
Optimizing VLIW Arhiteturesfor Multimedia AppliationsEsther Salamí San Juan
A thesis submitted in ful�llmentof the requirements for the degree ofDotor in Teleommuniations Engineering

Advisor: Mateo Valero CortésDepartament d'Arquitetura de ComputadorsUniversitat Politènia de CatalunyaMarh 2007

To my parents and my husband,whose love and unonditional supportgave me the strength to arry out this work.

Aknowledgments
First of all, I would like to express my gratitude to my thesis advisor, Mateo Valero,for his invaluable guidane, on�dene and support during all these years. I greatlyappreiate the amount of time and energy he has devoted to this work despite allthose pressing duties taking up his agenda. But most of all, I appreiate his enthu-siasm for this thesis.I would also like to thank Jesús Corbal for introduing me to the department and,partiularly, to the multimedia group. His interest and his own work on multimediaproessing learly motivated the beginning of this thesis.Thanks to Aliia Bustos and Àlex Ramírez for the good times we had in San Fran-iso. Àlex's omments and suggestions have been very helpful to my researh.Thanks to so many olleagues, friends, and relatives who have ontributed to theending of this thesis with their words of enouragement. I am speially grateful toBeatriz Otero for her friendship and lively support, and to Vanessa Moreno for somany o�ees whenever I needed a break.Finally, I also wish to thank the LCAC people and the administrative sta� for theironstant assistane, and the Centre de Superomputaió de Catalunya (CESCA) forsupplying the omputing resoures for our researh.

Abstrat
The growing interest that multimedia proessing has experimented during the lastdeade is motivating proessor designers to reonsider whih exeution paradigmsare the most appropriate for general-purpose proessors. On the other hand, asthe size of transistors dereases, power dissipation has beome a relevant limitationto inreases in the frequeny of operation. Thus, the e�ient exploitation of thedi�erent soures of parallelism is a key point to investigate in order to sustain theperformane improvement rate of proessors and fae the growing requirements offuture multimedia appliations. We belief that a promising option arises from theombination of the Very Long Instrution Word (VLIW) and the vetor proessingparadigms together with other ways of exploiting oarser grain parallelism, suh asChip MultiProessing (CMP).As part of this thesis, we analyze the problem of memory disambiguation in mul-timedia appliations, as it represents a serious restrition for exploiting InstrutionLevel Parallelism (ILP) in VLIW arhitetures. We state that the real handiap formemory disambiguation in multimedia is the extensive use of pointers and indiretreferenes usually found in those odes, together with the limited stati informationavailable to the ompiler on ertain oasions. Based on the observation that theinput and output multimedia streams are ommonly disjointed memory regions, wepropose and implement a memory disambiguation tehnique that dynamially an-alyzes the region domain of every load and store before entering a loop, evaluateswhether or not the full loop is disambiguated and exeutes the orresponding loopversion. This mehanism does not require any additional hardware or instrutionsand has negligible e�ets over ompilation time and ode size. The performaneahieved is omparable to that of advaned interproedural pointer analysis teh-niques, with onsiderably less software omplexity. We also demonstrate that bothtehniques an be ombined to improve performane.In order to deal with the inherent Data Level Parallelism (DLP) of multimedia ker-nels without disrupting the existing ore designs, major proessor manufaturershave hosen to inlude MMX-like µSIMD extensions. By analyzing the salabil-ity of the DLP and non-DLP regions of ode separately in VLIW proessors with
µSIMD extensions, we observe that the performane of the overall appliation isdominated by the performane of the non-DLP regions, whih in fat exhibit onlymodest amounts of ILP. As a result, the performane ahieved by very wide issue

iv Abstraton�gurations does not ompensate for the related ost. To exploit the DLP of thevetor regions in a more e�ient way, we propose enhaning the µSIMD-VLIW orewith onventional vetor proessing apabilities. The ombination of onventionaland sub-word level vetor proessing results in a 2-dimensional extension that om-bines the best of eah one, inluding a redution in the number of operations, lowerfeth bandwidth requirements, simpliity of the ontrol unit, power e�ieny, sala-bility, and support for multimedia spei� features suh as saturation or redution.This enhanement has a minimal impat on the VLIW ore and reahes more par-allelism than wider issue µSIMD implementations at a lower ost. Similar proposalshave been suessfully evaluated for supersalar ores. In this thesis, we demonstratethat 2-dimensional Vetor-µSIMD extensions are also e�etive with stati sheduling,allowing for high-performane ost-e�etive implementations.

Contents
1 Introdution 11.1 Motivation . 11.2 Soures of Parallelism in Multimedia Appliations 21.2.1 Instrution Level Parallelism 21.2.2 Data Level Parallelism . 51.2.3 Thread Level Parallelism . 61.3 Thesis Overview . 71.3.1 Objetives . 71.3.2 Organization of this Doument 82 Proessor Arhitetures for Multimedia 92.1 Arhitetural Challenges . 92.2 VLIW Proessors . 112.3 Vetor Proessing . 132.3.1 Conventional Vetor Arhitetures 142.3.2 µSIMD Extensions . 162.3.3 N-dimensional Vetor Arhitetures 172.3.4 Stream Proessors . 192.4 Chip Multiproessors . 212.5 Summary . 243 Compilation and Simulation Framework 253.1 Trimaran Choie . 253.2 Overview of the Trimaran Compiler Infrastruture 263.2.1 Arhiteture Spae . 263.2.2 Mahine Desription Model 293.2.3 Compiler Front-end . 293.2.4 Compiler Bak-end . 303.2.5 Simulator . 303.3 Extending the Trimaran Compiler Infrastruture 313.3.1 The Loops Module . 313.3.2 Modifying the Arhiteture and the Instrution Set 343.3.3 TrimaCahe . 343.4 Referene Arhiteture . 373.5 Summary . 38

vi CONTENTS4 Workload Charaterization 394.1 General Charateristis of Multimedia Codes 394.1.1 Charateristis of Multimedia Kernels 394.1.2 Charateristis of Multimedia Appliations 404.2 Benhmarks Desription . 414.3 Loop Level Analysis . 444.3.1 Coverage . 444.3.2 Loop Size . 444.3.3 Memory Referenes . 454.3.4 Operations per Cyle . 474.4 Appliation Level Analysis . 474.4.1 Stati Code Size . 474.4.2 Dynami Code Size . 484.4.3 Operation Breakdown . 494.4.4 Data Loality . 504.4.5 Memory Hierarhy . 514.4.6 Operations per Cyle . 544.5 Summary . 555 Memory Disambiguation in Multimedia Appliations 575.1 Relevane of Memory Disambiguation 575.2 Memory Disambiguation . 605.2.1 Stati Dependene Analysis 605.2.2 Run-time Dependene Tests 615.2.3 The Alias Analysis Problem in Multimedia Loops 625.3 The Dynami Memory Interval Test 645.3.1 Desription . 645.3.2 Terminology . 645.3.3 Implementation . 665.3.4 Code Example . 685.4 Evaluation . 705.4.1 Coverage . 715.4.2 Loop Level Analysis . 725.4.3 Appliations Analysis . 735.4.4 Test Blok Overhead . 745.4.5 Comparison with Interproedural Pointer Analysis 755.4.6 E�et of DSP Oriented Salar Optimizations 775.5 Summary . 786 A Vetor-µSIMD-VLIW Arhiteture 816.1 Salar and Vetor Regions . 816.2 Adding Vetor Units to a VLIW proessor 836.2.1 Vetor-µSIMD ISA Overview 836.2.2 Vetor-µSIMD-VLIW Arhiteture 856.2.3 Compilation Issues . 876.2.4 Code Example . 89

CONTENTS vii6.3 Evaluation . 916.3.1 Operation Breakdown . 916.3.2 Speed-up in Vetor Regions 946.3.3 Speed-up in Appliations . 976.3.4 Operations per Cyle . 986.4 Summary . 997 Conlusions 1017.1 Contributions . 1017.2 Future Work . 105A Loop Statistis 107A.1 Jpeg_en . 110A.2 Jpeg_de . 115A.3 Mpeg2_en . 120A.4 Mpeg2_de . 128A.5 Gsm_en . 133A.6 Gsm_de . 139A.7 Epi_en . 142A.8 Epi_de . 147

List of Figures
2.1 Hybrid lassi�ation of miroproessors [DP02℄ 112.2 Arhiteture of the VIRAM vetor proessor 152.3 Examples of µSIMD instrutions . 172.4 Arhiteture of the Imagine stream proessor [RDK+98℄ 202.5 Arhiteture of the RSVP [CEL+03℄ 212.6 Arhiteture of the MAJC-5200 proessor 222.7 Cell system arhiteture . 233.1 Trimaran ompiler infrastruture . 273.2 HMDES setion hierarhy . 293.3 Extension of the Trimaran ompiler infrastruture 323.4 Emulation ode replaement . 353.5 The dual bank struture of the vetor ahe 363.6 Memory trae paket desription (binary form) 374.1 Operation breakdown . 494.2 Data loality histograms . 504.3 Slow-down of a real memory hierarhy vs perfet memory for di�erentahe sizes and memory latenies . 524.4 Performane speed-up for di�erent memory ports on�gurations vs1-port perfet memory . 535.1 Soure ode and memory dependene graph of the innermost loop inthe h2v2_fany_upsample funtion 585.2 Non-disambiguated vs disambiguated ode sheduling of the inner-most loop in the h2v2_fany_upsample funtion 595.3 Typial multimedia memory aess patterns 625.4 Example of oinident referene groups 645.5 Dynami Memory Interval Test . 655.6 Dynami Memory Interval representation 665.7 DMIT. Main algorithm . 675.8 DMIT. Test blok generation algorithm 695.9 Test blok ode generated for the h2v2_fany_upsample innermostloop . 705.10 Inorporation of the Loop Memory Disambiguation module into theElor bak-end . 71

x LIST OF FIGURES5.11 DMIT. Performane speed-up of 2-, 4- and 8-issue width arhiteturesover the 2-issue width baseline . 745.12 DMIT vs IPA. Performane speed-up of 2-, 4- and 8-issue width ar-hitetures over the 2-issue width baseline 775.13 DMIT vs IPA. Performane speed-up over the 8-issue width baseline 785.14 DMIT vs IPA. Performane speed-up over the 8-issue width baselinefor expliit parallel versions of ode 796.1 Salability of salar and vetor regions in µSIMD-VLIW arhitetures 836.2 Comparison between onventional vetor, µSIMD and Vetor-µSIMDISAs . 846.3 Vetor-µSIMD-VLIW arhiteture 856.4 Comparison between entralized and distributed register �le organi-zations . 866.5 Lateny desriptors (Ter = earliest read, Tlr = latest read, Tew =earliest write, Tlw = latest write, L = �ow lateny, VL = vetorlength, LN = vetor lanes) . 896.6 Vetor-µSIMD implementation of the motion estimation algorithm . 906.7 Sheduling of motion estimation for a 2-issue Vetor-µSIMD-VLIWproessor . 916.8 Normalized operation ount . 926.9 Speed-up in vetor regions . 946.10 Speed-up in vetor regions for di�erent number of units and lanes . . 956.11 Speed-up in vetor regions with perfet memory and impat of realmemory . 976.12 Speed-up in appliations . 98

List of Tables
1.1 Comparison between supersalar an VLIW arhitetures 31.2 Evolution of the Itanium Proessor Family 52.1 Parameters of the TM3270 arhiteture [vdWVD+05℄ 132.2 µSIMD multimedia extensions . 163.1 Modeled proessor on�gurations . 384.1 Benhmarks desription and input sets harateristis 424.2 Coverage of innermost, do-loops and modulo sheduling loops (numberof loops and perentage of the overall dynami yles and operations) 444.3 Loop-body size (average number of stati operations, invoations, anditerations per invoation, and distribution of loops aording to thenumber of iterations per invoation) 454.4 Data size of memory referenes . 454.5 Stride of memory referenes . 464.6 Length and stride of array referenes. 464.7 Operations per yle rate in innermost loops for di�erent issue widths 474.8 Stati operation, blok and funtion ounts 484.9 Dynami operation, blok and funtion ounts 494.10 Hit rate of load and store operations for di�erent ahe sizes 514.11 Operations per yle rate in innermost loops and appliations for dif-ferent issue widths . 545.1 DMIT. Coverage . 715.2 DMIT. Loop level analysis for the 8-issue width arhiteture 725.3 DMIT. Test blok overhead . 755.4 DMIT vs IPA. Loop level analysis for the 8-issue width arhiteture . 766.1 Vetor regions . 826.2 Estimated area, delay and power of di�erent µSIMD and Vetor-

µSIMD register �le on�gurations . 876.3 Average vetor length . 936.4 Average operations per yle (OPC), miro-operations per yle (µOPC),and speed-up (SP) in the salar and vetor regions and in the full ap-pliation . 99

xii LIST OF TABLESA.1 Jpeg_en innermost loops list . 110A.2 Jpeg_de innermost loops list . 115A.3 Mpeg2_en innermost loops list . 120A.4 Mpeg2_de innermost loops list . 128A.5 Gsm_en innermost loops list . 133A.6 Gsm_de innermost loops list . 139A.7 Epi_en innermost loops list . 142A.8 Epi_de innermost loops list . 147

Chapter 1Introdution
This hapter presents the motivations behind this thesis. An overview of the di�erentsoures of parallelism usually found in multimedia odes and the most signi�anttrends in their exploitation is also inluded. The hapter ends up de�ning the maingoals of this work.1.1 MotivationThere has always been a lively interest in improving the interfae between humanand mahines. In the ourse of time, advanes in miroproessors tehnology anddesign have made possible thinking on more ambitious appliations that o�er a moreomfortable and friendly environment to the user, either to aid in work, for personaltasks, or simply for entertainment. As a result, new forms of ommuniation haveemerged that integrate multiple information ontent and proessing, inluding (butnot limited to) text, audio, graphis, animation, video, and interativity. Speehreognition, ryptography, video-onferene, web-TV, or the new generation of videogames are just a few examples of the great variety of this kind of appliations, widelyknown as multimedia appliations.Proessors had been traditionally designed for tehnial and sienti� appliations.At present, it is widely assumed that the multimedia workload dominates desktop y-les and that it will ontinue to inrease in importane [KP98℄. Multimedia workloadhas signi�antly di�erent harateristis from other existing appliations. Currentomputers have to fae inreasing requirements in omputational power and memorybandwidth and it is not lear what kind of arhiteture deals better with present andfuture multimedia requirements.During the last three deades, miroproessors have undergone an exeptional in-rease in performane. The number of transistors on an integrated iruit doublesevery 18 months approximately, exeeding Moore's original statement [Moo65℄. Fur-thermore, advanes in miroarhiteture design provide more aggressive tehniquesto exploit greater degrees of parallelism. As tehnology evolves, the number of tran-

2 Chapter 1. Introdutionsistors to be inluded on a single hip will ontinue inreasing [Yu96℄. Nevertheless,having more and faster transistors does not involve the same performane improve-ment rates than some years ago.On the one hand, the available Instrution Level Parallelism is limited by the amountof dependenes and onditional branhes that exists in programs, hene taking littlebene�t from more aggressive proessor implementations. On the other hand, thegrowing gap between proessor speed and memory aess time leads to a memorywall in whih memory aesses dominate ode performane [WM95℄. Finally, as thesize of transistors dereases, there is a signi�ant inrease in the onentration of heat,whih an even make the hip burn. Aording to Intel, the power onsumption oftheir hips has doubled approximately every 36 months [MNW+02℄. Inreasing powerdissipation, and partiularly, the need to ool regions of loal power onentrations,also known as hot spots, has beome a major problem.The Very Long Instrution Word (VLIW) paradigm provides a promising alternativeto traditional supersalar designs, as it requires onsiderably less hardware om-plexity, thus reduing power onsumption. It has demonstrated to do well in theembedded media domain [Pur98, BLO02, FG00, Ses98, RS96℄. Furthermore, in thegeneral-purpose domain, the Itanium Proessor Family [SA00℄ has reently arisen asa ompetitive option against ommonly extended out-of-order supersalar proessors.Nevertheless, a high degree of Instrution Level Parallelism in VLIW arhiteturesstill requires deoding more operations in parallel and a large register �le, whih maya�et overall performane due to the inreased aess time.Our work onentrates on improving VLIW arhitetures in the ontext of multi-media workload. As we will see in next setion, the performane of this kind ofappliations an be improved by exploiting di�erent soures of parallelism. In thisthesis, we fae two problems. First, we analyze the problem of memory disambigua-tion, as it imposes a signi�ant restrition on the exploitation of Instrution LevelParallelism. Seond, we study how to exploit the inherent Data Level Parallelism ofmultimedia appliations in a ost e�etive way, reduing the feth bandwidth andpower requirements of very wide issue arhitetures.1.2 Soures of Parallelism in Multimedia AppliationsWe an distinguish at least three forms of parallelism in multimedia appliations:instrution level parallelism, data level parallelism, and thread level parallelism.1.2.1 Instrution Level ParallelismThe Instrution Level Parallelism (ILP) paradigm speeds up exeution by ausingindividual mahine operations to exeute in parallel [RF93℄. The amount of ILP de-pends on eah partiular appliation. Video and imaging odes, for instane, exhibit

1.2. Soures of Parallelism in Multimedia Appliations 3more ILP than ryptography appliations. Nevertheless, multimedia workloads arein general haraterized by larger amounts of ILP than integer ones.Most of the traditional hardware and ompilation tehniques fous on exploiting ILPto speed-up exeution. Supersalar proessors are the most extended ILP implemen-tation for the general-purpose domain. The hardware must determine at run-time thedependenes between operations and deide at whih partiular time and on whihfuntional unit and registers the operations must be exeuted (a detailed analysisof supersalar hardware an be found in [Joh91℄). However, it is widely assumedthat urrent supersalar proessors annot be saled by simply fething, deodingand issuing more instrutions per yle. Conditional branhes, the instrution ahebandwidth, the instrution window size, the register �le and the memory wall aresome of the aspets that urrently limit the salability of supersalar proessors.Very Long Instrution Word (VLIW) proessors are another form of exploiting ILPthat requires less hardware omplexity. Table 1.1 summarizes the main di�erenesbetween supersalar and lassi VLIW arhitetures. The ompiler and not thehardware is responsible for identifying groups of independent operations, assign-ing a funtional unit to eah operation, and pakaging them together into a singleVLIW instrution [Fis81℄. Due to the regularity of multimedia appliations, statisheduling arises as a promising option over dynami sheduling. The �rst generationof VLIW proessors were suessful in the sienti� domain [CNO+88, RYYT89℄,and it has also been the arhiteture of hoie for most media embedded proes-sors [Sem99, Dev99, TI99℄. However, some relevant fats, suh as binary inompati-bility aross di�erent implementations, the inreased ode size as a result of aggres-sive sheduling tehniques, and the lak of �exibility in front of non-deterministilatenies, have ontributed to the belief that VLIW proessors are not appropriatefor the general-purpose domain.Supersalar Classi VLIWRequires dependeny heking hardware The ompiler is responsible for grouping in-dependent operationsControl logi does not sale well (O(n2)) Simpli�ed hardware for deoding and issuinginstrutionsRequires routing hardware for assignment ofinstrutions to funtional units Stati assignment of operations to funtionalunitsHardware has full information about depen-denes Limited stati information available to theompilerFlexibility in front of variable lateny mem-ory operations Impat of non-deterministi lateniesInreased ode sizeBinary ompatibility aross di�erent imple-mentations Objet ode inompatibility aross di�erentimplementationsTable 1.1. Comparison between supersalar an VLIW arhitetures

