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“Once upon a time there was...”
Classical Fairy Tales Beginning.

PREFACE

Data dependences are some of the most important hurdles that limit the performance of current

microprocessors. Some studies have shown that some applications cannot achieve more than a few tens

of instructions per cycle in an ideal processor with the sole limitation of data dependences. This

suggests that techniques for avoiding the serialization caused by them are important for boosting the

instruction-level parallelism and will be crucial for future microprocessors. 

Moreover, innovation and technological improvements in processor design have outpaced

advances in memory design in the last ten years. Therefore, the increasing gap between processor and

memory speeds has motivated that current high performance processors focus on cache memory

organizations to tolerate growing memory latencies. Caches attempt to bridge this gap but do so at the

expense of large amounts of die area, increment of the energy consumption and higher demand of

memory bandwidth that can be progressively a greater limit to high performance.

We propose several microarchitectural techniques that can be applied to various parts of current

microprocessor designs to improve the memory system and to boost the execution of instructions.

Some techniques attempt to ease the gap between processor and memory speeds, while the others

attempt to alleviate the serialization caused by data dependences. The underlying aim behind all the

proposed microarchitectural techniques is to exploit the repetitive behaviour in conventional programs. 

Instructions executed by real-world programs tend to be repetitious, in the sense that most of the

data consumed and produced by several dynamic instructions are often the same. We refer to the

repetition of any source or result value as Value Repetition and the repetition of source values and

operation as Computation Repetition. In particular, the techniques proposed for improving the memory

system are based on exploiting the value repetition produced by store instructions, while the techniques

proposed for boosting the execution of instructions are based on exploiting the computation repetition

produced by all the instructions.
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“Civilization advances by extending the number of important operations which
we can perform without thinking about them”
Alfred North Whitehead, English Mathematician, 1861-1947. 

Chapter 1
INTRODUCTION

The serialization caused by data dependences and the gap between processor and memory speeds have

become a key constraint in the design of current processors. Microarchitectural techniques aimed at

breaking data dependences and improving the memory system are therefore becoming critical.

In this chapter we analyse the high percentage of repetition in real-world programs and introduce

the work developed in this thesis.
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1.1. Motivation

Current microprocessors designs primarily try to improve performance by increasing the clock

frequency and the number of instructions that can fetch, decode, issue, execute and commit in a single

cycle. Decode, execute and commit stages can manage several instructions per cycle without significant

limitations, but fetch and issue stages are limited by two program characteristics: control flow and data

flow [62],[125]. Control flow is defined as the sequence of execution of instructions in a program,

which is determined at run time by the input data and control structures. Data flow is defined as the

combination of operations and dependences which form the program and allows instructions to be

executed as soon as their inputs are available, regardless of the original program order. 

 The program’s control flow dependences, or Control Dependences, limit the number of

instructions that can be fetched. Often, the average number of fetched instructions is below the

maximum number of instructions that can be fetched in each cycle. Instruction flow techniques are still

an important area of research because the throughput of the early pipeline stage determines the

maximum throughput of all subsequent stages. 

Issue is limited by the program’s data flow dependences, or Data Dependences, because only data

independent instructions can be issued in the same cycle. Moreover, data dependences impose a

serialization on execution because processors have to stall the execution of one instruction until its

source values have been produced by previous instructions. Data dependences are therefore some of the

most important hurdles that limit the performance of current microprocessors. 

The amount of Instruction-Level Parallelism (ILP) processors can exploit is significantly limited

by the serialization caused by data dependences. This limitation is more severe for integer codes, where

data dependences are more abundant. Some studies on the ILP limits of integer applications have

shown that some of them cannot achieve more than a few tens of instructions per cycle (IPC) in an ideal

processor with the sole limitation of data dependences [47],[89],[125]. This suggests that techniques for

avoiding the serialization caused by data dependences are important for increasing ILP and will be

crucial for future wide-issue microprocessors. In this thesis, we attempt to boost the execution of

instructions to alleviate the serialization of data dependences.

In the last ten years, innovation and technological improvements in processor design have outpaced

advances in memory design. For this reason, current high performance processors focus on cache

memory organizations to ease the gap between processor and memory speed. The problem is that many
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of the techniques that are used to tolerate growing memory latencies lead to higher demand for memory

bandwidth, large amounts of on-chip cache memory and increases in energy consumption. This has

been shown to be a progressively greater limit to high performance [16],[17],[42],[103],[118]. In this

thesis, we also attempt to improve the memory system by reducing the memory bandwidth, die area,

access time and energy consumption of current data cache organizations.

To boost the execution of instructions and improve the memory system, we propose several

microarchitectural techniques that can be applied to various parts of current microprocessor designs.

The underlying aim behind all the proposed microarchitectural techniques is to exploit the repetitive

behaviour in conventional programs. 

1.2. Repetition in Conventional Programs

Instructions executed by real-world programs tend to be repetitious, in the sense that most of the data

consumed and produced by several dynamic instructions are often the same. Some studies

[75],[106],[111] identified several tendencies that lead to repetition in many real programs, even with

aggressive compilers.

Primarily, repetition is due to the input sets of real-world programs that contain data with little

variation (consider, for example, sparse matrices that contain a majority of zeros). Compiler also

generates repetition when it has to address error checking, program constants, branch destination

computation, virtual function calls, glue code, memory alias resolution, call-subgraph identities and

register spill code. Finally, the nature of some algorithms can also introduce repetitive computation. For

example, convergent algorithms result in redundant computation in the convergent areas.

1.2.1. Computation and Value Repetition

Computations performed by the instructions of a program can be summarized as follows: F[x,y]=z,

where F represents the operation that is performed with x and y as source values and z represents the

result of the computation. Repetition can be produced in many cases and involves operation, result and

source values (individually or combined). In this thesis, we consider two types of repetition: (1) if the

same combination of operation and source values have been produced exactly in the past, and (2) if

source and/or result values have appeared earlier in the program. In the first case it is the left part of the
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equation (F[x,y]) that is repetitive and in the second case it is any of all values that are repetitive

(x,y,z).

We call Value Repetition to the repetition of any source or result value and Computation Repetition

to the repetition of source values and operation. 

1.2.2. Analysis of Repetition

In this section we quantify the amount of repetition that is present in conventional programs.

The simulation environment is built on top of the Simplescalar [15] Alpha toolkit. The original

simulator was modified to collect repetition statistics. To determine this repetition, source values, the

opcode, and the destination value for all dynamic instructions are stored. Note that memory

requirements are extremely high. 

We randomly picked a subset of the SPEC2000 benchmark suite comprising both integer and FP

codes: bzip2, crafty, eon, gcc, gzip, parser, twolf, vortex and vpr from the integer suite, and ammp,

applu, apsi, art, equake, mesa, mgrid, swim and wupwise from the FP suite. These programs were

compiled with the Compaq C compiler with -O5 -non_shared optimization flags (i.e, maximum

optimization). Each program was run with the reference input set and statistics were collected for 500

million instructions after skipping the initializations (see Section 1.4 for further details of tools and

benchmarks).

1.2.2.1. Amount of Computation Repetition

We first analyse the computations performed by the instructions. As pointed out earlier, computation

repetition is produced when the combination of operation and source values has been produced exactly

in the past. We consider all the dynamic instructions to analyse the computation repetition. 

Figure 1.1 shows the percentage of repetitive computations. Note that the percentage of repetition is

significant for all benchmarks and that, on average, more than 80% of the computations of a program

have been done exactly in the past. Individual percentages range from 50% for mgrid to 96% for

equake. Note also that this percentage is slightly lower for FP than for integer programs (77% and 87%,

respectively). 

Figure 1.2 shows the contribution of the most frequent computations to the total percentage of

computations in a program. We only show the average numbers of all the simulated benchmarks. Note



Introduction 19

Microarchitectural Techniques to Exploit Repetitive Computations and Values 19 

that the X-axis uses a logarithm range that moves from the most frequent computation on the left side to

the 65,536 most frequent computations on the right side. The most important result of these simulations

is that few computations contributes significantly to the total percentage of computations that programs

perform. In other words, a program executes a small set of different computations a very large number

of times. For instance, the 32 most frequent computations represent 20% of total computations, and we

only need 1,024 different computations to obtain 50% of total computations. Intuitively, it seems that

the combination of two source values and one operation will produce millions of possibilities (for

Figure 1.1. Percentage of computation repetition.
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instance, a 64-bit source value can contain billions of different values) but in reality with just with a few

computations we can obtain most of the computations that a program performs.

1.2.2.2. Amount of Value Repetition

We now analyse the values produced by the instructions to give a flavour of the value repetition. As

pointed out earlier, value repetition is produced when the values consumed/produced by one instruction

have appeared earlier in the program. In this study, we only consider instructions that produce a result

(in the case of store instructions, we consider the value stored in memory as a result value).

Note that computation repetition also produces value repetition of the result but value repetition

does not necessarily mean computation repetition. In the first case, it is obvious that the same

combination of operation and source values will always produce the same result, but in the second case

the same result value can be produced by several computations. Therefore, the percentage of value

repetition of the result will always be higher than the percentage of computation repetition.

Figure 1.3 shows the percentage of repetitive values. As expected, the percentage of value

repetition is better than the percentage of computation repetition and is also extremely high. Over 90%

of the result values have been produced by an earlier instruction. Individual percentages range from

56% for mgrid to 99% for ammp, equake, gcc and vortex. Note also that this percentage is slightly

lower for FP than for integer programs (87% and 96%, respectively).

Figure 1.3. Percentage of value repetition.
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Figure 1.4 shows the contribution of the most frequent values to the total percentage of values

produced in a program. We only show the average numbers of all the simulated benchmarks. Note

again that the X-axis uses a logarithm range that moves from the most frequent value on the left side to

the 65,536 most frequent values on the right side. The values analysed have a 64-bit width, so billions

of different values can be produced. Simulations results show that just a few values can greatly

contribute to the total percentage of values produced in a program. For instance, just one value is

produced by close to 20% of a program’s instructions. It is easy to guess that this value is zero. Besides

zero, note that we only need 1,024 different values to obtain close to 70% of the total values managed

by programs.

10
24

Figure 1.4. Contribution of the most frequent values to the total values.
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1.3. Main Contributions

We propose several microarchitectural techniques that can be applied to various parts of current

microprocessor designs. These techniques attempt (1) to improve the memory system and (2) to boost

the execution of instructions by exploiting the repetitive behaviour in conventional programs. In

particular, the techniques proposed for improving the memory system are based on exploiting the value

repetition produced by store instructions, while the techniques proposed for boosting the execution of

instructions are based on exploiting the computation repetition produced by all the instructions.

1.3.1. Contributions to Improve the Memory System

Modern processor designs manage large amounts of on-chip cache memories to deal with the gap

between processor and memory speeds. This has special considerations in terms of memory traffic, die

area, power dissipation and latency. To tackle these issues, we propose novel cache designs that benefit

from the repetition in the memory hierarchy.

We therefore introduce the concept of Redundant Store Instructions. This type of stores do not

modify memory since the value they write is equal to the existing value. In other words, they do not

modify the state of the memory. In Chapter 2, we study the behaviour of these particular stores and

show how they can be applied to a processor or multiprocessor system memory hierarchy in order to

increase performance and decrease power consumption. This technique has no extra cost, in the sense

that the added hardware and complexity are negligible. In particular, we show that we can achieve a

significant saving on memory traffic between the first and second level cache by exploiting this feature.

In this case, we exploit the value repetition of the effective address and the value that is stored in

memory.

In Chapter 2, we also analyse the repetition of values into several storage locations of data caches.

We conclude that data caches exhibit a high percentage of value replication at any given time. From

this observation, we present a new data cache design called Non-Redundant Cache to reduce its die

area, power dissipation and latency. Basically, the Non-Redundant Cache reduces the storage

requirements of data cache by exploiting the significant amount of replication present in conventional

cache designs. It also includes a simple compression scheme based on inlining narrow values. In this

case, we simply exploit the value repetition of the value that is stored in memory.
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Briefly, the main contributions are:

• A detailed study of value repetition in data caches.

• The concept and analysis of Redundant Store Instructions.

• A technique that exploits Redundant Store Instructions to reduce memory traffic between levels

of memory hierarchy.

• A data cache design called Non-Redundant Cache that avoids the replication of values in data

caches and reduces die area, power dissipation and access time.

Our work on this topic has been published in three papers. The concept of redundant store

instructions and its application to reduce memory traffic was presented at the International Conference

on High Performance Computing and Networking (HPCN 1999) [80]. The study of data cache

repetition, the Non Redundant Cache and its analysis in terms of die area, latency and power was

presented at the International Symposium on Low Power Electronics and Design (ISLPED 2003) [78].

Finally, a modification of the Non-Redundant Cache that applies extensive value compression was

presented at the International Conference on Parallel and Distributed Computing (EUROPAR 2003)

[4].

1.3.2. Contributions for Boosting the Execution of Instructions

Three techniques are applied for boosting the execution of instructions: Instruction-Level Reuse, Trace-

Level Reuse and Trace-Level Speculation. All of these exploit the repetitive behaviour of computations

present in conventional programs.

1.3.2.1. Instruction-Level Reuse

Instruction-level reuse alleviates the serialization caused by data dependences. The idea is that the work

done by some instructions can be non-speculatively reused when they perform the same work again.

This reduces functional units utilization and, more importantly, reduces the time needed to compute the

results, thus shortening the lengths of critical paths of the execution. 

In Chapter 3, we analyse the phenomenon of instruction-level reuse by evaluating its performance

potential for an infinite resource machine and for a machine with a limited instruction window. The aim

is to study the performance limits of instruction-level reuse while ignoring implementation aspects. We
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will show that instruction-level reuse can exploit a high degree of reuse and may provide very large

speed-ups for an ideal machine. However, performance is degraded when the reuse latency is

considered. 

In this chapter, we also present a hardware implementation for dynamic instruction-level reuse in

superscalar microprocessors. The underlying concept exploited by this mechanism is the run-time

removal of redundant computations and particularly the elimination of quasi-invariants and quasi-

common subexpressions. In the first case, a quasi-invariant is defined as a computation that is repeated

many times and often produces the same result. In the second case, a quasi-common subexpression is

defined as a computation that often produces the same result as another piece of code. Removing

redundant computation is a target of optimizing compilers. Because of their limited knowledge of the

data, however, they do not always succeed. The proposed mechanism can also remove quasi-redundant

computations, such as subexpressions that often produce the same result but sometimes differ

(depending on the data values) and cannot therefore be eliminated by the compiler. 

Briefly, the main contributions are:

• A detailed study that evaluates the performance potential of instruction-level reuse.

• A mechanism called Redundant Computation Buffer that can exploit reuse due to quasi-invariants

and quasi-common subexpressions while exhibiting a low reuse latency. Its novel features, such

as memory management, can be applied to previous hardware implementations of instruction-

level reuse.

Our proposals on this topic were published at the International Conference on Supercomputing

(ICS 1999) [77] and in a technical report [37] evaluating the performance potential of instruction-level

reuse.

1.3.2.2. Trace-Level Reuse

Here we introduce and study the concept of trace-level reuse. Trace-level reuse exploits the fact that

many sequences of instructions are repeatedly executed (most of these repetitions have the same inputs

and thus generate the same results) by buffering previous inputs and their corresponding outputs. When

a trace is encountered again and its current inputs are found in that buffer, its execution can be avoided

by obtaining the outputs from the buffer. 
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Exploiting reuse at trace level implies that a single reuse operation can skip the execution of a

potentially large number of instructions. More importantly, as these instructions do not need to be

fetched, they do not consume fetch bandwidth. Moreover, since these instructions are not placed in the

reorder buffer, they do not occupy any slot of the instruction window, so the effective instruction

window size is increased as a side effect. Particularly interesting is the fact that this technique may

compute all at once the results of a chain of dependent instructions (e.g. in a single cycle), which allows

the processor to exceed the dataflow limit that is inherent in the program.

In Chapter 4 we analyse the performance potential of trace-level reuse under several scenarios. We

also compare the relative advantages of trace-level reuse and instruction-level reuse and show that

trace-level reuse is more effective than instruction-level because it reduces fetch bandwidth and

instruction window requirements. Trace-level reuse also has a lower overhead because a single reuse

operation can avoid the execution of a long sequence of instructions. Finally, we address essential

issues for integrating a trace-level reuse scheme into a superscalar processor.

Briefly, the main contributions are:

• The concept of trace-level reuse.

• A detailed analysis of the performance potential of trace-level reuse under several scenarios.

• A discussion of the design issues for integrating a trace-level reuse scheme on a superscalar

processor.

Our proposals on this topic were published at the International Conference on Parallel Processing

(ICPP 1999) [38] and in a technical report [37] evaluating the performance potential of trace-level

reuse.

1.3.2.3. Trace-Level Speculation

Trace-level speculation avoids the execution of a dynamic sequence of instructions by predicting the set

of live-output values based on previously seen results. This prediction exploits the observation that a

limited set of unique values constitutes the majority of values produced and consumed by conventional

programs. Trace-level speculation solves the reuse test of trace-level reuse, that it is not easy to handle,

but it introduces penalties due to a misspeculation.
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There are two important issues in trace-level speculation. The first of these involves the

microarchitecture support for trace speculation and how the microarchitecture manages trace

speculation. The second involves trace selection and data value speculation techniques.

In Chapter 5 we present a novel microarchitecture for exploiting trace-level speculation using two

threads working cooperatively. One thread, called the speculative thread, executes instructions ahead of

the other by speculating on the result of several traces. The other thread executes speculated traces and

verifies the speculation made by the first thread. This architecture has two main advantages: (a) no

significant penalties are introduced in the presence of a misspeculation and (b) any type of trace

predictor can work with this proposal.

We also propose a static program analysis for identifying candidate traces to be speculated. This

approach identifies large regions of code whose produced values may be successfully predicted. We

present several heuristics to determine the best opportunities for dynamic speculation based on

compiler analysis and program profiling information.

Briefly, the main contributions are:

• A microarchitecture to exploit trace-level speculation called Trace-Level Speculative

Multithreaded Architecture. This architecture does not introduce significant trace misprediction

penalties and does not impose any constraint on the approach to building or predicting traces.

• A trace selection method to identify large regions of code that may be successfully predicted

based on a static analysis that uses profiling data. 

Three papers have been published on this topic: the definition of the architecture was presented at

the International Conference on Computer Design (ICCD 2002) [81]; a hardware improvement that

reduces misspeculation penalties was presented at the 6th International Symposium on High

Performance Computing (ISHPC 2005) [79]; and compiler analysis to support Trace-Level Speculative

Multithreaded Architectures was presented at the 9th Annual Workshop on Interaction between

Compilers and Computer Architectures (INTERACT 2005) [76].
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1.4. Methodology and Experimental Framework 

The microarchitectural techniques introduced in this thesis have been analysed, proposed and evaluated

using a similar methodology. For each technique, we first analyse a set of benchmarks to quantify a

special repetitive behaviour of the instructions. Basically, this analysis is performed with the help of

tools that easily provide information about the instructions executed in a program. Then, we analyse the

results to define proposals that are targeted to improve the memory system or boost the execution of

instructions. Once the proposals are defined, we evaluate them. To do so, we modify a set of simulators

widely used in the computer architecture research community. These simulators can provide

information about computer performance in terms of speed-up or cache hit/miss ratio. Finally, we also

use a well-known analytical model, that greatly facilitates the work of circuit simulation, for the

evaluation of area, power and cycle time of data caches.

In the following subsections we provide an overview of tools, benchmarks and baseline

microarchitecture that are used to propose and evaluate the microarchitectural techniques introduced in

this thesis. We detail the specific experimental framework of the techniques in their corresponding

chapters.

1.4.1. Tools

ATOM [117]: Analysis Tools with Object Modification (ATOM) is a single framework for building a

wide range of high performance program analysis tools. It provides instrumentation routines that allow

the user to have access to each procedure in an application, each basic block in that procedure, and each

instruction in that basic block. In addition to the instrumentation routines, the user can also write

analysis routines. The main advantage of this tool is that provides a very flexible and efficient code

instrumentation interface that helps to build customized simulators with very little effort. The main

disadvantage is that ATOM is a trace-driven simulator. This means that the analysis reads existing

executed traces of instructions to simulate models. Thus, ATOM can not model accurately speculation

or misprediction. In this thesis, we use the ATOM tool to analyse and quantify a special repetitive

behaviour of programs.

SimpleScalar Tool Set [15]: Besides trace-driven simulation, execution-driven simulation is a useful

technique for modelling high-performance of modern microprocessors. This technique, which is the

most accurate and most costly of the simulation techniques, requires instruction and I/O emulators to
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reproduce program computation. This means that it decodes and executes machine instructions on-the-

fly. The SimpleScalar Tool Set provide simulators ranging from a fast functional simulator to a detailed

out-of-order issue processor that supports non-blocking caches, speculative execution, and state-of-the-

art branch prediction. In this thesis, we use the simulators of the Simplescalar tool set in several ways.

The sim-fast simulator is modified to provide results of the repetitive behaviour of programs; the sim-

outorder simulator is modified to evaluate some techniques in an out-of-order superscalar processor

with a two level memory system and speculative execution support; and finally, the sim-cache

simulator is modified to evaluate the memory hierarchy techniques when the cache performance on

execution time is not considered.

CACTI [107]: This tool greatly facilitates the work of circuit simulation. It was originally developed to

quantify the access time trade-offs of on-chip cache organizations. Later versions of the CACTI tool

provide features to estimate area, access and cycle time and power dissipation of different direct-

mapped and set-associative cache configurations. Moreover, this tool is also used to determine the

cache configuration that best satisfies a desired optimization criterion. In this thesis, we use the CACTI

tool as an analytical model for the evaluation of area, power and cycle time of on-chip direct-mapped

and set-associative caches.

1.4.2. SPEC Benchmarks

The Standard Performance Evaluation Corporation (SPEC) [54] is an organization founded in 1988

dedicated to producing benchmarks that are reasonably scientific, unbiased, meaningful and relevant.

This organization provides several families of benchmarks to measure the performance of different

computer systems (CPU family), parallel and distributed computer architectures (HPC family), java

application servers (JAPPSERVER family), mail servers (MAIL family), network file servers (SFS

family) and web servers (WEB family). .

In this thesis we consider the CPU family, designed to provide performance measurements that can

be used to compare compute-intensive workloads on different computer systems. In particular, we

consider the following suites of the CPU family: SPEC CPU95 (released in August 1995) and Spec

CPU2000 (released in January 2000). Each suite defines a standard reference machine and a set of

programs to run, and formulas for computing the scores. Traditionally, the SPEC benchmarks define

three standard runs called reference, test and train. Moreover, each suite contains two benchmark

components: CINT for measuring and comparing compute-intensive integer performance, and CFP for
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measuring and comparing compute-intensive floating point performance. Table 1.1 shows the SPEC

CPU95 and SPEC CPU2000 benchmarks Note that several SPEC CPU95 programs have been included

with minor changes in SPEC CPU2000 (i.e. compress, gcc, perl and vortex form the integer component

and applu, apsi, mgrid and swim from the floating point component).

We began to use the SPEC CPU95 test platform but then shifted to the SPEC CPU2000. Note that

the organization of this thesis does not preserve the temporal order in which we proposed the

techniques. Therefore, SPEC CPU95 and SPEC CPU2000 simulations are merged throughout the

chapters.

Although SPEC CPU95 still provide a meaningful point of comparison (half of SPEC CPU95 are

included in SPEC CPU2000), we believe that it is important to consider the changes in technology.

SPEC CPU2000 are designed to measure compute intensive performance that reflects the current

advances in microprocessor technologies. However, Yi and Lilja [135] analysed repetitive behaviour in

both SPEC CPU95 and SPEC CPU2000 benchmarks and did not find significant differences.

We have compiled the programs with the DEC C and Fortran compilers with full optimizations (“-

non_shared -O5 -tune ev5 -migrate -ifo” for C codes and “-non_shared -O5 -tune ev5” for Fortran

SPEC CPU 95 SPEC CPU 2000

CINT95 CFP95 CINT2000 CFP2000

099.go 101.tomcatv 164.gzip 168.wupwise

124.m88ksim 102.swim 175.vpr 171.swim

126.gcc 103.su2cor 176.gcc 172.mgrid

129.compress 104.hydro2d 181.mcf 173.applu

130.li 107.mgrid 186.crafty 177.mesa

132.ijpeg 110.applu 197.parser 178.galgel

134.perl 125.turb3d 252.eon 179.art

147.vortex 141.apsi 253.perlbmk 183.equake

145.fpppp 254.gap 187.facerec

146.wave5 255.vortex 188.ammp

256.bzip2 189.lucas

300.twolf 191.fma3d

200.sixtrack

301.apsi

Table 1.1. SPEC CPU95 and CPU2000 benchmarks.
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codes). In our simulations we consider the reference and test inputs of SPEC benchmarks. Furthermore,

we forward a significant number of instructions to avoid the initialization behaviour of programs. We

have empirically checked that skipping 500 million instructions with the reference input and 125

million instructions with the test input represent a good design point. 

1.4.3. Baseline Microarchitecture

We use the sim-outorder simulator of the SimpleScalar tool set to determine the speed-up of a particular

technique in an out-of-order superscalar processor with a two level memory system and speculative

execution support. The baseline microarchitecture that we assume in this simulator is a 4-way

dynamically scheduled superscalar processor based on the Register Update Unit [114]. The main

characteristics of this architecture are shown in Table 1.2.

 

Instruction fetch 4 instructions per cycle.

Branch predictor 2048-entry bimodal predictor

Instruction issue/

commit

Out-of-order issue, 4 instructions committed per cycle, 64-entry reorder buffer, 

loads execute only after all the preceding store addresses are known, store-load 

forwarding

Architectural 

registers

32 integer and 32 FP

Functional units 4 integer ALUs, 4 load/store units, 4 FP adders, 2 integer mult/div, 2 FP mult/div

FU latency/repeat 

rate

int ALU 1/1, load/store 1/1, int mult 3/1, int div 20/19, FP adder 2/1, FP mult 4/1, 

FP div 12/12

Instruction cache 16 KB, direct-mapped, 32-byte block, 6-cycle miss latency

Data cache 16 KB, 2-way set-associative, 32-byte block, 6-cycle miss latency

Second Level 

Cache

Shared instruction & data cache, 256 KB, 4-way set-associative, 32-byte block, 

100-cycle miss latency

Table 1.2. Parameters of the baseline microarchitecture.



“Do not keep in your head what you can fit in your pocket”
Albert Einstein, US (German-born) physicist, 1879-1955.

Chapter 2
VALUE REPETITION IN

DATA CACHES

On-chip cache memories are getting bigger and bigger in order to ease the ever-increasing gap

between processor speed and memory access. Die area, latency and power dissipation have therefore

become a key constraint in the design of current cache organizations. Memory bandwidth is also a

scarce resource in high-performance systems because modern processor techniques designed to deal

with memory latencies lead to greater bandwidth demands.

In this chapter we propose novel data cache designs that reduce memory traffic and produce

significant die area savings, power reduction and latency decrease. These novel schemes are based on

the observation that most values managed by the memory hierarchy are frequently repetitive.
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2.1. Introduction 

In the last decade, innovation and technological improvements in processor design have outpaced those

in memory design. That is why current high performance processors focus on cache memory

organizations [128] to ease the gap between processor and memory speed. Several studies [42],[109]

have shown the importance of a good design to maximise the hit ratio, minimise the access time to

cache, minimise the delay due to a miss and minimise the overheads of updating the next memory level. 

One problem is that many of these techniques for tolerating growing memory latencies do so at the

expense of increased memory bandwidth, and this has been shown to be a progressively greater limit to

high performance [16],[17],[42]. Techniques such as lookup free caches [115], software and hardware

prefetching [21], stream buffers [58], speculative load execution [39], and multithreading [122] reduce

latency related stalls but also increase the total traffic between the main memory and the processor.

Memory bandwidth has therefore also become a key constraint in the design of current cache

organizations.

Processor and memory integration can build cheaper and less complex competitive systems [103].

On-chip cache memories of microprocessor are getting larger because the scale of integration continues

to grow and because applications are using larger working sets. Chip multiprocessor designs are also a

promising way of increasing throughput. However on-chip memories and processing cores both

compete for the die area, and the area occupied by one affects the amount left for the other [52]. Table

2.1 summarizes cache occupancy for several commercial processors [53]. For instance, in a Power4

processor, the die contains 2 processors and a unified 1.5MB second level cache that occupies close to

50% of the total die area. Even small processors such as Mips-R20k devote a significant area to

implementing caches. On average, caches use close to 50% of the total die area. Moreover, some

L1 Dcache L1 Icache L2 Cache Total Area

Pentium 4 2% 3% 20% 25%

MipsR20k 23% 26% none 54%

Crusoe:5400 10% 9% 27% 46%

Power4 2% 1% 50% 53%

Alpha 21364 4% 3% 36% 43%

Table 2.1. Die are occupied by caches in some commercial processors.
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authors [14],[43] have reported that caches may be responsible for 10% to 20% of the total power

dissipated by a processor.

In processor design several trade-offs are needed to obtain a good balance between cost and

performance. For high productions volumes, cost can be associated with area chip, so a way to reduce

the cost is to reduce area requirements. On the other hand, power dissipation is becoming a critical issue

for microprocessors. Power dissipation determines the cost of the cooling system and ultimately may

limit the performance of the microprocessor. Dynamic power dissipation of on-chip memories is

strongly related to its area, whereas static power dissipation depends on the number of transistors.

In the previous chapter we demonstrated the high percentage of repetition produced by instructions

in conventional programs. Therefore, store instructions manage values that are frequently repetitive.

Those repetitive values may be stored in the same storage location or in several storage locations of the

memory hierarchy. The first case means that the effective address and the value stored in memory are

repetitive. The second case means that just the value stored in memory is repetititive. We will show that

both repetitive behaviours can be exploited to improve several aspects of conventional data caches.

In this chapter, value repetition in the same storage location is exploited by a novel technique for

reducing memory traffic with no special hardware requirement. In particular, we show that a significant

saving on memory traffic between the first and the second level cache can be avoided with no extra

cost, since the added hardware and complexity are negligible. This technique is based on the

observation that some memory writes do not modify memory because the value they write is equal to

the existing value. In other words, they do not modify the state of the memory. We refer to these stores

which exploit this value repetition as Redundant Stores. We study how they behave and show how they

can be applied to a processor or multiprocessor system memory hierarchy in order to increase

performance and decrease power consumption. 

We also present in this chapter a novel cache design, the Non-Redundant Cache, which reduces the

storage requirements of data cache by exploiting the significant amount of replication in conventional

data cache designs. These storage savings lead to significant die area savings, power reduction and

latency decrease. The underlying concept behind this approach is the exploitation of value repetition in

several storage locations of data caches.

The rest of this chapter is organized as follows. Section 2.2 analyses the value repetition in the

same storage location of data caches and introduces the concept of Redundant Store Instructions.
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Section 2.3 proposes a technique based on Redundant Store Instructions that reduces memory traffic

between levels of the memory hierarchy. Section 2.4 evaluates the value repetition in several storage

locations of conventional data caches. Section 2.5 introduces a novel cache design called Non-

Redundant Cache which avoids the replication of values and reduces die area, power dissipation and

access time. Finally, Section 2.6 reviews related work and Section 2.7 summarizes our main

conclusions.

