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INTERTHREAD DATA DEPENDENCE
M ANAGEMENT

In this chapter, interthread data dependences are shown to be one of the most limiting factors in the perfor-
mance of speculative multithreaded processors. Two approaches for dealing with interthread data depen-
dences are presented. The first one consists in synchronizing the consumer and the producer thread. This
synchronization requires to identify which are the dependent values, when are to be produced and hard-
ware some to forward them. The second proposal is based on data speculation and tries to predict the val-
ues that flow from the spawner to the spawned thread. Different value predictors are analyzed and a new
one, that is called increment predictor, is presented. This predictor uses the control-flow taken by the spec-
ulative thread to make its predictions. Finally, the impressive performance of the processor with relatively
small-sized value predictors leads to the conclusion that value prediction plays a crucial role on such kind

of architectures.
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3.1. INTRODUCTION

Speculative multithreading has been presented as a technique to reduce the execution time of sequential
code by means of partitioning it into speculative threads that run concurrently. These speculative threads
are obtained relaxing the constraints for parallelization, in such a way that those threads are both control
and data dependents among them. That is, their execution may depend on the execution of the previous

threads.

It will be shown in the next Chapter that the performance of speculative multithreaded processors
depends on the effectiveness of the partitioning mechanism. Anyway, it is quite obvious that the best places
where speculative threads should be created are those where the resultant speculative threads are both con-
trol and data independent on the previous ones. Thus, the concurrent execution of these speculative threads
will be completely in parallel. However, as it is expected, such kind of speculative threads are almost

impossible to find, specially for irregular or non-numerical applications.

Therefore, as independent threads are rarely found, a speculative multithreaded processor has to pro-
vide mechanisms to deal with such dependences, both data and control dependences. The way such depen-
dences are managed will strongly affect the performance of such processors. Thus, very conservative
mechanisms will override any possible benefit. Besides, speculative multithreaded processors have to pro-

vide roll-back mechanisms to return the processor to a safe state in case of misspeculations.

A speculative thread is control dependent on a previous thread if its execution depends on the control
flow taken by the latter. The penalty for executing control-misspeculated threads is that the work done by
such threads becomes useless and important resources such as the thread units are wasted. For instance, if
the processor spawns speculative threads at loop iterations, these threads are control dependent among
them since their execution is control dependent on the outcome of the backward branch that closes the
loop. If any of the speculative threads does not take this backward branch, a control misspeculation occurs.

Then, all the following speculative threads have to be squashed.

The impact of interthread control misspeculations can be significantly reduced by means of a good
partitioning policy. Spawning pairs have to meet some criterias to effectively provide speculative thread-
level parallelism and one of them is related to control independence: the probability to reach the control
quasi-independent point after visiting the spawning point should be very high. In this way, speculative
threads are only spawned at parts of the program that are very likely to be executed and most of the specu-

lative threads spawned are correctly control speculated.
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On the other hand, a speculative thread is data dependent on previous threads if it consumes any value
produced by at least one of them. Thus, a interthread data misspeculation may occur when a speculative
thread uses a value before an older thread produces it. Therefore, when an interthread data dependence is
violated, the offending thread executes instructions with incorrect values and the results produced by such
thread are useless. In this case, the processor may squash the offending thread and its successors. However,
it is not necessary to squash the whole speculative thread and more aggressive mechanisms can be imple-
mented. For instance, the processor can just reexecute those instructions of the offending thread that

depend on the misspeculated value.

The penalty paid for misspeculating on interthread data dependences depends on the time required for
detecting the misspeculation. If dependent values are only verified when the non-speculative thread com-
mits, misspeculations will be detected very late and obviously, the penalty will be very high. Such penalty

can be significantly reduced if misspeculations are checked as soon as values are produced.

As for interthread control dependences, spawning schemes can help to reduce the impact of interthread
data dependences (shown in the next Chapter). However, analyzing interthread data dependences is more
difficult than interthread control dependence. In applications that present low instruction-level parallelism
such as irregular and non-numerical applications, data dependences are very common and they are the
most limiting factor on the performance of the processor. Therefore, partitioning the program into data
guasi-independent threads is almost impossible in such kind of applications and mechanisms to deal with

such dependences have to be provided.

In this Chapter, two different proposals to deal with interthread data dependences are presented. The
first one forwards the dependent value from the producer thread to the consumer one as soon as it is pro-
duced. This mechanism will be referred to schronization mechanisrithe latter proposal is more
aggressive and the potential results are also more promising. This proposal consists in breaking the inter-
thread data dependences by means of predicting the values that flow from the producer threads to the con-
sumer ones. If all the data dependent values are correctly predicted for a given speculative thread, it can be
executed as if it was independent. The performance of different value predictors in this kind of microarchi-
tecture are studied in this chapter. Besides, a new value predictanctieenent value predictoiis pre-
sented. This predictor takes into account the control-flow followed by the speculative threads to perform

the value predictions. This scheme results in very huge performance results.

This Chapter is organized as follows. Section 3.2 introduces the concept of live-in value and describes

different mechanisms to deal with interthread data dependences. The synchronization mechanisms for both
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register and memory values are discussed in section 3.3. Section 3.4 analyzes the use of value predictors
and presents a new one that is the increment value predictor. Finally, section 3.5 summarizes the main con-

clusions of the Chapter.

3.2. INTERTHREAD DATA DEPENDENCES

Speculative threads execute different pieces of the dynamic instruction stream in different hardware con-
texts. In order to produce any benefit, such speculative threads have to use the input values that will be pro-
duced by its predecessor threads. That is, speculative threads will only produce a correct result if they are

executed with a concrete state of the architected registers and the memory.

A problem occurs when any of these values, either register or memory, are not available at the moment
of the thread spawn. In this thesis, two approaches to deal with interthread data dependences based on
speculation techniques are studied. The first one is based on data dependence speculation[13][50]. Data
dependence speculation allows the speculative execution of instructions without an exact knowledge of the
dependences with previous instructions. Those dependences that are unknown are predicted and the code is
speculatively executed obeying the predicted dependences, in addition to the known dependences. When

actual dependences become known, a recovery action is initiated in case of any dependence violation.

The second approach is based on data speculation ([37][13][64][8] among others). Note that data spec-
ulation is different from data dependence speculation. Data dependence speculation predicts the depen-
dences whereas data speculation predicts the value that flows through the dependences. Thus, data
speculation is a more powerful technique since it can eliminate the dependence whereas data dependence
speculation does not break the dependence chain, it just avoids the execution of an instruction that may

cause a wrong execution.

Predicting the initial values for each logical register or any memory location is unfeasible, especially
for all the memory locations. However, it is not necessary to know the initial value for all the architected
registers or memory locations. For instance, some of them are not consumed by the speculative thread. In
this thesis, we will refer to those values that are consumed by a speculative thread and they are not pro-

duced by itself aBve-in input valueor thread input values
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Figure 3.1. Average number of input and live-in input values (through register and memory) for the
loop-iteration spawning scheme.
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The left bar of figure 3.1 shows the average number of thread input values for each of the programs of
the SpecInt95. Statistics have been collected for a 4-thread unit clustered speculative multithreaded proces-
sor that spawns speculative threads at each loop iteration. It can be observed that the average number of
thread input values is on average greater than 10 and for some benchmaxkstike , these number is

considerably high (slightly higher than 20 thread input values).

Nevertheless, there is no need to predict all the thread input values when a speculative thread is cre-
ated. Only those thread input values that are not available when the speculative thread is to consume it,
have to be predicted. In other words, if a given thread input value is already available at the time it is used,
the right value will be used regardless of the prediction outcome. That is, the performance of the processor
is related to the prediction accuracy of those input values that are produced by the latest previous threads.
As an approximation of this, we have computed the average numléstahce-3 input value@nput val-

ues produced by any of the previous 3 threads).

It can be observed in figure 3.1 (the right-most bar) that the average number of distance-3 values is in
average only 3.7, significantly lower than the thread input values. It is also remarkable than the average
number of distance-3 memaory values has dramatically dropped off to less than 1 and in some benchmarks
like go, ijpeg andvortex is almost negligible. The reduction for register values is less impressive and

just goes down from 4.8 to 3.1.

This significant reduction in the average number of distance-3 memory values is due to the nature of
the spawning scheme. Usually, registers are used to store intermediate computations or values that are

being used soon since their access time is much faster than memory. Spawning speculative threads at
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innermost loop iterations causes that the instructions executed by the speculative threads are very close in
the dynamic instruction stream. So, for this spawning scheme, it is expected that the compiler forwards
most of the dependent values through registers rather than for memory. For different partitioning mecha-
nisms where speculative threads are further apart one from the other, the behavior regarding the number of
dependences and their distribution between registers and memory locations will change. On the other
hand, increasing the number of thread units will also increase the average number of distance-n values per
thread.

A significant difference between the meaning of thread input values and distance-3 input values resides
in how they can be detected. The distance-3 input values are a subset of the thread input values. Thread
input values can be determined statically whereas the distance-3 input values depend on the timing of the

dynamic execution.

Regarding memory input values, the identification process is more difficult than for registers. In irreg-
ular and non-numerical applications, the compiler is usually unable to statically determine the memory
locations accessed. Then, the most common approach is to be conservative and always consider that a
dependence exists whenever it can be proved the opposite. This approach may cause that speculative
threads are not spawned or have to wait for values they will never consume. The opposite approach is
always consider that there are no dependences and, in case of misspeculations, to start a recovery mecha-
nism. Both approaches are very simple and several speculative multithreaded architectures have imple-
mented them, especially the latter one. Some other approaches that uses data dependence speculation, that
is, to predict if a memory location is a thread input value that has been produced by a previous thread, or

data speculation, to predict the memory value, can be considered.