4 Chapter 1. IntrodutionDuring the last deades, there has been onsiderable advanes regarding these issuesand, at present, a revival of the VLIW exeution paradigm is observed. The IBM'stree-based VLIW arhiteture, for example, provides binary ompatibility for VLIWimplementations of varying width through dynami binary translation [EFK+98℄.Furthermore, eah ompany has developed its own ompression sheme to avoidode expansion. The Philips' Trimedia arhiteture [RS96℄, for example, stores theinstrutions in a ompressed format, and a deompressor unit expands it during theinstrution feth. In the Texas Instruments' VeloiTI [Ses98℄, the feth pakets aredelimited by parallel instrution link bits in the instrution format.On the other hand, HP and Intel have reently introdued a new style of arhiteturenamed Expliitly Parallel Instrution Computing (EPIC) [SR00℄ (also alled indepen-dene arhiteture [RF93℄). The ompiler determines the grouping of independentinstrutions and ommuniates this via expliit information in the instrution set,but the hardware makes the �nal deision of whih operations exeute on eah fun-tional unit at run-time [Smo02℄; hene EPIC retains ompatibility aross di�erentimplementations without the omplexity of supersalar ontrol logi. The spei�instrution set arhiteture, known either as IA-64 or as Itanium Proessor Family(IPF) [SA00℄, inludes a large number of registers, prediated exeution to redueontrol hazards, unbundled branhes support, ompiler ontrol of the memory hier-arhy, and speulative loads support.Table 1.2 summarizes the evolution of the IPF. The �rst implementation of the IA-64, the Itanium proessor (ode-named Mered), was released in 2001, two years laterthan originally expeted. It was o�ered at speeds of 733 and 800 MHz, with a hoieof 2 or 4 MB o�-die L3 ahe. Although it was the fastest �oating point proessor inthe market, it was not ommerially suessful mainly beause of the launh delay, thelak of optimized ode, and its low performane when running IA-32 appliations,among other reasons. Hene, it was replaed in 2002 by the Itanium2 proessor,whih is intended for use in high-end enterprise servers. In the �rst version of theItanium2 proessor (ode-named MKinley), Intel shortened the pipeline from tento eight stages, tripled the system bus bandwidth and moved the L3 ahe onto thehip. The Itanium2 proessor an issue up to six operations per yle in a �xed set ofombinations. It inludes 128 �oating point, 128 integer, 64 prediate and 8 branhregisters. As far as funtional units, it has six integer, three branh, two �oatingpoint, one SIMD, two load, and two store units. In July 2006, Intel released the �rstdual-ore Itanium2 proessor (ode-named Monteito). Intel reports that it doublesthe performane of its single-ore predeessor, while reduing power onsumption byapproximately 20 perent [Int06℄. It also features multithreading apabilities, beingable to exeute two threads per ore. From the available information about ominggenerations, we an envision that future implementations of the IA-64 will relay onmulti-ore hips, even having as many as 16 ores on the hip die.

1.2. Soures of Parallelism in Multimedia Appliations 5Version Clok Speed Bus Speed L1 Instr/Data TehnologyProessor Bandwidth L2 Cahe TransistorsDate L3 Cahe Die sizePower envelopeMered 733 or 800 MHz 133 MHz 16 KB / 16 KB 180 nmItanium DDR 96 KB 25 (+295) M07/2001 2.1 GB/s 2 MB or 4 MB o�-die 300 nm2116-130 WMKinley 900 MHz or 1 GHz 100 MHz 16 KB / 16 KB 180 nmItanium2 QDR 256 KB 221 M07/2002 6.4 GB/s 1.5 MB or 3 MB on-die 421 nm290-100 WMadison 1.3 to 1.67 GHz 100 MHz 16 KB / 16 KB 130 nmItanium2 QDR 256 KB 410-592 M06/2003 6.4 GB/s 1.5 MB to 9 MB on-die 374-432 nm2-07/2005 91-130 WDeer�eld 1 GHz 100 MHz 16 KB / 16 KB 130 nmItanium2 QDR 256 KB 221 M08/2003 6.4 GB/s 1.5 MB on-die 421 nm262 WFanwood 1.3 or 1.6 GHz 100 or 133 MHz 16 KB / 16 KB 130 nmItanium2 QDR 256 KB 410 M11/2004 6.4 or 8.5 GB/s 3 MB on-die 374 nm299 WMonteito 1.4 to 1.67 GHz 100 to 166 MHz 32 KB / 32 KB 90 nmItanium2S QDR 2.5 MB 1720 MDual Core 6.4 to 10.6 GB/s 8 to 24 MB on-die 596 nm207/2006 104 WTable 1.2. Evolution of the Itanium Proessor Family
1.2.2 Data Level ParallelismAnother kind of parallelism that an be found in programs is Data Level Parallelism(DLP) (or Single Instrution Multiple Data (SIMD) [Fly72℄). The DLP paradigmtries to speify with a single vetor instrution a large number of operations to beperformed on independent data elements. As eah individual operation is indepen-dent of all others, vetor instrutions are highly parallel and pipelineable, whihsimpli�es the ontrol unit onsiderably.One of the main advantages of using vetor instrutions is the redution in theoverall number of instrutions to be exeuted, as one single vetor instrution spei�esseveral salar instrutions. Furthermore, many ontrol operations are also removed,as they are embedded in the semantis of the vetor instrution [QEV98℄. As aresult, the pressure on the feth unit diminishes signi�antly.

6 Chapter 1. IntrodutionOther advantages are related to the way the memory system is aessed. As asingle vetor memory instrution spei�es a long sequene of memory addresses, thehardware has advane knowledge regarding memory referenes. This information anbe used to improve the memory system [VLPA95℄. Additionally, a vetor instrutionis able to amortize the start-up latenies of funtional units and memory over apotentially long stream of elements.In the superomputing domain, DLP has been suessfully exploited by vetor [Rus78,BS00, vdSD01℄ and array [Hor82, Red73℄ proessors. During the last deade, the in-reasing signi�ane of media proessing has motivated a great interest in exploitingsub-word level parallelism (also alled µSIMD parallelism [Lee99℄). DLP is ommonlypresent in multimedia appliations in the form of small loops that operate streams ofsmall data elements, suh as pixels or audio samples. In the general-purpose domain,
µSIMD multimedia extensions suh as SSE [Int99℄ or Altive [NJ99℄ have been a fastand ost e�etive option to deal with this kind of parallelism: short data are pakedinto a single register and operations are arried out simultaneously on the di�erentregister elements. However, the e�ieny of sub-word level implementations is re-dued by the e�et of unaligned and non-unit stride memory aesses. On the otherhand, while traditional vetor proessors an be easily saled by just repliating thefuntional units and widening the paths to the vetor registers (with just the limitof the maximum vetor length), the salability of sub-word level implementations islimited by the width of the µSIMD registers.A third way of exploiting DLP omes from the ombination of both traditional ve-tor and sub-word level parallelism [CEV99, JVTW01, Koz99℄. These arhiteturesadapt to typial multimedia patterns by extending the sope of vetorization to twodimensions. They overome some of the limitations of sub-word level implementa-tions and yield better performane than saling the word size of a sub-word levelparallel arhiteture [SAS+05℄1.2.3 Thread Level ParallelismAs the gap between proessor operation frequeny and memory aess time inreases,ILP tehniques beome insu�ient to tolerate memory lateny. The hardware om-plexity and power ost of the strutures needed to keep the proessor busy during aahe miss are prohibitive. In onsequene, there is a growing trend towards exploit-ing higher levels of parallelism, suh as Thread Level Parallelism (TLP). A programexhibit TLP if it an be deomposed in di�erent threads, or groups of instrutions,that an be exeuted onurrently. This kind of parallelism is ommonly found inommerial server appliations, suh as databases.Future media appliations are expeted to proess several media streams onur-rently, suh as video, audio and enryption, whih are ontrolled by a higher layer ofthe protool. We an �nd an example in the MPEG4 standard [Koe99℄, an objet-based approah to desribe and ompose interative audiovisual senes. Unorrelatedobjets are oded, enrypted and transmitted separately in order to be omposed

1.3. Thesis Overview 7again at reeption. These objets may inlude digital video, still image, audio,speeh and even audio synthesis or 3D-graphis. Dealing with multiple onurrentmedia streams means that we have high levels of oarse level parallelism togetherwith the intra-threaded real time requirements of eah media soure.One of the main tehniques to exploit TLP is alled simultaneous multithreading(SMT) [TEL95℄. In SMT, instrutions from multiple threads an be issued inone proessor yle. The �rst ommerial SMT proessor was the Alpha 21464(EV8) [Eme99℄. Although the proessor was never released, the tehnology devel-oped for this proessor did probably set the bases for later proessor designs. TheIntel Pentium 4 [BBH+04℄ was the �rst desktop proessor to implement SMT (Hyper-Threading Tehnology (HTT) in Intel's terminology).On the other hand, interleaved multithreading onsists on issuing multiple instru-tions from di�erent threads on an interleaved way. We an distinguish di�erent levelsof multithreading depending on the frequeny of the interleaving. In �ne-grain mul-tithreading, for example, instrutions from di�erent threads are issued after everyyle. On the ontrary, oarse-grain multithreading swithes from one thread toanother when the urrent exeuting thread auses some long lateny event.Another implementation of TLP is hip multiproessing (CMP). It integrates twoor more proessor ores into one hip, so that di�erent threads an be exeutedindependently. The main manufaturers of high performane proessors are followingthis trend [TDJ+02, SKT+05, Joh05, KAO05, AMD06, GMNR06, MB04, KDH+05℄.Nevertheless, di�erent TLP implementations are not exlusive and an be ombinedto improve performane. Intel's Monteito and Sun's UltraSPARC T1 are examplesof oarse-grain multithreading multi-ore proessors.
1.3 Thesis Overview1.3.1 ObjetivesWe an distinguish two main objetives in this thesis. As we will demonstrate, mem-ory disambiguation is a key optimization to exploit ILP, speially in stati shedulingimplementations, suh as lassi VLIW arhitetures. Furthermore, memory disam-biguation is also required in order to generate vetor ode. Even in the ase of havinghard-to-deal ontrol and data dependenes in the omputation, typial media kernelsusually proess disjointed streams of data; nevertheless, ommon ommerial om-pilers fail to disambiguate them mainly beause of the extensive use of pointers andindiret referenes. One of the main goals of this thesis is to analyze the problem ofmemory disambiguation in multimedia odes. As part of this thesis, we will propose,implement, and evaluate a software memory disambiguation tehnique based on thememory aess patterns of most media kernels.

8 Chapter 1. IntrodutionOn the other hand, we think that the ombination of the vetor and the VLIWparadigms is a promising alternative to exploit the �ne-grain parallelism of multi-media odes. Hene, the seond main goal of this work is to evaluate the potentialof enhaning a referene µSIMD-VLIW arhiteture with onventional vetor apa-bilities. We will show that multimedia appliations are omposed of heterogeneousregions of ode, some of them with high levels of DLP and other ones with only mod-est amounts of ILP. Vetor-µSIMD multimedia extensions have proved to be a goodoption to exploit the parallelism of the DLP-regions [Cor02℄, as they adapt well totypial multimedia data strutures, providing good performane and overoming thesaling limitations of existing µSIMD extensions. Furthermore, simpliity and powere�ieny are features of both, vetor and VLIW arhitetures, whih allows for lowerlok rates and lower voltages. We will demonstrate that Vetor-µSIMD extensionsare also e�etive with stati sheduling, allowing for high-performane ost-e�etiveimplementations. Additionally, TLP implementations, suh as hip-multiproessorsan be used to exploit oarse-grain parallelism.1.3.2 Organization of this DoumentIn this hapter we have exposed the motivation and the main objetives behind thisthesis. The rest of this doument is organized as follows. Chapter 2 surveys themain impliations that multimedia proessing is involving in omputer arhitetureand overviews the most signi�ant proessor arhitetures that have been proposedfor multimedia.The working environment is presented in Chapter 3, inluding the ompilation andsimulation framework, the extensions built into the original tool set, and the referenearhiteture used in the evaluations. Next, Chapter 4 analyze the main harateris-tis of multimedia odes, both at the appliation and at the loop level. Our set ofbenhmarks is introdued and haraterized for the referene VLIW arhiteture.Chapter 5 disusses the problem of memory disambiguation in the ontext of mul-timedia odes and proposes a dynami memory disambiguation tehnique speiallytargeted at multimedia loops or any other appliations with similar memory aesspatterns. The proposal is fully desribed, implemented and evaluated, as well asompared against advaned interproedural pointer analysis.Chapter 6 is onerned with our proposal of adding vetor apabilities to µSIMD-VLIW proessors. We start by performing a salability study of the DLP and non-DLP regions of the benhmarks in VLIW arhitetures with µSIMD multimediaextensions. Next, we present the proposed arhiteture and disuss the main ompi-lation issues. The hapter ends with a performane evaluation of the arhiteture.Finally, Chapter 7 onludes the thesis by summarizing the ahieved goals and sug-gesting new diretions for future researh.

Chapter 2Proessor Arhitetures forMultimedia
Multimedia proessing has motivated strong hanges in the fous and design of pro-essors. Current omputers have to fae inreasing requirements in omputationalpower for videoonferening, image ompression and proessing, 3D graphi games,enryption, speeh reognition and so on. In this hapter, we overview the impatthat multimedia proessing is having on omputer arhiteture and brie�y desribesome of the most relevant proposed arhitetures.2.1 Arhitetural ChallengesThe importane of multimedia proessing has produed a revolution in the designof both embedded and general-purpose proessors. In the general-purpose domain,these hanges have been very straightforward with the inlusion of MMX-like µSIMDmultimedia extensions. These extensions have beome the most important hangeto the basi ISA sine the inlusion of the FP units inside the proessor ore. Nev-ertheless, the signi�ane that media proessing has been taking on during the lastyears has not been limited to the general-purpose domain. On the ontrary, the em-bedded domain has experimented a revolution based on new and harder demands.Near future appliations suh as personal mobile omputing, Web-TV devies, DVDplayers or even next generation of game onsoles are just a few examples.Traditional Digital Signal Proessors (DSPs) were designed to support spei� andregular omputation-intensive tasks. Most of them inluded speial-purpose oper-ations, omplex memory addressing modes, and support for ounted loops, amongother features. However, suh levels of speialization limit the use of high-performaneompilers and lak �exibility enough to adapt to variations in the appliations. Dur-ing the last deade, thanks to advanes in tehnology and ompilation tehniques,and motivated by the evolution of the multimedia market, DSP proessors haveexperimented a hange of trend towards simpler and more general load-store RISC-

10 Chapter 2. Proessor Arhitetures for Multimedialike arhitetures. Most of them inlude µSIMD operations, support for unalignedmemory aesses and prefething, and DMA transfers.To satisfy the great variety of onsumer produts, these proessors must provide highperformane at low ost. At the same time, they must be programmable in order tosupport the di�erent standards and redue appliation development time. Therefore,these proessing elements are limited by the trade-o�s between performane and �ex-ibility. The inreasing importane of these emerging lass of proessors has deserveits own term: the media proessor. A media proessor is de�ned as a programmableproessor dediated to simultaneously aelerating the proessing of multiple datatypes, inluding digital video, digital audio, omputer animation, text, and graph-is [Kon98℄.Aording to this, Fritts distinguishes three forms of industry support for multimedia:appliation-spei� proessors, multimedia extensions to general-purpose proessors,and media proessors [Fri00℄. A similar lassi�ation is done by Talla, who dis-tinguishes between general-purpose proessors with SIMD extensions, VLIW mediaproessors, and appliation spei� integrated iruits (ASICs) [Tal01℄. On the otherhand, Dasu proposes a omplete ategorization of existing miroproessors based onboth the evolution of proessing arhitetures and the funtionality of the proes-sors (see Figure 2.1) [DP02℄. While from an evolution point of view speial-purposeprogrammable proessors assimilate features of DSP and RISC arhitetures, froma funtional perspetive they are inluding VLIW and SIMD implementations toexploit parallelism at many levels.From another perspetive, El-Mahdy proposes a taxonomy of multimedia proessingbased on three arhiteture models: vetor proessors, supersalar proessors, andmultiproessors [EM01℄. DSPs and multimedia approahes are onsidered as varia-tions of these three arhiteture models. As we are interested on the arhiteturalpoint of view, we have also organized the di�erent approahes on three arhiteturalgroups: VLIW proessors, vetor proessing, and hip multiproessors.The VLIW paradigm has been the arhiteture of hoie for most media proes-sors. Chromati Researh's Mpat [Pur98℄, Equator's MAP-CA [BLO02℄, AnalogDevies' TigerSHARC [FG00℄, Texas Instruments' VeloiTI [Ses98℄, and Philips' Tri-Media [RS96℄ are just a few examples. These arhitetures rely on the ompiler toavoid the overhead of run-time parallelism extration and beome a ost-e�etive op-tion to provide more �exibility to support the large variety of multimedia standards.From the superomputing domain, the vetor and systoli paradigms have also in-�uened new DSP proessors. Examples of vetor miroproessor designs are theTorrent-0 [ABI+95℄ and the VIRAM projet [KP98℄. Additionally, there are projetsusing streaming SIMD arhitetures to address 3D graphis proessing, suh as theImagine proessor [RDK+98℄. Another researh line onsiders the inlusion of a on-ventional vetor ISA extension [QCEV99℄ and a matrix ISA extension [CEV99℄ intoa supersalar ore.

