
SPECULATIVE VECTORIZATION FOR SUPERSCALAR

PROCESSORS

A Dissertation Presented

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Doctor per la Universitat Politècnica de Catalunya

by

Alex Pajuelo González

July 2005

SPECULATIVE VECTORIZATION FOR SUPERSCALAR PROCESSORS

Alex Pajuelo González

Thesis advisors:

Antonio González

Mateo Valero

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya, 2005

i

ii

A mi familia.

A Laura.

iii

iv

ABSTRACT

Traditional vector architectures have been shown to be very effective in executing

regular codes in which the compiler can detect data-level parallelism, i.e. repeating

the same computation over different elements in the same code-level data structure.

A skilled programmer can easily create efficient vector code from regular ap-

plications. Unfortunately, this vectorization can be difficult if applications are not

regular or if the programmer does not have an exact knowledge of the underlying

architecture.

The compiler has a partial knowledge of the program (i.e. it has a limited

knowledge of the values of the variables). Because of this, it generates code that

is safe for any possible scenario according to its knowledge, and thus, it may lose

significant opportunities to exploit SIMD parallelism. In addition to this, we have

the problem of legacy codes that have been compiled for former versions of the

ISA with no SIMD extensions, which are therefore not able to exploit new SIMD

extensions incorporated into newer ISA versions.

In this dissertation, we will describe a mechanism that is able to detect and

exploit DLP at runtime by speculatively creating vector instructions for prefetching

and precomputing data for future instances of their scalar counterparts. This process

will be called Speculative Dynamic Vectorization.

A more in-depth study of this technique reveals a very positive characteristic:

the mechanism can easily be tailored to alleviate the main drawbacks of current

superscalar processors, particularly branch mispredictions and the memory gap. In

this dissertation, we will describe how to rearrange the basic Speculative Dynamic

Vectorization mechanism to alleviate the branch misprediction penalty based on

reusing control-flow independent instructions. The memory gap problem will be

v

addressed with a set of mechanisms that exploit the stall cycles due to L2 misses in

order to virtually enlarge the instruction window.

Finally, more refinements of the basic Speculative Dynamic Vectorization mech-

anism will be presented to improve its performance at a reasonable cost.

vi

ACKNOWLEDGEMENTS

First of all, I would like to thank to my thesis advisors Antonio González and Mateo

Valero all these years of hard work and unconditional support. In particular, to

show me two different points of view of the same thing.

My family has been a great support. This document is the answer to your

repetitive question. Specially, I thank Laura for her infinite patience during all

these years. Finally, I have finished it!

The PhD students of the Computer Architecture Department have proved to be

very good friends. In any order: Jaume Abella, Javier Verdu, Francisco Cazorla,

Oliver Santana, Jordi Guitart, Josep Maria Codina, Tanausu Ramı́rez, Carmelo

Acosta, Ayose Falcon, Germán Rodŕıguez, Marco Galluzi, Enric Gibert, Josep

Aguilar, Victor Mora, Jaume Vila, José Lorenzo Cruz, Ramon Canal, Joan Manel

Parcerisa, Daniel Jiménez and Alex Settle. Thanks for all those coffee breaks and

for those launch parties.

David López, thank you for show me that a researcher is always a person. Thank

you for teach me how to teach. I hope I recover my peace within as you did!

Of course, I would like to thank all those anonymous reviewers who accept/reject

my papers. All their comments are valuables and have been had into account to

improve the work.

Finally, I would like to thank you, anonymous reader, for your time reading this

dissertation. I hope you enjoy it as much as I enjoyed write it.

This work has been partially supported by the Ministry of Education and Sci-

ence under grants TIN2004-07739-C02-01 and TIN2004-03072, the CICYT project

TIC2001-0995-C02-01, the Feder Funds, Intel Corporation and the European Net-

work of Excellence on High Performance Embedded Architecture and Compilation

vii

(HiPEAC).

viii

TABLE OF CONTENTS

1 Introduction 1
1.1 Motivation . 3

1.1.1 Speculative execution . 4
1.1.2 Vector execution . 5
1.1.3 Thesis objectives . 6

1.2 Thesis overview . 7
1.2.1 Speculative dynamic vectorization 7
1.2.2 Reducing the penalty of branch mispredictions 10
1.2.3 Overcoming the memory gap 10
1.2.4 Cost-effective dynamic vectorization 11
1.2.5 Mechanism comparison . 12

1.3 Structure of this work . 12

2 Platform and Benchmarks 15
2.1 Introduction . 17
2.2 Reference platform . 17

2.2.1 Scalar pipeline . 17
2.2.2 Vector capabilities . 19

2.3 Benchmarks . 21
2.3.1 Irregular codes . 21
2.3.2 Regular codes . 22

2.4 Simulation framework . 23

3 Speculative Dynamic Vectorization 25
3.1 Introduction . 27
3.2 Motivation . 27
3.3 Related work . 29
3.4 Overview . 30
3.5 First approach: Dynamic Vectorization with vector resources 32

3.5.1 Instruction vectorization . 32
3.5.2 Vector registers . 35
3.5.3 Vector data path . 36
3.5.4 Branch mispredictions

and control-flow independence 37
3.5.5 Memory disambiguation . 38
3.5.6 Wide bus . 39

3.6 Second approach: Dynamic
Vectorization with scalar resources 39
3.6.1 Motivation . 39
3.6.2 Overview . 40
3.6.3 Adapting the Dynamic Vectorization mechanism 41

ix

The Scalar Register Set Map Table 41
Issue logic . 44
Branch mispredictions . 44
Memory disambiguation . 45
Wide bus . 45
Replica register file . 46

3.7 Performance evaluation . 47
3.7.1 Dynamic Vectorization performance 48

Management of the memory system 49
Reuse of precomputed data 50
Virtual enlargement of the instruction window 53
Control-flow independence reuse 54

3.8 Summary . 54

4 Control-Flow Independence Reuse 57
4.1 Introduction . 59
4.2 Motivation . 59
4.3 Related work . 60
4.4 The approach . 61

4.4.1 Control flow independent instructions 61
4.4.2 Overview of the mechanism 62
4.4.3 First step: hard-to-predict branches

and re-convergent point detection 64
4.4.4 Second step: control-flow independent instruction detection

and filtering . 66
4.4.5 Third step: instruction replication 68
4.4.6 Fourth step: data validation 68

4.5 Performance evaluation . 69
Control independence scope 71
Register file pressure . 72
Control independent reuse out of the instruction window . . . 77

4.6 Summary . 81

5 Overcoming the Memory Gap 83
5.1 Introduction . 85
5.2 Motivation . 86
5.3 Related work . 87
5.4 First approach: L2miss . 88

5.4.1 Overview . 89
5.4.2 First step: strided load propagation 91
5.4.3 Second step: strided load selection 92
5.4.4 Third step: instruction replication 93
5.4.5 Fourth step: data validation 93

x

5.5 Second approach: L2stall . 94
5.5.1 Overview . 94
5.5.2 First stage: instruction selection 96
5.5.3 Second stage: resource allocation 96
5.5.4 Third stage: instruction replication 97
5.5.5 Fourth stage: data validation 98

5.6 Performance evaluation . 98
5.6.1 Performance improvement . 99
5.6.2 L2miss versus L2stall/L2nostall 104
5.6.3 Virtual enlargement of the instruction window 105

5.7 Summary . 106

6 Cost-Effective Dynamic Vectorization 109
6.1 Introduction . 111
6.2 Motivation . 112
6.3 Dynamic vectorization mispredictions

sources . 113
Stride mispredictions . 114
Wrong construction mispredictions 115
DAEC mispredictions . 115
Scalar source operand mispredictions 116
Replicated source operand mispredictions 116

6.4 Heuristics . 118
6.4.1 Fine grain heuristics . 118

Incremental number of replicas 118
Decremental number of replicas 119
Assignation by halves . 119
Heuristic based on last reuse 120

6.4.2 Coarse grain heuristics . 121
Number of iterations . 121
Dependent load blockade . 122
Block information . 122

6.4.3 Criticality . 123
6.5 Performance evaluation . 125
6.6 Summary . 128

7 Mechanism Comparison 131
7.1 Introduction . 133
7.2 Mechanism comparison . 134

7.2.1 Hardware . 134
7.2.2 Performance . 136
7.2.3 Energy-Delay2 . 139

7.3 Summary . 141

xi

8 Conclusions 143
8.1 Fundamentals of this work . 145

8.1.1 Background to this thesis . 145
8.1.2 Objectives of this thesis . 145

8.2 Accomplishments . 146
8.2.1 Main contributions . 146
8.2.2 Detailed breakdown of the contributions 148

8.3 Remarks and future work . 151

List of tables 152

List of figures 154

References 157

xii

Chapter 1

Introduction

Introduction 3

1.1 MOTIVATION

Nowadays, the software-hardware cooperation present in current computers seeks

to maximize the throughput of applications. On the one hand, a software compiler

translates applications from a high-level to a low-level language that the processor

can comprehend. Furthermore, during the translation process, the compiler inter-

prets the code in order to apply, if possible, optimizations to improve the perfor-

mance of the application. However, due to the fact that the compiler has a limited

knowledge of the application, the low-level code that is generated is conservative

which reduces the opportunities to exploit the parallelism that is available.

On the other hand, hardware processors include mechanisms for efficiently ex-

ecuting the low-level coding of applications. These mechanisms study the code at

runtime to detect and exploit several levels of parallelism, even if they are not clearly

exposed by the compiler.

This software-hardware cooperation is more effective when the compiler has an

extensive knowledge of the applications and/or the target processors. In these cases

the compiler can easily detect and pass on semantic information on the application

to the processor through a specialized ISA. This information helps the processor to

be more effective in executing applications.

Scientific scenarios can be good examples of this cooperation. The main char-

acteristic of scientific applications is that large amounts of Data Level Parallelism

(DLP) are exposed by the high level language. This parallelism consists in repeating

the same computation on different elements in large data structures such as vectors

or matrices. This DLP can easily be detected by a vectorizing compiler that is

able to pass this semantic information through a Single Instruction Multiple Data

(SIMD) ISA to a vector processor. This processor is very effective in executing this

kind of code since it provides wide resources in which several elements of a vector

can be held and computed in parallel.

Superscalar processors are a good alternative for executing applications with a

4 Chapter 1.

moderate amount of DLP. These processors rely on compilers to expose Instruction

Level Parallelism (ILP). This fine-grain parallelism seeks to execute small sections

of the code, usually instructions, in parallel. Furthermore, these processors include

mechanisms for speculatively executing portions of the code to expose more ILP.

Recently, vector-like resources have been included in these processors to efficiently

exploit the DLP exposed by the compiler in multimedia applications.

Finally, multithreading, multicore or multiprocessor approaches all benefit from

DLP and ILP and, furthermore, they exploit Thread Level Parallelism (TLP) in

which large sections of the code can be executed in parallel.

This dissertation describes a hardware enhancement of a superscalar processor

to dynamically expose and exploit the DLP of codes in which the compiler failed

to detect this parallelism. This mechanism searches for vector patterns in the code

to create speculative vector instructions that will prefetch and precompute data for

non-speculative instructions. This preexecution exploits the newly discovered ILP

and DLP and thus improves the performance of applications.

1.1.1 Speculative execution

One way of optimizing execution in scenarios with limited parallelism is to include

speculative execution mechanisms in the processor. Tasks that are likely to be

executed in the future can be speculatively performed in advance to reduce the

latency of non-speculative instructions.

This way of executing instructions can produce a net increase in the processor’s

performance when speculation is correct since all the speculative work can be reused

by non-speculative instructions.

Unfortunately, when a misspeculation is detected, a mechanism for rolling back

the speculative work must be provided to ensure the code has been executed cor-

rectly.

This useless speculative execution is not for free since squashed instructions

have allocated resources and consumed energy. Therefore, it is necessary to find

Introduction 5

a trade-off between speculation, efficiency, performance and resource usage. An

excessive amount of speculative instructions can overload the execution stage of the

processor delaying non-speculative instructions and reducing performance. However,

if speculative work is negligible or non-existent and hardly increases the throughput

of the system, it may be pointless to complicate the design of the processor by

including speculative mechanisms.

Branch prediction and data prefetch are the most common speculative mecha-

nisms in current processors.

1.1.2 Vector execution

Vector processors [ea95] [Asa98] [Esp97] [LD97] [Rus78] are the best choice for exe-

cuting scientific applications in which a large amount of DLP is present, this is per-

forming the same computations over different elements in a large storage structure

such as vectors or matrices. Vector compilers [ZC90] [AK87] detect this parallelism

and pass the semantic information through a SIMD ISA to the processor. The main

characteristic of SIMD instructions is that a single instruction deals with a set of

elements in a given structure, which improves the ratio between the fetching and

execution of instructions. Therefore, vector processors rely on the vector compiler to

create a code that executes efficiently. Speculative mechanisms, other than branch

prediction, are rarely used in vector scenarios.

Furthermore, vector architectures overcome many of the problems present in su-

perscalar processors. Vector ISAs are the best and easiest way to manage large

amounts of hardware. Vector memory accesses are capable of hiding the memory

latency by efficiently using the available memory bandwidth. Finally, since condi-

tional branches can be replaced by vector mask registers and predicated execution,

branch mispredictions are reduced.

Nowadays, scientific applications are used in particular environments. The gen-

eral purpose processors that are used in personal computers are not usually used

to execute this kind of application. At this point, one may legitimately think that

6 Chapter 1.

it would be pointless to make the effort to detect and exploit DLP. However, this

is not so. A few years ago due to the evolution of the technology, a new kind of

application appeared on the scene: Multimedia Applications. These applications

transform streamed data into video, music and/or still images. In these transforma-

tion processes, as in scientific applications, the storage structures that are typically

used are vectors and matrices.

Processor manufacturers noticed this and decided to include vector-like func-

tional units, called Multimedia Extensions in general purpose processors. These

extensions are aimed at increasing the performance of multimedia applications by

exploiting the inherent DLP. MMX [Int99], SSE and SSE2 [Int02] by Intel Corp.

and 3DNow! [AMD99] by AMD are examples of this.

However, when the compiler fails to detect DLP multimedia extensions become

useless. From Chapter 3 onwards, a mechanism that dynamically exposes DLP

will be presented. This mechanism is able to create speculative vector instructions

that are executed in multimedia extensions, which boosts the performance of any

application.

1.1.3 Thesis objectives

Are integer applications really non-vectorizable? The fact that a specialized compiler

is not able to detect vector patterns does not necessarily mean that these patterns

are not present. Usually, a compiler does not have enough knowledge of a given

application to detect the underlying DLP.

In this dissertation we claim firstly that all applications, even if they are not

vectorizable, present vector patterns. Secondly, we show that these patterns can

easily be detectable at runtime using speculative techniques. We prove that mixing

the best of the two worlds (speculation and vector execution) results in an explosion

of ILP and DLP that improves the usage of the memory bandwidth and therefore

the performance of the processor.

To accomplish this we describe a novel mechanism that is able to find vector

Introduction 7

patterns dynamically in codes in which the compiler failed to detect DLP. This

mechanism takes advantage of vector functional units to speculatively execute the

vector instructions created.

We will then show that vector instructions can be dispensable. A scalar imple-

mentation of the presented mechanism, i.e. without vector resources, simplifies the

processor without penalizing the performance of the original vector mechanism.

Later on, we show that the mechanism presented can easily be tailored to deal

with critical performance degrading sources in current processors. In particular,

branch misprediction and the memory gap will be alleviated by rearranging of the

basic mechanism.

Finally, in order to show that the mechanism presented can easily be implemented

in current processors, we describe successive power and resource aware refinements

of the mechanism.

1.2 THESIS OVERVIEW

This dissertation describes all the work done in this thesis: firstly, designing and

improving the Speculative Dynamic Vectorization (SDV) mechanism, and secondly,

rearranging the mechanism to alleviate the main sources of performance degradation

in current superscalar processors.

For the sake of readability, we base the explanation of the following sections on

the code in Figure 1.1.

1.2.1 Speculative dynamic vectorization

We motivate this thesis providing statistics that show that, on average, in codes

compiled for a superscalar processor, independently of the nature of the application,

30% of the scalar instructions can be translated into vector code. The first [PGV02]

and second Speculative Dynamic Vectorization mechanisms developed in this the-

sis are described. These mechanisms will speculatively create vector instructions,

8 Chapter 1.

for (i=0; i<N; i++) I0: MOV R4, 0

{ I1: LD R1, R0[n]

a+=elem->n; I2: ADD R2, R2, R1

if (a%2==0) I3: AND R3, R2, 0x1

{ I4: CMP R3, 0

a++; I5: BNE I7

} I6: INC R3

a+=b[i]; I7: LD R5, b[R4]

elem=elem->next; I8: ADD R3, R3, R5

} I9: LD R0, R0[next]

I10: INC R4

I11: CMP R4, N

I12: BL I1

(a) Original code (b) Assembler transformation

Figure 1.1: Example code

Introduction 9

I0: MOV R4, 0 I0: MOV R4, 0 I0: MOV R4, 0

I1: LDV V1, R0[n] I1: LD R1, R0[n] I1: LDV V1, R0[n]

I2: ADDVS V2, R2, V1 I2: ADD R2, R2, R1 I2: ADDVS V2, R2, V1

I3: ANDV V3, V2, 0x1 I3: AND R3, V2, 0x1 I3: ANDV V3, V2, 0x1

I4: CMPV V3, 0 I4: CMP R3, 0 I4: CMPV V3, 0

I5: BNE I7 I5: BNE I7 I5: BNE I7

I6: INCV V3 I6: INC R3 I6: INCV V3

I7: LDV V5, b[R4] I7: LDV V5, b[R4] I7: LD R5, b[R4]

I8: ADDV V3, V3, V5 I8: ADDV R3, R3, V5 I8: ADDV R3, V3, R5

I9: LD R0, R0[next] I9: LD R0, R0[next] I9: LD R0, R0[next]

I10: INC R4 I10: INC R4 I10: INC R4

I11: CMP R4, N I11: CMP R4, N I11: CMP R4, N

I12: BL I1 I12: BL I1 I12: BL I1

(a) Dynamic Vectoriza-

tion result code

(b) CI-selection code (c) Memory gap selec-

tion code

Figure 1.2: Possible transformations of the DV mechanism

whenever a vector pattern is detected. For the mechanisms, a vector pattern begins

with a strided load.

Furthermore, we evaluate the mechanisms for a wide range of configurations

enumerating the sources of benefit: prefetch, preexecution, DLP efficiency through

wide resources and virtual enlargement of the instruction window.

In the example code in Figure 1.1 a vector compiler does not create vector code

since it does not know a priori, at compile time, the memory position for every elem

of the structure. However, this detection can easily be performed at runtime since the

memory address of every elem is known. The procedure is simple. The Speculative

Dynamic Vectorization mechanism studies the effective addresses of every executed

load and as soon as a strided pattern is detected, for example the strided load in

instruction I1, a speculative vector instruction is created. Dependent instructions

(I2, I3, I4, I6, I7 and I8) are also vectorized by propagating the characteristic of

”vectorization” down the dependence graph. The resulting code is shown in Figure

1.2(a). Further details are available in Chapter 3.

10 Chapter 1.

1.2.2 Reducing the penalty of branch mispredictions

We show that the SDV mechanism can easily be re-targeted to alleviate the effects

of some performance degrading sources in current processors.

The mechanism is tailored to select control-flow and data independent instruc-

tions for vectorization [PGV05a]. We introduce the concept of Selective Speculative

Dynamic Vectorization. In this case, only Control-Flow independent instructions

are selected for vectorization.

This selection decreases the number of speculative computations the mechanism

performs and thus reduces the resource requirements.

Moreover, we justify why control-flow and data independent instructions are the

best choice for applying the SDV mechanism.

The Control-Flow independent scheme will only vectorize those strided loads

whose dependent instructions are control-independent. In the example code in Fig-

ure 1.1, Instruction I6 and all its dependent instructions are control-dependent.

Therefore, the selection mechanism will prevent these instructions from being vec-

torized.

To accomplish this, only instructions after the Reconvergence Point (instruction

I7) of a hard-to-predict branch (instruction I5) are considered vectorization. Of

these instructions, only those that are data-independent (I7 and I8) will be vector-

ized. To vectorize these instructions, the mechanism will vectorize the strided load

that creates the source operands of these instructions. The resulting code is shown

in Figure 1.2(b). Further details can be found in Chapter 4.

1.2.3 Overcoming the memory gap

The memory gap [WM95] is one of the most critical performance degrading sources

in current processors.

We show how to take advantage of the stall cycles of the processor that result

from a long latency load.

Introduction 11

We describe the third implementation of the Speculative Dynamic Vectorization

mechanism. In this case, a small separated core that implements the mechanism is

presented.

To alleviate the memory penalty we provide two different mechanisms [PGV05c]

[PGV04]. The first mechanisn is based on the control-flow independence mecha-

nism but selection and vectorization are performed as soon as the delinquent load is

detected. The second mechanism waits until an L2 miss load becomes the oldest in-

struction in the instruction window to fire the vectorization. Both mechanisms only

vectorize the independent instructions of the L2 miss load that fired the mechanism.

We show in the evaluation of this part that even if the performance obtained for

every mechanism is nearly equal, the second mechanism is the best choice since it

is resource-aware.

Supposing that in Figure 1.1 instruction I7 is the L2 miss load, the mechanism

will only select those instructions I1, I2, I3, I4, I6 and I8 that are independent of

that delinquent load. As in the other mechanisms, only instructions dependent of a

strided load can be vectorized. Figure 1.2(c) shows the final transformation of the

code in Figure 1.1 when the selection scheme is applied to alleviate the memory gap.

Further details can be found in Chapter 5.

1.2.4 Cost-effective dynamic vectorization

Speculation mechanisms are not perfect. Misspeculations can degrade performance

if they are not correctly and efficiently rolled back.

In this chapter the main sources of misspeculations of the Speculative Dynamic

Vectorization mechanism are enumerated. Heuristics for reducing these sources

are presented and evaluated to enhance the effects of the dynamic vectorization

mechanisms[PGV05b].

12 Chapter 1.

1.2.5 Mechanism comparison

In order to conclude this dissertation, since many implementations are described,

we provide a brief comparison to evaluate which is the best mechanism in terms of

performance, hardware requirements and energy consumption.

Since the motivation for every proposal is different, a global ranking of the mech-

anisms will not be provided.

1.3 STRUCTURE OF THIS WORK

The structure of this dissertation is as follows:

• Chapter 2 presents our simulation environment. The reference platform for

this work is presented, as well as the benchmarks and tools used in this thesis.

• Chapter 3 describes the basic Speculative Dynamic Vectorization mechanism.

The second part of the chapter justifies and presents an evolved scalar ver-

sion of the basic mechanism. A completed evaluation of the scalar version is

provided in the third part of the chapter.

• Chapter 4 introduces the concept of Selective Dynamic Vectorization. This

chapter proposes some modifications to the mechanism to alleviate branch

penalties by detecting and preexecuting control-flow independent instructions.

• Chapter 5 focuses on the memory gap. To alleviate this problem we provide a

set of mechanisms that exploit the processor stall cycles caused by an L2 miss

load to virtually enlarge the instruction window.

• Chapter 6 analyzes the sources of misspeculation in the mechanism. Based on

this study, a set of heuristics for reducing the register requirement of the basic

DV mechanism will be provided. This reduction will be reflected in terms of

extra instructions.

Introduction 13

• Chapter 7 summarizes this dissertation by comparing all the mechanisms pre-

sented in this dissertation in terms of hardware, performance and energy con-

sumption.

• Chapter 8 concludes this dissertation by remarking on the most important

points of this thesis and providing a brief future work.

14 Chapter 1.

Chapter 2

Platform and Benchmarks

Platform and Benchmarks 17

2.1 INTRODUCTION

This chapter describes the baseline processors in our study. Firstly, we consider

that the baseline processor is a superscalar processor with vector capabilities. It

is assumed that these extensions are used to execute SIMD instructions belonging

to the processor’s ISA. It is out of the scope of this dissertation to simulate these

instructions. Instead, we assume that these instructions are available but that the

compiler has not been able to find vector patterns in the code to insert them.

The second proposal of the Speculative Dynamic Vectorization mechanism is

based on a superscalar processor without vector capabilities. We will show in sub-

sequent chapters that vector resources are indeed not needed to maintain the per-

formance benefits of the first mechanism.

Later on, we will discuss the reason behind the choice of benchmarks. The main

characteristics of each set of benchmarks will be explained to justify the following

evaluations. We will see why SpecINT2K and SpecFP2K are radically different and

how their characteristics fit into the scope of this thesis.

2.2 REFERENCE PLATFORM

As mentioned in the introduction, this dissertation presents a mechanism that is

able to create speculative vector instructions for prefetching and precomputing data

for non-speculative instructions. The first design of the mechanism is built on top

of an out-of-order superscalar processor with vector capabilities. A scheme of this

processor is depicted in Figure 2.3.

2.2.1 Scalar pipeline

The scalar pipeline of the processor is divided into 6 stages: fetch, decode, issue,

execution, writeback and commit. All the stages, except execution, take 1 cycle to

complete. Execution latency depends on the instruction.