2.2. Value Repetition in the Same Storage Location

2.2.1. Overview

Lipasti et al [72] coined the term value locality to describe the likelihood to references of a previously

seen value within a storage location. These authors reported that the most recent value produced by an

instruction is frequently also the next. Based on this observation, they initially proposed last value

prediction as a mechanism for predicting load values [72] and, in a subsequent study, for predicting all

values produced by instructions that write into a register [71]. Unfortunately, store instructions were not

analysed, since the target was to boost the execution of instructions. 

We observed that several memory writes do not modify memory since the value they write is equal

to the existing value. In other words, they do not modify the state of memory. These stores are what we

call Redundant Stores. Figure 2.1 summarizes the underlying concept behind Redundant Stores and the

next section quantifies them by analysing a set of benchmarks. Note again that a Redundant Store is

produced when the stored value is the same as the previous one.

Figure 2.1. Redundant store concept. 

STORE (@i , Value Y)

Memory

if (Value X == Value Y) then Redundant Store

@i            Value X
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Since our initial definition [80], several authors [10], [60], [65], [66], [67] have evaluated this

particular behaviour for several stores. All these authors called them Silent Stores but the underlying

concept is the same as in our definition of Redundant Stores. 

Redundant Stores can be applied to any part of the processor which has a buffer that is modified

such as cache memories, write buffers, load/store queues for memory disambiguation, buffers of

instruction reuse or prediction schemes, etc. We will show the behaviour of redundant stores in the

memory hierarchy. Rather than boosting the execution of instructions, the proposal reduces the memory

bandwidth demand. By exploiting the redundancy of some stores we can achieve a significant saving

on memory traffic between the different levels of the hierarchy, thus increasing the performance. We

also achieve a reduction in power consumption because the memory bus is used less.

In the following subsections, we first revise different cache write policies and then quantify the

amount of Redundant Stores in several data cache configurations.

2.2.2. Cache Write Policies

Cache memories are largely known as small amount storage of high speed access designed to supply

the processor with the most frequently requested instructions and data. When data is read from, or

written to, main memory, a copy is also saved in the cache, along with the associated main memory

address. The cache monitors addresses of subsequent reads to see if the required data is already in the

cache. If the data is cached (i.e. a cache hit), it is returned immediately and the main memory read is not

started. If the data is not cached (i.e. a cache miss), it is fetched from the main memory and saved in the

cache.

Basically, there are two options when writing to cache [47],[57]: 

• Write Through, where the information is written both to the block in the cache and to the block in

the lower level memory. 

• Copy Back, where the information is written only to the block in the cache and the modified cache

block is written to the next memory level only when it is replaced. This technique uses a dirty bit

that indicates whether the block was written, thus reducing the frequency of writing back blocks

on replacement.
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Similarly, there are two options on a write miss[47],[57]:

• Write Allocate, where the new block is loaded into the cache. 

• No Write Allocate, where the new block is not loaded in the cache and is modified in the next level

of the memory hierarchy.

The combination of the above options leads to four main configurations in cache: Write Through

with Write Allocate (WT-WA), Write Through with No Write Allocate (WT-NWA), Copy Back with

Write Allocate (CB-WA), and finally Copy Back with No Write Allocate (CB-NWA). Normally Copy

Back with Write Allocate, and Write Through with No Write Allocate are used because, in the first

case, subsequent writes to the same block can be captured by the cache and, in the second case,

subsequent writes to the same block still have to go to memory.

2.2.3. Performance Evaluation

This section evaluates the amount of redundant store instructions in several data cache configurations.

2.2.3.1. Experimental Framework

We have developed a functional parameterized simulator for cache memories. Briefly, this simulator

provides information about hit/miss ratios and quantifies the number of writes that does not modify the

state of memory.

For the evaluation we have considered a subset of the Spec95 benchmark suite. The programs have

been compiled with the DEC Fortran and C compilers for a DEC AlphaStation 600 5/266 with full

optimizations, and instrumented by means of the Atom tool [117]. Each program was run with the

reference input sets, and statistics were collected for 1 billion instructions after skipping the initial part,

which corresponds to initializations (see Section 1.4 for further details of tools and benchmarks).

We simulated several cache configurations and cache write policies. We considered four cache

sizes: 32 KB, 16 KB, 8 KB and 4 KB, and 32-byte line size. We simulated the following cache policies:

Copy Back with Write Allocate (CB-WA for short) and Write Through with No Write Allocate (WT-

NWA for short). Direct mapped caches were assumed for all simulations. Table 2.2 shows the miss

ratio of every combination of the above described sizes and policies.
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COPY BACK WRITE ALLOCATE WRITE THROUGH  NO WRITE ALLOCATE

32 KB 16 KB 8 KB 4 KB 32 KB 16 KB 8 KB 4 KB

Applu 10.81

8.31   16.5

11.29

8.88   16.8

12.15

9.86   17.4

14.01

12.0   18.5

16.40

8.09   35.4

16.84

8.51   35.9

17.65

9.27   36.8

19.48

11.0   38.7

Apsi  12.61

14.0   9.95

13.12

14.5   10.4

15.03

16.6   11.9

29.59

28.3   31.9

14.99

13.9   16.9

15.71

14.3   18.2

18.95

16.9   22.8 

35.26

26.4   51.9

Gcc 2.40

2.85   1.01

5.13

5.89   3.64

7.81

8.96   5.53 

11.61

13.5   7.88

2.85

2.98   2.41

6.57

7.01   5.08

11.58

12.3   8.83

18.90

20.4   13.5

Go 3.52

3.96   2.65

5.73

6.74   2.28

10.26

11.9   4.54

17.13

19.8   7.72

7.71

4.23   14.6

9.67

6.26   16.4

12.90

9.59   19.4

17.87

14.5   24.4

Ijpeg 1.58

2.10   0.06

2.69

3.46   0.43

7.32

9.64   0.54

15.34

20.3   0.67

1.63

2.11   0.22

3.16

3.57   1.96

7.87

9.77   2.32

15.98

20.5   2.72

M88ksim 0.67

1.05   0.01

1.30

1.95   0.18

5.52

6.85   3.21

7.68

9.30   4.86

1.22

1.05   1.51

1.82

1.05   1.60

7.11

7.32   6.74

11.49

10.7   12.8

Mgrid 4.97

4.51   13.8

5.21

4.76   13.8

5.35

4.90   13.9

8.46

8.17   14.0

6.89

4.55   51.4

7.12

4.80   51.4

7.25

4.93   51.5

10.35

8.19   51.5

Perl 0.27

0.22   0.37

0.55

0.43   0.75

1.64

1.93   1.13

7.35

8.25   5.78

1.80

0.43   4.19

3.37

0.86   7.75

4.91

2.58   8.99

12.86

10.7   16.6

Tomcatv 12.06

14.5   5.64

15.98

18.8   8.44

29.13

31.9   21.8

36.26

39.8   27.0

16.07

14.2   20.9 

18.76

17.7   21.4

30.87

31.9   28.1

38.87

40.3   35.0

Turb3d 5.82

5.55   6.18

7.59

7.40   7.84

8.92

8.73   9.17

10.60

10.6   10.5

5.79

5.73   5.87

7.93

7.59   8.37

10.62

9.17   12.5

13.52

11.3   16.4

Vortex 1.88

2.57   0.87

3.45

4.51   1.87

5.40

7.09   2.88

8.04

10.3   4.58

2.96

2.79   3.22

5.83

5.31   6.59

9.09

8.04   10.6

14.22

11.6   18.0

Wave 15.33

13.3   18.8

25.85

23.2   30.5

36.02

32.0   43.3

41.97

40.0   45.5

21.36

11.1   40.0 

31.93

20.5   52.7

40.90

31.5   57.8

47.93

40.0   62.3

A_MEAN 5.99

6.09   6.33

8.16

8.39   8.09

12.05

12.5   11.2

17.34

18.3   14.9

8.31

5.93   16.4

10.73

8.20   18.9

14.98

12.7   22.2

21.39

18.8   28.6

Table 2.2: Miss ratios of CB-WA and WT-NWA for different cache sizes

Total Miss Ratio

Load_Miss_Ratio

     

Store_Miss_Ratio

      Cell Description
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2.2.3.2. Analysis of Results

Figure 2.2 and Figure 2.3 show the percentage of Redundant Stores over all the stores that access the

simulated caches. Specifically, Figure 2.2 shows the percentage of Redundant Stores for CB-WA caches

and Figure 2.3 shows the percentage for WT-NWA caches.

Note that the amount of Redundant Stores in cache was significant in all benchmarks. Only mgrid

did not present a significant number of Redundant Stores. On average, around 30% of the stores were

redundant for a CB-WA cache and 15% were redundant for a WT-NWA cache. This difference is due to

Figure 2.2. Percentage of redundant stores for CB-WA with different cache sizes. 
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Figure 2.3. Percentage of redundant stores for WT-NWA with different cache sizes. 
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the fact that CB-WA has a lower store miss ratio than WT-NWA (on average, about half), so storage

locations refer longer to the same memory address. The results also show that the size of the caches did

not modify the percentage of Redundant Stores.

Using this observation, in the next section we propose a novel technique that can significantly

reduce the memory bandwidth required between levels of the memory hierarchy.

2.3. Redundant Store Mechanism for Reducing Memory Traffic

In this section, we propose to benefit from redundant store instructions by slightly modifying

conventional data cache designs in order to achieve significant traffic reduction between levels of the

memory hierarchy.

2.3.1. General Description

We first describe the changes required in different cache configurations in order to take advantage of

the Redundant Stores for memory traffic reduction. Note that the additional hardware required is

minimal and is highlighted in each scheme.

• Cache memory with copy-back policy: In the regular version, a store accesses cache to write its

value and sets the dirty bit. We propose first checking whether the current value in cache matches

the value that this store is going to write. If so, it is a Redundant Store and the dirty bit is not set.

=

Additional Hardware

Tag Value_1.. Value_N 

Hit/Miss

Value

CACHE

Dirty Bit

@

=

Figure 2.4. Redundant store mechanism with copy back 
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A store in a conventional cache first reads the tag and then writes the new value. Our mechanism

simultaneously reads the old value and the tag and then writes the new value if necessary, so the

cache latency is not increased. For the sake of simplicity, direct mapped caches are assumed. Note

that associative caches will only need to replicate the additional hardware for each way. Figure

2.4 shows how the mechanism works for copy back caches. Here we have a reduction in the

frequency at which the dirty bit is set. This reduces memory traffic because fewer blocks of the

cache will have to go to the next level of the memory hierarchy when there is a cache miss. Note

that, to exploit the benefit of Redundant Stores, we have to read the old value from the cache and

compare it with the value that is going to be written. We just need a simple comparator that

decides whether the dirty bit is set.

• Cache memory with write-through policy: In this case, Redundant Stores do not need to update

either the cache or the next memory level. As explained earlier, it is identified by reading the old

value and comparing it with the current one (see Figure 2.5). Note that the output of the

comparator decides whether the buffer can send the value to the next level of the hierarchy.

Tag Value_1...Value_N

Hit/Miss

Value

CACHE

@

To_Next_Level

=

=
Additional Hardware

Figure 2.5. Redundant store mechanism with write through
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2.3.2. Performance Evaluation

In this section we evaluate the reduction of memory traffic in different cache configurations.

2.3.2.1. Experimental Framework

We have developed a functional parameterized simulator for cache memories, as described in Section

2.2.3.1. This simulator is now modified to provide information about required memory bandwidth. We

consider the same subset of the Spec95 benchmark suite and evaluated the same cache sizes and cache

write policies (see Section 2.2.3.1 for further details of the specific experimental framework and

Section 1.4 for further details of tools and benchmarks).

2.3.2.2. Analysis of Results

Memory traffic between the memory cache and its next level of the memory hierarchy is now analysed.

The traffic is computed as the number of bytes transmitted between levels. 

Figure 2.6 and Figure 2.7 show the memory traffic for each policy and for several cache sizes. As

expected, the memory traffic decreased when we used bigger cache sizes because the miss ratio

decreased. Note that memory traffic has two main sources: the hit/miss ratio and the size of the cache

block. Intuitively, CB-WA caches should have less memory traffic than WT-NWA caches because they

have a better hit ratio (see Table 2.2). Our results show that, on average, CB-WA and WT-NWA caches

Figure 2.6. Memory traffic (millions of bytes) for CB-WA with different cache sizes
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have similar amount of memory traffic. This is because CB-WA caches have to transmit the whole

cache block on a miss if the replaced block is dirty, while WT-NWA only has to transmit a single value

for each write.

Figure 2.8 and Figure 2.9 show the percentage reduction in memory traffic after the redundant store

mechanism is applied. Figure 2.8 shows the results for CB-WA caches and Figure 2.9 shows the results

for WT-NWA caches. Note that both are significant, though WT-NWA caches provide higher

percentage reductions than CB-WA caches.

Figure 2.7. Memory traffic (millions of bytes) for WT-NWA with different cache sizes
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Figure 2.8. Reduction of memory traffic of CB-WA with different cache sizes
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For example, there is a 7% memory traffic reduction for a 32KB CB-WA cache and 19% traffic

reduction for a 32KB WT-NWA. This difference is mainly due to the fact that all the stores have to go

to the next level of the memory hierarchy for Write Through, so every Redundant Store leads to a saving

on memory traffic. On the other hand, when Copy Back is used, every Redundant Store reduces the

frequency of the dirty bit setting, which does not always lead to a traffic reduction. For instance, two

consecutive Redundant Stores mapped to the same cache line just reduce the traffic in one block. The

same argument explains why the size of the caches affects the percentage reduction of the WT-NWA

caches (this increases when the caches get bigger) and does not affect the percentage reduction of the

CB-WA caches (which is similar for all sizes).

2.4. Value Repetition in Several Storage Locations

2.4.1. Overview

Several studies [34],[59],[72],[112],[139] have pointed out that value replication is common in different

parts of a processor. In this section, we focus on value replication into several storage locations of data

caches during the execution of programs. As explained before, Lipasti et al [72] coined the term of

value locality to describe the likelihood of references of a previously seen value within a storage

location. We are interested in analysing references of a previously seen value into several storage

locations.

Figure 2.9. Reduction of memory traffic of WT-NWA with different cache sizes

AP
PL
U

AP
SI GO GC

C
IJP
EG

M8
8K
SIM

M
GR
ID

PE
RL

TO
MC
AT
V

TU
RB
3D

VO
RT
EX

WA
VE

A_
ME
AN

0

5

10

15

20

25

30

35

40

45

P
e
rc
en
ta
g
e 32 KB

16 KB 

8 KB

4 KB

Traffic Reduction



44 Value Repetition in Data Caches

44 Microarchitectural Techniques to Exploit Repetitive Computations and Values

 We will consider a repetitive value if is frequently stored into several storage locations of the data

cache. In this way, we will analyse at any given time the percentage of values that are repeated in a

conventional data cache.

2.4.2. Performance Evaluation

In this section we analyse in greater detail the percentage of value replication into several storage

locations that can be achieved for individual benchmarks under several scenarios. 

2.4.2.1. Experimental Framework

Several configurations of data cache memories have been simulated with sizes ranging from 1KB to

256KB, and different degrees of associativity. The evaluation was done with the sim-cache simulator

from the Alpha version of the Simplescalar toolset [15]. The original simulator was modified to collect

value repetition statistics.

We now consider the next generation of Spec95 benchmarks: Spec2000. However, Yi and Lilja

[135] analysed computation repetition in both Spec95 and Spec2000 benchmarks and did not find

significant differences. Thus, the following Spec2000 benchmarks were randomly picked: crafty, eon,

gcc, gzip, mcf, parser, twolf, vortex and vpr from the integer suite; and ammp, apsi, art, equake, mesa,

mgrid, sixtrack, swim and wupwise from the floating point suite. The programs were compiled with the

Compaq C compiler with -O5 -non_shared optimization flags (i.e, maximum optimization). Each

program was run with the reference input set and statistics were collected for 1 billion instructions after

skipping the initializations (see Section 1.4 for further details of tools and benchmarks).
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2.4.2.2. Analysis of Results

In this section we analyse the value replication of several data caches ranging from 1KB to 256 KB.

Our conclusion from all the simulations performed is that there is significant value replication in data

caches at any given time. 

For example, Figure 2.10 shows the value replication of a 256 KB direct-mapped data cache. To

obtain this data, the content of the data cache is analysed every cycle and the percentage of replicated

64-bit values is obtained. The X-axis represents the percentage of different values (0% means that all

the values in the cache are the same and 100% means that all the values in the cache are different). The

Y-axis represents the percentage of total execution time that the corresponding percentage of different

values has been observed. Figure 2.10.a is a histogram of the degree of variability and Figure 2.10.b

shows the accumulated distribution. We can see that there is a huge degree of value replication. For

instance, Figure 2.10.b shows that during 80% of the execution time, less than 25% of the values of the

cache are different. This means that on average, a value is stored four times. Note also that this cache

never has more than 80% of different values. 

Another important observation from these simulations is that the percentage of value replication

increases when the caches get bigger. Figure 2.11 shows the accumulated histograms of caches ranging

from 1KB to 256KB. As we indicated earlier, there is a huge percentage of value replication at any

given time in all caches, but the percentage gets better when the size of the cache increases. For

example, the percentage of the values in the cache that are different during 80% of the time changes

from 80% in a 1KB cache to 25% in a 256KB cache. This percentage drops dramatically when caches

manage the storage locations of megabytes. Finally, we also observed that the value replication degree

was not affected by associativity.

Figure 2.10. Average histograms of a 256KB data cache
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Figure 2.12 shows the histograms of the degree of variability for benchmarks considered to obtain

average numbers of a 32KB data cache. In this figure the Y-axis goes from 0% to 20% because is not an

accumulative histogram. Note that only a few benchmarks do not present a significant percentage of

replication (i.e. gzip, mesa, mgrid and wupwise). The rest are significantly repetitive (i.e. ammp, art,

crafty, eon, gcc, mcf, parser, sixtrack and vortex exhibit a high degree of replication) which encourages

further work to develop novel techniques to exploit this feature. Moreover, value replication increases

when the caches get bigger.

From the observation that many values stored in data caches are repeated, novel cache designs can

be proposed and analysed to reduce die area, power dissipation and latency. 

Figure 2.11. Average histograms of data caches ranging from 1KB to 256KB 
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Figure 2.12. Individual histograms of a 32KB level 1 data cache
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2.5. Non-Redundant Data Cache

We propose a new cache architecture, which we call Non-Redundant Cache to reduce storage area,

power dissipation and latency. The underlying concept behind this proposal is based on the observation

that data caches exhibit a high percentage of value replication at any given time. We first present a

general description and then discuss a simple encoding/decoding scheme that can be applied to the

cache. Finally, we evaluate this scheme using a dynamic and static analysis. 

As it is shown in Figure 2.11, the percentage of replication gets better when the size of the cache

increases. Thus, we concentrate on second-level data caches because they occupy a very important part

of the die area in most processors.

2.5.1. General Description

The Non-Redundant Cache reduces the storage requirements of data cache by removing the significant

amount of replication present in conventional cache designs. Figure 2.13 depicts the proposed design.

The scheme is divided into two areas: the tag area and the data area. The tag area or Pointer Table

(PT) stores pointers to the data area or Value Table (VT). 

PT is indexed as a conventional data cache. Each PT entry has two fields: a tag that identifies the

memory address stored in each line, as in a conventional cache, and the pointer field that determines,

for each 64-bit word in the line, the entry of VT where the value may be found. Note that additional

storage is required to maintain pointers but that values are not replicated in the VT. Therefore, any word

of any cache line of PT that has the same value points to the same location in VT. 

Figure 2.13. Block diagram of the Non-Redundant Cache
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The location of a value in the VT is determined by the value itself, i.e. the VT is indexed by values.

Each VT entry also has two fields: a full 64-bit data value and a counter. This counter maintains the

number of pointers from PT that point to that value. When the counter reaches its maximum value, no

further lines are allowed to point to this VT entry. If a new line needs to point to this value, the value is

replicated and stored in a new VT entry with its counter initialized to 1. We have experimentally

confirmed that when 4-bit saturating counters are used, less than 1% of the values of the VT have some

replica (note that narrow values, which are some of the most repeated ones, are not stored in the VT but

in the PT, as we will describe in the next section).

The behaviour of the Non-Redundant Cache can be summarized as follows:

•  Miss on Read or Write: the new line is brought from the upper level of the memory hierarchy. At

this time, all the values try to be stored in the VT. Finally, PT has to be updated with the new tag

and pointers. The search for room in the VT is simple and may be summarized as follows. First, a

value search is performed in the VT. If the value is found, the associated counter is increased and

that entry will determine the content of the pointer in the PT. If the value does not exist, a free

entry is required. A VT entry is considered free if its associated counter is zero. If no free entry is

available, the value cannot be stored in the VT. Replacement in the PT is implemented in the same

way as in a conventional cache. When a line from the PT is replaced, its associated pointers are

used to decrement the counters of the corresponding values.

•  Hit on read: if there is a hit in the PT, the associated pointer provides the index to the VT where

the value will be found.

•  Hit on write: the new value is searched in VT as explained above and a new VT entry is allocated

if it is not found. The counter of the old value is decreased.

Note that a line in the PT may not have all its pointers valid. An invalid pointer is produced when

its associated value cannot be stored in the VT. 

The indexing function for the VT is an important parameter for the performance of the Non-

Redundant Cache. We assume a direct-mapped VT i.e. the least significant bits of the values (ignoring

the least significant two) determine the location in the VT. To reduce aliasing in VT, an associativity of

8 is considered. This configuration works fairly well but is still far from the behaviour of the full

associative approach. 
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Note finally that the VT does not need to store all the bits of a value. The least significant bits are

implicitly given by the set that the value occupies (in the same way as the tags of a cache do not contain

the least significant bits).

2.5.2. Data Value Inlining

A further enhancement can be applied since the tag area of the Non-Redundant Cache provides some

storage for pointers. In particular, narrow values (i.e. values that can be represented by a small number

of bits) can be inlined into the tag area. The idea is that if a value can be represented in the number of

bits allocated for a pointer in the PT, instead of storing the value in the VT and setting up a pointer from

the PT to the VT, the value can be directly stored in the pointer location itself. Narrow values are very

common [48], [124] so this simple extension can provide significant benefits. We will refer to a value

stored in the PT as a narrow value. This improvement not only enlarges the logical capacity of VT, it

also reduces latency and power dissipation because the access to the VT is avoided for narrow values. 

The extensions to support narrow values are quite simple. Each value of a new line brought on a

cache missed is tested. This basically consists of an OR and an AND gate applied to the most

significant bits to check whether they are all ones or all zeroes. If a value is narrow, there is no need to

search for store in the VT: it is stored in the corresponding pointer field. A bit in each pointer field is

intended to indicate whether its content is a pointer or a narrow value. The search for room in the VT is

always done after a Miss. For each value in the line, a narrow test is performed. If the value is in the

selected range, there is no need for a search in the VT. Value is managed as narrow and compressed in

the pointer field of the PT, setting an additional narrow bit. 

On the other hand, if there is a hit on the PT and the value is narrow, the value is provided by the PT

and the access to the VT is avoided. The value obtained from the PT is sign-extended before it is sent to

the processor data path. 

Finally, note that in case of a miss, if due to the lack of space none of the values of the new line can

be inlined or stored in the VT, the line is not stored in the Non-Redundant Cache.
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2.5.3. Static Analysis

In this section we evaluate the cache area, latency and power dissipation of the Non-Redundant Cache

using the CACTI tool version 3.0 [107]. CACTI 3.0 is a cache area, access and cycle time and power

consumption estimation tool that is widely used to estimate power dissipation in caches and to

determine the cache configuration that best satisfies the desired optimization criterion.

The CACTI tool has been adapted to model the structure of the Non-Redundant Cache and the

processor technology assumed is 0.09µm.

2.5.3.1. Die Area

This evaluation focuses on the tag and data blocks since they represent the vast majority of the cache

area. For instance, the total area of a 512KB direct cache with 32 bytes per line is: 0.1386 cm2, whereas

the data and tags occupy 0.1376 cm2 (99.3%).

The PT has the same number of lines and associativity as the conventional cache used as baseline.

Note that the PT and the baseline cache have the same tag area, but the PT also stores the pointer fields.

The number of bits in a pointer field depends on the size of the VT. On the other hand, the VT is

managed as a table when accessed through a pointer of the PT (i.e. the pointer indicates the precise

location of the value) and is indexed as a set-associative cache when new values have to be stored.

Figure 2.14 shows the total die area for different cache configurations for a 32-byte cache line size.

Figure 2.14.a and Figure 2.14.b correspond to a 512KB and 2MB baseline L2 data cache respectively.

Several Pointer Cache configurations are depicted. VTxx means a Pointer Cache with a VT capacity

reduced to xx% of the baseline size (e.g., VT30 means a VT capacity reduced to 30%). The different

Figure 2.14. Static analysis: cache area 
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colours in each bar represent the contribution of tags, pointers and data. As expected, the area reduction

was significant in all cases. For instance, VT30 achieved a reduction of 49% with respect to the 512 KB

baseline cache. Below, we discuss how these reductions interact with the miss ratio. Statistics for other

cache capacities ranging from 256KB to 4MB are given in Table 2.3.

2.5.3.2. Latency

We also evaluated the access time of the various cache architectures with the CACTI tool. Figure 2.15

shows the critical path of an access to the Non-Redundant Cache. 

When an address is sent to the Non-Redundant Cache, a direct-mapped access (other indexing

functions are also possible) is performed to the PT, which provides the tag and the pointers at the same

time. The corresponding pointer is selected and used to access the VT. The tag comparison is done in

parallel with the access to the VT. 

If there is a miss, an access to the next level of memory is started. As the values of the line arrive

from the next memory level, their corresponding ranges are checked. Depending on this range, each

value is stored in the VT or just inlined in the PT. If the cache line is stored in the Non-Redundant

Cache, a line from the Non-Redundant Cache is replaced. The replaced entry in PT is read and all their

valid pointers determine the counters to be decreased in the VT.

The behaviour of the Non-Redundant Cache for a hit can be summarized as follows: (a) the PT is

accessed and the corresponding tag and pointers are checked; (b) if the value is not inlined, an access to

Figure 2.15. Critical path of the Non-Redundant Cache
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VT is performed. Total access time is the maximum of tag access and comparison or the pointer access

and the VT access.

Figure 2.16 shows the different time components of a cache access. We considered the same

configurations as in Figure 2.14. Three bars are shown for each configuration. The first bar depicts the

time required for the tag check. The second bar determines the time required for accessing the value.

Note that this bar is split into two components for the Non-Redundant Cache: pointer access and VT

access. The third bar represents the effective data access time, considering the percentage of accesses

(see Figure 2.19) that are satisfied by the PT and the percentage that requires an access to the VT.

The latency of the Non-Redundant Cache drops significantly as the size of the VT decreases.

Overall, the Non-Redundant Cache offers a much shorter latency than a conventional organization. For

example, VT30 achieves a reduction in access time of 49% with respect to the 512 KB baseline cache.

As reported below, the latency advantage of the Non-Redundant Cache is even greater for larger cache

sizes.

2.5.3.3. Energy Consumption

We also evaluated energy consumption by extending the CACTI tool for the Non-Redundant Cache.

The Non-Redundant Cache provides significant benefits in terms of energy consumption because the

energy consumption of memory structures depend, among other things, s on their area and the total

number of bits read/written. 

Figure 2.17 shows the energy consumed per each access for different types of accesses. Hit inlined

corresponds to an access that finds the value inlined in the pointer field. Hit VT corresponds to an

access for which the value is obtained from the VT. This involves an access to the PT plus an access to

Figure 2.16. Static analysis: latency 
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the VT. Hit is the average energy per access for hits, considering the percentage of accesses that hit in

the pointer field and the percentage that hit in the VT. Miss corresponds to an access that misses in the

Non-Redundant Cache and has to be served by the next level of memory. This involves two accesses to

the PT (the first access determines a miss and the second access updates the PT pointers) and a number

of accesses to the VT that depends on the number of values that can be inlined. These numbers have

been obtained through simulation (see Figure 2.19 below). Finally, Effective shows the average energy

consumed by access. 

Table 2.3 shows savings for caches ranging from 256KB to 4MB. Note that the reduction in power

is very significant across the whole range of capacities.

2.5.4. Dynamic Analysis

The simulation environment is built on top of the Simplescalar [15] Alpha toolkit, which has been

modified to model the Non-Redundant Cache. 

The following Spec2000 benchmarks were considered: crafty, eon, gcc, gzip, mcf, parser, twolf,

vortex and vpr from the integer suite; and ammp, apsi, art, equake, mesa, mgrid, sixtrack, swim and

wupwise from the FP suite. The programs were compiled with the Compaq C compiler with -

non_shared -O5 optimization flags (i.e, maximum optimization). Each program was run with the

reference input set and statistics were collected for 1 billion of instructions after skipping the initial part

of initializations.

Figure 2.17. Static analysis: energy consumption per access
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2.5.4.1. Replication in Conventional L2 Caches

In this section we study the degree of value replication in conventional L2 caches considering a 256 KB

second level data cache.

Figure 2.18 shows the percentage of values that are different in a conventional organization. Two

bars are depicted for each program. The first bar corresponds to the percentage of different values

observed during 99% of the execution time. The remaining 1% was not considered in order to disregard

the effect of rare cases that would have little influence on the total execution time. The second bar

reports the percentage of values that are different and cannot be inlined. A value is considered to be

inlinable if it can be represented with no more than 10 bits.

There was a significant degree of value replication. For most benchmarks, less than 25% of the

values of the L2 cache were different. Gzip, mgrid and vpr had the lowest degree of replication, though

this was not negligible. On average, only 28% of the values were different, which can be translated into

significant gains for the Non-Redundant Cache. Benefits are even greater for larger cache capacities

(see below). For example, for a 4 MB data cache only 15% of the values were different. 

2.5.4.2. Inlining Performance

Another result of Figure 2.18 is that inlining slightly reduces the storage required by values that are

different (i.e., the storage required in the VT of the Non-Redundant Cache) for integer benchmarks, but

Figure 2.18. Percentage of different values for a 256KB L2 data cache
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its effect is almost null for FP programs. However, inlining has another important benefit. Since in

general the inlined values are those that have the highest degree of repeatability (e.g., 0, 1 and -1 are

usually the most frequent values) [139], inlining these values allows the use of a very small counter in

the VT table (see Section 2.5.1).

Figure 2.19 presents further statistics for caches ranging from 256KB to 4MB. The dark grey bars

show the miss ratio. The medium grey bars depict the hit ratio to inlined values. Note that the

percentage increases as the caches get bigger and the range of inlined values increases, since the

pointers in the PT require more bits to point to a bigger VT. On average, between 42% and 49% of the

memory requests do not need to access the VT.

Finally, the light grey bars show the percentage of values that are brought from the next memory

level on a miss and can be inlined. On average about two thirds of the values can be inlined and this

percentage increases as the caches get bigger. This clearly shows out that inlining is very effective.