2.2. VLIW Proessors 11
Media Processing Approaches

Programmable

Special Purpose General Purpose Monolithic Modular

Speculative Control

ReconfigurableDedicated

Instruction Level Parallelism Thread Level Parallelism

VLIW/Superscalar

With Media Extended ISA Without Media Extended ISA

RISCCISC

Data Level Parallelism

SIMD Figure 2.1. Hybrid lassi�ation of miroproessors [DP02℄Finally, a natural way of exploiting oarse grain parallelism onsists on integrat-ing multiple proessor ores into a single hip. In fat, the main manufaturersof high performane proessors are following this trend: see for example IBM'sPower5 [SKT+05℄, HP's PA-8900 [Joh05℄, SUN's UltraSPARC T1 [KAO05℄, AMD'sOpteron [AMD06℄, Intel's Code Duo [GMNR06℄ and Monteito [MB04℄, and theCell Broadband Engine [KDH+05℄ from Sony, Toshiba and IBM. Chip MultiProes-sors (CMPs) have the potential to provide high salability, although they are stilllimited by the lak of programming tools and their dependeny on hand-written li-braries [Kon98℄. In partiular, the ombination of the CMP, the VLIW, and theSIMD paradigms appears as a good option to exploit the heterogeneous parallelismfound in multimedia appliations, being able to provide high performane at lowost. Typial examples of VLIW CMPs are SUN's MAJC [Gwe99℄, Improvisys'JAZZ [Imp01℄, BOPS' ManArray [PP99℄, and HP's LX [FBF+00℄.2.2 VLIW ProessorsAs stated before, the VLIW exeution paradigm arises as a good andidate to dealwith the regular patterns found in multimedia appliations. Next, we desribe twoof the most representative examples of VLIW arhitetures for multimedia: TexasInstruments' VeloiTI and Philips' TriMedia.VeloiTIVeloiTI [Ses98℄ is a load-store RISC-like VLIW arhiteture suitable for multihan-nel vooding for telephony and wireless, modems, imaging, and high performanesystems in ommuniations and multimedia. It fouses on minimizing design om-

12 Chapter 2. Proessor Arhitetures for Multimediaplexity to allow the development of a high performane ompiler, with the objetiveof inreasing performane and reduing appliation development time.The �rst implementation of the arhiteture, the �xed-point TMS320C62x fam-ily, has eight independent units, inluding two multipliers and six ALUs. TheTMS320C7x adds �oating-point apability to six of the eight units. The proessorore is divided into two idential datapaths with four funtional units and 16 32-bitregisters eah. Up to eight operations an be paked into one single VLIW instru-tion. The instrution set provides saturation and normalize operations, but it doesnot inlude µSIMD operations. Almost every operation an be guarded by a predi-ate register. The TMS320C6201 memory arhiteture inludes 64 Kbytes of on-hipprogram memory on�gurable either as mapped memory or as diret mapped ahe,64 Kbytes of interleaved data memory, a DMA ontroller, and an external memoryinterfae.The ompiler inludes lassial optimizations suh as ontrol-�ow simpli�ation, opypropagation, ommon subexpression elimination, loop-invariant ode motion, and soon. In addition, it also performs software pipelining, if-onversion, memory addressloning to allow vetorization and unrolling, memory address-dependene elimina-tion, and memory-bank disambiguation to avoid memory-bank on�its.TriMediaTriMedia is a programmable high-performane VLIW family of proessors speiallydesigned for real-time proessing of video, audio, graphis and ommuniation datastreams. Bakward soure ode ompatibility is ensured between the di�erent mem-bers of the TriMedia family. Nevertheless, the odes must be re-ompiled, as binaryompatibility is not guaranteed. Unlike the VeloiTI arhiteture, it integrates mul-timedia spei� o-proessors and µSIMD extensions.The �rst implementation of the arhiteture, the TM1000 [RS96℄, has 27 funtionalunits and 128 32-bit registers. Up to �ve operations an be sheduled in parallelinto a single VLIW instrution. The instrution set ontains load/store operations,arithmetial and logial operations, �oating point operations, and µSIMD operations,inluding speial operations to perform onvolution and distane omputation. Thearhiteture also provides support for guarded exeution. The memory arhitetureinludes 32 Kbytes of on-hip instrution ahe and 16 Kbytes of on-hip data ahe.Two memory requests an be served in parallel provided that they aess di�erentbanks, but a stall yle is imposed otherwise. The hip also inorporates two o-proessors, an Image o-proessor and a Variable Length Deoder o-proessor, videoinput and output, digital audio input and output, and two serial interfaes.One suessor to the TriMedia TM1000 is the TriMedia CPU64 [vESV+99℄ arhi-teture, whih is targeted for embedded use in eletroni devies suh as digitaltelevisions and set-top boxes. Improvements over the TM1000 inlude the extensionof the wordsize from 32 to 64 bits and the extension of the instrution set with a

2.3. Vetor Proessing 13large set of multimedia operations. The data ahe maintains the 16 Kbytes size,but hanges to a true dual-port design, thus allowing two memory requests to beserved simultaneously even if they aess the same memory bank.The latest TriMedia proessor, the TM3270 [vdWVD+05℄, is designed to address theperformane demands of standard de�nition video proessing. It is typially usedas an embedded proessor in a System-on-a-Chip (SoC). Table 2.1 summarizes themain parameters of the arhiteture. It must be noted that the data ahe has beenenlarged up to 128 Kbytes and supports penalty-free non-aligned aesses.Arhiteture 5 issue slot VLIW, guarded RISC-like operationsPipeline depth 7-12 stagesAddress width 32 bitsData width 32 bitsRegister �le Uni�ed, 128 32-bit registersFuntional units 31IEEE-754 �oating point YesSIMD apabilities 1 x 32-bit, 2 x 16-bit, 4 x 8-bitInstrution ahe 64 Kbyte, 128-byte lines, 8 way set-assoiative, LRU replaementData ahe 128 Kbyte, 128-byte lines, 4 way set-assoiative, LRU replaement,alloate-on-write miss poliyTable 2.1. Parameters of the TM3270 arhiteture [vdWVD+05℄One of the main improvements of the TM3270 over previous TriMedia proessorsis the extension of the instrution set with a signi�ant number of new instrutionsspeially targeted to improve performane in video proessing kernels. One of theseenhanements is the inlusion of two-slot operations, that is operations whih areexeuted by two funtional units, thus allowing up to four soure operands and up totwo destination operands. It also inludes ollapsed load operations with interpolationon the retrieved data, speially suitable to redue the omputational omplexityof the motion estimation algorithm. Additionally, there are also spei� CABACoperations for the Context-Based Adaptive Binary Arithmeti Coding (CABAC)algorithm of the H.264/AVC video standard. Finally, it also provides memory regionbased prefething, whih is speially e�etive for blok-based image proessing.2.3 Vetor ProessingVetor arhitetures have traditionally been the most suessful way of exploitingDLP in the superomputing domain for sienti� and engineering tasks. As theyallow for low-ost implementations, vetor arhitetures also appear as a good alter-native to deal with the new omputation intensive tasks of multimedia appliations.There are several proposals based on the vetor model, ranging from ost-e�etiveimplementations of onventional vetor proessors to stream or n-dimensional vetoralternatives. In this setion we brie�y desribe some of the most relevant ones. We

14 Chapter 2. Proessor Arhitetures for Multimediahave lassi�ed them into four di�erent groups: onventional vetor arhitetures,
µSIMD extensions, n-dimensional vetor arhitetures, and stream proessors.2.3.1 Conventional Vetor ArhiteturesCost-e�etive implementations of onventional vetor miroproessors try to adaptto multimedia data patterns mainly by reduing the maximum vetor length andadding sub-word level proessing apabilities. Two representative examples of thiskind of proessors are the Torrent-0 and the VIRAM.Torrent-0Torrent-0 (T0) [ABI+95℄ is a single-hip �xed-point vetor miroproessor designedfor multimedia, human-interfae, neural network, and other digital signal proessingtasks. The �rst use of T0 was as the ore of the Syntheti Pereptron Testbed II(SPERT-II) workstation aelerator board [WAK+96℄, originally designed to ael-erate multiparameter neural network training for speeh reognition researh.The T0 arhiteture onsist of a MIPS-II ompatible 32-bit integer RISC ore, an on-hip 1 KB instrution ahe, a high performane �xed-point vetor unit o-proessor,a 128-bit wide external memory interfae, and a byte-serial host interfae. The vetorunit inludes a vetor register �le, two vetor arithmeti funtional units, and onevetor memory unit. The vetor register �le ontains 16 vetor registers of 32 32-bit elements eah. The vetor arithmeti funtional units perform integer arithmetiand logi operations and vetor �xed-point operations that inlude saling, rounding,and result saturation. Finally, the vetor memory unit performs salar memoryoperations, vetor memory operations, and vetor editing operations, and providessupport for unit-stride, onstant-stride, and indexed addressing modes. As there isonly one memory address port, non-unit stride and indexed memory aesses areserved at one element transfer per yle.All three vetor funtional units onsist of 8 parallel pipelines, with the elementsof a vetor register striped aross them. A vetor funtional unit aepts a newinstrution with a maximum vetor length of 32 every four yles. The T0 is able todispath one 32-bit instrution per yle to eah vetor funtional units in turn, thussustaining up to 24 operations per yle. All vetor pipeline hazards are interlokedin hardware.VIRAMThe Vetor IRAM (VIRAM) [Koz99℄ is a vetor arhiteture that ombines vetorproessing with the the onept of Intelligent RAM (IRAM), that is the integration oflogi an DRAM on a single hip. It was speially designed to math the requirementsof the mobile personal environment.

2.3. Vetor Proessing 15
DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank 4

DRAM
Bank 5

DRAM
Bank 6

DRAM
Bank 7

Memory Crossbar

Lane 0 Lane 1 Lane 3

ALU1

LSU1

FLAGS1

Vector Register

ALU0

FLAGS0

LSU0

ALU1

LSU1

FLAGS1

ALU1

LSU1

FLAGS1

Vector RegisterVector Register

ALU0

FLAGS0

LSU0

ALU0

FLAGS0

LSU0

ALU1

LSU1

FLAGS1

Vector Register

ALU0

FLAGS0

LSU0
Lane 2

Memory Crossbar

DRAM DRAM DRAM
Bank 10

DRAM DRAM DRAM
Bank 12 Bank 13Bank 11Bank 9Bank 8

DRAM DRAM
Bank 15Bank 14

MIPS Core

I Cache

D Cache

Figure 2.2. Arhiteture of the VIRAM vetor proessor
Figure 2.2 shows the arhiteture of the VIRAM. It onsists of a salar unit, a vetoro-proessor, and a network interfae, all onneted to the on-hip memory system.The salar unit is based on an in-order, dual-issue supersalar MIPS proessor andinludes 16 KB instrution and data ahes.The vetor unit has six vetor funtional units: two arithmeti, two �ag proessing,and two load/store units. It provides support for multimedia data types, short ve-tors, and other DSP features suh as saling, rounding and saturation. A speialbypassing path is also implemented to manage redutions. The vetor unit is lus-terized into four parallel lanes. The vetor register �le holds 32 vetor registers of32 64-bit elements eah, with the elements of the vetor registers distributed alongthe di�erent lanes. Additionally, vetor registers an be subdivided to hold 64 32-bitelements or 128 16-bit elements in order to exploit sub-word level parallelism.The main memory of VIRAM is based on embedded DRAM, whih provides highmemory bandwidth and low energy onsumption, but at the ost of higher memorylateny. In order to tolerate the high DRAM lateny, the vetor pipeline is modi�edto inlude the worst ase memory aess lateny. Both memory units support unit-stride memory aesses, but only one an perform strided and indexed operations.Vetor memory aesses are not ahed, but oherene is maintained between salarahe and vetor aesses.

16 Chapter 2. Proessor Arhitetures for Multimedia2.3.2 µSIMD ExtensionsStarting in 1994 with the HP's MAX [Lee95℄ instrution set, and losely followedby SUN's VIS [TONL96℄, MIPS's MDMX [SIG97℄, and Intel's MMX [PW96℄, mul-timedia extensions have beome essential on any general-purpose proessor. Theyappeared with the objetive of aelerating the exeution of the emerging multimediakernels while trying to minimize the impat on the overall proessor design.Based on the observation that multimedia appliations use to spend a lot of timein loops that proess streams of small data types (typially 8 or 16 bits), theseISA extensions exploit SIMD parallelism by paking several elements into a singleregister and operating simultaneously on the di�erent register elements. In order todi�erentiate it from traditional SIMD exeution, where a vetor register is omposedby a set of registers but there is only one element per register, some authors all itmiroSIMD (or µSIMD) exeution [Lee99℄.Initially, most µSIMD extensions inluded only integer apability. Additionally, totake advantage of the already existing register �les, the �oating-point register �lewas typially used to map the new set of µSIMD registers, thus limiting the registerwidth to 64-bit. These µSIMD extensions provide the apaity to operate overtwo 32-bit, four 16-bit, or eight 8-bit elements in parallel. In the ourse of time,the inreasing signi�ane of the 3D proessing domain drove to the inlusion of�oating-point µSIMD instrutions. Next multimedia extensions, suh as AMD's3DNow! [AMD00℄, Motorola's Altive [NJ99℄, and Intel's SSE [Int99℄, inluded 32-bit �oating-point µSIMD arithmeti and a dediated register �le. Additionally, bothAltive and SSE are implemented in 128-bit. A summary of the main harateristisof available µSIMD multimedia extensions is given in Table 2.2Year Name Company Proessor Datapath Registers Instrutions FP1995 Max HP PA RISC 64-bit 32 (Int) 8 No1995 VIS Sun Ultra Spar 64-bit 32 (FP) 121 No1997 MDMX MIPS R1000/PA8000 64-bit 32 (FP) 74 Yes1997 MMX Intel Pentium II 64-bit 8 (FP) 57 No1999 3DNow! AMD K6-2 64-bit 8 24 Yes1999 Altive Motorola MPC7400 128-bit 32 162 Yes1999 SSE Intel Pentium III 128-bit 8 70 Yes2000 SSE2 Intel Pentium 4 128-bit 8 144 Yes2004 SSE3 Intel Pentium 4 128-bit 8 157 Yes2006 SSSE3 Intel Xeon, Core 2 128-bit 8 173 YesTable 2.2. µSIMD multimedia extensionsThe extended ISA generally ontains a full set of vetor instrutions, inludingmultiply-add operations, speial multimedia instrutions suh as the sum of absolutedi�erenes, and instrutions for data reorganization suh as paking and unpaking.

2.3. Vetor Proessing 17
A A AA

B B B B

A A AA B B B B

3 2 1 0

0123

3 3 2 2 1 1 0 0++ + +

+ + + +

A A AA

B B B B

A A AA B B B B++* * * *

3 2 1 0

0123

3 3 2 2 1 1 0 0

* * * *

+ +(a) Parallel add (b) Multiply-add
AA 1 0

B 1 B 0

0A1AB 0B 1

A A AA 0123

A 1 A 0() Paking (d) UnpakingFigure 2.3. Examples of µSIMD instrutionsThey also provide support for saling, rounding and saturation. Figure 2.3 showssome examples of ommon µSIMD instrutions.Nevertheless, the e�ieny of this kind of µSIMD extensions is greatly redued by theoverhead to pak/unpak data to/from the µSIMD registers, the e�et of unalignedand non-unit stride memory aesses, and the mismath between the storage andomputational formats. It must also be noted that the amount of parallelism thatan be exploited is limited by the width of the µSIMD registers. Furthermore,even though there has been a great e�ort working into ompilation tehniques, handoptimization is still need to produe e�ient µSIMD ode.2.3.3 N-dimensional Vetor ArhiteturesTo overome some of the above mentioned limitations of µSIMD extensions, severalapproahes try to exploit two or more dimensions of parallelism to adapt to ommonmultimedia data strutures in a more e�ient way. MOM, CSI, and MediaBreezeare examples of N-dimensional vetor arhitetures.MOMTheMatrix Oriented Multimedia (MOM) extension [CEV99℄ ombines the intra-wordparallelism apabilities of µSIMD extensions together with the inter-word parallelismexploitation of traditional vetor arhitetures. Basially, it an be seen as a onven-tional short vetor ISA where eah vetor sub-operation is a µSIMD one.

18 Chapter 2. Proessor Arhitetures for MultimediaThe proposed arhiteture onsists of a supersalar ore with the addition of a mul-timedia unit with its own register �le. It o�ers 16 MOM registers of 16 64-bit wordseah to the programmer, vetor load and vetor store instrutions to move databetween memory and the MOM registers, and a set of omputation instrutionsthat operate on MOM registers. A MOM implementation exeutes as many µSIMDoperations per yle as the number of parallel lanes in the MOM funtional unit.Furthermore, the arhiteture inludes two 192-bit paked aumulators to handleredutions. Additional details about the MOM extension are given in Chapter 6.A related proposal but targeting high performane for tehnial, sienti�, and bio-informatis workloads is Tarantula [EAE+02℄. It is based on adding aggressive vetorapabilities to the EV8 proessor. It inludes two vetor units with 16 parallellanes eah, allowing up to 32 double-preision operations per yle. Vetor memoryaesses are performed diretly to the seond level ahe, whih is able to serve upto 16 words per yle.CSIComplex Streamed Instrution (CSI) [JVTW01℄ is a memory-to-memory arhiteturefor two-dimensional data streams of arbitrary length. Eah stream is spei�ed bysix 32-bit stream ontrol registers, ontaining information whih inludes the baseaddress, the stream length, the strides in the two dimensions, the size of the streamelements, the sale fator, and the sign and saturation features.The number of elements is not expliitly odi�ed in the program, instead the hard-ware is responsible for dividing the data streams into setions whih are proessed inparallel. Data onversion and rearrangement is pipelined with omputation and it isalso performed by hardware, thus minimizing the paking/unpaking overhead typ-ial of multimedia extensions. It also inludes hardware support for data alignmentand loop ontrol.One of the main di�erenes between CSI and MOM is that CSI allows any stride inboth dimensions, while MOM allows an arbitrary stride between onseutive rows,but not between onseutive elements inside one row.MediaBreezeThe MediaBreeze [TJ01℄ arhiteture was designed to aelerate µSIMD odes by de-oupling the true omputation from the related overhead instrutions, and providingexpliit hardware support for proessing the overhead instrutions, inluding mem-ory aess, addressing arithmeti, loop branhes and data reorganization (permute,pak, unpak, and transpose).In the MediaBreeze arhiteture, the Breeze unit fethes and reorganizes input dataand transfers them to the input queues in the Data Station, whih ats as the register�le for SIMD omputation and is implemented as a set of FIFOs. A onventional

2.3. Vetor Proessing 19
µSIMD unit performs omputation and stores bak the resulting stream on the out-put queue of the Data Station.The Breeze unit is ontrolled by means of a speial multidimensional instrution,alled the Breeze instrution. This instrution desribes the semantis of up to�ve nested loops and the arhiteture allows for up to three input and one outputdata strutures. Thus, up to three 5-dimensional input streams an be operated toprodue one 5-dimensional output stream. Information spei�ed in the instrutioninludes the �ve loop index ounts, the start address, stride, multiast and data typesof eah stream, the operation ode, and the sign, saturation and saling features ofthe result. Suh a omplex instrution requires a spei� instrution memory to behold and a spei� deoder blok inside the Breeze unit.2.3.4 Stream ProessorsThe stream programming model tries to separate the desription of data from the om-putation. Appliations are oded as streams of data and a set of omputation kernelsthat proess them. These arhitetures are usually integrated as a o-proessor intoa SoC. Examples of stream arhitetures are Imagine from the Standford researhgroup, Sony's Emotion Engine and Motorola's RSVP.ImagineImagine [RDK+98℄ is a programmable load/store arhiteture for one-dimensionalstreams. It is speially suitable for appliations performing many operations on eahelement in a long stream, suh as image proessing and 3D renderingImagine is organized around a large stream register �le of 64 KB (see Figure 2.4).The unit of work is the stream desriptor, that spei�es the base address in thestream register �le, the stream length, and the reord size of data elements in thestream. The arhiteture provides load/store operations to move entire streams ofdata between memory and the stream register �le. The memory system onsistsof four independent SDRAM banks and is able to perform up to two simultane-ous stream memory transfers. It provides support for sequential, onstant-stride,indexed, and bit-reversed addressing modes. A single miro-ontrolled handles 8arithmeti lusters with 6 funtional units eah (three adders, two multipliers andone divide/square root unit). The arithmeti lusters work in parallel on di�erentelements of the stream and eah luster operate under VLIW ontrol. Intermediateresults are kept loal to eah luster.Appliations are written in high-level language using a set of library funtions andare exeuted on the host proessor. Kernels are written in Imagine's miroassem-bly language using C-like expressions. The kernel ompiler applies ommon highlevel optimizations suh as loop unrolling, iterative opy propagation, and dead odeelimination, and generates VLIW miroode instrutions that ontrol the arithmetiluster.

