations will change. On the

hand, increasing the number of thread units will also increase the average number of distance-n val

thread.

A significant difference between the meaning of thread input values and distance-3 input values r

in how they can be detected. The distance-3 input values are a subset of the thread input values.

input values can be determined statically whereas the distance-3 input values depend on the timing

dynamic execution.

Regarding memory input values, the identification process is more difficult than for registers. In

ular and non-numerical applications, the compiler is usually unable to statically determine the me

locations accessed. Then, the most common approach is to be conservative and always conside

dependence exists whenever it can be proved the opposite. This approach may cause that spe

threads are not spawned or have to wait for values they will never consume. The opposite appro

always consider that there are no dependences and, in case of misspeculations, to start a recovery

nism. Both approaches are very simple and several speculative multithreaded architectures have

mented them, especially the latter one. Some other approaches that uses data dependence specul

is, to predict if a memory location is a thread input value that has been produced by a previous thre

data speculation, to predict the memory value, can be considered.

In the following sections, two different techniques will be investigated both for memory and reg

dependences. In the next section, a technique based on data dependence speculation is presente

memory and register dependences and in section 3.4 an approach based for data speculation only f

ter values is analyzed.

3.3. SYNCHRONIZATION MECHANISMS

As it was pointed out in previous subsections, stalling the execution of a speculative thread until the

values have been produced and validated by the producer thread may significantly drop off the p

mance of the processor. Some gain can be obtained if interthread dependent values are forwarded

d yet, it

d from

y

e time

are pre-

to the

he con-

ecuted

ut the

in with

nisms to

ut val-

s really

en exe-

s been

ion is

thread

input

ection.

ch in

or

even

thread

able to

erthread

done
48 CHAPTER 3

as they are computed by the producer thread. However, as the forwarded value has not been verifie

may be incorrect.

In this thesis, the techniques based on stalling the consumer thread until the value is forwarde

the producer thread are referred to assynchronization mechanisms. These mechanisms do not usuall

require high initialization overhead to be applied. However, the main cost of such mechanisms is th

required to compute the value at the producer thread and to forward it to the consumer thread.

Synchronization mechanisms are based on data dependence speculation. Data dependences

dicted and dependent values are speculatively forwarded from the predicted producer instruction

consumer thread[20]. Nevertheless, data dependence mispredictions can occur. For instance, if t

sumer thread predicts that a instruction is not data dependent on previous threads, it might be ex

with wrong input values. Also, the consumer thread may correctly predict the data dependence, b

dependent value is forwarded from a wrong location and the dependent instruction is executed aga

incorrect input values. In both cases, data dependence misspeculations requires recovery mecha

bring the processor back to a safe state and reexecute the offending instructions with the correct inp

ues. On the other hand, if a speculative thread predicts that an instruction is data dependent and it i

not, a misprediction has occurred, but it is not necessary to recover since the instruction has not be

cuted. However, the cost of such misprediction is very high too since an independent instruction ha

waiting for a value that was not necessary. This instruction is finally issued when the mispredict

detected and this is usually when the thread becomes non-speculative.

Therefore, to implement a synchronization mechanism, three parts are necessary: i) identify the

inputs, ii) a mechanism to determine which instruction will produce the last value for any thread

value, and iii) hardware support for forwarding the dependent values to the consumer thread.

The mechanisms for identifying the thread input values have been presented in the previous s

Regarding the identification of the instructions that perform the last write for each thread input, -whi

this thesis will be referred to aslast-write instructions,- they can be statically detected by the compiler

dynamically by the hardware[16][84]. For register values, the compiler can easily identify them,

though the different control-flows inside the speculative threads may complicate such detection. For

input memory values the process is more complex since, in most of the cases, the compiler is un

statically know which addresses are to be accessed by the speculative threads. Then, memory int

data dependences as well as the identification of the corresponding last-write instruction can be
through well-known techniques for memory data dependence prediction, such as memory address predic-

ed on

redicted.

If there is

con-

rchitec-

anisms

lues can

ontext

s are

s is also

eached.

pawning

instruc-

at exe-

ditional

re read

ad will

thread

ore the

thread

oon as

nisms

s and
Interthread Data Dependence Management 49

tion and pair identification. In this thesis, synchronization mechanisms for memory values are bas

memory address prediction[20]. Thus, the addresses that a speculative thread is to access are p

Then, such addresses are compared with those that are to be accessed by less speculative threads.

a match, a memory dependence is predicted and the last-write instruction is identified.

Finally, hardware support for forwarding the dependent values from the producer thread to the

sumer is required. Such hardware is different for register and memory values and depends on the a

tural platform of the speculative multithreaded processor. Thus, clustered processors will need mech

to communicate the values among the different thread units whereas in a centralized processors va

be shared by the different contexts. In this latter case, it is only necessary to notify to the consumer c

that the dependent value is now available and where it can find it.

In the next subsections, different approaches for implementing the synchronization mechanism

discussed. A case study for a speculative multithreaded processor that speculates on loop iteration

analyzed.

3.3.1. Identifying the Last Write in a Thread Input Location

Speculative multithreaded processors spawn new speculative threads when a spawning point is r

The spawned speculative thread starts at the control quasi-independent point associated to that s

point and then, both threads proceed in parallel. Let denote thread A as the thread that executes the

tions between the spawning and the control quasi-independent point and thread B as the thread th

cutes the instructions beyond the control quasi-independent point. Also, assume that there are no ad

speculative threads running in the processor.

The thread input values of speculative thread B are all the registers and memory locations that a

before they are overwritten. The registers and memory locations that are written before they are re

be referred to asdead locations.

Regarding the thread input values of thread B, they can be classified into two groups: those

input values that are produced by thread A, and those thread input values that are produced bef

spawning of the thread B. The thread input values of these latter group can be forwarded directly to

B at the spawn time whereas the values of the first group have to be forwarded from thread A as s

they are produced. As only the input values of the first group will affect the performance, the mecha

presented in this Chapter are only targeted to this group. For short, we refer to it as live-in value
includes any thread input value of a spawned thread that is not available at thread creation.

hese

. As it

iler or

ver,

rmine

ndences,

gressive)

. One

nces and

ed by

ed by

.

it has

to the

for-

hen the

ime.

s. To

e con-

ontains

write

at the

.1 the

ep the

ation

regis-
50 CHAPTER 3

Thus, the last-write instruction for each of the live-in values have to be identified in thread A. T

last-write instructions will be located between the spawning and the control quasi-independent point

was previously commented, these last-write instructions can be detected statically by the comp

dynamically at run-time based on previous executions of the speculative threads.

The compiler can determine which will be the last-write instructions for each live-in register. Howe

regarding live-in memory values, as it was pointed out, compilers are usually unable to statically dete

which addresses are to be accessed and when a dependence will occur. To deal with memory depe

different static approaches can be considered such as assuming always independence (the most ag

or assuming always dependence (the most conservative).

The use of profile information may help the compiler to predict if there are memory dependences

technique proposed to detect memory dependences consists in keeping track on previous depende

identify pairs of stores and dependent loads. If a load instruction usually depends on a store perform

a previous thread, the execution of the load should be delayed until the store instruction is perform

the producer thread[50][51]. Then, the value is forwarded from the producer to the consumer thread

Once the compiler has identified all the last-write instructions for each of the thread input values,

to mark them. There are different methods to implement that, such as including some special hints

last-write instructions or introducing new instructions in the instruction set architecture to explicitly

ward the values. Such instructions may also be used to forward the rest of the thread input values w

new speculative thread is spawned, that is, the thread input values that are available at the spawn t

On the other hand, last-write instructions can also be identified with totally dynamic mechanism

do that, a table containing information about the instructions executed between the spawning and th

trol quasi-independent point for each spawning pair is necessary. Thus, each entry of the table c

information for only one spawning pair. Such entries should keep which instructions perform the last

for each of the thread input value. In fact, depending on the spawning policy, it is not necessary th

entries of the table hold information for all the architected registers since at it was shown in figure 3

average number of live-in registers is much lower. For memory values, the entries of the table ke

memory addresses that have been written and the instruction pointers of the store instructions.

For register values, to detect if an instruction in thread A is a last-write instruction for the destin

register, its instruction pointer has to be compared with the one stored in the table for the destination

ter of the instruction.

e con-

will be

reased

follow-

n keep-

diction

can be

g the

ored in

ifferent

ware

ferent

unt of

awning

t sub-

d.

thread-

n starts.

exploit

ns, all

at con-
Interthread Data Dependence Management 51

A similar technique that does not compare the instruction pointer of each instruction can also b

sidered. In this technique, each entry of the table holds the number of writes for each register that

performed in thread A. Thus, every time a write is performed on a given register, the counter is dec

and when it becomes 0 and the value is forwarded to the consumer thread.

For memory values, a mechanism based on predicting the addresses that are to be accessed in

ing executions of the threads is considered. The memory address prediction mechanism is based o

ing track of the effective addresses generated for each static store instruction. Using a simple pre

scheme such as a stride predictor, about 75% of the memory instructions executed by the Spec95

correctly predicted.

Nevertheless, the control flow taken to reach the control quasi-independent point after visitin

spawning point may vary among the different executions of the thread and, therefore, the values st

the table may change from one execution to the other. To avoid that, the processor may allocate d

entries for each of the different control-flows. However, this significantly increases the amount of hard

required since the size of the entries is not negligible. Moreover, if the spawning policy has many dif

spawning pairs, a huge table would be required.