In the following sections, two different techniques will be investigated both for memory and register
dependences. In the next section, a technique based on data dependence speculation is presented for both
memory and register dependences and in section 3.4 an approach based for data speculation only for regis-

ter values is analyzed.

3.3. SYNCHRONIZATION M ECHANISMS

As it was pointed out in previous subsections, stalling the execution of a speculative thread until the live-in
values have been produced and validated by the producer thread may significantly drop off the perfor-

mance of the processor. Some gain can be obtained if interthread dependent values are forwarded as soon
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as they are computed by the producer thread. However, as the forwarded value has not been verified yet, it

may be incorrect.

In this thesis, the techniques based on stalling the consumer thread until the value is forwarded from
the producer thread are referred to mchronization mechanismshese mechanisms do not usually
require high initialization overhead to be applied. However, the main cost of such mechanisms is the time

required to compute the value at the producer thread and to forward it to the consumer thread.

Synchronization mechanisms are based on data dependence speculation. Data dependences are pre-
dicted and dependent values are speculatively forwarded from the predicted producer instruction to the
consumer thread[20]. Nevertheless, data dependence mispredictions can occur. For instance, if the con-
sumer thread predicts that a instruction is not data dependent on previous threads, it might be executed
with wrong input values. Also, the consumer thread may correctly predict the data dependence, but the
dependent value is forwarded from a wrong location and the dependent instruction is executed again with
incorrect input values. In both cases, data dependence misspeculations requires recovery mechanisms to
bring the processor back to a safe state and reexecute the offending instructions with the correct input val-
ues. On the other hand, if a speculative thread predicts that an instruction is data dependent and it is really
not, a misprediction has occurred, but it is not necessary to recover since the instruction has not been exe-
cuted. However, the cost of such misprediction is very high too since an independent instruction has been
waiting for a value that was not necessary. This instruction is finally issued when the misprediction is

detected and this is usually when the thread becomes non-speculative.

Therefore, to implement a synchronization mechanism, three parts are necessary: i) identify the thread
inputs, ii) a mechanism to determine which instruction will produce the last value for any thread input

value, and iii) hardware support for forwarding the dependent values to the consumer thread.

The mechanisms for identifying the thread input values have been presented in the previous section.
Regarding the identification of the instructions that perform the last write for each thread input, -which in
this thesis will be referred to dast-write instructions they can be statically detected by the compiler or
dynamically by the hardware[16][84]. For register values, the compiler can easily identify them, even
though the different control-flows inside the speculative threads may complicate such detection. For thread
input memory values the process is more complex since, in most of the cases, the compiler is unable to
statically know which addresses are to be accessed by the speculative threads. Then, memory interthread
data dependences as well as the identification of the corresponding last-write instruction can be done

through well-known techniques for memory data dependence prediction, such as memory address predic-
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tion and pair identification. In this thesis, synchronization mechanisms for memory values are based on
memory address prediction[20]. Thus, the addresses that a speculative thread is to access are predicted.
Then, such addresses are compared with those that are to be accessed by less speculative threads. If there is

a match, a memory dependence is predicted and the last-write instruction is identified.

Finally, hardware support for forwarding the dependent values from the producer thread to the con-
sumer is required. Such hardware is different for register and memory values and depends on the architec-
tural platform of the speculative multithreaded processor. Thus, clustered processors will need mechanisms
to communicate the values among the different thread units whereas in a centralized processors values can
be shared by the different contexts. In this latter case, it is only necessary to notify to the consumer context

that the dependent value is how available and where it can find it.

In the next subsections, different approaches for implementing the synchronization mechanisms are
discussed. A case study for a speculative multithreaded processor that speculates on loop iterations is also

analyzed.

3.3.1. Identifying the Last Write in a Thread Input Location

Speculative multithreaded processors spawn new speculative threads when a spawning point is reached.
The spawned speculative thread starts at the control quasi-independent point associated to that spawning
point and then, both threads proceed in parallel. Let denote thread A as the thread that executes the instruc-
tions between the spawning and the control quasi-independent point and thread B as the thread that exe-
cutes the instructions beyond the control quasi-independent point. Also, assume that there are no additional

speculative threads running in the processor.

The thread input values of speculative thread B are all the registers and memory locations that are read
before they are overwritten. The registers and memory locations that are written before they are read will

be referred to adead locations

Regarding the thread input values of thread B, they can be classified into two groups: those thread
input values that are produced by thread A, and those thread input values that are produced before the
spawning of the thread B. The thread input values of these latter group can be forwarded directly to thread
B at the spawn time whereas the values of the first group have to be forwarded from thread A as soon as
they are produced. As only the input values of the first group will affect the performance, the mechanisms
presented in this Chapter are only targeted to this group. For short, we refer to it as live-in values and

includes any thread input value of a spawned thread that is not available at thread creation.
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Thus, the last-write instruction for each of the live-in values have to be identified in thread A. These
last-write instructions will be located between the spawning and the control quasi-independent point. As it
was previously commented, these last-write instructions can be detected statically by the compiler or

dynamically at run-time based on previous executions of the speculative threads.

The compiler can determine which will be the last-write instructions for each live-in register. However,
regarding live-in memory values, as it was pointed out, compilers are usually unable to statically determine
which addresses are to be accessed and when a dependence will occur. To deal with memory dependences,
different static approaches can be considered such as assuming always independence (the most aggressive)

or assuming always dependence (the most conservative).

The use of profile information may help the compiler to predict if there are memory dependences. One
technique proposed to detect memory dependences consists in keeping track on previous dependences and
identify pairs of stores and dependent loads. If a load instruction usually depends on a store performed by
a previous thread, the execution of the load should be delayed until the store instruction is performed by

the producer thread[50][51]. Then, the value is forwarded from the producer to the consumer thread.

Once the compiler has identified all the last-write instructions for each of the thread input values, it has
to mark them. There are different methods to implement that, such as including some special hints to the
last-write instructions or introducing new instructions in the instruction set architecture to explicitly for-
ward the values. Such instructions may also be used to forward the rest of the thread input values when the

new speculative thread is spawned, that is, the thread input values that are available at the spawn time.

On the other hand, last-write instructions can also be identified with totally dynamic mechanisms. To
do that, a table containing information about the instructions executed between the spawning and the con-
trol quasi-independent point for each spawning pair is necessary. Thus, each entry of the table contains
information for only one spawning pair. Such entries should keep which instructions perform the last write
for each of the thread input value. In fact, depending on the spawning policy, it is not necessary that the
entries of the table hold information for all the architected registers since at it was shown in figure 3.1 the
average number of live-in registers is much lower. For memory values, the entries of the table keep the

memory addresses that have been written and the instruction pointers of the store instructions.

For register values, to detect if an instruction in thread A is a last-write instruction for the destination
register, its instruction pointer has to be compared with the one stored in the table for the destination regis-

ter of the instruction.
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A similar technique that does not compare the instruction pointer of each instruction can also be con-
sidered. In this technique, each entry of the table holds the number of writes for each register that will be
performed in thread A. Thus, every time a write is performed on a given register, the counter is decreased

and when it becomes 0 and the value is forwarded to the consumer thread.

For memory values, a mechanism based on predicting the addresses that are to be accessed in follow-
ing executions of the threads is considered. The memory address prediction mechanism is based on keep-
ing track of the effective addresses generated for each static store instruction. Using a simple prediction
scheme such as a stride predictor, about 75% of the memory instructions executed by the Spec95 can be

correctly predicted.

Nevertheless, the control flow taken to reach the control quasi-independent point after visiting the
spawning point may vary among the different executions of the thread and, therefore, the values stored in
the table may change from one execution to the other. To avoid that, the processor may allocate different
entries for each of the different control-flows. However, this significantly increases the amount of hardware
required since the size of the entries is not negligible. Moreover, if the spawning policy has many different

spawning pairs, a huge table would be required.

Therefore, it seems that a hardware-only solution is not feasible since it requires a huge amount of
hardware to be implemented. Anyway, for spawning schemes that results in a reduced number of spawning
pairs that usually follow the same control flow, hardware mechanisms can still be suitable. In the next sub-

section, a hardware-only mechanism to identify last-write instructions for loop iterations is presented.

3.3.1.1. Case Study: Identifying Last-Write Instructions for Loop Iterations

Spawning speculative threads at loop iterations is a very common scheme to obtain speculative thread-
level parallelism. In this case, the processor spawns a new speculative thread every time an iteration starts.

Details about the goodness of this spawning policy will be thoroughly analyzed in the next Chapter.

Spawning speculative threads at loop iterations has the main advantage that the processor can exploit
some kind of temporal locality. Since speculative threads are spawned for several of the loop iterations, all
these speculative threads will use the same spawning pairs. In this case, we will refer to the table that con-

tains information about the spawning pairsl@sp iteration tabl¢77]. The temporal locality of this loop
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iteration table can be observed in Figure 3.2. This figure shows the hit ratio of an 8-entry loop-iteration
table in a speculative multithreaded processor with 4 thread units. It can be observed that on average, the

hit ratio of the loop iteration table is about 90%.

