
icroar-

.

5
OTHER CRITICAL ISSUES ONSPECULATIVE

MULTITHREADED PROCESSORS

In this Chapter, the impact on the performance of speculative multithreaded processors of several m

chitectural parts such as branch prediction, value prediction and initialization overhead are analyzed

ted as the

r, there

tializa-

ad is

es is

ranch

act of

t clus-

n 5.7.

ulti-

l thread

its own

order

the fol-

inte-

p to 4

epen-
Other Critical Issues on Speculative Multithreaded Architectures 129

5.1. INTRODUCTION

In previous chapters, interthread data dependences and the spawning scheme have been presen

main factors that could affect to the performance of speculative multithreaded processors. Howeve

are some other limiting factors that have not been studied yet, such as branch prediction and the ini

tion overhead.

In this Chapter, the impact of implementable branch predictors and a realistic initialization overhe

analyzed. Also, the impact of value prediction on the performance of the different spawning schem

also investigated.

This Chapter is organized as follows: in section 5.2 the experimental framework is described. B

prediction is studied in section 5.3. In section 5.4, different value predictors are investigated. The imp

initialization overhead is studied in section 5.5 and in Section 5.6 the performance of a 4-thread uni

tered processor is analyzed. Finally, the main conclusions of the Chapter are summarized in sectio

5.2. EXPERIMENTAL FRAMEWORK

For the experiments in this Chapter, we will consider a fully-interconnected Clustered Speculative M

threaded Processor as it was presented in Chapter 2. This microarchitecture is made up of severa

units, each one being similar to a superscalar out-of-order processor core. Each thread unit has

physical register file, register map table, instruction queue, functional units, local memory and re

buffer in order to execute multiple instructions out-of-order.

The baseline speculative multithreaded processor has 16 thread units and each thread unit has

lowing features:

• Fetch: up to 4 instructions per cycle or up to the first taken branch, whichever is shorter.

• Issue bandwidth: 4 instructions per cycle.

• Functional Units (latency in brackets): 2 simple integer (1), 2 memory address computation (1), 1

ger multiplication (4), 2 simple FP (4), 1 FP multiplication (6), and 1 FP division (17).

• Reorder buffer: 128 entries.

• Local branch predictor: 14-bit gshare[40].

• 32 KB non-blocking, 2-way set-associative local, L1 data cache with a 32-byte block size and u

outstanding misses. The L1 latencies are 3 cycles for a hit and 8 cycles for a miss. Memory d

tive Ver-

read is

awning

ion of

and the

d size

ng exe-

There-

s of the

tations

d they

n them

rent

pre-

opy-

ead, for

redic-

e inter-

ent at

Spec-

ation.

hes in
130 CHAPTER 5

dence violations are detected by means of a cache coherence protocol based on the Specula

sioning Cache.

Performance is by default reported as the speed-up over a single-threaded execution. Any th

allowed to spawn any speculative thread, that is, the spawning model assumed is the unrestricted sp

model.

Statistics in this Chapter are reported for the two families of spawning schemes: the combinat

heuristics which spawns threads at loop iterations, loop continuations and subroutine continuations

profile-based spawning scheme. The configuration of this profile-based policy is a minimum threa

spawning scheme combined with the cancellation scheme that removes spawning pairs after bei

cuted 50 cycles alone (except forcompress that is 200 cycles) and no reassign scheme.

5.3. BRANCH PREDICTION

Branches in the speculative multithreaded execution model are fetched out of the program order.

fore, conventional branch predictors that make their predictions depending on the previous outcome

same and adjacent branches may be affected ([40][67] among others). In Chapter 2, two implemen

of branch predictors were presented. Both consist of a local branch predictor for each thread unit an

work completely independent of the other predictors once a thread is started. The difference betwee

lays on the way the branch prediction tables are initialized. In the first one, that we refer to ascopying

mechanism, when a thread is initialized, its branch prediction table is copied from the table of the pa

thread. Alternatively, a speculative thread may simply inherit the prediction table as it was left by the

vious thread executed in that unit. We refer to this latter mechanism asnon-copying mechanism.

Obviously, the initialization cost of both mechanisms is significantly different. Whereas for the c

ing mechanism, all the branch prediction has to be copied from the parent thread to the spawned thr

the non-copying mechanism, no initialization is required. Moreover, the cost of copying the branch p

tion table may be important on clustered architectures since the contents have to travel through th

connection network.