Therefore, it seems that a hardware-only solution is not feasible since it requires a huge amo

hardware to be implemented. Anyway, for spawning schemes that results in a reduced number of sp

pairs that usually follow the same control flow, hardware mechanisms can still be suitable. In the nex

section, a hardware-only mechanism to identify last-write instructions for loop iterations is presente

3.3.1.1. Case Study: Identifying Last-Write Instructions for Loop Iterations

Spawning speculative threads at loop iterations is a very common scheme to obtain speculative

level parallelism. In this case, the processor spawns a new speculative thread every time an iteratio

Details about the goodness of this spawning policy will be thoroughly analyzed in the next Chapter.

Spawning speculative threads at loop iterations has the main advantage that the processor can

some kind of temporal locality. Since speculative threads are spawned for several of the loop iteratio

these speculative threads will use the same spawning pairs. In this case, we will refer to the table th

tains information about the spawning pairs asloop iteration table[77]. The temporal locality of this loop

ration

ge, the

nches

uasi-

n and

f the

n by

the

ritten

sters

the

er of

read

nd each

nd the

n iter-
52 CHAPTER 3

iteration table can be observed in Figure 3.2. This figure shows the hit ratio of an 8-entry loop-ite

table in a speculative multithreaded processor with 4 thread units. It can be observed that on avera

hit ratio of the loop iteration table is about 90%.

A speculative thread can be uniquely identified by the spawning pair and the direction of the bra

performed within it. In the case of loops, the instruction pointer of the spawning and the control q

independent point is the same, so the identifier consists in the instruction pointer of such instructio

the control flow taken. Then, this table is indexed by the thread identifier (some hash function o

instruction pointer of the spawning point and information regarding the control-flow that will be take

this thread) and each entry contains the following fields:

• LNRW (Last Number of Register Writes): This field is an array of a number of entries equal to

number of architected registers. For each register it indicates the number of times that it was w

in the last execution of the iteration. In fact, it is not necessary to take information for all the regi

since the number of written registers per loop iteration is about 5.

• CNRW (Current Number of Register Writes): This field is similar to the LNRW but it refers to

current execution of the loop iteration, which has not finished yet.

• LSA (Last Store Addresses): This field is an array with a number of entries equal to the numb

store instructions in the last iteration of the loop. The functionality of this field is to detect interth

memory dependences through address prediction. Memory addresses are quite predictable a

entry of the LSA has the instruction pointer of the store instruction, the last address accessed a

stride among consecutive accesses. Then, the number of writes a memory location will have in a

ation can be calculated from this array.

co
m

pr
es

s

gc
c go

ijp
eg li

m
88

ks
im pe
rl

vo
rt

ex

G
m

ea
n

0

20

40

60

80

100

%
 h

it
 r

at
io

Figure 3.2. Hit ratio of the loop iteration table with 8 entries.

ctions

ds. In

in dif-

ources

i-inde-

able if:

red in the

thread

into

strides

table.

infor-

in the

f the

aving a

cy but

e access

ctural

uctions
Interthread Data Dependence Management 53

• CSA (Current Store Addresses): This field contains the memory addresses of the store instru

executed so far in the current iteration.

• C (Confidence): This field assigns confidence to the predictions done using the previous fiel

some way, this is similar to assigning confidence to a branch predictor. It can be implemented

ferent ways (for instance, a 2-bit saturating counter among others). This field avoids to spend res

when the data required by a speculative thread is not highly predictable.

When a thread that is in the table finishes its execution, that is, it has reached the control quas

pendent point, the predictability of the thread has to be determined. Thus, a loop iteration is predict

• LNRW is equal to CNRW,

• LSA and CSA have the same number of elements,

• The addresses accessed in the CSA are equal to the previous addresses accessed that are sto

LSA plus the stride.

If all these conditions are true, the C field is increased; otherwise it is decreased. A speculative

is considered predictable is the most significant bit of C is set. At the end of a loop, CNRW is copied

LNRW and the LRNW is reset, the addresses stored in the CSA are also stored in the LSA and the

are recomputed.

Thus, when a spawning point is reached, it is checked if the corresponding loop iteration is in the

If not, the speculative thread is not allowed to be spawned and a new entry is allocated in the table. If

mation about that loop iteration is in the table, the thread is spawned and the information stored

LNRW field is used to determine when the last write on a dependent register will occur.

3.3.2. Forwarding Register Values

The implementation of the register forwarding mechanism will depend on the architectural platform o

speculative multithreaded processors and the way the register file is implemented. For instance, h

centralized and huge register file with local register map tables provides lower communication laten

the access time to the registers is increased. On the other hand, a clustered register file reduces th

time but it requires the forwarding of the values from one cluster to the other.

In the following subsections, approaches to forward dependent register values for both of archite

platforms studied in the previous Chapter are presented. Assume in both cases that last-write instr

or loop

regis-

ssors.

has its

rs that

h map

int of

r map

to any

denote

d with

e logical

alized

wned

and the

control

entry

ointer

ir exe-

NIL

gister

and a

have to
54 CHAPTER 3

are known. Finally, a model to forward register values based on the hardware approach explained f

iterations is also analyzed.

3.3.2.1. Register Forwarding for Centralized Speculative Multithreaded Processors

In this subsection, the case of a totally shared register file is investigated. The case of partitioning the

ter file for the different speculative threads will be studied in the next subsection for clustered proce

In this case, the processor has a huge register file that is shared by all the threads. Each thread

own register map table with as many entries as number of architected (also called logical) registe

indicates the current physical register allocated to the corresponding logical register. Notice that eac

table reflects a different assignment of logical to physical registers, corresponding to a different po

the execution.

For those logical register whose value is not available, their corresponding entry in the registe

table contains a special value, NIL, that indicates that this logical register is not currently mapped

physical register. Also, there are additional bits for each entry in the register map table. These bits

whether the first operation performed over the register has been a read or a write.

When a speculative thread is spawned, the register map table of the spawned thread is initialize

the same values as the register map table of the parent thread. The entries that correspond to thos

registers that will be written between the spawning and the control quasi-independent point are initi

to NIL. Both read and write bits are cleared for all the entries of the register map table of the spa

thread.

Let us assume again that thread A is the thread that executes instructions between the spawning

control quasi-independent point and thread B is the one that executes instructions beyond the

quasi-independent point. Thus, when a last-write instruction is found in thread A, the corresponding

in the register map table has to be copied to thread B. If thread B entry contains the value NIL, the p

to the physical register is copied and all the instructions that are waiting for this operand can start the

cution as soon as they are chosen by the selection logic. If this entry contains a different value from

but it has the write bit set, that is, the first operation performed by the speculative thread over that re

was a write, no operation is done. However, if the read bit is set, a misspeculation has occurred

recovery mechanism has to roll back the processor to a safe state and all the dependent instructions

be reexecuted with the correct value.

ap of

m the

ential

read is

sub-

eaded

s any

thread-

odel

between

pawned

ons can

for the

future

hen all

ad has

n in a

In this

able of

er map

a new

vious

ion is

share

y other
Interthread Data Dependence Management 55

When thread A finishes its execution, it is checked whether there is any entry in the register m

thread B that contains the value NIL. If so, the corresponding entry of the register map is copied fro

previous thread to the following one.

Finally, the spawning model affects the required hardware for forwarding register values. In sequ

thread ordering, speculative threads are created in program order and only the most speculative th

allowed to spawn a new one. This kind of ordering fits very well with the mechanism described in this

section and it can be implemented with no modifications.

Nevertheless, sequential thread ordering strongly constrains the ability of speculative multithr

processors to exploit speculative thread-level parallelism. The unrestricted spawning model allow

speculative thread to create new speculative threads and it potentially can exploit more speculative

level parallelism. However, the register forwarding logic becomes more complex for this spawning m

than for the sequential thread ordering.

When a thread spawns a new speculative thread and there are some other speculative threads

the spawner and the spawned thread, it is possible that any of the thread input values for the new s

speculative thread have been already computed by any of the intermediate threads. Then, two soluti

be considered. The former one consists in initializing the register map table in the same manner as

sequential thread ordering. In this case, thread input registers that have already been forwarded to

threads are to be received by the spawned thread when it becomes the non-speculative. That is, w

the intermediate threads have committed their values it is realized that the new non-speculative thre

an entry in the register map table initialized to NIL.

The second solution consists in looking up if any of the intermediate threads has already writte

thread input register and has attempted to forward it, (i.e., it has performed a last-write instruction.)

case, the corresponding entry of the register map table is initialized to the entry of the register map t

the speculative thread that has computed it. To do that, it is necessary an additional bit in the regist

table that indicates whether a last-write instruction has been performed for each logical register.

Finally, the logic to free a physical register has also to be modified. The rename logic allocates

physical register to a logical register each time an instruction that is to write on it is decoded. The pre

physical register assigned to this logical register is stored in the reorder buffer. When this instruct

committed, the previous physical register is freed for a future use. In our case, different threads may

the same physical register and the processor has to avoid that a physical register that is still in use b

ber of

ounter

is freed.

. This

r. If so,

d. Oth-

are sim-

ndow

in the

e val-

tion net-

en the

quasi-

ext for

f the

read

ter by

as not

itions

at indi-

re pro-

located.

know at
56 CHAPTER 3

threads become free. To do that, adding a counter for each physical register that indicates the num

threads that are working with it can be considered. Thus, when an instruction is committed, the c

associated to the physical register is decreased and when it becomes 0, then the physical register

A different approach consists of checking if a register is in use by any other speculative thread

happens when the corresponding entry of the register map table is pointing to such physical registe

the physical register cannot be freed and its deallocation will be done when such thread is committe

erwise, the physical register is deallocated.