A speculative thread can be uniquely identified by the spawning pair and the direction of the branches
performed within it. In the case of loops, the instruction pointer of the spawning and the control quasi-
independent point is the same, so the identifier consists in the instruction pointer of such instruction and
the control flow taken. Then, this table is indexed by the thread identifier (some hash function of the
instruction pointer of the spawning point and information regarding the control-flow that will be taken by

this thread) and each entry contains the following fields:

* LNRW (Last Number of Register Writes): This field is an array of a number of entries equal to the
number of architected registers. For each register it indicates the number of times that it was written
in the last execution of the iteration. In fact, it is not necessary to take information for all the registers

since the number of written registers per loop iteration is about 5.

* CNRW (Current Number of Register Writes): This field is similar to the LNRW but it refers to the

current execution of the loop iteration, which has not finished yet.

» LSA (Last Store Addresses): This field is an array with a number of entries equal to the number of
store instructions in the last iteration of the loop. The functionality of this field is to detect interthread
memory dependences through address prediction. Memory addresses are quite predictable and each
entry of the LSA has the instruction pointer of the store instruction, the last address accessed and the
stride among consecutive accesses. Then, the number of writes a memory location will have in an iter-

ation can be calculated from this array.
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Figure 3.2. Hit ratio of the loop iteration table with 8 entries.
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» CSA (Current Store Addresses): This field contains the memory addresses of the store instructions

executed so far in the current iteration.

» C (Confidence): This field assigns confidence to the predictions done using the previous fields. In
some way, this is similar to assigning confidence to a branch predictor. It can be implemented in dif-
ferent ways (for instance, a 2-bit saturating counter among others). This field avoids to spend resources

when the data required by a speculative thread is not highly predictable.

When a thread that is in the table finishes its execution, that is, it has reached the control quasi-inde-

pendent point, the predictability of the thread has to be determined. Thus, a loop iteration is predictable if:

* LNRW is equal to CNRW,
* LSA and CSA have the same number of elements,

» The addresses accessed in the CSA are equal to the previous addresses accessed that are stored in the
LSA plus the stride.

If all these conditions are true, the C field is increased; otherwise it is decreased. A speculative thread
is considered predictable is the most significant bit of C is set. At the end of a loop, CNRW is copied into
LNRW and the LRNW is reset, the addresses stored in the CSA are also stored in the LSA and the strides

are recomputed.

Thus, when a spawning point is reached, it is checked if the corresponding loop iteration is in the table.
If not, the speculative thread is not allowed to be spawned and a new entry is allocated in the table. If infor-
mation about that loop iteration is in the table, the thread is spawned and the information stored in the

LNRW field is used to determine when the last write on a dependent register will occur.

3.3.2. Forwarding Register Values

The implementation of the register forwarding mechanism will depend on the architectural platform of the
speculative multithreaded processors and the way the register file is implemented. For instance, having a
centralized and huge register file with local register map tables provides lower communication latency but
the access time to the registers is increased. On the other hand, a clustered register file reduces the access

time but it requires the forwarding of the values from one cluster to the other.

In the following subsections, approaches to forward dependent register values for both of architectural

platforms studied in the previous Chapter are presented. Assume in both cases that last-write instructions
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are known. Finally, a model to forward register values based on the hardware approach explained for loop

iterations is also analyzed.

3.3.2.1. Register Forwarding for Centralized Speculative Multithreaded Processors

In this subsection, the case of a totally shared register file is investigated. The case of partitioning the regis-

ter file for the different speculative threads will be studied in the next subsection for clustered processors.

In this case, the processor has a huge register file that is shared by all the threads. Each thread has its
own register map table with as many entries as number of architected (also called logical) registers that
indicates the current physical register allocated to the corresponding logical register. Notice that each map
table reflects a different assignment of logical to physical registers, corresponding to a different point of

the execution.

For those logical register whose value is not available, their corresponding entry in the register map
table contains a special value, NIL, that indicates that this logical register is not currently mapped to any
physical register. Also, there are additional bits for each entry in the register map table. These bits denote

whether the first operation performed over the register has been a read or a write.

When a speculative thread is spawned, the register map table of the spawned thread is initialized with
the same values as the register map table of the parent thread. The entries that correspond to those logical
registers that will be written between the spawning and the control quasi-independent point are initialized
to NIL. Both read and write bits are cleared for all the entries of the register map table of the spawned
thread.

Let us assume again that thread A is the thread that executes instructions between the spawning and the
control quasi-independent point and thread B is the one that executes instructions beyond the control
guasi-independent point. Thus, when a last-write instruction is found in thread A, the corresponding entry
in the register map table has to be copied to thread B. If thread B entry contains the value NIL, the pointer
to the physical register is copied and all the instructions that are waiting for this operand can start their exe-
cution as soon as they are chosen by the selection logic. If this entry contains a different value from NIL
but it has the write bit set, that is, the first operation performed by the speculative thread over that register
was a write, no operation is done. However, if the read bit is set, a misspeculation has occurred and a
recovery mechanism has to roll back the processor to a safe state and all the dependent instructions have to

be reexecuted with the correct value.



Interthread Data Dependence Management 55

When thread A finishes its execution, it is checked whether there is any entry in the register map of
thread B that contains the value NIL. If so, the corresponding entry of the register map is copied from the

previous thread to the following one.

Finally, the spawning model affects the required hardware for forwarding register values. In sequential
thread ordering, speculative threads are created in program order and only the most speculative thread is
allowed to spawn a new one. This kind of ordering fits very well with the mechanism described in this sub-

section and it can be implemented with no modifications.

Nevertheless, sequential thread ordering strongly constrains the ability of speculative multithreaded
processors to exploit speculative thread-level parallelism. The unrestricted spawning model allows any
speculative thread to create new speculative threads and it potentially can exploit more speculative thread-
level parallelism. However, the register forwarding logic becomes more complex for this spawning model

than for the sequential thread ordering.

When a thread spawns a new speculative thread and there are some other speculative threads between
the spawner and the spawned thread, it is possible that any of the thread input values for the new spawned
speculative thread have been already computed by any of the intermediate threads. Then, two solutions can
be considered. The former one consists in initializing the register map table in the same manner as for the
sequential thread ordering. In this case, thread input registers that have already been forwarded to future
threads are to be received by the spawned thread when it becomes the non-speculative. That is, when all
the intermediate threads have committed their values it is realized that the new non-speculative thread has

an entry in the register map table initialized to NIL.

The second solution consists in looking up if any of the intermediate threads has already written in a
thread input register and has attempted to forward it, (i.e., it has performed a last-write instruction.) In this
case, the corresponding entry of the register map table is initialized to the entry of the register map table of
the speculative thread that has computed it. To do that, it is necessary an additional bit in the register map

table that indicates whether a last-write instruction has been performed for each logical register.

Finally, the logic to free a physical register has also to be modified. The rename logic allocates a new
physical register to a logical register each time an instruction that is to write on it is decoded. The previous
physical register assigned to this logical register is stored in the reorder buffer. When this instruction is
committed, the previous physical register is freed for a future use. In our case, different threads may share

the same physical register and the processor has to avoid that a physical register that is still in use by other
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threads become free. To do that, adding a counter for each physical register that indicates the number of
threads that are working with it can be considered. Thus, when an instruction is committed, the counter

associated to the physical register is decreased and when it becomes 0, then the physical register is freed.

A different approach consists of checking if a register is in use by any other speculative thread. This
happens when the corresponding entry of the register map table is pointing to such physical register. If so,
the physical register cannot be freed and its deallocation will be done when such thread is committed. Oth-

erwise, the physical register is deallocated.

3.3.2.2. Register Forwarding for Clustered Speculative Multithreaded Processors

Clustered speculative multithreaded processors are made up by several thread units. Each of them are sim-
ilar to a superscalar core, in such a way they have their own functional units, their own instruction window
and their own register file. The main advantage of having a distributed register file is the reduction in the
access time. The major drawback of such kind of architectures is the impossibility to physically share val-
ues. Thus, clustered designs require that dependent values have to travel through the interconnection net-

work from the producer thread unit to the consumer one.

Let assume again thread A spawns thread B. Then thread A executes the instructions between the
spawning and the control quasi-independent point and thread B the instructions beyond the control quasi-
independent point. Thus, when thread B is spawned, it is allocated in an idle thread unit and the context for
this thread is initialized. This initialization includes the register file and the register map table of the

assigned thread unit.

The simple way to initialize both structures is just copying the contents of both tables from the thread
unit of thread A to the thread unit of thread B. In this way, those values that are not to be produced later by

thread A are copied to the register file of thread B.

The live-in registers of thread B that are not available allocate a physical register but are marked as not

available.

An approach to reserve entries in the register file for live-in register values is to maintain the positions
they actually have in use in the parent thread. Besides, each physical register has a reservation bit that indi-
cates whether it contains a valid value. The major drawback for this approach is that when values are pro-
duced and forwarded to the consumer thread, the value has to be stored in the physical register allocated.
Therefore, when a value is received by a thread unit, the register map table has to be accessed to know at

which physical register the value has to be stored.
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A second approach is to use a second register file for the incoming register values. This secondary reg-
ister file is referred to akve-in register file This live-in register file has as many entries as logical regis-
ters. However it can also be implemented with a fewer number of entries since the number of dependent
values is usually low. When a speculative thread is created, the register file and the register map table are
copied from the parent thread excepting those positions of the register map table associated to the live-in
register. Those positions are initialized pointing to the corresponding entries in the live-in register file. In
this way, when a last-write instruction is found in the thread A, the value of such register is forwarded to

thread B and the value is stored in their corresponding entry of the live-in register file.