Figure 5.1 compares the branch prediction accuracy of branch predictors initialized from the par

thread creation and that of a non-initialization policy, considering the fully-interconnected Clustered

ulative Multithreaded Processor with 16 thread units and for the perfect register prediction configur

In addition, it also shows the prediction accuracy of a centralized predictor that processes all branc

t the deg-

ation

inde-

erfor-

initial-

grams
Other Critical Issues on Speculative Multithreaded Architectures 131

sequential order as a superscalar microprocessor does, as a baseline for comparison. Observe tha

radation suffered when the copy mechanism is implemented is very low (only 1% for a loop-iter

spawning policy and 4% for the subroutine-continuation one), but it is significant when predictors are

pendently managed (higher than 10% on average).

On the other hand, Figure 5.2 shows the impact of branch prediction accuracy on the overall p

mance of the speculative multithreaded processor. This figure depicts the slow-down caused by not

izing the local predictors. On average, the slow-down is close to 10% and significant for some pro

such asperl for the subroutine continuation spawning policy.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

A
m

ea
n

SpecInt95

0

20

40

60

80

100

B
ra

nc
h

P
re

di
ct

io
n

A
cc

ur
ac

y

Global gshare
Copy & Loops
Copy & Subr.
Local & Loops
Local & Subr.

Figure 5.1. Branch prediction accuracy.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

H
m

ea
n

SpecInt95

0.0

0.2

0.4

0.6

0.8

1.0

Sl
ow

-D
ow

n

Loop-it.
Subroutine-cont.
Figure 5.2. Slow-down when independent local branch predictors are used.

ined by

dation

ables.

own in

e effi-

e pre-

tables

quasi-

FCM

can be

y of the

ion of

or per-
132 CHAPTER 5

For the profile-based spawning scheme, the degradation suffered is quite similar to the one obta

the loop-iteration scheme with the same configuration (7% loss in prediction accuracy). This degra

results in less than 10% slow-down with respect the mechanism that copies the branch prediction t

For the next experiments, a non-copying mechanism is considered for the branch predictor.

5.4. VALUE PREDICTION

The importance of value prediction for speculative multithreaded processors has been previously sh

Chapter 3. In this Chapter, the relationship between the performance of the value prediction with th

ciency of the thread spawning scheme is demonstrated.

For the next experiments, the size of the value predictor has been fixed to 16KB for the two valu

dictors analyzed: the stride[18][64] and the context-based (FCM) value predictors[65]. Prediction

are indexed by hashing 3 values, the program counter of both the spawning point and the control

independent point and the identifier of the register being predicted.

Figure 5.3 shows the prediction accuracy for a 16KB value predictor (stride and context-based

value predictors) for the combined spawning scheme and the profile based spawning scheme. It

observed that there are no significant differences between the spawning scheme and the accurac

predictor. Thus, the prediction accuracy for the stride value predictor is about 72% for the combinat

heuristics and slightly lower for the profile-based scheme whereas the context-based value predict

Figure 5.3. Value prediction accuracy.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

20

40

60

80

100

H
it

 R
at

io

Stride + Heuristics
Stride + Profile-Based
Context + Heuristics
Context-Based + Profile-Based
forms the best for the profile-based spawning scheme. In any case, the prediction accuracy for both value

%

-based

y both

there a

about

ce pre-

e com-

icies is

alistic

for a

nt that

pendent

awned

instruc-

tween
Other Critical Issues on Speculative Multithreaded Architectures 133

predictors is very similar. It is also remarkable thatm88ksim achieves a prediction accuracy close to 90

with the stride predictor.

Figure 5.4 shows the speed-up over a single threaded execution for the combined and the profile

spawning schemes with a 16-KB stride value predictor. For comparison, the speed-ups achieved b

spawning schemes with perfect value prediction are also depicted in the figure. It can be observed

significant slow-down compared with the speed-up achieved with a perfect register value predictor,

28% for the combined scheme and 35% for the profile-based scheme. Nevertheless, the performan

sented by this architecture is still quite impressive obtaining an average speed- up close to 5 for th

bined scheme and close to 6 for the profile-based and the difference among both spawning pol

maintained close to 20%.