2.5.4.3. Miss Rate vs. Die Area

To analyse the advantages of the Non-Redundant Cache, we consider the following scenario: a second

level data cache ranging from 256KB to 4MB. All cache configurations were considered to be direct-

mapped with a cache line of 32 bytes. The PT is dimensioned to store the same number of lines as the

base configurations but reducing the VT to 50%, 30% and 20% of the original size. The VT is

dimensioned to store values of 8 bytes, so there are 4 pointers in each entry of the PT in addition to the

Figure 2.19. Miss ratio, hit inlined and miss inlined
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tag. Each line of the VT stores an 8-byte value and a 3-bit as counter that determines the number of

pointers from the PT that refer to that value.

Table 2.3 shows the main statistics for each cache configuration considered. These results show

that the Non-Redundant Cache is very effective for the second-level cache. For instance, a

configuration with a VT with 50% of the capacity of the baseline leads to an average die area reduction

of 32%, an energy consumption reduction of 13.8%, an access time reduction of 25.6%, and a very

minor increase (5.1%) in the number of misses. The increase in misses reported in Table 2.3 for VT30

and VT20 is only due to three of the eighteen benchmarks simulated. These are the three benchmarks

with the lowest degree of replication (see Figure 2.18): mgrid, gzip and vpr. For the remaining fifteen

benchmarks, the Non-Redundant Cache does not lead to more misses than a conventional cache.

Figure 2.20 plots the miss ratio against the area for several configurations. The X-axis shows the

total area required in cm2. The line labelled as 100% corresponds to a conventional cache. The other

lines correspond to a Non-Redundant Cache with sizes of the VT reduced. These reductions range from

20% to 50% of the reference cache. The dots in a line correspond to configurations with different

numbers of entries in the PT, corresponding to the number of entries of a conventional cache with

256KB, 512KB, 1MB, 2MB and 4MB.

The results show that the Non-Redundant Cache outperforms the base configuration. For a fixed

die area, the Non-Redundant Cache provides a significant reduction in miss ratio. For instance, a

256KB cache base configuration has a miss ratio of 45%, whereas the Non-Redundant Cache has a

miss ratio of 39%, 38% and 37% for a VT reduced to 50%, 30% and 20%, respectively. Alternatively,

Die Area Reduction Energy Consumption 

Reduction

Access Time Reduction Number of Misses 

Increment

Cache VT50 VT30 VT20 VT50 VT30 VT20 VT50 VT30 VT20 VT50 VT30 VT20

256KB 32% 47% 54% 13% 18% 23% 8% 17% 22% 2.8% 7.7% 11.5%

512KB 33% 49% 57% 25% 30% 37% 25% 31% 32% 4.3% 11.6% 16.5%

1MB 31% 46% 55% 19% 26% 33% 25% 30% 30% 6.8% 14.4% 20.5%

2MB 33% 46% 55% 12% 18% 23% 38% 47% 51% 6.5% 14.8% 21.8%

4MB 31% 48% 55% 0% 14% 18% 32% 42% 48% 5.1% 11.8% 19.5%

AMEAN 32% 47.2% 55.2% 13.8% 21.2% 26.8% 25.6% 33.4% 36.6% 5.1% 12% 17.9%

Table 2.3. Comparison results.
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the Non-Redundant Cache provides the same miss ratio as a conventional cache but with a smaller area.

For example, a 256KB base configuration with a miss ratio of 45% occupies 0.072 cm2, whereas the

Non-Redundant Cache achieves the same miss ratio with a die area of 0.054, 0.048 and 0.044 cm2 for a

VT reduced to 50%, 30% and 20%, respectively.

2.6. Related Work

Cache memories were proposed by Maurice Wilkes [128] from an idea by Gordon Scarott, as a way to

ease the gap between memory access and processor speed. Goodman [42] concluded that using cache

memories has often aggravated the bandwidth problem rather than reducing it. Later, Goodman and

Hsu [41] showed that registers can be more effective in reducing the bus traffic than cache memory of

the same size. Surendra et al [121] combined load instruction reuse and prefetching to reduce data

cache traffic in network processors units. A novel prefetching scheme that improves performance

without increasing memory traffic was also proposed by Zhang and Gupta [138]. These authors

observed that a significant percentage of dynamically appearing values have characteristics that enable

a simple compression scheme. Lee et al [64] explored a selective compressed memory system that can

increase the effective memory space and effective bandwidth of each level of memory hierarchy.

Finally, Hallnor and Reinhardt [45] proposed a similar memory hierarchy that increases the effective

bandwidth of interconnects by storing and transmitting data in compressed form.

Figure 2.20. Miss ratio vs. die area for second level data caches
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Redundant Stores can be considered trivial operations. The first study to explore the degree of

triviality in computation was done by Richardson [91],[92] and was based on the observation that

simple operands trivialize potentially complex operations. This author also proposed a mechanism for

exploiting this triviality by restricting the definition of trivial computations to certain multiplications,

divisions and square roots of 0 and 1. Yi and Lilja [136] extended the method of detecting and

eliminating trivial computations proposed by Richardson. The key differences were the types of

benchmarks used and the scope of the definition of trivial computations. Unfortunately, they did not

explored memory operations as trivial operations.

Since our initial and novel definition of Redundant Stores [80], several studies have been done in

this area. Lepak and Lipasti [65] proposed the same concept of Redundant Stores and called them Silent

Stores. Like us, they used the redundant store concept to reduce the number of dirty cache lines and so

reduce the number of writebacks in a uniprocessor system memory hierarchy. They also used this

concept to reduce address and data bus traffic on shared memory multiprocessors. Bell et al [10]

analysed redundant store instructions in several benchmarks in the context of their high-level source

code and explained why they occur. They showed that Redundant Stores occur in all levels of program

execution and compiler optimization. They also introduced the notion of critical silent stores, described

how to find them, and showed that removing the small subset of critical Redundant Stores is sufficient

for removing all the avoidable cache writebacks. Later, Lepak and Lipasti [66] proposed the concept of

free silent store squashing, which uses existing resources with slight modifications to squash a

significant portion of all Redundant Stores, and explained three ways of implementation. Silent store

squashing was also explored by Kim and Lipasti [60]. Lepak and Lipasti [67] extended the definition of

silent stores (equivalent to Redundant Stores) to encompass sets of stores that change the value stored at

a memory location (but only temporarily) and subsequently return a previous value of interest to the

memory location. Stores that cause the value to revert are called temporally silent stores. They

described a practical mechanism that detects temporally silent stores and removes the coherence traffic

they cause in conventional multiprocessors. Finally, Purser et al [90], [119] used the concept of

Redundant Stores for slipstream processors and Roth et al [95] used it for dynamic techniques for load

scheduling.

Several recent studies focus on the value replication phenomenon in data caches. Zhang et al. [139]

coined the term frequent value locality. These authors observed that a few values appear frequently in

the memory locations involved in a large fraction of memory accesses. From this observation, they
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proposed the design of the FCV (Frequent Value Cache). The FVC only contains frequently accessed

values stored in a compact encoded form and is used in conjunction with a traditional direct-mapped

cache. Both caches are accessed in parallel to provide memory values. Yang et al [132] presented a

similar cache design called CC (Compression Cache) in which each line can hold one uncompressed

line or two cache lines that have been compressed to at least half of their lengths. A modification of the

FVC was proposed by Yang and Gupta [130] to improve energy efficiency. In their study, the data

array is portioned into two arrays such that if a frequent value is accessed, the first data array is the only

one accessed. Otherwise, an additional cycle is needed to access the second data array, which stores

values in an unencoded form.

Value replication into the register file was also studied. Balakasharian and Sohi [8] considered the

use of value locality to optimize the operation of physical register files and proposed three schemes.

Later, González et al [40] presented a new integer register file organisation that reduces the energy

consumption, die area and access time of the register file with a minimal effect on overall IPC by

exploiting partial value locality, which is defined as the occurrence of multiple identical live value

instances in a subset of their bits.

Significance compression was used by Brooks and Martonosi [13] and Canal et al [19] to reduce

power dissipation, not only in data cache but also in the full pipeline. Other data compression schemes

were also presented by Larin [63] and Villa et al [124]. Larin explored different encoding schemes for a

large number of values that dynamically adapt to the different distributions of data values. Villa et al

proposed a dynamic zero compression technique to reduce cache energy by taking advantage of the

high-frequency occurrence of zero-valued bytes in the cache. Register file was also analysed by Ergin

et al [33], who observed that a large percentage of computed results have fewer significant bits than the

full width of a register. These authors exploited this fact by packing multiple results into a single

register file to reduce the pressure. Narrow width values were also exploited by Sato and Arita [102] to

reduce the huge hardware budget of conventional data value predictors.

Finally, Black et al [12] introduced a mechanism called block-based trace cache, that also uses

pointers to avoid replication in the instruction trace cache, and Collins et al [27] proposed the Pointer

Cache, which tracks pointer transitions in order to aid prefetching. The Pointer Cache provides a

prediction of the object address indicated by a particular pointer
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2.7. Conclusions

In this chapter we have analysed value repetition in the same location of the memory hierarchy and

introduced the concept of Redundant Store Instructions. This concept is based on the particular

behaviour of some writes to memory that do not change their contents because the value they write is

equal to the existing value. In particular, we have shown how Redundant Stores can be applied to

current cache organizations. We have presented a simple mechanism for reducing the memory traffic

between cache and the next level of the memory hierarchy. This novel idea requires minimal hardware

support. We have shown that we can achieve a significant memory traffic reduction in the memory

hierarchy. On average, this is close to 7% for a cache with Copy Back-Write Allocate and 19% for a

cache with Write Through-No Write Allocate.

Note that this particular behaviour of Redundant Stores can be exploited in other parts of a

superscalar processor such as load/store queues for memory disambiguation, buffers of instruction

reuse schemes, etc. In fact, it can be applied to any part of the processor that has a buffer and is

modified. For instance, cache memories are commonly designed with a write buffer to reduce the

overhead associated with write operations [58]. A write buffer can cause processor stalls when memory

operations find this buffer full [108]. The redundant stores mechanism decreases processor stalls

because it reduces the number of stores to be sent to the write buffer and consequently the probability of

filling it up. Moreover, multiprocessors will also benefit from the reduction in memory traffic generated

by cache coherence protocols [47]. Redundant Stores do not need to send invalidations/updates to other

processor caches. In summary, we conclude that the redundant store mechanism can increase system

performance and reduce power consumption in processor or multiprocessor systems.

We have also shown the high degree of value repetition into several storage locations of

conventional data caches at any given time. This value replication increases as caches get bigger. From

this observation, we have presented a novel data cache design called Non-Redundant Cache that avoids

the replication of values. The underlying concept of our proposal is based on leveraging this

phenomenon in order to reduce the area, power dissipation and access time. The Non-Redundant Cache

also includes a simple compression scheme based on inlining narrow values for values that require

fewer bits than their corresponding pointers. Simulation results show that the Non-Redundant Cache

outperforms conventional caches in terms of power dissipation, access time and die area at the expense

of a very minor increase in miss ratio.





“If you want the present to be different from the past, study the past”
Baruch Benedict Spinoza, Dutch Philosopher, 1632-1677.

Chapter 3
INSTRUCTION LEVEL REUSE

Data value reuse techniques were proposed based on the idea that previous work by instructions can be

non-speculatively reused when they perform the same work again. Instruction-level reuse is a special

implementation of data value reuse that avoids the execution of single instructions 

In this chapter we analyse in detail the performance potential of instruction-level reuse and

propose a novel microarchitectural technique that can benefit from computation repetition to boost the

execution of instructions.
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3.1. Introduction

Computations performed by programs tend to be repetitious in the sense that most of the data consumed

or produced by different dynamic instructions are often the same [35],[36],[37],[71],[72],[111],[112].

This is a result of the concise and structured way in which programs are written. For instance, different

activations of the same routine may lead to the repetition of several instructions with the same source

operands if just a subset of the input parameters varies. Techniques to exploit this phenomenon by

reusing previously computed data instead of recomputing them will be referred to as data-value reuse

techniques. Instruction-level reuse is a special implementation of data-value reuse intended to avoid the

execution of single instructions that produce the same result as previous instructions.

Instruction-level reuse exploits this by buffering previous inputs and their corresponding outputs.

When an instruction is fetched and decoded and its current inputs are found in that buffer, its execution

can be avoided by obtaining the outputs from the buffer. A dynamic instruction can reuse the result of a

previous instance of the same static instruction or an instance of any other static instruction. In the first

case a quasi-invariant, defined as a computation that is repeated many times and often produces the

same result, is removed. In the second case a quasi-common subexpression, defined as a computation

that often produces the same result as another piece of code, is removed. 

An example is given in Figure 3.1. If arrays b and c both have many repeated elements, the

computation b[i]+c[i] will become quasi-invariant at run time (instruction I1 in assembly code).

Assembly Code

...

I2:div r4, r5, r6

...

I3:div r7, r5, r8

...

Figure 3.1. Examples of a) quasi-invariant and b) quasi-common subexpression.

High-Level Code

...

r = s/t;

...

x = s/u;

...

High-Level Code

for (i=0; i<N; i++)

   a[i]=b[i]+c[i];

(a) (b)

Assembly Code

...

I1:add r1, r2, r3

...
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Similarly, if t and u have many repeated elements, expressions s/t and s/u will be quasi-common

subexpressions (instructions I2 and I3 in assembly code). Note that quasi-invariants refer to

computation repetition produced by the same static instruction or program counter, while quasi-

common subexpressions refer to computation repetition produced by several static instructions. 

Instruction-level reuse has two positive effects: it lowers the latency of some instructions and, since

reused instructions do not go through the issue and execution phases of the pipeline, reduces the

contention of the processor resources. Note that instruction-level reuse has the same objective as some

compiler optimizations. However, the compiler can only remove some redundant computations because

it has limited knowledge of the data. Also, it usually cannot identify quasi-redundant computations,

such as those in Figure 3.1.

In this chapter we analyse the concept of instruction-level reuse, discuss its implementation and its

performance impact. In Section 3.2 we analyse the performance potential of instruction-level reuse

under several scenarios. While ignoring aspects related to implementation, our aim is to understand the

nature of this phenomenon and the potential benefits of this technique. In Section 3.3 we propose a

mechanism to take advantage of computation repetition and therefore remove at run time quasi-

invariants and eliminate quasi-common subexpressions. We show that this mechanism outperforms the

execution time of previous proposals. We also propose extensions to previous schemes and evaluate

them in detail in order to determine the best configuration for a given cost. Finally, in Section 3.4 we

review related work and in Section 3.5 present our main conclusions.

3.2. The Performance Potential of Instruction Level Reuse

In this section, we aim to understand the instruction-level reuse phenomenon and investigate the

performance potential of this technique. We will try to isolate the effect of instruction-level reuse from

other microarchitectural aspects by putting it into an ideal machine context, with either a limited or

unlimited instruction window. We are interested in evaluating the performance limits of instruction-

level reuse rather than focusing on any particular implementation. To perform this study we need to

clarify a couple of issues. 

First, notice that instruction-level reuse exploits the fact that an instruction has appeared in the past

with the same input values. Therefore, the maximum instruction-level reuse can be evaluated by
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analyzing the dynamic instruction stream and counting how many times a static instruction appears

with the same inputs as before.

Second, notice also that instruction-level reuse is performed by caching the inputs and the results of

previous dynamic instructions. Therefore, a reuse requires the following operations: a) read the input

operands; b) perform a table lookup; and c) write the output operands. Even though some of these tasks

can be overlapped (e.g. (a) and (b) if the table is indexed by the instruction address), the whole reuse

operation will take some time, i.e. any reuse engine will have a given latency. To investigate this issue,

we will consider an ideal reuse engine with parameterized latency.

3.2.1. Evaluation Methodology

We consider two different scenarios to evaluate the performance potential of instruction-level reuse: an

ideal machine with an infinite window and an ideal machine with a limited window. Both scenarios

assume a machine with an infinite number of functional units. In this way, we do not consider the

benefit of reducing functional unit contention, which, due to the continuous increase in transistors per

chip, will have a low impact in future high-performance processors. Moreover, when the number of

functional units is a bottleneck, increasing the number of functional units is more cost-effective than

implementing a reuse scheme.

For the infinite window scenario, the execution time is only limited by data dependences among

instructions, both through register and memory. For the limited window scenario, the execution order

inside each sequence of W instructions, where W is the instruction window size, is limited only by data

dependences, whereas any pair of instructions at a distance greater than W are forced to be sequentially

executed. We compute the IPC for each scenario as an extension of the approach by Austin and Sohi

[6].

3.2.1.1. IPC for an Infinite Window Machine

The IPC for an infinite window machine is computed by analyzing the dynamic instruction stream. For

each instruction, its completion time is determined as the maximum completion time of the producers

of all its inputs plus its latency. The inputs of an instruction may be register or memory operands.

Therefore, for each logical register and each memory location, the completion time of the latest

instruction that has so far updated such storage location is kept in a table. The latency of the instructions

has been borrowed from the latency of the Alpha 21164 instructions [32].
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Once all the dynamic instruction stream has been processed, the IPC is computed as the quotient

between the number of dynamic instructions and the maximum completion time of any instruction.

3.2.1.2. IPC for a Limited Window Machine

A limited instruction window of size W implies that a given instruction cannot start execution until the

instruction that is W locations above in the dynamic stream is complete. The process of computing the

IPC for this scenario is an extension of the unlimited window approach. The extension consists of

computing the graduation time of each instruction as the maximum completion time of any previous

instruction, including itself. The completion time of a given instruction is then computed as the

maximum among the completion time of all the producers of its inputs and the graduation time of the

instruction W locations above in the trace, plus the latency of the instruction. Note that only the

graduation time of the latest W instructions must be tracked.

3.2.1.3. Experimental Framework

The compiled programs have been instrumented with the Atom tool [117] and their dynamic trace has

been processed to obtain the IPC for each configuration. Results are shown for individual programs

and, in some cases, we show the average for integer programs, FP programs or the whole set of

benchmarks. Average speed-ups have been computed by harmonic means and average percentages

have been determined by arithmetic means [56].

The benchmark programs are a subset of the SPEC95 benchmark suite, which comprises both

integer and FP codes: compress, gcc, go, ijpeg, li, perl and vortex from the integer suite, and applu,

apsi, fpppp, hydro2d, su2cor, tomcatv and turb3d from the FP suite. 

The programs have been compiled with the DEC C and Fortran compilers with full optimization (“-

non_shared -O5 -tune ev5 -migrate -ifo” for C codes and “-non_shared -O5 -tune ev5” for

Fortran codes). Each program was run for 50 million instructions after skipping the first 25 millions. To

study the maximum degree of reusability we need to store a huge amount of data, which limits the

number of instructions that can be analyzed. In this way, the results provides a taste of the overall

behaviour of the SPEC95 suite (see Section 1.4 for further details of tools and benchmarks).
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3.2.2. Limits of Instruction Level Reusability

This section measures the potentiality of data value reuse at instruction level. Here we therefore

consider the maximum instruction-level reuse that can be exploited. This value can be computed by

counting, in the dynamic instruction stream, the percentage of instructions that have previously

appeared with the same input operands. This is achieved by having a table that stores all the input

values of its previously executed instances for each static instruction.The maximum percentage of

reusable instructions will be referred to as the instruction-level reusability of a program. Notice that the

reusability of a program takes into account any kind of instructions, including memory accesses. 

Figure 3.2 shows that instruction-level reusability is very high. For most programs it is over 90% of

all dynamic instructions and on average it is 87%. Reusability ranges from 53% to 99% and applu and

hydro2d are the programs with the lowest and highest reusability respectively. This figure also shows

that there are no huge differences between integer and FP codes (91% and 83% of instruction-level

reusability, respectively). We can conclude that instruction-level reuse is abundant in all types of

programs and therefore deserves further research.

3.2.3. Performance Improvement of Instruction Level Reuse

To analyse the performance of instruction-level reuse, we consider a reuse engine with infinite tables to

keep a history of previous instructions and study the effect of several reuse latencies. Reuse latency

corresponds to the length of time a reuse operation takes and usually involves a table look-up and some

comparisons.

Figure 3.2. Instruction-level reusability for a perfect engine. 
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Ultimately, we are interested in the effect of instruction-level reuse on execution time. For this

scenario, the IPC is computed by extending the mechanisms described for an unlimited and a limited

window configuration, respectively. The completion time of a non-reusable instruction is computed as

in the base machine, whereas the completion time of a reusable instruction is computed as the

maximum of the completion time of all the producers of its inputs (an instruction cannot be reused until

all its inputs are available) plus a reuse latency. In any case, if the completion time of a reused

instruction is higher than the completion time of the normal execution of that instruction, the latter will

be chosen. This is equivalent to assuming that an oracle determines the best approach for each

instruction.

Figure 3.3.a shows the speed-up provided by instruction-level reuse when the reuse latency is

assumed to be 1 cycle. Note that the speed-ups depend strongly on the particular benchmark. On

average, it is around 1.50 and is slightly higher for FP than for integer programs. However, some

programs can benefit significantly from instruction-level reuse, e.g. as turb3d and compress, which

show a speed-up of 4.00 and 2.50, respectively. On the other hand some programs, e.g. fpppp and gcc,

hardly benefit from instruction-level reuse at all. In general, this performance may seem low if one

takes into account the very high percentage of reusable instructions (see Figure 3.2).

Figure 3.3.b shows how, for a latency ranging from 1 to 4 cycles per reuse (only averages are

shown), reuse latency affects performance. Note that the benefits of instruction-level reuse decrease

significantly when more than a 1-cycle latency is assumed. This indicates that the instructions in the

Figure 3.3. Speed-up of instruction-level reuse for an infinite instruction window: 

(a) for a 1-cycle reuse latency, (b) average speed-up for a reuse latency varying from 1 to 4 cycles. 
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critical path are usually of low latency so the latency reduction achieved by instruction reuse is

effective only if the reuse latency is very low. For a configuration with a limited number of functional

units, the benefits will be slightly higher due to the reduction in functional unit contention. However, as

we pointed out above, adding more functional units is a more cost-effective way of reducing contention

than including a reuse scheme, which is significantly more complex.

The effect of instruction-level reuse does not depend only on the percentage of reusable

instructions: it also strongly depends on the criticality of these instructions. In other words, if reusable

instructions are concentrated on the critical path of the program, their benefit can be very high, but if

they are located in the less critical sections of the program, their benefit can be negligible. Note that if

reusable instructions were uniformly distributed over the whole dynamic instruction stream,

independently of the criticality of the instructions and their latency, the theoretical speed-up achieved

by instruction reuse would be given by 100/100-r, where r is the percentage of reusable instructions. If

reusable instructions tend to be highly critical, this theoretical speed-up will be much lower than the

actual one. On the other hand, if reusable instructions are not critical, the theoretical speed-up will be

much higher than the actual one.

 Figure 3.4 compares the theoretical speed-up with the actual speed-up when the reuse latency is

assumed to be null. We can see that on average, the actual speed-up is slightly higher than the

theoretical one (18.7 compared to 13.9), which suggests that reuse is slightly more frequent for critical

instructions than for non-critical ones. The same trend is observed for integer and FP programs.

Analyzing individual programs, for fpppp, turb3d, ijpeg and li, reusable instructions tend to be highly

Figure 3.4. Theoretical versus actual speed-up. 
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critical, whereas for hydro2d, su2cor, tomcatv, compress, go and perl, reusability tends to concentrate

on non-critical instructions. For the other programs, applu, apsi, gcc and vortex, reusability and

criticality seem to be quite independent phenomena.

Instruction-level reuse in the case of a limited instruction window behaves almost in the same way

as in the case of an unlimited instruction window. This is shown in Figure 3.5.a, where we can see the

speed-up for a 1-cycle reuse latency. The speed-up is 1.43, with minor difference between integer and

FP averages (1.44 and 1.42, respectively). Differences between individual programs are smaller than

for an infinite window. The benefits for programs with the highest speed-ups for an unlimited

instruction window (turb3d and compress) are now reduced. Finally, Figure 3.5.b shows that, as in the

infinite window configuration (see Figure 3.3.b), the benefits of instruction-level reuse when the reuse

latency ranges from 1 to 4 cycles are also significantly reduced. 

To summarize, the benefits of instruction-level reuse are significant for a 1-cycle reuse latency and

very low for higher latencies, despite the fact that the percentage of reusable instructions is very high.

This is because instruction reuse cannot be exploited until the source operands are ready, so the reuse of

a chain of dependent instructions is still a sequential process.

Figure 3.5. Speed-up of instruction-level reuse for a limited instruction window (256 entries): 

(a) for 1-cycle reuse latency, (b) average speed-up for a reuse latency varying from 1 to 4 cycles.
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3.3. Redundant Computation Buffer

In this section we present a mechanism for exploiting instruction-level reuse based on a buffer that

stores information about which computations are likely to be redundant. This buffer is referred to as the

Redundant Computation Buffer (RCB). The main advantage of this proposal is that it exploits

computation repetition to eliminate redundant computation from both quasi-invariants (repetitive

behaviour of the same static instruction) and quasi-common subexpressions (repetitive behaviour of

several static instructions). 

3.3.1. General Description

The Redundant Computation Buffer is shown in Figure 3.6. It consists of three tables: one reuses

arithmetic instruction results and memory addresses (Atable), one reuses load values (Mtable), and one

identifies quasi-common subexpressions (Vtable). The Atable is indexed by the instruction address and

each entry contains the following fields: 

• The opcode of the instruction.

• Two operand values (opnd1 and opnd2).

• A result value, which corresponds either to the result of the latest arithmetic instruction or to the

address of the latest memory operation that was mapped onto that entry. 

Figure 3.6. The Redundant Computation Buffer (RCB).

opcode  result/address opnd1 opnd2 pointer  

Reuse Test

Reused Instruction

Atable

PC

Mtable

Address  tag           Result

Reused Mem Value

Vtable

Atable pointerValue
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• A pointer to the entry that stores the results of the instruction that produces values that may be

reused by the instruction mapped onto this entry; in other words, a pointer to the producer

according to the terminology introduced.

Note that entries do not include a tag. An instruction can reuse the result of a given entry provided

that the actual source operands and the opcode match those in the entry, no matter which static

instruction the entry corresponds to. Therefore, the Atable does not include the PC tag but it does

include the opcode, which is shorter than the tag. This not only reduces the table size but also takes

advantage of interferences among instructions with the same opcode. Interfering instructions with

different opcodes will not be able to exploit reuse, so they will have a negative effect (these

interferences would also occur if PC tags were used instead of opcodes). We found that, although this

optimization slightly improves the percentage of reused instructions (since there are more destructive

interferences than constructive interferences) it comes at no cost. In fact, it actually reduces the cost of

the Atable because the tags do not have to be stored.

The Mtable is indexed by the effective address of memory operations (obtained from the Atable),

and each entry contains the latest value read from / written to that location plus a tag that identifies the

effective address. In fact, this table acts in a similar way to a cache memory and is not an essential part

of the mechanism. The main advantage of such a table rather than obtaining the same data from the

memory hierarchy is its potential shorter access time (due to its small capacity) and a reduction in cache

ports pressure.

The Vtable stores information about the latest results of instructions. For each recently produced

result, this table provides an identifier of the producer instruction. The table is indexed by the result

value and, in a first approximation, each entry would contain the opcode and the address of the

instruction that produced that value. However, we have observed by experimental evaluation that just

by storing the index of the Atable where the instruction that produces the value is mapped, performance

is similar and a significant saving in storage is achieved.

The RCB works as follows. The Atable is accessed twice while the instruction is fetched and

decoded. The first probe uses the instruction address and gets the potential result if the instruction

happens to produce the same result as the last execution of the same static instruction (or another static

instruction that is mapped onto the same entry). It also gets the pointer to the producer instruction in

case it may reuse from another static instruction. The latest operands and result from that producer are



74 Instruction Level Reuse 

74 Microarchitectural Techniques to Exploit Repetitive Computations and Values

obtained by accessing the table again. Once the instruction has been decoded and the source operands

have been read, the actual source operands are compared with both the latest operands of the same

static instruction and the latest operands and the opcode of the producer instruction. If any of the entries

match, the instruction bypasses the issue and execute stages and goes directly to the write-back stage.

Load instructions may reuse the effective address using the Atable. They may also reuse their load

values by means of the Mtable. This table is accessed by load instructions that have managed to reuse

their addresses and is indexed by the reused address. Moreover, the conventional hardware

disambiguation mechanism is used to enforce memory dependences. So, if there is a previous

uncommitted store to the same address, the load does not access the Mtable. On the other hand, store

instructions can also reuse their effective addresses by means of the Atable. Finally, loads update the

Mtable when they are executed and stores do so when they are committed.

The Vtable, which is indexed by the result value, is updated by every instruction in the commit

stage. Before writing to this table, every instruction first reads the corresponding entry and checks

whether this entry was previously updated by another instruction with the same opcode. If this is the

case, a pointer from the consumer (current instruction) to the producer (instruction found in the Vtable)

is set in the Atable. Note that different approaches to assign confidence to the reuse among different

static instruction may be devised. For instance, we could use saturating counters to establish a link from

a producer to a consumer after a number of consecutive reuses.

3.3.2. A Working Example

In this section we illustrate how the mechanism achieves the reuse of quasi-common subexpressions.

To do so, let us assume the code in Figure 3.7.  Let I1 and I2 denote the instructions that compute

the values of r and x, respectively, which happen to be quasi-common subexpressions, and let us

while (cond) {

   r = s/t; (I1)

   ...

   x= s/u;} (I2)

Figure 3.7. A working example: code.
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assume that their PC is 10 and 20, respectively. The first time that I1 is executed, the values of s and t

are 8 and 2, respectively, so the result of the division is 4. The Atable entry indexed by 10 (PC of I1) is

updated to reflect this operation and the Vtable entry indexed by the result is made to point to this

Atable entry, (see Figure 3.8.a). 

When I2 is executed for the first time, it cannot be reused because the Atable entry indexed by 20

(PC of I2) is empty. Its source operands are also 8 and 2. Once the instruction is completed, the Atable

is updated as explained for I1. Moreover, the Vtable is indexed by the result (4) and, since it is found in

the table, the previous instruction that produced the same result (I1) is obtained following the pointer.

At this point, a link from I2 to I1 in the Atable is established just by copying the pointer found in the

Vtable into the Atable entry corresponding to I2 (see Figure 3.8.b). This link indicates that I2 has

produced the same result as I1, so I2 is a candidate for reusing results from I1 in the future. 

The next time that I1 is executed, its source operands are 18 and 3. Since they are not the same as in

the last execution, I1 cannot be reused. When the instruction is completed, entry 10 in the Atable is

updated to reflect the new source operands and the new result, and the Vtable is also updated to indicate

the latest producer of the value 6 (see Figure 3.8.c). When instruction I2 is encountered again, its source

operands are equal to the last operands of I1 (i.e. 18 and 3). In the decode stage, the corresponding

Atable entry is looked up to check whether it can reuse the result of its previous execution. This is not

so. Since a link to instruction I1 is found, whether it can reuse the result of I1 is also checked. This is so

because current source operands of I2 match the last source operands of I1. The Atable entry

corresponding to I2 is then updated with the current source and destination operands (not shown in

Figure 3.8). 

4
10:

20:

div   8   2    4   nil

Vtable Atable

a)

Figure 3.8. A working example: execution

 a) after first execution of I1, b) after first execution of I2, and c) after second execution of I1.
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AtableVtable
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10:
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AtableVtable
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 This process is repeated for following executions of I1 and I2. Every execution of I1 updates its

Atable entry, whereas every execution of I2 reuses the value it finds in the entry corresponding to I1.