Write and read bits are also used for detecting register dependence misspeculations. A misspeculation
occurs when a thread consumes a value before it is forwarded from a previous thread. Therefore, a mis-
speculation can be detected if a value is forwarded form the producer thread to the consumer one and
thread B has already consumed it. To implement the mechanism to detect misspeculation a new bit is nec-
essary for each entry of the register map table which is the dependent bit. This bit indicates if the corre-
sponding entry has been initialized to an entry of the live-in register file. Therefore, a misspeculation
occurs when a thread unit receives a value which logical register has the dependent bit cleared. Besides, a
misspeculation occurs if the dependent and the read bit are set and the corresponding entry of the live-in
register file has the reservation bit set. This happens when a valid value has been previously stored in the

live-in register file and it has been read.

However, the main difference between the centralized and the clustered design resides in the way
instructions that try to overwrite a thread input register are treated. It was commented in the previous sub-
section that in centralized processors, such instructions are not allowed to be renamed since live-in regis-
ters do not have any physical register allocated until the producer is renamed. Therefore, dependent
instructions do not know from which location they have to read the value when it becomes available. How-
ever, in clustered processors live-in registers already have a physical location allocated. Thus, instructions
that depends on a live-in register can be hold in the instruction window waiting for the value in the same
manner conventional instructions wait for register values that have not been produced yet. Therefore,

instructions that overwrite a live-in register can be renamed normally.

Obviously, this technique can also be applied to the centralized register file. To implement it, the
spawned thread can allocate as many registers as live-in registers at thread creation. Nonetheless, forward-
ing values becomes more complex. Now, the value has to be copied to its corresponding physical location

instead of just copying the pointer from the register map table of the producer thread to the following one.



58 CHAPTER 3

Regarding the thread spawning model, the same problem analyzed for the centralized version of the
speculative multithreaded processor may occur here. The hardware support needed for allowing unre-
stricted thread ordering creation in clustered processors is very similar to the one needed for the centralized
version but in this case, the value has to be copied from the producer thread unit to the thread unit allocated

for the spawned speculative thread.

3.3.2.3. Case Study: Register Forwarding for Loop Iterations

In subsection 3.3.1.1 a hardware mechanism to identify the last-write instructions for thread input values
for the loop-iteration spawning scheme was presented. This method consists in counting the number of
writes performed at each storage location by a loop iteration. The execution model of this spawning
scheme works in a similar way for both a centralized and a clustered design, even though it fits quite well

into a clustered processor whose thread units are interconnected by means of an unidirectional ring.

Regardless of the topology and the implementation of the processor, the forwarding mechanism for
register values is quite similar. In this subsection a centralized processor is assumed. However, note that the

implementation in a clustered processor will be very similar.

Assume a centralized processor with a huge register file shared by all the contexts. Each context has its
own register map table. We will refer to these tableRamp with different subindices to identify different
threads when necessary. A Rmap emtryay contain a special value, NIL, that indicates that logical regis-
terr is not currently mapped to any physical register. In addition, each thread has another table, which is
calledRwrite (register write table), that contains for each logical register the number of remaining writes to

that register.

Let us assume again thread A and thread B; thread A spawns thread B and it executes the instructions
between the spawning and the control quasi-independent point whereas thread B executes the instructions

beyond the control quasi-independent point.

To explain how these tables work, let Rmagnd Rmag denote the register map table of the thread A
and the register map table of the thread B respectively. Similarly, Ryaitel Rwritg; refer to the register

write tables.

When a speculative thread is spawned, the Rwriganitialized with the values of the LNRW field of
the corresponding entry in the loop iteration table. For each logical regjst&write,[r] is zero, then no
writes are expected to registerin this case, Rmayjr] is initialized with Rmagp[r]. In other words, if no

writes are expected to a given logical register, all the threads will share the same physical location for that
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register. As it was mentioned previously, each physical register has a reservation bit that indicates whether
it contains a valid value. When a new free physical register is allocated, its reservation bit is reset and when
aresult is written into the register, the reservation bit is set. If Rpftités zero, then all instructions of the
spawned thread that have registeas a source operand are allowed to be issued as soon as the register
Rmap[r] is written (it could have already been written when the speculative threads are created). If

Rwritea[r] is not zero, then Rmagfr] is initialized to NIL.

When a thread decodes an instructwith destination logical register a new free physical register is
selected and its identifier is stored into Rmaplr] (if there are no free registers, the thread is stalled). How-

ever, if the Rmaplr] is equal to NIL, this instruction is not allowed to be renamed and it has to stall.

On the other hand, when an instructions with destination regiséscommitted, the previous physical
register to which registarwas mapped is freed and Rwrite[r] is decreased. Assume that thread commits an
instruction whose destination register is r. Depending on the value of R{ititee following actions are

taken:

* If Rwrite[r] is equal to O, then the current instruction is expected to be the last one that writes to log-
ical registerr. If Rmaps[r] is equal to NIL, then Rmagir] is copied into Rmaglr]. In other words,
the free physical register assigned twan be shared by threadsandB. Note that the reservation bit
of such physical register is reset. When the instruction of theadlites into it, it will be set and
instructions of thread that have that physical register as a source operand will be allowed to issue.
In this way, the synchronization between two threads required to obey a data dependence through a
register is implemented using the conventional mechanisms already present in most superscalar pro-
cessors. Note also that if Rmgfp| is not equal to NIL and the write bit is set, thre&dmust have
found a write to register before a read. In this case, it is obvious that the new register allocated by
threadA must not be shared with thre&d If the read bit is set and Rmap] is not equals to NIL, a

misspeculation has occurred.

* If Rwrite,[r] is lower than O, then the current thread is going to perform a non expected write to reg-

isterr and a misspeculation has occurred.

When threadh finishes, if some entry of the Rwrite table is greater than zero, then the thread has per-
formed less writes to registerthan predicted. If there is a subsequent thread executing the next iteration
and Rmapg][r] is equal to NIL, then Rmagr] is copied into Rmag[r]. That is, the free physical register to
which logical register is mapped at the end of threadecomes visible to the next thread since it contains

the last value written by threadnto that logical register.
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When a speculative thred&lis squashed, all physical registers allocated to it that are not shared with
the previous thread are released. That is, for each logical registémaps[r] is different of Rmap[r],
then Rmag]r] is freed. In addition, for each instruction currently in the local reorder buffer with a register

destination, the previous mapping for such register is also freed.

It can be observed that this model of forwarding register values only works for the sequential spawning

model. It can also be adapted for the unrestricted spawning model even though it becomes much complex.

3.3.3. Forwarding Memory Values

Thread memory input values are more difficult to detect than registers. In many cases, compilers are unable
to statically determine the memory addresses that will be accessed by the program at execution time.

Mechanisms proposed to detect the last-write instruction on which a load depends are speculative and thus,
hardware mechanisms to detect interthread memory dependence violations have to be implemented. A vio-
lation occurs when a thread performs a store on a memory location that has been read by a more specula-

tive thread.

In addition to the problems to detect dependent memory thread inputs, memory instructions have an
special behavior on speculative multithreaded processors. Only the non-speculative thread is allowed to
write in main memory whereas speculative threads must keep all their stored values locally. Then, hard-
ware has not only to provide support for forwarding dependent memory values from one thread to the other
but it also has to provide support for detecting misspeculations and keeping the speculative memory state
for the speculative threads. If a thread does not have space to store its speculative memory state, this thread

either has to stall its execution until it becomes the non-speculative thread or has to be squashed.

In fact, these requirements are the same as for register forwarding. However, register misspeculations
are not as frequent since compiler can almost totally determine the interthread data dependences through

registers.

Different solutions to provide support for keeping different versions of the same memory locations for
each speculative thread can be considered. The simplest one is based on a local memory for each of the
speculative threads. This solution fits very well into the clustered implementation of speculative multi-
threaded processors. However, the values stored in these local caches cannot be written into main memory
until the thread becomes non-speculative. For a centralized processor, the same solution can be applied.
Thus, different caches can be used for each of the contexts to store the local memory values. The partition

into local caches can be physical, that is, the processor has as many local caches as contexts it may support
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or logical, that is, threads are only allowed to access to a subset of a big cache. In this latter case, the cache
can be patrtitioned statically (each speculative thread has a fixed part of the cache) or dynamically (cache

space is assigned on demand).

A problem that appears with this solution of maintaining different caches is the peak traffic produced
when a thread is committed. When the non-speculative thread commits, it has to free its context. However,
before freeing the local cache, all the dirty lines of the local cache have to be copied into the main memory.
As it was commented in the previous Chapter, a different solution can be taken. Instead of flushing the
local cache into main memory when a thread is committed, the peak traffic can be avoided if the dirty lines
are marked with a special tag. Then, when the new thread requires to replace a line, that is marked as com-
mitted, it updates the main memory. In this way, the peak traffic is reduced even though it is more complex

to detect memory misspeculations.

In addition to mechanisms for storing the speculative values, speculative multithreaded processors
have to provide support for forwarding dependent memory values from the producer to the consumer
thread. Fortunately, similar problem is present on multiprocessors for exploiting non-speculative thread

level parallelism and lots of works have been proposed to solve this problem.

Memory consistency protocols are mechanisms that have been proposed to deal with memory depen-
dences in multiprocessors with distributed caches. In order to correctly execute parallel processes in a mul-
tiprocessor, memory operations have to be performed in some order that guarantee that the final state of the
memory is the same that if the process has been executed sequentially. That is referred to as sequential con-
sistency[35]. Sequential consistency may be either strong or weak. Strong consistency denotes that mem-
ory operations have to be performed in the same order than for the sequential execution whereas weak
consistency means that the order may differ from the sequential one, but it does not damage the sequential
operation. That is, the memory operations of the different concurrent threads can be executed in any order

among them if they do not affect to the behavior of the sequential execution.