3.3.2.2. Register Forwarding for Clustered Speculative Multithreaded Processors

Clustered speculative multithreaded processors are made up by several thread units. Each of them

ilar to a superscalar core, in such a way they have their own functional units, their own instruction wi

and their own register file. The main advantage of having a distributed register file is the reduction

access time. The major drawback of such kind of architectures is the impossibility to physically shar

ues. Thus, clustered designs require that dependent values have to travel through the interconnec

work from the producer thread unit to the consumer one.

Let assume again thread A spawns thread B. Then thread A executes the instructions betwe

spawning and the control quasi-independent point and thread B the instructions beyond the control

independent point. Thus, when thread B is spawned, it is allocated in an idle thread unit and the cont

this thread is initialized. This initialization includes the register file and the register map table o

assigned thread unit.

The simple way to initialize both structures is just copying the contents of both tables from the th

unit of thread A to the thread unit of thread B. In this way, those values that are not to be produced la

thread A are copied to the register file of thread B.

The live-in registers of thread B that are not available allocate a physical register but are marked

available.

An approach to reserve entries in the register file for live-in register values is to maintain the pos

they actually have in use in the parent thread. Besides, each physical register has a reservation bit th

cates whether it contains a valid value. The major drawback for this approach is that when values a

duced and forwarded to the consumer thread, the value has to be stored in the physical register al

Therefore, when a value is received by a thread unit, the register map table has to be accessed to
which physical register the value has to be stored.

ry reg-

is-

endent

ble are

live-in

le. In

ed to

ulation

a mis-

ne and

is nec-

corre-

lation

sides, a

live-in

d in the

e way

s sub-

regis-

endent

How-

uctions

same

refore,

t, the

forward-

cation

g one.
Interthread Data Dependence Management 57

A second approach is to use a second register file for the incoming register values. This seconda

ister file is referred to aslive-in register file. This live-in register file has as many entries as logical reg

ters. However it can also be implemented with a fewer number of entries since the number of dep

values is usually low. When a speculative thread is created, the register file and the register map ta

copied from the parent thread excepting those positions of the register map table associated to the

register. Those positions are initialized pointing to the corresponding entries in the live-in register fi

this way, when a last-write instruction is found in the thread A, the value of such register is forward

thread B and the value is stored in their corresponding entry of the live-in register file.

Write and read bits are also used for detecting register dependence misspeculations. A misspec

occurs when a thread consumes a value before it is forwarded from a previous thread. Therefore,

speculation can be detected if a value is forwarded form the producer thread to the consumer o

thread B has already consumed it. To implement the mechanism to detect misspeculation a new bit

essary for each entry of the register map table which is the dependent bit. This bit indicates if the

sponding entry has been initialized to an entry of the live-in register file. Therefore, a misspecu

occurs when a thread unit receives a value which logical register has the dependent bit cleared. Be

misspeculation occurs if the dependent and the read bit are set and the corresponding entry of the

register file has the reservation bit set. This happens when a valid value has been previously store

live-in register file and it has been read.

However, the main difference between the centralized and the clustered design resides in th

instructions that try to overwrite a thread input register are treated. It was commented in the previou

section that in centralized processors, such instructions are not allowed to be renamed since live-in

ters do not have any physical register allocated until the producer is renamed. Therefore, dep

instructions do not know from which location they have to read the value when it becomes available.

ever, in clustered processors live-in registers already have a physical location allocated. Thus, instr

that depends on a live-in register can be hold in the instruction window waiting for the value in the

manner conventional instructions wait for register values that have not been produced yet. The

instructions that overwrite a live-in register can be renamed normally.

Obviously, this technique can also be applied to the centralized register file. To implement i

spawned thread can allocate as many registers as live-in registers at thread creation. Nonetheless,

ing values becomes more complex. Now, the value has to be copied to its corresponding physical lo

instead of just copying the pointer from the register map table of the producer thread to the followin

of the

unre-

tralized

located

alues

ber of

wning

e well

.

m for

that the

t has its

is-

hich is

es to

uctions

ructions

A

58 CHAPTER 3

Regarding the thread spawning model, the same problem analyzed for the centralized version

speculative multithreaded processor may occur here. The hardware support needed for allowing

stricted thread ordering creation in clustered processors is very similar to the one needed for the cen

version but in this case, the value has to be copied from the producer thread unit to the thread unit al

for the spawned speculative thread.

3.3.2.3. Case Study: Register Forwarding for Loop Iterations

In subsection 3.3.1.1 a hardware mechanism to identify the last-write instructions for thread input v

for the loop-iteration spawning scheme was presented. This method consists in counting the num

writes performed at each storage location by a loop iteration. The execution model of this spa

scheme works in a similar way for both a centralized and a clustered design, even though it fits quit

into a clustered processor whose thread units are interconnected by means of an unidirectional ring

Regardless of the topology and the implementation of the processor, the forwarding mechanis

register values is quite similar. In this subsection a centralized processor is assumed. However, note

implementation in a clustered processor will be very similar.

Assume a centralized processor with a huge register file shared by all the contexts. Each contex

own register map table. We will refer to these tables asRmap, with different subindices to identify different

threads when necessary. A Rmap entryr may contain a special value, NIL, that indicates that logical reg

ter r is not currently mapped to any physical register. In addition, each thread has another table, w

calledRwrite(register write table), that contains for each logical register the number of remaining writ

that register.

Let us assume again thread A and thread B; thread A spawns thread B and it executes the instr

between the spawning and the control quasi-independent point whereas thread B executes the inst

beyond the control quasi-independent point.

To explain how these tables work, let RmapA and RmapB denote the register map table of the thread

and the register map table of the thread B respectively. Similarly, RwriteA and RwriteB refer to the register

write tables.

When a speculative thread is spawned, the RwriteA is initialized with the values of the LNRW field of

the corresponding entry in the loop iteration table. For each logical registerr, if RwriteA[r] is zero, then no

writes are expected to registerr. In this case, RmapB[r] is initialized with RmapA[r]. In other words, if no
writes are expected to a given logical register, all the threads will share the same physical location for that

hether

when

gister

d). If

How-

l

its an

log-

sue.

ough a

lar pro-

d by

reg-

er-

tion

ns
Interthread Data Dependence Management 59

register. As it was mentioned previously, each physical register has a reservation bit that indicates w

it contains a valid value. When a new free physical register is allocated, its reservation bit is reset and

a result is written into the register, the reservation bit is set. If RwriteA[r] is zero, then all instructions of the

spawned thread that have registerr as a source operand are allowed to be issued as soon as the re

RmapA[r] is written (it could have already been written when the speculative threads are create

RwriteA[r] is not zero, then RmapB[r] is initialized to NIL.

When a thread decodes an instructionwith destination logical registerr, a new free physical register is

selected and its identifier is stored into Rmap[r] (if there are no free registers, the thread is stalled).

ever, if the Rmap[r] is equal to NIL, this instruction is not allowed to be renamed and it has to stall.

On the other hand, when an instructions with destination registerr is committed, the previous physica

register to which registerr was mapped is freed and Rwrite[r] is decreased. Assume that thread comm

instruction whose destination register is r. Depending on the value of RwriteA[r] the following actions are

taken:

• If RwriteA[r] is equal to 0, then the current instruction is expected to be the last one that writes to

ical registerr. If RmapB[r] is equal to NIL, then RmapA[r] is copied into RmapB[r]. In other words,

the free physical register assigned tor can be shared by threadsA andB. Note that the reservation bit

of such physical register is reset. When the instruction of threadA writes into it, it will be set and

instructions of threadB that have that physical register as a source operand will be allowed to is

In this way, the synchronization between two threads required to obey a data dependence thr

register is implemented using the conventional mechanisms already present in most supersca

cessors. Note also that if RmapB[r] is not equal to NIL and the write bit is set, threadB must have

found a write to registerr before a read. In this case, it is obvious that the new register allocate

threadA must not be shared with threadB. If the read bit is set and RmapB[r] is not equals to NIL, a

misspeculation has occurred.

• If RwriteA[r] is lower than 0, then the current thread is going to perform a non expected write to

isterr and a misspeculation has occurred.

When threadA finishes, if some entryr of the Rwrite table is greater than zero, then the thread has p

formed less writes to registerr than predicted. If there is a subsequent thread executing the next itera

and RmapB[r] is equal to NIL, then RmapA[r] is copied into RmapB[r]. That is, the free physical register to

which logical registerr is mapped at the end of threadi becomes visible to the next thread since it contai
the last value written by threadi onto that logical register.

with

ter

wning

omplex.

unable

n time.

nd thus,

. A vio-

pecula-

ve an

wed to

, hard-

other

ry state

is thread

lations

through

s for

h of the

ulti-

memory

applied.

artition
60 CHAPTER 3

When a speculative threadB is squashed, all physical registers allocated to it that are not shared

the previous thread are released. That is, for each logical registerr, if RmapB[r] is different of RmapA[r],

then RmapB[r] is freed. In addition, for each instruction currently in the local reorder buffer with a regis

destination, the previous mapping for such register is also freed.

It can be observed that this model of forwarding register values only works for the sequential spa

model. It can also be adapted for the unrestricted spawning model even though it becomes much c

3.3.3. Forwarding Memory Values

Thread memory input values are more difficult to detect than registers. In many cases, compilers are

to statically determine the memory addresses that will be accessed by the program at executio

Mechanisms proposed to detect the last-write instruction on which a load depends are speculative a

hardware mechanisms to detect interthread memory dependence violations have to be implemented

lation occurs when a thread performs a store on a memory location that has been read by a more s

tive thread.