18 Chapter 2.

Fetch

logic

Fetch

logic
ICacheICache L/SQL/SQ

Decode

logic

Decode

logic

ROBROB

Commit

logic

Commit

logic

DCacheDCache

Scalar

register

file

Scalar

register

file

Issue

queues

Issue

queues Vector

register

file

Vector

register

file

Vector

functional

units

Vector

functional

units

Scalar

functional

units

Scalar

functional

units

Rename

map table

Rename

map table

Figure 2.3: Baseline processor with vector capabilities

As we will show in subsequent chapters, the Speculative Dynamic Vectorization

mechanism can easily be accommodated in this pipeline. The main structures (stride

predictor and SRSMT) of the SDV mechanism are out of the critical path, which

allows long latencies when they are being accessed. Furthermore, since they are

addressed with the PC of an instruction, and the data provided must be supplied

to the decode logic, the access to these structures can be overlapped with the fetch

and decode of the instructions. Therefore, the access to the DV structures can be

overlapped with the fetch and decode of the instructions.

Nowadays technology allows latencies of 2 cycles when structures of 8Kbytes

in a 3Ghz processor are accessed. In the DV mechanism, the largest structure

measures 10Kbytes and it is accessed from the fetch to the decode stage, which

means that there is a minimum latency of 2 cycles. Superpipelining of these stages

allows longer latencies for these structures, which leads us to believe that our design

is easily affordable for current and future processors. In fact, figures obtained with

Cacti3.0 [SJ01] show that these structures can be accommodated in a 5Ghz processor

implemented in 0.13 nanometers (IBM-Sony [ea05] plan to release the The Cell

processor with a 4.5Ghz clock frequency). To standardize the baseline, we will

suppose that the processor’s clock raises 2.4Ghz.

The configuration of the scalar pipeline is summarized in Table 2.1. Parameters

Platform and Benchmarks 19

Parameter Value

Fetch Width 8 instructions (up to 1 taken branch)

I-Cache 64KB, 2-way set associative, 64 byte lines, 1 cycle

hit, 6 cycle miss time

Branch Predictor Gshare with 64K entries

Inst. Window Size 256 entries

Load/store queue 64 entries with store-load forwarding

Issue mechanism 8-way out of order issue; loads may execute when

prior store addresses are known

Scalar functional units

(latency in brackets)

6 simple int(1); 3 int mult/div (2 for mult and 12

for div); 4 simple FP(2); 2 FP mult/div (4 for mult

and 14 for div); 1 load/store

D-cache 64KB, 2-way set associative, 32 byte lines, 2 cycle

hit time, write-back, 10 cycle miss time, up to 16

outstanding misses

L2 cache 256KB, 4-way set associative, 64 byte lines, 10 cy-

cle hit time, 1000 cycle miss time

Commit Width 8 instructions

Table 2.1: Configuration parameters

remain unchanged for all evaluations except when explicitly stated otherwise.

2.2.2 Vector capabilities

It may seem striking that the baseline processor presents real vector resources and

not just multimedia extensions. One of the main drawbacks of current multimedia

extensions is the limited range of computable values that they allow (only up to 32

bits can be used per value). The lack of 64-bit support should not be blamed on

the processors’ designers: the main target for multimedia extensions is mainstream

20 Chapter 2.

multimedia software, especially 3D games, in which the precision difference between

32-bit and 64-bit FP computations would hardly be noticeable. However, for sci-

entific applications, in which precision is important, more powerful floating point

functional units are required. For this reason, we really believe that future processors

will enhance their multimedia extensions to provide more developed vector support.

A detailed scheme of the processor’s execution engine is provided in Figure 2.4.

��������
���	
����
�	���
�����������
�	���
��
�����
�
�

������ ����� �����
������ ����� �����

vector
functional

unit

vector
functional

unit

vector
functional

unit

vector
functional

unit

vector
functional

unit

vector
functional

unit

vector
functional

unit

vector
functional

unit

vector
functional

unit

vector
functional

unit

vector
functional

unit

scalar
functional

unit

Figure 2.4: Detail of the execution engine

To completely separate the scalar and vector engine, two issue queues are im-

plemented, one for scalar instructions and the other for vector instructions. These

queues are not connected and therefore bypasses among instructions of different

kinds are disallowed. Scalar instructions only get vector results from the vector reg-

ister file. Vector instructions that need scalar values, obtain them from the scalar

register file.

The baseline processor has a complete vector register file with 64-bit 4 element

vector registers connected to the vector and scalar functional units through an issue-

bound crossbar. Vector functional units are designed as scalar functional units, i.e.

only one element per register can be computed at once. Neither vector nor scalar

functional units can write results in the other register file.

From this design one can see that the execution engine has become extremely

Platform and Benchmarks 21

complex since two kinds of register files and functional units are interconnected in

order to extend the processor with vector capabilities. This will be explained in

further detail in Chapter 3 and will justify the complete removal of these vector

extensions.

2.3 BENCHMARKS

Benchmark behavior definition is an important aspect that must be defined to un-

derstand how performance is achieved. The base Dynamic Vectorization mechanism

described in this thesis is not tailored to fulfill the characteristics of a particular kind

of application but rather it is designed to work in a wide range of different codes.

The following rearrangements of the technique exploit relevant characteristics

that must be taken into account.

Our performance figures are obtained by simulating the whole Spec2K bench-

mark suite. This set of applications includes a wide range of codes with different

behaviors, although they can be grouped into two subsets: irregular and regular

codes. A summary of their main characteristics is provided.

2.3.1 Irregular codes

This group includes the most typical applications used in desktops. Since this is a

large group it must be taken into account when our mechanism is being tested. It

would not be advisable that for Dynamic Vectorization to lose performance when it

executes these applications since this would decrease the chances of incorporating

the mechanism into general purpose processors, such as those that are provided in

desktop computers.

Due to their behavior, this group of codes is the main challenge and the most

important justification for the mechanisms proposed. The most important charac-

teristics of these codes are as follows:

• Loops: Small with an irregular number of iterations (6,5 iterations on average).

22 Chapter 2.

Thanks to compilation optimization techniques such as inlining, loop bodies

can be large.

• Branches: Unpredictable behavior for a considerable percentage of branches:

about 4% of the total.

• DLP: Memory structures are, in most cases, small and easily allocatable in

the available on-chip memory. L2 misses are not frequent.

• Vectorization: Memory instructions do not present vector patterns at compile

time. Vectorization is not possible.

• Benchmarks: SpecINT2000 [Spe00].

2.3.2 Regular codes

Scientific and multimedia applications are the most representative sets that consti-

tute this group. Scientific applications are employed in very restricted environments

but multimedia is present in the day-to-day use of a desktop computer. Audio and

video stream, 3D games and photo editors are typical applications in this group.

Since these applications are easily vectorizable, one may argue that using Dynamic

Vectorization in this context is tricky. Note that these applications are basically

compiled with a scalar compiler that is not good at detecting vector patterns. How-

ever, it is possible that the source code of vectorizable applications will not be

available for recompiling it to allow vector support. For these reasons, Dynamic

Vectorization could help by creating vector code at runtime in order to use those

idle multimedia extensions.

The main characteristics of this group of applications are as follows:

• Loops: Large and usually with a constant number of iterations. The loop of

the body consists of hundreds of instructions.

Platform and Benchmarks 23

• Branches: Most of the branches are easily predictable since they are branches

that finish the loop body.

• DLP: Large vector and/or matrices are the most typical structures found. DLP

is clearly present since loops traverse these structures element by element.

• Vectorization: Since loops are regular and DLP is exposed in high level lan-

guages, vector compilers are very effective in creating optimized vector code.

• Benchmarks: SpecFP2000 [Spe00].

2.4 SIMULATION FRAMEWORK

To evaluate our proposal we use SimpleScalar v3.0d [BA97] as a microarchitec-

tural simulator. SimpleScalar simulates an out-of-order superscalar processor with

a pipeline of 6 stages: fetch, decode, issue, execution, writeback and commit. Each

stage takes 1 cycle, except for execution whose latency depends on the instruction.

This simulator has been extended to implement the mechanisms described.

SimpleScalar is able to execute Alpha applications by emulating the ISA, which

is a highly representative instruction set architecture of a current RISC processor.

In order to generate code for it, we used gcc 2.8.1 for Digital Unix. All Spec2K

benchmarks were compiled with all the optimizations enabled, using the following

flags: -non shared -ifo -O3.

For simulations, we chose the following procedure: for every benchmark we

skipped the initialization part and simulated the next 100M of instructions. No

Spec was executed until completion.

24 Chapter 2.

Chapter 3

Speculative Dynamic

Vectorization

Speculative Dynamic Vectorization 27

3.1 INTRODUCTION

This chapter motivates the basis of the work developed in this thesis. Figures

will show that both irregular and regular codes present at runtime enough vector

patterns, represented as strided loads, to make dynamic vectorization worth. As

said in Chapter 2 all the benchmarks are compiled with a superscalar compiler.

This means that we are simulating that the compiler has not been able to find

vector patterns to create vector instructions even if the processor provides vector

resources.

The two main implementations of the proposal are provided. The first archi-

tecture is based on the baseline with vector resources. The second overcomes the

hardware drawback of having two different register files. Moreover, vector functional

units are also removed from the baseline. This new layout oblige to change how the

mechanism works, although the philosophy underneath remains unmodified. In this

case, the mechanism will not vectorize but replicate.

3.2 MOTIVATION

Strided memory loads [Gon00] are the instructions that fire the proposed speculative

dynamic vectorization mechanism. To identify a strided load, at least three dynamic

instances of the static load are needed. The first dynamic instance sets the first

memory address that is accessed. The second dynamic instance computes the initial

stride, subtracting the memory address of the first dynamic instance from the current

address. The third dynamic instance checks if the stride is repeated computing the

current stride and comparing it with the first computed stride.

Figure 3.5 shows the stride distribution for SpecINT2K and SpecFP2K (for this

figure, the stride is computed dividing the difference of memory addresses by the

size of the accessed data).

As shown in Figure 3.5, the most frequent stride for SpecINT2K and SpecFP2K

is 0. This means that dynamic instances of the same static load access the same

28 Chapter 3.

Stride Distribution

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9
Number of elements

P
er

ce
n

ta
g

e
SpecInt
SpecFP

Figure 3.5: Stride distribution for Spec2K

memory address. For SpecINT this stride is due, mainly, to the accesses of local

variables and memory addresses referenced through pointers. For SpecFP the stride

0 is mainly due to spill code.

Usually, for SpecFP, the most frequent stride is stride 1 because these appli-

cations execute the same operations over every element of some array structures.

However, due to the code optimizations [BGS93] [Ken78] included by the scalar

compiler, such as loop unrolling, some stride 1 accesses become stride 2, 4 or 8.

The bottom line of this statistics is that strided accesses are quite common both in

integer and FP applications.

The results in Figure 3.5 also suggest that a wide bus to the L1 data cache can

be very effective at reducing the number of memory requests. For instance, if the

cache line size is 4 elements, multiple accesses with stride lower than 4 can be served

with a single request if the bus width is equal to the line size. These types of strides

represent 97,9% and 81,3% of the total strided loads for SpecInt2K and SpecFP2K

respectively.

Speculative Dynamic Vectorization 29

3.3 RELATED WORK

Dynamic vectorization is not a very extended topic at literature. In fact, only two

proposals can be referred as related work on this subject: dynamic vectorization in

trace processors and the CONDEL architecture.

Vajapeyam [VJM99] presents a dynamic vectorization mechanism based on trace

processors. The mechanism executes in parallel some iterations of a loop. This

mechanism tries to enlarge the instruction window capturing in vector form the

body of the loops. The whole loop body is vectorized provided that all iterations

of the loop follow the same control flow. The mechanism proposed in this paper is

more flexible/general in the sense that it can vectorize just parts of the loop body

and may allow different control flows in some parts of the loop.

The CONDEL architecture [Uht92] proposed by Uht captures a single copy of

complex loops in a static instruction window. It uses state bits per iteration to

determine the control paths taken by different loop iterations and to correctly enforce

dependences.

The use of wide buses has been previously considered to improve the efficiency

of the memory system for different microarchitectures [RTDA97][WD94b][WO01].

Rotenberg et al. present a mechanism to exploit control flow independence in

superscalar [RJS99] and trace [RS99] processors. Their approach is based on iden-

tifying control independent points dynamically, and a hardware organization of the

instruction window that allows the processor to insert the instructions after a branch

misprediction between instructions previously dispatched, i.e., after the mispredicted

branch and before the control independent point.

Lopez et al. [LLVA98] propose and evaluate aggressive wide VLIW architectures

oriented to numerical applications. The main idea is to take advantage on the

existence of stride one in numerical and multimedia loops. The compiler detects

load instructions to consecutive addresses and combines them into a single wide load

instruction that can be efficiently executed in VLIW architectures with wide buses.

30 Chapter 3.

The same concept is applied to groups of instructions that make computations.

In some cases, these wide architectures achieve similar performance, compared to

architectures where the buses and functional units are replicated, but at reduced

cost.

3.4 OVERVIEW

Speculative dynamic vectorization begins when a strided load is detected. When

this happens, a vectorized instance of the instruction is created and it is executed in

a vector functional unit storing the results in a vector register. Next instances of the

same static instruction are not executed but they just validate if the corresponding

speculatively loaded element is valid. This basically consists in checking that the

predicted address is correct and the loaded element has not been invalidated by a

succeeding store. Every new instance of the scalar load instruction validates one

element of the corresponding destination vector register.

Arithmetic instructions are vectorized when any of the source operands is a

vector register. Succeeding dynamic instances of this instruction just check that the

corresponding source operands are still valid vector elements (details on how the

state of each element is kept is later explained).

When a validation fails, the current and following instances of the corresponding

instruction are executed in scalar mode, until the vectorizing engine detects again

a new vectorizable pattern. With this dynamic vectorization mechanism, as shown

in Figure 3.6, with unbounded resources, 29% of the SpecINT2K instructions and

30% of the SpecFP2K instructions, on average, can be vectorized. It is important

to note that the percentage of vectorizable instructions varies significantly from one

benchmark to another.

The following example shows how the mechanism works. Imagine we have a code

like that in Figure 3.7.

Figure 3.7(a) shows the typical code a superscalar compiler will create. In this

Speculative Dynamic Vectorization 31

Percentage of vectorizable instructions

0%

10%

20%

30%

40%

50%

60%

70%

80%

am
m

p

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a

3d

ga
lg

el

ga
p

g
cc

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

A
LL IN

T

F
P

Spec2K

%
 in

st
ru

ct
io

n
s

Figure 3.6: Percentage of vectorizable instructions

I1: LD R1, a[R0] I1: LD V1, a[R0]

I2: LD R2, b[R1] I2: LD V2, b[V1]

I3: ADD R3, 3, R1 I3: ADD V3, 3, V1

I4: ADD R4, R1, R2 I4: ADD V4, V1, V2

I5: ST c[R0], R3 I5: ST c[R0], V3

I6: ADD R0, 4 I6: ADD R0, 4

I7: CMP R0, 1000 I7: CMP R0, 1000

I8: JNE I1 I8: JNE I1

(a) Original code (b) Transformed code

Figure 3.7: Dynamic vectorization transformation

code, the stride predictor will detect instruction I1 as a strided load, which offset is

4 bytes, but not I2 since it presents an irregular access pattern. As soon as the DV

mechanism detects that I1 is a strided load, a vector register (V1 in the example) is

allocated. Dependent instructions of this load (I2, I3 and I4) will be also vectorized

since the ”vectorization” characteristic is propagated down the dependence graph.

A vector register will be also allocated for these instructions.

Stores are not vectorized since it could be difficult to rollback a memory change.

But the mechanism must be able to supply the corresponding position inside a vector

32 Chapter 3.

register to these instructions. For this reason, the renaming logic of the decode stage

is modified to deal with both vector and scalar registers.

Branches are neither vectorized to simplify the design of the mechanism.

After applying our mechanism to code in Figure 3.7(a) the new code looks like

the one shown in Figure 3.7(b) where vector instructions are created to precompute

speculative data for being used later by their scalar counterpart.

3.5 FIRST APPROACH: DYNAMIC VECTORIZATION

WITH VECTOR RESOURCES

As previously said, the first implementation of the mechanism is built on a super-

scalar processor with vector capabilities to execute the speculatively created vector

instructions.

3.5.1 Instruction vectorization

The first step to create vector instances of an instruction is detecting a strided load.

To do this, it is necessary to know the recent history of memory accesses for every

load instruction. To store this history the processor includes a stride predictor where,

for every load, the PC, the current address, the stride and a confidence counter are

stored as shown in Figure 3.8.

PC Last Address Stride Confidence Counter

Figure 3.8: Entry of the stride predictor

When a load instruction is decoded, it looks for its PC in the stride predictor.

If the PC is not in this table, the last address field is initialized with the current

address of the load and the stride and confidence counter fields are set to 0.

Next dynamic instances compute the new stride and compare the result with

the stride stored in the table, increasing the confidence counter when both strides

Speculative Dynamic Vectorization 33

are equal or resetting it to 0 otherwise. When the confidence counter is 2 or higher,

a new vectorized instance of the instruction is generated. The last address field is

always modified with the current memory address of the dynamic instance.

When a vectorized instance of an instruction is generated, the processor allocates

a vector register to store its result. The processor maintains the associations of

vector registers and vector instructions in the Vector Register Map Table. This

table contains, for every vector register the PC of the associated instruction, the

vector element (offset) corresponding to the last fetched scalar instruction that will

validate (or has validated) an element of this vector, the source operands of the

associated instruction, and, if the instruction is vectorized with one scalar operand

and one vector operand, the value of the scalar register is also stored, as shown in

Figure 3.9.

PC Offset Source
Operand 1

Source
Operand 2

Value

Figure 3.9: Entry of the Vector Register Map Table

Every time a scalar instruction is fetched, this table is checked and if its PC

is found the instruction is turned into a validation operation. In this case, the

offset field determines which vector element must be validated and then, the offset

is incremented. In the case that the offset is equal to the vector register length,

another vectorized version of the instruction is generated and a free vector register

is allocated to it. The VRMT table entry corresponding to this new vector register

is initialized with the content of the entry corresponding to the previous instance,

excepting the field offset, which is set to 0.

The register rename table is also modified (see Figure 3.10) to reflect the two kind

of physical registers (scalar and vector). Every logical register is mapped to either a

physical scalar register or a physical vector register, depending on whether the last

instruction that used this register as destination was vectorized or not. Every entry

of the table contains a V/S flag to mark if the physical register is a scalar or a vector

34 Chapter 3.

register and the field offset indicates the latest element for which a validation has

entered in the pipeline.

PC Offset Source
Operand 1

Source
Operand 2

Value

Figure 3.10: Entry of the modified rename map table

When every instruction is decoded the V/S flags (vector/scalar) of their source

operands are read and if any of the two is set to V, the instruction is vectorized.

In parallel, the VRMT table is accessed to check if the instruction was already

vectorized in a previous dynamic instance. If so, the instruction is turned into a

validation operation. Validation is performed by checking if the source operands in

the VRMT table and those in the rename table are the same. If they differ, a new

vectorized version of the instruction is generated. Otherwise, the current element

pointed by offset is validated and this validation is dispatched to the reorder buffer

in order to be later committed (see next section for further explanation). Besides, if

the validated element is the last one of the vector, a new instance of the vectorized

instruction is dispatched to the vector data-path.

Arithmetic instructions that have been vectorized with one vector source operand

and one scalar register operand, wait in the decode stage, blocking the next instruc-

tions, until the value of the physical register associated to the scalar source operand

is available. Then, it checks if the value of the register matches the value found in the

VRMT and if so, a validation is dispatched to the reorder buffer. Otherwise, a new

vectorized instance of the instruction is created. This stalls do not impact much

performance since the number of vectorized instructions with one scalar operand

that is not ready at decode is low.

Note that the cost of a context switch is not increased since only the scalar state of

the processor needs to be saved. The additional structures for vectorization are just

invalidated on a context switch. When the process restarts again the vectorization

of the code starts from scratch at the point where the process was interrupted.

Speculative Dynamic Vectorization 35

3.5.2 Vector registers

Vector register is one of the most critical resources in the processor because they

determine the number of scalar instructions that can be vectorized. Vector registers

can be regarded as a set of scalar registers grouped with the same name.

A vector register is assigned to an instruction in the decode stage when this

instruction is vectorized. If no free vector register is available, the instruction is not

vectorized, and continues executing in a scalar mode.

To manage the allocation/deallocation of vector registers, each register contains

a global tag and each element includes a set of flags of bits as shown in Figure 3.11.

Position 1 Position 2 ... Position n MRBB

DATA V R U F

Figure 3.11: Modified vector register

The V (Valid) flag indicates whether the element holds committed data. This

bit is set to 1 when the validation associated to the corresponding scalar instruction

commits.

The R (Ready) flag indicates whether the element has been computed. Depend-

ing on the kind of instruction the data will be ready when is brought from memory

or computed by a vector functional unit.

When a validation of an element has been dispatched but not committed yet,

the U (Used) flag is set to 1. This prevents the freeing of the physical register until

the validation is committed (details on the conditions to free a vector register are

described below).

The F (Free) flag indicates whether the element is not longer needed. This flag is

set to 1 when the next scalar instruction having the same logical destination register

or its corresponding validation commits.

36 Chapter 3.

A vector register will be release when all its computed elements have been freed

(i.e. are not needed any more). Besides, a register is also released if all validated

elements are freed and no more elements need to be produced. In order to estimate

when no more elements will be computed, we assume that this will happen when

the current loop is terminated. For this purpose, the processor includes a register

that is referred to as GMRBB (Global Most Recent Backward Branch) that holds

the PC of the last backward branch that has been committed [TG98]. Each vector

register stores in the MRBB (Most Recent Backward Branch) tag the PC of the

most recently committed backward branch when the vector register was allocated.

This backward branch, usually, coincides with the last branch of a loop, associating

a vector register to an instruction during some iterations.

A vector register is freed when one of the following two conditions holds:

1. All vector elements have the flags R and F set to 1. This means that all

elements have been computed and freed by scalar instructions.

2. Every element with the flags V set, has the flag F set, and all the elements have

the flag R set and flag U cleared, and the content of the tag MRBB is different

of the register GMRBB. This means that all the validated elements have been

freed. Furthermore, all elements have been computed and no element is in use

by a validation instruction. It is very likely that the loop where the vector

operation that allocated the register was, has been terminated.

3.5.3 Vector data path

Vector instructions wait in the vector instruction queues until their operands are

ready and a vector functional unit is available (i.e. instruction are issued out-of-

order). Vector functional units are pipelined and hence can begin the computation

of a new vector element every cycle. Every time an element is calculated, the vector

functional unit sets to 1 the flag R associated to that position, allowing others

functional units to use it.

Speculative Dynamic Vectorization 37

Vector functional units can compute operations having one vector operand and

one scalar operand. To do this, the functional units must have access to the scalar

register file and the vector register file. In the case of the scalar register, the element

is read just once.

Note that some vector instruction can be executed having a different initial

offset for their source vector operands. This can happen, for example, when two

load instructions begin vectorization in different iterations and their destination

vector registers are source operands of an arithmetic instruction. To deal with these

cases, vector functional units compare these offsets to obtain the greatest. The

difference between this offset and the vector register length determines the number

of elements to compute. Fortunately, the percentage of the vector instructions whose

source operands’ offsets are different from 0 is very low, about 4,5%.

3.5.4 Branch mispredictions

and control-flow independence

When a branch misprediction is detected, a superscalar processor recovers the state

of the machine by restoring the register map table and squashing the instructions

after the branch.

In the proposed microarchitecture, the scalar core works in the same way as a

conventional processor, i.e. a precise state is recovered, but vector resources are not

modified: vector registers are not freed, and no vector functional unit aborts the

execution because they can be computing data that can be used in the future. The

objective is to exploit control-flow independence. When the new path enters again

in the scalar pipeline, the source operands of each instruction will be checked again,

and if it happens that the vector operands are still valid, the instruction does not

need to be executed. Our studies show that the percentage of instructions in the 100

instructions (100 is a size arbitrarily chosen) that follow a mispredicted branch that

do not need to be executed since they were executed in vector mode and continue to

38 Chapter 3.

have the same source operands after the misprediction, are 20% for SpecInt2K and

6% for SpecFP2K. SpecFP percentage is lower since branches are easily predictable

so, control-flow independence is hardly present.

Note that when a scalar instruction in a wrongly predicted speculative path is

vectorized, the vector register may remain allocated until the end of the loop to

which the instruction belongs. This wastes vector registers but fortunately only

happens for less than 1% of the vector instructions in our benchmarks.

3.5.5 Memory disambiguation

To ensure memory disambiguation, stores are critical instructions because these

instructions make changes in memory that the processor cannot recover. For this

reason, a store instruction modifies the memory hierarchy only when it commits.

A vectorized load copies memory values into a register. However, there may be

intervening stores before the scalar load operation that would have made the access

in a non-vectorized implementation. Thus, stores must check the data in vector

registers to maintain coherence.

For this purpose, every vector register has two fields, the first and the last address

of the corresponding memory elements (used only if the associated vector instruction

is a load) to indicate the range of memory positions accessed. Stores check whether

the addresses that are going to modify are inside the range of addresses of any vector

register. If so, the VRMT entry associated to this vector register is invalidated.

Then, when the corresponding scalar instruction is decoded, it will not find its

PC in the VRMT and another vector instance of this instruction will be created.

Besides, all the instructions following the store are squashed.

Fortunately, the percentage of the stores whose memory address is inside the

range of addresses of any vector register is low (4,5% for SpecInt and 2,5% for

SpecFP).

Due to the complexity of the logic associated to store instructions, only two store

instructions can commit in the same cycle.