Hundreds of works have been proposed to maintain the sequential memory ordering. Most common is
based on sending to the memory bus information about the addresses accessed by each thread. Processors
snoop the bus to know if such information may affect their execution. In our case, if a thread needs to load
a value from a memory location and such value is not present in the local cache, it sends a request to the
threads that are executing previous code. If any of them has the value, it is sent to the requester thread. If

not, the value is read from main memory. On the other hand, when a thread stores a value on a memory
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location, it notifies to the following threads. If any of the successor threads have loaded the value, then a

dependence violation has occurred.

3.3.3.1. Case Study: Memory Forwarding for Loop Iterations. The MultiValue Cache

Spawning threads at innermost loop iterations is implemented by means of a loop iteration table. In this
case, the information related to memory addresses accessed by each iteration is held in the CSA and LSA
fields. In the LSA field, in addition to store the last address accessed by the last iteration, the delta between

of the two last memory addresses is stored.

Then, the number of times a memory position will be accessed by a speculative thread can be easily
computed. In this way, the processor can try to make use of such information to reduce the amount of traf-
fic of the classical snoop consistency protocol. Load instructions that are to access to memory positions

that are to be written by less speculative threads are not issued until the value is produced.

This can be achieved with a special first level data cache. This cache has some particularities and it will
be referred to as thlulti-Value (MV)cache. The distinguishing feature of a MV cache (see figure 3.3) is
that its data words are replicated for each context (maximum number of threads). In this way, each thread
may have a different view of the contents of memory. Another important feature is that it stores non com-
mitted values and does not allow to modify the next memory level (here called the L2 cache) until they are
committed. This is implemented by means of a write-back policy together with a particular replacement

scheme (explained below).

For each replicated word, the MV cache contains two additional fields: the number of writes that the
corresponding thread is expected to perform (NW) and a bit indicating whether it contains a valid value for

the corresponding thread (V).

When a thread creates a speculative thread, the LSA field of the loop iteration table allows to predict

the addresses into which the spawner threads are going to write. For each predicted write address, the cor-

Multi-value cache

address|[P | valueg |[Vo|NWq| value; |V1[NW| value, [Vo[NW,| values|V3|Nw3

Figure 3.3. :The multi-value cache for a SM processor with four thread units.
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responding line is allocated in the MV cache if not present. If some thread has not enough entries in the
MV cache, it cannot be speculated. When a new cache line is allocated due to a predicted write of a thread,
its contents is initialized with the current data (obtained from L2) for all the multiple copies. The NW field

of the corresponding thread is set to 1 and the V fields of the thread and the preceding ones are set whereas
the V fields of succeeding threads are reset. If the line is already in the MV cache, the NW field of the

thread is increased and its V bits of the succeeding threads are reset.

Then, each thread executes memory instructions out-of-order using a total disambiguation scheme.
That is, memory instructions compute their effective address as soon as their operands are available and
then are sent to a load/store buffer. Stores write to memory when all the previous instructions of the same
thread have completed whereas loads read from memory when the addresses of all previous stores are
known. If the load matches a previous store address the store data is forwarded to the load destination reg-

ister; otherwise the read is performed from memory.

When a thread performs a read from memory, the MV cache is checked first. If the corresponding data
line is in the MV cache, it will contain a different copy for each thread. If the data corresponding to that
thread has its V bit set, then this value is read. Otherwise, the load is cancelled and stoleadinvait
gueue. Loads from this queue are tried again in idle cycles of the MV cache. If the corresponding cache
line is not in the MV cache, the data is read from L2. Optionally, if there is a candidate for replacement, a
new line can be allocated into the MV cache, with all its valid bits set and the NW fields equal to zero (this

will speed up further accesses to the same line).

When a thread performs a write and the corresponding line is not in the MV cache, a misspeculation
may have occurred because this write was not predicted. A recovery action is initiated which may consist
of a partial or a full squash. A more powerful solution would be to keep track of memory reads operations
to exactly determine if a misspeculation has really occurred. The new line is brought into the MV cache

with all the V bits set and all the NW fields equal to zero.

If the line corresponding to the written data is in the MV cache, its NW field is decreased. If it becomes
zero, the data is copied to succeeding threads, from the next one to the first that has either NW or V differ-
ent from zero (excluded). In addition, if the following thread has the V bit reset, it is copied also into that

thread. The V bits of these threads are set. If it becomes negative, a misspeculation may have occurred.

When a thread finishes (or is squashed), if the corresponding NW field of any line of the MV cache is

greater than zero it is reset to zero, and the value is propagated to succeeding threads as in the case when
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the counter becomes zero. This occurs when some predicted write did not actually occur. In this case, all
dependences have been obeyed but there may be loads of succeeding threads waiting for a non existent

write.

A line of the MV cache can be considered for replacement only if all its NW fields are equal to zero
(this will be always the case when all the speculative threads have finished). If the line is dirty, it is consid-
ered for replacement if in addition there are not speculative threads. This ensures that the L2 cache is only
updated with committed values. Deadlock is guaranteed not to happen since new lines are only necessary
to be allocated at speculative thread creation. During speculative thread execution, bringing additional

lines into the MV cache is an optional feature that will increase performance.

To reduce the pressure on the L2 cache when speculative threads are created, the MV cache could just
initialize the V bits and add a single bit per memory address, which is galéssnce bi{P), that indicates
whether the data has been brought from L2. Initially this bit is reset and when a read operation finds the
corresponding V bit set but the P bit reset, the data is read from L2 and propagated to succeeding threads in

the same way as when the NW field becomes zero after a write.

The MV cache can also be implemented in a distributed way. This implementation requires that when
a speculative thread is spawned, all the memory locations with the NW greater than 0 of previous threads
allocate a new position in the local MV cache and set their V field to 0. This is done in order not to read

from this memory location until the value has been produced by the corresponding thread.

3.3.4. Related Work

Some speculative multithreaded architectures have used synchronization mechanisms to deal with inter-
thread data dependences, especially for memory values. Regarding interthread register data dependences,
the Multiscalar uses a distributed register file[3] to store the different speculative states. Such register files
are divided into three parts, the current register file that holds the current register values for that task, the
previous register file that holds the values produced by the previous tasks and the subsequent register file to
store the values of the succeeding tasks for future allocated tasks. Dependent register values are bypassed

from the producer thread to their successors when a task has performed the last-write operation on it.

Similarly, the Synchronizing Scoreboard[34] proposed by Krishnan and Torrellas considers a clustered
version of the register file but the consumer thread is allowed to initiate the forward operation if the value
has been produced before the speculative thread is spawned. To do that, for each logical register the local

scoreboard has additional bits to know if the value is already available for the successor threads. Thus, the
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consumer thread knows if the requested register has been produced. This information is replicated for all

the scoreboards in the thread units.

Regarding interthread memory dependences, the use of data dependence speculation has been deeply
studied to speculate on dependences through memory since dependences through registers are easily iden-
tified by both the compiler and the hardware. Memory references whose effective address are unknown are
usually called ambiguous references. When memory instructions are executed out-of-order, a memory ref-
erence may be performed before the effective address of all previous references are known, that is, it is per-
formed without completely disambiguating the reference. This scheme is used by the address resolution
buffer of the Multiscalar[17] and the address reorder buffer of the HP PA8000[28] among others. Both
approaches use a very simple speculation heuristic: they assume no dependence between an instruction and

any previous instruction whose effective address is unknown.

The Address Resolution Buffer may be implemented centralized or clustered and is used to detect mis-
speculations. A misspeculation occurs when a task writes to an address that has been read by a previous

task.

Another approach is the Speculative Versioning Cache by Gatdl23]. This proposal uses distrib-
uted caches for the different thread units and uses the snoopy bus-based coherence protocol to detect when
a previous task produces a value on a location that has been already read by a more speculative thread. In
that work, the problem of having to completely flush the local caches when a thread commits is also stud-
ied. To avoid the burst traffic when a thread is committed, the values are not written into memory but all the
lines are marked as dirty committed state. Those cache lines are written to memory when the local thread
requires that line. To avoid that speculative threads that have written to the same memory location store the

value in different order, a new bit per cache line is necessary (the stale bit).

Another mechanism proposed to detect memory misspeculations is based on the MDT (Memory Dis-
ambiguation Table) and was initially proposed by Krishnan and Torrellas for an on-chip multiprocessor
[34]. This table may be incorporated to the L2 shared cache and it would be similar to a directory even
though due to its small size, it can be considered separately. This table stores for each accessed address
which operations have been performed by all the concurrent threads in the processor. For bigger systems, a

clustered version, the GMDT, has also been proposed by the authors in [5].

Unlike previous models that are hardware-based schemes for detecting memory dependence viola-

tions, Rundberg and Stenstrém proposed a software approach to deal with interthread memory depen-
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dences[62]. To do that, the compiler associates to each shared variable a data structure to allow multiple
threads to access to it. When memory dependences cannot be disambiguated, speculative loads and a spec-

ulative stores use this structure.

3.3.5. Performance figures

Next figures correspond to the execution of a clustered speculative multithreaded processor and with per-
fect synchronization mechanisms, that is, there is a perfect last-write instruction prediction and a perfect

dependence prediction for memory values.

The spawning policy is the loop iteration spawning scheme, that is, speculative threads are spawned

for each loop iteration.