In addition to the problems to detect dependent memory thread inputs, memory instructions ha

special behavior on speculative multithreaded processors. Only the non-speculative thread is allo

write in main memory whereas speculative threads must keep all their stored values locally. Then

ware has not only to provide support for forwarding dependent memory values from one thread to the

but it also has to provide support for detecting misspeculations and keeping the speculative memo

for the speculative threads. If a thread does not have space to store its speculative memory state, th

either has to stall its execution until it becomes the non-speculative thread or has to be squashed.

In fact, these requirements are the same as for register forwarding. However, register misspecu

are not as frequent since compiler can almost totally determine the interthread data dependences

registers.

Different solutions to provide support for keeping different versions of the same memory location

each speculative thread can be considered. The simplest one is based on a local memory for eac

speculative threads. This solution fits very well into the clustered implementation of speculative m

threaded processors. However, the values stored in these local caches cannot be written into main

until the thread becomes non-speculative. For a centralized processor, the same solution can be

Thus, different caches can be used for each of the contexts to store the local memory values. The p
into local caches can be physical, that is, the processor has as many local caches as contexts it may support

e cache

(cache

uced

wever,

mory.

g the

lines

s com-

mplex

essors

sumer

hread

depen-

a mul-

te of the

tial con-

t mem-

s weak

quential

y order

mon is

rocessors

o load

t to the

read. If

emory
Interthread Data Dependence Management 61

or logical, that is, threads are only allowed to access to a subset of a big cache. In this latter case, th

can be partitioned statically (each speculative thread has a fixed part of the cache) or dynamically

space is assigned on demand).

A problem that appears with this solution of maintaining different caches is the peak traffic prod

when a thread is committed. When the non-speculative thread commits, it has to free its context. Ho

before freeing the local cache, all the dirty lines of the local cache have to be copied into the main me

As it was commented in the previous Chapter, a different solution can be taken. Instead of flushin

local cache into main memory when a thread is committed, the peak traffic can be avoided if the dirty

are marked with a special tag. Then, when the new thread requires to replace a line, that is marked a

mitted, it updates the main memory. In this way, the peak traffic is reduced even though it is more co

to detect memory misspeculations.

In addition to mechanisms for storing the speculative values, speculative multithreaded proc

have to provide support for forwarding dependent memory values from the producer to the con

thread. Fortunately, similar problem is present on multiprocessors for exploiting non-speculative t

level parallelism and lots of works have been proposed to solve this problem.

Memory consistency protocols are mechanisms that have been proposed to deal with memory

dences in multiprocessors with distributed caches. In order to correctly execute parallel processes in

tiprocessor, memory operations have to be performed in some order that guarantee that the final sta

memory is the same that if the process has been executed sequentially. That is referred to as sequen

sistency[35]. Sequential consistency may be either strong or weak. Strong consistency denotes tha

ory operations have to be performed in the same order than for the sequential execution wherea

consistency means that the order may differ from the sequential one, but it does not damage the se

operation. That is, the memory operations of the different concurrent threads can be executed in an

among them if they do not affect to the behavior of the sequential execution.

Hundreds of works have been proposed to maintain the sequential memory ordering. Most com

based on sending to the memory bus information about the addresses accessed by each thread. P

snoop the bus to know if such information may affect their execution. In our case, if a thread needs t

a value from a memory location and such value is not present in the local cache, it sends a reques

threads that are executing previous code. If any of them has the value, it is sent to the requester th

not, the value is read from main memory. On the other hand, when a thread stores a value on a m

then a

In this

nd LSA

etween

easily

of traf-

sitions

d it will

) is

thread

com-

y are

ment

t the

ue for

redict

the cor-
62 CHAPTER 3

location, it notifies to the following threads. If any of the successor threads have loaded the value,

dependence violation has occurred.

3.3.3.1. Case Study: Memory Forwarding for Loop Iterations. The MultiValue Cache

Spawning threads at innermost loop iterations is implemented by means of a loop iteration table.

case, the information related to memory addresses accessed by each iteration is held in the CSA a

fields. In the LSA field, in addition to store the last address accessed by the last iteration, the delta b

of the two last memory addresses is stored.

Then, the number of times a memory position will be accessed by a speculative thread can be

computed. In this way, the processor can try to make use of such information to reduce the amount

fic of the classical snoop consistency protocol. Load instructions that are to access to memory po

that are to be written by less speculative threads are not issued until the value is produced.

This can be achieved with a special first level data cache. This cache has some particularities an

be referred to as theMulti-Value (MV)cache. The distinguishing feature of a MV cache (see figure 3.3

that its data words are replicated for each context (maximum number of threads). In this way, each

may have a different view of the contents of memory. Another important feature is that it stores non

mitted values and does not allow to modify the next memory level (here called the L2 cache) until the

committed. This is implemented by means of a write-back policy together with a particular replace

scheme (explained below).

For each replicated word, the MV cache contains two additional fields: the number of writes tha

corresponding thread is expected to perform (NW) and a bit indicating whether it contains a valid val

the corresponding thread (V).

When a thread creates a speculative thread, the LSA field of the loop iteration table allows to p

the addresses into which the spawner threads are going to write. For each predicted write address,

Figure 3.3. :The multi-value cache for a SM processor with four thread units.

Multi-value cache

value0 V0 NW0 value1 V1 NW1 value2 V2 NW2 value3 V3 NW3address P

in the

thread,

field

whereas

f the

heme.

ble and

same

res are

ion reg-

g data

that

cache

ent, a

(this

lation

onsist

tions

ache

mes

differ-

that

rred.

he is

se when
Interthread Data Dependence Management 63

responding line is allocated in the MV cache if not present. If some thread has not enough entries

MV cache, it cannot be speculated. When a new cache line is allocated due to a predicted write of a

its contents is initialized with the current data (obtained from L2) for all the multiple copies. The NW

of the corresponding thread is set to 1 and the V fields of the thread and the preceding ones are set

the V fields of succeeding threads are reset. If the line is already in the MV cache, the NW field o

thread is increased and its V bits of the succeeding threads are reset.

Then, each thread executes memory instructions out-of-order using a total disambiguation sc

That is, memory instructions compute their effective address as soon as their operands are availa

then are sent to a load/store buffer. Stores write to memory when all the previous instructions of the

thread have completed whereas loads read from memory when the addresses of all previous sto

known. If the load matches a previous store address the store data is forwarded to the load destinat

ister; otherwise the read is performed from memory.

When a thread performs a read from memory, the MV cache is checked first. If the correspondin

line is in the MV cache, it will contain a different copy for each thread. If the data corresponding to

thread has its V bit set, then this value is read. Otherwise, the load is cancelled and stored in aload wait

queue. Loads from this queue are tried again in idle cycles of the MV cache. If the corresponding

line is not in the MV cache, the data is read from L2. Optionally, if there is a candidate for replacem

new line can be allocated into the MV cache, with all its valid bits set and the NW fields equal to zero

will speed up further accesses to the same line).

When a thread performs a write and the corresponding line is not in the MV cache, a misspecu

may have occurred because this write was not predicted. A recovery action is initiated which may c

of a partial or a full squash. A more powerful solution would be to keep track of memory reads opera

to exactly determine if a misspeculation has really occurred. The new line is brought into the MV c

with all the V bits set and all the NW fields equal to zero.

If the line corresponding to the written data is in the MV cache, its NW field is decreased. If it beco

zero, the data is copied to succeeding threads, from the next one to the first that has either NW or V

ent from zero (excluded). In addition, if the following thread has the V bit reset, it is copied also into

thread. The V bits of these threads are set. If it becomes negative, a misspeculation may have occu

When a thread finishes (or is squashed), if the corresponding NW field of any line of the MV cac

greater than zero it is reset to zero, and the value is propagated to succeeding threads as in the ca

se, all

existent

zero

nsid-

is only

cessary

itional

uld just

ds the

eads in

when

hreads

read

h inter-

ndences,

er files

sk, the

er file to

ypassed

 it.

stered

value

he local
64 CHAPTER 3

the counter becomes zero. This occurs when some predicted write did not actually occur. In this ca

dependences have been obeyed but there may be loads of succeeding threads waiting for a non

write.

A line of the MV cache can be considered for replacement only if all its NW fields are equal to

(this will be always the case when all the speculative threads have finished). If the line is dirty, it is co

ered for replacement if in addition there are not speculative threads. This ensures that the L2 cache

updated with committed values. Deadlock is guaranteed not to happen since new lines are only ne

to be allocated at speculative thread creation. During speculative thread execution, bringing add

lines into the MV cache is an optional feature that will increase performance.

To reduce the pressure on the L2 cache when speculative threads are created, the MV cache co

initialize the V bits and add a single bit per memory address, which is calledpresence bit(P), that indicates

whether the data has been brought from L2. Initially this bit is reset and when a read operation fin

corresponding V bit set but the P bit reset, the data is read from L2 and propagated to succeeding thr

the same way as when the NW field becomes zero after a write.

The MV cache can also be implemented in a distributed way. This implementation requires that

a speculative thread is spawned, all the memory locations with the NW greater than 0 of previous t

allocate a new position in the local MV cache and set their V field to 0. This is done in order not to

from this memory location until the value has been produced by the corresponding thread.