Note also that reuse can be exploited no matter how complex the quasi-common subexpression is. For

complex subexpressions, reuse will occur for the instruction that computes the final result, as well as

those instructions that compute intermediate values.

3.3.3. Reusing From Non-Latest Results

Note that the previous scheme allows the processor to reuse the result of the latest execution of

instructions. However, in some cases, instructions can reuse results from previous executions of either

the same or another static instruction. For instance, in the code of Figure 3.9, the result of statement S2

is the same as statement S1 of two iterations earlier (assuming that arrays a and b are not modified in

the loop). 

This can be exploited by storing the last N results for each instruction instead of the latest one. We

will refer to N as the history depth. This can be implemented using a N-way set-associative buffer, as

proposed by Sodani and Sohi [112].

3.3.4. Enhanced Result Cache and Enhanced Result Buffer

In Section 3.3.7, we will compare the RCB mechanism with the two main proposals of instruction-level

reuse for superscalar processors: the Result Cache [91] and the Reuse Buffer [112]. These schemes are

enhanced with several features of the RCB to provide a fair comparison. In this section we outline the

main characteristics of these schemes and the enhancements applied.

for (i=0; i<N; i++){

   ...

   x = a[i]+b[i];(S1)

   y = a[i-2]+b[i-2];(S2)

   ... }

Figure 3.9. Code example of reusing from non-latest result.
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The Result Cache and the Result Buffer preserve the results of instructions in hardware tables

together with some information needed to establish their validity at a later time. When an instruction is

fetched and its current inputs are found in that table, its execution can be avoided by obtaining the

output from the table.

An important difference between the Result Cache and the Reuse Buffer is that the former requires

the source operands to index the buffer, whereas the latter is indexed by the instruction address and its

operands are only required once the entry is read, so that it can be compared with the operands in the

entry. In other words, the Reuse Buffer can overlap the buffer lookup with the instruction fetch, register

rename and register read operations, whereas the Result Cache cannot. So, if we assume that a table

lookup takes one cycle, the Reuse Buffer mechanism can produce the result of a reusable instruction

one cycle earlier than the Result Cache (see Section 3.3.5 for a detailed discussion of timing

considerations). On the other hand, the main drawback of the Reuse Buffer is that it can only reuse

dynamic instances of the same static instruction. In other words, the Reuse Buffer seeks to exploit

quasi-invariants but does not take advantage of quasi-common subexpressions. 

Moreover, the Reuse Buffer can reuse multiple inter-dependent instructions fetched simultaneously.

Since the Reuse Buffer is indexed by the instruction address, the corresponding multiple entries can be

read simultaneously and the reused result of an instruction can be used to check whether the following

dependent instructions can be reused, just like register renaming of multiple dependent instructions can

take place in the same cycle. We refer to this feature as reuse chaining. On the other hand, reuse

chaining cannot be exploited by the Result Cache, since the buffer lookups would be sequential and

could not be performed in a single cycle. This is because the Result Cache uses the source operand

values to index the buffer, so if instruction B depends on instruction A, the buffer lookup of instruction

B cannot be performed until the result of instruction A is available (i.e. until the reuse of A finishes and

produces the source operand of B).

As explained earlier, unlike the Reuse Buffer, the Atable does not include the PC tag but it does

include the opcode, which is shorter than the tag. This not only reduces the table size but also takes

advantage of interferences between instructions with the same opcode and comes at no cost. When

comparing the RCB and the Reuse Buffer, we will consider an enhanced Reuse Buffer that also includes

this optimization.
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The RCB we propose seeks to eliminate redundant computation from both quasi-invariants and

quasi-common subexpressions. Moreover, it has the same reuse latency as the Reuse Buffer, since it is

indexed by the instruction address and can also exploit reuse chaining.

The Result Cache has been enhanced with a table to store memory values that has the same

structure as the Mtable of the RCB scheme. We name this new Result Cache the Enhanced Result

Cache (ERC). Also, in the original design, each index bit was obtained by X-oring one bit from the

operand 1, one bit from the operand 2 and another bit from the opcode. We have evaluated several X-

oring schemes and will present results for the most effective one. However, an interesting area for

further research may be to analyse more sophisticated hashing schemes. Finally, as proposed in the

original design, reuse test is not limited to long latency operations.

The Enhanced Reuse Buffer (ERB) consists of two tables. One table is targeted to reuse arithmetic

instructions, conditional branches and memory addresses (Atable) and the other is targeted to reuse

memory values (Mtable). In the original proposal [112], these two tables were merged into a single one

but the authors suggested that a split implementation could be more cost-effective. However, they

suggested a separate table for memory instructions that was indexed by the instruction address. That

implementation needed store instructions to associatively search the table for a matching memory

address, something which is avoided by the Mtable. Moreover, like the RCB, the instruction address tag

is replaced by the opcode. As we discussed in Section 3.3.1, this take advantages of constructive

interference and reduces the storage required.

3.3.5. Timing

As we indicated above, the performance of a reuse scheme is determined not only by the percentage of

reused instructions but also by the reuse latency. Let us assume a dynamically scheduled processor with

a microarchitecture that keeps speculative results in the reorder buffer or rename buffers and is

pipelined in the stages shown in Figure 3.10.a (this example is based on the PowerPC 604 [116] but the

conclusions are the same for other pipelines). Every instruction is fetched and then decoded and the

physical location that holds the last definition of each source operand (if available) is identified.

Available operands are read and the instruction dispatched to a reservation station. When all the

operands are ready and a functional unit is available, the instruction is issued. It is then executed and the

result is written back. Finally, instructions commit in order.
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Since it is indexed by the PC, the Reuse Buffer (see Figure 3.10.b) accesses the Atable in parallel

with the Icache lookup. However, the reuse is not effective until the reuse test is performed. This test

cannot be done until the source operands are read. Since the reuse test only involves equality

comparisons, it is reasonable to assume that it takes less than a cycle.

The RCB (see Figure 3.10.c) accesses the Atable in the fetch stage by indexing it through the PC.

As a result of this access, it obtains a pointer to a potential producer of the same result (a single link is

provided no matter which history depth is implemented). In the next cycle, it accesses the Atable entry

corresponding to this pointer. The reuse test is performed once the operands are read, so the total reuse

latency is the same as that of the Reuse Buffer.

The Result Cache (see Figure 3.10.d) indexes the Atable by means of the operand values, so it

cannot perform the access until the operands are read. This implies that the latency of this mechanism is

one cycle longer than that of the Reuse Buffer and the RCB.

For all reuse schemes, once the reuse test is successful, the instruction bypasses the execute stage

and goes directly to the write-back stage. Note also that the Result Cache can exploit reuse from both

quasi-invariants and quasi-common subexpressions. Moreover, it can exploit reuse from non-latest

results. On the other hand, the Reuse Buffer can only exploit quasi-invariants. However, since it is

indexed by the instruction address, its reuse latency is shorter than that of the Result Cache. The RCB

has the best of both worlds: it exploits both quasi-invariants and quasi-common subexpressions and has

the same reuse latency as the Reuse Buffer. 

execute

Figure 3.10. Reuse latency of the reuse buffer, the RCB and the result cache.
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3.3.6. Hybrid Redundant Computation Buffer 

A couple of issues may limit the performance potential of the instruction reuse schemes: the indexing

method of the tables and the reuse latency. We have seen that the Result Cache indexing method

provides a greater percentage of reuse but that its higher reuse latency means that its performance

potential is limited. In this section we propose a slight modification of the RCB scheme that could take

advantage of the best of both approaches. We therefore propose the Hybrid Redundant Computation

Buffer. This new scheme stores the result of each instruction in two different entries. One entry is

indexed by the instruction address, (in the same way as the RCB), and the other is indexed by hashing

the source operand values and the opcode (in the same way as the Result Cache). Note that the

downside of this approach is that, as each dynamic instruction can use two entries of the buffer, it may

produce more interference.

When instructions are fetched, they are tried to be reused first by indexing the Atable through the

instruction address. If this is not successful, they are then tried to be reused by indexing the Atable

again through the hashed operand values and opcode. The first probe provides low latency and the

second provides higher reusability. 

3.3.7. Performance Evaluation 

This section evaluates the performance of the RCB and compares it with the performance of the

Enhanced Result Cache and the Enhanced Reuse Buffer.

3.3.7.1. Experimental Framework

The different reuse schemes have been evaluated for a superscalar processor using the Alpha version of

the Simplescalar toolset [15]. Simplescalar is an execution-driven simulator based on the Alpha ISA

that models an out-of-order machine and has been modified to support data value reuse schemes. The

base simulator models a 4-way dynamically scheduled superscalar processor based on the Register

Update Unit [114]. The parameters of this simulator are shown in Table 1.2.

N-way set associative buffers, where N is the history depth, are considered for all the reuse

mechanisms. The performance of each scheme is drawn in front of its required storage capacity, which

is measured as the total number of bits required to implement it, including tags when used.
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The following Spec95 benchmarks have been considered: compress, go, gcc, li, m88ksim, perl and

vortex from the integer suite; and applu, mgrid, swim and turb3d from the FP suite. The programs have

been compiled with the DEC C and F77 compilers with -non_shared -O5 optimization flags (i.e.

maximum optimization level). Each program was run with the test input set and statistics were

collected for the first 125 million instructions after skipping the initial part corresponding to

initializations (see Section 1.4 for further details of tools and benchmarks).

3.3.7.2. Basic Reuse Statistics

In this subsection we present statistics for the percentage of reuse that can be exploited by the various

schemes for an ideal scenario in which all instructions are assumed to have their operands ready in the

decode stage. For all figures, the percentage of reuse is shown over all the dynamic instructions, where

arithmetic operations, conditional branches, memory addresses and load values are the instructions

capable of being reused. Note that memory operations count twice (once for the address calculation and

once for the memory value). The aims of this study are to determine the best configuration for each

reuse scheme and then evaluate these best configurations for a superscalar processor in Section 3.3.7.3.

In this latter scenario, the unavailability of the source operands will prevent the exploitation of reuse. 

We first show that exploiting quasi-common subexpressions is a significant source of reuse. This is

illustrated in Figure 3.11, which shows the percentage of dynamic instructions reused when the history

depth is one and the Atable of each scheme has 1024 entries. The Mtable and the Vtable are assumed to

have 512 and 1024 entries respectively, in all the experiments. The total size of the tables for the

Figure 3.11. Enhanced Reuse Buffer vs. Redundant Computation Buffer for history depth of 1.
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experiment in Figure 3.11 is approximately the same: 34 KB (KiloBytes) and 36 KB for the Enhanced

Reuse Buffer and the Redundant Computation Buffer, respectively. Note that both schemes can reuse a

significant number of instructions and that RCB numbers are always higher than ERB numbers. On

average, the reuse due to quasi-common subexpressions is about 6% and is significant for all programs. 

Figure 3.12 shows the percentage of dynamic instructions reused by the Enhanced Reuse Buffer.

Only average numbers (arithmetic mean) for the set of benchmarks are shown. The X-axis shows the

total storage capacity in KiloBytes (KB). Each line corresponds to a different number of entries in the

Atable (the size of the Mtable is kept fixed and is also considered in the total capacity). The different

dots in a line correspond to different history depths, starting from 1 at the leftmost point and increasing

by a factor of two from one point to the other.

The results for 128 and 1024 entries with history depth of one are consistent with those of Sodani

and Sohi [112]. For example, the 1024-entry configuration can reuse 26% of the dynamic instructions

(Sodani and Sohi [112] reported 25.7%). Increasing the history depth provides a significant

improvement, as is implied by the positive slope of the curves. For example, for the 1024-entry

configuration, reuse grows from 26% to 41% when the history depth increases from 1 to 16. Note also

that the benefits of increasing the history depth are more noticeable for larger numbers of entries. If we

look at the best trade-off between number of entries and history depth, we can conclude that a history

depth of one is the most effective configuration for small capacities, but not for large capacities. This is

because for a small capacity the additional storage is best spent in reducing interferences (by increasing

Figure 3.12. Reuse exploited by the Enhanced Reuse Buffer.

4K
B

8K
B

16
K
B

32
K
B

64
K
B

12
8K
B

25
6K
B

51
2K
B

10
24
K
B

20
48
K
B

40
96
K
B

Storage Capacity

0

10

20

30

40

50

60

70

P
e
rc
en
ta
g
e 
o
f 
R
e
u
se

Enhanced Reuse Buffer

16K entries

8K entries

4K entries

2K entries

1K entries

512 entries

256 entries

128 entries



 Instruction Level Reuse 83

Microarchitectural Techniques to Exploit Repetitive Computations and Values 83 

the number of entries), whereas interferences are very rare for large capacities. The trend is similar for

the RCB in Figure 3.13 (again note that the size of the Mtable and Vtable are kept fixed and that they

are considered in the total capacity). 

Note that the concept of history depth does not make sense for the Result Cache since its entries are

not associated to particular static instructions. In fact, the Result Cache can store multiple results of the

same static instruction by placing each one in a different Result Cache entry.

Figure 3.14 compares the three reuse schemes in terms of percentage of reused instructions for

different total storage requirements. For each scheme and capacity, only the best configuration is

Figure 3.13. Reuse exploited by the Redundant Computation Buffer.
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Figure 3.14. Reuse exploited by the best configurations of every scheme.
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displayed. Note that in terms of reusability, the Enhanced Result Cache is the most effective scheme.

This is followed by the Redundant Computation Buffer and the Enhanced Reuse Buffer. The

effectiveness of the Result Cache is explained by the fact that this scheme allows a given instruction to

reuse results from any other instruction with the same opcode as the RCB uses, but it does not use up

any storage to store pointers and does not need to first establish pairs of producers-consumers before

reusing among different static instructions. On the other hand, the Reuse Buffer can only reuse results

from the same static instruction.

3.3.7.3. Performance Figures for a Superscalar Processor

In this subsection we present performance figures for the various reuse schemes for a superscalar

processor. As we explained earlier, the base simulator models a 4-way dynamically-scheduled

superscalar processor with the parameters shown in Table 1.2. Two configurations were evaluated for

each reuse scheme, one for around 32KB of capacity and the other for around 200KB of capacity. For

each capacity, the best configuration was chosen according to the analysis in Section 3.3.7.2. The

precise values are 34KB, 36KB, 34KB and 217KB, 221KB, 217KB for the Enhanced Reuse Buffer,

Redundant Computation Buffer and Enhanced Result Cache, respectively.

Figure 3.15 shows the speed-up achieved by the various reuse schemes for the base

microarchitecture. The RCB scheme provides the highest speed-up and the Result Cache provides the

lowest speed-up even though it exploits most reuse in the ideal case. However, the Result Cache is

significantly penalized for not exploiting reuse chaining and for its higher reuse latency. We can see

Figure 3.15. Speed-up for the base microarchitecture for each program and the harmonic mean.
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that the RCB provides significant speed-ups for all programs. The highest benefit is experienced by li,

which shows a speed-up of 1.15 and 1.25 for the 32 KB and 200 KB configurations, respectively.

Figure 3.16 shows the reuse exploited by the various schemes in the base microprocessor. It also

shows reuse exploited in the ideal case in which all the operands are ready. The actual reuse is lower

than the ideal reuse despite including some squash reuse [112] (reuse from squashed instructions due to

a control misspeculation), which the ideal case does not. The Result Cache loses most reuse in relation

to the ideal case. An important reason for this is its inability to exploit reuse chaining. The Result Cache

is therefore still the scheme that exploits the highest amount of reuse but the difference with the RCB is

much smaller than in the ideal scenario. 

We performed the same experiments for a more aggressive microarchitecture. In these experiments

we have assumed an 8-way issue superscalar processor with twice as many functional units as our base

microarchitecture and a more aggressive branch predictor based on an SAg [134] with 4096 branch

history registers and a 4096-entry pattern history table. The averages are quite similar to those obtained

for the base architecture, though there are some differences in individual programs.

Figure 3.17 shows the contribution of each instruction category to the percentage reuse shown in

Figure 3.16. We can see that the contribution of each category to total instruction reuse is similar and

that there are no significant differences when we compare the various instruction reuse schemes. 

Figure 3.16. Reuse exploited in the superscalar microprocessor.
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3.3.7.4. Performance of the Hybrid RCB Scheme    

The previous section shows that the Result Cache outperforms the RCB in terms of exploited reuse but,

because of its higher reuse latency, provides a lower speed-up. The hybrid RCB scheme could take

advantage of the best of both approaches. As we explained before, this scheme stores the result of each

instruction in two different entries. One of the entries is indexed by the instruction address, as with the

RCB, and the other is indexed by hashing the source operand values and the opcode. The first entry

provides low latency while the second entry provides higher reusability. Figure 3.18 compares the RCB

and the hybrid RCB schemes for a 32 KB capacity (the results for 200 KB are similar). Note that the

hybrid scheme provides a slightly higher speed-up and increases the percentage of reused instructions

by about 7% (from 23% to 30%). 

Figure 3.17. Contribution of each instruction category to total reuse. 

Each group of bars corresponds to ERB, RCB and ERC schemes respectively
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Figure 3.18. Performance of the RCB and the hybrid RCB scheme for a 32 KB capacity. 
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3.4. Related Work

Numerous data value reuse mechanisms based on both software and hardware approaches have been

proposed. Software implementation is usually known as memoization or tabulation. Memoization

[1],[11],[75] was proposed as a code transformation technique to take advantage of the redundant

nature of computation by trading execution time for increased memory storage. The main idea is to

store the result of functions together with their input values in a table that exists as a software data

structure. This technique can also be extended to statements, groups of statements, or any given region

that has limited side effects and a high degree of recurrence. Later invocations of these sections of code

are preceded by a table look-up and, in case of hit, their executions are avoided. 

A hardware implementation of data value reuse was first proposed by Harbison [46] for the Tree

Machine. The Tree Machine has a stack-oriented ISA and the main novelty of its architecture was that

the hardware assumed several compiler’s traditional optimizations, such as common subexpression

elimination and invariant removal. This is achieved using of a Value Cache, which stores the results of

dynamic sequences of code (called phrases) together with information about the variable on which each

sequence depends. New executions of the same phrases can be reused provided that none of the inputs

variables have been written since the previous execution.

Another hardware implementation of data value reuse was suggested by Richardson [91],[92]. This

author proposed a Result Cache, that seeks to speed-up some long latency floating point operations,

such as multiplications and divisions. It consists of a buffer that is indexed by hashing the source

operand values, and contains the last operation applied to such values and its result. Result caching has

been further investigated by Oberman and Flynn [83], who proposed a specific buffer for each type of

long-latency operations: Division Caches, Square Root Caches and Reciprocal Caches. These authors

also investigated a shared cache for reciprocals and square roots. Citron et al [24] extended the Result

Cache approach to multimedia applications. This approach is suited to bypassing the execution of

multi-cycle computations (multiplication, division, square root) in a single cycle by means of

distributed and specialized value reuse tables that are accessed in parallel with the functional units.

Finally, result caching has also been evaluated by Azam et al [7] as a way to reduce power

consumption. 

Sodani and Sohi [112] invented the concept of dynamic instruction reuse and proposed the Reuse

Buffer, which is indexed by the instruction address. They presented three schemes. In the first scheme,
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each entry of the buffer contains the source operands and the result of the last dynamic instance of the

corresponding instruction. In the second scheme, each entry contains the source register identifiers and

the result. In the third scheme, each entry contains pointers to the instructions that compute the source

operands in addition to the fields of the second scheme. Experimental results show that the first scheme

provides the highest speed-up for large reuse buffer sizes. A set-associative implementation of the

Reuse Buffer allows it to store multiple dynamic instances of the same static instruction. Huang and

Lilja [48] extended the first scheme of the Reuse Buffer by modifying the indexing mechanism. The

idea is to index the contents of the table using a hash function of the values of the input operands of an

instruction instead of indexing by the address of the instruction. Citron et al [26] revised the concept of

instruction-level reuse by repeating and widening the scope of previous proposals, such as Memo

Tables by Citron et al [24], Redundant Computation Buffer by Molina et al [77], and Reuse Buffer by

Sodani and Sohi [112]. They also extended their analysis to consider the area, energy and timing

overheads of maintaining such tables [25]. A different approach to filling the reuse tables was proposed

by Yi et al [137]. These authors presented the Instruction Precomputation mechanism which uses

profiling to determine the unique computations with the highest frequencies of execution. The reuse

table is therefore loaded with these instructions before the program executes and, except for the fact

that entries are not dynamically replaced, it is managed in a traditional way. 

Specialization in load and store instruction reuse has been covered by Yang and Gupta [131],[133].

These authors presented reuse techniques for load redundancy removal that eliminate redundancy

across different dynamic instances of the same static instruction and eliminate redundancy across

dynamic instances of statically distinct instructions [133]. They also designed a carefully tuned load

and store reuse mechanism to achieve net energy savings [131].

Although instruction reuse was initially designed to avoid the execution stage of instructions, some

authors have explored several ways of applying it. Weinberg and Nagle [127] proposed a mechanism to

eliminate the computation of high-level language pointer expressions. Basically, once the input operand

set of an expression matches a previously executed instance of the same expression, the result is

obtained from a table instead of recomputing it. This mechanism requires some compiler support to

mark the instructions that are involved in the expressions. Jourdan et al. [59] proposed a renaming

scheme that exploits the phenomenon of instruction-level reuse in order to reduce the register pressure.

The basic idea is that several dynamic instructions that produce the same result share the same physical

register. Onder and Gupta [84] also relied on the physical register file to provide data values
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corresponding to a subset of memory addresses whose values are currently resident in physical

registers. Prefetching and load instruction reuse were combined by Surendra et al [121] to study their

effectiveness in reducing data cache traffic in network processor units.

Squash reuse is another special implementation of instruction-level reuse in which the reused value

comes from the same instance of the instruction that have been squashed. The concept was first

introduced by Sodani and Sohi [112] as a way to reduce branch miss-speculation penalties. As we

explained earlier, they proposed a table-based technique for avoiding the execution of an instruction

that has been previously executed with the same inputs. As well as squash reuse, they also covered

general reuse. A different implementation based on a centralized window environment was proposed by

Chou et al [23]. These authors also introduced the idea of dynamic control independence and showed

how it can be detected and exploited in an out-of-order superscalar processor to reduce the branch

missprediction penalty. Roth and Sohi [96] proposed register integration as a simple and efficient

implementation of squash reuse. This mechanism enables speculative results to remain in the physical

register file after the producer instruction is squashed. Later, the speculative results may be reused

through a modified renaming scheme. Finally, Petric et al [86] extended the concept of register

integration by adding modifications to the original design that expanded its applicability and boosted its

performance impact. 

Sato and Arita [101] explored instruction-level reuse to enhance their Variable Latency Pipeline.

This structure has proved effective for mitigating the constraints on the operand bypass logic. Sato [99]

also presented a method for integrating fault-tolerance techniques into microprocessors by applying

instruction redundancy as well as time redundancy.

Instruction reuse has also been combined with value prediction to improve its performance

potential. Sodani and Sohi [113] investigated the various ways in which value prediction and

instruction reuse interact with other microarchitectural features and the impact of such interactions on

net performance. Choi et al [22] modified the Result Cache to enable value prediction. In their

proposal, the Result Cache is managed in a traditional way to reuse instructions. The novelty is that the

result of a previously executed instruction can be used as a prediction if the reuse test could not be

performed because the operands of the instruction were not ready at decode time. Liao and Shieh [68]

explored the combination of value reuse and value prediction in the Reuse Buffer. Manoharan and

Narayanan [73] introduced a similar approach that managed confidence bits to minimize the

misspredictions. 
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Finally, several studies have evaluated the sources of instruction repetition. Sodani and Sohi [111]

investigated the source of the repetitive behaviour of the computations by categorizing dynamic

program instructions into dynamic program slices at different levels. Yi and Lilja [135] defined the

terms of local and global level redundant computations to refer the repetitive behaviour produced by

the same static instruction and the repetitive behaviour of several static instructions, respectively. He

also analysed the potential of reuse and compared the amount of redundant computation at the global

level to the amount of redundant computation at the local level. Surendra et al [120] examined

instruction reuse in network processing applications and showed that significant instruction reuse can

be exploited in such applications. These authors also proposed a flow aggregation scheme that exploits

packet correlation and uses multiply Reuse Buffers to further enhance the utility of instruction reuse. 

3.5. Conclusions

Instruction-level reuse has proved to be an effective technique for avoiding the serialization caused by

data dependences. In this chapter we have analysed instruction-level reuse in detail and shown that it

can benefit from computation repetition to boost the execution of instructions.

First, we analysed the performance potential of instruction-level reuse under various scenarios. The

evaluation was performed for an infinite resource machine and then for a machine with a limited

instruction window. We conclude that instruction-level reuse is abundant in all types of programs and

can provide very large speed-ups for an ideal machine. However, the benefits of instruction-level reuse

are moderate for a 1-cycle reuse latency and low for higher latencies, even though the percentage of

reusable instructions is high. This is because instruction reuse cannot be exploited until the source

operands are ready, and so, the reuse of a chain of dependent instructions is still a sequential process.

In this chapter we have also presented a novel reuse mechanism that we called Redundant

Computation Buffer (RCB). This hardware mechanism can exploit reuse due to both quasi-invariants

(repetition produced by the same static instruction) and quasi-common subexpressions (repetition

produced by several static instructions) and also exhibits a low reuse latency. When we compared this

mechanism with previous schemes, which we extended with novel features borrowed from the RCB, it

provided the greatest benefits in terms of execution time reduction, though it did not achieve the highest

reusability. On average, the RCB can reuse around 30% of all dynamic instructions, which implies a

1.10 speed-up. Improvements were experienced by all the programs. These ranged from 3% for

compress to 25% for mgrid. We have also shown that storing multiple dynamic instances of the same

static instruction can provide significant benefits, especially for large buffers.



“Those who can not remember the past are condemned to repeat it”
George Santayana, US (Spanish-born) Philosopher,1862-1952.

Chapter 4
TRACE LEVEL REUSE

Trace-level reuse is a data value reuse technique that avoids the execution of a dynamic sequence of

instructions (traces). As long as executions have the same inputs, all changes in the processor state that

would be produced by these instructions are done by reapplying the changes that were produced in a

past execution of the same trace. Trace-level reuse is therefore based on the phenomenon that

computations performed by programs tend to be repetitive.

In this chapter we introduce the concept of trace-level reuse and analyse its performance potential.

We also address essential design issues for integrating this technique into a superscalar processor.
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4.1. Introduction

Data value reuse techniques have been traditionally limited to the instruction level. Instruction-level

reuse techniques are special implementations of data value reuse intended to avoid the execution of

single instructions that produce the same result as previous instructions. 

We have observed that some traces (dynamic sequences of instructions) are frequently repeated

during the execution of a program and that the instructions that make up such traces often have the

same source operand values. The execution of such traces will obviously produce the same outcome, so

their execution can be skipped if the processor records the outcome of previous executions. We refer to

this data value reuse technique that exploits the repetition of several consecutive computations as

Trace-Level Reuse.

 Typically, computation reuse works by storing the results of a previously seen computation in a

reuse table. In this case, a computation refers to a set of consecutive instructions. When the

computation occurs again, the outcomes of that computation are obtained from the reuse table and the

reusable instructions are bypassed. 

Trace-level reuse can improve performance by decreasing resource contention and the latency of

some instructions in the same manner as instruction-level reuse. However, we will show that trace-level

reuse is more effective than instruction-level reuse because it can avoid fetching the instructions of

reused traces. This has two important benefits: it reduces the fetch bandwidth requirements and, since

these instructions do not occupy window entries, increases the effective instruction window size.

Moreover, trace-level reuse can compute the result of a chain of dependent instructions all at once,

which may allow the processor to avoid the serialization caused by data dependences and therefore

exceed the dataflow limit.

In this chapter we introduce the concept of trace-level reuse, discuss its implementation and analyse

its performance impact. Section 4.2 analyses the performance potential of trace-level reuse under

several scenarios. Section 4.3 address several design issues of trace-level reuse that covers aspects such

as the memory required to store traces, a method for selecting traces, a mechanism for reusing traces

and the process for updating the processor state. Section 4.4 reviews related work and Section 4.5

summarizes our main conclusions. Finally, Appendix A defines a set of theorems related to trace-level

reuse that support the study of the performance potential.
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4.2. The Performance Potential of Trace-Level Reuse

In this section, we analyse the trace-level reuse phenomenon and investigate the performance potential

of this technique. We isolate the effect of trace-level reuse from other microarchitectural aspects by

putting it into an ideal machine context, with either a limited or an unlimited instruction window. In

summary, we are interested in evaluating the performance limits of trace-level reuse instead of focusing

on any particular implementation.

4.2.1. Evaluation Methodology

The simulation environment assumed in this section is the same as the one described in Section 3.2.1.

We considered two scenarios to evaluate the performance potential of trace-level reuse: an ideal

machine with either an infinite window (see Section 3.2.1.1) or a limited window (see Section 3.2.1.2).

Both scenarios assume a machine with an infinite number of functional units.

The benchmark programs are a subset of the SPEC95 benchmark suite comprising both integer and

FP codes: compress, gcc, go, ijpeg, li, perl and vortex from the integer suite, and applu, apsi, fpppp,

hydro2d, su2cor, tomcatv and turb3d from the FP suite. The programs have been compiled with the

DEC C and Fortran compilers with full optimization (“-non_shared -O5 -tune ev5 -migrate -ifo” for C

codes and “-non_shared -O5 -tune ev5” for Fortran codes). Each program was run for 50 million

instructions after skipping the first 25 millions.

The compiled programs were instrumented with the Atom tool [117] and their dynamic trace was

processed in order to obtain the IPC for each configuration. Results are shown for individual programs

and in some cases we show the average for integer programs, FP programs or the whole set of

benchmarks. Average speed-ups have been computed through harmonic means and average

percentages have been determined through arithmetic means (see Section 1.4 for further details of tools

and benchmarks).

4.2.2. Limits of Trace-Level Reusability

As we indicated earlier, the reuse of traces is an attractive technique since a single reuse operation may

skip the execution of a potentially long sequence of dynamic instructions even if these are inter-

dependent. To evaluate the performance limits of this technique, we need to compute the maximum

reuse that can be attained for any possible partition of the dynamic instruction stream into traces. Since
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there is no constraint for the contents of each trace, the number of ways of partitioning a dynamic

instruction stream into traces is practically unlimited, which prevents an exhaustive exploration of all of

them.

Given that each reuse operation has an associated latency (e.g. table lookup), the most effective

schemes will be those that reuse maximum length traces. Given a dynamic instruction stream that

corresponds to the execution of a program, we are interested in identifying a set of reusable traces such

that: a) the total number of instructions included in those traces is maximum and b) the number of traces

is minimum. In other words, if a trace is reusable, it is more effective to reuse the whole trace in a single

reuse operation than to reuse parts of it separately. However, finding maximum length reusable traces

would be still a complex problem if all the possible partitions of a program into traces were explored. 

We can, however, prove that if we consider just those traces that are formed by all maximum-

length dynamic sequences of reusable instructions, we have an upper bound of the reusability that can

be exploited by maximum-length traces (condition (a) above) and a lower bound of the number of

traces required to exploit it (condition (b) above). This is supported by the theorems defined below and

described in Appendix A. The performance provided by assuming that such traces are reusable will

provide an upper bound of the performance limits of trace reuse.