20 Chapter 2. Proessor Arhitetures for Multimedia
SDRAM SDRAM SDRAM SDRAM

Streaming Memory System

Stream Register File Interface
Network

A
LU

 C
lu

st
er

 0

A
LU

 C
lu

st
er

 1

A
LU

 C
lu

st
er

 2

A
LU

 C
lu

st
er

 3

A
LU

 C
lu

st
er

 4

A
LU

 C
lu

st
er

 5

A
LU

 C
lu

st
er

 7

A
LU

 C
lu

st
er

 6Micro−
Controller

Host
Interface

Figure 2.4. Arhiteture of the Imagine stream proessor [RDK+98℄Emotion EngineThe Emotion Engine [KIea00℄ is the ore of the Sony's PlayStation 2 video gameonsoles. It was jointly designed by Toshiba and Sony to support high-quality 3Dgraphis, espeially geometry and perspetive transformations. It is basially a 2-way MIPS ore with 128-bit µSIMD extensions and 2 vetor o-proessors onnetedvia a shared 128-bit internal bus.Eah vetor unit inlude four parallel �oating-point multiply-aumulate units and ahigh-speed �oating-point division unit, and an operate as a stand-alone 2-way VLIWproessor. One of the vetor units is mainly used to exeute �exible alulations,suh as haraters movement, in ollaboration with the CPU ore. The seond onehas four times more memory than the other one, as it is mainly used as stand-aloneproessor responsible for onventional 3D graphis alulations, suh as proessingthe bakground objets of the sene.RSVPThe Reon�gurable Streaming Vetor Proessor (RSVP) [CEL+03℄ is a streamingvetor o-proessor arhiteture targeted to image and video apture devies andportable omputation and ommuniation devies, inluding handwriting reogni-tion, voie reognition and synthesis, and graphis.The RSVP arhiteture onsists of operand aess units, alled vetor stream units(VSUs), whih ommuniate with the proessing units via interloked FIFO queues(see Figure 2.5). Thus, it ahieves to deouple and overlap data aess and dataproessing. The number of input and output VSUs depend on the partiular im-plementation, but are de�ned by the arhiteture to be between 3 and 64 for input

2.4. Chip Multiproessors 21

Memory
Subsystem

Unit
Processing

. . .

. . .

. . .

. . .

Input Streams

Output Stream

Figure 2.5. Arhiteture of the RSVP [CEL+03℄VSUs and between 1 and 64 for the output ones. It also de�nes between 2 and 6464-bit aumulators and between 16 and 64 32-bit salar registers.Programming the RSVP onsists of desribing the input and output vetors andsalar values, and desribing the omputation itself as a data-�ow graph. Conditionalbranhes, subroutine alls, and so on are managed by the host proessor. A vetor isspei�ed by a pointer to the �rst element and the shape of the vetor data in memory,whih inludes stride, span, and skip values. The span desribes how many elementsto aess at stride spaing before applying the skip o�set. Vetor operations areexpressed as nodes in a data-�ow graph where all dependenies are expliitly stated.Eah node is spei�ed by the input operands, the operation to be performed, thepreision of the output and the sign.2.4 Chip MultiproessorsGiven urrent limitations to inrease performane by simply inreasing the numberof transistors, there is a growing trend towards the integration of multiple proessorsinto a single hip. These multiple proessors are not tied to be the same. On theontrary, new heterogeneous designs are appearing where general-purpose proessorores are pakaged together with speial-purpose ones for higher e�ieny in pro-essing multimedia and networking. Next we desribe the MAJC arhiteture, anexample of homogeneous VLIW CMP, and the Cell, whih is urrently the mostrepresentative example of heterogeneous CMP for multimedia.MAJCSUN's Miroproessor Arhiteture for Java Computing (MAJC) [TCC+00℄ is a highperformane general-purpose miroproessor exeptionally suitable for multimediaomputing. Its modular design provides salability and the ability to exploit paral-lelism at a hierarhy of levels: at the data level through µSIMD instrutions, at the

22 Chapter 2. Proessor Arhitetures for Multimedia
Data CacheInstruction Cache Instruction Cache

Global Registers

Registers

Local

Registers

Local

Registers

Local

Registers

Local

GFU MFU0 MFU2MFU1

Global Registers

Registers

Local

Registers

Local

Registers

Local

Registers

Local

GFU MFU0 MFU2MFU1Figure 2.6. Arhiteture of the MAJC-5200 proessorinstrution level through multiple funtional units, at the thread-of-exeution level,and at the system level through multiple proessor units on a hip.MAJC supports vertial multithreading inside eah proessor unit. Vertial multi-threading allows another thread to use resoures that a stalled thread is not using.The system an hold the state of up to four threads at the same time, so that on-text swith is very fast. On the other hand, MAJC supports proessor lusters,eah ontaining multiple proessor units, thus allowing di�erent threads to run onseparate proessor units onurrently. Additionally, MAJC also allows speulativethreads (future instrution streams) to exeute on separate proessors. The speula-tive threads operate in their own memory spae and future time. Sun refers to thistehnique with the term spae-time omputing (STC).The instrution set inludes DSP-like features, suh as saturation and µSIMD op-erations for both integer and �oating-point data, powerful instrutions for graphiappliations, and a set of operations to failitate byte and bit manipulation.The �rst implementation of the MAJC arhiteture, the MAJC-5200 [Sud00℄, isshown in Figure 2.6. It is a multithreaded dual 32-bit miroproessor with a high in-put/output bandwidth. The two proessors units share a oherent dual-ported 4-wayset-assoiative 16 KB data ahe and ommon external interfaes. Eah proessorunit is a 4-issue VLIW proessor with four funtional units: one General FuntionUnit (GFU), whih is able to exeute memory, �ow or arithmeti operations, andthree Media Funtional Units (MFUs) for operations of ompute type. Moreover,eah proessor unit ontains its own 2-way set-assoiative 16 KB instrution ahe.The general-purpose register �le is data type agnosti, that is, any register an holdinformation of any data type. All funtional units within a proessor unit share96 registers, whih are then alled general (or global) registers. Additionally, eah

2.4. Chip Multiproessors 23

Power
core

L2

L1

PPE

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SPE SPE SPE SPE SPE SPE SPE SPE

Element Interconnect Bus (EIB)

Memory Interface
Controller (MIC)

Bus Interface
Controller (BIC)

Figure 2.7. Cell system arhiteturefuntional unit also has aess to a set of 32 private (or loal) registers. The 96 globalregisters plus the 4 sets of 32 private registers allow programs to use a maximumof 224 registers. Logially, the register �le has 12 read ports and 5 write ports;physially, it is distributed into 4 register �les of 3 read ports and 5 write ports eah.The only use of the MAJC-5200 was as the ore of the XVR-1000 and XVR-4000graphis aelerators. Nevertheless, many of the design ideas, speially in the multi-threading sope, laid the foundations for the design of next UltraSPARC proessors.CellThe Cell Broadband Engine Arhiteture (CBEA) [KDH+05℄, also known as the Cellor the CellBE arhiteture, is a heterogeneous CMP jointly designed by Sony, Toshibaand IBM (also alled the STI alliane). Although it was originally designed forthe Sony's PlayStation 3, it is suitable to fae a wide range of digital appliations.Toshiba, for example, plans to inorporate Cell in high de�nition television sets,and IBM has reently released the QS20 blade module using double Cell proes-sors [IBM06a℄. These modules are also expeted to be a part of the IBM Roadrun-ner [IBM06b℄ superomputer that will be operational in 2008.The �rst implementation of the Cell arhiteture onsists of a dual-threaded dual-issue Power Proessor Element (PPE) (based on a 64-bit Power 970 ore) augmentedwith eight speialized Synergisti Proessor Elements (SPEs) (based on a novel SIMDarhiteture), an on-hip memory ontroller, and a ontroller for a on�gurable I/Ointerfae (see Figure 2.7). These units are interonneted with a oherent on-hipElement Interonnet Bus (EIB).

24 Chapter 2. Proessor Arhitetures for MultimediaEah SPE [GHF+06℄ onsists of a Synergisti Proessor Unit (SPU) and a SynergistiMemory Flow Controller (SMF). The SPU operates on a Loal Store (LS) memorythat ontains instrutions and data. All the transfers between this loal memoryand the system memory is performed via a DMA-based interfae. It must be notedthat the SPU annot diretly aess the system memory. The SPU is an in-orderdual-issue statially sheduled arhiteture based on the pervasively data parallelomputing (PDPC) onept, in whih wide datapaths are exploited throughout thesystem. The exeution units are organized around a 128-bit data�ow. There is onlyone uni�ed register �le with 128 128-bit entries, whih an be used for salar datatypes ranging from 8-bits to 128-bits in size or for µSIMD omputations on a varietyof integer and �oating point formats.2.5 SummaryThe signi�ane of multimedia appliations have produe a revolution in a greatvariety of markets, from the embedded to the high performane general-purposedomain. Tehnology advanes allow urrent DSP proessors to inlude features thatwere restrited not far ago to just the general-purpose domain. In fat, the 32-bitembedded proessors have already narrowed the gap between embedded and desktopsystems.In order to fae the performane, ost, and �exibility trade-o�s of onstantly hangingmultimedia appliations, proessors designers have been ompelled to investigate fornew proessor arhitetures. Some of them try to aelerate multimedia exeutionby adding some spei� support, suh as µSIMD extensions or speial-purpose o-proessors, to existing miroproessors designs. On the other hand, ideas from thesuperomputing domain have also been adapted to exploit the data level parallelismof multimedia odes.In spite of the variety of existing alternatives, it is widely assumed that the om-bination of di�erent paradigms is needed to exploit the heterogeneous parallelismof multimedia appliations. Most of the urrent designs provide multiore and/ormultithreaded funtionality to support thread level parallelism, either stati or dy-nami supersalar apabilities to exploit instrution level parallelism, and some kindof SIMD support to deal with data level parallelism.Realizing the omputational demands, together with the ost and power onsumptionrequirements of these new appliations, it an be easily predited that even moreaggressive approahes are going to be implemented in future media proessors.

Chapter 3Compilation and SimulationFramework
This hapter overviews the ompilation and simulation framework used in this thesis,Trimaran, and desribes the main extensions built into the infrastruture to make itsuitable for our work. These extensions inlude the possibility to extrat statistisat the loop or region de�ned level, the insertion of a new module to perform loopdisambiguation, the addition of new Vetor-µSIMD units and Vetor-µSIMD regis-ters to the HPL-PD arhiteture, the extension of the ompiler and the simulatorto reognize, shedule and emulate the new operations, and the development of asimulator of the memory hierarhy. Finally, we summarize the main parameters ofthe referene arhiteture used in the evaluations.3.1 Trimaran ChoieIn this work we propose adding vetor apabilities to high-performane µSIMD-VLIW proessors to improve the performane of multimedia appliations. The eval-uation of the proposed arhiteture require developing new tools or adapting existingones. Spei�ally, the target framework must allow experimentation in the arhite-ture and in both the ompilation and the simulation proesses.All the proposals presented in this thesis have been evaluated using the publi do-main Trimaran ompilation and simulation framework [CGH+04℄. Trimaran beganas a ollaborative e�ort between the Compiler and Arhiteture Researh (CAR)Group (one a member of Hewlett Pakard Laboratories), the IMPACT Group atthe University of Illinois, and the ReaCT-ILP Laboratory at New York University(now known as CREST, the Center for Researh on Embedded Systems and Teh-nology at the Georgia Institute of Tehnology).Although there are several ompiler infrastrutures available to the researh om-munity, Trimaran is espeially useful for our researh for several reasons. First, it isespeially geared for ILP researh. Seond, it provides a rih ompilation framework.

26 Chapter 3. Compilation and Simulation FrameworkThe parameterized ILP arhiteture (HPL-PD) spae allows the user to experimentwith mahines that vary onsiderably in the number and kinds of funtional unitsand register �les and an vary in their instrution latenies. These mahine on�g-urations an be desribed using a mahine desription faility (MDES). Moreover,the modular nature of the ompiler bak-end (Elor) and the intermediate programrepresentation used throughout it allows the onstrution and insertion of new om-pilation modules into the ompiler.3.2 Overview of the Trimaran Compiler InfrastrutureTrimaran is a ompiler infrastruture for supporting state of the art researh inompiling for ILP arhitetures. The system is urrently oriented towards ExpliitlyParallel Instrution Computing (EPIC) [SR00℄ arhitetures, and supports ompilerresearh in what is typially onsidered to be bak-end tehniques, suh as instrutionsheduling, register alloation, and mahine-dependent optimizations.The Trimaran ompiler infrastruture is mainly omprised of the following ompo-nents:
• A parameterized ILP Arhiteture, alled HPL-PD.
• A mahine desription faility, alled MDES, for desribing ILP arhitetures.
• A ompiler front-end for C, alled IMPACT, whih performs parsing, typeheking, and a large suite of high-level (i.e. mahine independent) lassialand ILP optimizations.
• A ompiler bak-end, alled Elor, parameterized by a mahine desription,performing instrution sheduling, register alloation, and mahine-dependentoptimizations.
• A yle-level simulator of the HPL-PD arhiteture whih is on�gurable bya mahine desription and provides run-time information on exeution time,branh frequenies, and resoure utilization.Figure 3.1 displays a blok diagram of the overall system organization. Eah om-ponent is desribed in more detail in the following lines.3.2.1 Arhiteture SpaeThe arhiteture spae targeted by Trimaran is the HPL-PD parametri proes-sor [KSR00℄. HPL-PD is a parametri arhiteture in that it admits mahines ofdi�erent omposition and sale, espeially with respet to the amount of parallelismo�ered. The HPL-PD parameter spae inludes the number and types of funtionalunits, the omposition of the register �les, operation latenies and desriptors that

3.2. Overview of the Trimaran Compiler Infrastruture 27
C program

Program
Simulation

ModuloAcyclic
Scheduling

Code

ELCOR

Emulation

SIMULATOR

IMPACT

Register
Scheduling Allocation Scheduling

Generator Library

Machine
Description

Post-pass

HCODE

DYN_STATS

ELCOR_STATS

Superblock Formation
Classical Optimizations

Hyperblock Formation
ILP Transformations

LCODE

Function Inlining
C Source File Splitting
Control-Flow Profiling
Renaming & Flattening

Memory Optimizations

Dependence Analysis
Loop Transformations

K&R/ANSI-C Parsing

PCODE

Figure 3.1. Trimaran ompiler infrastruturespeify when operands may be read and written, instrution formats, and resoureusage behavior of eah operation.The HPL-PD instrution set is similar to that of a RISC load/store arhiteture, withstandard integer, �oating point and memory operations. In addition, it provides anumber of advaned features for enhaning and exploiting parallelism in programs,suh as speulative and prediated exeution, ompiler exposed memory systems, adeoupled branh mehanism, and software pipelining.Speulative exeution is used to break ertain types of dependenes between oper-ations. HPL-PD supports two forms of speulation: ontrol speulation for odemotion aross onditional branhes and data speulation for run-time disambigua-

28 Chapter 3. Compilation and Simulation Frameworktion. The arhiteture supports speulative exeution of most operations; exeptionsare stores and branhes. To orretly handle exeptions generated by speulativeoperations, the arhiteture provides speulative and non-speulative versions of op-erations and speulative tag bits on registers.Prediated or guarded exeution refers to the onditional exeution of operationsbased on a boolean-valued soure operand, alled a prediate. Prediated exeutionis often an e�ient method to handle onditional branhes and provides muh morefreedom in ode motion. Prediate exeution is also used in software pipelining asnoted further on. To support prediated exeution, the arhiteture provides 1-bitprediate register �les and a rih set of ompare-to-prediate operations whih setprediate registers. In addition, most operations have a prediate input to ondi-tionally nullify their exeution. The ompare-to-prediate operations are unique inthat they an de�ne two prediate registers simultaneously, for example, a omparemay write the value of a omparison to one prediate, and the omplementary valueto the other prediate. Furthermore, the arhiteture permits multiple operations towrite into a register simultaneously, provided all produers generate the same value.These write semantis are partiularly valuable for the e�ient evaluation of booleanredutions as arried out by the ompare operations.The memory hierarhy is unusual in that it is visible to the ompiler. The ISA in-ludes instrutions for managing data aross the hierarhy, for saving and restoringregisters, and for performing run-time data disambiguation. The arhiteture pro-vides lateny and ahe-ontrol modi�ers with load/store operations, whih permita ompiler to expliitly ontrol the plaement of data in the memory hierarhy. thedefault in the absene of the use of these diretives, is the onventional hardwaremanagement.The branh arhiteture permits di�erent piees of branh related information to bespei�ed as soon as they beome available, in the hope the information an be usedto redue the adverse e�et of the branh. A prepare-to-branh operation is usedto speify the target address and the stati predition. The arhiteture provides aseparate type of register �le, alled the branh target register �le, to store this in-formation. Compare-to-prediate operations are used to ompute branh onditions,whih are stored in prediate registers. Finally, branh operations test prediatesand perform the atual transfer of ontrol. The operation repertoire inludes speialbranh operations to support software pipelining.Software pipelining [Rau95℄ is a tehnique for exploiting parallelism aross iterationsof a loop. In software pipelining, the loop iterations are overlapped suh that newiterations begin exeution before previous iterations are omplete. The set of in-strutions that are in �ight at steady state onstitute the kernel. To reah steadystate, a subset of the instrution in the kernel are exeuted during a prologue stage;similarly, another subset is exeuted during an epilogue stage to omplete the loop.During the prologue and epilogue stages, prediation is used to nullify the appro-priate subsets of the kernel. The arhiteture supports rotating registers in integer,

3.2. Overview of the Trimaran Compiler Infrastruture 29
Elcor_Operation_FlagOperation

Field_Type Operand_LatencyResource_Usage

Register_File Resource

Register

Operation_Format Operation_LatencyReservation_Table

Scheduling_Alternative

Elcor_Operation

Figure 3.2. HMDES setion hierarhy�oating-point and prediate registers in order to generate e�ient software pipelinedode.3.2.2 Mahine Desription ModelHPL-PD adopts an EPIC philosophy whereby the ompiler is responsible for stati-ally leading the exeution of a program. Thus, a ompiler must have exat informa-tion pertaining to the partiulars of the arhiteture de�nition within the HPL-PDspae. In Trimaran, a mahine-desription (MDES) database spei�es those parti-ulars whih inlude the register �le struture, the operation repertoire, the set ofresoures in the arhiteture, the resoure utilization patterns for eah instrution,and the lateny desriptors that de�ne when an operand may be read or writtenafter an instrution is issued.The arhiteture is de�ned using a human-readable, high-level mahine desription(HMDES) language [GHR96℄. The mahine struture is desribed as a hierarhy oftypes alled setions. Figure 3.2 shows the hierarhy of setions de�ned within thedatabase �le format. The desription is then translated to a low-level language thatspei�es the same information but in a format that is suitable for a ompiler. AMDES Query System (mQS) relays the information to a ompiler through a proe-dural interfae. The MDES methodology allows for a retargetable ompiler infras-truture and enables experimentation with numerous performane-oriented ompileralgorithms as well as arhiteture-exploration algorithms.3.2.3 Compiler Front-endThe Trimaran front-end is based on IMPACT, an optimizing C ompiler. IMPACTis an aronym for the Illinois Miroarhiteture Projet utilizing Advaned Compiler

30 Chapter 3. Compilation and Simulation FrameworkTehnology. The front-end is divided into three di�erent modules depending on thelevel of intermediate representation (IR) used. The �rst level of IR, alled Pode, isa parallel C ode representation with loop onstruts intat. In Pode, dependeneanalysis, parallelization, loop transformations, and memory system optimizations anbe performed. Pode funtions are then translated into the Hode format. Hode isa �attened C representation ontaining only basi if-then-else and goto ontrol �owonstruts. The Hode module is responsible for basi-blok pro�ling, pro�le-guidedode layout and funtion inline expansion. Finally, the ode is translated to theLode format. Lode is a mahine-independent assembly like representation similarto many load/store RISC instrution sets. The Lode module arries out lassialode optimizations, Superblok [HMC+93℄ and Hyperblok [MLC+92℄ formation andILP ode optimizations. At the end of the proess, the resultant ode is translatedinto a bridge ode readable for the Trimaran bak-end.3.2.4 Compiler Bak-endElor forms the bak-end of the Trimaran ompiler, and it is mainly responsible forsheduling and register alloation. In the Elor IR, a program unit onsists of agraph of operations onneted by edges. This operation graph represents both, atraditional ontrol �ow graph and a data �ow graph. The edges between operationsmodel di�erent kinds of ontrol �ow, data and memory dependenes. The Elor IRprovides the neessary infrastruture to build, manipulate and transverse this graph.The internal representation of the Elor IR onsist of a set of C++ objets. Alloptimization modules in the Elor IR use the interfae provided by these objets toarry out optimizations. Thus, optimizations are simply IR to IR transformations.The Elor IR also has a textual representation, known as Rebel, with onversionroutines between the two. Elor is designed to allow implementing and testing newompilation modules. These new modules may augment or replae existing Elormodules.3.2.5 SimulatorThe Trimaran infrastruture also inludes an instrution set simulator (ISS). TheISS onsumes the output of the Trimaran ompiler to generate an exeutable binarywhih an simulate the original program.The ode generator module generates C �les whih orrespond with the pseudo as-sembly �les used as Elor's IR. Beause the assembly-equivalent �les generated are inC, the simulation is ompletely platform independent. These �les ontain externalvariable delarations, global data and a set of emulation tables, whih are arraysof HPL-PD mahine operations.The main simulation loop proesses these tables ofoperations and for eah operation it invokes a funtion in the emulation library thatimplements the semantis of the opode. There is a separate emulation funtion foreah HPL-PD operation. The sheduling and lateny information is present in theexeution stream of instrutions.