5.4.1. Data-Dependence Aware Profile-Based Spawning Schemes

In order to avoid this important difference between the performance obtained for a perfect and a re

value predictor alternative criteria to choose among the different control quasi-independent points

given spawning point may be considered. Instead of choosing the control quasi-independent poi

results in the largest sized thread, we have evaluated a scheme that selects the control quasi-inde

point that tries to maximize the number of independent instructions between the spawner and the sp

thread. More concretely, the scheme chooses the one that maximizes the number of independent

tions beyond the control quasi-independent point relative to the number of instructions executed be

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n

SpecInt95

0

5

10

Sp
ee

d-
U

p Heuristics + Perf.
Heuristics + Str.
Profile + Perf.
Stride + Str.

Figure 5.4. Speed-up with a perfect and a realistic value predictor.

e

oint that

e span-

curacy

ies are

ictable

r value

and

hieves

tor and
134 CHAPTER 5

the spawning and the control quasi independent point. We have referred to these spawning policy thinde-

pendent profile-based spawning scheme.

Besides, we have also considered a third scheme that selects the control quasi-independent p

maximizes the number of instructions either predictable or independent between the spawner and th

new thread. We refer to this scheme as thepredictable profile-based spawning scheme. For the study of the

predictability, we have considered the stride predictor since it provides the best value prediction ac

for the assumed predictor size[47].

Figure 5.5 shows the prediction accuracy achieved by the value predictors when these new polic

applied. The first two bars correspond to the independent policy and the last two bars to the pred

profile-based spawning policy. As expected, the policy oriented to predict values achieves a bette

prediction hit ratio. It correctly predicts 75% of the live-in register values with a stride value predictor

73% of the those values with a context-based. The independent profile-based spawning policy ac

also better results than the previous spawning scheme obtaining a 73% for the stride value predic

71% for the context-based.

Figure 5.5. Value prediction accuracy for the independent and the predictable profile-based spawning
policies.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg
pe

rl
vo

rt
ex

A
m

ea
n

SpecInt95

0

20

40

60

80

100

H
it

 R
at

io

Stride+Indep
Context+Indep
Stride+Pred
Context+Pred

5.6 it

licies is

e one

ndepen-

value

an be

h

awning

h used

istance

e, the

depen-

depen-

n-negli-

hread
Other Critical Issues on Speculative Multithreaded Architectures 135

Nevertheless, better value predictor accuracy does not imply better overall performance. In figure

can be observed that for a stride predictor, the speed-ups achieved by these two new spawning po

about 4.4 for the independent and 4.5 for the predictable, which is approximately 35% lower than th

obtained by the scheme that maximizes the distance between the spawning and the control quasi-i

dent point. However, the loss in performance for these profile-based spawning policies with perfect

prediction is about 22% for the independent spawning policy and 18% for the predictable. Also, it c

observed that some benchmarks likegcc , compress and vortex present the same results for bot

spawning schemes. This is due to the fact that the predictable and the independent profile-based sp

schemes produces very similar set of spawning pairs.

The worse results produced by both spawning policies are due to the more restrictive approac

for selecting spawning pairs that results in a much lower coverage than the one that maximizes the d

between the spawning and the control quasi-independent point.

The best spawning policy would possibly be one that looks for a trade-off among the thread siz

independence of the instructions executed on the speculative threads and the predictability of the

dent values that flow from one thread to the others instead of considering each of these elements in

dently.

5.5. INITIALIZATION OVERHEAD

Starting a new speculative thread in a thread unit requires several operations that may take some no

gible time as it was detailed in chapter 2. In addition, registers that are live at the beginning of a t

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n

SpecInt95

0

5

10

Sp
ee

d-
U

p Independent + Perfect
Independent + Stride
Predictable + Perfect
Predictable + Stride

Figure 5.6. Speed-up obtained by the independent and the predictable profile-based spawning
scheme with perfect and a realistic value predictor.

t writ-

alue as

al regis-

paral-

cycle

awned

It can

s and it

its has

ommu-

is sim-

some

ssor is
136 CHAPTER 5

must be initialized with their predicted values. On the other hand, the remaining registers that are no

ten by this new thread and may be read by any subsequent thread must be initialized with the same v

the parent thread, either at thread creation or when the parent produces this value. Note that sever

ters per cycle can be read/written in a multi-port register file, and several values can be forwarded in

lel depending on the bandwidth of the interconnection network.