Theorem TLR1. Let T be a trace composed of the sequence of dynamic instructions <i1, i2, ..., in>.

If T is reusable, then ik is reusable for every k ∈[1,n].

Theorem TLR2. Let T be a trace composed of the sequence of dynamic instructions <i1, i2, ..., in>.

If ik is reusable for every k ∈[1,n], then T is not necessarily reusable.

Theorem TLR1 implies that the number of instructions whose execution can be avoided by any

trace reuse scheme is limited by the amount of individual instructions that are reusable. We can

therefore compute an upper bound of the benefits of trace-level reuse by assuming that the amount of

trace-level reusability is equal to the amount of instruction-level reusability, and the overhead of trace-

level reuse is given by grouping reusable instructions into the minimum number of traces (i.e. assuming

maximum-length traces). Theorem TLR2 states that this approach results in an upper bound that may

not be reached.
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4.2.3. Performance Improvement of Trace-Level Reuse

In this section we analyse the effect of trace-level reuse on execution time and focus on obtaining

performance limits. We therefore consider a reuse engine with infinite tables to keep a history of

previous instructions and analyse the effect of several reuse latencies. Reuse latency corresponds to the

length of time a reuse operation takes. This usually involves a table look-up and some comparisons. In

Section 4.3 we measure the amount of trace-level reusability when a finite reuse memory and a

particular heuristic for trace collection are considered

The process for computing the IPC for this scenario is as follows. The completion time of every

instruction that does not belong to a reusable trace is computed in the same way as in the base machine.

For a reusable trace, the completion time of all the instructions that produce an output is computed as

the maximum of the completion time of all the producers of its inputs plus the reuse latency. We also

analysed two ways to consider the reuse latency. In one, the reuse latency is assumed to be a constant

time per reuse operation. In the other, the reuse latency is assumed to be proportional to the number of

inputs plus the number of outputs of the trace. Note that the first way is more appropriate when the

reuse test just requires a valid bit to be checked, and the second way models the fact that reusing a trace

requires the processor to read all its inputs and check that they are the same as in a previous execution.

For the limited window scenario, a reusable trace does not need to be fetched, and a single entry in

the instruction window is allocated to represent the whole trace. Therefore, when computing the

completion time of a given instruction, the graduation time of the instruction that is W locations above

must be interpreted by taking into account only those instructions that must be brought into the

processor. In other words, trace-level reuse has the additional advantage of artificially increasing the

effective instruction window size, since some instructions are not even fetched and do not use any

instruction slot.

In any case, if the completion time of an instruction in a reusable trace is higher than the completion

time of the normal execution of that instruction, the latter will be chosen.

Performance figures of trace-level reuse are shown in Figure 4.1. Figure 4.1.a corresponds to an

infinite window scenario and Figure 4.1.b corresponds to a finite window scenario. In both cases, a 1-

cycle reuse latency has been considered. On average, the speed-up obtained for the infinite window

scenario is around 3.03, and is slightly lower for FP than for integer programs. The greatest benefit is

experienced by ijpeg (11.57). However, some programs have a negligible speed-up in this scenario
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(perl with 1.01). On the other hand, the average speed-up obtained for the limited window scenario is

around 3.63. Once more, this speed-up is slightly lower for FP than for integer programs even though

some FP programs, such as hydro2d, su2cor, tomcatv and turb3d, can significantly benefit from trace-

level reuse. 

We also found that the average speed-up is much higher than for instruction-level reuse in Chapter

3. For the infinite window scenario, speed-up increased from 1.43 (see Figure 3.5.a) to 3.03 (see Figure

4.1.a). This difference between trace-level and instruction-level reuse is even higher for the limited

window scenario (Figure 3.3.a shows an average speed-up of 1.50 and Figure 4.1.b shows an average

speed-up of 3.63). In this case, trace-level reuse may provide a very important extra advantage: it may

avoid fetching instructions in reused traces and may increase the effective instruction window. Once the

control flow reaches the initial address of a trace, if the trace is determined to be reusable the whole

Figure 4.1. Speedup of trace-level reuse when considering a 1-cycle reuse latency:

 (a) for an infinite instruction window, (b) for a 256-entry instruction window. 
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trace can be reused without fetching or executing the instructions of the trace. Consequently, the speed-

up of trace-level reuse for a limited instruction window is even higher than for an unlimited window

(3.63 vs. 3.03), whereas for instruction-level reuse we observed the opposite trend.

Figure 4.2 shows the average trace size and correlates it with that in Figure 4.1. Note that, in

general, larger traces imply higher speed-ups, which can be attributed to their greater potential to

artificially increase the effective instruction window size. Integer programs have a quite uniform trace

size, ranging from 14.5 to 36.7 instructions, and also exhibit a quite homogeneous speed-up. On the

other hand, some FP programs, such as applu, apsi and fpppp have very short traces and exhibit very

low speed-up, whereas others have large traces (up to 203 instructions for hydro2d) and high speed-ups.

Note also that trace-level reuse, unlike instruction-level reuse, provides significant speed-ups even

if the reuse latency is higher than 1. This is shown in Figure 4.3.a, where we can see that the average

speed-up for a reuse latency ranging from 1 to 4 cycles is not hardly degraded.

Note that a trace is reused provided that all input values are the same as in a previous execution.

Therefore, a trace reuse operation may involve checking as many values as the number of inputs of the

trace. Also, as the result of a trace reuse, all the output values of the trace must be updated. It may

therefore be more realistic to assume that the reuse latency is proportional to the number of input and

output values, i.e. it is equal to a constant K multiplied by the number of input/output values. K is the

inverse of the read/write bandwidth of the reuse engine; for instance, K=1/16 implies that the reuse

engine can read or write 16 values per cycle. In this scenario, the speed-up of trace-level reuse is shown

Figure 4.2. Average trace size.
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in Figure 4.3.b, where the X axis represents different values of K. We can also see that the speed-up of

value reuse is high, even though it is significantly affected by the reuse latency. Note that it is

reasonable to assume that microprocessors may have the capability to perform around 16 reads+writes

per cycle, including register and memory values. In fact, current microprocessors such as the Alpha

21264 [44] can perform 14 reads+writes per cycle (8 register reads, 4 register writes and 2 memory

references). If we look at the bar corresponding to K=1/16 in Figure 4.3.b, therefore, we can conclude

that it is reasonable to expect a speed-up of around 2.7 from trace-level reuse. This also suggests that

even the slowest approach to checking reusability, based on comparing all inputs, can significantly

improve performance.

On average, we found that the number of input values per trace is 6.5 (2.7 register values and 3.8

memory values) and that the number of output values is 5.0 (3.3 register values and 1.7 memory

values). Since the average number of instructions per trace is 15.0, this means that each reused

instruction requires 0.43 reads and 0.33 writes, which is significantly lower than the number of reads

and writes required by the execution of an instruction. We can therefore conclude that trace-level reuse

also provides a significant reduction in the data bandwidth requirements, and can reduce the pressure

on the memory and register file ports.

Figure 4.3. Speed-up of trace-level reuse for a 256-entry instruction window 

with a reuse latency  that (a) varies from 1 to 4 cycles and (b) is proportional to the inputs plus 

outputs of the trace.
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4.3. Design Issues of Trace-Level Reuse

In the previous section we demonstrated the high potential of trace-level reuse. The aim of this section

is to identify design issues and propose alternatives for integrating a trace-level reuse scheme in a

superscalar processor.

To reuse traces the processor needs to include some type of memory to store previous traces, decide

which traces are worth storing, identify when the forthcoming trace can be reused and update the

processor state if the trace is reusable. The techniques involved in these processes are addressed below

in greater detail. Finally, we also measure the percentage reusability and the average trace size provided

by trace-level reuse when a finite reuse memory and a particular heuristic for trace collection are

considered.

4.3.1. Reuse Trace Memory

Reuse trace memory (RTM) is a memory that stores previous traces that are candidates to be reused.

The RTM can be indexed by different schemes e.g. by PC, or by a hashing of the PC and the contents of

a given register, etc. From the reuse point of view, a trace is identified by its input and its output (see

Figure 4.4). The input of a trace is defined by:

• The starting address, i.e. initial program counter (PC).

• The set of register identifiers and memory locations that are live and their contents before the

trace is executed. A register/memory location is live if it is read before it is written.

The output of a trace consists of:

• The set of registers and memory locations that the trace writes and their contents after the trace is

executed.

• The address of the next instruction to be executed after the trace.

Figure 4.4. A RTM entry. 
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4.3.2. Reuse Test and Processor State Update

We analyse the reuse test and processor state update in the pipeline. The reuse test refers to the validity

check for establishing that the current operand values of a trace are the same as previously observed

ones. The processor state update refers to the way in which output values of a trace are updated into the

pipeline.

Note that, at some points of the execution (e.g. every cycle), the processor needs to check whether a

trace that starts at the current PC can be reused. If it can, the processor uses the information about the

trace obtained from the RTM to update its state as follows (see Figure 4.5):

• The PC is updated with the next PC field so that the fetch unit proceeds with the instructions that

follow the trace. Instructions that belong to the trace do not need to be fetched.

• The output registers and output memory locations are updated with the values obtained from the

RTM entry.

Basically, there are two ways to identify whether a trace is reusable. One is to read the current

values of all input registers and memory locations and compare them with the values in any RTM entry

associated with the current PC. Another is a valid bit to add to each RTM entry. When a trace is stored,

its valid bit is set. For every register/memory write, all the RTM entries with a matching register/

memory location in its input list are invalidated. This approach requires a much simpler reuse test (just

checking the valid bit). The final reuse process that updates the processor state can be implemented by

inserting, in the instruction window, instructions that write the corresponding values in the trace output

(registers and memory locations). In this way, precise exceptions could be guaranteed in an out-of-

order processor following the conventional mechanism.

Figure 4.5. Trace-level reuse in the pipeline
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4.3.3. Dynamic Trace Collection

The processor dynamically decides which traces of the dynamic stream are candidates to be reused. We

propose three basic heuristics that can be considered to decide the start and end points of a trace. For

example, a suitable criterion could be to start a new trace when a reusable instruction is encountered

and to terminate the trace just before the first non-reusable instruction is found. Another may be to

consider fixed-length traces that can be dynamically expanded once they are reused. Figure 4.6 shows

examples of each dynamic trace collection heuristic. 

• Heuristic 1 (H1): A trace consists of a sequence of dynamic instructions that are reusable at

instruction-level. In this case, a different reuse memory for testing instruction-level reusability is

also needed. This memory has as many entries as the RTM (see Figure 4.6.a).

• Heuristic 2 (H2): As before except that traces can be dynamically expanded when two

consecutive traces are reused or instructions following a reused trace become reusable (see Figure

4.6.b).

• Heuristic 3 (H3[n]): A trace is formed by a fixed number of n instructions. When a trace is reused,

it is expanded with n new instructions (see Figure 4.6.c).
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Figure 4.6. Examples of dynamic trace collection heuristics
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Note that traces can have a variable number of instructions. In fact, the instructions that make up a

trace are not stored in the RTM. Obviously, there may be implementation parameters that limit the size

of a trace, e.g. the number of input and output values that can be stored in each RTM entry, but the

number of instructions in a trace is not by itself a limitation.

4.3.4. Trace-Level Reusability with Finite Tables

The aim of this section is to measure the percentage of reusability and the average trace size that a

trace-level reuse mechanism can provide when a finite reuse memory and a particular heuristic for trace

collection are considered. 

4.3.4.1. Experimental Framework

We have developed a functional parameterized simulator to evaluate trace-level reusability. To do so,

we considered the same subset of the Spec95 benchmarks and compiler options as those in Section

4.2.1. The compiled programs were instrumented with the Atom tool [117] and their dynamic trace

were processed in order to obtain statistics of reusability and trace sizes (see Section 1.4 for further

details of tools and benchmarks).

We have evaluated several capacities for the Reuse Trace Memory (RTM):

• 512 entries: A 4-way set-associative memory (5-bit index) with 4 entries per initial PC. This

means that up to 4 different traces starting at the same PC can be stored.

• 4K entries: A 4-way set-associative memory (7-bit index) with 8 entries per initial PC.

• 32K entries: An 8-way set-associative memory (8-bit index) with 16 entries per initial PC.

• 256K entries: An 8-way set-associative memory (11-bit index) with 16 entries per initial PC. 

The reuse test is based on an associative search of traces that start at the same PC. In all cases, the

memory is indexed by the least-significant bits of the PC register. Replacement policy is LRU, i.e. the

oldest trace with the same PC that has been reused is the one that is replaced when a new trace is

collected. For each trace, the number of inputs and outputs is limited to 8 registers and 4 memory

values. 

We also evaluated the three heuristics described in Section 4.3.3 for dynamic trace collection: H1,

which builds traces with a sequence of dynamic instructions that are reusable at instruction-level; H2,
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which builds traces like H1 but these traces may be dynamically expanded; and H3[n], which builds

traces with a fixed number of n instructions. Also, dynamic trace expansion (in H2 and H3[n]) is

performed while the limits on the number of input and output locations are not exceeded. Note that, due

to the LRU policy, the expanded traces replace the older trace with the same PC.

Finally, the reuse test is performed for every fetch operation and, when a trace beginning at a given

PC contains the same values in its input locations as the current ones, the trace is reusable. 

4.3.4.2. Analysis of Results

Figure 4.7 shows the percentage of reusable instructions and Figure 4.8 shows the average trace size for

every evaluated heuristic.

Figure 4.7. Percentage of reusable instructions of TLR with finite tables.
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Figure 4.8. Average trace size of TLR with finite tables.
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We can see that dynamic trace expansion is important for increasing the granularity of reusable

traces while the total amount of reusability remains almost constant (see heuristics H1 and H2). Note

also that heuristic H3[n] outperforms ILR, i.e. the best method of collecting traces should consider all

kinds of instructions rather than just those that are reusable at instruction-level.

Also important is the relationship between the RTM size and the achieved reusability. For example,

a 4K-entry RTM can reuse 25% of the dynamic instructions with an average trace size of 6 instructions.

The percentage of reused instructions grows significantly as the RTM capacity increases. Finally, note

the trade-off between the percentage of reused instructions and trace size. Increasing the trace size

reduces the number of reused instructions. However, to achieve a given degree of reuse, the reuse

overhead decreases when the trace size increases.

4.4. Related Work

Since we initially published the concept of trace-level reuse [37],[38] much work has been done in this

area. Contemporary to our work, Huang and Lilja [49] proposed a scheme to reuse basic blocks. Basic

block reuse is a particular case of trace-level reuse in which traces are limited to basic blocks. Note that

trace-level reuse is more general and can exploit reuse in larger sequences of instructions, such as

subroutines, loops, etc. Huang and Lilja also proposed a modification of their initial mechanism of

basic block reuse called sub-block reuse [50]. The idea is to slice basic blocks into sub-blocks to

balance the reuse granularity and the number of reuse opportunities. They also investigated compiler

assistance [48] to carefully slice basic blocks that produce more value reuse opportunities while

maintaining a reasonable granularity.

Sodani and Sohi proposed the reuse buffer [110], which is a hardware implementation of data value

reuse at instruction level (or dynamic instruction reuse, as it is called in that study). The reuse buffer is

indexed by the instruction address. They proposed three different reuse schemes. In the first scheme, for

each instruction in the reuse buffer, it holds the source operand values and the result of the last

execution of this instruction. In the second scheme, instead of the source operand values, the buffer

holds the source operand names (architectural register identifiers). In the third scheme, in addition to

the information of the second scheme, the buffer stores the identifiers of the producer instructions of the

source operands. In this scheme, dependent instructions that are fetched simultaneously can be reused

by chaining their individual reuses. However, the reuse of each individual instruction is still a

sequential process since it must wait until the reuse of all previous instructions has been checked.
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Connors and Hwu [29] introduced a novel approach that integrates architecture and compiler

techniques to exploit value locality for large regions of code. The idea is to rely completely on the

compiler to identify reusable regions. The compiler therefore performs analysis based on value

profiling to identify code regions whose computations can be reused during dynamic execution. Later,

they proposed a new hardware model that reduces the need for value profiling at compilation time [30].

With this model, the compiler is allowed to designate reusable regions that may prove to be

inappropriate.

Costa et al [31] designed another hardware-based reuse technique that uses memoization tables to

skip the execution of sequences of redundant instructions. The main differences between this and other

reuse schemes are the management of individual redundant instructions and the exclusion of memory

access instructions from the validity domain.

Sastry et al [98] investigated the properties of reuse in the context of a dynamic optimization

setting by characterizing the available computation reuse in programs at coarse granularities and

determining the relative applicability of specialization and memoization.

Sazeides [104] introduced the concept of Instruction Isomorphism. An instruction instance is said

to be isomorphic if its component, which is the information derived from the instruction and its

backward dynamic data dependence graph, is identical to the component of an instruction executed

earlier. By definition, an isomorphic instruction will produce exactly the same output with the earlier

instruction.

Value reuse and value prediction have also been combined at trace level. Wu et al [129] resembled

the compiler-directed computation reuse scheme of Connors and Hwu [29]. These authors proposed a

speculative multithreading architecture that consisted of two execution cores with dedicated

functionality to support integrated region-level computation reuse and value prediction. Pilla et al

[87],[88] added value prediction and memory reuse to extend the work of Costa et al [31]. Basically,

these authors increased the number of traces that can be reused by predicting the values of trace inputs

that are not available when reuse is applied.
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4.5. Conclusions

In this chapter we have introduced the concept of trace-level reuse, demonstrated its great potential, and

identified design issues for integrating this technique into a superscalar processor. The underlying

concept of trace-level reuse is similar to that of instruction-level reuse. Both are data value reuse

techniques but trace-level reuse handles dynamic sequences of instructions rather than single

instructions. It is therefore based on the observation that several computations of the programs tend to

be repetitive, but we only consider repetitive computations at local level as a source of trace-level reuse.

We found several differences between this technique and instruction-level reuse. Instruction-level

reuse can exploit a higher degree of reuse than trace-level reuse and may provide very large speedups

for an ideal machine. However, instruction-level reuse also has more overheads because it requires

more reuse operations. When reuse latency is considered, trace-level reuse is much less degraded and

may even outperform instruction-level reuse. We have shown that trace-level reuse has many positive

effects: a) it reduces the fetch bandwidth requirement by avoiding fetching instructions of reused traces;

b) it increases the effective instruction window size by avoiding storing instructions of reused traces in

the instruction window; c) it has fewer overheads because it requires fewer operations per reused

instruction.

Simulation results show that when the reuse latency is 1 cycle, the instruction window has 256

entries and history tables are unbounded, trace-level reuse provides an average speed-up of 3.6 and

ranges from 1.7 to 19.4 for individual programs. Results are similar when reuse latency is considered to

be proportional to the number of inputs and outputs of a trace. These results were obtained by

performing a detailed analysis of the performance potential of trace level reuse.

Finally, we have identified several design issues for integrating a trace-level reuse scheme into a

superscalar processor. We addressed essential issues such as memory for storing previous traces,

approaches for deciding which traces are useful, a mechanism for identifying reusable traces and how

to update the processor state. We have also evaluated the impact of a limited-capacity history table with

different trace collection heuristics in a trace-level reuse scheme. For example, for a 4K-entry Reuse

Trace Memory we found that percentage reusability is around 25% of all dynamic instructions and that

the average trace size is around 6 instructions. For a 256K-entry Reuse Trace Memory, around 50% of

instructions can be reused.



“Prediction is very difficult, especially about the future”
Niels Bohr, Danish Physicist, 1885-1962.

Chapter 5
TRACE-LEVEL SPECULATION

Trace-level speculation is a data value speculation technique that avoids the execution of a dynamic

sequence of instructions by predicting the values produced by those instructions. This technique

exploits the high percentage of repetition in the computations of conventional programs to increase the

instruction-level parallelism.

In this chapter we propose a novel microarchitecture to exploit trace-level speculation that has a

low misspeculation penalty and can speculate on any dynamic trace of instructions. We also propose a

trace selection method based on a static analysis that uses profiling data to determine large regions of

code whose live-output values can be successfully predicted.
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5.1. Introduction

Data dependences are one of the most important hurdles that limit the performance of current

microprocessors. Two techniques have so far been proposed to avoid the serialization caused by data

dependences: data value speculation [70] and data value reuse [110]. Both techniques exploit the high

percentage of repetition in the computations of conventional programs. Speculation predicts a given

value as a function of past history. Value reuse is possible when a given computation has already been

made exactly. Both techniques can be considered at two levels: the instruction level and the trace level.

The difference is the unit of speculation or reuse: an instruction or a dynamic sequence of instructions.

Reusing instructions at trace level means that the execution of a large number of instructions can be

skipped in a row. More importantly, as these instructions do not need to be fetched, they do not

consume fetch bandwidth. Unfortunately, trace reuse introduces a live-input test that it is not easy to

handle. Especially complex is the validation of memory values. Speculation may overcome this

limitation but it introduces a new problem: penalties due to a misspeculation.

Trace-level speculation avoids the execution of a dynamic sequence of instructions by predicting

the set of live-output values based, for instance, on recent history. There are two important issues with

regard to trace-level speculation. The first of these involves the microarchitecture support for trace

speculation and how the microarchitecture manages trace speculation. The second involves trace

selection and data value speculation techniques. 

Several thread-level speculation techniques [9], [28], [93], [94], [97], [140] have recently been

explored to exploit parallelism in general-purpose programs. We lay on the same trend and propose a

microarchitecture called Trace-Level Speculative Multithreaded Architecture (TSMA), which is

tolerant to misspeculations in the sense that it does not introduce significant trace misprediction

penalties and does not impose any constraint on the approach to building or predicting traces.

Traces are identified by an initial point and a final point in the dynamic instruction stream, and data

speculation refers to the prediction of a trace’s live-output values. Traces can be built according to

various heuristics such as basic blocks and loop bodies, etc [29], [38], [49]. Once a trace is built, live-

output values can be predicted in several ways, including using conventional value predictors such as

last value, stride, context-based and hybrid schemes [74], [105]. We also focus on developing effective

trace selection schemes for TSMA processors. In this way, we propose a trace selection method based

on a static analysis that uses profiling data.
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In this chapter we analyse trace-level speculation, discusses its implementation and analyse its

performance impact. Section 5.2 reviews some approaches to exploit trace-level speculation. Section

5.3 describes in detail the microarchitecture proposed to exploit trace-level speculation. Section 5.4

presents extensions to TSMA that minimize misspeculation penalties and develop trace selection

schemes. Section 5.5 reviews related work and, finally, Section 5.6 summarizes our main conclusions.

5.2. Approaches to Trace-Level Speculation

Trace-level speculation is a dynamic technique (although the compiler may help) that requires a live-

input or live-output test. In this section, we describe both approaches.

5.2.1.Trace-Level Speculation with Live-Input Test

This approach (see Figure 5.1) is supported by means of a multithreaded architecture. The underlying

concept is to have a couple of threads working cooperatively. One thread is in charge of trace

speculation while the other is in charge of live-input validation. When the main thread speculates a

trace, another thread is spawned. The main thread skips the trace and performs the live-output update. It

then begins to execute instructions speculatively. Meanwhile, the spawned thread validates live-input

values. If validation succeeds, the spawned thread dies. If validation does not succeed, recovery actions

are required and the main thread returns to the point where the trace was speculated. 

We can also consider another version of this approach that reduces misspeculation penalty. With

this approach, the spawned thread executes the skipped code in parallel with live-input validation.

Then, if validation fails, the main thread dies and the spawned thread becomes the main thread.

Figure 5.1. Trace-level speculation with live-input test 
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5.2.2. Trace-Level Speculation with Live-Output Test

This approach was introduced by Rotenberg et al [90], [93], [94], [119] as the underlying concept

behind Slipstream Processors. This approach is supported by means of a couple of threads (a

speculative thread and a non-speculative one) working cooperatively to execute a sequential code. 

Let us consider the program of Figure 5.2.a that is composed by three pieces of sequential code or

traces. Figure 5.2.b shows the execution of the program from the point of view of code and Figure 5.2.c

shows the execution of the program from the point of view of time. 

The speculative thread executes instructions and speculates on the result of whole traces. The non-

speculative thread verifies instructions that are executed by the speculative thread and executes

speculated traces. Each thread maintains its own state but only the state of the non-speculative thread is

Figure 5.2. Trace-level speculation with live-output test
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guaranteed to be correct. Communication between threads is done by means of a buffer that contains

the executed instructions by the speculative thread. Once the non-speculative thread executes the

speculated trace, instruction validation begins. This is done by verifying that source operands match the

non-speculative state and updating the state with the new result. If validation does not succeed,

recovery actions are required. 

Note that speculated traces are validated by verifying their live-output values. Live-output values

are those that are produced and not overwritten within the trace. The advantage with this approach is

that only live-output values that are used are verified. Moreover, verification is fast because instructions

consumed from the buffer have their operands ready (see trace3 execution and validation in Figure

5.2.c). Finally, speed-up is obtained when both threads execute instructions at the same time and then,

validation does not produce a misspeculation which implies to set some recovery actions (see trace2

and trace3 execution in Figure 5.2.c).

The microarchitecture presented in this chapter focuses on this approach: trace-level speculation

with live-output test.

5.3. Trace-Level Speculative Multithreaded Architecture

This section outlines the main characteristics of Trace-Level Speculative Multithreaded

Microarchitecture (TSMA). We first present an overview and, in the following subsections, describe in

more detail the main components of the proposed microarchitecture. In the last subsection we present a

working example.

5.3.1. Overview

The underlying concept of our proposal is based on a couple of threads that work cooperatively to

perform trace-level speculation with live-output test. Figure 5.3 shows the proposed microarchitecture

based on the approach described in Figure 5.2.

A TSMA processor can simultaneously execute a couple of threads (a speculative one and a non-

speculative one) that cooperate to execute a sequential code. The speculative thread is in charge of trace

speculation. The non-speculative thread is in charge of validating the speculation. This validation is

performed in two stages: (1) executing the speculated trace and (2) validating instructions executed by

the speculative thread. Speculated traces are validated by verifying their live-output values. Live-output
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values are those that are produced and not overwritten within the trace. In the rest of the paper we will

use the terms ST and NST to refer to the speculative thread and the non-speculative thread,

respectively. Note that ST runs ahead of NST.

Both threads maintain their own architectural state by means of their associated architectural

register file and a memory hierarchy with some special features. NST provides the correct and non-

speculative architectural state, while ST works on a speculative architectural state. Note that each

thread maintains its own state but that only the state of NST is guaranteed to be correct. 

Additional hardware is required for each thread. ST stores its committed instructions to a special

FIFO queue called Look-Ahead Buffer. NST executes the skipped instructions and verifies instructions

in the look-ahead buffer executed by ST. Note that verifying instructions is faster than executing them

because instructions always have their operands ready. In this way, NST catches ST up quickly. 

ST speculates on traces with the support of a Trace Speculation Engine (TSE). This engine is

responsible for building traces and predicting their live-output values. NST, on the other hand, uses

special hardware called a Verification Engine. The NST executes the skipped instructions and verifies

instructions in the look-ahead buffer executed by ST. This is done by verifying that source operands

match the non-speculative state and by updating the state with the new result in case they match. If

there is a mismatch between the speculative source operands and the non-speculative ones, a trace

Figure 5.3. Trace-level speculative multithreaded microarchitecture.
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misspeculation is detected and a thread synchronization is fired. Basically, this recovery action involves

flushing the ST pipeline and reverting to a safe point in the program. An advantage with this approach

is that any live-output values used are the only ones that are verified. Note also that the verification of

instructions is faster than their execution because instructions always have their operands ready. A

critical feature of this microarchitecture is that this recovery is implemented with minor performance

penalties. 

The hardware of TSMA (see Figure 5.3) can be divided into three categories:

• Local: each thread maintains a logical register file, an instruction window, a load store queue and

a reorder buffer. All this hardware is replicated for both threads (light grey in Figure 5.3).

• Shared: non-replicated hardware is shared by both threads. These resources are the instruction

cache, the fetch engine, the branch predictor, the decode and rename logic, functional units, a

modified data value cache and logical control (grey in Figure 5.3).

• Additional: hardware requirements to support trace-level speculation. These resources are the

look-ahead buffer, the verification engine and the trace speculation engine (dark grey in Figure

5.3).

The main parts of the Trace-Level Speculative Multithreaded Microarchitecture are described

below in greater detail. 

5.3.2. Trace Speculation Engine

The trace speculation engine (TSE) is responsible for two issues: (1) implementing a trace-level

predictor and (2) communicating a trace speculation opportunity to the fetch engine. In this work we

assume that the trace predictor maintains a simple PC-indexed table with N entries. Each entry contains

live-output values and the final program counter of the trace. TSE receives from NST and the

verification engine the information required to build traces and determine live-output values. This

information comes from correctly executed instructions at commit time.

To determine trace speculation opportunities, TSE scans the current program counter of ST. This

value is provided by the fetch engine. If TSE determines that the current PC is the beginning of a

potentially predictable trace, it provides some trace information for the fetch engine. This information

consists of a special INI_TRACE instruction and some MOV instructions. The INI_TRACE instruction
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contains the final program counter of the trace and the number of times that this PC is repeated inside

the trace (this allows the TSE to construct traces that consists of multiple loop iterations). Additional

MOV instructions inserted into the ST pipeline update live-output values of a trace. ST then continues

with normal instruction fetch from the final point of the speculated trace. In the next cycle, NST wakes-

up and begins to fetch and execute instructions of the speculated trace.

To ensure the correctness of the architectural state, ST may only speculate a new trace when the

look-ahead buffer is empty. This means that TSMA has only a single unverified trace speculation at any

given time. 

5.3.3. Look-Ahead Buffer

The aim of this structure is to store instructions executed by ST. NST will later validate these

instructions. The look-ahead buffer is just a first-input first-output queue, so a huge look-ahead buffer

can be managed easily. ST introduces instructions at commit time whereas the verification engine takes

these instructions and test their correctness. The fields of each entry of the look-ahead buffer are:

• Program counter 

• Operation type: indicates memory operation 

• Source register ID 1 & Source value 1

• Source register ID 2 & Source value 2

• Destination register ID & Destination value 

• Memory address

5.3.4. Verification Engine 

The verification engine (VE) is responsible for validating speculated instructions and, together with

NST, maintains the speculative architectural state. Instructions to be validated are stored in the look-

ahead buffer. Verification involves testing source values of the instruction with the non-speculative

architectural state. If they match, the destination value of the instruction can be updated in the non-

speculative architectural state (register file or memory). Memory operations require special

considerations. First, the effective address is verified and, after this validation, store instructions update

memory with the destination value. On the other hand, loads check whether the value of the destination
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register matches the non-speculative memory state. If it does, the destination value is committed to the

register file. 

This engine is independent of both threads but works cooperatively with NST to maintain the

correct architectural state. Figure 5.4 shows a simple implementation of the verification engine. Note

that the hardware required to perform the verification is minimal.

5.3.5. Thread Synchronization

Thread synchronization is required when a trace misspeculation is detected by the verification engine.

Basically, this involves flushing the ST pipeline and returning to a safe point in the program. The

recovery actions involved by a synchronization are simple: 

• Instruction execution is stopped.

• ST structures are emptied (instruction window, load store queue, reorder buffer and look-ahead

buffer).

• Speculative data cache and logical register file associated with ST are invalidated. 