3.3. Extending the Trimaran Compiler Infrastruture 31The simulator also aggregates strutures to ollet statistis at the blok, proedure,and program level. Basially, it gives the sheduling length of eah blok and opera-tion and yle ount and operations breakdown at the proedure level. In addition,the simulator an also produe an exeution trae. The events that are reorded inthe trae are: blok entry, proedure entry, proedure exit, operation nulli�ation,and memory aesses performed by the loads and stores in the program.3.3 Extending the Trimaran Compiler InfrastrutureThis setion overviews the main extensions built into the Trimaran infrastruture.The �rst one is the addition of a new module into the Elor bak-end to manage loops.This module provides a great range of information about the loops in the ompiledode. Our proposal for memory disambiguation [SCAV02℄ has also been implementedas part of this module. Seond, we have extended the HPL-PD arhiteture with newVetor-µSIMD operations, funtional units and register �les [SV05b℄. The ompilerand the simulator have also been modi�ed to reognize, shedule and emulate them.Finally, we have also developed a simulator of the memory hierarhy speially targetto VLIW arhitetures simulation. Figure 3.3 shows the new Trimaran infrastruturewith the more relevant additions and modi�ations.3.3.1 The Loops ModuleThe main aim of this module is the development of a tool that allows to identify,haraterize, and manage the most signi�ant loops in a C program. The new loopdriver routine is exeuted at the beginning of the Elor ompiler main driver. Foreah loop, it reates an objet of a new lass, alled Loop_Region. Loop detetionand general ontrol �ow information are taken from the existing Control module. Onthe other hand, some funtions in the Stats and Visualize modules have been adaptedto work at the loop level, rather than at the proedure level. The loop driver is alledagain at the end of the Elor driver to ollet post-sheduling information suh assheduling and operation statistis. The bloks weights obtained from the IMPACTpro�ling are used to ompute dynami statistis. As the arhiteture parameters(number of funtional units, latenies, and so on) have already been onsidered in thesheduling, stati values does not di�er signi�antly from those obtained dynamially.An important ontribution is the possibility to haraterize memory operations. Inorder to do so, we have extended the onept of indution variable. The ElorControl module identi�es as indution variables those register operands whih areunique de�ned in the loop by an addition or subtration operation, in whih theregister is both the destination and the �rst operand and the seond operand is loopinvariant. These registers are lassi�ed as basi indution variables. The one relatedto the loop ontrol branh is given the name of primary indution variable. We havede�ned the extended indution variables to be any register operand unique de�nedin the loop as the addition or subtration of two operands, in whih both operandsan be either any indution variable (itself or another) or a loop invariant. Register

32 Chapter 3. Compilation and Simulation Framework
+

C program
Vector-uSIMD

emulation library
Vector-uSIMD

Simulation
Program

Renaming & Flattening

Function Inlining

K&R/ANSI-C Parsing
Dependence Analysis
Loop Transformations C Source File Splitting
Memory Optimizations

Control-Flow Profiling

HCODE

Recognizes Vector-uSIMD Operations, FUs and RFs

Acyclic

Recognizes Vector-uSIMD Operations, Functional Units and Register Files

ELCOR_LOOP_STATS

Generator
Code

SIMULATOR

Scheduling
Modulo

SchedulingAllocation
Post-passRegister

Scheduling

ELCOR

PCODE

IMPACT

MEM_STATS

DYN_STATS

Vector-uSIMD

Description

DYN_LOOP_STATS

MEM_TRACE

CACHE
TRIMA

Machine

uSIMD
Vector-

ELCOR_STATS

Library
Emulation

Disambiguation
Loop Memory

Replacement
Emulation Code

Superblock Formation
Classical Optimizations

Hyperblock Formation
ILP Transformations

LCODE

Figure 3.3. Extension of the Trimaran ompiler infrastruture

3.3. Extending the Trimaran Compiler Infrastruture 33operands whih are the result of a shift operation over an indution variable are alsoonsidered to be extended indution variables. The step value for eah indutionvariable is omputed by traking the operations performed over eah variable andthe involved literal values.For eah memory operation, if the address operand is an indution variable, eitherbasi or extended, we an say that it is an strided referene whose stride is the stepvalue of the variable. A deeper data �ow analysis provides the ompiler the abilityto detet referenes whose address registers di�er only in a onstant term, that is,aesses to di�erent elements of the same array.The output produed by the Loops module an be ontrolled by the following �ags:
• print_loop_list: If this �ag is set to "yes", the whole list of loops is writtenout to a �le. This �le ontains a line for eah loop with the following data:soure �le name, loop name, dynami yle ount, dynami operation ount,operation per yle rate, number of invoations, average number of invoationsper iteration, nesting level, being innermost or not, ategory (do-loop or while-loop), being modulo-sheduled or not, ontaining funtion alls or not, statinumber of operations, and the stati number of loads and stores. This optionis useful to get quik information about all the loops in a program, either toget main trends or to selet the most relevant ones.
• print_loop_info: This option produes a �le with detailed information aboutthe loops in a more pleasant and readable format. A list of the loops to be an-alyzed an be spei�ed by means of an input �le. In addition to the data listedfor print_loop_list, it provides operations breakdown, sheduling information,indution variables information, and memory operations information.
• print_loop_mdg, print_loop_dfg, and print_loop_fg: These �ags enable draw-ing the memory dependene graph, the data �ow graph and the ontrol �owgraph of the loop respetively.
• do_memory_disambiguation: If this �ag is set to "yes", loop memory disam-biguation is performed at the beginning of the Elor ompilation hain. Itan perform stati memory disambiguation, dynami memory disambiguation,and/or just delete the memory dependenes listed in an input �le, depending onthe on�guration parameters. It is independent of any memory disambiguationperformed by the Impat front-end, so that both proesses are not exlusiveand an be used together [SV05a℄.Finally, the simulator has also been extended to produe dynami statistis (mainlyyle ount, instrution and operation ount and operation breakdown) at the looplevel rather than at a proedure level.

34 Chapter 3. Compilation and Simulation Framework3.3.2 Modifying the Arhiteture and the Instrution SetAddition of Instrution Set Extensions to a ompiler toolhain annot be onsideredto be trivial. The �rst step involves de�ning the new mahine operations and the newresoures in the arhiteture. Spei�ally, we have extended the mahine desriptionwith two new kind of register �les (Vetor-µSIMD registers and paked aumulatorregisters), two new kind of resoures (Vetor-µSIMD funtional units and seondlevel memory units), and 128 new operations.The generi de�nitions of the Register_File and Resoure HMDES setions havebeen extended with two new properties respetively: the optional length property, tospeify the number of elements in a vetor register, and the optional lanes propertyto speify the number of vetor parallel lanes in a vetor unit. On the other hand,introduing a new operation also involves de�ning the operation format, lateny,resoure usage and reservation table, and the possible sheduling alternatives.Seond, the ompiler must be modi�ed to be able to make use of the new operations.As our ompiler front-end is not able to generate automati ode for the new arhi-teture, the vetor parts of the appliation C ode have been hand-written using afuntion all for eah operation (see an example in Figure 3.4.a). The orrespond-ing emulation funtions are de�ned in an external emulation library to verify odeorretness.At the input of the Elor bak-end, eah funtion all appears in the form of a setof operations performing parameter passing and branh and link (Figure 3.4.b). Wehave inserted a new module at the beginning of the Elor toolhain that identi�es thebranhes to the emulation funtions and replaes all the related set of operations bya new node in the IR whih orresponds to a new Elor operation (Figure 3.4.). Thesoure and destination operands of this new operation are obtaining by proessingthe parameter passing operations. A new virtual register number is assigned to eahde�ned register operand and subsequent soure registers are renamed aordingly.The ompiler bak-end will then treat it as any other standard operation.The MDES interfae has been extended to be able to generate the orret latenydesriptors to the ompiler. Additional minor modi�ations, inluding extending allreader/writer modules, have been performed along the Elor ompiler in order toreognize the new elements of the arhiteture and onsider them in the shedulingand register alloation phases. Finally, the new elements have also been added to thesimulator and the new operations semantis have been de�ned inside the emulationlibrary.3.3.3 TrimaCaheTrimaCahe is a yle-level simulator of the memory hierarhy speially designed forVLIW arhitetures. It is implemented as a set of layers. Eah layer is omposed bya set of banks and ports, a write bu�er and a miss status holding register (MSHR).

3.3. Extending the Trimaran Compiler Infrastruture 35...M_PCK_SS_W(VR1, VR2, VR3);M_V_ADD_SS_W(VR1, VR1, VR4);...(a) Vetor-µSIMD C soure ode with emulation funtion alls...op 154 (MOVE [m<int_p1>℄ [i<1>℄ p<t>)op 155 (MOVE [m<int_p2>℄ [i<2>℄ p<t>)op 156 (MOVE [m<int_p3>℄ [i<3>℄ p<t>)op 255 (PBRR [r<93:b btr>℄ [l:g_abs<_$fn_M_PCK_SS_W> i<1>℄ p<t> ...)op 157 (BRL [m<ret_addr>℄ [r<93:b btr>℄ p<t> ...)op 158 (MOVE [m<int_p1>℄ [i<1>℄ p<t>)op 159 (MOVE [m<int_p2>℄ [i<1>℄ p<t>)op 160 (MOVE [m<int_p3>℄ [i<4>℄ p<t>)op 256 (PBRR [r<94:b btr>℄ [l:g_abs<_$fn_M_V_ADD_SS_W> i<1>℄ p<t> ...)op 161 (BRL [m<ret_addr>℄ [r<94:b btr>℄ p<t> ...)... (b) Elor IR before emulation funtion alls replaement...op 313 (M_PCK_SS_W [r<129:vx vxr>℄ [r<127:vx vxr> r<128:vx vxr>℄ p<t> ...)op 314 (M_V_ADD_SS_W [r<130:vx vxr>℄ [r<129:vx vxr> r<120:vx vxr>℄ p<t> ...)... () Elor IR after emulation funtion alls replaementFigure 3.4. Emulation ode replaement
The user an de�ne the model of hierarhy, the number of layers, and the main har-ateristis of eah layer (suh as number and type of ports, banks, sets, assoiativity,blok size, write poliy, alloate poliy, lateny, write bu�er size, and MSHR size).At this moment, the simulator admits three possible hierarhy models: onventionalsupersalar model, a vetor ahe in the �rst level of the hierarhy, and a vetor ahein the seond level of the hierarhy. The vetor ahe has been implemented followingthe design presented in [QCEV99℄. Basially, it is a two-bank interleaved ahetargeted at aessing unit-stride vetor requests by loading two whole ahe lines (oneper bank) instead of individually loading the vetor elements. Then, an interhangeswith, a shifter, and a mask logi orretly align the data (see Figure 3.5). If the portis B elements wide, these aesses are performed at a maximum rate of B elementsper yle when the stride is one, and at 1 element per yle for any other stride.Two ahe models and three port de�nitions are implemented. Classial or perfet(always hit) multi-banked ahe models an be ombined with either a true (somany simultaneous memory aesses as the number of ports), a pseudo (so manysimultaneous memory aesses as the number of ports as long as the referenes are

36 Chapter 3. Compilation and Simulation Framework

1616

16

Shift and Mask

Interchange Switch

Bank 1Bank 0

A0

A0 mod 16Figure 3.5. The dual bank struture of the vetor ahe
to di�erent ahe banks) or an ideal (in�nite simultaneous memory aesses) multi-ported system.The modeled write bu�er is a oalesing write bu�er of multiple entries, where eahentry holds one ahe line [SC97℄. The retirement order is FIFO, exept when aload hits a write bu�er entry. In that ase, we use a �ush-item-only poliy ombinedwith data bypass. The normal retirement follows a retire-at-X poliy, that is, it isprodued when the number of valid entries is greater or equal than X, where X is auser de�ned parameter (usually half the number of entries).TrimaCahe aepts traes in both textual and binary formats. The trae an beseen as a suession of memory pakets. One memory paket is omposed by allmemory operations issued on the same yle. Figure 3.6 desribes a memory paketin binary format. The �rst element of eah paket is the yle ount in the globallok of the program simulation. The seond element indiates the overall numberof memory operations issued on that yle. Next, for eah operation, we �nd theoperation type (salar load, salar store, vetor load or vetor store), the size (datawidth in the ase of a salar operation or the vetor length and the vetor stride inthe ase of a vetor one), and the initial address being aessed. TrimaCahe proesseah paket and aumulates the extra yles needed to serve the memory requests.Additionally, two speial ommands an be inserted in the trae: the start_regionommand and the lose_region ommand. These ommands are followed by an inte-ger argument whih identi�es the region of ode being entered or exited respetively.TrimaCahe will then generate separate statistis for eah region and for the fullprogram.

3.4. Referene Arhiteture 37
partsizeop

operation N

2-7(11) bytes 5(9)-7(11) bytes. . .

N . . . operation 1cycle

1 byte4 bytes

32(64) bit2 bit 2 bit2 bit2 bit

undef

special command

(stride != 1)

vector operation
0 stride addressvlop

(stride 1)

vector operation

scalar operation

com region

vl 1 addressop

address

16 bit1 bit

6 bit2 bit

5 bit 1 bit 32(64) bit2 bit

2 bit 32(64) bit5 bit

Figure 3.6. Memory trae paket desription (binary form)Two mehanisms have been implemented into Trimaran to take bene�t from thepossibility of de�ning multiple regions. The �rst one allows the user to de�ne theregions diretly in the soure ode by means of expliit alls to two empty emulationfuntions. These alls are later replaed in Elor by two pseudo-operations. Whenthese operations are simulated, the orresponding ommand is written to the memorytrae. The seond option onsists on giving the simulator a list of the basi blokswhih are part of eah region. This is useful to use in ombination with elor outputsto automatially generate the list of interesting regions.As a result of the simulation, TrimaCahe produe a �le with more than seventystatisti parameters for eah memory hierarhy layer and for eah program regionseparately, inluding memory ativity yles, hit rates on eah struture, number andyles of proessor stalls due to di�erent reasons, and so on. The Cati model [SJ01℄has also been integrated into TrimaCahe in order to estimate time, energy and areaost of the evaluated on�gurations.3.4 Referene ArhitetureThe fous of this thesis in on optimizing general-purpose VLIW proessors, ratherthan extremely spei� multimedia arhitetures. Any desktop omputer is alreadyable to exeute a wide range of multimedia appliations, inluding videoonferene,3D games, or DVD video. As multimedia workload ontinues inreasing signi�ane,proessor designers must o�er improved proessors with powerful media performane.Our referene arhiteture is a generi VLIW proessor based in the HPL-PD arhi-teture spae, with guarded exeution and software pipelining. Neither speulativeexeution nor exposed memory hierarhy are used, as they are not ompletely sup-

38 Chapter 3. Compilation and Simulation Frameworkported by the ompiler. Table 3.1 summarizes the general parameters for 2-, 4-, and8-issue width on�gurations. In order to support the high omputational demandof multimedia appliations, our on�gurations are quite aggressive in the number ofarithmeti funtional units. Latenies are based on those of the Itanium2 proes-sor [Int04℄.Funtional Units Memory Hierarhy2w 4w 8w lateny L1 L2 L3integer 2 4 8 1, 4 (×, /) size (bytes) 16K 256K 1M�oating point 1 2 4 4 number of ports 1/2/4 1 1memory 1 2 4 4 port width (bytes) 8 32 128branh 1 1 1 2 number of banks 8 2 16sets per bank 16 128 64Register Files assoiativity 4 8 82w 4w 8w line size (bytes) 32 128 128integer 96 128 160 write poliy WT WB WB�oating point 96 128 160 alloate poliy NWA NWA WAprediate 64 96 128 mshr size 8 8 8branh target 8 16 24 write bu�er size 8 8 8retire-at-X 4 4 4lateny 1 5 12Table 3.1. Modeled proessor on�gurationsThe ahe hierarhy is deoupled into three on-hip levels. The �rst level data ahe isa 16KB, 4-way set assoiative ahe with one port for the 2-issue width arhiteture.We onsider pseudo-multi-ported ahes for the on�gurations with greater numberof ports. There is a 256KB ahe in the seond level and a 1MB ahe in the thirdlevel. Latenies are 1 yle to the L1, 5 yles to the L2, 12 yles to the L3 and500 yles to main memory. We have not simulated the instrution ahe sine ourbenhmarks have small instrution working sets. The ompiler shedules all memoryoperations assuming they hit in the �rst level ahe and the proessor stalls in aseof a ahe miss or a bank on�it.3.5 SummaryTo evaluate the arhitetural improvements and ompilation tehniques proposedin this thesis, we have used and extended version of the Trimaran ompilation andsimulation framework. The hoie of this tool set was mainly due to its potentialto be adapted, not only in the instrution set simulation, but also in the mahinedesription and the ompilation proess.The developed tools allows us to haraterize entire appliations at the loop or regionlevel, evaluate a new loop memory disambiguation tehnique, experiment with a newVetor-µSIMD-VLIW arhiteture, and perform a detailed simulation of the memoryhierarhy. This hapter has also desribed the general VLIW arhiteture used asreferened along this work.