Performance statistics are obtained through trace-driven simulation of the whole SpecInt95 benchmark
suite. Programs were compiled with the Compag compiler for an AlphaStation 600 5/266 with full optimi-
zation (-O4) and instrumented by means of the Atom tool[70]. For the statistics, we simulated 300 million

of instructions after skipping initializations. The programs are executed witeftigut data.

The clustered speculative multithreaded processor has 16 thread units and each one has the following
features:

* Fetch: up to 4 instructions per cycle or up to the first taken branch, whichever is shorter.

* Issue bandwidth: 4 instructions per cycle.

 Functional Units (latency in brackets): 2 simple integer (1), 2 memory address computation (1), 1 inte-
ger multiplication (4), 2 simple FP (4), 1 FP multiplication (6), and 1 FP division (17).

« Reorder buffer: 64 entries.

* Local branch predictor: 14-bit gshare[40]. Local branch prediction tables are assumed to be copied

from the parent thread to the new spawned thread at spawning time.
» 32 KB non-blocking, 2-way set-associative local, L1 data cache with a 32-byte block size and up to 4

outstanding misses. The L1 latencies are 3 cycles for a hit and 8 cycles for a miss.

In the next figures, the cost of spawning threads is assumed to be zero. Memory dependence violations

are detected by means of a MultiVersion Cache based on the Speculative Versioning Cache[23].

The delay of forwarding a value from the producer thread unit to the consumer is assumed to be 3

cycles for memory values and 1 cycle for registers. In the ring topology, the penalty considered for bypass-
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Figure 3.4. Speed-up over single-threaded execution of a clustered speculative multithreaded pro-
cessor with 16 thread units and perfect synchronization mechanism.

ing the value is 1 cycle per hop. Larger delays for bypassing register values can be considered. However,
the major cost of this mechanism is not the penalty cost of forwarding the value from one thread unit to the

other but waiting for their computation in the producer thread
Performance is by default reported as the speed-up over a single-threaded execution.

Figure 3.4 shows the speed-up achieved by the synchronization mechanism. As it is expected, the
highest results are achieved by the unrestricted thread ordering since it can potentially exploit more specu-
lative thread-level parallelism. However, the differences among them are not so significant. On average, the
unrestricted thread ordering outperforms the sequential thread ordering just by a 30% and the most of this

improvement is due toompress .

Nevertheless, the most important conclusion that can be extracted from that figure is that a clustered
speculative multithreaded processor with 16 times more resources than the superscalar processor only
achieves for the most aggressive spawning scheme a speed-up of 43% and only 11% for the sequential
thread ordering. Besides, some benchmarksidikéex only have a 5% improvement for the unrestricted

thread ordering and perfect synchronization mechanisms.

As it will be shown in next Chapter, interthread data dependences can be reduced by selecting different
spawning pairs. However, it seems that for applications like SpecInt95 which present low degrees of
instruction level parallelism, the results obtained with other spawning policies do not significantly vary

from those presented for the loop-iteration scheme.
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Thus, it seems that refining the synchronization mechanisms to reduce the possible misspeculations is
not worthy since its potential is very low. The main conclusion of this subsection is that interthread data
dependences strongly affect the performance of speculative multithreaded processors and more aggressive

mechanisms to deal with them have to be proposed in order to make use of the resources of the processor.

3.4. VALUE PREDICTION

SpeclInt95 benchmarks are a set of applications that usually provides low degree of both thread and instruc-
tion level parallelism. It has been shown on several works that data dependences strongly affect their per-

formance.

Synchronization mechanisms are good to ensure the correctness of the speculative execution of the
applications. Instructions of speculative threads do not start their execution until their operands have been
produced. Thus, the performance that speculative multithreaded processors can achieve with this methods
is limited by the critical path of the data dependence chain. To achieve performances beyond the upper
bound due to data dependences, a mechanism that breaks the serialization imposed by data dependences is

required.

Data value speculation is a technique that has been proposed to relieve the cost of this serialization and
to boost up the performance of superscalar processors. This technique is based on the observation that val-
ues tend to repeat or follow a known pattern over a large fraction of time. With appropriate mechanisms
such values can be correctly predicted. Predicting the input/output operands of instructions before they are
available allows the processor to start the execution of those instructions and their dependent ones specula-
tively. If the prediction is not correct, the predicted instruction and its dependent ones have to be reexe-
cuted with the corresponding correct value. However, if the value is correctly predicted, the work related to
such instructions has been anticipated and an improvement on the performance is produced. Also, breaking
the data dependence graph increases the number of eligible independent instructions to be selected for the

issue logic and produces a better usage of the resources of the processor.

Some studies on value prediction have shown that the performance potential of this technique in super-
scalar processors approaches to a linear function of the hit ratio of the predictors. Therefore, the cost of
improving the value predictor does not justify the performance improvement achieved. On the other hand,
such study concludes that the performance potential of this technique is greater in other platforms such as

multithreaded processors[22].
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In the previous section it has been shown that the performance achieved by a speculative multithreaded
processor with a perfect synchronization mechanism hardly achieves a 40% improvement with 16 times
more hardware than a superscalar processor. Such poor results are due to the fact that speculative threads
have to wait for the computation of the dependent value. Value prediction may help to break such depen-
dences and if the values that flow from one thread to the other are correctly predicted, then both threads can

proceed in parallel as if they were independent.

Figures 3.5 shows the performance potential of speculative multithreaded processors with perfect
value prediction with 4 and 16 thread units. In both cases, perfect value prediction is applied for the
sequential and the unrestricted thread ordering and for register and register and memory values. However,
the hardware for synchronization is required for early detect mispredictions. Statistics are obtained for the

loop iteration spawning scheme.

As it is expected, the most aggressive thread ordering benefits more from value prediction than the
sequential thread ordering. In fact, the sequential thread ordering scheme achieves very poor speed-ups
anyway, lower than 2 when all live-in values are correctly predicted for the 16-thread unit configuration.
For the unrestricted thread ordering, only predicting register values achieves speed-ups over single-
threaded execution higher than 2 for the 4-thread-unit configuration and close to 4 with 16 threads. Predict-
ing both register and memory values can boost the performance up to 2.7 with 4 thread units and higher

than 6x for 16 thread units on average.

Therefore, these impressive averages demonstrate that value prediction may help speculative multi-

threaded processors to exploit high degrees of speculative thread-level parallelism. In this section, the
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impact of realistic value predictors only for register values are considered. Moreover, a new value predictor

specially designed for these architectures, the increment value predictor is presented.

3.4.1. Related Work

Value prediction is a technique that has been largely studied in the past, especially to improve the perfor-
mance of superscalar processors. This technique consists in predicting the input or output operands of an
instruction and it is based on the observation that such input/output operands tend to repeat or follow a pat-
tern. Mechanisms for value prediction try to capture that pattern based on tables that store information

reflecting the history that has been observed in the recent past.

First proposal on value prediction was the last value predictor, presented by Lipasti, Wilkerson and
Shen[37][38]. This simple predictor assumes that the next value an instruction will produce is the same

value as in its previous execution.

Afterwards, more complex value predictors have been proposed such as the stride predictor[18][64]
and the finite context machine (FCM) context-based[65] value predictor among others, and some combina-
tions of them to obtain hybrid value predictors[87]. The stride predictor speculates that the new value seen
by an instruction is the sum of the last value and a stride, which is the difference between two consecutive
values. The predicted stride is replaced when a new stride has been seen twice in a row. On the other hand,
the FCM predictor considers that values follow a repetitive sequence, and thus, estimates the new value

based on the sequence of previous values of the same instruction operand.

A similar approach for FCM context-based value predictor was proposed by Goeuwdaiméhe Dif-
ferential FCM context-based[19] value predictor. In this predictor, instead of storing the sequence of values

produced by an instruction, it is stored the stride among them in order to detect sequences of strides.

Some other value predictors make their prediction using control-flow information by correlating the

values with the direction of branches[51].

3.4.2. Value Prediction for Speculative Multithreaded Processors

This subsection is devoted to analyze the behavior of value prediction in the context of a speculative multi-
threaded processors. As it was shown, the performance of this type of architecture strongly depends on the

ability to predict the input or output values of speculative threads.

First of all, it is necessary to determine which values are needed to be predicted[4]. In this way, a

thread input value is defined as a value (in a register or memory location) that is consumed by the specula-
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tive thread (the thread uses it without having been computed by the same thread). In the same manner, a
thread output value is defined as a value (in a register or memory location) that is computed by the thread.
Thus, the analysis of value prediction focuses on thread input or output values, since these are the values

that flow through inter-thread dependences.

Depending on how value predictors perform the prediction of the thread input or output values, they
can be classified into those that exploit correlation with past values of the same instruction operand and
those that exploit correlation with values of the same trace. The former are watadttion-based value

predictorswhile the latter are calletace-based value predictors

Instruction-based value predictors have in common that their history tables store information about the
values seen by individual instruction operands. Well-known predictors are the last value (LV), stride
(STR), context-based (FCM) and hybrid schemes such as the stride-context (HYB-S) predictor. These

value predictors have been thoroughly studied in the context of superscalar and VLIW processors.

The performance of instruction-based value predictors can be improved if information about the thread
to which the instruction operand to be predicted belongs is also included in the history tables. This gives
way to the so-called trace-based value predictors. Threads being considered in this paper are loop iterations
that the thread speculation unit of the speculative multithreaded processor delimits for speculation. Obvi-

ously, this kind of predictors can be used for any other type of speculative threads.