3.3.4. Related Work

Some speculative multithreaded architectures have used synchronization mechanisms to deal wit

thread data dependences, especially for memory values. Regarding interthread register data depe

the Multiscalar uses a distributed register file[3] to store the different speculative states. Such regist

are divided into three parts, the current register file that holds the current register values for that ta

previous register file that holds the values produced by the previous tasks and the subsequent regist

store the values of the succeeding tasks for future allocated tasks. Dependent register values are b

from the producer thread to their successors when a task has performed the last-write operation on

Similarly, the Synchronizing Scoreboard[34] proposed by Krishnan and Torrellas considers a clu

version of the register file but the consumer thread is allowed to initiate the forward operation if the

has been produced before the speculative thread is spawned. To do that, for each logical register t
scoreboard has additional bits to know if the value is already available for the successor threads. Thus, the

for all

n deeply

sily iden-

wn are

ory ref-

t is per-

olution

Both

ction and

ct mis-

previous

ct when

read. In

stud-

all the

thread

ore the

y Dis-

essor

even

address

tems, a

viola-

depen-
Interthread Data Dependence Management 65

consumer thread knows if the requested register has been produced. This information is replicated

the scoreboards in the thread units.

Regarding interthread memory dependences, the use of data dependence speculation has bee

studied to speculate on dependences through memory since dependences through registers are ea

tified by both the compiler and the hardware. Memory references whose effective address are unkno

usually called ambiguous references. When memory instructions are executed out-of-order, a mem

erence may be performed before the effective address of all previous references are known, that is, i

formed without completely disambiguating the reference. This scheme is used by the address res

buffer of the Multiscalar[17] and the address reorder buffer of the HP PA8000[28] among others.

approaches use a very simple speculation heuristic: they assume no dependence between an instru

any previous instruction whose effective address is unknown.

The Address Resolution Buffer may be implemented centralized or clustered and is used to dete

speculations. A misspeculation occurs when a task writes to an address that has been read by a

task.

Another approach is the Speculative Versioning Cache by Gopalet al[23]. This proposal uses distrib-

uted caches for the different thread units and uses the snoopy bus-based coherence protocol to dete

a previous task produces a value on a location that has been already read by a more speculative th

that work, the problem of having to completely flush the local caches when a thread commits is also

ied. To avoid the burst traffic when a thread is committed, the values are not written into memory but

lines are marked as dirty committed state. Those cache lines are written to memory when the local

requires that line. To avoid that speculative threads that have written to the same memory location st

value in different order, a new bit per cache line is necessary (the stale bit).

Another mechanism proposed to detect memory misspeculations is based on the MDT (Memor

ambiguation Table) and was initially proposed by Krishnan and Torrellas for an on-chip multiproc

[34]. This table may be incorporated to the L2 shared cache and it would be similar to a directory

though due to its small size, it can be considered separately. This table stores for each accessed

which operations have been performed by all the concurrent threads in the processor. For bigger sys

clustered version, the GMDT, has also been proposed by the authors in [5].

Unlike previous models that are hardware-based schemes for detecting memory dependence

tions, Rundberg and Stenström proposed a software approach to deal with interthread memory

ultiple

d a spec-

ith per-

erfect

awned

hmark

timi-

illion

llowing

inte-

opied

p to 4

lations

be 3
66 CHAPTER 3

dences[62]. To do that, the compiler associates to each shared variable a data structure to allow m

threads to access to it. When memory dependences cannot be disambiguated, speculative loads an

ulative stores use this structure.

3.3.5. Performance figures

Next figures correspond to the execution of a clustered speculative multithreaded processor and w

fect synchronization mechanisms, that is, there is a perfect last-write instruction prediction and a p

dependence prediction for memory values.

The spawning policy is the loop iteration spawning scheme, that is, speculative threads are sp

for each loop iteration.

Performance statistics are obtained through trace-driven simulation of the whole SpecInt95 benc

suite. Programs were compiled with the Compaq compiler for an AlphaStation 600 5/266 with full op

zation (-O4) and instrumented by means of the Atom tool[70]. For the statistics, we simulated 300 m

of instructions after skipping initializations. The programs are executed with theref input data.

The clustered speculative multithreaded processor has 16 thread units and each one has the fo

features:

• Fetch: up to 4 instructions per cycle or up to the first taken branch, whichever is shorter.

• Issue bandwidth: 4 instructions per cycle.

• Functional Units (latency in brackets): 2 simple integer (1), 2 memory address computation (1), 1

ger multiplication (4), 2 simple FP (4), 1 FP multiplication (6), and 1 FP division (17).

• Reorder buffer: 64 entries.

• Local branch predictor: 14-bit gshare[40]. Local branch prediction tables are assumed to be c

from the parent thread to the new spawned thread at spawning time.

• 32 KB non-blocking, 2-way set-associative local, L1 data cache with a 32-byte block size and u

outstanding misses. The L1 latencies are 3 cycles for a hit and 8 cycles for a miss.

In the next figures, the cost of spawning threads is assumed to be zero. Memory dependence vio

are detected by means of a MultiVersion Cache based on the Speculative Versioning Cache[23].

The delay of forwarding a value from the producer thread unit to the consumer is assumed to
cycles for memory values and 1 cycle for registers. In the ring topology, the penalty considered for bypass-

wever,

to the

d, the

specu-

ge, the

of this

stered

or only

quential

d

ifferent

es of

vary
Interthread Data Dependence Management 67

ing the value is 1 cycle per hop. Larger delays for bypassing register values can be considered. Ho

the major cost of this mechanism is not the penalty cost of forwarding the value from one thread unit

other but waiting for their computation in the producer thread

Performance is by default reported as the speed-up over a single-threaded execution.

Figure 3.4 shows the speed-up achieved by the synchronization mechanism. As it is expecte

highest results are achieved by the unrestricted thread ordering since it can potentially exploit more

lative thread-level parallelism. However, the differences among them are not so significant. On avera

unrestricted thread ordering outperforms the sequential thread ordering just by a 30% and the most

improvement is due tocompress .

Nevertheless, the most important conclusion that can be extracted from that figure is that a clu

speculative multithreaded processor with 16 times more resources than the superscalar process

achieves for the most aggressive spawning scheme a speed-up of 43% and only 11% for the se

thread ordering. Besides, some benchmarks likevortex only have a 5% improvement for the unrestricte

thread ordering and perfect synchronization mechanisms.

As it will be shown in next Chapter, interthread data dependences can be reduced by selecting d

spawning pairs. However, it seems that for applications like SpecInt95 which present low degre

instruction level parallelism, the results obtained with other spawning policies do not significantly

from those presented for the loop-iteration scheme.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

H
m

ea
n

SpecInt95

0

1

2

3

Sp
ee

d-
U

p

Sequential
Unrestricted

Figure 3.4. Speed-up over single-threaded execution of a clustered speculative multithreaded pro-
cessor with 16 thread units and perfect synchronization mechanism.

tions is

data

gressive

ocessor.

instruc-

eir per-

of the

e been

ethods

upper

dences is

ion and

that val-

nisms

ey are

pecula-

reexe-

ted to

reaking

d for the

super-

cost of

hand,

uch as
68 CHAPTER 3

Thus, it seems that refining the synchronization mechanisms to reduce the possible misspecula

not worthy since its potential is very low. The main conclusion of this subsection is that interthread

dependences strongly affect the performance of speculative multithreaded processors and more ag

mechanisms to deal with them have to be proposed in order to make use of the resources of the pr

3.4. VALUE PREDICTION

SpecInt95 benchmarks are a set of applications that usually provides low degree of both thread and

tion level parallelism. It has been shown on several works that data dependences strongly affect th

formance.

Synchronization mechanisms are good to ensure the correctness of the speculative execution

applications. Instructions of speculative threads do not start their execution until their operands hav

produced. Thus, the performance that speculative multithreaded processors can achieve with this m

is limited by the critical path of the data dependence chain. To achieve performances beyond the

bound due to data dependences, a mechanism that breaks the serialization imposed by data depen

required.

Data value speculation is a technique that has been proposed to relieve the cost of this serializat

to boost up the performance of superscalar processors. This technique is based on the observation

ues tend to repeat or follow a known pattern over a large fraction of time. With appropriate mecha

such values can be correctly predicted. Predicting the input/output operands of instructions before th

available allows the processor to start the execution of those instructions and their dependent ones s

tively. If the prediction is not correct, the predicted instruction and its dependent ones have to be

cuted with the corresponding correct value. However, if the value is correctly predicted, the work rela

such instructions has been anticipated and an improvement on the performance is produced. Also, b

the data dependence graph increases the number of eligible independent instructions to be selecte

issue logic and produces a better usage of the resources of the processor.

Some studies on value prediction have shown that the performance potential of this technique in

scalar processors approaches to a linear function of the hit ratio of the predictors. Therefore, the

improving the value predictor does not justify the performance improvement achieved. On the other

such study concludes that the performance potential of this technique is greater in other platforms s

multithreaded processors[22].

readed

times

threads

epen-

ds can

erfect

r the

owever,

for the

an the

eed-ups

tion.

single-

redict-

higher

multi-

n, the
Interthread Data Dependence Management 69

In the previous section it has been shown that the performance achieved by a speculative multith

processor with a perfect synchronization mechanism hardly achieves a 40% improvement with 16

more hardware than a superscalar processor. Such poor results are due to the fact that speculative

have to wait for the computation of the dependent value. Value prediction may help to break such d

dences and if the values that flow from one thread to the other are correctly predicted, then both threa

proceed in parallel as if they were independent.

Figures 3.5 shows the performance potential of speculative multithreaded processors with p

value prediction with 4 and 16 thread units. In both cases, perfect value prediction is applied fo

sequential and the unrestricted thread ordering and for register and register and memory values. H

the hardware for synchronization is required for early detect mispredictions. Statistics are obtained

loop iteration spawning scheme.