Chapter 4Workload Charaterization
Understanding the behavior of multimedia appliations is essential for proessor de-sign researh. Nevertheless, workload analyses are ompromised by the di�ult toisolate the e�ets of the implementation of the algorithm, the ompiler optimiza-tions, and the underlying arhiteture. This hapter is an attempt to verify andquantify main trends and harateristis rather than to perform a thorough hara-terization. We start by summarizing the main harateristis of multimedia odes.Next, we introdue and disuss the seletion of benhmarks used along this study.Finally, we present some experimental results to verify these harateristis in ourset of appliations. As �ne grain parallelism is mainly found in the form of smallloops that operate on streams of data, we analyze the behavior of loops and ompleteappliations separately.4.1 General Charateristis of Multimedia CodesTypial media programs onsist of a set of kernels that proess data in a stream-like fashion, with the addition of some protool related overhead suh as headerproessing and output enoding. As the kernels are invoked over the streams likedi�erent stages in a pipeline, the behavior of these kernels in isolation di�ers fromtheir behavior inside the omplete appliation. This setion overviews the mainonlusions found in the literature about the harateristis of multimedia odes.First, we desribe the general behavior at the kernel level, and then, how thesefeatures are modi�ed when they are onsidered inside the sope of the ompleteappliation.4.1.1 Charateristis of Multimedia KernelsMost authors in the literature agree that the main harateristis of multimediakernels are the following [LS96, DD97, CDJ+97℄:

• Small data type sizes. Multimedia data items often derive from sampling ananalog signal in the time domain, suh as video or audio. In ontrast with

40 Chapter 4. Workload Charaterizationother kind of appliations where 32 or 64 bit preision is needed, media datatypes are usually 8 or 16 bits, sine human sense annot disriminate beyondthat range.
• Signi�ant data parallelism. Input data streams are frequently large olletionsof small data elements suh as pixels, vertexes or audio samples. Furthermore,the same set of operations are performed over the elements inside the stream.Thus, media kernels exhibit high amounts of data level parallelism.
• High instrution referene loality. Media appliations often onsist of a set ofomputationally intensive small loops that dominate over the proessing time,whih results in high instrution ahe hit rates.
• Low data referene loality. Data is usually loaded, proessed, and returnedbak to memory. As the streams are reused only one, temporal loality is low.On the other hand, as the streams often exhibit a multi-dimensional nature,spatial loality is also di�ult to exploit.
• High memory bandwidth. The huge working sets of some type of appliations,suh as 3D imaging, means that proessors will need to provide high memorybandwidth and tolerate long memory latenies.
• Real-time onstraints. Multimedia appliations, suh as video onferening,often require real time response and a ertain quality of servie.4.1.2 Charateristis of Multimedia AppliationsAs it has been stated before, kernels proess data in a streaming way, and thesestreams an be sparse aross di�erent dimensions. Nevertheless, as these kernels arerepeatedly invoked on sets of related data, there is often some kind of overlappingbetween the di�erent streams. Furthermore, the stream produed in one stage ofthe pipeline is onsumed by the following stage. Thus, these stream-like patternsexhibit temporal and spatial loality at the sope of the omplete program, whihmakes the use of ahe hierarhies desirable. Several works oinide that data ahesdo not perform worse for multimedia than for traditional integer and �oating pointworkloads [LPMS97, SS01, RAJ99℄.Lee et al. [LPMS97℄ introdued and analyzed the MediaBenh suite. They foundthat the MediaBenh programs exhibit higher instrution ahe hit rates than theSPECint ones, and that data ahes are more e�etive for reads on MediaBenh thanon SPECint, although they are less e�etive for writes. They also noted that theSPECint appliations require almost three times more bus bandwidth and ahievelower IPC than the MediaBenh ones.Slingerland and Smith [SS01℄ analyzed the ahe behavior of the Berkeley MultimediaWorkload [SS02℄. They obtained that, exept for 3D and doument appliations, a32 KB ahe is large enough to get extremely low miss ratios.

4.2. Benhmarks Desription 41Ranganathan et al. [RAJ99℄ provided a quantitative understanding of the perfor-mane of image and video proessing appliations on general-purpose proessors,with and without media ISA extensions. They also observed some di�erenes be-tween kernels and omplete appliations. While the kernels exhibit poor data loalityand take bene�t from software prefething tehniques, they onlude that softwareprefething is not needed for omplete appliationsIt is also widely assumed that multimedia appliations exhibit more parallelism thanonventional appliations. Liao and Wolfe [LW97℄ analyzed the available parallelismin some video appliations. They obtained a high amount of ILP ranging from32.8 to over 1,000 independent instrutions per yle using an idealized exeutionmodel (perfet branh predition, perfet memory disambiguation, in�nite resouresand in�nite sheduling window); whereas Wall [Wal91a℄ onluded that less than 10instrutions an be issued in parallel for onventional integer appliations.However, Fritts [Fri00℄ added two extra video proessing appliations to MediaBenhand onduted a set of experiments on an intermediate low-level format. And hefound that the basi-bloks in multimedia appliations are so small than the paral-lelism is not within basi-bloks.On the other hand, although media kernels are haraterized by high amounts of dataparallelism, omplete appliations also ontain �rst order reurrenes, table look-upsand non-streaming memory patterns with large amounts of indiretions, like in theSPECint. Therefore, there is a signi�ant portion of multimedia odes that is di�ultto vetorize [JVTW01℄. Moreover, although most of the algorithms in the standardhave a vetor nature, there has been a great e�ort on reduing the overall number ofrequired operations espeially oriented towards salar arhitetures, hiding in mostases the data parallel nature of the original algorithm.One representative example is the DCT algorithm. This transformation an berepresented as a matrix operation using a 8x8 transform matrix A to obtain the 8x8transform oe�ients matrix C based on a bilinear transformation: C = A · B · AT ,where B is the input blok and AT denotes the transpose of A. This would involve1024 multipliations for eah input blok. Nevertheless, several fast algorithms havebeen introdued in the literature aimed at reduing the number of multipliationsinvolved in the transform [Lee84℄. The algorithm used in the JPEG standard onlyneeds to perform 192 produts to produe one resultant blok; but beause of thisoptimization, the new ode annot be diretly vetorized.4.2 Benhmarks DesriptionThe di�ulty to apture all of the essential elements of modern multimedia andommuniation systems is re�eted in the lak of any standardized benhmark suite.Parameters that in�uene the overall appliation behavior, suh as the predominaneof eah media soure, the size of its working set, or the level of protool overhead

42 Chapter 4. Workload Charaterizationare hard to determine. Even already standardized protools suh as MPEG4 arestill slightly ambiguously de�ned and it is di�ult to obtain reliable, non researh-oriented soure odes. Furthermore, the di�erene harateristis that we �nd whenwe look at a di�erent sopes of media proessing, as seen in previous setions, stronglysuggest that study of kernels in isolation may bring to misleading onlusions.As highlighted by its authors, the MediaBenh is omposed of full programs thatapture the essential harateristis of media and ommuniation systems, inludingvideo, audio, still-image, 3D and enryption standard algorithms. To expedite thenext generation of systems researh, the MediaBenh Consortium is developing theMediaBenh II benhmark suite [FST05℄, inorporating benhmarks from the lat-est tehnologies and providing both a single omposite benhmark suite as well asseparate benhmark suites for eah area of multimedia.Our methodology is based on seleting a set of multimedia programs from the Me-diaBenh suite that approximate the ontents of urrent image, video and audioappliations. For every standard, both the enoding and deoding are inluded. Ta-ble 4.1 desribes the set of benhmarks seleted, together with a brief desriptionand the input sets used for simulation.Benhmark Desription and input setjpeg_en Desr: JPEG image ompression enoderInput: penguin.ppm (ppm �le, 24-bit olor 1024x739 image)jpeg_de Desr: JPEG image ompression deoderInput: penguin.jpg (JPEG �le, 1024x739 image)mpeg2_en Desr: MPEG2 digital video enoderInput: mei16v2re.Y/Cb/Cr (four 24-bit olor 352x480 frames Y-Cb-Cr)mpeg2_de Desr: MPEG2 digital video deoderInput: mei16v2re.mpg (MPEG2 video stream, four 352x480 frames)gsm_en Desr: GSM 06.10 speeh enoderInput: linton.pm (8KHz sampling rate, 300KB PCM audio stream)gsm_de Desr: GSM 06.10 speeh deoderInput: linton.gsm (13Kb/s GSM audio stream)epi_en Desr: Image ompression enoderInput: test_image.pgm (pgm �le, gray sale 256x256 image)epi_de Desr: Image ompression deoderInput: test_image.pgm.E (EPIC �le, 256x256 image)Table 4.1. Benhmarks desription and input sets harateristisJPEG is a ompression standard for either graysale and olor digital images based onthe DCT-method [Wal91b℄. The odi�ation is performed in three stages: olor spaeonversion and downsample, forward DCT transform and quantization, and entropyoding. In olor spae onversion, eah pixel from the soure image is onvertedfrom the RGB to its Y UV representation and then the hrominane omponents(U and V) are downsampled by a fator of two on both spatial dimensions. The

4.2. Benhmarks Desription 43forward DCT proessing step lays the foundation for ahieving data ompressionby onentrating most of the signal in the lower spatial frequenies. Soure imagessamples are grouped into 8x8 bloks and input to the DCT. The output is anotherblok of 64 oe�ients with the property that most of them have zero or near-zeroamplitude and do not need to be enoded. Afterwards, eah oe�ient is quantizedwith the purpose to ahieve further ompression by representing the oe�ients withno greater preision than is neessary to ahieve the desired image quality. Finally,all the quantized oe�ients are ordered into a zig-zag sequene, so that they an beenoded more ompatly based on their statistial harateristis (Hu�mann oding).The deoder just performs the inverse operations in the reverse order.The MPEG2 video ompression standard was developed by the Motion Piture Ex-perts Group [Sik95℄. Video sequenes usually ontain statistial redundanies inboth temporal and spatial diretion. Spatial orrelation is exploited for eah framein the same way as JPEG, and motion ompensated predition tehniques are usedto redue temporal redundanies between frames. Motion estimation searhes whihblok of the previous image mathes better with the blok being ompressed (thisbeomes the most omputationally-intensive part of the proess), and the resultingdisplaement between the two bloks is alled the motion vetor. Usually, the bloksize is 16x16 pixels for the luminane omponent (Y) and 8x8 for the hrominaneomponents (U and V). A motion ompensated di�erene blok is then formed bysubtrating the pixel values of the predited blok from that of the urrent blok.The di�erene blok is then transformed, quantized and entropy oded.The GSM vooder is the standard algorithm to perform voie ompression for theGlobal System for Mobile Communiations or GSM, that is one of the most importantseond-generation digital mobile phone systems today (espeially in Europe) [Tri01℄.While there are more than one implementations, this version is the original Euro-pean vooder (standard GSM 06.10), whih uses residual pulse exitation/long termpredition (RPE-LTP speeh enoder) oding at 13 Kb/s bloks of 260 bits (fromframes onsisting of 160 13-bit samples). The RPE-LTP proess is ommonly mul-tiplexed by a VAD (Voie Ativity Detetion) unit, that is responsible for detetingframes of time where the speaker is not talking (so that bandwidth and proessingoverhead an be saved).Finally, EPIC is an experimental lossy image ompression utility. The ompressionalgorithm is based on a ritially-sampled non-orthogonal (imperfet-reonstrution)dyadi wavelet deomposition and a ombined run-length/Hu�man entropy oder[AS90℄. The �lters are designed for extremely fast deoding on non-�oating pointhardware, at the expense of slower enoding and a slight degradation in ompressionquality (as ompared to a good orthogonal wavelet deomposition). This propertymakes it useful for appliations that involve asymmetri omputational resoures,suh as entralized image databases.

44 Chapter 4. Workload Charaterization4.3 Loop Level AnalysisIn order to analyze the main harateristis of media loops, this setion presentssome quantitative data suh as overage, loop size, operation per yle rate, datasize, and stride and length of array memory referenes. Results are presented on thesope of eah appliation, but detailed information about eah loop in partiular anbe found in Appendix A.4.3.1 CoverageFor eah appliation, Table 4.2 shows the number of innermost, do-loops, and modulosheduling loops together with the perentage of the overall dynami yles andoperations they represent. Note that eah ategory is a subset of the previous one.Innermost Do-loop Mod ShedBenhmark #L %Cy %Ops #L %Cy %Ops #L %Cy %Opsjpeg_en 32 48.49% 61.74% 23 47.97% 61.41% 23 47.97% 61.41%jpeg_de 33 83.02% 85.05% 25 82.87% 84.89% 21 25.54% 26.48%mpeg2_en 59 63.94% 78.13% 45 63.86% 78.11% 43 60.99% 76.34%mpeg2_de 26 36.93% 34.37% 17 31.92% 30.85% 15 10.41% 10.11%gsm_en 30 59.53% 76.20% 23 57.72% 74.93% 22 57.29% 74.66%gsm_de 13 93.39% 92.82% 8 6.08% 6.74% 7 5.63% 6.24%epi_en 38 55.85% 58.37% 15 39.73% 47.10% 15 39.73% 47.10%epi_de 32 70.81% 80.75% 23 48.48% 52.75% 23 48.48% 52.75%sum/average 263 64.00% 70.93% 179 47.33% 54.60% 169 37.01% 44.39%Table 4.2. Coverage of innermost, do-loops and modulo sheduling loops (number of loops andperentage of the overall dynami yles and operations)In average, the appliations spend the 64.00% of the overall exeution time in in-nermost loops. The appliation with the lowest overage is the mpeg2_de, in whihthe innermost loops only represent the 36.93% of the overall exeution time. Thisis mainly due to the high amount of overhead to deal with di�erent input on�gu-rations. A di�erent ase is the gsm_de. In spite of having a very redued numberof loops, this benhmark exhibits the highest overage (93.39%). However, the mainloop, whih means the 80% of the overall exeution time, is not a do-loop. As aresult, this benhmark exhibits the lowest overage when onsidering do-loops ormodulo sheduling loops.4.3.2 Loop SizeTo analyze the size of the loops, Table 4.3 shows the average number of stati op-erations, invoations and iterations per invoation for the loops of eah appliation.We have also lassi�ed the loops into three ategories depending on the number ofiterations per invoations: below 16, between 16 and 64, and above 64.

4.3. Loop Level Analysis 45St Ops Inv Iter/Inv Iter/Inv≤16 16<Iter/Inv≤64 64<Iter/InvBenhmark Avg Avg Avg # %Cy. # %Cy. # %Cy.jpeg_en 18 6,875 71 24 9.06% 4 22.77% 4 16.65%jpeg_de 45 1,529 81 26 57.49% 2 0.01% 5 25.53%mpeg2_en 28 135,361 59 48 59.05% 6 4.31% 5 0.58%mpeg2_de 48 5,244 112 19 35.76% 4 1.13% 3 0.04%gsm_en 32 7,182 42 18 24.14% 6 10.75% 6 24.64%gsm_de 31 2,281 57 8 1.47% 2 3.55% 3 88.37%epi_en 12 79,118 3,717 33 50.95% 1 0.59% 4 4.31%epi_de 59 838 5,193 9 18.12% 16 0.75% 7 51.95%sum/average 34 29,804 1,166 185 32.00% 41 5.48% 37 26.51%Table 4.3. Loop-body size (average number of stati operations, invoations, and iterations perinvoation, and distribution of loops aording to the number of iterations per invoation)It an be observed that we are mainly dealing with small loops (34 stati operationsper loop in average), with small loop ounters, and whih are exeuted a lot of times.A partiular ase is the EPIC appliations. These benhmarks inlude loops whihare exeuted thousands of times but with only one iteration per invoation, and otherloops with thousands of iterations but only one invoation. This leads to onfusingresults when looking at average numbers. On the other hand, it an be noted thatmost loops exeute less than 16 iterations per invoation, and only jpeg_en andgsm_en have representative loops in the ategory between 16 and 64.4.3.3 Memory ReferenesIn this setion we evaluate the main harateristis of the memory aesses performedin the loops. First, the distribution of the data size and stride values of all memoryoperations in the loops are shown in Tables 4.4 and 4.5 respetively. Then, arrayreferenes are analyzed separately in Table 4.6.Benhmark 1 byte 2 bytes 4 bytes 8 bytesjpeg_en 31.52% 38.52% 29.96% 0.00%jpeg_de 58.81% 5.65% 35.54% 0.00%mpeg2_en 93.35% 2.84% 0.51% 3.29%mpeg2_de 54.17% 34.93% 10.90% 0.00%gsm_en 0.00% 89.15% 10.85% 0.00%gsm_de 0.00% 100.00% 0.00% 0.00%epi_en 3.98% 1.85% 92.20% 1.98%epi_de 3.14% 5.86% 81.59% 9.41%average 30.62% 34.85% 32.70% 1.83%Table 4.4. Data size of memory referenesAs an be observed, most of the memory aesses (about 75% in average) require16 bits or less. Moreover, most of the appliations have a harateristi data size:

46 Chapter 4. Workload Charaterizationone byte for video appliations, two bytes for audio, and four bytes (�oating point)for the EPIC appliations. Note that, although these are the predominant storagewidths, higher data sizes are normally used during omputation due to preisionrequirements. In the JPEG image appliations, input and output data are one byte,but intermediate data is stored in two or even four bytes. On the other hand, about75% of the memory operations have a stride of 1, 2, 3 or 8; the remaining 25% areeither invariant or non-strided referenes. Non-strided referenes orrespond mainlyto the use of memory tables to perform omputation, suh as multipliations orsaturation.Benhmark Invariant Stride 1 Stride 2 Stride 3 Stride 8 Non-stridedjpeg_en 0.00% 43.32% 6.66% 9.98% 10.08% 29.95%jpeg_de 0.28% 38.58% 6.62% 9.95% 5.65% 38.92%mpeg2_en 0.51% 97.81% 0.00% 0.00% 1.30% 0.38%mpeg2_de 10.78% 72.50% 0.00% 0.00% 5.85% 10.87%gsm_en 10.93% 88.25% 0.00% 0.20% 0.00% 0.61%gsm_de 12.49% 48.53% 0.00% 0.00% 0.00% 38.98%epi_en 6.07% 90.93% 0.00% 0.00% 0.00% 2.99%epi_de 10.31% 44.82% 19.15% 0.00% 0.00% 25.72%average 6.42% 65.60% 4.05% 2.52% 2.86% 18.55%Table 4.5. Stride of memory referenesThe previous data were obtained onsidering eah memory operation in isolation.However, di�erent memory operations an in fat be referening elements of the samearray, and form what it is all a referene group (see Setion 5.2.3 in Chapter 5). Inolor onversion, for example, the input stream ontains three bytes for pixel (onefor eah olor omponent). The innermost loop proesses one row of pixels, so thatthe three omponents of one pixel are loaded eah iteration. If we look at eahomponent load independently, we will see three memory referenes with a stride ofthree and length the image width; but in fat we are aessing one single array witha stride of one and length three times the image width.Length StrideBenhmark Avg Most frequent lengths 1 2 8jpeg_en 586 8 (17.45%) 64 (37.18%) 1,024 (26.42%) 89.58% 7.56% 2.86%jpeg_de 996 8 (12.12%) 510 (24.30%) 1,024 (36.55%) 90.19% 0.00% 9.81%mpeg2_en 17 2 (5.13%) 8 (5.65%) 16 (84.84%) 98.76% 0.00% 1.24%mpeg2_de 19 8 (23.34%) 11 (31.94%) 12 (16.09%) 98.47% 0.00% 1.53%gsm_en 27 8 (49.11%) 40 (40.05%) 160 (3.95%) 99.38% 0.00% 0.00%gsm_de 205 40 (16.09%) 120 (19.31%) 320 (51.49%) 100.00% 0.00% 0.00%epi_en 6554 2 (13.07%) 4 (34.26%) 5.041 (24.36%) 100.00% 0.00% 0.00%epi_de 24509 90 (19.57%) 5,041 (21.92%) 65,536 (32.87%) 83.39% 16.61% 0.00%average 4114 8 (14.16%) 16 (10.99%) 1.024 (7.87%) 94.97% 3.02% 1.93%Table 4.6. Length and stride of array referenes.