Speculative Dynamic Vectorization 39

3.5.6 Wide bus

To exploit spatial locality a wide bus of 4 words has been implemented. This bus

is able to bring a whole cache line every time the cache is accessed. In parallel,

the range of addresses held in this cache line are compared with the addresses of

pending loads, and all loads that access to the same line are served from the single

access (in our approach, only 4 pending loads can be served at the same cycle). This

organization has been previously proposed elsewhere [LLVA98] [RTDA97] [WD94a]

[WO01].

Wide buses are especially attractive in the presence of vectorized loads, since

multiple elements can be retrieved by a single access if the stride is small, as it is in

most cases.

3.6 SECOND APPROACH: DYNAMIC

VECTORIZATION WITH SCALAR RESOURCES

3.6.1 Motivation

Up to this point, the basic dynamic vectorization mechanism has been presented.

Following mechanisms maintain the philosophy of the technique but are modified to

simplify the processors’s design.

One may think that with this mechanism the processor has been excessively

complicated. But it is not. The new structures added present a regular layout and

the access time fits comfortably in the cycle time of the reference processor. In fact,

the critical point of this design is located in the baseline, in particular, the crossbar

among register files and functional units [PJS97]. Since the vector replicas create

values for scalar instructions, a movement between banks is needed to supply that

data. So, a communication between both the scalar and vector register file and the

scalar and vector functional units is implemented through a crossbar.

For our simulations we suppose that this crossbar is easily traversable in a neg-

40 Chapter 3.

ligible amount of time. But a deeper study of this structure reveals that this sup-

position is wrong. In multigigahertz scenarios where some stages of the pipeline are

exclusively used to send and receive signals, a crossbar with these characteristics

cannot be implemented efficiently.

For this reason, we modify the original design to remove this crossbar. To accom-

plish this, we keep the same philosophy (speculative precomputation of data through

vector patterns) but now, instead of creating vector instructions, the mechanism will

replicate instructions. This means that, whenever an instruction is vectorized, scalar

copies of this instruction will be created. Furthermore, instead of allocating one vec-

tor register per vectorizable instruction, a set of scalar registers will be used. So,

from this point onwards, vectorization and replication will be used for the same

concept: creation of scalar copies of one vectorizable instruction.

Note that this implementation can overload the issue logic. Since many instruc-

tions are created per vectorizable instruction, the issue queue can fill with speculative

instructions delaying the non-speculative ones. But it is more preferable this effect

than to impact the cycle time and the complexity of the processor with a hard-to-

implement crossbar. Later on we will show that some modifications of the issue

queue are needed to prioritize the non-speculative instructions.

Since vector register management is different from set of scalar register manage-

ment, some structures of the original mechanism must be adapted to track the state

of every scalar register allocated for replication.

3.6.2 Overview

Figure 3.12 shows the main difference between vectorizing and replicating an in-

struction.

The load instruction (Load R1, a(RO)) has been as a strided load. In the original

mechanism, a vector register is allocated and a vector instruction is speculatively

created to precompute data for its counterpart instruction.

In the new implementation of the mechanism, a set of registers is allocated.

Speculative Dynamic Vectorization 41

Furthermore, as many copies as allocated registers are created to precompute data.

Every copy has its own destination registers to hold. In the example in Figure 3.12,

four copies of the load instruction are created. Notice that every copy is unique: all

them have a different destination register and a different effective address (computed

with the stride predictor).

Load R1, a(R0)

Load V1, a(R0), 4

Load RT1, a(R0)
Load RT2, a(R0+4)
Load RT3, a(R0+8)
Load RT4, a(R0+12)

vectorization

replication

Figure 3.12: Vectorization and Replication

3.6.3 Adapting the Dynamic Vectorization mechanism

Following subsection describe the structure adaptation to the new version of the

mechanism where no vector capabilities are available.

The Scalar Register Set Map Table

Once a strided load is detected, multiple instances of it are speculatively dispatched

to the issue queue. Each dynamic instance will read a different memory address,

which is computed by adding to the last effective address the stride multiplied by

the order rank of the dynamic instance (current address+(stride*n)). Depending on

where to store the precomputed data, replicas will use, as destination operand, a

different scalar register. When a replicated instruction is refetched, the first spec-

ulative instance is validated and if the validation is correct, the instruction is just

marked as completed. Following replicas will be validated in the same way. When

the last replica is validated, another set of multiple speculative instances of the

instruction are dispatched again.

42 Chapter 3.

These multiple instances are managed by means of an additional table, the

SRSMT table (Scalar Register Set Map Table). This table centralizes both the

association of sets of scalar registers and vectorized instructions (provided in the

previous design by the VRMT table) and the status of every register in the set

(equivalent to the bits added to the vector registers). See Figure 3.13 for details on

how the VRMT and the vector registers fields have been mapped in the SRSMT.�� ��������	�
 ��
���������� � ��
����������� ���
� �������� � ��������� ��� ��������� � !!"#$# % & 'VRMT vector register

SRSMT

PC REGS ID NREGS DECODE COMMIT ISSUE SEQ1 SEQ2 DAEC RANGE

Figure 3.13: Scalar Register Set Map Table details

The Set of registers field holds the identifiers of the physical registers that will be

used as destination registers for the replica instructions and the field Nregs stores

the number of registers that have been allocated (which equals to the number of

replicas). Note that, in the case that not enough free registers are available for the

desired number of replicas, a lower number of replicas or none at all are created.

The next two fields, the decode and the commit fields, track the state of the set

of replicas and are equivalent to the V, R, F and U bits of every position of the

vector register. The decode indicates which is the next replica to be validated. This

field is incremented when a new dynamic instance of the instruction enters into the

decode stage. The commit field indicates the last replica that has been committed.

This field is incremented when a dynamic instance of an instruction is successfully

validated and commits. When a recovery action is needed, (e.g. in case of a branch

misprediction) the state of the table can be easily recovered by copying the content

of the commit field into the decode field for every entry of the table. When the

decode and commit fields are equal, the entry in the SRSMT is deallocated. Note

that this does not imply the deallocation of physical registers.

Speculative Dynamic Vectorization 43

The issue field holds the number of replicas that are being executed (i.e., have

been issued but their execution has not finished). The purpose of this field is later

discussed in this section.

The next two fields, seq1 and seq2, identify the instructions that compute the

source operands if they have been vectorized, or the value of the scalar operand

otherwise (not all source operands must be vector operands). The identifier of a

vectorized instruction is its PC (also called Seq or Sequence).

The rename table, as in the first design, is extended to include for each logical

register whether the latest instruction that writes to it has been vectorized and if

this is the case, it contains the PC of that instruction.

When an instruction is vectorized, an entry is allocated in the SRSMT table. A

free entry is chosen but if none is available, an entry is tried to be deallocated. An

entry can be deallocated when the fields decode and commit have the same value,

and the field issue is set to 0. If several entries are candidates to be deallocated

(depending on the indexing function) the LRU is chosen. When an entry is deallo-

cated, the resources allocated by it are released. If no entry can be deallocated, the

instruction is not vectorized.

The identifiers of the source operands for a newly vectorized instruction are

obtained from the rename table. If an operand is scalar, its value is read from the

register file. If the value is not ready, the instruction and following ones are stalled.

Validation of speculative precomputed data, remains unchanged except for the

accesses to the new adapted structures. Every time an instruction is fetched, its PC

is looked up in the SRSMT and if found, it means that the instruction has been

vectorized and must be validated. Validation of arithmetic instructions consists in

checking whether the producer’s identifiers currently found in the rename table for

its source operands are equal to those of the SRSMT validates. For a load, the

stride must keep on being the same. If these checks are successful, the instruction is

not executed and it is sent to the commit stage where it will finalize its validation.

In the commit stage it will wait until the fields decode and commit of its source

44 Chapter 3.

operands in the SRSMT table are equal. When it commits, the commit field of its

entry in the SRSMT is increased. Notice that every dynamic instance of a replicated

instruction sets the bit V/S to 1 and the field sequence is set to the ”sequence” of

the instruction in the rename map table.

If the speculation is not correct, the corresponding entry in the SRSMT and the

scalar registers associated to the replicas of this instruction are deallocated, and new

replicas are created with the new operands.

Issue logic

In the previous design two issue queues were available to differentiate the scalar

data path from its vector homologous sharing the same issue logic. With the new

disposition of the mechanism, the vector data path disappears since speculative (in-

structions created by the mechanism) and non-speculative instructions are executed

in the same functional units holding their results in the same register file.

But this new layout has one main problem. If the speculative work is created

carelessly the execution stages of the processor can overload. This makes that non-

speculative instructions delay since neither entries in the issue queues nor scalar

registers are available for these instructions. To overcome this problem, we follow a

conservative approach. First, replicas are not created if no entry in the issue queue

is available. Furthermore speculative replicated instructions are given less priority

than the rest. This prevents from delaying the non-speculative instructions present

in the issue queues. The register availability will be discussed later in section 3.6.3.

On the other hand, in case of a branch misprediction replicas are not squashed

since, as we will show in Chapter 4 most of them are control independent.

Branch mispredictions

When a branch misprediction is detected, the SRSMT table for the mechanisms can

be in an inconsistent state (the decode and commit fields are not equal, meaning

that there are values that are going to be validated). To solve this easily, on branch

Speculative Dynamic Vectorization 45

mispredictions, the commit field of the SRSMT is copied in the decode field squash-

ing the validation instructions after the mispredicted branch. Furthermore, the field

DAEC is increased, and when equal to MAX DAEC, the mechanism deallocates

the resources (scalar registers) and the entry in the SRSMT of the instruction. This

field DAEC is used to detect dead associations (i.e. replicated instructions that will

not reenter the pipeline) among replicated instructions and allocated set of registers.

High values of MAX DAEC avoid the early release of sets of registers, but force the

mechanism to use more registers to allocate data for replicas because registers and

replicated instructions are associated for too long. Low values of MAX DAEC are

useful for early detection of dead associations but provoke that most of the specu-

lative data will be discarded before it is used increasing the number of speculative

instructions. Our studies show that 2 is the optimal value for MAX DAEC.

Memory disambiguation

As the objective of replicas is to precompute values for instructions beyond the in-

struction window, scalar registers of strided load replicas hold memory values that

can be modified by stores, provoking memory inconsistency. A simple approach to

solve this problem is to deallocate entries (and associated registers) of the SRSMT

of the replicated loads, whose field RANGE includes the memory address of a com-

mitting store. Even if the SRSMT table is small, this may cause the deallocation

of several entries of the SRSMT. To simplify the hardware, up to 2 stores can be

committed per cycle, and the commit latency for stores has been increased by 1

cycle.

Wide bus

Instruction replication exploits the spatial locality of data since most of the strided

loads have a unit stride. For this reason, buses of the data cache are assumed to

be wide. A wide bus can read a whole cache line for every access and multiple

outstanding loads can use these data. For complexity considerations (reducing the

46 Chapter 3.

number of ports to the register file) up to four outstanding loads can be served

during a wide access.

Replica register file

As we will show later in the Performance Evaluation section, Dynamic Vectorization

is a register-hungry mechanism. In the previous design, speculative vector instruc-

tions store their data in a separated register file. This made that normal instructions

were not be prejudiced by the speculative work due to a lack of registers. But in

the new design, replicas and normal instructions share a scalar register file.

Even if we have adopted the conservative approach, an instructions is not repli-

cated if registers are not available, the mechanism can degrade the performance of

the processor since non-speculative instructions cannot allocate registers, because

they are being used by replicas. Early-release, late-allocate techniques can be ap-

plied to the mechanism to improve the register allocation algorithm of the processor.

But this would complicate the design.

We adopt a simpler approach: a two-level hierarchical register file [CGVT00]

[BDA01b] has been considered as shown in Figure 3.14. The low level (the fastest

one) has been implemented similar to a monolithic register file. The upper level (the

slowest one) is used to store the precomputed values of replicas and it is implemented

as a slow and cheap RAM memory (for simplification, we will refer as a register every

position in this memory). With this organization, the mechanism exploits the non-

criticality of replicas since values created by replicas will not be used until some time

after they are created. Furthermore, since replicas enhance the temporal locality of

data, the management of the high level of the register file can be easily performed

by the mechanism: once replica I has been accessed, the probability of accessing

replica I+1 is high. Therefore, a prefetch access for replica I+1 can begin.

When a validation instruction enters the decode stage, a register is allocated

in the low level and a copy instruction is inserted in the issue queue. When exe-

cuted, this instruction performs a movement of the value from the upper level to the

Speculative Dynamic Vectorization 47

scalar
register

file

crossbar

vector
functional

units

scalar
functional

units

vector
register

file

scalar
functional

units

replica
register

file

scalar
register

file

Figure 3.14: Hierarchical register file

lower one. Dependent instructions will use the register of the lower level as source

operand. Validation instructions pass from decode to the commit stage to validate

the speculative data without waiting for the execution of the copy instruction. Both

registers, (from the lower and the upper levels) are deallocated when the following

instruction with the same logical destination register commits. For our simulations,

the copy instructions have a latency of 2 cycles, and up to 2 movements between

banks can be performed per cycle.

This layout alleviates the pressure in the scalar register file and allows the elim-

ination of the cycle-impacting crossbar among registers and functional units.

3.7 PERFORMANCE EVALUATION

This section only evaluates the last design of the mechanism. As said before, the

main motivation to build the scalar design is the complexity reduction in the ex-

ecution engine of the processor. This fact makes that the scalar design is used in

following refinements. Performance is nearly the same for both designs although

the scalar version improves about 3% the vector design due to the finest grain

management of the registers. Apart from that, the other sources of performance

improvement remains the same.

The parameters for the Dynamic Vectorization mechanism are shown in Table

48 Chapter 3.

Parameter Value

Stride predictor 4-way set associative with 512 sets

SRSMT 4-way set associative with 64 sets

Hierarchical register

file

768 positions, 2 read/write ports, 2 cycle access

time

Table 3.2: Configuration parameters for the Dynamic Vectorization mechanism

3.2.

3.7.1 Dynamic Vectorization performance

Figure 3.15 shows the performance achieved by a wide range of memory configu-

rations with a superscalar processor (xscalar), a superscalar processor with a wide

bus (x-WB) and a superscalar processor with a wide bus and dynamic vectorization

(x-WB-DV) for a different number (x) of L1 data cache ports.

IPC depending on the number of ports

0,6

0,8

1,0

1,2

1,4

1,6

1,8

ALL INT FP

Spec2K

IP
C

1scalar

1-WB

1-WB-DV

2scalar

2-WB

2-WB-DV

4scalar

4-WB

4-WB-DV

Figure 3.15: Dynamic vectorization performance

Speculative Dynamic Vectorization 49

As shown in Figure 3.15, in most cases the configurations with wide buses in-

crease clearly the performance of the configurations with scalar buses. The main

reason is the bottlenecks due to the memory system in configurations like a super-

scalar processor with 1 scalar bus. For this configuration the average IPC increased

from 0,95 to 1,04, on average (from 1,05 to 1,16 for SpecINT2K and from 0,88 to

0,94 for SpecFP2K) when a wide bus substitutes the scalar bus. The benefits for

the configurations with 2 or 4 scalar buses are smaller since they already have a

significant memory bandwidth.

Figure 3.15 also shows that dynamic vectorization boosts the performance con-

siderably for every configuration, raising from 0,95 to 1,43 (39%) the IPC on con-

figurations with one wide bus. When more memory bandwidth is available, the

obtained speedup ranges from 49% to 51%. This performance improvement comes

basically, from three sources.

Management of the memory system

The first one is the better management of the memory system. The wide bus

to the L1 data cache enhances the access to this structure since several pending loads

that coincide in the same cache line can be served at once. As shown in Figure 3.16,

when a wide bus to the L1 data cache is used, nearly 10M of accesses, on average,

are reduced.

The explosion of DLP exposed by replicas conjugated with the wide bus, makes

more efficient the access to the L1 data cache. Dynamic vectorization reduces even

more the number of accesses, about 4M (Figure 3.16), related to the wide bus. This

means that nearly 50% of the scalar loads present either spatial or temporal locality

that are not exploited by current designs of data caches. The distributions of loads

served per access are shown in Figure 3.17 for configurations with 1 wide bus.

In addition to this management of the memory system, dynamic vectorization

offers prefetch for long latency loads. Since the stride predictor provides the next

effective addresses for strided loads, data can be brought in advance to the lower

50 Chapter 3.

L1 accesses

00,0E+0

05,0E+6

10,0E+6

15,0E+6

20,0E+6

25,0E+6

30,0E+6

35,0E+6

ALL INT FP

Spec2K

M
ill

io
n

s
o

f a
cc

es
se

s

1scalar

1-WB

1-WB-DV

2scalar

2-WB

2-WB-DV

4scalar

4-WB

4-WB-DV

Figure 3.16: L1 access reduction of Dynamic Vectorization

levels of the memory hierarchy overlapping these accesses with the execution of the

normal stream of instructions. On the other side, the ability of preexecuting non-

strided loads allows successful prefetching in code schemes, i.e. linked lists, where

current prefetchers fail. Our studies show that this prefetch effect is, on average, half

of the total performance improvement achieved with the mechanism. The topics of

prefetch and the memory gap will be later discussed in Chapter 5.

Reuse of precomputed data

As previously said, replicas precompute data for future instances of instructions

currently present in the mainstream. This data precomputation effectively reduces

the latency of instructions entering the pipeline. An instruction with precomputed

data becomes a validation instruction, therefore it does not execute, but passes

from the decode to the commit stage of the pipeline. Furthermore, functional units

occupancy is reduced since the ratio of fetched instructions that must be executed

goes down due to validation instructions. So, the second source of performance

improvement of the mechanism is the successful precomputation of speculative

data.

Speculative Dynamic Vectorization 51

Distribution of used elements per access

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1-WB 1-WB-DV 1-WB 1-WB-DV 1-WB 1-WB-DV

ALL INT FP

Spec2K

%
 a

cc
es

se
s 4 elements

3 elements

2 elements

1 element

Figure 3.17: Distribution of loads served per cycle

There is an important aspect that must have had into account: replicas use

resources, such as functional units or scalar registers, to execute. Even if replicas

have lower priority than normal instructions, an excess of speculative work can

overload the execution engine of the processor degrading the performance. As we

will see later in Chapters 4 and 6, it is necessary to survey the amount of speculative

work allowable by the processor.

Figure 3.18 shows the distribution of instructions executed by the processor. In

this Figure, we differentiate four kinds of instructions: committed instructions that

have not precomputed data (no reuse), successful validation instructions (reuse),

speculative instructions executed under incorrect path predictions(specBP) and mis-

speculated replicas (specDV). It is interesting see from this figure, that most of the

vectorizable instructions have been effectively vectorized, nearly 84,5%. The rest of

vectorizable instructions have not been replicated due to a lack of resources, such

as registers or entries in the SRSMT table.

52 Chapter 3.

Distribution of instructions

000E+00
25E+06
50E+06
75E+06

100E+06
125E+06
150E+06
175E+06
200E+06
225E+06
250E+06
275E+06
300E+06
325E+06
350E+06
375E+06

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

A
LL IN

T
F

P

Spec2K

M
in

st
ru

ct
io

n
s specDV

specBP

reuse

no reuse

Figure 3.18: Distribution of instructions

There are two important aspects in Figure 3.18. First, reuse ranges from 6,7%

(applu) to 56% (ammp), and, on average, is 24,5%. Second, the amount of specu-

lative replicas executed to obtain these percentages of reuse is quite high (84M of

instructions on average).

Regarding reuse, these numbers show that, in fact, there exists a considerable

amount of underlaying DLP only detectable at runtime and Dynamic Vectorization

is able to expose it. Even for SpecINT, some benchmarks, like bzip2, present a

clearly code regularity inappropriate in these applications.

On the other hand, SpecFP benchmarks present low ratios of reuse. Basically,

this is due to the fact that compiler optimizations, such as loop unrolling, reduce the

chances of stride pattern detection. The basis of loop unrolling is to replicate the

loop body to execute, in parallel, several iterations. This optimization makes the

number of strided load increase, but the number of times that every load is executed

becomes lower reducing the chances to detect the stride pattern. In addition, since

Speculative Dynamic Vectorization 53

the number of instructions in the loop body is augmented, more registers are needed

for vectorization.

Even if good reuse numbers are obtained, replication must be done carefully.

Figure 3.18 shows that, on average, 84M of extra instructions are needed to obtain

24,5% of successful reuse. As previously said in the Replica register file section,

Dynamic Vectorization is register-hungry. The more replicas are created, the more

registers in the upper level of the hierarchical register file are needed and the more

power and energy are employed in the processor for misspeculated work. Since the

register file is a critical resource in the processor, due to power, energy and area

constrains, we cannot allow a larger register file for replicas. On the other hand,

register allocation for mispredicted data prevents the mechanism to increase the

performance improvement since replicated work are limited to the actual available

resources.

As we will discuss later in Chapter 4, a selection mechanism to decide whether

an instruction can be vectorized must be provided to reduce the number of wrongly

replicated instructions.

Virtual enlargement of the instruction window

The third important source of performance improvement of the Dynamic Vectoriza-

tion mechanism is the virtual enlargement of the instruction window.

Replicas’ work consists in creating data for future instances of instructions.

These instances, usually, have not entered in the pipeline, what means that the

mechanism is able to create values for instructions that will be fetched sooner or

later.

Chapter 5 will discuss in more detail this source of performance improvement.

As a brief, our numbers show that the Dynamic Vectorization mechanism is able to

create instruction windows of more than 1200 instructions with reorder buffers of

only 256 entries. This is basically due to the fact that replicas don’t need any entry

in the reorder buffer to execute thanks to their speculative nature.

54 Chapter 3.

Control-flow independence reuse

As described in section 3.6.3, the recovery mechanism does not squash vector in-

structions after branch mispredictions. In fact, speculative work is only squashed is

misspeculations are detected by validation instructions. Due to this, the control-flow

independence instructions can reuse the precomputed data. This source of perfor-

mance improvement will be explained deeper in Chapter 4 since it motivates the

next optimization of the mechanism.

3.8 SUMMARY

In this chapter we have presented the basis of the Dynamic Vectorization mecha-

nism. Two versions of the mechanism are described. The first implementation relies

on the existence of vector resources to execute the speculative created data. Spec-

ulative vector instructions are created as soon as a vector pattern, represented as a

strided load, is detected at runtime. These speculative vector instructions prefetch

and precompute data for their scalar counterparts. After that, instructions with

precomputed data become validation instructions that check if that precomputation

is correctly performed.

An evolved version of the mechanism is derived from the vectorial design due

to the complexity of the execution engine that deals with both scalar and vector

instructions. For this design, the vector resources have been removed from the

processor.

A detailed evaluation of the mechanism is provided. Four main sources of per-

formance improvement have been detected: efficient management of the memory

system, successful reuse of precomputed data, virtual enlargement of the instruction

window and control-flow independence reuse of data. Some of these sources (virtual

enlargement of the instruction window and control-flow independence reuse) will be

explained in following chapters. Furthermore, we have shown that regular patterns

are presented in irregular codes and are easily detectable at runtime by the Dynamic

Speculative Dynamic Vectorization 55

Vectorization mechanism.

Finally, we have expose the problem of the Dynamic Vectorization mechanism:

an excess of speculative work can overload the execution engine of the processor,

degrading severely the performance. Following chapters will show how to include

selection mechanisms to reduce the number of mispredicted replicas.

56 Chapter 3.

Chapter 4

Control-Flow Independence Reuse

Control-Flow Independence Reuse 59

4.1 INTRODUCTION

Current processors’ potential to exploit instruction level parallelism depends on

their ability to build a large instruction window. Branch instructions are the main

problem to build such large instruction windows for non-numeric applications. Every

time a branch prediction is wrong, the pipeline is flushed, and the instruction window

is built again through the correct path. However, control independent instructions

(from now onwards CI instructions), i.e., instructions that are encountered in every

branch path computing the same values, could theoretically remain in the instruction

window and their re-execution could be avoided.

In this chapter, we present a specialization of the Dynamic Vectorization mech-

anism to detect and replicate CI instructions. From the point of view of DV, CI

instructions are the best instructions to vectorize since they present a high ratio of

correctly precomputed data. This is due to the fact that CI instructions present

the same source operands, thus computing the same result, whatever the path is

taken by branches. This will result in a better resource management at a relative

low performance degradation (3%).

On the other hand, Dynamic Vectorization proves to be a very effective mecha-

nism to improve performance when focused on CI instructions. Since the probability

of a CI instruction will reenter later in the pipeline is high, replication of these in-

structions will effectively enlarge the instruction window.

4.2 MOTIVATION

Figure 4.19 is the main motivation of the current Chapter. This Figure shows the

percentage of successful validation instructions that are control independent between

two consecutive mispredicted branches.

It is easy to see from Figure 4.19 that for many SpecINT2K, the ratio of validation

instructions that are CI is quite high (nearly 84% on average).

This chapter presents a selection mechanism that will only replicate these in-

60 Chapter 4.

% of validation instructions that are CI

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

IN
T

SpecINT2K

%
 o

f
in

st
ru

ct
io

n
s

Figure 4.19: Percentage of validation instructions that are control independent

structions to reduce the speculative work to increase the effectiveness of the basic

dynamic vectorization mechanism.

4.3 RELATED WORK

Chou et al. [CFS99] present a mechanism for exploiting control independence that

is based on a structure called DCI that stores copies of decoded instructions. After a

recovery from a branch misprediction, new fetched instructions are looked up in the

DCI to locate the beginning of a control independent region. Furthermore, an out-

of-order fetch mechanism is presented to start fetching from the control independent

region after a branch prediction is performed.