As it is expected, the most aggressive thread ordering benefits more from value prediction th

sequential thread ordering. In fact, the sequential thread ordering scheme achieves very poor sp

anyway, lower than 2 when all live-in values are correctly predicted for the 16-thread unit configura

For the unrestricted thread ordering, only predicting register values achieves speed-ups over

threaded execution higher than 2 for the 4-thread-unit configuration and close to 4 with 16 threads. P

ing both register and memory values can boost the performance up to 2.7 with 4 thread units and

than 6x for 16 thread units on average.

Therefore, these impressive averages demonstrate that value prediction may help speculative

threaded processors to exploit high degrees of speculative thread-level parallelism. In this sectio

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg

pe
rl

vo
rt

ex

H
m

ea
n

SpecInt95

0

1

2

3

4

Sp
ee

d-
U

p Register (Sequential)
Reg&Mem (Sequential)
Register (Unrestr.)
Reg&Mem (Unrestr.)

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg

pe
rl

vo
rt

ex

H
m

ea
n

SpecInt95

0

5

10

15

Sp
ee

d-
U

p Register (Sequential)
Reg&Mem (Sequential)
Register (Unrestr.)
Reg&Mem (Unrestr.)

Figure 3.5. Performance potential of a speculative multithreaded processor with perfect value prediction
for register and memory values and both thread ordering schemes for a) 4 thread units and

a) b)
b) 16 thread units.

dictor

perfor-

s of an

a pat-

ation

n and

same

8][64]

mbina-

e seen

cutive

er hand,

value

values

s.

the

multi-

on the

ay, a
70 CHAPTER 3

impact of realistic value predictors only for register values are considered. Moreover, a new value pre

specially designed for these architectures, the increment value predictor is presented.

3.4.1. Related Work

Value prediction is a technique that has been largely studied in the past, especially to improve the

mance of superscalar processors. This technique consists in predicting the input or output operand

instruction and it is based on the observation that such input/output operands tend to repeat or follow

tern. Mechanisms for value prediction try to capture that pattern based on tables that store inform

reflecting the history that has been observed in the recent past.

First proposal on value prediction was the last value predictor, presented by Lipasti, Wilkerso

Shen[37][38]. This simple predictor assumes that the next value an instruction will produce is the

value as in its previous execution.

Afterwards, more complex value predictors have been proposed such as the stride predictor[1

and the finite context machine (FCM) context-based[65] value predictor among others, and some co

tions of them to obtain hybrid value predictors[87]. The stride predictor speculates that the new valu

by an instruction is the sum of the last value and a stride, which is the difference between two conse

values. The predicted stride is replaced when a new stride has been seen twice in a row. On the oth

the FCM predictor considers that values follow a repetitive sequence, and thus, estimates the new

based on the sequence of previous values of the same instruction operand.

A similar approach for FCM context-based value predictor was proposed by Goeman etal. in the Dif-

ferential FCM context-based[19] value predictor. In this predictor, instead of storing the sequence of

produced by an instruction, it is stored the stride among them in order to detect sequences of stride

Some other value predictors make their prediction using control-flow information by correlating

values with the direction of branches[51].

3.4.2. Value Prediction for Speculative Multithreaded Processors

This subsection is devoted to analyze the behavior of value prediction in the context of a speculative

threaded processors. As it was shown, the performance of this type of architecture strongly depends

ability to predict the input or output values of speculative threads.

First of all, it is necessary to determine which values are needed to be predicted[4]. In this w
thread input value is defined as a value (in a register or memory location) that is consumed by the specula-

nner, a

thread.

values

, they

d and

ut the

tride

These

hread

gives

erations

Obvi-

stride

re 3.6

on

put

i

d.

of the

ress in

ction

identi-
Interthread Data Dependence Management 71

tive thread (the thread uses it without having been computed by the same thread). In the same ma

thread output value is defined as a value (in a register or memory location) that is computed by the

Thus, the analysis of value prediction focuses on thread input or output values, since these are the

that flow through inter-thread dependences.

Depending on how value predictors perform the prediction of the thread input or output values

can be classified into those that exploit correlation with past values of the same instruction operan

those that exploit correlation with values of the same trace. The former are calledinstruction-based value

predictors while the latter are calledtrace-based value predictors.

Instruction-based value predictors have in common that their history tables store information abo

values seen by individual instruction operands. Well-known predictors are the last value (LV), s

(STR), context-based (FCM) and hybrid schemes such as the stride-context (HYB-S) predictor.

value predictors have been thoroughly studied in the context of superscalar and VLIW processors.

The performance of instruction-based value predictors can be improved if information about the t

to which the instruction operand to be predicted belongs is also included in the history tables. This

way to the so-called trace-based value predictors. Threads being considered in this paper are loop it

that the thread speculation unit of the speculative multithreaded processor delimits for speculation.

ously, this kind of predictors can be used for any other type of speculative threads.

Let us see a common case where instruction-based value predictors fail. The instruction-based

predictor behaves badly when consecutive loop traces follow different paths of the same loop. Figu

shows an example where threads TA, TA, TB and TA are consecutively executed and Ri is the destinati

operand produced by instructions at PCA and PCB. Consider also that these instructions compute an out

thread value. The stride predictor would speculatively compute the value of Ri in the last thread (R4) as

the last value produced by the same instruction (Ri2) plus the stride computed for that instruction operan

This may give an incorrect value since thread TB modifies the value of Ri.

For instruction-based predictors, the history tables are indexed through the instruction address

operand to predict. If a source operand is to be predicted, a bit is appended to the instruction add

order to identify each source operand. A destination operand is directly identified by its instru

address. We refer to this indexing scheme asPC-based indexing.

Trace-based value predictors access the history tables through a thread identifier and a operand
fier (e.g. register identifier). For threads, we have considered a pseudo-identifier that consists of the instruc-

the

d their

uction

g, PC-

ded to

e. This

enta-

nd the

instruc-

e accu-

on the

ond to
72 CHAPTER 3

tion pointer of the spawning point along with a bit vector with the result of all conditional branches in

thread. It is not a unique identifier because a thread can have indirect unconditional branches, an

branch target addresses are not considered. We refer to this indexing scheme astrace-based indexing.

Note that trace-based predictors could alternatively index the history tables based on the instr

address of the producer (resp. first consumer) of the output (resp. input) value. Both types of indexin

and trace-based indexing, are considered for trace-based predictors.

Finally, note that the instruction-based predictors presented in the previous section can be exten

correlate their predictions with previous instances of the same instruction operand in the same trac

extension to convert them into trace-based predictors only requires minor modifications in the implem

tion, namely, the indexing function in the history table should consider both the instruction address a

trace identifier.

3.4.3. The Increment Predictor

A stride predictor computes a difference between two consecutive values of an operand at the same

tion address. Writes to the same storage location produced between these two instructions affect th

racy of the predictor. Instead, it may be better to base the value prediction of a storage location

difference (the increment) of its value between two given points of the execution that always corresp

the same high-level structure, such as the beginning and the end of a loop iteration.

TA

TB

TA

Ri2 <-...

Ri3 <-...

Ri4 <-...

Ri4 = Ri2 + STRIDE(PCA) Ri4 = Ri3 + INCREMENT(TA,Ri)

Figure 3.6. Stride and increment predictors: a) 4 consecutive traces (TA, TA, TB and TA) which ref-
erence register Ri; b) predicted value of Ri4 using a stride predictor; c) predicted value

PCA

PCB

PCA

{
{
{

(a)

(b) (c)

TA{ Ri1 <-...PCA
of Ri4 using the increment predictor.

at the

thread

dicted

,

dered to

redictor

d by

down

s and

d. The

ed in

s were

4),

illions

age size

62%

of data

d out-
Interthread Data Dependence Management 73

The increment predictor predicts every thread output value as the value of that storage location

beginning of the thread plus an increment. This increment is computed as the value at the end of the

minus the value at the beginning of the thread in previous executions of the same trace. The pre

increment is updated when a new increment has been seen twice in a row.

Regarding figure 3.6, note that the value of Ri3, which is an output value of thread TB is also the value

of register Ri at the beginning of the fourth thread (TA). In this way, the value Ri4 is predicted as Ri3 plus

the increment observed for this register in thread TA in the past. Ri3 may in turn contain a predicted value

which was computed as Ri2 plus the increment observed for this register in thread TB in the past. This

scheme may be more accurate than an instruction-based predictor, since different traces are consi

update operands in a different way.

Besides, a hybrid scheme composed of the proposed increment predictor and a context-based p

(HYB-I) will also be analyzed. For hybrid predictors, the choice between the two predictions is guide

confidence fields located in each individual predictor, which are implemented by means of 3-bit up/

saturating counters.

3.4.4. Prediction Accuracy

This subsection analyzes the accuracy of the different value predictors for the two indexing function

different table capacities. The differences in predictability of inputs and outputs are also investigate

objective is to devise the configurations with most potential, whose impact on IPC will be later analyz

subsection 3.4.6.

In this section we use a trace-driven simulation of the SecInt95 benchmark suite. The program

compiled with the Compaq/Alpha compiler for an AlphaStation 600 5/266 with full optimization (-O

and instrumented by means of the Atom tool. Programs used the reference input data during 300 m

of instructions after skipping the initializations.

Regarding the speculative threads that are being considered in this analysis, they have an aver

of 36 instructions. Moreover, instructions belonging to innermost loop iterations represent almost the

of total instructions. Individual data for every program is depicted in Table 4.1.

3.4.4.1. Predicting Register Values through PC-Based Indexing

A proper selection of the values to be predicted may have an important impact on the performance

value speculation techniques. We first compare the difference in predictability between trace input an

values

at the

re xor-

able is

egister

accu-

since

quires

istory

es are

% of

ictor

ybrid

type

nd the
74 CHAPTER 3

put values. Note that predicting the outputs of previous loop traces is another way to obtain the input

of a loop trace. Value predictors being analyzed here use a PC-based indexing mechanism.