4.4. Appliation Level Analysis 47Table 4.6 shows the length and stride of array referenes onsidering a referenegroup as one array referene. For the length, the table shows the average and thethree most frequent values, whih are di�erent for eah appliation. For example,typial lengths for jpeg_en are 8, 64, and the image width (1024 for the refereneinput). As far as the stride is onerned, we observe that 95% of the arrays areaessed with a stride of one.4.3.4 Operations per CyleTo onlude the loop level analysis, Table 4.7 shows the average operation per yle(OPC) rates ahieved in the innermost loops for the 2, 4 and 8-issue width VLIWarhitetures. The perentage in brakets indiates the inrease over the OPC of theprevious issue width.Benhmark 2-issue 4-issue 8-issuejpeg_en 1.64 2.12 (+29.00%) 2.22 (+ 4.75%)jpeg_de 1.64 1.87 (+14.37%) 1.93 (+ 2.70%)mpeg2_en 1.72 2.62 (+52.40%) 3.57 (+36.41%)mpeg2_de 1.55 1.75 (+12.81%) 1.77 (+ 0.82%)gsm_en 1.69 2.56 (+51.52%) 3.28 (+27.84%)gsm_de 1.36 1.47 (+ 7.64%) 1.46 (- 0.69%)epi_en 0.78 1.05 (+34.71%) 1.06 (+ 0.51%)epi_de 1.27 1.40 (+10.17%) 1.42 (+ 1.37%)average 1.46 1.86 (+26.58%) 2.09 (+ 9.21%)Table 4.7. Operations per yle rate in innermost loops for di�erent issue widthsResults on�rm that multimedia kernels exhibit more ILP than integer ones. Exeptfor the epi_en appliation, all benhmarks ahieve fair OPC rates in the innermostloops. Nevertheless, for most of the benhmarks, saling the arhiteture from 4 to8-issue is not speially attrative. Only loops in mpeg2_en and gsm_en show asigni�ant improvement when inreasing the issue width from 4 to 8.4.4 Appliation Level AnalysisThis setion provides quantitative data about our set of multimedia appliations. Itinludes the analysis of the following topis: stati and dynami ode size, operationper yle rate, operation breakdown, data loality and memory hierarhy.4.4.1 Stati Code SizeTable 4.8 shows the overall number of stati operations, bloks (either basi-bloksor hyper-bloks), and funtions in eah benhmark, together with the number andperentage of them whih are in fat exeuted.

48 Chapter 4. Workload CharaterizationOperations Bloks FuntionsBenhmark Overall Touhed Overall Touhed Overall Touhedjpeg_en 46,726 16,886 (36.14%) 3,540 506 (14.29%) 311 106 (34.08%)jpeg_de 45,346 21,188 (46.73%) 3,055 533 (17.45%) 266 104 (39.10%)mpeg2_en 37,306 30,248 (81.08%) 1,607 662 (41.19%) 93 78 (83.87%)mpeg2_de 23,635 13,665 (57.82%) 1,436 348 (24.23%) 112 63 (56.25%)gsm_en 31,030 15,954 (51.41%) 1,078 322 (29.87%) 94 57 (60.64%)gsm_de 30,795 8,799 (28.57%) 1,265 185 (14.62%) 94 44 (46.81%)epi_en 10,476 6,590 (62.91%) 899 254 (28.25%) 46 27 (58.70%)epi_de 8,858 6,643 (74.99%) 408 188 (46.08%) 34 14 (41.18%)average 29,272 14,997 (54.96%) 1,661 375 (27.00%) 131 62 (52.58%)Table 4.8. Stati operation, blok and funtion ountsIt an be observed that a signi�ant amount of ode is not touhed during theexeution of the referene inputs. Half of the stati operations and funtions andtwo thirds of the basi-bloks are not used during the exeution of the program. Thislow ode utilization implies that either the appliations ontain super�uous ode, ortheir inputs do not exerise many of the ontrol paths. The super�uous ode inludesfuntions without any all in the rest of the ode, funtions that are only used in theopposite ode side, and funtions to support options whih are not inluded in thede�nition of the standard.A thorough ategorization of the unused ode an be found in [HH02℄. The authorsalso show that additional inputs often introdue very little variation in the ontrol�ow pattern. They laim that these fators must be arefully taken into aount, asthey an skew a wide variety of experiments, suh as the evaluation of tehniqueswhose impat is measured in terms of ode size.4.4.2 Dynami Code SizeTable 4.9 reports the dynami operation, blok, and funtion ounts. The benh-marks exeute a few hundred million operations for the referene inputs. Resultson�rm the assumption that odes are designed to allow faster deodi�ation, inlear detrimental of the odi�ation side. This is espeially true for MPEG2 andEPIC, where the deoders require to exeute about twenty and nine times less oper-ations than the enoders.The blok size (31 operations per blok in average) is slightly larger than those re-ported in the literature. Fritts reports than the average basi blok size of multimediaappliations is similar to that of integer appliations [Fri00℄. It must be taken intoaount that hyperblok formation is performed by the Impat front-end. During hy-perblok formation, if-onversion [PS91℄ is used to form larger bloks of operations,and thus providing a greater opportunity for ode motion to inrease ILP. We have

4.4. Appliation Level Analysis 49Bloks FuntionsBenhmark Operations Bloks Ops/Blok Funs Ops/Funjpeg_en 204,894,494 6,792,840 30 377,714 542jpeg_de 171,402,016 2,488,973 69 64,516 2,657mpeg2_en 1,677,337,176 172,260,841 10 1,470,927 1,140mpeg2_de 86,580,636 4,241,564 20 264,393 327gsm_en 235,933,412 4,636,447 51 145,329 1,623gsm_de 125,935,930 2,680,835 47 94,074 1,339epi_en 75,233,661 16,332,469 5 1,864 40,361epi_de 8,912,338 631,708 14 314 28,383average 323,278,708 26,258,210 31 302,391 9,547Table 4.9. Dynami operation, blok and funtion ounts

jpeg_enc

jpeg_dec

mpeg2_enc

mpeg2_dec

gsm_enc

gsm_dec

epic_enc

epic_enc

average

0

20

40

60

80

100

branch
pbr
cmpp
falu
ialu
store
load

Figure 4.1. Operation breakdownalso notied that the ompiler introdues a high amount of spill ode, espeially injpeg_de, mpeg2_de, and gsm_de.4.4.3 Operation BreakdownThe graph in Figure 4.1 shows the distribution of dynami operations lassi�edinto memory operations (load and store), arithmeti operations (integer and �oatingpoint), and ontrol operations (ompare, prepare-to-branh, and branh).The perentage of �oating point operations is relatively low, whih on�rm thatmultimedia programs are mostly integer. Only epi_en and epi_de use �oatingpoint arithmeti. The mpeg2_en appliation has a minimal �oating point operationratio of 1.17%. These operations are used to ompute the forward DCT, whih isimplemented using the double preision matrix produt algorithm instead of a fastsalar algorithm, and to ompute some statistis.

50 Chapter 4. Workload Charaterization
0 10 20 30 40 50 60 70 80 90 100

%addr

0

20

40

60

80

100

%
re

f

jpeg_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

jpeg_dec

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

mpeg2_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

mpeg2_dec

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100
%

re
f

gsm_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

gsm_dec

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

epic_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

epic_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

averageFigure 4.2. Data loality histogramsLoad and store operations are relatively higher for video and image proessing ap-pliations. It is worth noting again that enoders have more omputational require-ments than deoders. As a result, the perentage of memory operations inreasessigni�antly in the deoders.The branh per operation ratio is 6.01%, whih means that only one out of every 17operations is a branh. The same ratio is reported by Talla [Tal01℄, who also reportsthat one out of every 6 instrutions is a branh in the SPECint benhmark suite,and one out of 25 instrutions is a branh in the ase of SPECfp. The low branhratio �ts in with the large blok size and the potentially high ILP of multimediaappliations.4.4.4 Data LoalityFigure 4.2 shows the data loality histogram for eah benhmark. Horizontal axisrepresents the perentage of referened memory loations, and the vertial axis isthe aumulated perentage of referenes. As both axis are sorted, the point (X,Y)indiates that the Y % of the referenes are performed over the X% of the mostreferened memory loations.

4.4. Appliation Level Analysis 51In general, the benhmarks exhibit very low data reuse: in average, the 90% ofall memory referenes are performed over the 36% of the most referened addresses.This behavior is loser to that of the SPECfp, whih also exhibit low data reuse, thanto the SPECint, whih are haraterized by very high data loality. The exeptionis the mpeg2_de appliation, in whih the 90% of the referenes are performed overthe 7% of the most referened memory loations.4.4.5 Memory HierarhyCahe size and memory latenyWe have evaluated the memory behavior for di�erent data ahe sizes. Table 4.10shows the obtained hit rates for load and store operations separately. In spite of thelow data reuse reported in previous setion, very high hit rates demonstrate thatdata ahes are very e�etive for multimedia appliations, even for low ahe sizes.Load Hit Rate Store Hit RateBenhmark 16K 64K 256K 1024K 16K 64K 256K 1024Kjpeg_en 99.37% 99.99% 100.00% 100.00% 94.53% 99.71% 99.89% 99.89%jpeg_de 99.72% 99.99% 100.00% 100.00% 95.02% 99.86% 99.92% 99.92%mpeg2_en 99.88% 99.90% 99.92% 99.99% 96.65% 96.78% 96.66% 98.04%mpeg2_de 99.59% 99.75% 99.85% 99.99% 98.48% 98.97% 99.10% 99.20%gsm_en 100.00% 100.00% 100.00% 100.00% 99.99% 99.99% 99.99% 99.99%gsm_de 100.00% 100.00% 100.00% 100.00% 99.99% 99.99% 99.99% 99.99%epi_en 98.26% 98.59% 99.40% 100.00% 70.25% 69.30% 66.37% 66.02%epi_de 94.73% 95.94% 97.71% 100.00% 74.57% 75.57% 74.85% 78.62%average 98.94% 99.27% 99.61% 100.00% 91.18% 92.52% 92.09% 92.71%Table 4.10. Hit rate of load and store operations for di�erent ahe sizesThis an be explained by the fat that the spatial data loality is more emphasizedthan the temporal data loality in streaming data aess patterns. Spatial dataloality is still higher in audio appliations (gsm_en and gsm_de), whose mainkernels proess one-dimensional data strutures, and besides, the same data streambut with a small initial o�set is proessed in onseutive iterations. On the otherhand, image and video appliations tends to have two-dimensional spatial loality,whih is more di�ult to exploit by onventional data ahes.As it was stated by Lee et al. [LPMS97℄, it an also be observed that data ahes aremore e�etive for loads than for stores. This makes sense as input streams usuallyhave more temporal loality than the output stream. EPIC exhibit lower store hitrates than the other appliations due to the way it is programmed. While otherbenhmarks, like JPEG, do not need a full-image bu�er, EPIC alloates both inputand output full-images.

52 Chapter 4. Workload Charaterization

100c 500c 900c
1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

jpeg_enc
100c 500c 900c

1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

jpeg_dec

16K
64K
256K
1024K

100c 500c 900c
1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

mpeg2_enc

100c 500c 900c
1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

mpeg2_dec
100c 500c 900c

1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

gsm_enc
100c 500c 900c

1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n
gsm_dec

100c 500c 900c
1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

epic_enc
100c 500c 900c

2

4

6

8

10

sl
ow

-d
ow

n

epic_enc
100c 500c 900c

1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

averageFigure 4.3. Slow-down of a real memory hierarhy vs perfet memory for di�erent ahe sizesand memory lateniesFigure 4.3 shows the performane slow-down due to memory stalls for di�erent ahesizes and main memory latenies. For learness, the vertial sale of the epi_degraph is more than three times greater than for the other benhmarks.The JPEG and GSM appliations exhibit very low ahe size requirements, even forlong latenies to main memory. The MPEG2 video and EPIC appliations requirehigher ahe sizes to ompensate for long main memory latenies. In all ases, a1MB ahe is large enough to guarantee very low slow-downs due to memory stalls,even for very long latenies to main memory.Memory portsMulti-porting a ahe enlarges the overall area of the memory array onsiderably. Italso has a great impat in aess time and power onsumption. Another alternative to

4.4. Appliation Level Analysis 53
1 2 3 4

nports

0.9

1.0

1.1

sp
ee

d-
up

jpeg_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

jpeg_dec

PERFECT
TRUE
PSEUDO

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

mpeg2_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

mpeg2_dec

1 2 3 4
nports

0.9

1.0

1.1
sp

ee
d-

up

gsm_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

gsm_dec

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

epic_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

epic_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

averageFigure 4.4. Performane speed-up for di�erent memory ports on�gurations vs 1-port perfetmemorysupport multiple aesses is to divide the ahe in independent banks, eah mapping adi�erent address spae. This banking model is able to provide simultaneous memoryaesses as long as the referenes are to di�erent banks. However, banking alsoadds the deoding overhead of routing eah address to the right bank and detetingollisions.The main issue of multi-banked memories are the e�et of the bank on�its. Whilea bank on�it does not neessarily result in a proessor slow-down in dynamisheduling arhitetures, in our model of VLIW arhiteture, a bank on�it meansone stall yle of penalty. This e�et ould be redued by using sheduling algorithmsmore sensitive to data storage in memory (like trying not to shedule referenes toonseutive elements in the same yle).Figure 4.4 shows the performane speed-up obtained when the number of ports isinreased. The solid line represents the perfet ase in whih there are not memory

54 Chapter 4. Workload Charaterizationstalls (all memory aesses are exeuted with the lateny they were sheduled). Thedashed line inludes realisti memory hierarhy simulation in a true multi-portedsystem (so many simultaneous memory aesses as the number of ports). Finally,the long dashed line shows performane speed-up for pseudo multi-ported ahes (somany simultaneous memory aesses as the number of ports as long as the referenesare to di�erent ahe banks). It was assumed the same yle time an be ahieved forall designs. All speed-ups are referred to the one port perfet memory on�guration.Performane trade-o�s of true multi-ported ahes help to determine ahe portsrequirements. Results do not show a signi�ant improvement when inreasing thenumber of ports above two. On the other hand, the true multi-ported on�gurationperforms loser to the perfet memory than to the pseudo multi-ported one. Thison�rms that bank on�its are an important soure of memory performane degra-dation (more than �fty per ent of the overall memory stalls are due to bank on-�its). Inreasing the number of ports also inreases the potential for bank on�its.In gsm_en, for example, the three-ports on�guration outperforms the four-portsone beause of the negative e�et of the inrease in the number of bank on�its.4.4.6 Operations per CyleFinally, Table 4.11 shows the average operation per yle rates. The OPC rates inthe innermost loops have been repliated from Table 4.7 for omparison purpose.Loops AppliationBenhmark 2-issue 4-issue 8-issue 2-issue 4-issue 8-issuejpeg_en 1.64 2.12 (+29.00%) 2.22 (+ 4.75%) 1.41 1.71 (+21.47%) 1.74 (+ 1.61%)jpeg_de 1.64 1.87 (+14.37%) 1.93 (+ 2.70%) 1.58 1.84 (+16.26%) 1.88 (+ 2.59%)mpeg2_en 1.72 2.62 (+52.40%) 3.57 (+36.41%) 1.63 2.35 (+44.17%) 2.92 (+24.38%)mpeg2_de 1.55 1.75 (+12.81%) 1.77 (+ 0.82%) 1.57 1.86 (+18.50%) 1.90 (+ 1.85%)gsm_en 1.69 2.56 (+51.52%) 3.28 (+27.84%) 1.68 2.32 (+37.79%) 2.56 (+10.38%)gsm_de 1.36 1.47 (+ 7.64%) 1.46 (- 0.69%) 1.37 1.47 (+ 7.83%) 1.46 (- 0.56%)epi_en 0.78 1.05 (+34.71%) 1.06 (+ 0.51%) 0.83 1.01 (+21.75%) 1.01 (+ 0.50%)epi_de 1.27 1.40 (+10.17%) 1.42 (+ 1.37%) 1.12 1.23 (+ 9.98%) 1.24 (+ 1.05%)average 1.46 1.86 (+26.58%) 2.09 (+ 9.21%) 1.40 1.72 (+22.22%) 1.84 (+ 5.23%)Table 4.11. Operations per yle rate in innermost loops and appliations for di�erent issuewidthsThe OPC ahieved in the omplete appliations is slightly lower than in the loops,and exhibit less potential to sale with the way of the arhiteture. The exeptionsare mpeg2_de and gsm_de appliations, whih are also the benhmarks with lowestoverage of modulo sheduling loops. This shows the relevane of software pipelin-ing tehniques like modulo sheduling to exploit the parallelism of loops in VLIWarhitetures.

4.5. Summary 554.5 SummaryIn this hapter we have evaluated the main harateristis of multimedia appliations.These appliations are usually omposed by a set of kernels that proess streams ofdata like di�erent stages in a pipeline. Results show that most of the benhmarksexhibit low data reuse. However, the streaming data aess patterns promote spatialloality, whih leads to very high ahe hit rates, even for small ahe sizes.Several reasons ontribute to the onlusion that ahes with a small number of wideports are preferable to ahes with a large number of ports. First, both the per-entage of memory operations (23% in average) and port requirements are low, andresults do not show a signi�ant improvement when the number of ports is inreasedabove two for perfet memory simulation. On the other hand, multi-porting a aheis more expensive than widen the ports, and alternative feasible multi-banking ahedesigns entail the issue of bank on�its. We have observed that bank on�its are animportant soure of performane degradation in VLIW arhitetures, and they arepotentially inreased with the number of ports. Furthermore, as multimedia mem-ory aesses are mostly unit-stride aesses to short arrays of small elements, wideaesses to memory seems a good option to be inluded in multimedia arhitetures.Paking several referenes to the same array into one wide aess redues both thenumber of memory aess and the potential for bank on�its.Results also show that these appliations exhibit more parallelism than integer ones.Software pipelining tehniques, like modulo sheduling, arise as a key optimizationto exploit instrution level parallelism in wide issue arhitetures. Nevertheless, thisparallelism is not so high as it was to be expeted from the de�nition of the algo-rithms. On the one hand, appliations often inlude a lot of overhead to deal withdi�erent options and formats. On the other hand, some algorithms have been imple-mented with the objetive of reduing the number of salar operations, mainly ostlyoperations suh as multipliation, whih ontributes to hide the existing parallelism.Furthermore, small loop ounters also di�ult the use of onventional vetorizationto exploit data level parallelism. MMX-like µSIMD vetorization arise as a good op-tion to deal with the small data sizes, small loops, and unit-stride memory aesses.The performane of this kind of multimedia extensions will be studied in Chapter 6.

