
reas in
6
CONCLUSIONS AND OPEN-RESEARCH AREAS

In this Chapter, the main conclusions of this thesis are presented. Moreover, some open-research a

this topic are pointed out.





eans of

s based

oint,-

specula-

ds pro-

culative

spec-

m. Two

r one is

ulative

erfor-

used.

r a sin-

ng con-

s for a

re inde-

to as

by the

small

n pre-

ulti-

the first

outines.
Conclusions and Open-Research Areas 141

6.1. CONCLUSIONS

In this thesis, a processor architecture that boosts up the performance of single applications by m

exploiting speculative thread-level parallelism has been presented. The execution model proposed i

on identifying pairs of instructions in the program, -the spawning and the control quasi-independent p

at where the speculative threads are created. When a spawning point is reached by a thread, a new

tive thread is spawned starting its execution at the control quasi-independent point. Thus, both threa

ceed in parallel until the spawner thread reaches the control quasi-independent point of a more spe

thread. Threads are validated and committed in program order. Any thread is allowed to spawn more

ulative threads.

Parallel threads are speculative since there may be data and control dependences among the

mechanisms to deal with interthread data dependences have been studied in this thesis. The forme

based on synchronizing the consumer thread with the producer one. With this mechanism, the spec

thread stalls its execution until the dependent value is forwarded from the producer thread. The p

mance reported for this kind of mechanisms is very poor in comparison with the amount of hardware

A 16-thread unit clustered speculative multithreaded processor only achieves a 43% speed-up ove

gle-threaded execution for the SpecInt95 with perfect synchronization mechanisms.

On the other hand, value prediction may help to break interthread data dependence chains amo

current threads. If the processor is able to correctly predict all the interthread data dependent value

given speculative thread, then the spawner and the spawned threads will be executed as if they we

pendent.

Different value predictors have been analyzed in this thesis and a new one, which is referred

increment predictor has been proposed. This predictor takes into account the control flow followed

thread to perform the predictions. Very high prediction accuracies are reported for a predictor of a

size.

Overall, the performance of speculative multithreaded processors with register value predictio

sents impressive speed-ups even for relatively small sizes of the predictor.

Finally, the impact of the selection of the spawning pairs in the performance of speculative m

threaded processors has been studied. Two families of spawning schemes have been analyzed. In

one, speculative threads are assigned to well-known program constructs such as loops or subr
These constructs provide certain control independence and the speed-ups obtained by such spawning poli-



erfect

thread

cterize

istance

the pre-

mpared

r the

n pre-

mounts

Int95.

or a 16-

xed 8-

emory

er, this

thread

ols. The

ing the

r, this

adapt

new

instruc-

Multi-
Conclusions and Open-Research Areas 142

cies for the SpecInt95 are quite impressive, higher than 7 for a 16-thread unit configuration with p

register value prediction.

On the other hand, a new systematic spawning identification scheme based on quantifying the

features through an off-line analysis is presented. This scheme uses profile information to chara

some run-time features of programs. Main code considered by this spawning scheme are the d

between the spawning and the control quasi-independent point, the number of dependences and

dictability of the dependent values. The speed-up reported for this spawning scheme is close to 9 co

with a single-threaded execution with perfect value prediction and it outperforms the obtained fo

spawning schemes based on heuristics by a 20%.

Overall, a mechanism to boost up the performance of difficult-to-parallelize applications has bee

sented. This mechanism speculatively partitions the program into threads and is able to find huge a

of thread level parallelism in applications that are known to be hard to parallelize such as the Spec

Performance results report an average speed-up higher than 5 over a single-threaded execution f

thread unit clustered speculative multithreaded processor with a 16-KB stride value predictor and a fi

cycle thread initialization overhead.

6.2. OPEN-RESEARCH AREAS

6.2.1. Memory Subsystems for Speculative Multithreaded Processors

The profile-based spawning scheme may collect a significant amount of information such as the m

access patterns of the memory instructions as well as dependent store-load instructions. Howev

information is not used to reduce memory misspeculations. Traditional mechanisms to detect inter

memory dependences and misspeculations are based on extensions of cache coherence protoc

MultiValue Cache, proposed in this thesis, provides certain data dependence speculation by delay

execution of some memory instructions if a memory dependence is predicted to occur. Howeve

mechanism only works for the sequential thread ordering spawning model and it is quite complex to

for the unrestricted spawning model.

Therefore, in order to obtain benefit of such information collected by the spawning scheme, a

design for the memory subsystem may be needed. In this design, interthread memory dependent

tions would be delayed until the producer instruction finishes its execution in the same way as the

Value cache does.



ough

ill be

e value

tion: Is

ect the

istically

were

rs for

rofile

g pairs

ve been

, maxi-

depen-

uch as

e into

ber of

ortant
Conclusions and Open-Research Areas 143

6.2.2. Data Value Prediction for Memory Values

In this thesis, the study of value prediction has been limited to predict live-in register values even th

the potential speed-up reported for perfect live-in memory value prediction was impressive.

Memory value predictors can be implemented in different ways, just predicting the value that w

produced by a dependent load or combining with data dependence speculation and predicting th

that will be in a predicted memory location.

6.2.3. Evaluate the Sensibility of the Profile-Based Spawning Scheme

When profile information is used to implement a given technique, it is always present the same ques

the profile information used representative? In this thesis, profile information has been used to sel

spawning pairs based on quantifying some criterias. Obviously, the spawning pairs selected are stat

the best for the input used in the profile analysis, but it is possible that for any other input results

worse that for any other spawning pair set. In fact, it is very likely that the optimal set of spawning pai

two different inputs of a given program are completely different.

Then, to improve the quality of the selection of the spawning pairs, different inputs to obtain the p

information can be considered in order to refine the spawning pair selection.

6.2.4. Processor-Aware Spawning Schemes

The profile-based spawning scheme may collect any dynamic information of the candidate spawnin

in order to select which are the most appropriate pairs. In this thesis, three selection mechanisms ha

analyzed: maximizing the distance between the spawning and the control quasi-independent point

mize the number of independent instructions between the threads and maximizing the number of in

dent plus input-operand predictable instructions. Some others can also be taken into account s

minimizing the number of live-in input values, etc.

Moreover, the selection of the spawning pairs can also be improved if the selection process tak

account information of the configuration of the speculative multithreaded processor such as the num

thread units, latencies for forwarding register and memory values, etc.

We believe that the approach presented in this thesis opens the possibility of studying other imp

criteria that can enhance the thread spawning scheme of speculative multithreaded processors.



Conclusions and Open-Research Areas 144


	6
	Conclusions and Open-research Areas

	6.1. Conclusions
	6.2. Open-Research areas
	6.2.1. Memory Subsystems for Speculative Multithreaded Processors
	6.2.2. Data Value Prediction for Memory Values
	6.2.3. Evaluate the Sensibility of the Profile-Based Spawning Scheme
	6.2.4. Processor-Aware Spawning Schemes