In all figures presented for FCM predictors (included the hybrid version) we have considered th

VHT contains the last 3 values and these values are 0-bit, 2-bit and 4-bit shifted, respectively, befo

ing them in order to obtain the index to the VPT. We also assume that the number of entries in each t

the same.

Figure 3.7.a shows the prediction accuracy for trace input register values whereas trace output r

values are analyzed in Figure 3.7.b. The impact of the capacity of the history tables on the prediction

racy is depicted along the X-axis. The INCR and HYB-I predictors are not depicted for input values

they only predict trace output values.

As observed for superscalar processors, a FCM can achieve a high prediction accuracy but it re

very large history tables. LV and STR predictors can achieve a better accuracy for small-sized h

tables. For large tables, the LV predictor is the least accurate. A remarkable result is that input valu

more predictable than output values (70% of inputs for a 64-KB table using a STR predictor and 60

outputs using a HYB-I predictor with the same capacity). Another important result is that a STR pred

outperforms an INCR predictor by around a 10%. The difference in performance of the respective h

predictors is not so high; in fact, HYB-I has a slightly advantage over HYB-S which suggests that the

of patterns predicted by the STR and the FCM have more overlap than those predicted by the INCR a

FCM.

instr in loop iterations instr / loop iteration

go 44.30 % 40.57

m88ksim 83.00 % 54.26

gcc 54.36 % 32.09

compress 74.99 % 16.19

li 38.82 % 25.87

ijpeg 81.93 % 43.38

perl 52.19 % 50.90

vortex 75.75 % 247.33

AVERAGE 61.73 % 36.13

Table 4.1.Loop iteration statistics.

at are

ready

be the

curacy

e out-

uts and

that of

.a, to

YB-I

.

versus

an dis-

verage

f input

e thread

once,
Interthread Data Dependence Management 75

Nonetheless, among all the inputs or outputs of a trace, only the prediction accuracy of those th

used speculatively will have an impact on performance. In other words, if a given input or output is al

available at the time it is used, or an output is never utilized, the performance of the processor will

same regardless of the result of its prediction. To estimate this effect, we compute the prediction ac

for those input values produced by any of the previous 3 threads that run concurrently with it and thos

put values consumed by any of the following 3 threads. We refer to these values as distance-3 inp

outputs respectively.

For distance-3 inputs (see Figure 3.8.a), the prediction hit rate diminishes when compared with

predicting all values (it goes from 70% for a 64-KB HYB-S predictor as it can be seen in figure 3.7

60%). However, for distance-3 output values (see Figure 3.8.b), this trend is reversed. A 64-KB H

predictor increases the prediction accuracy by 20% when compared with its accuracy for all outputs

This is due in part to the fact that threads have in average more register outputs than inputs (8.2

5.0), as shown in Figure 3.9. However, the average number of distance-3 register outputs is lower th

tance-3 register inputs. The figure also includes statistics for memory values, showing that the a

number of distance-3 memory inputs and outputs is rather low. The difference between the number o

and outputs resides in that an output can be used by more than one speculative thread. That is, if th

input values are individually predicted, it is possible that a single value is to be predicted more than

Figure 3.7. Predicting register values of loop traces using PC-indexed predictors: a) trace input val-
ues; b) trace output values.

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

HYB-I
HYB-S
INCR
STR
FCM
LV

(a) (b)

uts only

for

ences

in sec-

en if the
76 CHAPTER 3

one for each speculative thread that uses the same values. On the other hand, predicting the outp

requires to predict the value once.

Another remarkable fact is that the INCR predictor outperforms the STR predictor by about 10%

distance-3 output values. This is explained by the fact that the stride predictor suffers from interfer

from other instructions with different addresses that write to the same storage location, as discussed

tion 3.4.2, whereas these interferences are avoided by a trace-based predictor such as the INCR, ev

indexing function uses only the instruction address.

Figure 3.8. Predicting distance-3 values of loop traces using PC-indexed predictors: a) input val-
ues; b) output values.

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

HYB-I
HYB-S
INCR
STR
FCM
LV

(a) (b)

Figure 3.9. Average number of inputs/outputs and distance-3 inputs/outputs per trace.

all
 in

pu
ts

all
 ou

tpu
ts

dis
tan

ce
-3

 in
pu

ts

dis
tan

ce
-3

 ou
tpu

ts
0.0

2.0

4.0

6.0

8.0

10.0

nu
m

be
r

of
 v

al
ue

s

memory
register

es, the

nd its

ment

3.10

ate for

YB-S

ut val-

hole

(16

r the

naly-

YB-I,
Interthread Data Dependence Management 77

As conclusions up to this point, for a speculative multithreaded architecture based on loop trac

most predictable values are trace outputs. Moreover, the INCR predictor for small sized tables a

hybrid version, the HYB-I predictor, for larger tables outperform the other value predictors. An incre

predictor can achieve a quite high hit rate with very small tables (73% for a 1 KB table).

3.4.4.2. Predicting Register Values through Trace-Based Indexing

For trace-based predictors, the thread identifier can be included in the indexing function. Figure

shows the prediction accuracy for distance-3 input/output vales. It can be observed that the hit r

input values decreases when compared with PC-based indexing (60% for a 64-KB PC-indexed H

versus 50% for the trace-indexed version of the same predictor). However, the performance for outp

ues increases. Although the INCR predictor obtains a similar performance (73% hit rate for the w

range of table capacity), the HYB-I predictor can achieve a 80% hit ratio with relatively small tables

KB in total). This is mainly caused by the significant performance boost of trace-based indexing fo

FCM predictor, which is due to the benefits of using different value sequences for different traces.

As conclusions of this analysis on prediction accuracy, the four selected predictors for a further a

sis are those with the highest prediction accuracy for a moderate-sized history table (16 KB): H

INCR, HYB-S and FCM, with a trace-based indexing function.

Figure 3.10. Predicting distance-3 values of loop iterations using trace-based indexing: a) input val-
ues; b) output values.

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

HYB-I
HYB-S
INCR
STR
FCM
LV

(a) (b)

tly pre-

arallel.

for 1-

I pre-

ictors

d pro-

values

r has to

ulative

possi-

ation of
78 CHAPTER 3

Figure 3.11 shows the percentage of speculative threads whose all distance-3 outputs are correc

dicted. This gives an estimation of the percentage of traces that can be executed as if they were p

Note that many traces can be parallelized due to value prediction, even with small predictors (50%

KB INCR predictor). With large history tables, this percentage can be as much as 70% when a HYB-

dictor is used.

3.4.5. Microarchitectural Issues on Value Prediction

In previous subsection, the ability to predict the thread input/output values of different value pred

have been shown. In this section how to implement this value predictors in a speculative multithreade

cessor is described.

This implementation is related to the time when the predictions are generated and speculative

are verified. Regarding the prediction, when a new speculative thread is created, the value predicto

supply the predicted values for the thread input register/memory locations to the new spawned spec

thread. This may cause a peak of predictions when the speculative thread is created.

Finally, regarding the verification of the prediction, this process has to be performed as soon as

ble. Thus, recovery mechanisms will early proceed in case of misspeculations and also, the propag

the mispredicted value to other speculative threads is avoided.

Figure 3.11. Percentage of traces that have all their distance-3 output values correctly predicted.

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

co
rr

ec
tl

y
pr

ed
ic

te
d

lo
op

 t
ra

ce
s

HYB-I
HYB-S
INCR
FCM

oint is

an idle

, which

redic-

ontrol

9] pre-

s has

l-flow

rrelat-

many

e that it

at the

e ele-
Interthread Data Dependence Management 79

3.4.5.1. Initializing Speculative Threads.

Speculative multithreaded processors behave like a superscalar processor until a spawning p

reached. At this point, a new speculative thread can be spawned. First of all, it is necessary to find

thread unit to allocate the new spawned thread. Then, input values are predicted.

It has been shown that there are some value predictors, such as the increment value predictor

require to know the control flow taken by the speculative thread in order to do the prediction. Such p

tion implies to anticipate the outcome of all the conditional branches between the spawning and the c

quasi-independent point. To do that, a control-flow predictor based on the Path-based Next-Trace[2

dictor can be used. This predictor works similarly to a FCM context-based value predictor and it i

made up of two tables: a correlating table which contains the lastn control-flows taken after such thread

and a secondary table which holds the predicted next control flow.

Figure 3.12 shows the prediction miss ratio of a Path-Based predictor to predict the whole contro

for loop iterations. The sizes of the tables considered are 1K-entry secondary table and 8K-entry co

ing table which stores the last 3 paths. For comparison, an ideal gshare which is able to predict as

branches as a loop trace is also depicted in the graph. Such thread predictor is idealized in the sens

is assumed to predict multiple branches for the whole control-flow of a thread. It can be observed th

control-flow misprediction for the Path-Based predictor is quite elevate. It is closer to 24% and quit

co
m

pr
es

s

gc
c go

ijp
eg li

m
88

ks
im pe
rl

vo
rt

ex

G
m

ea
n

0

10

20

30

40

50

%
 lo

op
 t

ra
ce

 m
is

pr
ed

ic
ti

on

Path-Based
Gshare

Figure 3.12. Control-flow misprediction for the Path-based and the ideal gshare for loop itera-
tions.

nce

ntly of

t drop

is just

of the

l flow

d by a

d pre-

ter of

tudy of

con-

ences,

spec-

or that

er are

spec-

r those

r it) are

ted.

ow of

. These

egister.

given

t have

y have
80 CHAPTER 3

vate for some benchmarks likego andgcc which reaches a 40% misprediction. Besides, its performa

is quite far from the ideal gshare which only mispredicts 14% of threads.