Rotenberg et al. present a mechanism to exploit control flow independence in su-

perscalar [RJS99] and trace processors [RS99]. Their approach is based on identify-

ing re-convergent points dynamically, and a hardware organization of the instruction

Control-Flow Independence Reuse 61

window that allows the processor to insert the instructions after a branch mispre-

diction in between instructions previously dispatched, i.e., after the mispredicted

branch and before the control independent point.

Sodani et al. [SS97] present a mechanism for global reuse based on keeping

history of previous executions of instructions. When an instruction is decoded a

structure, called Reuse Buffer, is checked to see if there is a previous execution of

this instruction and if the result for that execution can be reused. In that paper,

several implementations of the Reuse Buffer that differ in the way the reuse test is

performed are proposed and evaluated.

Cher et al. present Skipper [CV01], a mechanism to overlap the latency of hard-

to-predict branches with the execution of control-flow independent instructions fol-

lowing the re-convergent point of those branches. To achieve this, when a repeatedly

mispredicted branch is detected, the fetch is redirected to the re-convergent point,

creating a gap in the reorder buffer (large enough to hold the skipped instructions),

and the processor proceeds to execute the instructions after the re-convergent point.

When the branch is resolved, the skipped instructions are executed. Dependences

among skipped instructions and the instructions after the re-convergent point are

checked to ensure the correctness of the execution, performing recovery actions when

needed.

4.4 THE APPROACH

4.4.1 Control flow independent instructions

An instruction is control-flow independent with respect to a given branch instruction

if its result is the same regardless of the branch outcome. Control-flow independent

instructions are common in hammock control flow structures resulting from if-then-

else constructs. An example is shown in Figure 4.20.

The code in Figure 4.20 counts how many elements of vector a are equal to zero

(stored in register R3) and how many are not (stored in register R2). Furthermore,

62 Chapter 4.

Control-flow
independent

region

I1: MOV R1, 0

I2: MOV R2, 0

I3: MOV R3, 0

I4: MOV R4, 0

I5: LD RO,a[R1]

I6: CMP R0, 0

I10: INC R3I8: INC R2

I9: BR IP

I11: ADD R4,R4,R0

I12: ADD R1,4

I13: CMP R1,400

I14: BLE loop

I7: BE else

Figure 4.20: Sample code with a hammock

the code accumulates the sum of all elements of vector a in register R4. The branch

at instruction I7 may be hard to predict (e.g., the data of vector a does not follow

any regular pattern). However, instructions I11-I14 are executed and produce the

same results regardless of the branch outcome. The first sequential instruction that

is common to both taken and not taken paths of a branch will be referred to as

the re-convergent point. In Figure 4.20, instruction I11 is the re-convergent point of

branch I7. Control-flow independent instructions can be located starting from the

re-convergent point onwards.

4.4.2 Overview of the mechanism

The proposed mechanism works in four steps. The first two steps select the control-

independent instructions when a branch misprediction is detected. The last two

steps, effectively vectorize the selected instructions. The selection part and the

vectorization part work separately and are communicated through just one bit in

the stride predictor. These steps are explained now following the example in Figure

Control-Flow Independence Reuse 63

4.20.

• First step: when a hard-to-predict conditional branch is detected (see details

later in Section 2.3.1) and mispredicted, the mechanism tries to find the re-

convergent point of that branch. Supposing that I7 in Figure 4.20 is the

mispredicted branch, the first step has to find I11 as the re-convergent point.

• Second step: identification of the instructions (I11, I12 and I13) after the re-

convergent point (included) that are likely to produce the same outcome after

the branch misprediction recovery and can be effectively vectorized (only I11

can be vectorized). For this purpose, every instruction after the re-convergent

point is analyzed and it is checked whether its source operands have been

changed by an instruction after the branch and before the re-convergent point.

If the source operands have not changed, the set of nearest strided loads above

the branch on which the instruction depends are selected for speculative vec-

torization. In the example of Figure 4.20, the first instruction whose operands

have not changed after the branch is the re-convergent point itself (instruction

I11). The loads above the branch on which instruction I11 depends is just

instruction I5.

• Third step: speculative vectorization of the selected instructions next time

they are encountered. Vectorization is performed by generating multiple spec-

ulative replicas of the vectorized instruction. These speculative instructions

are dispatched to the issue queue and executed but not committed until they

are verified. Moreover, every time an instruction is fetched, it is checked

whether any of its source operands is the outcome of a previously vectorized

instruction, and if this is the case, it is also speculatively vectorized. In the

example of Figure 4.20, instruction I5 is the selected strided load that will be

vectorized. Instructions I6 and I11 will also be vectorized because they are

dependent on instruction I5. Notice that I11 is a control-flow independent

instruction.

64 Chapter 4.

• Fourth step: every time an instruction is fetched, it is checked whether it

was previously vectorized. If so, it is checked whether the vectorization was

correct, and in this case, the instruction is just marked as completed and sent

to the commit stage. Otherwise, the instruction is normally executed.

These steps are further detailed below.

4.4.3 First step: hard-to-predict branches

and re-convergent point detection

First of all, in order to apply the control independence scheme to branches that are

responsible for a significant number of mispredictions [GKMP98] [JRS96], a table

that we refer to as the MBS table (Mispredicted Branch Status) is used. This table is

indexed by the PC of branches and has a 4-bit saturated up-down counter per entry.

The counter is increased by taken branches and decreased by not taken branches,

if the direction is the same as the previous outcome. Otherwise, the counter is

set to the value that is in the middle of its range. If the value of this counter is

the maximum or minimum value, the branch is considered to be highly biased and

thus assumed to be easy to predict. Otherwise, the control independence scheme is

activated.

The scheme to identify re-convergent points for mispredicted branches is an ex-

tension of previous work in [CFS99] and involves basically two hardware structures.

The first one is a queue, called NRBQ (Not Retired Branch Queue), where the es-

timated re-convergent points of the in-flight conditional branches are stored. The

second is the CRP (Current Re-convergent Point). Figure 4.21 shows these struc-

tures and how they interact. More details follow.

Identification of re-convergent points does not need to be correct. Wrongly esti-

mated re-convergent points will affect the performance of the processor but not the

correctness of the execution. Re-convergent points are estimated with the following

heuristics:

Control-Flow Independence Reuse 65

RP-PC Modified registers mask R

RP-PCRP-PCRP-PCRP-PCRP-PC

MRMMRMMRMMRMMRM

mispredicted branch

ORed

youngest in-flight branch

0

NRBQ

CRP

Figure 4.21: NRBQ and CRP interaction

• If the branch is a backward branch [SC00], the re-convergent point is assumed

to be the next instruction, in program order, that follows the branch (a back-

ward branch usually corresponds to the closing branch of a loop as shown in

Figure 4.22-a).

• If the branch is a forward branch, the instruction situated one location above

the target address [CHP97] is fetched and analyzed. If the branch is predicted

as taken this instruction is fetched in the next cycle, possibly together with

the target instructions and succeeding ones.

• If the branch is predicted as not taken, this instruction is fetched just after the

recovery of the misprediction. If this instruction is an unconditional forward

branch (which is the common case for an if-then-else structure as shown in

Figure 4.22-c), the re-convergent point is assumed to be the address pointed

by this branch. Otherwise, the re-convergent point is assumed to be the des-

tination address of the conditional branch (which is the common case for and

if-then structure as shown in Figure 4.22-b).

When a branch is executed its prediction is checked. In case of a misprediction,

younger instructions are squashed and if the static branch is supposed to cause

66 Chapter 4.

a) if-then-else b) if-then c) loop
structure structure structure

RP RP RP

Branch Branch

Branch

Figure 4.22: Common program constructs

many dynamic branch mispredictions, the information regarding this static branch

is introduced into the CRP register (Current Re-convergent Point). This register

contains the PC of the re-convergent point and the R (Reached) flag that indicates

whether the re-convergent point has been reached.

4.4.4 Second step: control-flow independent instruction de-

tection and filtering

Every time an instruction is fetched, its PC is checked with the PC stored in CRP. If

they match, the R flag is set, which indicates that the re-convergent point has been

reached. To identify whether an instruction after the re-convergent point does not

depend on the instructions between the branch and the re-convergent point, every

entry of the NRBQ is extended with a mask of bits. Each bit is associated to a logical

register and indicates whether this logical register has been written after this branch

and before the next branch. When a branch is found, the corresponding mask is

cleared. For each new instruction, the bit corresponding to the destination register

is set to one for the entry at the tail of the NRBQ. After a branch misprediction, the

Control-Flow Independence Reuse 67

information of the mispredicted branch is copied into the CRP as described above.

The CRP has also a mask of bits that in this case, indicates whether or not the

corresponding logical register has been written since the branch was fetched and

before the re-convergent point is reached (in either the wrong or the correct path).

In a branch misprediction, the CRP mask is initialized by ORing all the masks in

NRBQ starting from the mispredicted branch to the branch at the tail of the queue

(i.e. the youngest one). Afterwards, for every new decoded instruction before the

re-convergent point is found, the bit corresponding to its destination logical register

is set to 1.

An instruction is considered to be control independent if it is fetched after the

re-convergent point, and its source operands have their corresponding bits cleared

in the mask of the CRP. These instructions will be the target of the speculative

vectorization scheme. In addition, all instructions that belong to any dependence

chain of the backward slice (i.e. all its predecessors) of a selected instruction are

also vectorized if the chain starts with a strided load. For example, in the code of

Figure 4.20, I11 and I5 are vectorized if I5 has been observed to follow a strided

pattern. But instructions I12 and I13, even if they are control independent, will not

be considered for our mechanism given that they are not dependent on a strided

load. In the worst case, if I5 is not an strided load, no instruction will be vectorized

in the example of Figure 4.20.

To identify these backward chains that start with a strided load, every time a

load is fetched the stride predictor is checked and if the load is considered to follow a

strided pattern, its PC is associated to the logical destination register. To implement

CI selection, every entry of the stride predictor is extended with 1 bit called S. This

bit is set when the load corresponding to that entry is selected for vectorization, as

described later. Note that this bit is the bridge between the selection logic and the

dynamic vectorization mechanism, since only those loads with the S bit set will be

vectorized.

To propagate the PC of a strided load down the dependence graph, every entry

68 Chapter 4.

in the rename map table is extended with a new field called stridedPC., where the

PC of the strided load is stored. Arithmetic instructions propagate the stridedPC of

their source operands to their destination. In theory, one instruction may have many

strided loads as in its backward slice. However, we have experimentally evaluated

that SpecINT2000 needs on average 1,7 PCs per entry.

When an instruction after the re-convergent point is selected for vectorization,

the strided loads on which it depends are also selected for vectorization, by setting

to 1 the flag S in the stride predictor. When the selected load reenters the pipeline,

it checks whether the stride keeps on being the same, and in this case, this load

is vectorized. Every time an instruction is fetched, if any of its source operands is

vectorized, the instruction is also vectorized.

4.4.5 Third step: instruction replication

Once a load with the corresponding bit S set to 1 is fetched, begins the replication of

instructions. This third step and the next one, implements the basis scalar Dynamic

Vectorization mechanism.

It is important remark that the selection logic implemented in steps first and

second and the underlying Dynamic Vectorization mechanism works separately. The

only thing that both mechanisms have in common is the bit S of the stride predictor.

So, in one side the selection logic analyzes the mainstream looking for chains of

control-independent instructions and discriminates the backward strided loads that

begin those chains. On the other side, the Dynamic Vectorization mechanism studies

which loads present a vector pattern and, from those, replicates only the selected

loads.

4.4.6 Fourth step: data validation

As in the previous mechanism, data created speculatively by replicas must be val-

idated. For validation purposes, every entry in the rename map table is extended

Control-Flow Independence Reuse 69

with the field PPC and the bit R. Stride checking for strided loads and producer’s

PC checking for arithmetic instructions is performed to validate data. Instructions

with correctly speculated data pass to the commit stage for validation. Other pre-

viously wrong replicated instructions deallocate resources (scalar registers and the

entry of the SRSMT) of replicas and execute normally and perform a recovery action

to execute normally the instruction.

4.5 PERFORMANCE EVALUATION

In this Chapter, only SpecINT2K are used to evaluate the mechanism since the

branch misprediction ratio of SpecFP2K is negligible. Furthermore, to reduce the

memory gap, and to emphasize the goodness of CI reuse, we have changed the

latency of main memory from 1000 to 400 cycles for all configurations, to reduce, as

much as possible, the prefetch effect of the Dynamic Vectorization mechanism.

Note that for this selection scheme, all the sources of performance improvement

of the Dynamic Vectorization mechanism remain the same. This scheme follows two

main goals:

• Reduce the misspeculated work. So, more correctly speculated work can be

performed, thus improving IPC. Since less instructions are replicated, resource

management can be improved. Less register are needed for nearly the same

performance.

• Improve control independence reuse taking advantage of the virtual enlarge-

ment of the instruction window by the Dynamic Vectorization mechanism.

Control independent is only applicable to SpecINT2K benchmarks since they

present a considerable amount of mispredicted branches. SpecFP2K are not consid-

ered because nearly 99% of branches are correctly predicted. Table 4.3 shows the

percentage of branch mispredictions with the branch predictor stated in Chapter 2.

70 Chapter 4.

Benchmark Total branches Mispredictions Percentage

bzip2 12328368 53283 4,32%

crafty 15029217 973640 6,48%

eon 13052907 534598 4,09%

gap 8664311 502559 5,8%

gcc 2683468 10967 0,41%

gzip 13356850 916341 6,68%

mcf 33115933 414022 1,25%

parser 23687815 1555852 6,57%

perlbmk 16985159 2226150 13,11%

twolf 25796746 1674938 6,49%

vortex 15419475 266628 1,73%

vpr 15663865 425314 2,72%

Average 185775114 9554292 4,88%

Table 4.3: Branch statistics for the SpecINT2K (100M instructions per program)

Control-Flow Independence Reuse 71

Control independence scope

As shown in Table 4.3 for some benchmarks the percentage of mispredicted branches

is high. It would be desirable that our scheme can take advantage of all of them.

But this is not possible. There are three constrains related to branches that must

be accomplished to replicate instructions:

• A mispredicted branch must be a hard-to-predict branch. This means that

the probability that a given branch will be mispredicted must be high. This

constrains restricts the scope of the selection mechanism since few of the mis-

predictions are due to the fact that not enough history is available for some

branches, i.e. they are only mispredicted the first time they are found.

• A re-convergent point must be detected for a mispredicted branch. Indirect

jumps are out of the scope of the selection scheme since they present several

outcomes, complicating the re-convergent point detection.

• At least one control independent instruction must be found.

Figure 4.23 shows that, in fact, not for all mispredicted branches the selection

scheme is effective finding control independent instruction for replication.

Every bar in this figure (4.23) shows the percentage of mispredicted branches

for which the mechanism does not find any control independent instruction (white

portion), selects at least one control independent instruction (gray portion), and se-

lects control independent instructions and successfully reuse precomputed instances

(through speculative vectorization) of them (black portion) for every benchmark

of SpecINT2000. Control independent instructions are selected for about 70% of

the mispredicted branches (black and gray portions). For 49% of the mispredicted

branches (black portion), at least one control-independent instruction is correctly

vectorized. The remaining 21% of the mispredicted branches (gray portion) where

vectorization is not successful are basically due to the fact that they do not depend

on strided loads.

72 Chapter 4.

P e r c e nt a ge of br a nc he s wi t h C I i nst r uc t i ons t ha t

r e use , not r e use or not f ound

0%

10%
20%

30%

40%

50%
60%

70%

80%
90%

100%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

IN
T

>=1reuse no reuse not found

Figure 4.23: Selection scope

Register file pressure

Figure 4.24 shows the IPC obtained with the proposed mechanism (cixp) compared

with a superscalar processor (scalxp) and a superscalar processor with wide buses

(wbxp), for a varying number of L1 data cache ports (1 port x=1, 2 ports x=2)

and a varying number of physical registers (128, 256, 512, 768 and infinite). In this

first set of experiments, a single-level register file is considered. Harmonic means

are used to average IPC across the whole benchmark suite.

Vectorization creates up to 4 replicas per vectorized instruction. To study the

register pressure of the dynamic vectorization mechanism, this first results are ob-

tained with a monolithic register file.

Several conclusions can be drawn from Figure 4.24. First, we can see that wide

buses provide a significant benefit for a superscalar processor. This is due to the

fact that a wide bus exploits the spatial of memory accesses. As the number of ports

increases, this performance benefit decreases since multiple ports can also exploit

spatial locality although with a much higher implementation cost.

Control-Flow Independence Reuse 73

IPC depending on the L1 ports and scalar registers

1,0

1,5

2,0

2,5

3,0

3,5

128 regs 256 regs 512 regs 768 regs Inf

scal1p

wb1p

ci1p

scal2p

wb2p

ci2p

Figure 4.24: Performance of the CI scheme with a monolithic register file

For the baseline configuration with and without wide buses, performance is sig-

nificantly improved when the number of registers increases from 128 to 256, except

for 1 non-wide port, which is mainly limited by memory bandwidth. For configura-

tions with more than 256 registers the reorder buffer has been increased to the size

of the number of registers; otherwise, many registers would be useless due to the

lack of instructions in-flight. However, this hardly improves performance due to the

branch mispredictions and the limited ILP of these applications.

When the mechanism for control independence is included, and enough registers

are available, the performance increases more than 17,8% for both configurations

(1 port and 2 ports) over the superscalar processor with wide buses. This is ba-

sically due to the exploitation of control independence, which allows the processor

to execute instructions ahead of the resolution of the branches on which they de-

pend, regardless of the correctness of the branch prediction, and even if they are far

away of the current instruction window. The vectorization scheme also favors the

exploitation of spatial locality, since the speculative instances of a vectorized load

instruction are unit strided most of the times.

The control independence scheme increases the pressure in the register file due

74 Chapter 4.

to longer lifetimes and wrongly speculated instructions. Because of that, when the

number of registers is too low (128 registers for a 256-entry reorder buffer), the

control independence scheme results in some performance degradation. For config-

urations with 256 registers, the control independence mechanism hardly affects per-

formance when compared with the superscalar configuration with wide buses. This

is due to the fact that a large number of scalar registers are used to store the values

created by the speculative instructions, slowing down the execution of the code that

has not been vectorized because less registers are available for it. However, when

the number of physical registers keeps on increasing, the superscalar processor per-

formance flattens out whereas the control independence scheme provides significant

performance gains.

An important parameter of the proposed scheme is the number of speculative

instances that are generated for every vectorized instruction. A higher number

of speculative instances implies a higher potential to exploit control independence

but also a higher pressure on the register file (i.e., more mispeculations and longer

lifetimes). Figure 4.25 shows the effect when this parameter is varied from 1 to

8 instructions. From this experiment we can conclude that either 2 or 4 replicas

per vectorized instruction seem the most convenient approach. Generating only 1

speculative version looses a lot of opportunities to exploit control independence. On

the other hand, generating 8 replicas only improves performance by very little when

the number of registers is very high.

Figure 4.26 shows the number of: a) committed instructions that do not reuse a

precomputed value (dark portion), b) committed instructions that reuse a precom-

puted value (dark gray), c) fetched instructions that do not commit due to a branch

misprediction (light gray), and d) speculative instructions generated by the control

independence scheme (white) for 2 (left bars per spec) and 4 (right bars) replicas

per vectorized instruction.

Figure 4.26 shows that increasing the number of replicas from 2 to 4 increases the

percentage of committed instructions that benefit from reuse increases from 12,3% to

Control-Flow Independence Reuse 75

IPC depending on the number of created replicas

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

2,6

2,8

128 256 512 768 inf

8rep
4rep
2rep
1rep
sc
wb

Figure 4.25: IPC varying the number of replicas and available registers

Speculative instructions creating 2 or 4 replicas

290M239M

6,00E+07

8,00E+07

1,00E+08

1,20E+08

1,40E+08

1,60E+08

1,80E+08

2,00E+08

2,20E+08

2,40E+08

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr INT

noR Reuse specBP specCI

Figure 4.26: Distribution of instructions creating 2 and 4 replicas

14%. On the other hand, this extra reuse comes at the expense of a non-negligible

increase in number of speculative instructions generated by the control indepen-

dence scheme. We can also observe in Figure 4.26 that the amount of speculative

activity generated by the control independence scheme is comparable to the activity

generated by wrongly speculated instructions due to branch misspredictions.

Up to this point, we have shown that the CI selection schemes effectively reduces

the number of speculative instructions at a low register cost. Anyway, even if our

scalar version of the Dynamic Vectorization mechanism is focused to reduce the

hardware complexity, we can take advantage on the hierarchical layout of the register

76 Chapter 4.

file for both alleviating the pressure in scalar registers and not to increasing the cycle

time due to a large register file.

Figure 4.27 shows the performance of the control-flow independence mechanism

with a memory able to hold 128 (ci-h-128), 256 (ci-h-256), 512 (ci-h-512) and 768

speculative values (ci-h-768). The number of registers in the register file is given

by the X-axis. The graph also shows a superscalar processor (scal), a superscalar

processor with a wide bus (wb) and a superscalar processor with a wide bus and

the control-flow independence mechanism with a monolithic register file (ci), for a

varying number of registers.

Performance with a speculative data memory

1,40
1,50
1,60
1,70
1,80
1,90
2,00
2,10
2,20
2,30
2,40
2,50
2,60
2,70
2,80

128 regs 256 regs 512 regs 768 regs Inf

scal wb ci ci-h-128 ci-h-256 ci-h-512 ci-h-768

Figure 4.27: IPC with a hierarchical register file

Since this memory is out of the critical path and movements of values from this

memory to the register file are not critical, longer latencies are allowed without

degrading significantly the performance (a latency of 5 cycles only slowdowns about

3% in configurations with 256 registers in the register file and 768 positions in the

proposed small memory). Several configurations of this memory have been simulated

as shown in Figure 4.27.

Finally, Figure 4.27 shows that a register file of 256 registers and a memory

holding 768 speculative values has about the same performance as a monolithic,

single-latency register file with an unbounded number or registers. Following chap-

Control-Flow Independence Reuse 77

ters will show a more refined selection mechanism that reduce considerably these

register availability.

Control independent reuse out of the instruction window

Since the presented mechanism is the first scheme able to reuse data for control

independent instructions out of the instruction window, it is interesting to see how

it performs compared to other schemes limited to reorder buffer boundaries. For

this comparison, we have chosen two state of the art mechanisms with different

philosophy. For those mechanisms, to obtain the best case, the number of scalar

register is unbounded, whereas for our scheme we keep on using a hierarchical register

file with 256 registers in the lower level and 768 positions in the upper level.

The first design [CFS99] (Chou in Figures) bases its performance improvement

in squash reuse. Data computed for instructions down the mispredicted branch

is stored in a table for lately reuse it by control independent instructions after

the branch recovery. So, instructions must have been executed before the branch

misprediction detection.

The second mechanisms [CV01] (Skipper in Figures) uses heuristics to predict

re-convergence points of hard-to-predict branches. As soon as one of those branches

enters the pipeline, the fetch is redirected to the re-convergence point to prevent

the execution of control dependent instructions. Skipper is limited to the reorder

buffer boundaries. If this structure completely fills up, no new instructions after the

re-convergence point can be executed.

For this study, we will show numbers varying the memory latency (to emphasize

the memory gap), the number of entries in the reorder buffer (to overcome the

memory wall problem) and the number of stages in the pipeline (to increase the

latency of branches).

Figure 4.28 shows the performance obtained for a superscalar processor, the

mechanisms Chou and Skipper and our CI scheme for a wide range of main memory

latency. Caches latency has been also modified for realistic configurations as shown

78 Chapter 4.

Main memory latency 100 500 1000 2000

L1 data cache 1 2 2 4

L2 data cache 3 6 10 15

Table 4.4: Memory latencies for CI schemes

in Table 4.4.

Performance for CI schemes

1,00

1,25

1,50

1,75

2,00

2,25

2,50

2,75

3,00

3,25

3,50

100 500 1000 2000

Memory latency (in cycles)

IP
C

Base

Skipper

Chou

CI

Figure 4.28: Performance of CI schemes varying the memory configuration

Several conclusions can be drawn from Figure 4.28. First of all, Skipper is

a mechanism that is not able to outperform considerably the baseline (speedup

ranges from 0,06% to -0,7%). Our simulations (obtained with the original simulator,

kindly ceded by the authors of the paper) show that Skipper does not obtain any

performance improvement when tested in current and future configurations. This

mechanism obtains its performance improvement in Spec95 because branches and

reconvergence points in those benchmarks are easy to predict. But when tested

with SpecINT2K, since branch behavior is completely different, Skipper converts

correctly predicted branches into mispredictions. This causes that the number of

recovery actions increases counteracting the benefits of the mechanism. For this

reason, even if we include Skipper in Figures, it will not be used as a comparator.

From Figure 4.28 can be also derived that reusing out of the instruction window

Control-Flow Independence Reuse 79

is beneficial. Chou’s mechanism performance improvement ranges from 6% to 10%,

whereas the presented scheme speedups nearly 29% the baseline configuration. The

more latency L2 misses have, the more speedup by our scheme.