Figure 5.4. Verification engine block diagram.
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NST executes traces speculated by ST and the verification engine validates ST executed

instructions once ST puts them in the look-ahead buffer. NST maintains execution beyond the final

point of the speculated trace but commitment of these instructions is disabled in order to significantly

reduce the penalties caused by synchronization. In this way, two types of synchronizations (total and

partial) may occur.

Total synchronization occurs when a misspeculation is detected by the verification engine and NST

is not executing instructions after the end of the trace. This implies squashing ST and paying the

penalty of starting to fill its pipeline from the point it detected the misspeculation. On the other hand,

partial synchronization occurs when a misspeculation is detected and NST is already executing

instructions. In this way, the ST pipeline does not need to be refilled. NST takes the role of ST, enabling

the commitment of the already executed instructions after the end of the speculated trace. Meanwhile

recovery actions are taken to initialize ST with a correct architectural state at the failure point. After this

synchronization, the roles of the threads are interchanged.

This partial synchronization avoids the pipeline refill penalty at the expense of the constraint that

while NST is executing instructions beyond the end of a speculated trace, ST cannot speculate on a new

trace. This number of additional executed instructions should therefore be quite small. On the other

hand, it is important to minimize the number of total synchronizations without losing speculation

opportunities. Empirically we have observed that trace misspeculations are detected relatively early.

The processor dynamically determines the number of instructions to be executed after a speculated

trace from on the number of verified instructions before a misspeculation is detected. 

5.3.6. Memory Subsystem

We propose a new first level data cache architecture (see Figure 5.5). This cache architecture is

responsible for maintaining the speculative memory state of ST. The first level of the memory hierarchy

comprises two modules: the level 1 speculative data cache (L1SDC) and the level 1 non-speculative

data cache (L1NSDC).The second level only contains non-speculative data and will be referred to as

level 2 non-speculative data cache (L2NSDC). 
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This new organization is guided by the following rules:

1. ST store instructions update values in L1SDC only. 

2. ST load instructions get values from L1SDC. If a value is not in L1SDC, it is obtained from

L1NSDC or L2NSDC in a traditional way. Access to L1SDC and L1NSDC is done in parallel.

No line from L1SDC is copied back to L2NSDC.

3. NST store instructions (executed by NST or verified by the verification engine), update values

and allocate space in the non-speculative caches only. 

4. NST load instructions (executed by NST or verified by the verification engine), obtain values

and allocate space in the non-speculative caches only.

5.  A line replaced in L1NSDC is copied back to L2NSDC.

 Note that rules 3 to 5 correspond to the normal management of traditional caches, while rules 1 and

2 describe the behaviour of the new speculative cache. Simulations show that a very small L1SDC may

be enough to provide good performance. 

The following figures present different scenarios depending on the order of the actions involved in

the speculation, execution and verification of a trace. Note that this example considers a correct trace

speculation. Figure 5.6 shows ST performing a trace speculation that includes a store instruction (1).

After speculation, ST executes a load that refers to the memory location of the speculated store (2). On

the other hand NST executes the speculated store (3) and later the load instruction is verified (4). Note

that this example considers a correct trace speculation. On the other hand, Figure 5.7 shows the

behaviour of the memory system for an incorrectly speculated trace.

Figure 5.5. Memory subsystem.
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5.3.7. Register File

The proposed microarchitecture assumes a register renaming mechanism in which speculative register

values are kept in the reorder buffer. Figure 5.8 illustrates the register map table, which for each entry

contains the following fields:

• Committed Value: this contains the last committed value of the register.

• ROB Tag: this points to the ROB entry that has (or will have) the latest value of the register.

• Counter: this determines the number of instructions in ST that are using this register after a trace

speculation.

Note that the difference between this and traditional structures is the new counter field. This field is

used to provide NST with the ability to begin the execution of speculated traces as soon as possible. In

Figure 5.6. Example: correct trace speculation.
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Figure 5.7. Example: incorrect trace speculation.
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particular, once ST speculates a trace, NST immediately begins the execution of that trace. Notice also

that there may be instructions from ST before the speculation point that still have not been executed.

These instructions may produce values to be consumed by NST instructions. In this way, these

dependent NST instructions have to wait for ST completion and for this reason, NST needs to know

whether its instructions have source operands that are still not ready because ST has not finished their

execution.

The counter field is maintained as follows: 

1. When a ST instruction enters the instruction window, the counter associated to its destination

register is increased.

2. When an instruction is committed to the look-ahead buffer by ST, the destination register counter

is decreased.

3. After a trace speculation, the counter is no longer increased. It is just decreased until it reaches

zero. If an instruction decoded by the NST encounters a source operand with a counter field

equal to zero, this indicates that the instruction is younger than the speculation point. 

ST passes a copy of the counters to NST when the special INI_TRACE instruction that determines

trace speculation is renamed. The other fields of the register map table, i.e. the committed values and

ROB tags do not need to be communicated. The verification engine then decreases the counters as it

validates instructions. This is done until a special mark in the look-ahead buffer that determines the

start of a trace speculation is reached. In this way, a counter greater than zero indicates that the register

value is not ready because it has not been verified by the verification engine. This does not prevent NST

Figure 5.8. Register map table block diagram.
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from executing instructions that do not depend on this value. On the other hand, to guarantee

correctness of memory state, memory instructions are stalled until the verification engine reaches the

starting point of the trace speculation.

Note that there may be speculated traces in a path that is incorrectly speculated by a branch. In this

case, NST begins execution but when ST determines an incorrect path and recovers, it stops and

empties its thread private structures.

5.3.8. Working Example

To understand the behaviour of the microarchitecture, we present a detailed working example. Figure

5.9 shows the key steps of a trace speculation. Below is a detailed explanation of each step. 

1. ST begins the execution of the program and commits the instructions to the look-ahead buffer. 

2. The trace speculation engine identifies a trace speculation opportunity, notifies the fetch engine

and provides ST with the information required through a special INI_TRACE instruction. At this

point, the program counter is modified and additional instructions to update live-output values

are provided. When the INI_TRACE instruction is renamed, NST receives a copy of the ST

mapping table. Now ST maintains a speculative architectural state using its mapping table and

the memory hierarchy in a speculative way.

Figure 5.9. TSMA behaviour: a working example.

ST

NST

VE

1 2

3

4

5 6

7

8

9

instruction execution not executed live-output validation

Live-Output Update
 & 

Trace Speculation

Live-Output Update
 & 

Trace Speculation



Trace-Level Speculation 121

Microarchitectural Techniques to Exploit Repetitive Computations and Values 121 

3. NST begins to execute the ST skipped instructions immediately. This prompt execution is done

through the support of the special mapping table, as described above.

4. VE consumes instructions from the look-ahead buffer and updates the architectural register file

shared with NST. It decreases the register map counters and stores the committed value in the

mapping table. This is done until an INI_TRACE instruction is reached and guarantees that NST

does not execute instructions with values that are still not produced by ST.

5. NST executes instructions normally. It commits instructions and maintains the correct state. 

6. NST detects the final point of the speculated trace. The verification engine begins to validate

instructions and update the architectural state. NST continues executing instructions but commit

is disabled. Memory instructions are stalled.

7. The verification engine validates ST executed instructions after the trace speculation. The

verification engine guarantees the correct state and verifies N instructions from the look-ahead

buffer. This number is set dynamically to be slightly larger than the average number of verified

instructions that precede a misspeculation detection. 

• If verification fails, recovery actions are taken. If NST is still executing instructions, it takes

the role of ST. This is known as partial synchronization. At this point, the state is safe so the

verification engine becomes idle.

• If there is no misspeculation among the N verified instructions, the NST structures are

flushed and it becomes idle. The verification engine continues verifying instructions and

maintaining the correct architectural state. If the verification engine finds a misspeculation

when NST is idle, a total synchronization occurs. ST is squashed and refilled starting from

the incorrect instruction.

8. ST may speculate on a new trace when the look-ahead buffer is empty. This ensures the

correctness of the architectural state. In this way, NST is guaranteed to receive a correct copy of

the mapping table. 

9. NST executes the trace as described in point 2.
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5.3.9. Performance Evaluation

In this section we evaluate the performance potential of the Trace-Level Speculative Multithreaded

Architecture.

5.3.9.1. Experimental Framework

The simulation environment is built on top of the Simplescalar [15] Alpha toolkit. Simplescalar models

an out-of-order machine and has been modified to support trace-level speculative multithreading. Table

1.2 shows the parameters of the baseline microarchitecture. The Trace-Level Speculative Multithreaded

Architecture does not modify sizes of baseline structures: it just replicates for each thread unit the

instruction window, reorder buffer and logical register mapping table. It also adds some new structures,

as shown in Table 5.1.

The following Spec95 benchmarks were considered: compress, gcc, go, li, ijpeg, m88ksim, perl and

vortex from the integer suite; and applu, mgrid and turb3d from the FP suite. The programs were

compiled with the DEC C and F77 compilers with -non_shared -O5 optimization flags (i.e, maximum

optimization level). Each program was run with the test input set and statistics were collected for 125

million instructions after skipping an initial part of 250 million instructions (see Section 1.4 for further

details of tools and benchmarks).

5.3.9.2. Analysis of Results

One of the main objectives of this section is to show that trace misspeculations cause minor penalties in

the microarchitecture. We propose a simple mechanism for building traces and determining live

outputs. Traces are built following a simple rule: a trace starts at a backward branch and terminates at

the next backward branch. Traces are also terminated at calls and returns, and have a minimum and

maximum size (8 and 64 instructions respectively). On the other hand, live-output values are predicted

by means of a hybrid scheme composed of a stride predictor and a context-based predictor. This

Speculative data cache 1 KB, direct-mapped, 8-byte block

Verification engine Up to 8 instructions verified per cycle. Memory instructions block verification if fail in L1.

Number of additional instructions verified after average number to find an error is 16

Trace speculation engine 128 history table, 4-way set associative,.

Look-ahead buffer 128 entries

Table 5.1. Parameters of TSMA additional structures
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mechanism maintains, in each entry of the history table and in an ordered way, the last 9 dynamic

instances of a trace. At prediction time, if the last instance of the trace appears among the previous 8

instances, the next trace is predicted. Otherwise, stride prediction is performed.

Figure 5.10 shows the percentage of misspeculations of the above mechanism. As we can see in

Table 5.1, the capacity of prediction tables is relatively small. Note that this mechanism produces a

huge percentage of misspeculations (close to 70% on average). 

Figure 5.11 shows the percentage of speculated instructions. On average this is close to 40%, so

speculation is relatively frequent. Note that the ideal scenario is when the percentage of speculated

Figure 5.10. Percentage of misspeculations.
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Figure 5.11. Percentage of predicted instructions.
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instructions is around 50% because the microarchitecture has two threads and only allows a single

unverified trace speculation at any given time (ST may only speculate a new trace when the look-ahead

buffer is empty).

Figure 5.12 shows the speed-up obtained over the baseline model. Note that no slow-down is

presented in any of the analysed benchmarks though the percentage of misspeculations is huge. In fact,

significant speed-ups are obtained for most of them. Our results show that, despite speculating a small

percentage of instructions correctly and misspeculating on average close to 70% of the traces, the

average speed-up is 16%. These results demonstrate the tolerance to misspeculations of the proposed

microarchitecture. Moreover, it encourages further work to develop more accurate trace prediction

mechanisms. Some previous studies [29], [38], [49], [93] have demonstrated a significant potential for

trace repeatability/predictability, which suggests that there may be effective schemes to significantly

increase the accuracy of trace predictors. 

Table 5.2 shows the results of other simulations. Statistics of speculated traces, average number of

verified instructions before a misspeculation is detected, percentage of the time the look-ahead buffer is

full and percentages of synchronizations are shown. Note that the number of total synchronizations is

much smaller than the number of partial synchronizations. This is the key to minimizing misspeculation

penalty. Our results also show that a look-ahead buffer with 128 entries almost never stalls ST. On the

other hand, the average number of verified instructions before a misspeculation is encountered is very

low. This number is dynamically computed by the processor and increased by a fixed amount (16 in our

Figure 5.12. Speed-up.
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case) to dynamically set the number of instructions validated by the verification engine. In this way, the

verification engine needs to verify 20 instructions to guarantee almost 96% of partial synchronizations.

Table 5.2 also shows that there are no significant differences with respect to the baseline model in terms

of the performance of the shared structures such as branch predictor and caches. Other results in the

table refer to the average trace size and the number of live-output values.

5.4. Extensions to TSMA

We have shown that there are two important issues in trace-level speculation. The first involves the

microarchitecture support for trace speculation, and the second involves trace selection and data value

speculation techniques. This section covers both issues. First, we propose an advanced thread

synchronization scheme based on the observation that there is a significant number of instructions

whose control and data are independent of the mispredicted instruction. Second, we propose a static

program profiling analysis for identifying candidate traces to be speculated.

5.4.1. Reducing Misspeculation Penalty in TSMA

TSMA uses special hardware called a Verification Engine that verifies instructions in the look-

ahead buffer previously executed by ST. If source values of the instructions in the look-ahead buffer do

not match the non-speculative architectural state, a thread synchronization is required in the original

TSMA architecture. Basically, recovery actions involve flushing the ST pipeline and reverting to a safe

point in the program. A critical aspect of the TSMA is to implement this recovery with the fewest

performance penalties. Unfortunately, every thread synchronization throws away execution results of

instructions that are independent of the mispredicted ones. This wastes useful computation and fetch

bandwidth.

Average size of speculated traces 30.31

Average number of live-output values 14.70

Average number of verified instructions after an error is encountered 4.26

Percentage of the time look-ahead buffer is full 0.01%

Percentage of total synchronizations 4.42%

Percentage of partial synchronizations 95.58%

Difference over the baseline mode of branch prediction hit rate 0.63%

Difference over the baseline mode of L1 data cache miss rate 0.21%

Difference over the baseline mode of instruction cache miss rate 0.44%

Table 5.2: Additional simulation results
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Note that a misspeculation in one instruction causes younger instructions to be discarded from the

look-ahead buffer, though some may be correctly executed. Consider, for instance, a speculative trace

in which just a single live-output value of the whole set is incorrectly predicted. Only the instructions

dependent on the mispredicted one will be incorrectly executed by ST. 

This section extends the previous TSMA microarchitecture with an advanced verification engine

that significantly improves performance. This advanced engine reduces the number of thread

synchronizations and the number of penalties due to misspeculations. The main idea is that it does not

throw away execution results of instructions that are independent of the mispredicted speculation,

which reduces the number of instructions fetched and executed again.

5.4.1.1. Thread Synchronization Analysis

We analyse the number of correctly executed instructions that are squashed from the look-ahead buffer

when a thread synchronization has been fired. See Section 5.4.3.1 for details of the experimental

framework.

Figure 5.13 shows the number of instructions that are squashed from the look-ahead buffer every

time a thread synchronization was fired. Note that the number of discarded instructions is significant

for all benchmarks. On average, up to 80 instructions were squashed from the look-ahead buffer in each

thread synchronization irrespective of whether they were correctly or incorrectly executed. 

189 175

Figure 5.13. Number of squashed instructions from the LAB in each thread synchronization. 
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Figure 5.14 shows that on average the percentage of squashed instructions from the look-ahead

buffer that were correctly executed by ST was over 20%. If we combine this with the previous results,

this means that on average 16 instructions that were correctly executed were discarded every time a

thread synchronization was performed. We therefore decided to reconsider thread synchronizations to

try and avoid this waste of activity and reduce the number of fetched and executed instructions.

5.4.1.2. Advanced Verification Engine

The conventional verification engine is in charge of validating speculated instructions. Together with

NST, it maintains the speculative architectural state. Instructions to be validated are stored in the look-

ahead buffer by ST. The verification involves comparing source values of the instruction with the non-

speculative architectural state. If they match, the destination value of the instruction can be updated in

the non-speculative architectural state (register file or memory). If they do not match, a thread

synchronization is performed. Memory operations require special considerations. First, the effective

address is verified. Then, store instructions update memory with the destination value. On the other

hand, load instructions check whether the value of the destination register matches the non-speculative

memory state. If it does, the destination value is committed to the register file. Note that this validation

is fast and simple. Memory instructions stall verification if there is a data cache miss.

In this section, we modify the verification engine to improve the performance potential of the

architecture. The underlying concept is based on the idea that a misspeculation in one instruction does

Figure 5.14. Percentage of  squashed instructions from the LAB that were correctly executed. 
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not necessarily cause valid work from sequential younger computations to be aborted. Thread

synchronization can therefore be delayed or even avoided. Below we describe how this advanced

verification engine behaves depending on the type of instruction that is validated: 

• Branch instructions: These operations do not have an explicit destination value. Implicitly, they

modify the program counter according to the branch direction that is taken or not taken. The idea

is to validate the branch target instead of the source values. So, if source values are incorrectly

predicted but the direction of the branch is correct, a thread synchronization is not fired. 

• Load instructions: First, the effective address is verified. If validation fails, the correct effective

address is computed. Therefore, load instructions do not check whether the value of the

destination register matches the non-speculative memory state. Simply, the destination value

obtained from memory is committed to the register file. Note that an additional functional unit is

required in order to compute the effective address. 

• Store instructions: As with load instructions, the effective address is first verified. If validation

fails, store instructions update memory with the destination value obtained from the non-

speculative architectural state instead of with the value obtained from the instruction. Note that

only one functional unit is required to compute the effective address. 

• Arithmetic instructions: As with the conventional engine, the verification of arithmetic

operations involves comparing the source operands of the instruction with the non-speculative

architectural state. If they match, the destination value of the instruction can be committed to the

register file. If they do not, the verification engine re-executes the instruction with values from the

non-speculative state. In this case, verification is stalled and instructions after the re-executed one

cannot be validated until the next cycle. Moreover, to maintain a high validation rate, this re-

execution is only considered for single-cycle latency instructions. An additional functional unit is

required in order to re-execute the instruction.

Note that only branch instructions with a wrong target and non-single-latency instructions with

wrong source operands fire a synchronization.
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Figure 5.15 shows the breakdown of instructions in the look-ahead buffer that fail validation for the

original validation engine. From bottom to top the categories are: branch instructions, load instructions,

store instructions, instructions with single-cycle execution latency, and finally, other instructions. Note

that branches, memory operations and instructions with a single-cycle latency account for 90% of the

total incorrectly executed instructions. This means that there is a huge potential benefit for the

advanced verification engine. Also, simulation results show that on average just 1% of the instructions

inserted in the look-ahead buffer are incorrectly predicted. This suggests that the advanced verification

engine may not need to re-execute many instructions, so the validation rate will not be greatly affected.

Therefore, we assume that the number of functional units is not affected Finally, we also assume that

the maximum number of instructions validated per cycle is the same and that no more than one

instruction is re-executed per cycle.

5.4.2. Compiler Analysis to Support TSMA

Program profiling analysis is an effective technique for determining code regions whose live-output

values may be reused or speculated at run-time [29],[34],[48],[69],[82]. In the following subsections we

describe a profile-guided analysis for selecting the traces to be speculated by a TSMA processor.

5.4.2.1. Graph Construction

Trace selection is performed using an abstract data structure that is built from information obtained

from the control flow graph, the data dependence graph and the predictability of values. The abstract

Figure 5.15. Type of incorrect speculated instructions
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data structure is a graph in which each node provides useful information for a static instruction. This

information is obtained by running the test input set of the analysed benchmarks. The information

maintained in each node or static instruction is:

• The type of instruction and number of dynamic executions.

• The pointers to succeeding instructions in the dynamic execution stream with their corresponding

frequencies (a single pointer in the case of arithmetic or memory instructions and multiple

pointers in the case of conditional instructions and indirect jumps).

• The pointers to instructions that produce values that are consumed by the current instruction,

pointers to instructions that consume values that are produced by the current instruction and their

corresponding frequencies. 

• The predictability of live-output values for different value predictors (stride and context-based

predictors are considered).

• The percentage of times that the value produced by the current instruction is never used. Even

with aggressive compiler optimizations, there are opportunities for removing code that may only

be dead on a specific path [18]. 

5.4.2.2. Graph Analysis

Once the graph is built, several heuristics are applied to identify large regions of code that are suitable

for traces. Several issues can be considered in the process of trace selection. These are related to the

method for selecting the initial point of a trace, the final point and the predictability of live-output

values.

A trace is considered a good candidate for speculation if the predictability of the live-output values

achieves a certain threshold. Once live-output values are identified, their predictability has to be

checked. Two types of statistics are analysed: prediction accuracy and utilization degree, which refers

to the percentage of times that the value produced by an instruction is not consumed by any other

instruction. If a live-output value does not achieve a certain threshold in terms of value predictability

but is not frequently consumed, it is considered predictable. 

The initial and final points of a trace are the other important issues to be determined. Note that

misspeculations occur when live-output values are mispredicted or the actual control flow does not
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reach the trace termination point. The trace termination point selected must try to maximize the trace

length and minimize control flow misspeculations. Below we describe three basic heuristics for

building traces: procedure trace, loop trace and instruction chaining trace.

5.4.2.3. Procedure Trace Heuristic

Procedures are potential sources for trace speculation. They are relatively frequent in a program

execution and the computations that follow a subroutine return are fairly independent of the subroutine,

except for return values and some memory locations. This means that just a few values should be

predicted. Also, the control return point is normally reached despite the complexity of the control flow

inside the procedure, which means that it is quite easy to predict the end of the trace.

This heuristic tries to identify some procedures as traces. In this way, a call instruction is marked as

the initial point of a trace, and the return address is set as its final point. Figure 5.16.a shows an example

of procedure trace detection. Note that the whole subroutine is considered as a single trace regardless of

the control flow followed at each invocation. 

To determine the predictability of live-output values, a given number of instructions belonging to

all significant paths after the execution of the procedure are checked. A path is considered to be

significant if its frequency of execution is above a certain threshold. For each instruction in a significant
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path it is checked whether any of its operands are produced by any instruction of the procedure. If this

is the case, the predictability of the producer instructions is checked (through profiling) and if a certain

threshold is not achieved, the trace is discarded. It has been empirically observed that there is no need to

check too many instructions after the trace to identify good procedure traces. Moreover, binaries

assumed in this analysis (Alpha under Unix) help this validation because only a couple of registers are

used to return values other than memory locations.

5.4.2.4. Loop Trace Heuristic

Loops are a traditional source of parallelization and speculation. This heuristic considers the whole

execution of a loop as a trace. The aim of this heuristic is to detect loops whose live-outputs after their

whole execution are predictable (in fact, we are only concerned with outputs that are consumed

relatively early).

This heuristic sets the initial point of a trace as the target of a backward branch and the final point

of the trace is the fall-through instruction of the same backward branch. Figure 5.16.b shows an

example of a loop trace. Note again that the whole loop is considered as a single trace regardless of the

control flow followed at each invocation. As for subroutines, the predictability of the live-output values

is checked by analysing a given number of instructions belonging to the significant paths after the

execution of the loop. The trace is selected only if the predictability of the producer instructions is

above a certain threshold.

5.4.2.5. Instruction Chaining Trace Heuristic

The aim of this heuristic is to identify large sequences of dynamic instructions, besides procedures and

loops (and not necessarily contiguous in the static binary), with potential for speculation.

First, the initial point of a trace is selected. The taken and non-taken targets of all conditional

branches are considered as initial points of a trace. The trace is then extended by adding successive

instructions until a final point of the trace is reached. A trace reaches its final point when a new

instruction already belongs to the same trace, the trace reaches a maximum size, or the new instruction

is an indirect jump. 

A trace in this case corresponds to a single control-flow path. Therefore, every time a conditional

branch is found, a trace is split into two, one for each potential path. Figure 5.16.c shows an example of

various traces with the same initial point. Each trace is identified by its initial point, its final point and
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the behaviour of the conditional branches within the trace. To limit the number of different traces with

the same initial point, paths whose frequency of execution is below a given threshold are ignored.

Once a candidate trace has been identified, its live-output values are determined and its

predictability is checked. For each live-output value, the highest value between its prediction accuracy

and its utilization degree is chosen. The percentages of different live-outputs are then multiplied to

estimate the probability that the trace is correctly speculated (a value is correctly speculated if it is

correctly predicted or if it is not frequently used). If this probability is above a certain threshold, the

trace is considered predictable and the process finishes. Otherwise, the final instruction of the trace is

removed and the process starts again. This process is repeated until the trace achieves the defined

threshold or the size of the trace reaches a minimum. Note that this process tries to select the longest

predictable traces.

5.4.2.6. Hardware Modifications into the TSE

In this subsection we discuss the hardware modifications that are considered in the Trace Speculation

Engine (TSE) to support the trace selection method based on compiler analysis. 

We have shown how the off-line profile-guided analysis determines trace candidates to be

speculated. These selected traces are communicated to the hardware at program loading time by filling

the special hardware structure called trace table. We assume a simple 4-way set associative PC-indexed

table with 128 entries. We have empirically observed that this number of entries and this degree of

associativity leads to a good distribution of traces along the structure, and minimizes aliasing.

Now, each entry of the trace table contains the following information:

• PcIni: the initial program counter of the trace.

• PcFin: the final program counter of the trace. 

• BranchHist: some bits that encode the history of some preceding branches.

• LOValues: value prediction information of N live-output values. 

• FreqCount: a counter that determines the number of times that the trace has been found.

Live-output values are predicted by means of a hybrid scheme comprising a stride predictor and a

context-based predictor. Based on the data in the trace table, the TSE is responsible for detecting initial
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and final points of a trace, maintaining value prediction information to compute live-output values,

updating branch history and incrementing frequency counter. When the frequency counter of a trace

reaches the maximum value, all frequency counters of traces with that initial program counter are

initialized to zero. 

As explained in Section 5.3.2, the TSE also has to determine trace speculation opportunities by

scanning the current program counter of the speculative thread and checking it against the trace table.

In this way, if the current PC is the beginning of a potentially predictable trace, the trace is speculated

since the architecture is very tolerant to trace mispredictions. As we discussed in Section 5.4.2.5,

multiple traces with the same initial program counter may be stored in the trace table. In this case, the

trace predictor selects a trace from those with the same initial point based on the history of the

preceding branches. If the current branch history matches that of a stored trace, this trace is selected for

speculation. If no branch history matches the current one, the most frequent trace is selected from all

those with the same initial program counter by checking frequency counters.

Finally, the TSE behaves in the conventional way when it determines that the current PC is the

beginning of a potentially predictable trace. That is, it provides the final program counter for the fetch

engine and generates some MOV instructions in order to initialize the live-outputs with the predicted

values.

5.4.3. Performance Evaluation

In this section we discuss the experimental framework and analyse the performance of the advanced

verification engine and the compiler analysis. First, we evaluate compiler analysis assuming the

advanced verification engine in the TSMA. The advanced verification engine is then analysed by

assuming the trace selection method based on compiler analysis.

5.4.3.1. Experimental Framework

The TSMA simulator is built on top of the Simplescalar Alpha toolkit [15]. The following Spec2000

benchmarks were considered: crafty, eon, gcc, mcf, vortex, and vpr from the integer suite and ammp,

apsi, equake, mesa, mgrid, and sixtrack from the FP suite. The programs were compiled with the DEC

C and F77 compilers with -non_shared -O5 optimization flags (i.e. maximum optimization level).

See Section 1.4 for further details of tools and benchmarks.
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Table 1.2 shows the parameters of the baseline microarchitecture. The TSMA assumes the same

sizes as the baseline configuration and for each thread unit replicates the instruction window, reorder

buffer and logical register mapping table. It also adds some new structures (see Table 5.3). For the

simulation, each program was run with the ref input set and statistics were collected for 250 million

instructions after skipping initializations. 

Table 5.4 shows the main parameters used in the program analysis phases. These values have been

empirically checked to represent a good design point. First, it is important to minimize the number of

misspeculations without losing speculation opportunities. In this way, the percentage of speculated

traces is higher when the trace recognition heuristics are less conservative, but this also increases the

percentage of misspeculation. However, the percentage of speculated traces and, therefore, the

opportunities for speculation decrease when the trace recognition heuristics are more conservative.

Second, it is important to maximize the number of speculated instructions and minimize the number of

trace speculations. This means speculating traces as long as possible since every speculation introduces

a minor penalty. Unfortunately, speculation accuracy decreases when the traces are larger because a

huge number of live-output values have to be predicted. For the profiling data, each program was run

with the test input set and statistics were collected for 250 million instructions after skipping

initializations. 

Speculative data cache 1 KB, direct-mapped, 8-byte block

Verification engine Up to 8 instructions verified per cycle. Memory instructions stall verification for L1 misses.

The conventional engine verifies an average number of 16 instructions to find an error.

The advanced verification engine only re-executes a single instruction per cycle.

Trace speculation engine 128 history table, 4-way set associative. Hybrid predictor (stride + context)

Look-ahead buffer 512 entries

Table 5.3. Parameters of TSMA additional structures

Value predictors considered stride and context

Minimum size of trace 16

Maximum size of trace 1024

Maximum number of live-output values 32

Minimum combined percentage to consider a set of live-output values predictable 25%

Minimum frequency to consider a path as significative 10%

Minimum accumulative frequency to consider multiple paths 1%

Table 5.4: Profiling analysis parameters
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5.4.3.2. Analysis of Results of the Compiler Support

In this section, we analyse the performance of the compiler analysis by means of several figures that

show the percentage of speculated instructions, the distribution of speculated traces, the speed-up

obtained, the activity of both threads and the branch behaviour distribution.

Speculated instructions: Figure 5.17 shows the type of speculated instructions corresponding to

instruction chaining traces, call traces and loop traces. Note that almost 45% of the speculated

instructions are due to speculation of instruction chaining traces, 40% are due to speculation of call

traces and the remaining 15% correspond to speculation of loop traces. Although the numbers of

speculated call and loop traces are relatively small, they are significantly larger than instruction

chaining traces. Table 5.2 shows that loop traces have an average trace size of 215.8 instructions, while

instruction chaining traces have an average size of 36.4 instructions. Other statistics, such as the

average number of live-output values and average numbers of branches within a trace, are also shown

in Table 5.5

. 

Average size of speculated traces per type (Instruction Chaining, Calls and Loops) 36.4, 97.3, 215.8

Average size of speculated traces 65.7

Average number of live-output values 16.4

Average number of branches within a trace (Instruction Chaining Heuristic) 5.3

Average number of traces with the same initial point (Instruction Chaining Heuristic) 1.57

Table 5.5: Additional simulation results

Figure 5.17. Type of speculated instructions
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Note that the number of skipped instructions is larger when the traces are larger. However, this also

implies a larger number of live-output values and therefore increases the probability of a live-output

misprediction. The best performance depends on finding the best trade-off between the size of the

traces and the predictability of their live-output values.

Distribution of speculated traces: A trace misspeculation can be produced by incorrectly

predicting a live-output value or incorrectly predicting the final point of a trace. Also, the final point of

a trace may be correctly predicted but paths between the initial and the final point of a trace may be

incorrectly predicted. Note that this does not necessarily produce a misspeculation. For example, if-

then-else structures that do not generate different live-output values may produce different traces with

the same initial and final points. Figure 5.18 shows the distribution of speculated traces divided into

four categories: (1) correct trace speculation and correct path speculation, (2) correct trace speculation

despite incorrect path speculation, (3) incorrect trace speculation but correct path speculation, and

finally (4) incorrect trace speculation and incorrect path speculation. We observe a significant

percentage of correctly speculated traces (almost 70%). Note that the contribution of traces that do not

produce misspeculation, even though the paths between the initial and the final point of the trace were

not correctly predicted, is around 7%. On the other hand, the percentage of misspeculations is close to

30% (21% for correctly predicted paths and 9% for mispredicted paths or misprediction of the final

point of a trace). These results confirm that the proposed mechanism for predicting paths and final

points of traces provides a significant level of accuracy. 