Figure 5.7 shows the impact of an 8-cycle initialization overhead for both spawning policies. 8

may be a reasonable penalty for copying 32 integer and 32 FP registers from the parent to the sp

thread. The baseline configuration for this figure includes the 16-KB stride register value predictor.

be observed that the slow-down due to this overhead is 12% on average for both spawning scheme

ranges from 16% to 8% for all the benchmarks.

5.6. 4-THREAD UNIT CONFIGURATION

Finally, the performance of a clustered speculative multithreaded processor with only 4 thread un

been evaluated. The main advantage of reducing the number of thread units is the reduction of the c

nication latency. For instance, for fully interconnected clustered processors, the design of a crossbar

pler and the latency for traverse it is lower than for 16 thread units. Besides, it also reduces

requirements: i.e., the number of registers needed for supporting 4 contexts in a centralized proce

much lower than for 16 and the access time to the register file will be also decreased.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n

SpecInt95

0.0

0.2

0.4

0.6

0.8

1.0

Sl
ow

-D
ow

n

Profile-based
Heuristics

Figure 5.7. Slow-down for an 8-cycle initialization overhead.

ustered

e base-

over-

or is also

high.

a 70%

ports

culative

s that

peed-

loop-

For a 4-

uristic-

from

n is

r, two
Other Critical Issues on Speculative Multithreaded Architectures 137

Figure 5.8 shows the average speed-up over a single-threaded execution of a 4-thread unit cl

processor. Each thread unit has the same characteristics than for the 16-thread unit configuration. Th

line configuration also includes a 16-KB stride register value predictor and an 8-cycle initialization

head is considered. For comparison, the speed-up achieved by the 16-thread unit clustered process

depicted in this figure. It can be observed than the performance for such configuration is still quite

Thus, the profile-based spawning scheme almost obtains an speed-up of 2 and the combined one

improvement.

5.7. CONCLUSIONS

The main conclusion of this Chapter is that the speculative multithreaded execution model still re

impressive speed-ups even when it is evaluated under realistic conditions. Thus, a clustered spe

multithreaded processor with 16 thread units, a 16-KB stride value predictor, local branch predictor

are not initialized at thread creation and an 8-cycle initialization overhead still results in an average s

up of 5.4 for the profile-based spawning scheme and 4.7 for the combination of the loop-iteration,

continuation and the subroutine-continuation spawning schemes for the SpecInt95 benchmark set.

thread unit configuration, the speed-up is almost 2 for the profile-based scheme and 1.7 for the he

based one.

The most important degradation of the performance compared with the ideal scenario comes

value prediction. The slow-down of a 16-KB stride value predictor with respect to perfect predictio

35% for the profile-based scheme and almost 30% for the combination of heuristics. In this Chapte

16-TU 4-TU
0

2

4

6

Sp
ee

d-
U

p

Profile-based
Heuristics

Figure 5.8. Average speed-ups for a 4-Thread Unit clustered processor.
new profile-based spawning schemes have been also presented. These spawning schemes are focused on

selec-

s. The

for the

endent

ne that
138 CHAPTER 5

reducing the impact of realistic value prediction on the performance of the processor. To do that, the

tion of the spawning pairs is aware of the independence and the predictability of the spawned thread

degradation due to realistic prediction by such spawning schemes is much lower than the reported

spawning policy that maximizes the distance between the spawning and the control quasi-indep

point. However, the performance of these alternative spawning schemes is also smaller than the o

maximizes the distance due to the low coverage of both spawning schemes.

	5
	Other Critical Issues on Speculative Multithreaded Processors

	5.1. Introduction
	5.2. Experimental Framework
	5.3. Branch Prediction
	Figure 5.1. Branch prediction accuracy.
	Figure 5.2. Slow-down when independent local branch predictors are used.

	5.4. Value Prediction
	Figure 5.3. Value prediction accuracy.
	Figure 5.4. Speed-up with a perfect and a realistic value predictor.
	5.4.1. Data-Dependence Aware Profile-Based Spawning Schemes
	Figure 5.5. Value prediction accuracy for the independent and the predictable profile-based spawn...
	Figure 5.6. Speed-up obtained by the independent and the predictable profile-based spawning schem...

	5.5. Initialization Overhead
	Figure 5.7. Slow-down for an 8-cycle initialization overhead.

	5.6. 4-Thread Unit Configuration
	Figure 5.8. Average speed-ups for a 4-Thread Unit clustered processor.

	5.7. Conclusions