Finally, Figure 4.28 also shows that when the memory gap is the predominant

problem, all mechanism trend to the performance obtained by the baseline. Even if

CI virtual enlarges the instruction window, the lack of enough in-flight instructions

under a L2 miss prejudices dramatically the performance due to the abundance of

processor’s stall cycles waiting for data to be brought from main memory. This

problem will be boarded in next chapter. On the other side, if memory is perfect,

the CI scheme performance equals the baseline. This is due to the fact that branch

latency is narrowed reducing the penalty of mispredictions.

Reorder buffer size also must have had into account. Figure 4.29 shows the

performance for the CI schemes depending on the number of entries available in the

reorder buffer with a latency to main memory of 1000 cycles. Load/store and issue

queues are also scaled.

Performance of CI schemes with different ROB sizes

1,50

1,75

2,00

2,25

2,50

2,75

64 128 256 1024 2048

entries in the ROB

IP
C

Base

Skipper

Chou

CI

Figure 4.29: Performance of CI schemes varying the ROB size

As before, Figure 4.29 our CI scheme keeps on being the one who obtains better

performance for all configurations, being Chou’s scheme the second best.

Two details are interesting in this Figure (4.29. First, the CI scheme saturates

80 Chapter 4.

when 1024 ROB entries are available whereas Chou´s performance improvement

rests nearly linear. This is due to the fact that more registers are needed for the CI

scheme with such large ROBs to replicate instructions. If registers are unbounded,

as Chou’s scheme, CI performance improvement becomes nearly linear.

The second fact is that despite of reducing the proportional speedup related

to the baseline when enlarging the ROB, both schemes maintain the same linear

improvement. Since more in-flight instructions are allowable with larger ROBs,

both schemes are able to execute more instructions for later reusing data (Chou’s

mechanism) or to create more replicas for precomputing data (our mechanism).

Anyway, Figure 4.29 shows that prefetch and precomputation of data keep being

effective even for unimplementable larger windows.

Finally, Figure 4.30 shows the performance obtained for every CI scheme when

the pipeline becomes deeper, i.e. the latency until branch resolution is augmented,

thus increasing the penalty of branch mispredictions. Other parameters of the con-

figurations remain unchanged.

Performance of CI schemes depending on the number of stages

1,00

1,25

1,50

1,75

2,00

2,25

2,50

5 10 20

Stages until branch resolution

IP
C

Base

Skipper

Shen

CI

Figure 4.30: Performance of CI schemes varying latency of branches

This branch latency increment allows more in-flight instructions in processor

after branch speculation. CI schemes benefit from this fact to increase the perfor-

mance. But as a counterpart, branch mispredictions become even more critical since

Control-Flow Independence Reuse 81

more cycles are needed to refill the pipeline after a recovery action.

4.6 SUMMARY

In this chapter a selection mechanism built on top of the scalar Dynamic Vector-

ization mechanism has been presented. This selection scheme is based on the fact

that vectorizing only control independent instructions improves the effectiveness of

the underlying replication mechanism since those instructions present a high ratio

of reusing precomputed data.

We have also shown that this scheme improves the Dynamic Vectorization mech-

anism alleviating the pressure on the register file since less speculative work is cre-

ated. Furthermore, we have shown that the inclusion of the hierarchical register file

is not only worth to reduce the design complexity but to alleviate even more the

pressure on the scalar registers since replicas hold their results in the upper level of

this register file, lightening the work of the critical lower level.

Furthermore, we have also shown, that this is the first mechanism able to perform

control independence reuse out of the instruction window and that this reuse is very

beneficial. Compared to other state of the art schemes limited to ROB boundaries,

in all tested configurations, our mechanism obtains performance improvements of

nearly 14%.

82 Chapter 4.

Chapter 5

Overcoming the Memory Gap

Overcoming the Memory Gap 85

5.1 INTRODUCTION

The memory gap is a very well-known problem in current processors. This makes

memory instructions to have very long latencies when going out of the processor

for data. These long latencies reduce drastically the opportunities of exploiting

DLP and ILP in applications, not only because dependent instructions of a L2-miss

load cannot execute until the data is brought from main memory, but also because

independent instructions cannot commit due to the in-order nature of the commit

process. This problem becomes worse when the instruction window completely fills

up stalling the processor due to the lack of entries in the ROB, preventing the fetch,

decode and execution of new instructions.

To reduce this problem, one solution could be enlarging the on-chip caches. With

this solution the percentage of L2 misses decreases because more memory is available

in the chip. But enlarging caches is expensive and it can impact seriously the cycle

time of the processor or increase the latency of memory instructions.

Prefetch mechanisms have been also studied to reduce the penalty of L2 misses.

These mechanisms try to predict memory addresses of loads to bring in advance the

data that will be needed from main memory to the lower (and faster) levels of the

memory hierarchy. However, prefetch is difficult when the memory access patterns

of L2-miss loads are hard to predict (i.e., pointer-based memory accesses). Wrong

prefetches overload the memory bus and pollute the on-chip caches with useless

data.

From another point of view, mechanisms to enlarge virtually the instruction win-

dow have been proposed. These mechanisms try to solve the stall problem of the

processors under L2 misses with out-of-order commit. This allows keeping execut-

ing independent instructions of the L2-miss loads before the data of this memory

instruction is available. The main problem of these mechanisms is that it can be

difficult to recover the state of the processor, e.g. under branch mispredictions.

In this chapter we describe two mechanisms that board directly this problem

86 Chapter 5.

by selecting and replicating instructions following a L2 miss load. The first mech-

anism is based on the control-independent scheme to select in-flight instructions to

replicate. The second approach analyzes the reorder buffer under a L2 miss load

to replicate the current stream of instructions. This second scheme implements the

third version of the Dynamic Vectorization mechanism: a separate engine that feeds

the processor with replicas through the issue queue.

As we will show the virtual enlargement of the instruction window is performed

by prefetch and precomputation of data by replicas. To isolate the effects of enlarging

the instruction window, we will compare our mechanisms with a baseline where a

state of art aggressive stride-based prefetcher is provided.

5.2 MOTIVATION

As memory latency increases, caches play a very important role to exploit the mem-

ory parallelism. However, when data does not exhibit spatial nor temporal locality,

caches are nearly useless.

L2-miss loads and the in-order nature of the commit process provoke stalls in the

processor because the instruction window completely fills (this happens about 61% of

applications’ execution time). Dependent instructions of these L2-miss loads cannot

execute because their data is not available. However, independent instructions could

be executed if entries in the instruction window were available. Figure 5.31 depicts

the problem.

L1 I1 In In+1 In+2
...

beyond the ROB

tail of the ROB

I2 I3

L2-miss load

head of the ROB

Figure 5.31: Instruction window filling due to a L2 miss load

Figure 5.31 shows a possible state of the ROB in a L2-miss load. L1 is a L2-miss

Overcoming the Memory Gap 87

load. White boxes are independent instructions of L1. Grey boxes are dependent in-

structions of L1. From L1 to In are instructions in the ROB. From I
n+1 onwards are

instructions that are going to enter the pipeline next. In this scenario, the processor

can execute I1, I2. . . because they are independent of L1. However, instructions I
n+1,

I
n+2 . . . cannot be executed because the fetch and decode stages of the processor are

stalled due to the full filling of the ROB. In this paper we propose the speculative

execution of these instructions (I
n+1 onwards), thus enlarging the instruction win-

dow, so that, when these instructions are encountered, they will have their data

computed and they will reuse it, avoiding their execution.

5.3 RELATED WORK

Prefetch mechanisms have been widely studied in literature. Software approaches

[CKP91][LM96][MLG92] rely on the compiler to detect and evict cache misses at

compile time. To do this, prefetch instructions are inserted in the code.

Hardware prefetching schemes [BC91][GG97][JG97][Jou90] study the access pat-

terns of memory instructions to predict the next memory address to prefetch data.

Low prediction ratio causes cache pollution and an unnecessary bandwidth con-

sumption degrading performance.

Prefetch in multithread scenarios [BDA01a][CSK+99][CTWS01][ZS01] uses sec-

ondary threads to prefetch data for a primary thread. The problem of these mech-

anisms is that they need free thread contexts that may not be available if the mul-

tithread processor is well used.

Dundas in [DM97] proposed run-ahead execution. This mechanism creates spe-

cial values for L2-miss loads that are propagated to dependent instructions. Inde-

pendent instructions continue execution until the instruction window is full. When

the data of the L2-miss load is available, a recovery action is performed to re-execute

correctly the instructions following that load. In [MSWP03], run-ahead is enhanced

with speculative retirement. The processor is extended with a complex checkpoint-

88 Chapter 5.

ing mechanism to allow out-of-order retirement, enlarging virtually the instruction

window.

Several mechanisms [COM+04][DM97][MRH+02] to enlarge virtually the instruc-

tion window have been proposed at literature. These mechanisms perform out-or-

order retirement of instructions to avoid stall cycles due to the lack of entries in the

ROB. Complex advanced checkpointing mechanisms are used to recover the state

of the processor e.g. in branch mispredictions. To alleviate the pressure on register

files for these virtually large instruction windows, mechanisms of physical register

late-allocate and early-release are used.

Lebeck in [LKL+02], proposed a scheme where instructions dependent on a long-

latency operation are moved from a small (and faster) scheduling window to a large

(and slower) waiting buffer until the operation is completed. At this point, instruc-

tions are moved again to the small scheduling window. This scheme allows large

instruction windows regarding the cycle time of the processor with a small scheduling

window. This approach requires a large register file that impacts the cycle time.

Our proposals differs in two main aspects. First, those mechanisms only ex-

ecute instructions that enter in the pipeline. In our proposals, instructions that

have not entered the processor can be speculatively executed. Second, no advanced

checkpointing mechanism is needed to recover the state of the processor in branch

mispredictions. In fact, the default recovery mechanism of the processor is not

modified.

5.4 FIRST APPROACH: L2MISS

To overcome the memory gap we propose two different schemes based on the dy-

namic vectorization mechanism. This first approach reuses the control independent

scheme to select instructions following a L2 miss load. As we will discuss, this is an

aggressive mechanism that effectively improves performance. As a drawback, this

mechanism creates large amounts of speculative instructions. The second scheme,

Overcoming the Memory Gap 89

L2stall, exploits the stall cycles due to a L2 miss load to replicate parts of the

mainstream currently present in the instruction window.

5.4.1 Overview

This mechanism, L2miss, emphasizes the fact that futures values for independent

instructions of a L2-miss load can be precomputed as soon as the instructions are

encountered. In this case, the mechanism replicates sets of strided loads above the

L2-miss load and dependent instructions of the stride loads after this L2-miss load.

Replication is only possible if the L2-miss load is in a loop body. Figure 5.32 depicts

how the mechanism works.

PC
PROPAGATION

SL1

SL2

SL3

L2miss

IS1

IS2

IS3

PC
SELECTION

SL1

SL3

SL3

SL1

SL2

SL3

L2miss

IS1

IS2

IS3

SL1

SL2

SL3

L2miss

IS1

IS2

IS3

REUSE AND
VALIDATION

a) Iteration I: Stride load b) Iteration I+1:Replication c) Iteration I+2: Data
propagation and selection. of selected instructions. validation and reuse.

REPLICATION

Figure 5.32: Steps of the L2 miss mechanism

In figure 5.32a, SL1, SL2 and SL3 are strided loads before the L2-miss load that

begin the dependence graphs for the independent instructions IS1, IS2 and IS3 after

the L2-miss load. Our first mechanism replicates SL1 and SL3 for later replicate

90 Chapter 5.

IS1, IS2 and IS3 (Figure 5.32b). SL2 will not be replicated because there are no

instructions dependent on this strided load after the L2-miss load.

Strided loads after the L2-miss load are also considered as independent instruc-

tions because no memory address check is performed and will be also replicated.

This mechanism, as the control-independent scheme, works in four steps. First

of all, it detects the strided loads and propagates their PCs down the dependence

graph. In Figure 5.32a, the PCs of SL1 and SL3 are propagated to instructions

IS1, IS2 and IS3. Since no L2-miss prediction hardware has been included in the

processor the stride detection and the PC propagation is performed continuously,

to know, when a L2 miss occurs, the PCs of those strided loads that independent

instructions depend on.

When a L2-miss load is committed, the second step of the mechanism is fired to

identify the instructions independent of the L2-miss load. For this purpose, it ana-

lyzes the source operands of every instruction after the load to check whether they

are independent of the destination register of this L2-miss load. If the instruction is

independent, the set of propagated PCs of strided loads above the L2-miss load, on

which the instruction depends, are selected for replication. In Figure 5.32a, as soon

as instructions IS1, IS2 and IS3 commit, the loads they depend on (SL1 and SL3)

are selected for replication.

The third step is the replication of the selected instructions (SL1 and SL3) the

next time they are fetched and decoded (Figure 5.32b). Dependent instructions

(IS1, IS2 and IS3) of a replicated instruction are also replicated by propagating the

”replicated” characteristic down the dependence graph.

Finally, fourth step (Figure 5.32c), every time an instruction is fetched, it is

checked whether it was previously replicated to validate the speculative precomputed

data.

This mechanism focuses on the fact that only replication will be performed for

independent instructions of loads with high probability of missing the L2 cache.

Note that the first time a L2-miss load is detected, independent instructions may

Overcoming the Memory Gap 91

not reuse data because no data has been precomputed.

In Figure 5.32 it is supposed that the L2-miss load has a high ratio of L2 misses.

Independent instructions will not have precomputed data the first time the L2-miss

load is detected. But for next iterations (in Figure 5.32c, Iteration I+2 onwards), as

independent instructions have been replicated, precomputed data would be available

for reusing.

5.4.2 First step: strided load propagation

Figure 5.33 shows the hardware modifications in the decode stage to implement this

first step of the mechanism.

DECODE
STAGE

STRIDE
PREDICTOR

FETCH QUEUE

REG ID StridedPC
PPC
R

RENAME MAP TABLE

Figure 5.33: Hardware modifications in the decode stage

Every time an instruction is fetched, its PC is checked on the stride predictor to

see whether it is a strided load or not. If the instruction is a strided load, its PC is

put in the new field StridedPC of the entry corresponding to its destination logical

operand in the extended rename map table.

If the fetched instruction is a load but not a strided load, the StridedPC field

is set to 0. Arithmetic instructions copy the content of the field StridedPC of their

source operands to the ones of their destination operands. In parallel, a copy of

the fields StridedPC of the source operands is stored in the ROB. As the number of

92 Chapter 5.

StridedPCs is limited (2 per entry), only the first StridedPC of the source operands

is propagated to the destination operand.

This strided load detection and propagation is performed continuously during

instruction execution to ensure that independent instructions after the L2-miss load

know these PCs when the selection of instructions is fired.

5.4.3 Second step: strided load selection

As soon as a L2-miss load is committed this second step is fired. In this step, the

target strided loads for replication are selected. As said before, only independent

instructions of the L2-miss load will be replicated. The independence check for

instructions following a L2-miss load is performed when the instructions commit to

reduce the amount of extra hardware. To implement this step, few modifications in

the commit stage are needed (Figure 5.34).

DM

COMMIT
STAGE

STRIDE
PREDICTOR

DELINQUENT
LOAD
TABLE

S

ROB

Figure 5.34: Hardware modifications in the commit stage

Stride load selection involves two main structures: a table called delinquent load

table (DLT) where the PCs of the L2-miss load are stored and a mask of bits (one per

logical register) called DM (Dependence Mask) used to know whether an instruction

is dependent on the L2-miss load. An extension of the stride predictor (every entry

is extended with a bit called S) is also needed.

Overcoming the Memory Gap 93

When this step is fired, the mechanism clears every position of the DM except

the bit corresponding to the destination operand of the L2-miss load. Following

instructions set the bit corresponding to their destination operand with the logical

OR of the bits corresponding to their source operands. Independent instructions

are those instructions with all the bits of their source operands cleared.

Once independent instructions are detected, they select the strided loads from

which they are dependent. To perform this, the bit S of the stride predictor is set for

every strided load an independent instruction depends on and which PC is stored

in the entry of the ROB for this instruction.

The last structure, the DLT, holds up to 8 PCs of the L2-miss loads for which the

mechanism has previously selected instructions. If no entry is available in this table,

the LRU load is replaced. Every committed non-L2-miss load checks its PC in this

table. If the PC is found, following independent instructions of this load clear the

bit S for the strided loads they depend on. This prevents previously selected strided

loads from keeping being selected, and replicated, when a load, that has previously

missed the L2, hits the L1 or the L2.

5.4.4 Third step: instruction replication

Once a strided load with the corresponding S flag set is fetched and decoded, multiple

replicas of it are created and dispatched to the issue queue.

As in the control independence scheme, this and the next one steps implement

the underlying scalar Dynamic Vectorization mechanism. The next mechanism in-

troduces the third and last implementation of the scalar DV mechanism: a separate

engine to select and replicate instructions.

5.4.5 Fourth step: data validation

Like in the control independence mechanism, data created speculatively by replicas

must be validated. For validation purposes, every entry in the rename map table is

94 Chapter 5.

extended with the field PPC and the bit R. Stride checking for strided loads and

producer’s PC checking for arithmetic instructions is performed to validate data.

Instructions with correctly speculated data pass to the commit stage for validation.

Other previously wrong replicated instructions deallocate resources (scalar registers

and the entry of the SRSMT) of replicas and execute normally and perform a re-

covery action to execute normally the instruction, and if possible, new replicas are

created.

5.5 SECOND APPROACH: L2STALL

This second approach exploits the stall cycles of the processor under L2 miss load

to enlarge speculatively the instruction window. We will provide a separate engine

that will feed the processor with replicas obtained from analyzing the mainstream

of instructions currently available in the reorder buffer.

To implement this mechanism we present the third version of the Dynamic Vec-

torization mechanism. Based on the scalar design, this implementation is thought

as a separate engine connected to the main core of the processor through the issue

queue and the SRSMT table.

5.5.1 Overview

One of the main goals of the mechanism is to use the idle functional units during

L2 miss loads without delaying the non-speculative instructions. This makes the

decision of when to fire the mechanism become important. For this case, two choices

are possible. First, wait to the reorder buffer to completely fill. In this case, we

ensure that functional units will be available since most of the instructions have

finished and remain in the reorder buffer waiting to be retired. But this is not

the best choice. From the L2 miss detection to the start of the precomputation,

some cycles are wasted. In the worst case, the mechanism is not fired because the

instruction window never fills up under L2 miss load due to the low ratio of fetch

Overcoming the Memory Gap 95

and decode, losing opportunities of starting the mechanism.

We have adopted the second choice. The mechanism will be fired as soon as a

L2 miss load is the oldest instruction in the ROB since the probability to reach a

stall status of the processor is high. With this method a continuous flow of spec-

ulative instructions will feed the processor without disturbing the non-speculative

instructions currently present.

The mechanism works in four stages. When the mechanism is fired, the first stage

explores sequentially the ROB looking for independent instructions of the L2-miss

load. When all the ROB is analyzed, the fetch and decode stages of the processor

are started up to explore instructions that are going to enter into the processor next.

The second stage allocates resources to replicate the selected independent in-

structions. In particular, destination physical registers are allocated for replicas.

The third stage replicates the selected instructions and dispatches the replicas

to the issue queue for execution.

Finally, fourth stage, after the L2 miss load retirement, new fetched and decoded

instructions check whether they have been speculatively preexecuted. If they are,

they must validate the precomputed data to use it.

Figure 5.35 depicts the hardware added to implement this mechanism.

INSTRUCTION
SELECTION

RESOURCE
ALLOCATION

REPLICA
CREATION

SRSMTSTRIDE
PREDICTOR

ROB IM DMT IQ

Figure 5.35: Stages of the L2stall mechanism

96 Chapter 5.

More details of these four stages follow.

5.5.2 First stage: instruction selection

As soon as a L2 miss load becomes the oldest instruction in the ROB, a signal is

triggered to the engine of the mechanism, starting up the analysis of the instruction

window looking for independent instructions of that load. To check whether an

instruction is independent or not of the L2 miss load, we have adopted a simple

approach. A mask of bits, called Independence Mask (IM) is provided to propagate

the dependences among instructions. This mask has one bit per logical register.

When the mechanism is fired, every position of this mask is cleared except the

one of the destination operand register of the L2-miss load. Following instructions

propagate the values of their positions corresponding to their source operands in the

IM to the position of the destination operand with a logical OR. Only instructions

with all the bits of their source operands cleared are selected and passed to the next

stage. Loads are always supposed to be independent of the L2 miss load.

To virtually enlarge even more the instruction window, when the exploration

reaches the end of the ROB (90% of the times), the processor fetches and decodes

speculatively new instructions. These instructions are supposed to come next from

the last instruction stored in the ROB. Fetched instructions under a processor stall

are predecoded by this first stage of the mechanism. Since we considerate these

instructions as always speculative, they don’t need to occupy an entry in the reorder

buffer. Therefore, like the instructions created by the mechanism, these fetched

instructions disappear after writing back their results.

5.5.3 Second stage: resource allocation

Selected independent instructions are passed to this stage to allocate resources for

their replicas. Two main structures are involved: the DMT (Dependence Map Table)

structure and the RM (Replication Maps) table.

Overcoming the Memory Gap 97

To avoid misspeculations as much as possible, we rely on the vector patterns

present in the code. So, every chain of replicable instructions must begin with a

strided load. In order to detect these loads, a stride predictor like the one in is

included in the processor. This predictor studies every load to detect a stride pat-

tern. For replication we have considered only chains of instructions beginning with

a strided load, since it is easy to compute the next effective addresses through the

stride predictor. Althought it is possible that the effective addresses are mispre-

dicted. In these cases, the validation stage of the mechanism will ensure that only

replicas with a correctly computed address can reuse speculative data. So, a sec-

ond selection in this stage is performed. Only instructions are replicable if they are

strided loads or they depend on replicable instructions (arithmetic instructions).

Arithmetic instructions use the DMT table to know if they are replicable. The

DMT has as many entries as architectural registers. Every replicable instruction

stores its PC on the entry corresponding to its destination operand. Arithmetic in-

structions check the entries corresponding to their source operands to know whether

they are dependent on a replicable instruction, i.e. there exists a PC in any of the

entries corresponding to its source operands. Non-replicable instructions clear the

position corresponding to their destination operand. Arithmetic instructions are

only replicable if all their source operands are produced by replicated instructions.

After these checks have been performed, resource allocation, such as scalar reg-

isters and an entry in the SRSMT table, begins as in the normal scalar version.

5.5.4 Third stage: instruction replication

Instructions reaching this stage have all needed resources to be replicated. Replica-

tion consists in creating as many copies of an instruction as the number (up to four)

of registers allocated for that instruction. Replication presents a different behavior,

depending on the instruction. For speculative loads, the mechanism changes the

memory addresses with those speculatively created by the stride predictor. Arith-

metic instructions use as source operands, the destination registers of the instruc-

98 Chapter 5.

tions they depend on (available in the RM table). For both kinds of instructions,

the allocated registers are used as source operands, one per replica.

In the current scenario, a processor nearly stalled due to a L2 miss load, the

engine can benefit on the dispatch logic to enqueue instructions in the issue queue.

Every cycle, this third stage uses the available slots of the dispatch logic to feed the

execution engine of the processor with the recently created replicas (up to four due

to replica creation logic simplicity).

5.5.5 Fourth stage: data validation

After the blocking L2 miss load is retired, speculative data can be used in a non-

speculative fashion. In order to ensure the correctness of the data, a process of

validation must be performed, similar to the normal scalar version of the Dynamic

Vectorization mechanism. In this case, to avoid an excess of extra speculative in-

structions, mispredicted instructions are not replicated again.

5.6 PERFORMANCE EVALUATION

To evaluate and compare the mechanism we will assume a baseline configuration

with a wide bus to the L1 data cache. Furthermore, the baseline configuration

includes an aggressive prefetch (wb+pref in Figures). This is done to emphasize

the benefits of the proposed mechanism beyond those coming from just prefetching.

To extend our study, regarding the choice of when to start the L2stall mechanism,

we will reference it as L2stall if the mechanism is not fired until the processor is

stalled or L2nostall if the scheme is fired as soon as the L2 miss load is the oldest

instruction in the instruction window.

Statistics of the proposed mechanisms with the aggressive prefetch will be also

provided (miss+pref, sta+pref and nosta+pref for, respectively L2miss, L2stall and

L2nostall extended with an aggressive prefetch).

Overcoming the Memory Gap 99

5.6.1 Performance improvement

Figure 5.36 shows the IPC of the proposed mechanisms compared with the baseline

(wb) and the baseline with aggressive prefetch (wb+pref).

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

AVE INT FP

w b w b+pref L2miss miss+pref L2stall sta+pref L2nostall nosta+pref

Figure 5.36: Performance comparison between the L2 mechanisms

As shown in Figure 5.36, the aggressive prefetch mechanism improves the baseline

about by 11,2% on average, by successfully reducing the number of L2 load misses

by about 40%.

Our mechanisms outperform the baseline by about 29%, 8% and 23,5% respec-

tively for L2miss, L2stall and L2nostall. However, when compared against the base-

line with aggressive prefetch, these speedups are reduced to 16%, -3% (slowdown)

and 11% for the L2miss, L2stall and L2nostall mechanisms respectively. Figure 5.36

also shows that there is room for improvement. When implementing the proposed

mechanisms on top of the configurations that already include a prefetcher, there is

a noticeable performance improvement (21%, 13% and 20% for miss+pref, sta+pref

and nosta+pref compared with wb+pref). The reason is that the prefetch schemes

increase the potential of the proposed mechanisms. Prefetch increases the perfor-

mance by removing strided-based L2 misses. Our proposals are basically fired on

100 Chapter 5.

L2-miss loads. When these mechanisms are combined, prefetch prevents our mecha-

nisms to be fired on easy-to-predict L2 misses, focusing in those L2-miss loads with-

out a clear access pattern. So, there is a net performance increment due to prefetch

easy-to-predict L2-miss loads, and preexecution of independent instructions of not

prefetcheable loads.