Figure 5.18. Type of speculations
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Speed-up: Figure 5.19 shows the speed-up obtained by the TSMA processor over the baseline

superscalar configuration. Our results show that the average speed-up was almost 38% and very high

speed-ups were achieved for all benchmarks. Note that significant speed-up was obtained despite

misspeculating an average of 30% of the traces. These results also confirm that the proposed

microarchitecture is tolerant to misspeculations and encourage further work to develop more aggressive

trace prediction mechanisms.

Activity of both threads: Figure 5.20 and Figure 5.21 provide several statistics about the activity

of the speculative thread and the non-speculative thread, respectively. The dark-grey bar in Figure 5.20

represents the percentage of time that ST can speculate but does not find a trace to be speculated, while

Figure 5.19. Speed-up
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Figure 5.20. Type of cycles of the Speculative Thread (ST)
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the light-grey bar represents the percentage of time that ST cannot speculate traces because NST is

executing and verifying a speculated trace. Note that speculation may be performed only when NST

catches up to ST. On average, almost 25% of the time the trace speculation engine did not communicate

a trace speculation opportunity to the fetch engine because of this reason, which again confirms that

performance may be improved by further analysing the impact of the trace size. Note that the ideal

scenario is when the ST finds a point to speculate right after the NST has caught up to it. The dark-grey

bar in Figure 5.21 represents the percentage of time that the NST executes traces speculated by ST,

while the light-grey bar represents the percentage of time that the NST verifies instructions from the

Figure 5.21. Type of cycles of the Non Speculative Thread (NST)
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Figure 5.22. Useless cycles of the Speculative Thread (ST)
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look-ahead buffer. In general, more speculated instructions (see Figure 5.20) imply more time

executing instructions for the NST and, since verifying instructions is faster than executing them, this

follows a superlinear relation. Figure 5.22 shows the percentage of time that ST executes instructions

beyond a misspeculation point. On average ST wastes up to 20% of the time executing instructions that

will be discarded. Note that the ideal scenario would be when this percentage is negligible, which also

implies a minimal number of trace misspeculations. 

Branch behaviour distribution: Finally, we also observed that, despite the significant number of

branches within the trace, the instruction chaining heuristic does not provide many traces with the same

initial point (see Table 5.5). In this way, we studied branch behaviour and concluded that the majority

of branches almost always take the same direction. Figure 5.23 shows the accumulated distribution of

the branch behaviour for all the benchmarks used in this analysis. The X-axis represents the percentage

of times that a branch takes the most common direction (50% means that the branch takes the taken and

the not-taken paths the same number of times and 100% means that the branch always takes the same

path). The Y-axis represents the accumulated number of dynamic branches. Note that almost 80% of

the branches take the same direction more than 90% of the times. This result, combined with the

parameters used for the analysis phase (listed in Table 5.4), significantly limits the number of traces

with the same initial point.

Figure 5.23. Branch Behaviour Distribution
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5.4.3.3. Analysis of Results of the Advanced Verification Engine

The main aim of this section is to show that the number of thread synchronizations is lower when the

advanced verification engine is used. 

Figure 5.24 plots the percentage of thread synchronizations against the number of trace

speculations. Figure 5.25 shows the speed-up of TSMA over the baseline architecture. The first bar in

each figure represents TSMA with the conventional engine and the second bar represents TSMA with

the advanced verification engine.

Figure 5.24. Percentage of thread synchronization
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Figure 5.25. Speed-up
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Our results show that the average speed-up for TSMA was 27 with the conventional verification

engine. As expected, these speed-ups were significant for all the benchmarks despite a thread

synchronization rate close to 30%. 

On the other hand, the number of thread synchronizations was about 10% lower (from 30% to 20%)

with the advanced verification engine than with the conventional scheme. Note that this engine did not

always fire a thread synchronization to handle a miss trace speculation. It also provided a higher speed

up (close to 38%), which implies that the average performance improvement was 9%. Note that the

performance of most benchmarks improved significantly. Only benchmarks such as ammp, apsi or

mgrid, whose misspeculation with the traditional verification engine was negligible, hardly improved

since thread synchronizations were already low with the original verification engine. 

These results demonstrate the tolerance to misspeculations of the proposed microarchitecture and

encourage further work to develop more aggressive trace prediction mechanisms. Note that the

advanced verification engine opens up a new area of investigation i.e. aggressive trace predictor

mechanisms that do not need to accurately predict all live output values.

Figure 5.26 shows the reduction in executed instructions with the advanced verification engine. On

average, this reduction is almost 8%. Note that this also reduces memory pressure since these

instructions do not need to be fetched all together. Again, benchmarks whose percentage of

synchronization was negligible experienced a very small reduction in executed instructions. For the

other benchmarks, on the other hand, the number of executed instructions and the number of thread

synchronizations decreased, which led to significant speed-ups.

Figure 5.26. Reduction in executed instructions
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5.5. Related Work

Rotenberg [93], [94] lay the basis of Slipstream Processors by proposing to run two partially redundant

threads on either a symmetric multiprocessor or a simultaneous multithreading processor. His technique

dynamically avoided the execution of non-essential computations of a program by creating a shorter

version of the original program that removed ineffectual computations. One thread executes the shorter

program and runs ahead of the thread that executes the full program. Communication between threads

is done by means of a special structure called delay buffer. Recovery actions are done through the delay

buffer which may cause a significant penalty. Koppanali and Rotenberg [61] examined in depth the

slipstream component responsible for detecting past-ineffectual instructions. A detailed study of

slipstream processors was done by Purser et al [90]. These authors discussed the sources of slipstream

performance and its limitations. Slipstream processors were also studied by Sundaramoorthy et al [119]

to combine the improvement of single program performance and the recover from transient hardware

faults. Ibrahim et al [55] applied slipstream execution mode in a chip multiprocessor to enable the

construction of a program-based view of the future to attack coherence, communication and

synchronization overheads. Finally, Austin [5] proposed the DIVA checker architecture that manages

dynamic verification to reduce the burden of verification in complex microprocessor designs. The idea

was to manage two heterogeneous internal processors that execute the same program.

Several thread-level speculation techniques have been explored to exploit parallelism in general-

purpose programs. Speculative Multithreading [3], [74] is a well-known technique based on the

concurrent execution of speculative threads. Simultaneous Multithreading [122] allows independent

threads to issue instructions to multiple functional units in a single cycle. Multiple Path Execution [2],

[126] permits the speculative execution of multiple paths in parallel. Simultaneous Subordinate

Microthreading [20] was proposed in order to execute subordinate threads that perform optimizations

on a primary thread.

Other recent studies have also focused on the pre-execution of critical instructions by means of

speculative threads. Collins et al [28] explored Speculative Precomputation, which uses a

multithreaded architecture to improve the performance of single-threaded applications by pre-

computing future memory accesses in available thread contexts. Roth and Sohi [97] proposed

Speculative Data-Driven Multithreading as a general purpose mechanism to overcome the retirement

stalls of mispredicted branches and loads that miss in cache. Zilles and Sohi [140] presented a
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technique to construct pieces of code (called slices) that contain the subset of the program that relates to

critical instructions. They also proposed Master/Slave Speculative Parallelization [141] to improve the

execution rate of sequential programs by parallelizing them speculatively for execution on a

multiprocessor. Finally, a novel microarchitecture that dynamically allocates processor resources

between a primary and a future thread was proposed by Balasubramonian et al [9]. The future thread

executes instructions when the primary thread is limited by resource availability which therefore warms

up certain microarchitectural structures.

Several studies [29],[38],[49],[94] have shown that programs usually have a significant degree of

repeatability/predictability, which suggests that there may be effective schemes to significantly increase

the accuracy of trace predictors. Oplinger et al [85] identified the potential sources of speculative

parallelism in programs and concluded that a combination of loop and procedural speculation is a

promising parallelization scheme for speculative thread-level parallel machines.

Value profiling has also been studied as a mechanism to assist value prediction or value reuse

schemes. A value prediction scheme guided by value profiling is presented by Gabbay and Mendelson

[34]. Connors and Hwu [29] and Huang and Lilja [48] proposed compiler-directed approaches for

identifying code regions whose computation can be reused during dynamic execution. A code

specialization approach that uses value profiling was presented by Muth et al [82]. Lin et al [69]

proposed a compiler framework that includes analysis for speculative optimizations. These authors

used profiling information and simple heuristics to supplement traditional non-speculative compile-

time analysis.

Several techniques for reducing recovery penalties caused by speculative execution have been

proposed. Instruction reissue, or selective squashing, was first proposed by Lipasti [70]. The idea was

to retain instructions dependent on a predicted instruction in the issue queue until the prediction is

validated. If the prediction is wrong, all dependent instructions are issued again. This technique trades

the cost of squashing and re-fetching instructions for the cost of keeping instructions longer in the issue

queue. A similar scheme that focused on load instructions was presented by González and González

[39]. Tyson and Austin [123] thoroughly investigated the performance potential of the instruction

reissue mechanism. Later, Sato and Arita [100] proposed a practical and simple implementation of

instruction reissue based on a very slight modification of the register update unit.
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Squash reuse has also been proposed as a way to reduce branch misspeculation penalty. This

concept was first introduced by Sodani and Sohi [112]. These authors proposed a table-based technique

for avoiding the execution of an instruction that has previously been executed with the same inputs. As

well as squash reuse, they also covered general reuse. A different implementation based on a

centralized window environment was proposed by Chou et al [23]. These authors also introduced the

idea of dynamic control independence and showed how it can be detected and used in an out-of-order

superscalar processor to reduce the branch misprediction penalty. Finally, Roth and Sohi [69] proposed

register integration as a simple and efficient implementation of squash reuse.

5.6. Conclusions

In this chapter we have presented TSMA (Trace-Level Speculative Multithreaded Architecture). This

novel microarchitecture is designed to exploit trace-level speculation with special emphasis on

minimizing misspeculation penalties. Initial results based on a simple mechanism to build traces and

predict its live outputs show that the microarchitecture is very tolerant to trace misspeculations. In fact,

significant speed-up is presented in the majority of the analysed benchmarks in spite of the relatively

poor accuracy of the assumed trace predictor. On average, a speed-up of 16% is achieved with a trace

predictor that misses in 70% of the cases.

We have also proposed an advanced hardware technique to enhance TSMA processors. This

hardware improvement focuses on the verification engine. The idea is to avoid the re-execution of

instructions even when source values are incorrectly predicted. Instead of firing a thread

synchronization that wastes useful computations, the correct value is re-computed and used to update

the architectural state. The advanced engine reduces the number of thread synchronizations and the

penalty due to misspeculations. This avoids discarding instructions that are independent of a

mispredicted one, thus reducing the number of fetched and executed instructions and cutting energy

consumption and contention for execution resources.

We have shown that, as well as the microarchitecture support for trace-level speculation, trace

selection and data value speculation techniques are also an important design issue. In this way, we

propose a profile guided analysis for identifying highly predictable, large traces to be speculated by a

TSMA processor. We propose three basic heuristics to determine opportunities for speculation. This

analysis substitutes the dynamic process of detecting speculative traces and their corresponding live-
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output values, which considerably reduces hardware complexity. Our simulation results show that these

techniques achieve an average speed-up of almost 38%.

Future areas for investigation include generalising the architecture to multiple threads in order to

perform sub-trace speculation during the validation of a trace that has been speculated. The relatively

low penalty of misspeculations means that another area for future work is to investigate more

aggressive speculation schemes.



“I see my path, but I don't know where it leads. Not knowing where I'm going is
what inspires me to travel it”
Rosalia de Castro, Galician Writer, 1837-1885.

Chapter 6
CONCLUSIONS AND FUTURE WORK

This chapter summarizes the main conclusions of this work and outlines areas for future work.
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6.1. Conclusions

The instruction-level parallelism of current microprocessors designs is seriously limited by control,

data dependences and memory performance. This thesis has described several microarchitectural

techniques that boost the execution of instructions to alleviate the serialization caused by data

dependences and improve the memory system. All these techniques are based on exploiting the high

percentage of repetitive behaviour exhibited by real-world programs. The techniques proposed for

improving the memory system are based on exploiting the value repetition produced by store

instructions, while the techniques proposed for boosting the execution of instructions are based on

exploiting the computation repetition produced by all the instructions.

In Chapter 1, we first analysed repetition in programs and concluded that it was extremely high. On

average, more than 80% of a program’s computations have been done exactly in the past and over 90%

of the values have been produced by an earlier computation. We have also shown that just a few

computations and values are responsible for most of the repetitive behaviour of real-world programs.

In Chapter 2, we described a couple of microarchitectural techniques for exploiting repetition in

data caches. First, we identified Redundant Store Instructions as memory writes that, because the value

they write is equal to the existing value, do not change their contents. We analysed this value repetition

in the same location of the memory hierarchy and presented a simple mechanism for reducing the

memory traffic between levels of the memory hierarchy. In particular, we showed that we can achieve a

significant memory traffic reduction between data cache levels with minimal hardware support. In this

chapter we also showed the high degree of value repetition into several storage locations of

conventional data caches at any given time. Based on this observation, we presented a novel data cache

design, called Non-Redundant Cache, that avoids the replication of values. This novel data cache

outperforms conventional caches in terms of power dissipation, access time and die area at the expense

of a very minor increase in miss ratio.

We then applied three techniques that alleviates the serialization caused by data dependences by

reducing the execution latency of instructions: Instruction-Level Reuse, Trace-Level Reuse and Trace-

Level Speculation. 

In Chapter 3, we analysed instruction-level reuse in detail and showed that it can benefit from

computation repetition to boost the execution of instructions. We concluded that instruction-level reuse

is abundant in all types of programs and can provide very large speed-ups for an ideal machine.
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However, the benefits of instruction-level reuse are significant for lower latencies and minimal for

higher latencies. In this chapter we also presented a novel reuse mechanism called Redundant

Computation Buffer. This instruction-level reuse mechanism can exploit reuse due to both quasi-

invariants and quasi-common subexpressions and also exhibits a low reuse latency. When we compared

this mechanism with previous schemes, we found that it provided the greatest benefits in terms of

execution time reduction.

In Chapter 4, we introduced the concept of trace-level reuse and demonstrated its great potential.

Trace-level reuse is a data value reuse technique that handles dynamic sequences of instructions rather

than single instructions. It is therefore based on the observation that several computations of the

programs tend to be repetitive. We showed that trace-level reuse has many positive effects: a) it reduces

the fetch bandwidth requirement by avoiding fetching instructions of reused traces; b) it increases the

effective instruction window size by avoiding storing instructions of reused traces in the instruction

window; and c) it has fewer overheads because it requires fewer operations per reused instruction.

Finally, we addressed essential issues for integrating a trace-level reuse scheme into a superscalar

processor, such as memory for storing previous traces, approaches for deciding which traces are useful,

a mechanism for identifying reusable traces and how to update the processor state.

In Chapter 5 we covered trace-level speculation by proposing the Trace-Level Speculative

Multithreaded Architecture (TSMA). This approach is supported by means of a couple of threads, a

speculative thread and a non-speculative one, working cooperatively. This architecture has two main

benefits: (a) no significant penalties are introduced in the presence of a misspeculation and (b) any type

of trace predictor can work with this proposal. We have shown that, despite speculating a small

percentage of traces correctly, the speed-up is significant. These results demonstrate the tolerance to

misspeculations of the proposed microarchitecture. We also showed that, as well as the

microarchitecture support for trace-level speculation, trace selection and data value speculation

techniques are also important design issues. In this chapter, we proposed a profile-guided analysis for

identifying highly predictable, large traces to be speculated by a TSMA processor. This analysis

substitutes the dynamic process of detecting speculative traces and their corresponding live-output

values, which considerably reduces hardware complexity. In this analysis, it is important to minimize

the number of misspeculations without losing speculation opportunities and to maximize the number of

speculated instructions while minimizing the number of trace speculations. Our simulation results show

that the speed-up is high in most of the analysed benchmarks. Moreover, a detailed analysis of the

results show that there is still room for improvement.
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6.2. Future Work

Moore’s law has held up over the past several decades and microprocessor transistor density has

doubled every two years since 1965. Similar growth is projected for the near future. Thereby, designers

will be able to fit more components onto a single die such as chip level multiprocessing and larger

caches. However, this flexibility introduces certain problems, such as power consumption, on-chip

interconnection delays and memory latency and bandwidth. Much effort should therefore be made to

study methods that can mitigate such restrictions. 

6.2.1. Value Repetition in Instruction Caches

Several studies have recently focused on the phenomenon of value replication in data caches.

Surprisingly, instruction caches have not been considered to exploit the repetitive behaviour in caches.

We believe that the codification of instructions also exhibits a high percentage of repetition that can be

exploited in the same way as the Non-Redundant Cache. Moreover, the complexity of the mechanism

can be reduced because write operations are not performed in instruction caches. 

It would also be interesting to apply the Redundant Store Mechanism and the Non-Redundant

Cache in all levels of the memory hierarchy. For instance, memory bandwidth can be significantly

reduced not only by redundant stores, but also by inlined values that can be exchanged between levels

in a compressed form.

6.2.2. Program Profiling to Support Data Value Reuse Schemes

It has been shown that just a few computations are responsible for the majority of the computations

performed by conventional programs. An interesting focus of research would be to determine at

compilation time the most frequent computations based on program profiling information. These

computations and their corresponding results could be loaded into the reuse tables at the beginning of

the execution of programs. This would considerably reduce hardware complexity and power

consumption because the dynamic process of detecting instructions/traces and their corresponding live-

output values could be avoided. Note that the profile-guided analysis for identifying highly predictable

traces in trace-level speculative multithreaded architectures can be easily adapted to support data value

reuse schemes at instruction and trace level.
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6.2.3. Quasi-Common Traces

To the best of our knowledge, all trace-level reuse approaches are based on tables that are indexed by

the program counter of the first instruction of the trace. This is because it is difficult to find in a

program different sets of consecutive dynamic instructions that match exactly, especially when traces

get bigger. It would be interesting to identify pieces of code or traces that are exactly the same in

several parts of the program. Note that the Redundant Computation Buffer exploits reuse due to both

quasi-invariants (produced by the same static instruction) and quasi-common subexpressions (produced

by several static instructions). Therefore, the idea is not only to exploit quasi-invariant traces, but also

quasi-common traces.

6.2.4. Value Prediction in TSMA

Simulation results for the novel verification engine of the Trace-Level Speculative Multithreaded

Architecture show that it can significantly improve performance without increasing complexity. These

results encourage further work to develop more aggressive speculation schemes based on the idea that

not all live-output values need to be highly predictable. This is also motivated by the relatively low

penalty of misspeculations achieved by the Trace-Level Speculative Multithreaded Architecture.

6.2.5. Multiple Speculations and Threads in TSMA

TSMA processor can simultaneously execute a couple of threads that cooperate to execute a sequential

code. To ensure the correctness of the architectural state, ST may only speculate a new trace when the

look-ahead buffer is empty. This means that TSMA has only a single unverified trace speculation at any

given time. Future work includes to modify the architecture in order to allow multiple unverified traces

while maintaining the relatively low penalty of misspeculations. Future areas for investigation also

include generalising the architecture to multiple threads in order to perform sub-trace speculation

during the validation of a trace that has been speculated. 
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APPENDIX

A. Trace-Level Reuse Theorems

In this appendix we introduce basic theorems related to trace-level reuse that may help to better

understand the performance potential of this microarchitectural technique. We define 4 theorems and

detail their proofs. These theorems help to explain the limits of trace-level reusability described in

Section 4.2.2.

A.1. Definition of Theorems

Theorem TLR1. Let T be a trace composed of the sequence of dynamic instructions <i1, i2, ..., in>.

If T is reusable, then ik is reusable for every k ∈[1,n].

Theorem TLR2. Let T be a trace composed of the sequence of dynamic instructions <i1, i2, ..., in>.

If ik is reusable for every k ∈[1,n], then T is not necessarily reusable.

Theorem TLR3 (Generalization of Theorem TLR1). Let T be a trace composed of a sequence of

traces <t1, t2, ..., tn>. If T is reusable, then tk is reusable for every k ∈[1,n].

Theorem TLR4 (Generalization of Theorem TLR2). Let T be a trace composed of the sequence

of traces <t1, t2, ..., tn>. If tk is reusable for every k ∈[1,n], then T is not necessarily reusable.
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A.2. Definition of Terms 

Before beginning the proofs we need to define a number of terms:

• An input of a trace T is a register, condition code or memory location that is read and has not been

written before in that trace. An output of a trace T is a register, condition code or memory location

that has been written in that trace. Let IL(T) be the sequence of input storage locations of trace T.

Notice that IL(T) is a sequence and not a set. The order of the sequence is given by the order in

which the inputs are read. Let OL(T) be the sequence of output storage locations of trace T. The

order of the sequence is given by the order in which the outputs are written. Let IV(T) be the

sequence of input values of trace T, in the order in which they are read. Let OV(T) be the sequence

of output values of trace T, in the order in which they are written.

• If A and B are two sequences, we say that A ⊆ B if A is a subsequence of B. Moreover, A ∪ B

refers to any sequence that is composed of the elements of A and B, no matter what the order of

the elements is. Different dynamic instances of the same trace will be denoted using the same

symbol to refer to the trace, with a superscript corresponding to the dynamic execution order.

Note that different instances of the same trace will always have the same input/output registers

but may have different input/output memory locations.

• If a trace T is reusable, it must happen that IL(Ti) = IL(Tj) and IV(Ti) = IV(Tj) for some j < i. This

obviously implies that OL(Ti) = OL(Tj) and OV(Ti) = OV(Tj), i.e. if the inputs are the same and

have the same value, the outputs will also be the same and will have the same values. 
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A.3. Proof of Theorems

In this section we present the proof of the theorems described above. In fact, we will prove the general

formulation of theorem TLR1 and TLR2, in which a trace is considered as a sequence of consecutive

smaller traces. Note that theorems TLR1 and TLR2 are special cases in which the size of every smaller

trace is one instruction. We shall now detail the proofs of theorems TLR3 and TLR4.

Proof of Theorem TLR3 (Generalization of Theorem TLR1): If Ti is reusable, then IL(Ti) =

IL(Tj) and IV(Ti) = IV(Tj) for some j < i. Notice that IL(t1
i) ⊆ IL(Ti) = IL(Tj), which implies that

IL(t1
i) = IL(t1

j) and IV(t1
i) = IV(t1

j). Therefore, OL(t1
i) = OL(t1

j) and OV(t1
i) = OV(t1

j). Thus, t1 is

reusable.

Notice that IL(t2
i) ⊆ IL(Ti) ∪ OL(t1

i) = IL(Tj) ∪ OL(t1
j). Since IL(t2

j) ⊆ IL(Tj) ∪ OL(t1
j) and

OV(t1
i) = OV(t1

j), we have that IL(t2
i) = IL(t2

j) and IV(t2
i) = IV(t2

j). Thus, t2 is reusable, i.e. OL(t2
i)

= OL(t2
j) and OV(t2

i) = OV(t2
j).

In general, we can prove that tk+1 is reusable provided that ti is reusable for any i=1..k. Notice that

IL(tk+1
i) ⊆ IL(Ti) ∪ OL(tk

i) ∪ OL(tk–1
i) ∪ ... ∪ OL(t1

i) = IL(Tj) ∪ OL(tk
j) ∪ OL(tk–1

j) ∪ ... ∪

OL(t1
j). Thus, IL(tk+1

i) = IL(tk+1
j) and IV(tk+1

i) = IV(tk+1
j), which means that tk+1 is reusable.

Proof of Theorem TLR4 (Generalization of Theorem TLR2): If t1
i, t2

i, ..., tn
i are reusable, then

the inputs of each of them are equal to those of some previous execution. That is, IV(t1
i) = IV(t1

j1),

IV(t2
i) = IV(t2

j2) , ..., IV(tn
i) = IV(tn

jn), but j1, j2, ..., jn may be different. Therefore, IV(Ti) ⊆ IV(t1
i)

∪ IV(t2
i) ∪ ... ∪ IV(tn

i) = IV(t1
j1) ∪ IV(t2

j2) ∪ ... ∪ IV(tn
jn), but IV(Ti) may be different from IV(Tj)

for every j < i, so Ti may be non-reusable.
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“As I’m sure you know, the beginning is hard, reading and more reading, so no
papers yet”
A beginner PhD student, 1998.

REFERENCES

[1] H. Abelson and G.J. Sussman, “Structure and Interpretation of Computer Programs”, McGraw

Hill, New York, 1985.

[2] P. S. Ahuja, K. Skadron, M. Martonosi and D. W. Clark, “Multipath Execution: Opportunities and

Limits”, In Proceedings of the International Symposium on Supercomputing, July 1998.

[3] H. Akkary and M. Driscoll, “A Dynamic Multithreading Processor”, In Proceedings of the 31st

Annual International Symposium on Microarchitecture, December 1998.

[4] C. Aliagas, C. Molina, M. García, A. González and J. Tubella, “Value Compression to Reduce

Power in Data Caches”, In Proceedings of the 9th International Conference on Parallel and

Distributed Computing (Euro-Par), August 2003.

[5] T.M. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design”, In

Proceedings of the 32nd Annual International Symposium on Microarchitecture, November

1999.

[6] T.M. Austin and G.S. Sohi, “Dynamic Dependence Analysis of Ordinary Programs”, In

Proceedings of the 19th International Symposium on Computer Architecture, May 1992.

[7] M. Azam, P. Franzon and W. Liu, “Low Power Data Processing by Elimination of Redundant

Computations”, In Proceedings of the International Symposium on Low Power Electronics and

Design, August 1997.

[8] S. Balakrishnan and G. S. Sohi, ”Exploiting Value Locality in Physical Register Files”, In

Proceedings of the 36th International Symposium on Microarchitecture, December 2003.



158 References

158 Microarchitectural Techniques to Exploit Repetitive Computations and Values

[9] R. Balasubramonian, S. Dwarkadas and D. Albonesi, “Dynamically Allocating Processor

Resources between Nearby and Distant ILP”, In Proceedings of the 28th International

Symposium on Computer Architecture, June 2001.

[10] G. B. Bell, K. M. Lepak and M. H. Lipasti. “Characterization of Silent Stores”, In Proceedings of

the International Conference on Parallel Architectuers and Compilation Techniques, October

2000.

[11] J. L. Bentley. “Writing Efficient Programs”, Prentice Hall, Englewood Cliffs, New Jersey, 1982.

[12] B. Black, B. Rychlik, and J. Shen, “The Block-Based Trace Cache”. In Proceedings of the 26th

International Symposium on Computer Architecture, May 1999.

[13] D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow Width Operands to Improve

Processor Power and Performance”, In Proceedings of the 5th International Symposium on High-

Performance Computer Architecture, January 1999.

[14] D. Brooks, V. Tiwari and M. Martonosi, “Watch: A Framework for Architectural-Level Power

Analysis and Optimization”. In Proceedings of the 27th International Symposium on Computer

Architecture, May 2000.

[15] D. Burger, T. M. Austin and S. Bennet, “Evaluating Future Microprocessors: The SimpleScalar

Tool Set”. Technical Report CS-TR-96-1308. University of Wisconsin, July 1996.

[16] D. Burger, J. R. Goodman, and A. Kägi, “Quantifying Memory Bandwidth Limitations of

Current and Future Microprocessors”, In Proceedings of the 23rd International Symposium on

Computer Architecture, May 1996.

[17] D. Burger, A. Kägi and J. R. Goodman, “The Declining Effectiveness of Dynamic Caching for

General Purpose Microprocessors“, Technical Report 1261, Computer Sciences Departament,

University of Wisconsin, Madison, WI, January 1995.

[18] J. A. Butts and G.S. Sohi, “Dynamic Dead-Instruction Detection and Elimination”, In

Proceedings of the 10th International Conference on Architectural Support for Programming

Languages and Operating Systems, October 2002.



References 159

Microarchitectural Techniques to Exploit Repetitive Computations and Values 159

[19] R. Canal, A. González and J. E. Smith, “Very Low Power Pipelines using Significance

Compression”, In Proceedings of the 33rd International Symposium on Microarchitecture,

December 2000.

[20] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt, “Simultaneous Subordinate

Microthreading (SSMT)”, In Proceedings of the 26th International Symposium on Computer

Architecture, May 1999.

[21] T. F. Chen and J. L. Baer, “A Performance Study of Software and Hardware Data Prefetching

Schemes”, In Proceedings of the 21st International Symposium on Computer Architecture, April

1994.

[22] Y. Choi, J. J. Yi, J. Huang, and D. J. Lilja, “Improving Value Prediction by Exploiting Both

Operand and Output Value Locality”, Laboratory for Advanced Research in Computing

Technology and Compilers Technical Report No. ARCTiC 00-09, July, 2000.

[23] Y. Chou, J. Fung, J. Shen, “Reducing Branch Misprediction Penalties Via Dynamic Control

Independence Detection”, In Proceedings of the International Conference on Supercomputing,

June 1999.

[24] D. Citron, D. G. Feitelson and Larry Rudolph, “Accelerating Multi-Media Processing by

Implementing Memoing in Multiplication and Division Units”, In Proceedings of the 7th

International Conference on Architecture Support for Programming Languages and Operating

Systems, October 1998.

[25] D. Citron and D. G. Feitelson, “Look it Up or Do the Math: An Energy, Area, and Timing

Analysis of Instruction Reuse and Memoization”. In Proceedings of the Workshop on Power-

Aware Computer Systems, December 2003.

[26] D. Citron and D. G. Feitelson, “Revisiting Instruction Level Reuse”.  In Proceedings of the

Workshop on Duplicating, Deconstructing, and Debunking, May 2002.

[27] J. Collins, S. Sair, B. Calder and D.M. Tullsen, “Pointer Cache Assisted Prefetching”, In

Proceedings of the 35th Annual International Symposium on Microarchitecture, November 2002.



160 References

160 Microarchitectural Techniques to Exploit Repetitive Computations and Values

[28] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery and J. Shen, “Speculative

Precomputation: Long-range Prefetching of Delinquent Loads”, In Proceedings of the 28th

International Symposium on Computer Architecture, July 2001.

[29] D. A. Connors and W. W. Hwu, “Compiler-Directed Dynamic Computation Reuse: Rationale and

Initial Results“, In Proceedings of the 32nd International Symposium on Microarchitecture,

November 1999.

[30] D. A. Connors, H. C. Hunter, B. C. Cheng, and W. W. Hwu, “Hardware Support for Dynamic

Activation of Compiler-Directed Computation Reuse”, In Proceedings of the 9th International

Conference on Architecture Support for Programming Languages and Operating Systems,

November 2000.

[31] A. T. Costa, F. M. G. Franca and E. M. Chaves Filho, “The Dynamic Trace Memoization Reuse

Technique", In Proceedings of the International Conference on Parallel Architectures and

Compilation Techniques, October 2000.