Let us see a common case where instruction-based value predictors fail. The instruction-based stride
predictor behaves badly when consecutive loop traces follow different paths of the same loop. Figure 3.6
shows an example where threadg Ta, Tg and T, are consecutively executed and Ri is the destination
operand produced by instructions at&hd PG. Consider also that these instructions compute an output
thread value. The stride predictor would speculatively compute the value of Ri in the last thrglaas(Ri
the last value produced by the same instructiop)Bius the stride computed for that instruction operand.

This may give an incorrect value since thregdhodifies the value of Ri.

For instruction-based predictors, the history tables are indexed through the instruction address of the
operand to predict. If a source operand is to be predicted, a bit is appended to the instruction address in
order to identify each source operand. A destination operand is directly identified by its instruction

address. We refer to this indexing schemB@sbased indexing

Trace-based value predictors access the history tables through a thread identifier and a operand identi-

fier (e.q. register identifier). For threads, we have considered a pseudo-identifier that consists of the instruc-
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tion pointer of the spawning point along with a bit vector with the result of all conditional branches in the
thread. It is not a unique identifier because a thread can have indirect unconditional branches, and their

branch target addresses are not considered. We refer to this indexing schreseslzesed indexing.

Note that trace-based predictors could alternatively index the history tables based on the instruction
address of the producer (resp. first consumer) of the output (resp. input) value. Both types of indexing, PC-

and trace-based indexing, are considered for trace-based predictors.

Finally, note that the instruction-based predictors presented in the previous section can be extended to
correlate their predictions with previous instances of the same instruction operand in the same trace. This
extension to convert them into trace-based predictors only requires minor modifications in the implementa-
tion, namely, the indexing function in the history table should consider both the instruction address and the

trace identifier.

3.4.3. The Increment Predictor

A stride predictor computes a difference between two consecutive values of an operand at the same instruc-
tion address. Writes to the same storage location produced between these two instructions affect the accu-
racy of the predictor. Instead, it may be better to base the value prediction of a storage location on the
difference (the increment) of its value between two given points of the execution that always correspond to

the same high-level structure, such as the beginning and the end of a loop iteration.

TAY PG Rij<-..

PCA% R|2 <-...
Ri <-..

.
A{ PCA¢  Rig<-...

Ri, = Rip + STRIDE(PG) Ris = Rizg + INCREMENT(T,,Ri)
(b) (€)

Figure 3.6. Stride and increment predictors: a) 4 consecutive traces (T, Ta, Tg and T,) which ref-

erence register Ri; b) predicted value of Ri, using a stride predictor; c) predicted value
of Ri, using the increment predictor.
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The increment predictor predicts every thread output value as the value of that storage location at the
beginning of the thread plus an increment. This increment is computed as the value at the end of the thread
minus the value at the beginning of the thread in previous executions of the same trace. The predicted

increment is updated when a new increment has been seen twice in a row.

Regarding figure 3.6, note that the value of,Rvhich is an output value of threagsTs also the value
of register Ri at the beginning of the fourth thread XTIn this way, the value Riis predicted as Riplus
the increment observed for this register in thregdmthe past. Rj may in turn contain a predicted value,
which was computed as Rplus the increment observed for this register in thregdnTthe past. This
scheme may be more accurate than an instruction-based predictor, since different traces are considered to

update operands in a different way.

Besides, a hybrid scheme composed of the proposed increment predictor and a context-based predictor
(HYB-I) will also be analyzed. For hybrid predictors, the choice between the two predictions is guided by
confidence fields located in each individual predictor, which are implemented by means of 3-bit up/down

saturati ng counters.

3.4.4. Prediction Accuracy

This subsection analyzes the accuracy of the different value predictors for the two indexing functions and
different table capacities. The differences in predictability of inputs and outputs are also investigated. The
objective is to devise the configurations with most potential, whose impact on IPC will be later analyzed in

subsection 3.4.6.

In this section we use a trace-driven simulation of the SecInt95 benchmark suite. The programs were
compiled with the Compag/Alpha compiler for an AlphaStation 600 5/266 with full optimization (-O4),
and instrumented by means of the Atom tool. Programs used the reference input data during 300 millions

of instructions after skipping the initializations.

Regarding the speculative threads that are being considered in this analysis, they have an average size
of 36 instructions. Moreover, instructions belonging to innermost loop iterations represent almost the 62%

of total instructions. Individual data for every program is depicted in Table 4.1.

3.4.4.1. Predicting Register Values through PC-Based Indexing

A proper selection of the values to be predicted may have an important impact on the performance of data

value speculation techniques. We first compare the difference in predictability between trace input and out-
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instr in loop iterations instr / loop iteration

go 44.30 % 40.57
m88ksim 83.00 % 54.26

gcc 54.36 % 32.09
compress 74.99 % 16.19

li 38.82 % 25.87

iipeg 81.93 % 43.38

perl 52.19 % 50.90

vortex 75.75 % 247.33
AVERAGE 61.73 % 36.13

Table 4.1.Loop iteration statistics.

put values. Note that predicting the outputs of previous loop traces is another way to obtain the input values

of a loop trace. Value predictors being analyzed here use a PC-based indexing mechanism.

In all figures presented for FCM predictors (included the hybrid version) we have considered that the
VHT contains the last 3 values and these values are 0-bit, 2-bit and 4-bit shifted, respectively, before xor-
ing them in order to obtain the index to the VPT. We also assume that the number of entries in each table is

the same.

Figure 3.7.a shows the prediction accuracy for trace input register values whereas trace output register
values are analyzed in Figure 3.7.b. The impact of the capacity of the history tables on the prediction accu-
racy is depicted along the X-axis. The INCR and HYB-I predictors are not depicted for input values since

they only predict trace output values.

As observed for superscalar processors, a FCM can achieve a high prediction accuracy but it requires
very large history tables. LV and STR predictors can achieve a better accuracy for small-sized history
tables. For large tables, the LV predictor is the least accurate. A remarkable result is that input values are
more predictable than output values (70% of inputs for a 64-KB table using a STR predictor and 60% of
outputs using a HYB-I predictor with the same capacity). Another important result is that a STR predictor
outperforms an INCR predictor by around a 10%. The difference in performance of the respective hybrid
predictors is not so high; in fact, HYB-I has a slightly advantage over HYB-S which suggests that the type
of patterns predicted by the STR and the FCM have more overlap than those predicted by the INCR and the
FCM.
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Figure 3.7. Predicting register values of loop traces using PC-indexed predictors: a) trace input val-
ues; b) trace output values.

Nonetheless, among all the inputs or outputs of a trace, only the prediction accuracy of those that are
used speculatively will have an impact on performance. In other words, if a given input or output is already
available at the time it is used, or an output is never utilized, the performance of the processor will be the
same regardless of the result of its prediction. To estimate this effect, we compute the prediction accuracy
for those input values produced by any of the previous 3 threads that run concurrently with it and those out-
put values consumed by any of the following 3 threads. We refer to these values as distance-3 inputs and

outputs respectively.

For distance-3 inputs (see Figure 3.8.a), the prediction hit rate diminishes when compared with that of
predicting all values (it goes from 70% for a 64-KB HYB-S predictor as it can be seen in figure 3.7.a, to
60%). However, for distance-3 output values (see Figure 3.8.b), this trend is reversed. A 64-KB HYB-I

predictor increases the prediction accuracy by 20% when compared with its accuracy for all outputs.

This is due in part to the fact that threads have in average more register outputs than inputs (8.2 versus
5.0), as shown in Figure 3.9. However, the average number of distance-3 register outputs is lower than dis-
tance-3 register inputs. The figure also includes statistics for memory values, showing that the average
number of distance-3 memory inputs and outputs is rather low. The difference between the number of input
and outputs resides in that an output can be used by more than one speculative thread. That is, if the thread

input values are individually predicted, it is possible that a single value is to be predicted more than once,
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Figure 3.8. Predicting distance-3 values of loop traces using PC-indexed predictors: a) input val-
ues; b) output values.

one for each speculative thread that uses the same values. On the other hand, predicting the outputs only

requires to predict the value once.

Another remarkable fact is that the INCR predictor outperforms the STR predictor by about 10% for
distance-3 output values. This is explained by the fact that the stride predictor suffers from interferences
from other instructions with different addresses that write to the same storage location, as discussed in sec-
tion 3.4.2, whereas these interferences are avoided by a trace-based predictor such as the INCR, even if the

indexing function uses only the instruction address.
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Figure 3.9. Average number of inputs/outputs and distance-3 inputs/outputs per trace.
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Figure 3.10. Predicting distance-3 values of loop iterations using trace-based indexing: a) input val-
ues; b) output values.

As conclusions up to this point, for a speculative multithreaded architecture based on loop traces, the
most predictable values are trace outputs. Moreover, the INCR predictor for small sized tables and its
hybrid version, the HYB-I predictor, for larger tables outperform the other value predictors. An increment

predictor can achieve a quite high hit rate with very small tables (73% for a 1 KB table).

3.4.4.2. Predicting Register Values through Trace-Based Indexing

For trace-based predictors, the thread identifier can be included in the indexing function. Figure 3.10
shows the prediction accuracy for distance-3 input/output vales. It can be observed that the hit rate for
input values decreases when compared with PC-based indexing (60% for a 64-KB PC-indexed HYB-S
versus 50% for the trace-indexed version of the same predictor). However, the performance for output val-
ues increases. Although the INCR predictor obtains a similar performance (73% hit rate for the whole
range of table capacity), the HYB-I predictor can achieve a 80% hit ratio with relatively small tables (16
KB in total). This is mainly caused by the significant performance boost of trace-based indexing for the

FCM predictor, which is due to the benefits of using different value sequences for different traces.