There are three main sources of performance improvement. The first one is the

memory subsystem. The ability of going beyond the instruction window allows our

mechanisms to avoid future L2 miss even before the prefetch detects them. Fur-

thermore, the ability of preexecuting instructions allows prefetching loads without

a clear access pattern. This L2 miss reduction is show in Figure 5.37.

0%

10%

20%

30%

40%

50%

60%

70%

80%

AVE INT FP

wb+pref L2miss miss+pref L2stall stall+pref L2nostall nostall+pref

Figure 5.37: L2 miss reduction for the L2 mechanisms

Furthermore, our mechanisms are able to manage more efficiently the wide bus

due to the high percentage of unit strides and the exploitation of data locality explic-

itly denoted by replicas, reducing the total amount of accesses. Figure 5.38 shows

the percentage of accesses in which 1, 2, 3 or 4 elements can be served from the same

L1 access, for the baseline configuration compared with the proposed mechanisms.

Although this exploitation is not important in the baseline configuration, compared

with a superscalar processor with 2 scalar ports, the wide bus suffers a slowdown of

Overcoming the Memory Gap 101

less that 2%. Note that the control logic of the wide bus is simpler than that of 2

scalar ports.

60%

65%

70%

75%

80%

85%

90%

95%

100%

wb wb+pref L2miss L2stall L2nostall

4 elements

3 elements

2 elements

1 element

Figure 5.38: Percentage of number of elements bypassed per wide bus access

The second source of performance improvement is the reuse of speculative pre-

computed data. Figure 5.39 shows the number of commit instructions that cannot

reuse data (black portion, commit), the commit instructions that reuse data (dark

grey, reuse), the speculative instructions created by branch mispredictions (light

grey, specbp) and the number of speculative instructions created by our mecha-

nisms (white, specL2).

The first algorithm, L2miss, is the one that creates more speculative instructions

due to its aggressiveness (white portion, specL2), but is the one that is able to reuse

more precomputed data (dark gray portion, reuse), nearly 16% of the commited

instructions are able to reuse data precomputed by the mechanism. The other two

mechanisms, L2stall and L2nostall create 4,5 and 13 millions of extra instructions

respectively, reusing 2,7 and 10 millions of instructions. As seen in this figure,

the two conservative mechanisms create less speculative instructions but are able

to reuse, proportionally, more data. Furthermore, this reduction of the number of

extra speculative instructions impacts, directly, in the amount of extra resources

102 Chapter 5.

0

25000000

50000000

75000000

100000000

125000000

150000000

175000000

200000000

AVE INT FP AVE INT FP AVE INT FP

L2miss L2stall L2nostall

specL2

specbp

reuse

commit

Figure 5.39: Distribution of instructions for the proposed L2 mechanisms

needed to achieve good speedups.

Finally, the third source of improvement is the virtual enlargement of the in-

struction window, due to the ability to create data for instructions that have not

enter into the pipeline. Figure 5.40 summarizes this study, showing the performance

obtained with a 64-entry ROB and the proposed mechanisms (64-L2miss, 64-L2stall

and 64-L2nostall for the L2miss, L2stall and L2nostall respectively) compared to the

baseline with a ROB of 256 entry. Furthermore, the proposed mechanisms are evalu-

ated with a reorder buffer of 256 entries (256-L2miss, 256-L2stall and 256-L2nostall)

and are compared to a large processor (2048-base) with 2048 entries in the ROB

and 256 in the L/S and issue queues.

This virtual enlargement benefit can be viewed from two points of view. First,

with a bounded hardware, we can achieve larger instruction windows (about 1180

and 1154 instructions, on average, with the L2stall and the L2nostall mechanisms

respectively). A large processor with 2048 entries in the ROB, and 256 in the

LSQ and issue queues and infinite physical registers (2048-base in Figure 8) only

improves about 10% the L2smiss mechanism (256-L2stall in Figure 5.40. Note that

the complexity of the 2048-entry processor is higher than the implementation of

Overcoming the Memory Gap 103

the proposed mechanism due to the complexity of managing such large structures

without impacting the cycle time.

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

AVE INT FP

64-L2miss 64-L2stall 64-L2nostall 256-base

256-L2miss 256-L2stall 256-L2nostall 2048-base

Figure 5.40: Importance of the ROB size for the L2 mechanisms

Following with Figure 5.40, the second point of view is that with smaller instruc-

tion windows, thus, reducing processor’s complexity, we can achieve nearly the same

IPC. In configurations with 64 entries in the ROB and an issue queue of 32 instruc-

tions the mechanisms only loses, on average, 1% of IPC compared to configurations

with 256 entries in the ROB and an issue queue of 128 instructions (256-base, Figure

5.40).

Note in Figure 5.40, that the proposed mechanisms outperform the 256-base

configuration for SpecFP thanks to the fact that in regular codes the number of L2

miss is higher, increasing the chances of firing the presented mechanism, and it is

easier to build large instruction windows since most of branches are easy to predict.

Second, with smaller instruction windows, thus, reducing processor’s complexity,

we can achieve nearly the same IPCs (in configurations with 64 entries in the ROB

and an issue queue of 32 instructions the L2miss mechanisms only loses 0,5% of IPC

compared to configurations with 256 entries in the ROB and an issue queue of 128

104 Chapter 5.

instructions).

5.6.2 L2miss versus L2stall/L2nostall

One of the main motivations to implement the L2stall/L2nostall mechanisms is to

reduce the complexity and the amount of resources required by the L2miss mech-

anism. Previous Figure 5.39 shows that the L2miss mechanism creates nearly 82,7

millions of extra speculative instructions to precompute data. These extra instruc-

tions use functional units to execute and scalar registers to hold the precomputed

data. But an excess of extra instructions can produce two negative effects. The

first one is functional unit overloading, what may cause a delay for non-speculative

instructions and reduces the global performance of the processor. Our studies show

that the L2miss mechanism increases the average functional unit utilization more

than 12%, while the L2stall and the L2nostall mechanisms only increase this average

about 1

The second effect is the allocation of scalar registers of the upper level of the

hierarchical register file for misspeculated data. This reduces the chances to create

correctly speculated data because no registers are available to hold it. The average

of free positions in the upper level of the register file for the L2miss mechanism

is 83. The averages for the L2stall and L2nostall mechanisms are 592 and 453

respectively. This gives an idea of the size of the upper level of the register file that

can be decreased for the L2stall and the L2nostall mechanisms without decreasing

dramatically the speedup, and, in fact, our studies show this. Reducing the number

of positions from 768 to 384 in the upper level only decreases 1,7% and 2% the

performance improvement for the L2stall and the L2nostall mechanisms respectively.

The L2miss mechanism improvement is reduced about 10%.

These results shows that the L2stall and L2nostall mechanisms need fewer re-

sources to achieve high speedups because they create less extra speculative instruc-

tions. In addition, the L2stall and L2nostall mechanisms have a simpler implemen-

tation than the L2miss mechanism.

Overcoming the Memory Gap 105

5.6.3 Virtual enlargement of the instruction window

Run-ahead [DM97] [MSWP03] is a state-of-the-art mechanism to alleviate the mem-

ory gap. It is based on executing speculatively instructions following a L2 miss

load. As soon a L2 miss load is detected, the processor enters into Run-Ahead mode

and creates a checkpoint for later recovering. An INV value is associated to the

L2 miss load as a result, and propagated to the depending instructions. Since all

the work performed after the L2 miss load is speculative, instructions perform a

pseudo-commit to deallocate their associated entry in the ROB and scalar registers

allowing to keep on fetching and decoding speculative instructions, thus, enlarging

the instruction window. Once the L2 miss load is retired, the mechanism performs a

recovery action to recover the state of the processor in that load. Run-ahead benefits

on the prefetch of loads following the L2 miss load.

The presented mechanism differs from Run-ahead in one main aspect: precom-

puted data can be reused by instructions out of the instruction window. Since

Run-ahead discards all the speculative data precomputed by instructions following

the L2 miss load, the only source of performance improvement is prefetch of L1 and

L2 miss loads.

Our results show that, opposite to what authors claim in [MKSP05], reuse of

precomputed data is possible and beneficial. The fact that, for the presented mech-

anism, more that 77% of instructions reuse data is what raises the IPC about 9%

compared to Run-ahead.

Figure 5.41 compares the baseline (wb), the baseline with aggressive prefetch

(wb+pref), Run-ahead and the L2nostall mechanism (L2nostall). The processor

with Run-ahead has the same configuration parameters as the baseline, and it also

includes the wide bus.

Another important factor is the number of extra speculative instructions created

by the Run-ahead scheme compared against the proposed mechanism. Our simula-

tions show that Run-Ahead executes 22% of extra instructions. All this speculative

106 Chapter 5.

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

AVE INT FP

wb

wb+pref

RunAhead

L2nostall

Figure 5.41: Performance effect of the virtual enlargement of the instruction window

work is discarded, since the performance improvement of Run-ahead comes directly

from prefetch.

On the other hand, the L2nostall mechanism only executes 13% of extra in-

structions (59% less than Run-ahead). And, from these instructions, nearly 77% of

precomputed data is successfully reused by validation instructions, giving only 3%

of useless work, much less than the created due to branch mispredictions.

5.7 SUMMARY

In this chapter we have presented two mechanisms able to overcome the memory

gap by virtually enlarging the instruction window.

The first mechanism, L2miss is based on the control-independence scheme pre-

sented in Chapter 5 to select replicable instructions following a L2 miss load. The

second mechanism, L2stall uses the third version of the Dynamic Vectorization

mechanism. In this case, the basis mechanism is implemented as a separate engine

that communicates to the main core through the issue queue and the SRSMT table.

This second mechanism analyzes the status of the reorder buffer under a L2 miss to

Overcoming the Memory Gap 107

replicate the mainstream.

We have shown that both mechanisms outperform the baseline processor taking

advantage on the main sources of performance improvement of the basic Dynamic

Vectorization mechanism.

Furthermore, we have compared the proposed mechanisms each other to show

that a net reduction of resources is possible by keeping the performance. In partic-

ular, the L2stall mechanism is more cost-effective than the L2miss since creates a

negligible amount of extra instructions (13M and 82,7M of replicas for the L2stall

and the L2miss mechanisms respectively).

Finally, we have demonstrated that the virtual enlargement of the instruction

window is positive. First, with smaller reorder buffers, the L2stall mechanism

achieves nearly the same performance of processors with large instruction windows.

Second, the reuse of data precomputed for instructions out of the instruction window

is beneficial. For this case, we have used as baseline a processor with Run-ahead.

We have shown that this effective reuse raises about 9% the performance.

108 Chapter 5.

Chapter 6

Cost-Effective Dynamic

Vectorization

Cost-Effective Dynamic Vectorization 111

6.1 INTRODUCTION

As shown in previous chapters of this dissertation, dynamic vectorization is a mecha-

nism to effectively boost the performance of a processor. This performance improve-

ment comes from different sources such as prefetch, preexecution and the virtual

enlargement of the instruction window.

But this improvement is not for free. Additional extra instructions are created

to speculatively precompute values in advance for instructions. These extra instruc-

tions need resources, such as registers and functional units, for execution. An excess

of resource allocation for speculative instructions can be prejudicial for the execu-

tion of non-speculative instructions. In a processor with the dynamic vectorization

mechanism and a moderated number of registers, the execution of non-speculative

instructions can be delayed if most of the scalar registers are allocated by the spec-

ulative instructions. Even if we apply the two level register file, it is necessary to

reduce the amount of extra hardware to simplify the design of the processor.

In other scenarios where functional units become critical, the extra instructions

can overload the back-end stages of the processor delaying the non-speculative in-

structions.

But things go worse when these speculative instructions are misspeculated. Not

only resources are allocated for these misspeculated instructions, but also all the

performed speculative work will be discarded.

From another point of view, this misspeculated extra instructions also affect the

optimal performance achievable by the dynamic vectorization mechanism. Since

resources are allocated to execute misspeculated instructions, chances to create cor-

rectly speculated vector instructions are reduced.

In this chapter we present several heuristic-based schemes to select instructions

that are worth to vectorized. The decision of vectorizing an instruction cannot be in-

discriminate. Wrong selection mechanisms can reduce the performance improvement

of the dynamic vectorization mechanism if performance-impacting instructions are

112 Chapter 6.

not vectorized. Thus, the main goal of these selection schemes is to reduce as much

as possible the extra misspeculated instructions without penalizing the performance

improvement of the dynamic vectorization mechanism.

Since we are presenting several heuristics, figures of performance and reduction

of the number of extra instructions are provided having into account that these

metrics are necessary but not enough to select the best scheme. Chapter 8 will solve

this lack by introducing Figures of Energy-Delay2.

To quantify the benefit of the proposed schemes, we will use as a baseline for

our simulations a superscalar processor with a scalar version of the DV mechanism.

On top of this processor we will build the proposed heuristics.

The structure of this chapter is as follows. Next section motivates the creation of

the heuristics by showing the optimal performance of the DV mechanism. Section

6.3 studies what are the most important sources of replica misspeculation. Next

section describes the employed heuristics. The evaluation of the proposed schemes

and a summary close the chapter.

6.2 MOTIVATION

Figure 6.42 shows the performance achieved by the basic scalar vectorization mecha-

nism (blind) compared with a superscalar processor (scal), and a superscalar proces-

sor with a wide bus to the L1 data cache (wb).

Figure 6.42 shows the maximum performance achievable by the dynamic vec-

torization mechanism (optimal in Figure) with a processor where the extra spec-

ulative instructions do not delay the execution of non-speculative instructions, i.e.

unbounded resources for vectorization are available and replicas are executed in a

separate set of functional units. This Figure (6.42 motivates this study, showing that

a correct management of resources can improve up to 66% the basic DV mechanism.

Figure 6.43 shows the amount of extra misspeculated instructions generated by

the dynamic vectorization mechanism, divided into speculative loads (white portion)

Cost-Effective Dynamic Vectorization 113

0,0000

0,5000

1,0000

1,5000

2,0000

2,5000

3,0000

scalar wb bl ind optimal

AVE

INT

FP

Figure 6.42: Optimal performance of the dynamic vectorization mechanism

and arithmetic instructions (black portion of each bar). The dynamic vectorization

mechanism creates, on average, 60 million of replicas which data is not validated.

The goals of this chapter are to find out the main sources of these misspecula-

tions and to create heuristics to reduce them without penalizing the performance

improvement of the dynamic vectorization scheme.

6.3 DYNAMIC VECTORIZATION MISPREDICTIONS

SOURCES

Where do all these 60 millions of misspeculations come from? We will explain it

with the code in Figure 6.44

114 Chapter 6.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

AVE INT FP

loads

ar i thmetic

Figure 6.43: Extra instructions generated by the dynamic vectorization mechanism

Stride mispredictions

Strided loads are detected at runtime through a stride predictor. Since this is a

speculative detection, mispredictions are possible. Look at instructions I2, I5 and I6

in Figure 6.44. I2 is a strided load which stride changes every 100 loop iterations.

This is due to instruction I5, which computes the modulus 100 of R0 to obtain the

stride of the next element to be processed. In this case, since the stride predictor

only tracks the last two stride computations, it is not able to detect this pattern

(the change of the stride every 100 iterations). Due to this fact, instances 100*N+1

(being N every integer greater or equal to 0 and less or equal to 10) cause a stride

misprediction.

In the dynamic vectorization, stride mispredictions are an important source of

misspeculations as we will shown later in Figure 6.45 not only because replicas are

Cost-Effective Dynamic Vectorization 115

I1: LD R2, a[R0]

I2: LD R3, b[R1]

I3: ADD R4, R2, R3

I4: ADD R5, R2, R6

I5: MOD R7, R0, 100

I6: ADD R1, R1, R7

I7: ADD R6, R6, R7

I8: ADD R0, 4

I9: CMP R0, 1000

I10: JNE I1

Figure 6.44: Misspeculation example code

wrongly created for strided loads but replicas of dependent instructions must also

be squashed since they are wrongly precomputated.

Wrong construction mispredictions

This misprediction source occurs when either, one scalar operand becomes replicated

or vice versa, one replicated operand becomes scalar.

In the code of Figure 6.45, having into account that there are stride mispredic-

tions, when the load I2 changes the stride, if dependent instructions are replicated,

one of their source operands change from replicated to scalar. This is due because

that load is not replicated since another stride is detected.

On the other hand, when I2 presents again a stride, thus being replicated, de-

pendent instruction I3 causes a misprediction since R3 becomes replicated.

DAEC mispredictions

To avoid long associations among sets of scalar registers and vectorized instructions,

a counter in every entry of the SRSMT is provided (see Section 3.6.3). This counter

is incremented in every mispredicted branch if a vectorized instruction has not val-

116 Chapter 6.

idated any speculative data since the last branch misprediction. When this counter

reaches a threshold value (in our case 2), resources of a vectorized instruction are

deallocated. This is had into account as misspeculation because more data than the

strictly necessary has been created.

To simplify our studies we will not considered DAEC as a possible target for

heuristics given that is hard to know precisely when values discarded by this counter

are really misspeculated. Anyway, we will count replica removal due to DAEC as

mispredictions.

Scalar source operand mispredictions

This misspeculation source only appears in instructions vectorized with one scalar

operand. In this case, misspeculations are caused to the change of value of this

scalar source operand.

In Figure 6.45, I7 changes the value of R6 every 100 loop iterations (as for the

strided load in instruction I2). This change in the value of the operand makes

that instruction I4 causes mispredictions, provoking the squash of possible replicas

created for this instruction since it is replicated thanks to R2 (created by I1).

Replicated source operand mispredictions

One of the replicated source operands of a vectorized instruction has changed. This

means that either the instruction that created the replicated source operand of an

instruction has changed or it has newly replicated.

Figure 6.45 shows the contribution of every source of mispredictions to the to-

tal amount of extra misspeculated instructions for every benchmark. Stride, con-

struct, daec, construct1, sourceop and vect stand for, respectively, stride mispredic-

tions, scalar to replicated operand mispredictions, DAEC mispredictions, replicated

to scalar mispredictions, scalar operand value changed mispredictions and vector

operand changed mispredictions.

From Figure 6.45 it is easy to note that construct is the most important source

Cost-Effective Dynamic Vectorization 117

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
am

m
p

ap
pl

u
ap

si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
i

A
V

E
IN

T
F

P

vect

sourceop

construct1

daec

construct

stride

Figure 6.45: Sources of misspeculations of the DV mechanism

of mispredictions, weighing nearly 53%, on average of the total. This is due to the

fact that it is the collateral effect of the other sources of mispredictions, i.e. nearly

always one misprediction of any kind, except Construct, causes, by propagation, a

Construct misprediction.

The second most important source is DAEC, counting nearly 38%. It is impor-

tant to see what this number expresses. A considerable amount of squashed replicas

are due to the fact that they are not validated during a long period of time. Al-

lowing the association of instructions and replicas during an infinite period of time

effectively increases the performance about 10% but it is not implementable since

registers are bounded.

Surprisingly, stride mispredictions only causes, directly, 4% of mispredictions.

This means that a simple stride predictor, as the one we use, is effective for our

scheme. Since it is not trivial, indirect mispredictions caused by stride mispredictions

are not measured.

118 Chapter 6.

The other sources of mispredictions form the other 5% of total mispredictions.

A negligible percentage worthless to improve.

6.4 HEURISTICS

This section describes all the heuristics we have ideated to reduce the number of

mispredictions. Even if they all have been implemented and evaluated, only the

ones that show a better trade-off between performance and misprediction reduction

will be used for comparison purposes.

6.4.1 Fine grain heuristics

Fine grain heuristics are those that are applied individually to an instruction. The

following heuristics try to reduce the number of mispredictions by modifying dy-

namically the number of replicas that are going to be created per instruction using

some previous history of replica reuse of that instruction. They are intended to

study the instruction as an individual without knowing the execution scope.

Incremental number of replicas

The first heuristic is created from a conservative point of view. Studying the ratio

of mispredictions and reused instructions, it is legitimate that it is more probable

that a replicated instruction reuses less data than the created by replicas. For this

reason, what this heuristic pretends is to assign a low number of registers the first

time an instruction is replicated. If the instructions demonstrates to reuse all the

precomputed data, the number of replicas is incremented in following replications.

Notice that this heuristic reduces the chances of data reuse for very regular

patterns of code since less replicas per instruction are created at the beginning even

if the instruction could reuse the speculative data.

To implement this heuristic (and the next one), a small associative table (32

entries) is provided to keep the number of replicas reused the last time an instruction

Cost-Effective Dynamic Vectorization 119

was replicated. Note that this prediction does not need to be correct, preventing for

storing all the bits of the PCs of all replicable instructions in this table.

This heuristic proves to be effective reducing the mispredictions, but it also

penalizes the performance about 10% since in many cases no replica per instruction

is created due to code irregularity.

Decremental number of replicas

This heuristic engages the misprediction problem from a point of view opposite

to the one of the last heuristic. Since replicas expose ILP and DLP, it would be

beneficial to create the maximum number of them the first time an instruction is

replicated. Future reuse will decide either if that number of replicas is correct or it

has to be reduced in one unit since there is data that has not been validated.

Even if this approach is more aggressive than the previous one, it does not reduce

the chances of replica creation and data reuse for regular codes. Unfortunately, for

irregular codes, mispredictions are not reduced as much as desirable (about 5% on

average per SpecINT2K).

Assignation by halves

The main problem of the two previous heuristics if their impossibility of allowing

patterns of both incremental and decremental number of iterations. Such patterns,

like 4-4-2-4-4-2, make previous heuristics to create always the maximum, in the case

of the incremental heuristics, or the minimum number, in the case of the decremental

heuristic, of replicas allowed.

To solve this, we propose a third heuristic where the number of replicas per

instruction can be either increased, in the case that all precomputed data is reused,

or decreased if some misprediction is detected.

In this case, the first time an instruction is replicated, the mechanism creates

half the maximum number of replicas allowed. Every time all data is reused, this

number is doubled until the maximum is reached. If mispredictions are detected,

120 Chapter 6.

the number of replicas is halved until the instruction is not replicated anymore.

As in the previous heuristic, even if the amount of mispredicted extra instructions

is reduced, the performance is severely impacted, being reduced about 9,5%.

Heuristic based on last reuse

Most of the current speculative execution mechanisms are based on the idea that

the execution of the code follows certain inertia. For example, branch predictor

mechanisms present a high ratio of hits because conditional branch outcome, in most

cases, is the same that the last time they were found. This inertia makes that some

characteristics of certain portions of the code become highly predictable. Applied

to the vectorization mechanism this means that the probability that a vectorized

instruction validates the same amount of data that the last time it was vectorized

is quite high.

Following this idea, we provide the processor with a table where the number of

replicas an instruction validated the last time it was vectorized is hold. Since it is

not necessary that this prediction have to be correct, only a tag instead of the whole

PC is stored per instruction.

This heuristic must be extended to prevent a constant non-vectorization situa-

tion. Forcing that the mechanism creates a maximum number of replicas that can

only decrease, it is possible a situation where all instructions have this number to

zero, i.e., no replicas are created. To avoid this kind of situations, the heuristic

is extended: when the number of replicas validated is the same that the predicted

number, the next predicted number will be the current one with some increment.

The higher this number the more misspeculated instructions are created, and the

worse this heuristic is.

Figures of this heuristic are shown in Section 6.5.

Cost-Effective Dynamic Vectorization 121

6.4.2 Coarse grain heuristics

All the previous heuristics treat the instruction as an individual without a scope.

In order to solve this, we present a family of heuristics to solve the misprediction

problem at loop level.

Number of iterations

Dynamic vectorization can only be applied in loops. In sequential codes, the mech-

anism is not able to vectorize any instruction because no strided load is detected.

Fortunately, most of the current codes expend a high percentage of the time exe-

cuting instructions that belong to a loop body.

This characteristic of codes makes current processors, e.g. Intel Centrino, to

include a loop predictor to improve the branch prediction ratio. These loop predic-

tors try to predict the number of times a backward branch will be taken, to predict

the number of iterations of a loop. This is performed this way because backward

branches are the typical branches at the end of a loop body.

Applying this idea to the DV mechanism means that a replicated instruction will

validate as many replicas as the number of iterations of the loop it belongs to. In

other words, it exists a direct association between the number of replicas and the

number of times the nearest backward conditional branch is taken.

Taking advantage of this idea, we extend the branch predictor of the processor

with a counter per entry where the number of consecutive ”taken” is recorded for

backward branches. In addition, a global register, called MRBB (most recent back-

ward branch) with that number of the last committed backward branch is provided

in the processor. So, when an instruction is vectorized, the number of replicas cre-

ated is computed with the minimal between the maximum number of replicas that

can be created per instruction and the value hold in the MRBB.

122 Chapter 6.

Dependent load blockade

Since replication is performed down the dependence graph, a mispredicted instruc-

tion provokes a cascade of squashes of all replicas created for dependent instructions.

This work squash is necessary because the correct execution of the code must be

ensured. This is the typical effect of snowball.