Fortunately, most of the live-in values use the same stride or follow the same pattern independe

the control-flow taken by the thread. In this way, a low hit rate does not necessarily imply a significan

in the value prediction accuracy. Experiments have shown that on average, the misprediction rate

increased by 10% compared with a perfect next-thread predictor.

When a thread reaches a spawning point and there is an idle thread unit, the live-in values

spawned thread have to be correctly initialized. If the value predictor requires to know the contro

associated to that thread, a prediction regarding its control flow is done. Such predictor is indexe

hash function of the instruction pointers of the spawning and the control quasi-independents point an

dicts the sequence of the conditional branch outcomes. With this prediction and the instruction poin

the spawning and the control quasi-independent point, the value predictor is indexed. In the case s

loop iterations, the value prediction information can be stored in the loop iteration table. This table

tains the history for each trace, which is used to predict output register values and memory depend

among other things. If the predicted thread is not currently in the loop iteration table, the spawning of

ulative threads is aborted. Otherwise, the corresponding entry of the loop iteration provides a bit vect

identifies the output registers of the trace. In other cases, the information regarding which regist

input/output may be encoded in the spawn instruction.

In parallel to these actions, the register map table is copied from the previous thread. In clustered

ulative multithreaded processors, the whole register file has also to be copied. Then, the values fo

registers that are expected to be written by any previous thread (according to the predictions done fo

predicted. That is, only those registers whose values are not available at thread creation are predic

In order to make those predictions, a series of instructions are inserted into the instruction wind

the speculative thread. These instructions are responsible for computing the predicted data values

instructions can be arithmetic operations such as adding the corresponding increment or stride to a r

If the processor uses a context-based or a last value predictor, such instructions can be “move” a

value to a given register. These instructions will be executed as normal instructions and they do no

more priority than the others. If the previous threads have already computed all their outputs, or the

been predicted, these instructions will immediately execute since their operands are ready.

rder to

lue of

is nec-

es.

on an

ble.

ulative.

take a

e value

know

as for

for-

If val-

approach

ncur in

correct

enom-

valida-

ecula-

sor are

3.3.5 is
Interthread Data Dependence Management 81

3.4.5.2. Verifying the Predicted Values.

When a thread becomes the non-speculative one, all the predictions done have to be verified in o

know if the program is being executed correctly. These verifications consist of checking that the va

the predicted registers at the end of the committed thread match the predicted values. To do that, it

essary that speculative threads store the predicted values in order to be compared with the real on

For this purpose, the inserted instructions for predicting the values also store the produced value

especial table which is referred to asRegister Prediction Table. Thus, to perform the verification, the value

of the registers at the end of the non-speculative thread are compared to the values stored in this ta

The verification process can be done at the moment the speculative thread becomes non-spec

This late verification might cause that the cost of mispredictions be very elevate since threads can

long time to become non-speculative. Thus, such high misspeculation cost requires very accurat

predictors in order to obtain any benefit.

Another approach consists of performing the verification as soon as the values are produced. To

when a value is computed by the producer thread, the processor can use the last-write instruction

synchronization mechanisms. In this way, when a last-write instruction is committed, the value is

warded to the consumer thread and it is compared with that stored in the Register Prediction Table.

ues are not the same, a misspeculation has occurred and a recovery mechanism has to start. This

allows the processor to early detect misspeculations and reduce the cost of them. However, it may i

false misspeculations, that is, a speculative thread may forward speculative values that are in

whereas in the first approach, the forwarded values are always correct. Different solutions for this ph

ena can be considered such as allowing only the non-speculative thread to forward values for early

tion but in fact, false misspeculations are quite uncommon.

Finally, regarding the recovery mechanisms, they can be a simple squash of all the following sp

tive threads or a selective reissuing of the dependent instructions.

3.4.6. Performance Figures

In this subsection, different register value predictors for a clustered speculative multithreaded proces

evaluated. To evaluate the performance of the processor, the configuration detailed in subsection

used.

apsed

Note

n the

instruc-

endent

ulative

r over a

el. On

ion are

llelism

nalyzed.

thread

nsumer.

results

ain fea-
82 CHAPTER 3

The size of the value predictor is fixed to 8KB and the misprediction penalty considered is the el

time until the correct value is available plus an extra cycle to forward the correct value plus 1 cycle.

that the average number of cycles waiting for the computation is in general significantly larger tha

other two factors. Moreover, a selective reissue mechanism is also considered, i.e. only dependent

tions of the mispredicted value have to be re-executed. Memory values are not predicted and dep

values are forwarded from the producer to the consumer with a delay of 3 cycles by means of a Spec

Versioning Cache.

Figure 3.13 shows the speed-up achieved by the clustered speculative multithreaded processo

single-threaded execution for different register value predictors and the unrestricted spawning mod

average, the losses due to a realistic value predictor in comparison with perfect register value predict

16% for the loop iteration spawning scheme. Overall, the benefits of speculative thread-level para

are still quite high. The loop-iteration model achieves an average speed-up of 2.84.

3.5. CONCLUSIONS

In this chapter different mechanisms to deal with interthread data dependences are proposed and a

The former approach consists of stalling the execution of dependent instructions of a speculative

until the producer thread has computed the corresponding values and has forwarded them to the co

Different mechanisms based on hardware and software techniques are studied even though the

reported by a speculative multithreaded processor with perfect synchronization are quite poor.

Value prediction is presented as a mechanism to deal with interthread data dependences. The m

Figure 3.13. Speed-up for the different value predictors and for the loop-iteration spawning policy.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

H
m

ea
n

SpecInt95

0

2

4

6

8

Sp
ee

d-
U

p Increment
Stride
Context-Based
ture of this mechanism is its ability to break the dependence chain between the speculative threads so that

redic-

type of

putes a

nds on

Output

-based

y with

redic-

cInt95

this

es that

e next
Interthread Data Dependence Management 83

both can be executed as if they were independent. The performance of different well-known value p

tors is studied for speculative multithreaded architectures and a new value predictor targeted to this

architectures, which is referred to as increment predictor, is presented. The increment predictor com

new value for a thread output as its value at the beginning of the thread plus an increment that depe

the control-flow that thread will follow.

Experimental results have shown the importance of choosing the correct values to be predicted.

trace values are more predictable than inputs. Moreover, trace-based indexing outperforms PC

indexing. We have also shown that the increment predictor obtains the highest prediction accurac

small-sized history tables. This accuracy is increased for larger history tables by means of a hybrid p

tor that combines an increment predictor and a context-based predictor. Average hit ratio for Spe

ranges from 73% to 84% depending on the capacity of the history table.

Overall, the main conclusion of this chapter is that value prediction plays an important role on

kind of architectures since it helps to break interthread data dependences. Different spawning schem

take into account the predictability of the interthread data dependent values will be analyzed in th

Chapter.

	3
	Interthread Data Dependence Management

	3.1. Introduction
	3.2. Interthread data dependences
	Figure 3.1. Average number of input and live-in input values (through register and memory) for th...

	3.3. Synchronization Mechanisms
	3.3.1. Identifying the Last Write in a Thread Input Location
	3.3.1.1. Case Study: Identifying Last-Write Instructions for Loop Iterations
	Figure 3.2. Hit ratio of the loop iteration table with 8 entries.

	3.3.2. Forwarding Register Values
	3.3.2.1. Register Forwarding for Centralized Speculative Multithreaded Processors
	3.3.2.2. Register Forwarding for Clustered Speculative Multithreaded Processors
	3.3.2.3. Case Study: Register Forwarding for Loop Iterations

	3.3.3. Forwarding Memory Values
	3.3.3.1. Case Study: Memory Forwarding for Loop Iterations. The MultiValue Cache
	Figure 3.3. : The multi-value cache for a SM processor with four thread units.

	3.3.4. Related Work
	3.3.5. Performance figures
	Figure 3.4. Speed-up over single-threaded execution of a clustered speculative multithreaded proc...

	3.4. Value Prediction
	Figure 3.5. Performance potential of a speculative multithreaded processor with perfect value pre...
	3.4.1. Related Work
	3.4.2. Value Prediction for Speculative Multithreaded Processors
	Figure 3.6. Stride and increment predictors: a) 4 consecutive traces (TA, TA, TB and TA) which re...

	3.4.3. The Increment Predictor
	3.4.4. Prediction Accuracy
	Table 4.1. Loop iteration statistics.
	3.4.4.1. Predicting Register Values through PC-Based Indexing
	Figure 3.7. Predicting register values of loop traces using PC-indexed predictors: a) trace input...
	Figure 3.8. Predicting distance-3 values of loop traces using PC-indexed predictors: a) input val...
	Figure 3.9. Average number of inputs/outputs and distance-3 inputs/outputs per trace.

	3.4.4.2. Predicting Register Values through Trace-Based Indexing
	Figure 3.10. Predicting distance-3 values of loop iterations using trace-based indexing: a) input...
	Figure 3.11. Percentage of traces that have all their distance-3 output values correctly predicted.

	3.4.5. Microarchitectural Issues on Value Prediction
	3.4.5.1. Initializing Speculative Threads.
	Figure 3.12. Control-flow misprediction for the Path-based and the ideal gshare for loop iterations.

	3.4.5.2. Verifying the Predicted Values.

	3.4.6. Performance Figures
	Figure 3.13. Speed-up for the different value predictors and for the loop-iteration spawning policy.

	3.5. Conclusions