As conclusions of this analysis on prediction accuracy, the four selected predictors for a further analy-
sis are those with the highest prediction accuracy for a moderate-sized history table (16 KB): HYB-I,
INCR, HYB-S and FCM, with a trace-based indexing function.
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Figure 3.11 shows the percentage of speculative threads whose all distance-3 outputs are correctly pre-
dicted. This gives an estimation of the percentage of traces that can be executed as if they were parallel.
Note that many traces can be parallelized due to value prediction, even with small predictors (50% for 1-
KB INCR predictor). With large history tables, this percentage can be as much as 70% when a HYB-I pre-

dictor is used.

3.4.5. Microarchitectural Issues on Value Prediction

In previous subsection, the ability to predict the thread input/output values of different value predictors
have been shown. In this section how to implement this value predictors in a speculative multithreaded pro-

cessor is described.

This implementation is related to the time when the predictions are generated and speculative values
are verified. Regarding the prediction, when a new speculative thread is created, the value predictor has to
supply the predicted values for the thread input register/memory locations to the new spawned speculative

thread. This may cause a peak of predictions when the speculative thread is created.

Finally, regarding the verification of the prediction, this process has to be performed as soon as possi-
ble. Thus, recovery mechanisms will early proceed in case of misspeculations and also, the propagation of

the mispredicted value to other speculative threads is avoided.

10009 —e— HYB-I
—+— HYB-S
—a— [NCR
—a— FCM

1 ﬁ/
/

40.04

correctly predicted loop traces

20.04
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Figure 3.11. Percentage of traces that have all their distance-3 output values correctly predicted.
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Figure 3.12. Control-flow misprediction for the Path-based and the ideal gshare for loop itera-
tions.

3.4.5.1. Initializing Speculative Threads.

Speculative multithreaded processors behave like a superscalar processor until a spawning point is
reached. At this point, a new speculative thread can be spawned. First of all, it is necessary to find an idle

thread unit to allocate the new spawned thread. Then, input values are predicted.

It has been shown that there are some value predictors, such as the increment value predictor, which
require to know the control flow taken by the speculative thread in order to do the prediction. Such predic-
tion implies to anticipate the outcome of all the conditional branches between the spawning and the control
guasi-independent point. To do that, a control-flow predictor based on the Path-based Next-Trace[29] pre-
dictor can be used. This predictor works similarly to a FCM context-based value predictor and it is has
made up of two tables: a correlating table which contains thenlasintrol-flows taken after such thread

and a secondary table which holds the predicted next control flow.

Figure 3.12 shows the prediction miss ratio of a Path-Based predictor to predict the whole control-flow
for loop iterations. The sizes of the tables considered are 1K-entry secondary table and 8K-entry correlat-
ing table which stores the last 3 paths. For comparison, an ideal gshare which is able to predict as many
branches as a loop trace is also depicted in the graph. Such thread predictor is idealized in the sense that it
is assumed to predict multiple branches for the whole control-flow of a thread. It can be observed that the

control-flow misprediction for the Path-Based predictor is quite elevate. It is closer to 24% and quite ele-
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vate for some benchmarks lik@ andgcc which reaches a 40% misprediction. Besides, its performance

is quite far from the ideal gshare which only mispredicts 14% of threads.

Fortunately, most of the live-in values use the same stride or follow the same pattern independently of
the control-flow taken by the thread. In this way, a low hit rate does not necessarily imply a significant drop
in the value prediction accuracy. Experiments have shown that on average, the misprediction rate is just

increased by 10% compared with a perfect next-thread predictor.

When a thread reaches a spawning point and there is an idle thread unit, the live-in values of the
spawned thread have to be correctly initialized. If the value predictor requires to know the control flow
associated to that thread, a prediction regarding its control flow is done. Such predictor is indexed by a
hash function of the instruction pointers of the spawning and the control quasi-independents point and pre-
dicts the sequence of the conditional branch outcomes. With this prediction and the instruction pointer of
the spawning and the control quasi-independent point, the value predictor is indexed. In the case study of
loop iterations, the value prediction information can be stored in the loop iteration table. This table con-
tains the history for each trace, which is used to predict output register values and memory dependences,
among other things. If the predicted thread is not currently in the loop iteration table, the spawning of spec-
ulative threads is aborted. Otherwise, the corresponding entry of the loop iteration provides a bit vector that
identifies the output registers of the trace. In other cases, the information regarding which register are

input/output may be encoded in the spawn instruction.

In parallel to these actions, the register map table is copied from the previous thread. In clustered spec-
ulative multithreaded processors, the whole register file has also to be copied. Then, the values for those
registers that are expected to be written by any previous thread (according to the predictions done for it) are

predicted. That is, only those registers whose values are not available at thread creation are predicted.

In order to make those predictions, a series of instructions are inserted into the instruction window of
the speculative thread. These instructions are responsible for computing the predicted data values. These
instructions can be arithmetic operations such as adding the corresponding increment or stride to a register.
If the processor uses a context-based or a last value predictor, such instructions can be “move” a given
value to a given register. These instructions will be executed as normal instructions and they do not have
more priority than the others. If the previous threads have already computed all their outputs, or they have

been predicted, these instructions will immediately execute since their operands are ready.
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3.4.5.2. Verifying the Predicted Values.

When a thread becomes the non-speculative one, all the predictions done have to be verified in order to
know if the program is being executed correctly. These verifications consist of checking that the value of
the predicted registers at the end of the committed thread match the predicted values. To do that, it is nec-

essary that speculative threads store the predicted values in order to be compared with the real ones.

For this purpose, the inserted instructions for predicting the values also store the produced value on an
especial table which is referred to Register Prediction Tablélhus, to perform the verification, the value

of the registers at the end of the non-speculative thread are compared to the values stored in this table.

The verification process can be done at the moment the speculative thread becomes non-speculative.
This late verification might cause that the cost of mispredictions be very elevate since threads can take a
long time to become non-speculative. Thus, such high misspeculation cost requires very accurate value

predictors in order to obtain any benefit.

Another approach consists of performing the verification as soon as the values are produced. To know
when a value is computed by the producer thread, the processor can use the last-write instruction as for
synchronization mechanisms. In this way, when a last-write instruction is committed, the value is for-
warded to the consumer thread and it is compared with that stored in the Register Prediction Table. If val-
ues are not the same, a misspeculation has occurred and a recovery mechanism has to start. This approach
allows the processor to early detect misspeculations and reduce the cost of them. However, it may incur in
false misspeculations, that is, a speculative thread may forward speculative values that are incorrect
whereas in the first approach, the forwarded values are always correct. Different solutions for this phenom-
ena can be considered such as allowing only the non-speculative thread to forward values for early valida-

tion but in fact, false misspeculations are quite uncommon.

Finally, regarding the recovery mechanisms, they can be a simple squash of all the following specula-

tive threads or a selective reissuing of the dependent instructions.

3.4.6. Performance Figures

In this subsection, different register value predictors for a clustered speculative multithreaded processor are
evaluated. To evaluate the performance of the processor, the configuration detailed in subsection 3.3.5 is

used.
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Figure 3.13. Speed-up for the different value predictors and for the loop-iteration spawning policy.

The size of the value predictor is fixed to 8KB and the misprediction penalty considered is the elapsed
time until the correct value is available plus an extra cycle to forward the correct value plus 1 cycle. Note
that the average number of cycles waiting for the computation is in general significantly larger than the
other two factors. Moreover, a selective reissue mechanism is also considered, i.e. only dependent instruc-
tions of the mispredicted value have to be re-executed. Memory values are not predicted and dependent
values are forwarded from the producer to the consumer with a delay of 3 cycles by means of a Speculative

Versioning Cache.

Figure 3.13 shows the speed-up achieved by the clustered speculative multithreaded processor over a
single-threaded execution for different register value predictors and the unrestricted spawning model. On
average, the losses due to a realistic value predictor in comparison with perfect register value prediction are
16% for the loop iteration spawning scheme. Overall, the benefits of speculative thread-level parallelism

are still quite high. The loop-iteration model achieves an average speed-up of 2.84.

3.5. CONCLUSIONS

In this chapter different mechanisms to deal with interthread data dependences are proposed and analyzed.
The former approach consists of stalling the execution of dependent instructions of a speculative thread

until the producer thread has computed the corresponding values and has forwarded them to the consumer.
Different mechanisms based on hardware and software techniques are studied even though the results

reported by a speculative multithreaded processor with perfect synchronization are quite poor.

Value prediction is presented as a mechanism to deal with interthread data dependences. The main fea-

ture of this mechanism is its ability to break the dependence chain between the speculative threads so that
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both can be executed as if they were independent. The performance of different well-known value predic-

tors is studied for speculative multithreaded architectures and a new value predictor targeted to this type of
architectures, which is referred to as increment predictor, is presented. The increment predictor computes a
new value for a thread output as its value at the beginning of the thread plus an increment that depends on

the control-flow that thread will follow.

Experimental results have shown the importance of choosing the correct values to be predicted. Output
trace values are more predictable than inputs. Moreover, trace-based indexing outperforms PC-based
indexing. We have also shown that the increment predictor obtains the highest prediction accuracy with
small-sized history tables. This accuracy is increased for larger history tables by means of a hybrid predic-
tor that combines an increment predictor and a context-based predictor. Average hit ratio for Specint95

ranges from 73% to 84% depending on the capacity of the history table.

Overall, the main conclusion of this chapter is that value prediction plays an important role on this
kind of architectures since it helps to break interthread data dependences. Different spawning schemes that
take into account the predictability of the interthread data dependent values will be analyzed in the next

Chapter.
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