Following this directive, a simple block-based heuristic is to avoid this cascade

of mispredictions by preventing the replication of instructions dependent on a high

mispredictable replicable instruction. To accomplish this, since our mechanism be-

gins the creation of replicas from a strided load, and after that, all the dependent

instructions, the only thing that must be avoided is the replication of that loads.

So, when an instruction is detected to be problematic, all dependent loads even

if strided, are not replicated. Directly dependent arithmetic instructions are also

marked for not being replicated the next time, even if they have a replicated source

operand.

With this procedure, we ensure that replication for blocks of code that present

a high probability of causing mispredictions is deactivate.

Figures of this heuristic are shown in Section 6.5.

Block information

Even if this method is not a pure heuristic, we have decided to include it in this

chapter due to its nature since it is a mechanism to reduce the amount of mispre-

dictions without penalizing the performance. In fact, as shown later in Figure 6.5

we will see that this method raises the basic mechanism performance about 14,7%

on average.

For this method, we have extended the basic mechanism with a table, called LI

(Loop Information) where runtime information of loops is stored. For every loop

(up to 32) with replicated instructions, the mechanism maintains:

• The address of the first instruction of the loop and also the index of the table.

Cost-Effective Dynamic Vectorization 123

• The number of iterations the loop performed the last time it was executed.

• A vector where every position holds the number of the last replica an instruc-

tion validated the last iteration of the loop. Since in our scheme only allows

up to 4 replicas per instruction, every position has 2 bits. Furthermore, to

limit the size of every entry of this table, only information for the first 16

instructions are maintained.

With this information the mechanism is able to know where a loop begins, the

number of iterations the loop performs, which instructions have not to be vectorized

and how many replicas an instruction validates. This last number is obtained with

the formula: replicas=(iterations/4)+replicas validated.

Every time an instruction is fetched, its PC is looked up in this table to see if a

loop body begins. This PC is obtained studying the outcome of backward branches.

If the PC is found, the mechanism notices that a loop is going to begin, and

studies the entry of the LI table to know whether a replicable instruction must be

replicated, and in this case, how many replicas must be created.

In the case that the PC, as outcome for a backward branch, is not in the table, an

entry in the LI table is reserved and information for this loop is tracked. Replication

in this case works as in the basis mechanism.

As we will see later in Section 6.5 this is our best refinement of the dynamic

vectorization mechanism.

6.4.3 Criticality

But heuristics not only must be applied to decide the number of replicas created

per instruction, but to the necessity of power up the performance of the dynamic

vectorization mechanism at a low cost.

To accomplish this, we introduce the definition of criticality. Several studies at

literature [JLW01] [FRB01] try to conclude with an universal definition of criticality

124 Chapter 6.

of an instruction but they have not a completed success. In fact, our feeling is that

the definition of criticality must be tailored to the scope where it is applied.

For this reason, we define that an instruction is critical, in the scope of dynamic

vectorization, when an instruction writebacks its results sooner than older instruc-

tions in the instruction window. This means that, by any reason, an instruction has

finished later than other younger instructions in sequential order.

This definition works well for the dynamic vectorization mechanism since prefetch

and preexecution can alleviate the problem of out-of-order finalization of instruc-

tions.

So, the criticality method will detect which instructions writeback their results

out-of-order, and in the case that younger instructions are not finished, this scheme

will mark them for replication.

In fact, this scheme is easily implementable. As soon as an instruction writebacks

their results, the PCs of unfinished instructions, up to 32, younger than the one that

has finished are stored in a table.

After that, when a replicable instruction reenters the pipeline, its PC is checked

against this table, and if found, this instruction is effectively replicated.

Prefetch and preexecution by the dynamic vectorization mechanism provides

data even before the instruction has entered the pipeline, thus reducing its latency.

This makes that an instruction writebacks its results earlier since validation instruc-

tions do not execute, by pass directly to the commit stage.

Finally, this scheme is effective reducing the number of replica mispredictions.

Since replicas are not created until instructions are marked, no speculative extra

computation is performed. If no replica is available, no misprediction will occur.

Figures of this technique are shown in the next Section (6.5).

Cost-Effective Dynamic Vectorization 125

Scheme Description

DV Basic dynamic vectorization mechanism

DAEC100 Replicas are not squashed until DAEC reaches a value of 100

DepEsc Instruction with one scalar operand are not replicated

Last reuse Fine grain heuristic Last Reuse

Loop reuse Coarse grain heuristic Loop Reuse

L-last reuse Fine grain heuristic Last Reuse only applied to loads

L-loop reuse Coarse grain heuristic Loop Reuse only applied to loads

Criticality Heuristic Criticality

Load blockade Coarse grain heuristic Dependent load blockade

Blocks Heuristic Block information

Table 6.5: Evaluated heuristics

6.5 PERFORMANCE EVALUATION

This section shows the benefit of applying the previously defined heuristics in top

of a superscalar mechanism with the dynamic vectorization mechanism. Table 6.5

resumes the evaluated heuristics, related names will be used in Figures:

To provide a fair comparison, the evaluation is extended with two schemes:

DAEC100 and DepEsc. The first one, DAEC100, modifies the threshold of the

counter DAEC to avoid replica squashes until this counter reaches the value of 100.

This makes that associations of registers and replicated instructions last more time,

increasing the probability of reusing data. Unfortunately, this reduces the chances

of replicating more instructions since less positions in the upper level of the register

file are available to replicate new instructions.

The second scheme, DepEsc, is the basic Dynamic Vectorization mechanism

with one limitation: instructions with one scalar and one replicated operand are not

vectorized.

These schemes do not need a modification of the Dynamic Vectorization mecha-

126 Chapter 6.

nism to be implemented. They are just modifications of the configuration parameters

in simulations, and the fast way to remove the DAEC and the wrong construction

mispredictions by the DAEC100 and DepEsc schemes respectively.

Figure 6.46 shows the effectiveness of the heuristics reducing the number of

mispredicted extra instructions.

00E+00

10E+06

20E+06

30E+06

40E+06

50E+06

60E+06

70E+06

80E+06

D
V

D
A

E
C

10
0

de
pe

sc

la
st

 r
eu

se

lo
op

 r
eu

se

L-
la

st
 r

eu
se

L-
lo

op
 r

eu
se

cr
iti

ca
lit

y

lo
ad

 b
lo

ck
ad

e

bl
oc

ks

AVE

INT

FP

Figure 6.46: Reduction of misspeculated instructions of the presented schemes

Figure 6.46 shows that every heuristic reduces notably the amount of mispre-

dicted extra instructions, being the Criticality heuristic the one that reduces the

mispredictions the most, about 36%. The modifications of the parameters, schemes

DAEC100 and DepEsc, are also useful for this intention, reducing the number of

speculative instructions about 50% and 74% respectively.

It is also noticeable, that this reduction in the number of misspeculated instruc-

tions is more effective in SpecFP2K than is SpecINT2K. This is due to the fact that

these heuristics force that replication only will be performed in the most regular

pieces of the code.

But even if the reduction is advisable but itself, the main goal is to reduce the

number extra instructions without any performance penalty. Figure 6.47 shows that

the reduction of mispredicted instructions effectively improves the performance for

Cost-Effective Dynamic Vectorization 127

every heuristic except for DAEC100 and L-loop reuse, being the most competitive

the Block Information heuristic.

1,2

1,3

1,4

1,5

1,6

1,7

1,8

D
V

D
A

E
C

10
0

de
pe

sc

la
st

 r
eu

se

lo
op

 r
eu

se

L-
la

st
 r

eu
se

L-
lo

op
 r

eu
se

cr
iti

ca
lit

y

lo
ad

 b
lo

ck
ad

e

bl
oc

ks

AVE

INT

FP

Figure 6.47: Performance improvement of the presented heuristics

Even if DAEC100 is one of the most competitive heuristics in removing extra

instructions, is the second one which performs the worst, losing 4,5% of speedup.

This is due to the fact that registers are associated to replicated instructions for too

long, reducing the chances of replicating more instructions.

On the other hand, DepEsc demonstrates to be very competitive in performance

for SpecFP2K but not for SpecINT2K. This means that replication must be aggres-

sive for irregular codes to obtain some performance benefit.

The other heuristics prove to be effective improving the performance, with speed

ups ranging from 1,2% (load blockade) to 14% (Block Information) even if they do

not keep the number of instructions that validate data, as shown in Figure 6.48.

Some heuristics also reduce the number of validation instructions, but maintain

or improve the performance. The main reason is that there are instructions that im-

pact more positively in the performance than others. There is where the Criticality

definition plays. The heuristic Criticality is the fourth heuristic that performs the

better and it is the one that reduces the number of mispredicted instructions the

128 Chapter 6.

00E+00

05E+06

10E+06

15E+06

20E+06

25E+06

30E+06

D
V

D
A

E
C

10
0

de
pe

sc

la
st

 r
eu

se

lo
op

 r
eu

se

L-
la

st
 r

eu
se

L-
lo

op
 r

eu
se

cr
iti

ca
lit

y

lo
ad

 b
lo

ck
ad

e

bl
oc

ks

AVE

INT

FP

Figure 6.48: Validation instructions of the presented heuristics

most. This means that, in fact, there are some instructions that are more critical

than others. Validating only 12 millions of instructions is able to perform 5% bet-

ter than the basic Dynamic Vectorization mechanism creating 64% less speculative

instructions.

As shown, most heuristics effectively reduce the number of extra speculative

instructions without penalizing or even increasing the performance of the basic DV

mechanism. This gives an idea that blind vectorization is not recommendable at

all and a selection of replicable instructions must be performed to take as much

advantage as possible of the Dynamic Vectorization mechanism. This concept will

be described deeper in Chapter 7 where the concept of Energy-Delay2 is introduced.

6.6 SUMMARY

In this Chapter we have described a set of heuristics applied directly to the dy-

namic vectorization mechanism. From the motivation we have shown the necessity

to reduce the number of extra mispredicted instructions without penalizing the per-

formance improvement of the mechanism.

Cost-Effective Dynamic Vectorization 129

We have presented several families of heuristics divided in accordance with their

scope in Fine grain and Coarse grain heuristics depending if they affect just one

instruction or a whole loop body.

Furthermore, we have added a third heuristic based on Criticality. We have

defined the concept of a critical instruction tailored to the Dynamic Vectorization

mechanism.

We have evaluated all these heuristics in terms of reduction of extra instructions,

performance improvement and data validation. Two more baselines are added to the

figures: one increasing the threshold value to the DAEC counter and other where

one instruction is not replicated if it has one scalar and one vector source operand.

Figures have shown that our heuristics effectively reduce the mispredicted extra

instructions and that this reduction, in most cases, increases the speed up of the

basic Dynamic Vectorization scheme.

Finally, we have shown that the concept of criticality is positive since the Criti-

cality heuristic improves considerably the performance, creating 64% less speculative

instructions and validating only 12 millions of instructions (50% less than the Dy-

namic Vectorization mechanism).

130 Chapter 6.

Chapter 7

Mechanism Comparison

Mechanism Comparison 133

7.1 INTRODUCTION

At first, the dynamic vectorization mechanism was ideated to be implemented in a

general purpose desktop processor with or without vector extensions. But nowadays

tendencies and constrains make us reopen this decision.

The variety of scenarios where a processor can be coupled, enforces a set of

constrains that must be had into account when stating the initial requirements of

design. It may not have sense to use a power-constrained processor in systems where

high performance is required.

For this reason, vendors use to release several families of processors targeted to

a particular scenario. This is what, for example, Intel Co. makes with the Centrino

Mobile series, where enlarging the battery life of a laptop is the maximal constrain.

On the other hand, Intel floods the market of high performance desktop computers

with the Pentium 4 series. AMD fills its piece of the market cake with the Athlon

64 and Sempron series for mobile and desktop computers. Server systems are also

aimed mainly with the AMD Opteron and the Intel Itanium 2 processors.

As we have shown in previous chapters, the Dynamic Vectorization can be easily

tailored to solve a wide range of problems/necessities. This adaptation allows us to

select which version of the mechanism fits best depending on the scenario constrains,

being the following question the main motivation for this Chapter: which is the best

variation of the mechanism for a given scenario?

To solve this answer, it is necessary, first, to define which constrains have to

be fulfilled for a given baseline processor. We will base this study in three main

requirements: hardware, performance and Energy-Delay2 requirements.

The objective of this Chapter is not to provide a general ranking of mechanism,

but report which mechanisms fit best for a given constrain.

134 Chapter 7.

7.2 MECHANISM COMPARISON

For simplicity, the comparison of mechanisms will be provided only for a subset of

all the schemes presented in this dissertation. Table 7.6 summarizes this fact.

Figures of every constrain will be provided in next sections together with a partial

ranking of mechanisms for every scenario.

7.2.1 Hardware

Even if the number of transistors grows in every new generation of processors,

thanks to technology, hardware constrains differentiate whether a mechanism is

implementable or not in a given processor.

Nowadays, hundreds of millions of transistors are available to construct whatever

proposed idea. Very often, this transistor availability is translated into extending

regular structures such as on-chip memory, from one processor model to another

inside the same family, because it is easier to verify the correctness of the implemen-

tation. But structure enlargement must be performed carefully to tolerate the new

access time. Wrongly designed structures can penalize dramatically the processor’s

cycle time.

As we annotate earlier in this dissertation (Section 2.2, the Dynamic Vectoriza-

tion mechanism includes regular structures that fit nicely in 1Ghz processors. Even

if frequency is increased by means of superpipelining, Dynamic Vectorization does

not impact the cycle time of the processor by two reasons: structures are out of the

critical path of the processor and, second, they can be easily pipelined.

Another important aspect is the control logic. To measure the complexity of a

design it is necessary a detailed layout of the processor. Since the drawing of such

scheme can take years, we have left it as future work. But just few words to justify

that our design is implementable: in order to provide a processor with dynamic

vectorization capabilities, only it is necessary to extend the control logic available

in the processor to manage the new fields of existing structures. For new structures,

Mechanism Comparison 135

Problem Scheme Description Section

General DV Scalar Dynamic Vectoriza-

tion mechanism

Chapter 3

Branch

mispredictions

CI Control independence selec-

tion

Chapter 4

Memory gap L2miss Control-flow independence

based mechanism for

L2 miss loads

Section 5.4

L2stall ROB analysis at processor

stall cycles

Section 5.5

L2nostall ROB analysis as soon as a

L2 miss load is detected

Section 5.5

DV

mispredictions

DAEC100 Replicas are not squashed

until DAEC reaches a value

of 100

Section 6.5

Last reuse Fine grain heuristic

Last Reuse

Section 6.4.1

Loop reuse Coarse grain heuristic

Loop Reuse

Section 6.4.2

Criticality Heuristic Criticality Section 6.4.3

Table 7.6: Compared mechanisms

136 Chapter 7.

such as the SRSMT, the access logic is not more complex than the required logic

to supply data to/from a 4-way data cache. In our studies, we obviate the required

hardware to implement the control logic of the Dynamic Vectorization mechanism

and its variations.

Table 7.7 shows the amount of extra hardware needed to implement the proposed

mechanisms. For every mechanism, the description of the new hardware and the

total amount of extra bytes needed are shown (we do believe that this is a good

measure to estimate hardware).

From table 7.7 it is easy to see that the amount of extra hardware to implement

the basic Dynamic Vectorization mechanism (12,25KB) its negligible and really af-

fordable in current and future processors. In fact, the scheme that requires more

hardware (Loop reuse) only needs 28,25KB, which is less than the size of L1 data

caches in current processors. Furthermore, if we double the L1 data cache of the

baseline processor of this thesis (64KB to 128KB), the IPC is only raised about 6%,

whereas the Loop reuse heuristic provides 46% of speedup.

Summarizing, in scenarios highly constrained by hardware limitations, the basic

DV mechanism is the best choice since it is the scheme that less transistors need to

be implemented.

7.2.2 Performance

Multimedia is one of the most important classes of applications executed in nowadays

processors. Since these programs are very performance-demanding, end users ask to

processor’s manufacturers for powerful systems in which playing audio and/or video

or even generate large 3D worlds run smoothly and without lags. For this reason,

desktop computers are upgraded once and again, incorporating the latest hardware

and software releases to fulfill the performance requirements of those applications.

Due to the wide range of versions of the dynamic vectorization mechanism pre-

sented in this dissertation, a final comparison of performance is necessary. Figure

7.49 summarizes all those studies, following Table 7.6 (IPC for SpecFP2K for the

Mechanism Comparison 137

Scheme Hardware Total (Bytes)

DV Stride predictor (64 sets x 2 ways x 20 bytes per

entry) + register file upper level (768 positions x

8 bytes per position) + SRSMT (64 sets x 4 ways

x 15 bytes per entry)

12544

CI DV + rename map table extension (64 entries x

16 bytes per entry) + extended stride predictor

(64 sets x 2 ways x 1 bit per entry) + NRBQ (64

entries x 16 bytes per entry) + CRP (16 bytes)

21792

L2miss DV + rename map table extension (64 entries x

16 bytes per entry) + extended stride predictor

(64 sets x 2 ways x 1 bit per entry) + extended

rename map table (64 entries x 1 bit)

20760

L2stall DV + IM (64 entries x 1 bit per entry) + DMT

(64 entries x 1 bit per entry)

12560

L2nostall DV + IM (64 entries x 1 bit per entry) + DMT

(64 entries x 1 bit per entry)

12560

DAEC100 DV 12544

Last reuse DV + 2-way set associative table with 64 entries

with 2 bit counters + 32 bit tags

13088

Loop reuse DV + branch predictor extension (64K entries x 2

bits)

28928

Criticality DV + Icache extension (8192 instructions x 1 bit

per instruction)

13568

Table 7.7: Hardware requirements of the proposed mechanisms

138 Chapter 7.

CI scheme is not provided).

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

D
V C
I

L
2

m
is

s

L
2

st
a

ll

L
2

n
o

st
a

ll

D
A

E
C

1
0

0

L
a

st
 r

e
u

se

L
o

o
p

 r
e

u
se

C
ri

tic
a

lit
y

Mechanisms

IP
C

AVE

INT

FP

Figure 7.49: Performance comparison of the mechanisms

As shown in Figure 7.49 the schemes perform quite different. Averaged IPCs

range from 0,92 (L2stall) to 1,54 (Last reuse). Selection focused on branch mispre-

dictions or the memory gap degrade the performance of the basic mechanism since

replication is only performed during short periods of time. In return, the heuristic-

based schemes or the basic DV mechanism are continuously replicating instructions,

increasing the chances of performance improvement.

Another important number on that Figure (7.49) is that no mechanism is able

to perform better that the basic scheme for SpecINT2K. As previously said, in

Chapter 4, replication for irregular codes must be as aggressive as possible to increase

the chances of data reuse. On the other hand, heuristics-based schemes prove to

outperform the DV baseline for SpecFP2K increasing until 16,3% (for Loop reuse)

the speed up.

Even if we are discussing which mechanisms perform best, it is advisable to

remember that the main objective of selection-based mechanism is to keep or increase

as much as possible the performance with less resource requirements.

But lower performance does not necessarily means that a given scheme is worse

than the DV mechanism. Another important factor must be had into account: the

Mechanism Comparison 139

effectiveness executing instructions. Next section discusses this topic.

7.2.3 Energy-Delay2

Hardware and performance are important requirements in current processors. The

first one, hardware, decides which mechanism can be included in a layout. The

second one, performance, ranks the processor in the market. But there are more

important constrains when designing a processor.

Power dissipation [GH96] has become one of the most important problems in

current processors. The rapid progress in technology scaling [Bor99], equal to qua-

drupling the number of transistors every three years, means that more temperature

is generated per area unit, making a processor be provided with a more sophisticated

thermal dissipation system.

There are a lot of work done in this topic. From mechanisms to dissipate ef-

ficiently the temperature [GH96], to schemes that reduce the activity [MKG98] to

cool the chip.

This thesis does not provide low power designs for the DV mechanism, but will

try to measure how effective [CL99] the basic scheme is, compared against the other

proposed arrangements, executing instructions.

To measure this, we will use a well-known metric: energy-delay2 (ED
2) [GH96].

This metric considerates how much energy an instruction needs to be executed

related to the performance benefit that it generates. The less energy an instruction

needs to obtain a given performance benefit, the better. Extrapolating to ED2: the

lower value of ED2 the better.

Note that there is a substantial difference between Energy-Delay and Energy-

Delay2. The first metric is commonly used to measure low power, portable systems.

Efficiency comes from increasing, for example, the battery life. The second metric,

given that emphasizes the delay, is better for optimizing performance.

We will compute ED2 in terms of #executed instructions * CPI2. We will assume

that all the instructions waste the same amount of energy to obtain their results.

140 Chapter 7.

Even if this is not true, we are really confident that this is a good approach for the

purpose of this study. Delay will be measured with the averaged number of cycles

an instruction takes to completely execute.

For our study, a high value for ED2 means that either a scheme creates an

excessive amount of extra instructions or the ratio between performance an the

number of extra instructions is not as high as the ratio obtained with the basic DV

scheme.

Figure 7.50 shows the value of the ED2 metric for the proposed mechanisms

normalized to the basic DV scheme. The lower the value of the ED2 for a given

scheme, the better.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

D
V C
I

L2
m

is
s

L2
st

al
l

L2
no

st
al

l

D
E

A
C

10
0

La
st

 r
eu

se

Lo
op

 r
eu

se

C
rit

ic
al

ity

Mechanisms

E
D

2

AVE

INT

FP

Figure 7.50: Energy-delay2 comparison of the mechanisms

Only two schemes, L2miss and L2stall, are less energy-effective than the DV

mechanism. The reason is that, for the first one, the obtained IPC is not high

enough to justify the excessive amount of extra instructions created. The L2miss

scheme creates 82 millions of instructions to obtain 1,1 IPC, compared against 1,4

IPC of the basic DV scheme. On the other hand, the L2stall mechanism, even if

nearly creates extra instructions (4,9M of extra instructions), only obtains 0,92 IPC

compared to 1,4 of the basic DV mechanism.

The good news is that the rest of mechanisms are more energy-delay2 effective

than the basic DV mechanism. As shown in Figure 7.50, Loop reuse and Critical-

Mechanism Comparison 141

ity are the two schemes that are more energy-aware at replication. mainly due to

SpecFP2K. Vectorization in regular codes is very effective since most data precom-

puted by replicas is validated. Moreover, when heuristic-based schemes that exploit

the DLP are applied, latency (CPI) reduction makes instructions allocate resources

for shorter periods of time then, reducing energy consumption.

On the other hand, energy-delay2 is not substantially reduced for SpecINT2K.

Since aggressiveness is the best way to improve performance for those benchmarks,

and excessive amount of extra instructions is created. Fortunately, in this case, these

extra instructions are fully justified. For example, the DAEC100 scheme reduces

nearly one half the number of extra instructions, losing only 5% of IPC. This means

that vectorization is more energy-efficiency. Instructions are better ”vectorized”.

7.3 SUMMARY

In this Chapter we have motivated the fact that a given mechanism, in this case

Dynamic Vectorization, can be applied in a wide range of scenarios. Furthermore,

for every scenario, some constrains must be had into account.

For this reason, we present a complete comparison of the mechanisms described

in this thesis focusing in three important parameters: hardware requirements, per-

formance and Energy-Delay2.

The first parameter, hardware, is useful to decide if a mechanism is or not imple-

mentable. Even if millions of transistors are available, the size of structures cannot

be infinite.

The second parameter ranks the mechanism for high-end computers where per-

formance is the main objective.

Finally, we proportionate a brief description of the third parameter: ED2. We

justify that the creation of extra instructions is not for free. Misspeculated replicas

consume energy to perform useless work. The ED2 measures how effective, in terms

of energy-consumption, the execution of an instruction is.

142 Chapter 7.

As previously said in the introduction of the Chapter, since scenarios vary from

one to another, a global ranking of mechanisms has no sense.

Table 7.8 summarizes this chapter by showing the two best mechanisms for a

given previously discussed requirement.

Requirement Scheme

Hardware Basic DV mechanism

DAEC100

Performance Last reuse

Loop reuse

ED2 Loop reuse

Criticality

Table 7.8: Final summary of mechanisms

Chapter 8

Conclusions

Conclusions 145

8.1 FUNDAMENTALS OF THIS WORK

8.1.1 Background to this thesis

Vector processors have been shown to be very effective in exploiting the DLP present

in regular codes. Vectorizing compilers are very efficient in detecting this DLP and

passing this semantic information on to the processor through a subset of vector

instructions of the ISA. A skilled programmer who has an in-depth knowledge of

the underlying architecture can write code that clearly exposes the DLP of a regular

application.

However, in irregular applications (integer codes) this DLP exploitation is very

difficult. Compilers fail to detect DLP in this kind of application and avoid creating

vector code. The main reason is that a compiler does not have enough knowledge

of the behavior of an application to apply modifications that are not safe for all

scenarios.

This problem is the motivation for this thesis. We wish to detect the vector

patterns of integer codes to clearly expose the DLP. To accomplish this, since this

detection has not been successful at compile time, we develop a mechanism that

detects DLP at runtime and creates vector code that executes in the vector resources

available in the processor. Furthermore, this mechanism will be rearranged to aim at

the most performance penalizing problems in current superscalar processors: branch

mispredictions and the memory gap.

8.1.2 Objectives of this thesis

The main objective of this thesis is to develop a mechanism that is able to detect and

expose DLP by detecting vector patterns at runtime for both regular and irregular

codes. With these patterns, the mechanism will speculatively create vector instruc-

tions that will be executed in the vector functional units of the processor, in order

to prefetch and precompute data for their scalar counterparts. A second version of

146 Chapter 8.

the mechanism will vectorize instructions in processors without vector capabilites.