[32] Digital Equipment Corporation, “Alpha 21164 Microprocessor Hardware Reference Manual”,

1995.

[33] O. Ergin, D. Balkan, K. Ghose, D. Ponomarev, “Register Packing: Exploiting Narrow Width

Operands for Reducing Register File Pressure”, In Proceedings of the 37th International

Symposium on Microarchitecture, December 2004.

[34] F. Gabbay and A. Mendelson, “Can Program Profiling support Value Prediction”, In proceedings

of the 30th Annual International Symposium on Microarchitecture, December 1997.

[35] F. Gabbay and A. Mendelson. “Speculative Execution based on Value Prediction”. Technical

Report EE Department TR 1080, Technion - Israel Institute of Technology, November 1996.

[36] F. Gabbay and A. Mendelson. “Using Value Prediction to Increase the Power of Speculative

Execution Hardware”, ACM Transaction on Computer Systems (TOCS), August 1998.

[37] A. González, J. Tubella and C. Molina, “The Performance Potential of Data Value Reuse”,

Technical Report UPC-DAC-1998-23, Universitat Politècnica de Catalunya, September 1998.



References 161

Microarchitectural Techniques to Exploit Repetitive Computations and Values 161

[38] A. González, J. Tubella and C. Molina, “Trace Level Reuse”, In Proceedings of the International

Conference on Parallel Processign, September 1999.

[39] J. González and A. González, “Speculative Execution via Address Prediction and Data

Prefetching”, In proceedings of the 11th International Conference on Supercomputing, July 1997.

[40] R. Gonzalez, A. Cristal, A. Veidenbaum, and M. Valero, "A Content Aware Register File

Organization”, In Proceedings of the 31th International Symposium on Computer Architecture,

June 2004.

[41] J. R. Goodman and W. C. Hsu,“ On the Use of Registers vs. Cache to Minimize Memory Traffic”,

In Proceedings of the 13th International Symposium on Computer Architecture, June 1986.

[42] J. R. Goodman, “Using Cache Memory to Reduce Processor Memory Traffic” In Proceedings of

the 10th International Symposium on Computer Architecture, June 1983.

[43] M. Gowan, L. Biro and D. Jackson, “Power Considerations in the Design of the Alpha 21264

Microprocessor”. In Proceedings of the 35th Annual Conference on Design Automation, June

1998.

[44] L. Gwennap, “Digital 21264 Sets New Standard”, Microprocessor Report, vol. 10, no. 14, Oct.

1996.

[45] E. G. Hallnor and S. K. Reinhardt, “A Compressed Memory Hierarchy using an Indirect Index

Cache”, In Proceedings of the 3rd Workshop on Memory Performance Issues, June 2004.

[46] S. Harbison, "An Architectural Alternative to Optimizing Compilers", In Proceedings of the 1st

International Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 57--65, March 1982.

[47] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A Quantitave Approach”, Third

Edition. Morgan Kaufmann Publishers, San Francisco 2002.

[48] J. Huang and D. J. Lilja, “Extending Value Reuse to Basic Blocks with Compiler Support”, IEEE

Transactions on Computers 2000.



162 References

162 Microarchitectural Techniques to Exploit Repetitive Computations and Values

[49] J. Huang and D. J. Lilja, “Exploiting Basic Block Value Locality with Block Reuse”, In

Proceedings of the 5th International Symposium on High Performance Computer Architecture,

January 1999.

[50] J. Huang and D. J. Lilja, “Exploring Sub-Block Value Reuse for Superscalar Processors”, In

Proceedings of the Conference on Parallel Architectures and Compilation Techniques, October,

2000.

[51] J. Huang and D. J. Lilja, “Improving Instruction-Level Parallelism by Exploiting Global Value

Locality”, High-Performance Parallel Computing Research Group Technical Report No. HPPC-

98-12, October 1998.

[52] J. Huh, D.C. Burger, and S.W. Keckler, “Exploring the Design Space of Future CMPs”. In

Proceedings of the International Conference on Parallel Architectures and Compilation

Techniques, September 2001.

[53] http://www.sandpile.org/, “The World's Leading Source for Pure Technical x86 Processor

Information”.

[54] http://www.spec.org/, “The Standar Performance Evaluation Corporation”. 

[55] K. Z. Ibrahim, G. T. Byrd, and E. Rotenberg, “Slipstream Execution Mode for CMP-Based

Multiprocessors”, In Proceedings of the 9th International Symposium on High-Performance

Computer Architecture, February 2003.

[56] L. K. John, “More on Finding a Single Number to Indicate Overall Performance of a Benchmark

Suite”, ACM Computer Architecture News, Vol. 32, No. 1, March 2004.

[57] N. P. Jouppi, “Cache Write Policies and Performance”, In Proceedings of the 20th International

Symposium on Computer Architecture, May 1993.

[58] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of Small Fully

Associative Cache and Prefetch Buffers”, In Proceedings of the 17th International Symposium on

Microarchitecture, May 1990.



References 163

Microarchitectural Techniques to Exploit Repetitive Computations and Values 163

[59] S. Jourdan, R. Ronen, M. Bekerman, B. Shormar and A. Yoaz, “A Novel Renaming Scheme to

Exploit Value Temporal Locality through Physical Register Reuse and Unification”. In

Procceedings of 31st Annual International Symposium on Microarchitecture, November 1998.

[60] I. Kim and M. Lipasti, “Implementing Optimizations at Decode Time”, In Proceedings of the

29th International Symposium on Computer Architecture, 2002.

[61] J. J. Koppanalil and E. Rotenberg, “A Simple Mechanism for Detecting Ineffectual Instructions

in Slipstream Processors”,  IEEE Transactions on Computers, April 2004.

[62] M. S. Lam and R. P. Wilson, “Limits of Control Flow on Parallelism”, In  Proceedings of the 19th

Annual International Symposium on Computer Architecture, May, 1992.

[63] S. Y. Larin, “Exploiting Program Redundancy to Improve Performance, Cost and Power

Consumption in Embedded Systems”, Ph.D. Thesis, ECE Department, North Carolina State

University, Raleigh, North Carolina, August 2000.

[64] J. S. Lee, W. K. Hong, and S. D. Kim, "An On-Chip Cache Compression Technique to Reduce

Decompression Overhead and Design Complexity," Journal of Systems Architecture, vol. 46,

December 2000.

[65] K. M. Lepak and M. H. Lipasti, “On the Value Locality of Store Instructions”, In Proceedings of

the 27th International Symposium on Computer Architecture, June 2000.

[66] K. M. Lepak and M. H. Lipasti. “Silent Stores for Free”, In proceedings of the 33rd Annual

International Symposium on Microarchitecture, December 2000.

[67] K. M. Lepak and M. H. Lipasti, “Temporally Silent Stores”, In Proceedings of the 10th

International Conference on Architectural Support for Programming Languages and Operating

Systems, October 2002.

[68] C. Liao and J. Shieh, “Exploiting Speculative Reuse Using Value Prediction”, In Proceedings of

the 7th Asia-Pacific Conference on Computer Systems Architecture, Jannuary 2002.

[69] J. Lin, T. Chen, W. C. Hsu, P. C. Yew, R. D. C. Ju, T. F. Ngai, S. Chan, “A Compiler Framework

for Speculative Analysis and Optimizations”, In Proceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation, June 2003.



164 References

164 Microarchitectural Techniques to Exploit Repetitive Computations and Values

[70] M. H. Lipasti, “Value Locality and Speculative Execution”, Ph.D. Dissertation, Department of

Electrical and Computer Engineering, Carnegie Mellon University, April 1997.

[71] M. H. Lipasti and J. P. Shen. “Exceeding the Dataflow Limit Via Value Prediction”, In

Proceedings of 29th International Symposium on Microarchitecture, December 1996.

[72] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. “Value Locality and Load Value Prediction”, In

Proceedings of 7th International Conference on Architectural Support for Programming

Languages and Operating Systems, September 1996.

[73] G. N. B. Manoharan and J. S. Narayanan, “Dynamic Exploitation of Redundancy in Programs

Using Value Prediction and Instruction Reuse”, In Proceedings of the 10th International

Conference on High Performance Computing, December 2003.

[74] P. Marcuello, J. Tubella and A. González, “Value Prediction for Speculative Multithreaded

Architectures”, In Proceedings of the 32nd International Symposium on Microarchitecture,

November 1999.

[75] D. Michie, “Memo Functions and Machine Learning”, Nature, Vol 218, April 1968.

[76] C. Molina, A. González and J. Tubella, “Compiler Analysis for Trace-Level Speculative

Multithreaded Architectures”, In Proceedings of the 9th Annual Workshop on Interaction

between Compilers and Computer Architectures, San Francisco, United States, February 2005.

[77] C. Molina, A. González and J. Tubella, “Dynamic Removal of Redundant Computations”, In

Proceedings of the International Conference on Supercomputing, June 1999.

[78] C. Molina, C. Aliagas, M. García, J. Tubella and A. González, “Non Redundant Data Cache”, In

Proceedings of the International Symposium on Low Power Electronics and Design, August

2003.

[79] C. Molina, J. Tubella and A. González, “Reducing Misspeculation Penalty in Trace-Level

Speculative Multithreaded Architectures”, In Proceedings of the 6th International Symposium on

High Performance Computing, September 2005.



References 165

Microarchitectural Techniques to Exploit Repetitive Computations and Values 165

[80] C. Molina, A. González and J. Tubella, “Reducing Memory Traffic Via Redundant Store

Instructions”, In Proceedings of the International Conference on High Performance Computing

and Networking, April 1999.

[81] C. Molina, A. González and J. Tubella, “Trace-Level Speculative Multithreaded Architecture”, In

Proceedings of the International Conference on Computer Design, September 2002.

[82] R. Muth, S. Watterson and S. Debray, “Code Specialization Based on Value Profiles”, In

Proceedings of the 7th. International Static Analysis Symposium, June 2000.

[83] S. F. Oberman and M. J. Flynn, “Reducing Division Latency with Reciprocal Caches”, In

Reliable Computing, vol. 2, no. 2, pp. 147-153, April 1996.

[84] S. Onder and R. Gupta, “Load and Store Reuse Using Register File Contents”, In Proceedings of

the 15th International Conference on Supercomputing, June 2001.

[85] J. Oplinger, D. Heine, M. S. Lam, “In Search of Speculative Thread-Level Parallelism”, In

Proceedings of the 1999 International Conference on Parallel Architectures and Compilation

Techniques, October 1999.

[86] V. Petric, A. Bracy and A. Roth, “Three Extensions to Register Integration”, In Proceedings of

the 35th International Symposium on Microarchitecture, November 2002.

[87] M. L. Pilla, P. O. A. Navaux, F. M. G. Franca, A. T. da Costa, B. R. Childers, M. L. Soffa, “Reuse

Through Speculation on Traces in Deeply Pipelined Superscalar Processors”, In Proceedings of

the 16th Symposium on Computer Architecture and High Performance Computing, October

2004.

[88] M. L. Pilla, P. O. A. Navaux, F. M. G. Franca, A. T. da Costa, B. R. Childers, M. L. Soffa, “The

Limits of Speculative Trace Reuse on Deeply Pipelined Processors”, In Proceedings of the 15th

Symposium on Computer Architecture and High Performance Computing, November 2003.

[89] M. Postiff, D. Greene, G. Tyson, and T. Mudge “The Limits of Instructions Level Parallelism in

SPEC95 Applications. In Proceedings of the 3rd Workshop on Interaction Between Compilers

and Computer Architecture, October 1998.



166 References

166 Microarchitectural Techniques to Exploit Repetitive Computations and Values

[90] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. "A Study of Slipstream Processors". In

Proceedings of the 33rd International Symposium on Microarchitecture, December 2000.

[91] S. E. Richardson, “Caching Function Results: Faster Arithmetic by Avoiding Unnecessary

Computation”, Technical Report SMLI TR-92-1, Sun Microsystems Laboratories, 1992.

[92] S. E. Richardson, “Exploiting Trivial and Redundant Computations”, In Procedings of

International Symposium on Computer Arithmetic, pp. 220-227, 1993.

[93] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance in

Microprocessors”, In Proceedings of the 29th Fault-Tolerance Computing Symposium, June

1999.

[94] E. Rotenberg, “Exploiting Large Ineffectual Instruction Sequences”, Technical Report, North

Carolina State University, November 1999.

[95] A. Roth, R. Ronen and A. Mendelson, “Dynamic Techniques for Load and Load-Use

Scheduling“, In Proceedings of the IEEE, VOL.89, NO 11, Novemeber 2001.

[96] A. Roth and G. S. Sohi, “Register Integration: A Simple and Efficient Implementation of Squash

Reuse”, In Proceedings of the 33rd International Symposium on Microarchitecture, December

2000.

[97] A. Roth and G. S. Sohi, “Speculative Data-Driven Multithreading”, In Proceedings of the 7th

International Symposium on High Performance Computer Architecture, Jannuary 2001.

[98] S. S. Sastry, R. Bodik, and J. E. Smith, “Characterizing Coarse-Grained Reuse of Computation”,

In Proceedings of the 3rd ACM Workshop on Feedback Directed and Dynamic Optimization,

December 2000.

[99] T. Sato, "Exploiting Instruction Redundancy for Transient Fault Tolerance", In Proceedings of the

18th International Symposium on Defect and Fault Tolerance in VLSI Systems, November 2003.

[100] T. Sato and I. Arita, "Comprehensive Evaluation of an Instruction Reissue Mechanism," In

Proceedings of the 5th International Symposium on Parallel Architectures, Algorithms and

Networks, December 2000.



References 167

Microarchitectural Techniques to Exploit Repetitive Computations and Values 167

[101] T. Sato and I. Arita, "Execution Latency Reduction via Variable Latency Pipeline and Instruction

Reuse," In Proceedings of the 7th International Conference on Parallel and Distributed

Computing (Euro-Par), August 2001.

[102] T. Sato and I. Arita, "Table Size Reduction for Data Value Predictors by Exploiting Narrow

Width Values," In Proceedings of the 14th International Conference on Supercomputing, May

2000.

[103] A. Saulsbury, F. Pong and A. Nowatzyk, “Missing the Memory Wall: The Case for Processor/

Memory Integration”, In Proceedings of the 23rd International Symposium on Computer

Architecture, May 1996.

[104] Y. Sazeides, “Instruction–Isomorphism in Program Execution”, In Proceedings of the Journal of

Instruction-Level Parallelism, Vol.5, 2003.

[105] Y. Sazeides and J. E. Smith, “The Predictability of Data Values”, In Proceedings of 30th Annual

International Symposium on Microarchitecture, December 1997.

[106] J. P. Shen and M. H. Lipasti, “Modern Processor Design: Fundamentals of Superscalar

Processors”, McGraw-Hill Higher Education, 2003.

[107] P. Shivakumar, N. P. Jouppi, “CACTI 3.0: An Integrated Cache Timing, Power and Area Model”.

Western Research Lab (WRL), Research Report 2001/2, August 2001.

[108] K. Skadron and D. Clark, “Design Issues and Tradeoffs for Write Buffers”, In Proceedings of the

3rd International Symposium on High Performance Computer Architecture, February 1997.

[109] A. J. Smith, “Cache Memories,”, Computing Surveys, Vol.14, No. 3, September 1982.

[110] A. Sodani,  “Dynamic Instruction Reuse”,  Ph.D. Dissertation, Department of Computer Science,

University of Wisconsin-Madison, , April 2000.

[111] A. Sodani and G. S. Sohi, “An Empirical Analysis of Instruction Repetition”, In Proceedings of

the 8th International Conference on Architectural Support for Programming Languages and

Operating Systems, October 1998.



168 References

168 Microarchitectural Techniques to Exploit Repetitive Computations and Values

[112] A. Sodani and G. S. Sohi, “Dynamic Instruction Reuse”, In Proceedings of the 24th International

Symposium on Computer Architecture, June 1997.

[113] A. Sodani and G. S. Sohi, “Understanding the Differences Between Value Prediction and

Instruction Reuse “, In Proceedings of the 31st International Symposium on Microarchitecture,

December 1998.

[114] G. S. Sohi, “Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional

Unit, Pipelined Computers”, IEEE Transactions on Computers, 39(3):349-359, 1990.

[115] G. S. Sohi and M. Franklin, “High-Performance Data Memory Systems for Superscalar

Processors”, In Proceedings of the 4th Symposium on Architectural Support for Programming

Languages and Operating Systems, April 1991.

[116] S. P. Song, M. Denman and J. Chang, “The PowerPC 604 RISC Microprocessor”, IEEE Micro,

14(5):8-17, October 1994.

[117] A. Srivastava and A. Eustace, “ATOM: A System for Building Customized Program Analysis

Tools”, In Proceedings of the International Conference on Programming Languages Design and

Implementation, June 1994.

[118] C. L. Su and A. M. Despain, “Cache Design Tradeoffs for Power and Performance Optimization:

A Case Study”, In Proceedings of the International Symposium on Low Power Electronics and

Design, April 1995.

[119] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. "Slipstream Processors: Improving both

Performance and Fault Tolerance". In Proceedings of the 9th International Conference on

Architectural Support for Programming Languages and Operating Systems, November 2000.

[120] G. Surendra, S. Banerjee, S. K. Nandy, “Enhancing Speedup in Network Processing Applications

by Exploiting Instruction Reuse with Flow Aggregation”, In Proceedings of the International

Conference of Design, Automation and Test in Europe, March 2003.

[121] G. Surendra, S. Banerjee, and S. K. Nandy, “On the Effectiveness of Prefetching and Reuse in

Reducing L1 Data Cache Traffic: A Case Study of Snort”, In Proceedings of the 3rd Workshop on

Memory Performance Issues, June 2004.



References 169

Microarchitectural Techniques to Exploit Repetitive Computations and Values 169

[122] D. M. Tullsen, S. J. Eggers and H. M. Levy, “Simultaneous Multithreading: Maximizing On-Chip

Parallelism”. In Proceedings of the 22nd International Symposium on Computer Architecture,

June 1995.

[123] G. S. Tyson and T. M. Austin, “Improving the Accuracy and Performance of Memory

Communication Through Renaming,” In Proceedings of the 30th Annual Symposium on

Microarchitecture, December 1997.

[124] L. Villa, M. Zhang, and K. Asanovic, "Dynamic Zero Compression for Cache Energy

Reduction", In Proceedings of the 33rd International Symposium on Microarchitecture,

December 2000.

[125] D. W. Wall, “Limits of Instruction-Level Parallelism”, In Proceedings of the 4th International

Conference on Architectural Support for Programming Languages and Operating Systems, April

1991.

[126] S. Wallace, B. Calder and D. Tullsen, “Threaded Multiple Path Execution”, In Proceedings of the

25th Annual International Symposium on Computer Architecture, June 1998.

[127] N. Weinberg and D. Nagle, “Dynamic Elimination of Pointer-Expressions”, In Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques, October 1998.

[128] M. Wilkes, “Slave memories and dynamic storage allocation”, IEEE Transactions on Electronic

Computers, April 1965.

[129] Y. Wu, D. Chen and J. Fang, “Better Exploration of Region-Level Value Locality with Integrated

Computation Reuse and Value Prediction”, In Proceedings of the 28th International Symposium

on Computer Architecture, July 2004.

[130] J. Yang and R. Gupta, “Energy Efficient Frequent Value Data Cache Design”, In Proceedings of

the  35th International Symposium on Microarchitecture, November 2002.

[131] J. Yang and R. Gupta, ”Energy Efficient Load and Store Reuse,'' In Proceddings of the ACM/

IEEE International Symposium on Low Power Electronics and Design, August 2001.

[132] J. Yang, Y. Zhang, and R. Gupta, “Frequent Value Compression in Data Caches”, In Proceedings

of the 33rd International Symposium on Microarchitecture, December 2000.



170 References

170 Microarchitectural Techniques to Exploit Repetitive Computations and Values

[133] J. Yang and R. Gupta, ”Load Redundancy Removal through Instruction Reuse,'' In Proceedings

of the International Conference on Parallel Processing, pages 61-68, August 2000.

[134] T. Yeh and Y. N. Patt, “Alternative Implementations of Two-Level Adaptive Branch Prediction”,

In Proceedings of the 19th Annual International Symposium on Computer Architecture, May

1992.

[135] J. J. Yi and D. J. Lilja, “An Analysis of the Amount of Global Level Redundant Computation in

the SPEC95 and SPEC2000 Benchmarks", In Proceedings of the Workshop on Workload

Characterization, December 2001.

[136] J. J. Yi and D. J. Lilja, “Improving Processor Performance by Simplifying and Bypassing Trivial

Computations”, In Proceedings of the International Conference on Computer Design, September,

2002.

[137] J. J. Yi, R. Sendag, and D. J. Lilja, “Increasing Instruction-Level Parallelism with Instruction

Precomputation”, In Proceedings of the International Conference on Parallel and Distributed

Computing (Euro-Par), August 2002.

[138] Y. Zhang and R. Gupta, “Enabling Partial Cache Line Prefetching Through Data Compression”,

In Proceedings of the International Conference on Parallel , October 2003.

[139] Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality and Value-Centric Data Cache

Design”, In Proceedings of the 33rd International Conference on Architectural Support for

Programming Languages and Operating Systems, November 2000.

[140] C. Zilles and G. S. Sohi, “Execution-based Prediction Using Speculative Slices”, In Proceedings

28th International Symposium on Computer Architecture, July 2001.

[141] C. Zilles and G. S. Sohi, “Master/Slave Speculative Parallelization”, In Proceedings of the 35th

International Symposium on Microarchitecture, November 2002.



List of Figures 171

Microarchitectural Techniques to Exploit Repetitive Computations and Values 171 

LIST OF FIGURES

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Figure 1.1. Percentage of computation repetition.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   19

Figure 1.2. Contribution of the most frequent computations to the total computations.  . . . . . . .   19

Figure 1.3. Percentage of value repetition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   20

Figure 1.4. Contribution of the most frequent values to the total values. . . . . . . . . . . . . . . . . . . .   21

CHAPTER 2. VALUE REPETITION IN DATA CACHES  . . . . . . . . . . . . . . . .  31

Figure 2.1. Redundant store concept.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   34

Figure 2.2. Percentage of redundant stores for CB-WA with different cache sizes.  . . . . . . . . . .   38

Figure 2.3. Percentage of redundant stores for WT-NWA with different cache sizes.  . . . . . . . .   38

Figure 2.4. Redundant store mechanism with copy back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   39

Figure 2.5. Redundant store mechanism with write through  . . . . . . . . . . . . . . . . . . . . . . . . . . . .   40

Figure 2.6. Memory traffic (millions of bytes) for CB-WA with different cache sizes . . . . . . . .   41

Figure 2.7. Memory traffic (millions of bytes) for WT-NWA with different cache sizes . . . . . .   42

Figure 2.8. Reduction of memory traffic of CB-WA with different cache sizes  . . . . . . . . . . . . .   42

Figure 2.9. Reduction of memory traffic of WT-NWA with different cache sizes  . . . . . . . . . . .   43

Figure 2.10. Average histograms of a 256KB data cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   45

Figure 2.11. Average histograms of data caches ranging from 1KB to 256KB . . . . . . . . . . . . . .   46

Figure 2.12. Individual histograms of a 32KB level 1 data cache  . . . . . . . . . . . . . . . . . . . . . . . .   47

Figure 2.13. Block diagram of the Non-Redundant Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   48

Figure 2.14. Static analysis: cache area  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   51

Figure 2.15. Critical path of the Non-Redundant Cache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   52

Figure 2.16. Static analysis: latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   53

Figure 2.17. Static analysis: energy consumption per access . . . . . . . . . . . . . . . . . . . . . . . . . . . .   54

Figure 2.18. Percentage of different values for a 256KB L2 data cache  . . . . . . . . . . . . . . . . . . .   55

Figure 2.19. Miss ratio, hit inlined and miss inlined  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   56

Figure 2.20. Miss ratio vs. die area for second level data caches . . . . . . . . . . . . . . . . . . . . . . . . .   58



172 List of Figures

172 Microarchitectural Techniques to Exploit Repetitive Computations and Values

CHAPTER 3. INSTRUCTION LEVEL REUSE  . . . . . . . . . . . . . . . . . . . . . . . . .  63

Figure 3.1. Examples of a) quasi-invariant and b) quasi-common subexpression.  . . . . . . . . . . .   64

Figure 3.2. Instruction-level reusability for a perfect engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . .   68

Figure 3.3. Speed-up of instruction-level reuse for an infinite instruction window:  . . . . . . . . . .   69

Figure 3.4. Theoretical versus actual speed-up.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   70

Figure 3.5. Speed-up of instruction-level reuse for a limited instruction window (256 entries): .   71

Figure 3.6. The Redundant Computation Buffer (RCB).  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   72

Figure 3.7. A working example: code.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   74

Figure 3.8. A working example: execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   75

Figure 3.9. Code example of reusing from non-latest result.  . . . . . . . . . . . . . . . . . . . . . . . . . . . .   76

Figure 3.10. Reuse latency of the reuse buffer, the RCB and the result cache.  . . . . . . . . . . . . . .   79

Figure 3.11. Enhanced Reuse Buffer vs. Redundant Computation Buffer for history depth of 1.   81

Figure 3.12. Reuse exploited by the Enhanced Reuse Buffer.  . . . . . . . . . . . . . . . . . . . . . . . . . . .   82

Figure 3.13. Reuse exploited by the Redundant Computation Buffer. . . . . . . . . . . . . . . . . . . . . .   83

Figure 3.14. Reuse exploited by the best configurations of every scheme.  . . . . . . . . . . . . . . . . .   83

Figure 3.15. Speed-up for the base microarchitecture for each program and the harmonic mean.   84

Figure 3.16. Reuse exploited in the superscalar microprocessor. . . . . . . . . . . . . . . . . . . . . . . . . .   85

Figure 3.17. Contribution of each instruction category to total reuse. . . . . . . . . . . . . . . . . . . . . .   86

Figure 3.18. Performance of the RCB and the hybrid RCB scheme for a 32 KB capacity. . . . . .   86

CHAPTER 4. TRACE LEVEL REUSE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

Figure 4.1. Speedup of trace-level reuse when considering a 1-cycle reuse latency: . . . . . . . . . .   96

Figure 4.2. Average trace size.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   97

Figure 4.3. Speed-up of trace-level reuse for a 256-entry instruction window  . . . . . . . . . . . . . .   98

Figure 4.4. A RTM entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   99

Figure 4.5. Trace-level reuse in the pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   100

Figure 4.6. Examples of dynamic trace collection heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . .   101

Figure 4.7. Percentage of reusable instructions of TLR with finite tables.  . . . . . . . . . . . . . . . .   103

Figure 4.8. Average trace size of TLR with finite tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   103

CHAPTER 5. TRACE-LEVEL SPECULATION  . . . . . . . . . . . . . . . . . . . . . . .  107

Figure 5.1. Trace-level speculation with live-input test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   109

Figure 5.2. Trace-level speculation with live-output test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   110

Figure 5.3. Trace-level speculative multithreaded microarchitecture. . . . . . . . . . . . . . . . . . . . .   112

Figure 5.4. Verification engine block diagram.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   115

Figure 5.5. Memory subsystem.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   117

Figure 5.6. Example: correct trace speculation.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   118

Figure 5.7. Example: incorrect trace speculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   118



List of Figures 173

Microarchitectural Techniques to Exploit Repetitive Computations and Values 173 

Figure 5.8. Register map table block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   119

Figure 5.9. TSMA behaviour: a working example.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   120

Figure 5.10. Percentage of misspeculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   123

Figure 5.11. Percentage of predicted instructions.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   123

Figure 5.12. Speed-up.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   124

Figure 5.13. Number of squashed instructions from the LAB in each thread synchronization. .   126

Figure 5.14. Percentage of squashed instructions from the LAB that were correctly executed.    127

Figure 5.15. Type of incorrect speculated instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   129

Figure 5.16. Trace Recognition Heuristics Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   131

Figure 5.17. Type of speculated instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   136

Figure 5.18. Type of speculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   137

Figure 5.19. Speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   138

Figure 5.20. Type of cycles of the Speculative Thread (ST)  . . . . . . . . . . . . . . . . . . . . . . . . . . .   138

Figure 5.21. Type of cycles of the Non Speculative Thread (NST) . . . . . . . . . . . . . . . . . . . . . .   139

Figure 5.22. Useless cycles of the Speculative Thread (ST)  . . . . . . . . . . . . . . . . . . . . . . . . . . .   139

Figure 5.23. Branch Behaviour Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   140

Figure 5.24. Percentage of thread synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   141

Figure 5.25. Speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   141

Figure 5.26. Reduction in executed instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   142

CHAPTER 6. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . .  147

No Figures





List of Tables 175

Microarchitectural Techniques to Exploit Repetitive Computations and Values 175 

LIST OF TABLES

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Table 1.1. SPEC CPU95 and CPU2000 benchmarks.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   29

Table 1.2. Parameters of the baseline microarchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   30

CHAPTER 2. VALUE REPETITION IN DATA CACHES  . . . . . . . . . . . . . . . .  31

Table 2.1. Die are occupied by caches in some commercial processors. . . . . . . . . . . . . . . . . . . .   32

Table 2.2: Miss ratios of CB-WA and WT-NWA for different cache sizes . . . . . . . . . . . . . . . . .   37

Table 2.3. Comparison results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   57

CHAPTER 3. INSTRUCTION LEVEL REUSE  . . . . . . . . . . . . . . . . . . . . . . . . .  63

No Tables

CHAPTER 4. TRACE LEVEL REUSE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

No Tables

CHAPTER 5. TRACE-LEVEL SPECULATION  . . . . . . . . . . . . . . . . . . . . . . .  107

Table 5.1. Parameters of TSMA additional structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   122

Table 5.2: Additional simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   125

Table 5.3. Parameters of TSMA additional structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   135

Table 5.4: Profiling analysis parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   135

Table 5.5: Additional simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   136

CHAPTER 6. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . .  147

No Tables




	Preface
	Acknowledgements
	Contents
	Introduction
	1.1 . Motivation
	1.2 . Repetition in Conventional Programs
	1.3 . Main Contributions
	1.4 . Methodology and Experimental Framework

	Value Repetition in
	2.1 . Introduction
	2.2 . Value Repetition in the Same Storage Location
	2.3 . Redundant Store Mechanism for Reducing Memory Traffic
	2.4 . Value Repetition in Several Storage Locations
	2.5 . Non-Redundant Data Cache
	2.6 . Related Work
	2.7 . Conclusions

	Instruction Level Reuse
	3.1 . Introduction
	3.2 . The Performance Potential of Instruction Level Reuse
	3.3 . Redundant Computation Buffer
	3.4 . Related Work
	3.5 . Conclusions

	Trace Level Reuse
	4.1 . Introduction
	4.2 . The Performance Potential of Trace-Level Reuse
	4.3 . Design Issues of Trace-Level Reuse
	4.4 . Related Work
	4.5 . Conclusions

	Trace-Level Speculation
	5.1 . Introduction
	5.2 . Approaches to Trace-Level Speculation
	5.3 . Trace-Level Speculative Multithreaded Architecture
	5.4 . Extensions to TSMA
	5.5 . Related Work
	5.6 . Conclusions

	Conclusions and Future Work
	6.1 . Conclusions
	6.2 . Future Work

	Appendix
	References
	List of Figures
	List of Tables