Along this thesis, we realized that this mechanism can easily be tailored to several

problems. As a result of studying the sources of performance improvement in the

basic design, two new objectives emerged. The first one consists in alleviating the

branch misprediction problem by selecting control-flow independent instructions to

be vectorized. From the point of view of the dynamic vectorization mechanism this

selection is beneficial since control-independent instructions are the instructions with

the highest probability of reusing precomputed data which improves the resource

management of the speculative dynamic vectorization mechanism.

The second objective tries to reduce the memory gap by exploiting the stall

cycles of the processor caused by L2 miss loads, the inorder nature of the commit

stage and the lack of entries in the reorder buffer. During these stall cycles the

speculative dynamic vectorization mechanism prefetches and precomputes data for

instructions out of the instruction window. This procedure enlarges the instruction

window virtually.

Finally, the speculative dynamic vectorization mechanism must be resource-

aware. By imposing this requirement, we ensure that the scheme can be imple-

mented in current processors. For this reason, vector instruction creation has to be

controlled by selecting the vectorizable instructions that have the greatest impact

on performance.

8.2 ACCOMPLISHMENTS

8.2.1 Main contributions

The main contribution of this thesis lies in the claim that exploitable DLP exists,

that it is only detectable at runtime (even in irregular codes) and that this paral-

lelism can be used to translate the scalar code into an equivalent vectorial. This

study has led us to create the Speculative Dynamic Vectorization mechanism (DV),

which is able to create vector instructions from a fully optimized irregular code.

Conclusions 147

Furthermore, on the basis of in-depth study of the sources of performance im-

provement in the DV mechanism, new versions are derived. The first one deals with

the branch misprediction problem in superscalar processors. Several instructions

are completely independent to the control flow, and they compute the same results

whatever the outcome of previous conditional branches is. Under branch mispredic-

tions, these control-independent instructions are executed once and then again due

to pipeline flushes to recover the state of the processor in the mispredicted branches.

In this thesis we show that exploiting these instructions alleviates the penalty caused

by branch mispredictions. We adapted the basic DV mechanism to focus on these

instructions. Since one of the benefits of DV is the virtual enlargement of the in-

struction window, we claim that we have designed the first mechanism that is able

to reuse data for control-flow independent instructions, even when they are out of

the instruction window.

Taking advantage of the fact that speculative vector instructions do not occupy

entries of the reorder buffer, we designed a set of mechanisms that are able to exploit

he stall cycles of the processor due to L2 miss memory instructions. These mech-

anisms speculatively execute instructions during the cycles in which the processor

is stalled, due to the fact that no entries in the ROB are available because this

structure is completely full. With these mechanisms we demonstrate that the vir-

tual enlargement of the instruction window is beneficial as previously claimed in the

literature. Much more importantly, however, we claim that it is advisable to reuse

data computed by speculative instructions during these cycles in order to further

alleviate the memory gap.

Finally, based on the fact that the dynamic vectorization mechanism is register-

hungry, we propose a set of heuristics to alleviate this problem. Therefore, we refine

the basic DV mechanism to improve its benefits at a low cost. As a result, this

gives a more powerful mechanism that further improves the basic DV scheme usign

a negligible amount of resources.

148 Chapter 8.

8.2.2 Detailed breakdown of the contributions

Speculative dynamic vectorization

Chapter 3 demostrates an important fact: DLP is present in all kinds of codes. Even

if a compiler fails to detect this parallelism, vector patterns exist in irregular codes

and it can easily be detected at runtime. In fact, our studies show that nearly 30%

of an irregular program can be vectorized using our mechanism.

In this chapter we present the basics of the Dynamic Vectorization mechanism.

Two implementations of the mechanism are described. The first relies on the ex-

istence of vector resources to execute the speculatively created data. Speculative

vector instructions are created as soon as a vector pattern, which is represented as a

strided load, is detected at runtime. These speculative vector instructions prefetch

and precompute data for their scalar counterparts. After this, instructions with

precomputed data become validation instructions that check whether that precom-

putation has been performed correctly.

An evolved version of the mechanism is derived from the vectorial design due

to the complexity of the execution engine that deals with both scalar and vector

instructions. For this design, vector resources were removed from the processor.

Four main sources of performance improvement were detected: efficient manage-

ment of the memory system, successful reuse of precomputed data, virtual enlarge-

ment of the instruction window and control-flow independence reuse of data.

Our studies show the benefits of the DV scheme. The exacerbation of the DLP,

in conjunction with an optimal design of the L1 data cache port, leads to a net

reduction of the number of accesses to the L1 data cache of nearly 40%. Furthermore,

24% of the scalar instructions become validation instructions, which means that they

are not executed. If we add the control-flow independence reuse and the benefits

of enlarging the instruction window, the performance is improved by nearly 40% on

average for Spec2K, for configurations with long memory latencies.

Conclusions 149

Control-flow independence reuse via dynamic vectorization

Control-flow independence reuse is the first rearrangement of the basic Dynamic

Vectorization mechanism. This selection scheme is based on the fact that vectorizing

control-independent instructions only improves the effectiveness of the underlying

replication mechanism since these instructions present a high rate of precomputed

data reuse.

We have also shown that this scheme improves the Dynamic Vectorization mech-

anism which alleviates the pressure on the register file since less speculative work

is created. Furthermore, we have shown that including the hierarchical register file

is not only worth to reduce the design complexity but also to further alleviate the

pressure on the scalar registers since replicas hold their results in the upper level of

this register file, making the work of the critical lower level lighter.

Therefore, with a moderate amount of hardware, the control independence reuse

scheme is able to outperform the superscalar baseline by about 17% (for our research

we reduced the memory latency to emphasize the benefits of precomputation). More-

over, with a reduced number of registers distributed in a simple two-level hierarchical

register file layout, this scheme performs nearly equally to the basic DV mechanism

with an unbounded monolithic register file.

Furthermore, we have also shown that this is the first mechanism that is able

to perform control-independence reuse out of the instruction window and that this

reuse is very beneficial. Compared to other state-of-the-art schemes that are limited

to ROB boundaries, such as Chou´s [CFS99] or Cher´s [CV01] mechanisms our

mechanism obtains performance improvements of nearly 14%.

Overcoming the memory gap

To alleviate the memory gap, we presented two mechanisms whose main character-

istic is the virtual enlargement of the instruction window.

The first mechanism, L2miss which is based on the control-independence scheme

150 Chapter 8.

presented in Chapter 5, selects replicable instructions following an L2 miss load.

The second mechanism, L2stall, uses the third version of the Dynamic Vectorization

mechanism. In this case, the basics mechanism is implemented as a separate engine

that communicates with the main core through the issue queue and the SRSMT

table. This second mechanism analyzes the status of the reorder buffer under an L2

miss in order to replicate the mainstream.

We showed that both mechanisms outperform the baseline processor by taking

advantage of the base sources of performance improvement of the basic Dynamic

Vectorization mechanism.

Furthermore, we compared the mechanisms proposed with each other to show

that a net reduction of resources is possible maintaining the performance. The

L2stall mechanism is more cost-effective than the L2miss mechanism since the latter

creates a negligible amount of extra instructions (13M and 82,7M of replicas for the

L2nostall and the L2miss mechanisms respectively).

Finally, we demonstrated that the virtual enlargement of the instruction win-

dow is beneficial. Firstly, with small reorder buffers, the mechanisms presented

achieve almost the same performance levels compared to processors with larger re-

order buffers. Speculatively prefetching and precomputating data for instructions

out of the instruction window overcomes the limitations of the reorder buffer mean-

ing that a processor with 64 entries in the reorder buffer only loses 1% of IPC

compared to a processor with 256 entries in the reorder buffer.

Secondly, reusing data precomputed for instructions out of the instruction win-

dow is beneficial. For this case, we used processor with Run-ahead as a baseline.

We have shown that this effective reuse increases the performance by about 9%.

Cost-effective dynamic vectorization

In this chapter we describe a set of heuristics that is applied directly to the dy-

namic vectorization mechanism. We show the need for reducing the number of

extra mispredicted instructions without penalizing the performance improvement of

Conclusions 151

the mechanism due to a question of resource availability.

We present several families of heuristics divided according to their scope in Fine

grain and Coarse grain heuristics depending on whether they affect just one instruc-

tion or a whole loop body.

Furthermore, we add a third heuristic based on Criticality. We define the concept

of a critical instruction tailored to the Dynamic Vectorization mechanism.

The figures show that our heuristics effectively reduce the number of mispredicted

extra instructions and that this reduction, in most cases, increases the speed-up of

the basic Dynamic Vectorization scheme.

Finally, we show that the concept of criticality is positive since the Criticality

heuristic improves the performance considerably, creating 64% less speculative in-

structions and validating only 12 millions instructions (50% less than the Dynamic

Vectorization mechanism).

8.3 REMARKS AND FUTURE WORK

After the in-depth analysis of our research on different versions of the Dynamic

Vectorization mechanism, new requirements emerge:

• Simplification of the DV mechanism: From a hardware logic point of

view, some parts of the basic mechanism should be simplified, particularly

the memory disambiguation algorithm. Every store committed must check its

effective address against all the ranges of addresses of each vectorized load. If

this address is inside any range, the resources of these loads are deallocated.

Since these checks are costly, store commit requires extra latency. Rearranging

this procedure would prevent stores from penalizing performance.

• New register allocation policy: More intelligent register allocation policies

for replicas need to be developed. This will alleviate the pressure on the

register file, since it is probable that fewer extra speculative instructions will be

created. Policies regarding the code structures seem to be a good alternative.

152 Chapter 8.

• Improve heuristics by gathering information of loops: Section 6.4.2,

the block information heuristic, motivates a new line of research. If the se-

mantic information of the structure of a loop can be tracked at runtime, the

effectiveness of vectorization can be improved by successive refinements of the

speculatively created code, which will reduce resource requirements and result

in better performance.

• Vector code runtime optimizations: After the vector instructions are cre-

ated, several typical vector code optimizations could be applied, which would

produce a better speculative code. A further step could be consider binary

translation of scalar code at runtime, and even allow the created vector in-

struction to be executed in a non-speculative fashion.

• Selective dynamic vectorization targeted to improve branch predic-

tion: As previously shown in this dissertation, the basic DV mechanism can

easily be modified to aim any problem in current processors. In Chapter 4,

a possible solution, based on control independence, for alleviating the branch

misprediction penalty is presented. From another point of view, the DV scheme

could be tailored to aim hard-to-predict branches towards improving their ra-

tio of predictions by preexecuting the instructions leading to that branch.

• Control-flow independence reuse for large instruction windows: Con-

cerning this point, we plan to apply the basic CI mechanism to large instruc-

tion window processors. In these processors the branch mispredictions penalize

the performance dramatically, since a large number of instructions have to be

squashed. From another point of view, the CI scheme can further enlarge the

instruction window in these processors.

Speculative Vectorization for Superscalar Processors 153

LIST OF TABLES

2.1 Configuration parameters . 19
3.2 Configuration parameters for the Dynamic Vectorization mechanism . . 48
4.3 Branch statistics for the SpecINT2K (100M instructions per program) . 70
4.4 Memory latencies for CI schemes . 78
6.5 Evaluated heuristics . 125
7.6 Compared mechanisms . 135
7.7 Hardware requirements of the proposed mechanisms 137
7.8 Final summary of mechanisms . 142

154 List of Tables

Speculative Vectorization for Superscalar Processors 155

LIST OF FIGURES

1.1 Example code . 8
1.2 Possible transformations of the DV mechanism 9
2.3 Baseline processor with vector capabilities 18
2.4 Detail of the execution engine . 20
3.5 Stride distribution for Spec2K . 28
3.6 Percentage of vectorizable instructions 31
3.7 Dynamic vectorization transformation 31
3.8 Entry of the stride predictor . 32
3.9 Entry of the Vector Register Map Table 33
3.10 Entry of the modified rename map table 34
3.11 Modified vector register . 35
3.12 Vectorization and Replication . 41
3.13 Scalar Register Set Map Table details 42
3.14 Hierarchical register file . 47
3.15 Dynamic vectorization performance . 48
3.16 L1 access reduction of Dynamic Vectorization 50
3.17 Distribution of loads served per cycle . 51
3.18 Distribution of instructions . 52
4.19 Percentage of validation instructions that are control independent 60
4.20 Sample code with a hammock . 62
4.21 NRBQ and CRP interaction . 65
4.22 Common program constructs . 66
4.23 Selection scope . 72
4.24 Performance of the CI scheme with a monolithic register file 73
4.25 IPC varying the number of replicas and available registers 75
4.26 Distribution of instructions creating 2 and 4 replicas 75
4.27 IPC with a hierarchical register file . 76
4.28 Performance of CI schemes varying the memory configuration 78
4.29 Performance of CI schemes varying the ROB size 79
4.30 Performance of CI schemes varying latency of branches 80
5.31 Instruction window filling due to a L2 miss load 86
5.32 Steps of the L2 miss mechanism . 89
5.33 Hardware modifications in the decode stage 91
5.34 Hardware modifications in the commit stage 92
5.35 Stages of the L2stall mechanism . 95
5.36 Performance comparison between the L2 mechanisms 99
5.37 L2 miss reduction for the L2 mechanisms 100
5.38 Percentage of number of elements bypassed per wide bus access 101
5.39 Distribution of instructions for the proposed L2 mechanisms 102
5.40 Importance of the ROB size for the L2 mechanisms 103
5.41 Performance effect of the virtual enlargement of the instruction window 106

156 List of Figures

6.42 Optimal performance of the dynamic vectorization mechanism 113
6.43 Extra instructions generated by the dynamic vectorization mechanism . 114
6.44 Misspeculation example code . 115
6.45 Sources of misspeculations of the DV mechanism 117
6.46 Reduction of misspeculated instructions of the presented schemes 126
6.47 Performance improvement of the presented heuristics 127
6.48 Validation instructions of the presented heuristics 128
7.49 Performance comparison of the mechanisms 138
7.50 Energy-delay2 comparison of the mechanisms 140

Speculative Vectorization for Superscalar Processors 157

REFERENCES

[AK87] J. R. Allen and K. Kennedy. Automatic translation of fortran programs

to vector forms. In ACM Transactions on Programming Languages and

Systems, 1987.

[AMD99] AMD. http://www.amd.com, 3dnow! technology manual. In Technical

Report, 1999.

[Asa98] Krste Asanovic. Vector microprocessors. In PhD Degree Dissertation,

University of California at Berkeley, 1998.

[BA97] D. Burger and T. Austin. The simplescalar tool set, version 2.0. In

Technical Report n. CS-TR-97-1342, University of Wisconsin-Madison,

1997.

[BC91] J. Baer and T. Chen. An effective on-chip preloading scheme to re-

duce data access penalty. In Proceedings of International Conference on

Supercomputing, 1991.

[BDA01a] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dynamically al-

locating processor resources between nearby and distant parallelism. In

Proceedings of the 28th International Symposium on Computer Architec-

ture, 2001.

[BDA01b] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the

complexity of the register file in dynamic superscalar processors. In

Proceedings of the International Conference on Microarchitecture, 2001.

158 References

[BGS93] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations

for high performance computing. In Technical Report No. UCB/CSD-

93-781, University of California at Berkeley, 1993.

[Bor99] S. Borkar. Design challenges of technology scaling. In IEEE Micro

Volume 19, issue 4, pp 23-29, 1999.

[CFS99] Y. Chou, J. Fung, and J. P. Shen. Reducing branch misprediction penal-

ties via dynamic control independence detection. In Proceedings of the

13th International Conference on Supercomputing, 1999.

[CGVT00] J. L. Cruz, A. González, M. Valero, and N. Topham. Multiple-banked

register file architectures. In Proceedings of the 27th International Sym-

posium on Computer Architecture, 2000.

[CHP97] P. Chang, E. Hao, and Y. Patt. Target prediction for indirect jumps.

In Proceedings of the 24th International Symposium on Computer Ar-

chitecture, 1997.

[CKP91] D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In

Proceedings of the 4th International Conference on Architectural Support

for Programming Languages and Operating Systems, 1991.

[CL99] G. Cai and C. H. Lim. Architectural level power/performance optimiza-

tion and dynamic power estimation. In Cool Chips Tutorial in conjunc-

tion with MICRO 32, 1999.

[COM+04] A. Cristal, D. Ortega, J. F. Mart́ınez, J. Llosa, and M. Valero. Out-

of-order commit processors. In Proceedings of the 10th International

Symposium on High Performance Computer Architecure, 2004.

Speculative Vectorization for Superscalar Processors 159

[CSK+99] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt.

Simultaneous subordinate microthreading (ssmt). In Proceedings of the

26th International Symposium on Computer Architecture, 1999.

[CTWS01] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic specu-

lative precomputation. In Proceedings of the 34th International Sympo-

sium on Microarchitecture, 2001.

[CV01] C. Cher and T. N. Vijaykumar. Skipper: A microarchitecture for ex-

ploiting control-flow independence. In Proceedings of the 34th Annual

International Symposium on Microarchitecture, 2001.

[DM97] J. Dundas and T. Mudge. Improving data cache performance by pre-

executing instructions under a cache miss. In Proceedings of the Inter-

national Conference on Supercomputing, 1997.

[ea95] Krste Asanovic et al. The t0 vector microprocessor. In Hot Chips,

Volume VII:187-196, 1995.

[ea05] D. Pham et al. The design and implementation of a first-generation

cell processor. In Proceedings of the International Solid-State Circuits

Conference, 2005.

[Esp97] Roger Espasa. Advanced vector architectures. In PhD Degree Disserta-

tion, Universitat Politècnica de Catalunya, 1997.

[FRB01] B. Fields, S. Rubin, and R. Bodik. Focusing processor policies via

critical-path prediction. In Proceedings of the 28th International Sym-

posium on Computer Architecture, 2001.

160 References

[GG97] J. González and A. González. Memory address prediction for data spec-

ulation. In Proceedings of Europar, 1997.

[GH96] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose

microprocessors. In IEEE Journal of Solid-State Circuits 31, N. 9, 1996.

[GKMP98] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confidence esti-

mation for speculation control. In Proceedings of the 25th International

Symposion on Computer Architecture, 1998.

[Gon00] José González. Speculative execution through value prediction. In PhD

Degree Dissertation, Universitat Politècnica de Catalunya, 2000.

[Int99] Intel. Pentium iii processor: Developer’s manual. In Technical Report,

1999.

[Int02] Intel. Pentium ii processor - datasheets. In Technical Report, 2002.

[JG97] D. Joseph and D. Grunwald. Prefetching using markov predictors. In

Proceedings of the 24th International Symposium on Computer Architec-

ture, 1997.

[JLW01] R. D. Ju, A. R. Lebeck, and C. Wilkerson. Locality vs. criticality. In

Proceedings of the 28th International Symposium on Computer Architec-

ture, 2001.

[Jou90] N. P. Jouppi. Improving direct-mapped cache performance by the addi-

tion of a small fully-associative cache and prefetch buffers. In Proceedings

of the 17th International Symposium on Computer Architecture, 1990.

Speculative Vectorization for Superscalar Processors 161

[JRS96] E. Jacobsen, E. Rotenberg, and J. E. Smith. Limits of control-flow

on parallelism. In Proceedings of the 29th International Symposium on

Microarchitecture, 1996.

[Ken78] K. Kennedy. A survey of compiler optimizations techniques. In Le

Point sur la Compilation, (M. Amirchahy and N. Neel editors), INRIA,

Le Chesnay, France, 1978.

[LD97] Corinna G. Lee and Derek J. DeVries. Initial results on the performance

and cost of vector microprocessors. In Proceedings of the 13th Interna-

tional Symposium on Microarchitecture, 1997.

[LKL+02] R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A

large, fast instruction window for tolerating cache misses. In Proceedings

of the 29th International Symposium on Computer Architecture, 2002.

[LLVA98] D. López, J. Llosa, M. Valero, and E. Ayguadé. Widening resources: A

cost-effective technique for aggressive ilp architectures. In Proceedings

of the 31st International Symposium on Microarchitecture, 1998.

[LM96] C. K. Luk and T. C. Mowry. Compiler-based prefetching for recursive

data structures. In Proceedings of the 7th International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems, 1996.

[MKG98] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Speculation

control for energy reduction. In Proceedings of the 25th International

Symposium on Computer Architecture, 1998.

162 References

[MKSP05] O. Mutlu, H. Kim, J. Stark, and Y. N. Patt. On reusing the results of

pre-executed instructions in a runahead execution. In IEEE Computer

Architecture Letters, vol. 4, 2005.

[MLG92] C. T. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a

compiler algorithm for prefetching. In Proceedings of the 5th Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, 1992.

[MRH+02] J. F. Mart́ınez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrel-

las. Cherry: Checkpointed early resource recycling in out-of-order mi-

croprocessors. In Proceedings of the 35th International Symposium on

Microarchitecture, 2002.

[MSWP03] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Run-ahead execu-

tion: An alternative to very large instructions windows for out-of-order

processors. In Proceedings of the 9th International Symposium on High

Performance Computer Architecture, 2003.

[PGV02] A. Pajuelo, A. González, and M. Valero. Speculative dynamic vectoriza-

tion. In Proceedings of the 29th International Symposium on Computer

Architecture, 2002.

[PGV04] A. Pajuelo, A. González, and M. Valero. Speculative execution for hiding

memory latency. In Workshop on MEmory performance, DEaling with

Applications, Systems and Architectures, 2004.

[PGV05a] A. Pajuelo, A. González, and M. Valero. Control-flow independence

Speculative Vectorization for Superscalar Processors 163

reuse via dynamic vectorization. In Proceedings of the 19th IEEE Inter-

national Parallel & Distributed Processing Symposium, 2005.

[PGV05b] A. Pajuelo, A. González, and M. Valero. Cost-effective dynamic vector-

ization. In Technical Report No. UPC-DAC-RR-2005-15, 2005.

[PGV05c] A. Pajuelo, A. González, and M. Valero. Speculative execution for hid-

ing memory latency. In ACM SIGARCH Computer Architecture News,

Volume 33, Issue 1, 2005.

[PJS97] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity effective super-

scalar processors. In Proceedings of the 24th International Symposium

on Computer Architecture, 1997.

[RJS99] E. Rotenberg, Q. Jacobson, and J. Smith. A study of control indepen-

dence in superscalar processors. In Proceedings of the 5th International

Symposium on High Performance Computing Architecture, 1999.

[RS99] E. Rotenberg and J. Smith. A study of control independence in trace

processors. In Proceedings of 32nd Symposium on Microarchitecture,

1999.

[RTDA97] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin. On high-

bandwidth data cache design for multi-issue processors. In Proceedings

of the 30th Symposium on Microarchitecture, 1997.

[Rus78] R. M. Russell. The cray-i computer system. In Communications of the

ACM, 21(1) pp 63-72, 1978.

164 References

[SC00] T. Sherwood and B. Calder. Loop termination prediction. In Proceed-

ings of the 3rd International Symposium on High Performance Computer

Architecture, 2000.

[SJ01] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache tim-

ing, power and area model. In Technical Report, Compaq Computer

Corporation, 2001.

[Spe00] Spec2000. Spec2000 benchmark suite. In http://www.specbench.org/

osg/cpu2000, 2000.

[SS97] A. Sodani and G. S. Sohi. Dynamic instruction reuse. In Proceedings of

the 24th International Symposium on Computer Architecture, 1997.

[TG98] J. Tubella and A. González. Control speculation in multithread proces-

sors through dynamic loop prediction. In Proceedings of the 4th Interna-

tional Symposium on High Performance Computer Architecture, 1998.

[Uht92] A. K. Uht. Concurrency extraction via hardware methods executing the

statin instruction stream. In IEEE Transactions on Computers, vol. 41,

1992.

[VJM99] Sriram Vajapeyam, P. J. Joseph, and Tulika Mitra. Dynamic vectoriza-

tion: a mechanism for exploiting far-flung ilp in ordinary programs. In

Proceedings of the 26th annual International Symposium on Computer

Architecture, 1999.

[WD94a] S. W. White and S. Dhawan. Power 2. In IBM Journal of Research and

Development, v. 38 n. 5, pp 493-502, 1994.

Speculative Vectorization for Superscalar Processors 165

[WD94b] S. W. White and S. Dhawan. Power2. In IBM Journal of Research and

Development, v.38, n. 5, 1994.

[WM95] W. A. Wulf and S. A. Mckee. Hitting the memory wall: Implications of

the obvious. In ACM SIGARCH Computer Architecture News, vol. 23,

n. 1, 1995.

[WO01] K. M. Wilson and K. Olukotun. High bandwidth on-chip cache design.

In IEEE Transactions on Computers, vol. 50, no. 4, 2001.

[ZC90] H. P. Zima and B. Chapman. Supercompilers for parallel and vector

processors. In ACM Press Frontier Series/Addison-Wesley, 1990.

[ZS01] C. Zilles and G. Sohi. Execution-based prediction using speculative

slices. In Proceedings of the 34th International Symposium on Microar-

chitecture, 2001.

	Abstract
	Table of contents
	Chapter 1: Introduction
	Chapter 2: Platform and benchmarks
	Chapter 3: Speculative dynamic vectorization
	Chapter 4: Control-flow independence reuse
	Chapter 5: Overcoming the memory gap
	Chapter 6: Cost-effective dynamic vectorization
	Chapter 7: Mechanism comparison
	Chapter 8: Conclusions
	List of tables
	List of figures
	References