Chapter 5Memory Disambiguation inMultimedia Appliations
This hapter analyzes the problem of memory disambiguation in the ontext of multi-media appliations and proposes a run-time memory disambiguation tehnique basedin the spei� behavior of multimedia memory aess patterns. We perform a de-tailed evaluation of the approah, whih has been ompletely implemented into theTrimaran ompiler. We also ompare it against an advaned interproedural pointeranalysis framework and analyze the possibility of using both of them together toimprove performane.5.1 Relevane of Memory DisambiguationAmbiguous memory dependenes often limit the ability of the ompiler to detet theexisting parallelism, thus preventing it from generating vetor ode. If there is anypossibility that two memory operations ever referene the same memory loation,the ompiler must plae dependene ars between them to ensure they are exeutedin sequential order.Multimedia appliations share di�erent traits with both numerial and integer ap-pliations. As in numerial appliations, multimedia programs make extensive use ofmulti-dimensional data strutures with relatively simple patterns. As in integer ap-pliations, multimedia appliations make extensive use of pointers (sine C and C++are the languages of hoie of multimedia ode developers), sometimes with severallevels of indiretion to math the multimedia strutures of standardized protools.At the same time, multimedia appliations di�er from these two wide �elds in theharateristis of the data proessing. As we saw in Chapter 4, multimedia appli-ations are streaming; that is, typial multimedia kernels proess one or more inputstreams of data to produe one or more output streams. Additionally, the input andoutput streams are typially disjointed regions.

58 Chapter 5. Memory Disambiguation in Multimedia Appliationsh2v2_fany_upsample (unsigned har **input_data,unsigned har **output_data_ptr, ...){ register unsigned har *inptr0, *inptr1, *outptr;register int thisolsum, lastolsum, nextolsum;... inptr0 = input_data[inrow℄;if (v == 0) inptr1 = input_data[inrow-1℄;else inptr1 = input_data[inrow+1℄;outptr = output_data[outrow++℄;...for (oltr = ompptr->downsampled_width - 2; oltr > 0; oltr�) {nextolsum = (int)(*inptr0++) * 3 + (int)(*inptr1++);*outptr++ = (unsigned har) ((thisolsum * 3 + lastolsum + 8) � 4);*outptr++ = (unsigned har) ((thisolsum * 3 + nextolsum + 7) � 4);lastolsum = thisolsum; thisolsum = nextolsum;}...} (a) C soure ode
2:LD 3:LD

20:ST14:ST(b) Dependene graphFigure 5.1. Soure ode and memory dependene graph of the innermost loop in theh2v2_fany_upsample funtion
Tehniques to detet aliasing between aess patterns of array elements are quitee�etive for many numeri appliations. However, although multimedia odes usuallyfollow very regular memory aess patterns, urrent ommerial ompilers remainunsuessful in disambiguating them due mainly to omplex pointer referenes. Byway of illustrating, �gure 5.1.a shows a ode fragment of the upsampling algorithmin jpeg_de. It performs linear interpolation between pixel enters, also known as atriangle �lter. The enters of the output pixels are 1/4 and 3/4 of the way betweeninput pixel enters.

5.1. Relevane of Memory Disambiguation 59Cy Op0 Op1 Op2 Op3 Op4 Op5 Op6 Op7<0> 1:ADD1 4:ADD1 8:SHL1 10:ADD1 19:ADD1 20:ST2 21:ADD1 22:MOV1<1> 2:LD1 3:LD1 9:ADD1 24:ADD1<2> 5:SHL1 11:ADD1<3> 6:ADD1 12:SHR1<4> 7:ADD1 13:AND1<5> 14:ST1 15:ADD1 23:MOV1<6> 16:ADD1<7> 17:SHR1<8> 18:AND1 25:BRF(a) Non-disambiguated modulo shedulingCy Op0 Op1 Op2 Op3 Op4 Op5 Op6 Op7<0> 1:ADD1 3:LD1 4:ADD1 7:ADD2 10:ADD1 11:ADD2 18:AND3 19:ADD1<1> 2:LD1 12:SHR2 15:ADD2 20:ST3 21:ADD1 23:MOV2 24:ADD1<2> 5:SHL1 8:SHL1 13:AND2 16:ADD2 22:MOV1<3> 6:ADD1 9:ADD1 14:ST2 17:SHR2 25:BRF(b) Disambiguated modulo shedulingFigure 5.2. Non-disambiguated vs disambiguated ode sheduling of the innermost loop in theh2v2_fany_upsample funtionThe assembly ode of the innermost loopbody has four memory operations, twentyinteger arithmeti and logial operations, and one branh. All the memory operationshave a stride of one; however, the initial addresses and the loop ount are obtainedfrom omplex indiret referenes. As a result, the independene of the input andoutput streams annot be probed at ompile time, and the ompiler must plaememory dependene ars between the two loads and the two stores. Trimaran alsofails to disambiguate the two stores (see the memory dependene graph generated byTrimaran in Figure 5.1.b). Due to these false dependenes, a vetor ompiler wouldnot generate vetor ode for this loop.Ambiguous memory dependenes also limit the ability of the ompiler to performILP-oriented ode optimizations, whih are ruial to make e�etive use of VLIWproessors. In the example before, the potential loop-arried dependenes from thetwo stores to the two loads prevent the ompiler from generating an optimal modulosheduling [Rau95℄. Spei�ally, the initiation interval for a 8-issue width arhite-ture is nine (you an see the ode sheduling generated by Trimaran in Figure 5.2.a).However, if the ompiler was able to disambiguate them, di�erent iterations ould beoverlapped in a more e�ient way; and, as a result, the same ode would be exeutedmore than twie faster (see ode sheduling in Figure 5.2.b).Based in the spei� behavior of multimedia memory aess patterns, we propose theDynami Memory Interval Test (DMIT). The DMIT is a run-time memory disam-biguation tehnique that makes sense in the ontext of multimedia appliations, orother kind of programs where input and output data streams are usually disjointed.

60 Chapter 5. Memory Disambiguation in Multimedia AppliationsDisambiguation an be easily determined by dynamially analyzing the region do-main of every load and store before eah invoation of a loop. As we will see,signi�ant gains are obtained at nearly no ost and without the inherent omplexityof pointer analysis tehniques.5.2 Memory DisambiguationBoth stati and dynami memory disambiguation approahes have been proposedin the literature to determine if dependene atually exists for a pair of ambiguousmemory referenes.Stati dependene analysis attempts to solve the ambiguity at ompile time. On theother hand, dynami memory disambiguation determines at run-time whether twomemory operations referene the same loation. The ompiler provides di�erent exe-ution paths, and at run-time it is determined whih one must be followed dependingon the existene or not of the dependene.Whether stati, dynami, or a ombination of both is better depends on the partiularkind of appliation being targeted and on the desired trade-o� between performaneand ost. Gallagher et al. investigate the appliation of both stati and dynamimemory disambiguation approahes and provides a quantitative analysis of the trade-o�s between the two approahes [GCM+94℄.5.2.1 Stati Dependene AnalysisMuh work has been done to deal with multidimensional arrays and omplex arraysubsripts [GKT91, MHL91, Fea91, PHP98℄. However, these tehniques are ine�e-tive when the aess pattern is non-linear or when some essential information, suhas loop bounds, is not known at ompile-time.Pointer dereferening is also one of the most important impediments to dependeneanalysis. Pointer Alias Analysis attempts to determine at ompile-time when twopointer expressions refer to the same memory loation. Due to the undeidabilityof this stati analysis [Lan92, Ram94℄, existing approahes o�er a trade-o� betweene�ieny and preision. Although proposed interproedural analysis tehniques pro-vide good pointer disambiguation, espeially for pointer-intensive appliations suhas those of SPECint, they often inrease ompilation time and memory requirements.A pointer analysis algorithm an be lassi�ed as �ow-sensitive if it uses ontrol-�ow information during the analysis. On the other hand, it is ontext-sensitive ifit distinguishes di�erent aller ontexts for a ommon allee. Several approahesare �ow-sensitive and ontext-sensitive [LR92, CBC93, EGH94, WL95℄; by ontrast,other algorithms are �ow-insensitive [And94, Ste96, SH97℄. Qualitative omparisonsamong algorithms are di�ult due to varying infrastruture, benhmarks, and per-

5.2. Memory Disambiguation 61formane metri. An empirial omparison of the e�etiveness of di�erent pointeralgorithms on C programs an be found in [HP00℄.The pointer analysis used in this thesis employs a �ow-insensitive but ontext-sensitive interproedural algorithm whih an handle all C features. Pode inter-proedural analysis [Gal95℄ determines what dependenes exist with regard to globalvariables aross funtion boundaries. This analysis also performs intraproeduralpointer disambiguation and dependene analysis, gathers alias and side e�et infor-mation, and identi�es targets of indiret funtion alls. This information is thenmerged bak into the Pode and is used by subsequent stages of the ompilation.5.2.2 Run-time Dependene TestsDynami data dependene tests an be used to hek at run-time whether two refer-enes aess the same loation. Dynami memory disambiguation tehniques usuallyrequire signi�antly less ompile-time investment than stati approahes, espeiallyin languages suh as C whih require interproedural analysis to provide high au-ray. Dynami approahes are also more aurate than stati ones, as they know theexat memory address being aessed by eah referene during program exeution.The obvious downside of run-time tests is the overhead they introdue into the pro-gram. They usually require the insertion of extra instrutions to hek dependenes.Some approahes also require new instrutions and/or additional hardware support.Niolau was the �rst to introdue run-time memory disambiguation [Ni89℄. He pro-posed a software data speulation tehnique that inserts expliit address omparisonsand onditional branh instrutions whih allow memory �ow dependenes to safelybe removed. Huang et al. proposed speulative disambiguation, a ombined hard-ware and software tehnique to allow aggressive ode reordering using prediatedinstrutions [HSS94℄.A di�erent point of view is to onsider the problem of deiding if a loop is fully dis-ambiguated or not, that is, determining whether or not there is a dependene in anyiteration [BCM94℄. The Privatizing DoAll Test [RP94℄, for instane, identi�es fullyparallel loops at run-time and dynamially privatizes salars and arrays; signi�antspeed-ups were obtained on Fortran loops running on multiproessor arhitetures.Other sophistiated approahes exist that produe prediates that may be used eitherat ompile time or at run-time depending on whether there is enough informationavailable [MH99, PW98℄.The run-time test proposed in this thesis identi�es a type of ambiguous dependenesommonly found in multimedia appliations. Expliit operations are inserted toompute and hek the address spae of eah memory operation before the exeutionof the loop. It requires no instrutions or hardware support, and thus an be appliedto any existing arhiteture.

62 Chapter 5. Memory Disambiguation in Multimedia Appliationsfor (i=0; i<N; i++)*p++ = f (*q++, *r++, ...); for (i=0; i<N; i++)*p++ = f (*p, ...);
p[0] p[N-1]

q[0] q[N-1] r[0] r[N-1] p[0] p[N-1]

p[0] p[N-1](a) Disjointed (b) Coinidentfor (i=0; i<N-2; i++)*p = f (*p++, ...); for (i=0; i<N; i++)S += f (*p++, *q++, ...);
p[0] p[N-2]

p[N-1]p[1] S

p[0] p[N-1] q[0] q[N-1]() Reurrene (d) RedutionFigure 5.3. Typial multimedia memory aess patternsThe onept of alulating non-interseting data aess ranges was probably �rstexplored in [BE94℄, and later expanded by [PHP98℄, to handle symboli array sub-sripts in sienti� appliations at ompile-time. Our work di�ers from previousworks by observing that, in multimedia loops, the indexing funtions are so simplethat data aess ranges an be easily omputed at run-time. The interseting ornon-interseting of these ranges annot be determined at ompile-time mainly dueto the use of pointers, but not beause of the omplexity of the indexing funtions.5.2.3 The Alias Analysis Problem in Multimedia LoopsAs it has been said before, array referenes in multimedia appliations usually followstrided and very simple aess patterns. Figure 5.3 summarizes the kind of loopsommonly found in these odes. The loop in (a) operates over one or several streamsto produe a disjointed one, thus no memory dependene exists. Nevertheless, whenthese arrays are aessed through pointers, as is usual in multimedia odes, an a-urate interproedural pointer analysis is required to ensure that no aliasing ours.Suh tehniques are not generally inluded in ommon ommerial ompilers, so theymust be onservative and plae dependene ars between the memory operations toensure orretness.

5.2. Memory Disambiguation 63Output dependenes (dependenes between two stores) and anti dependenes (whena load preedes a dependent store) usually have little impat on the generatedode, but �ow dependenes (when a store preedes a dependent load) tend to bea severe restrition for the ompiler. In the example, the potential loop-arrieddependenes from the store in the iteration i to the loads in the iteration i + 1would probably restrit modulo sheduling tehniques signi�antly (remember theh2v2_fany_upsample ode example in Setion 5.1).In loop (b), the input and output streams oinide. However, loop-arried depen-denes do not exist in this ase either, as loads from iteration i + 1 never refer thesame memory loation as stores from iteration i. The opposite ase is shown in (),where there is a reurrene with distane one. In this ase, loads from iteration
i + 1 must not preede the stores from iteration i. The last ase (d) shows a loopthat operates on array elements and aumulates the result on a salar variable S.A register will probably be assigned to the salar, and dependenes between twoloads (input dependenes) are not a problem, so there are not ambiguous memorydependenes in that ase.In numerial appliations, the identi�ation of the array elements aessed by apartiular referene is important for ompiler optimizations. In ontrast, we observethat memory referenes on multimedia loops are always dependent or non-dependentat all. In other words, we have found that in multimedia we have two main kinds ofstream behavior: one where all the input and output streams are totally independent,and other one where the streams have reurrenes between themselves. A ost-e�etive approah to perform memory disambiguation would just need to determine,for every loop, whih ase we are faing. Non-linear array indies or linked lists ofdata are not ommon in multimedia loops. The main limitation to our approahis the use of non-streaming (sparse) data strutures to perform omputations viamemory tables.Referene groupsReferenes with similar array index funtions that di�er only in the onstant term(like A[i], A[i+1] and A[i+2] in the ode example in Figure 5.4.a) are also frequentin multimedia loops. These memory aess patterns are known in the literatureas uniformly generated referenes [WL91℄ or referene groups [CMT94℄. Moreover,when the input and the output referene groups are the same (like in the example),we all them oinident referene groups.In a referene group, two referenes with di�erent onstant term are independentinside eah iteration. On the other hand, if the stride of the variable term is greateror equal to the maximum di�erene between the onstant terms, loop-arried de-pendenes do not exist either. Thus, all dashed ars in the dependene graph inFigure 5.4.b. an be safely eliminated.

64 Chapter 5. Memory Disambiguation in Multimedia Appliationsfor (i=0; i<N; i+=3) {...= A[i℄;...= A[i+1℄;...= A[i+2℄;A[i℄ = ...;A[i+1℄ = ...;A[i+2℄ = ...;} ST1 ST2

LD2LD1

ST0

LD0

(a) C ode (b) Dependene graphFigure 5.4. Example of oinident referene groups5.3 The Dynami Memory Interval Test5.3.1 DesriptionThe Dynami Memory Interval Test (DMIT) is a software only mehanism basedon the multimedia memory aess patterns desribed in Setion 5.2.3. The ompilergenerates both disambiguated and non-disambiguated versions of the loop, and in-serts a simple test blok before the loop that deides at run-time whih one must beexeuted (see Figure 5.5). This deision is made by omputing and omparing thelower and upper memory addresses that will be aessed by eah stream. Complexpointer referenes or unknown parameters, suh as loop bounds, prevent the ompilerfrom making the deision at ompile-time.The test blok is exeuted one on eah invoation of the loop. In most ases, redu-ing the length of the disambiguated loop shedule will ompensate for the alreadylow overhead involved in the alulation of the intervals. Otherwise, the penalty in-trodued by this blok (if it turns out that the original loop is exeuted) is minimal,and has no relevant impat on performane.5.3.2 TerminologyWe de�ne the Dynami Memory Interval (DMI) of a memory referene as the memoryspae delimited by the lower and upper loations aessed by that operation duringone invoation of the loop. Figure 5.6.a shows the DMI of a memory referene witha stride of S inside a loop of N iterations. The shadow boxes represent the memoryaddresses that are atually aessed. Following this terminology, if we are able toprove before entering a loop that the DMIs of two referenes do not overlap, we anensure that they are independent in that invoation. Note that salar referenes arealso inluded in this de�nition, as they are in fat referenes with a stride of zero.

5.3. The Dynami Memory Interval Test 65

(b) New control flow(a) Original control flow

DIS.

MEM.

COPY

LOOP
LOOP

LOOP

TEST

Figure 5.5. Dynami Memory Interval TestIn the ase of a referene group, if we were to apply the test between eah pair ofreferenes inside the group, they would fail, as their individual DMIs overlap. Whenthe ompiler detets a referene group, it builds only one DMI for all the group. Thestride of the referene group is the same as that of eah individual referene. Thegroup data size is the size of the memory spae traveled by the di�erent referenesof the group on eah iteration (see Figure 5.6.b).The following notation is used in the �gures and algorithm desription:
• TB: test blok
• LB: loopbody
• Ref : memory referene
• ARi: address register of Refi

• Si: stride of Refi (in bytes)
• DWi: data size of Refi (in bytes)
• N : number of loop iterations in urrent invoation
• Li: the lowest loation referred by Refi in urrent invoation
• Ui: the next loation to the highest one referred in urrent invoation
• IWi: size of the memory region between Li and Ui

• Eij : dependene ar from Refi to Refj

66 Chapter 5. Memory Disambiguation in Multimedia Appliations

. i N-1

(b) Memory reference group

(a) Single memory reference

DW

GDW

IW

10

S

L U

. . . i N-110

UL

. . .

N: number of iterations
S: strideGDW: group data width

IW: interval width

DW: data width
U: upper bound
L: lower bound

S

IW

DW

Figure 5.6. Dynami Memory Interval representation5.3.3 ImplementationMain algorithmThis setion desribes the main features of the implementation. The main algorithmis shown in Figure 5.7. Solving ambiguous memory dependenes beomes espeiallypro�table to software pipelining tehniques suh as modulo sheduling, where justone ambiguous loop-arried memory dependene is enough to prevent the ompilerfrom overlapping di�erent iterations of the loop. In this study, we onsider onlyloops that are targeted with modulo sheduling by the baseline ompiler.The �rst step onsists on building the list of testable memory dependenes. Memorydependenes in whih one of the two referenes is neither strided nor loop invariantare disarded, as their DMIs annot be omputed before eah exeution of the loop.Dependenes between referenes whih an be statially determined to refer the sameloation are also exluded, as they are de�nitely dependent.The length of the test blok should be ontrolled not only beause of performane,but also beause it inreases the register pressure. For our study, we have used asimple heuristi that limits the maximum number of dependenes to be tested. Loopdupliation is also avoided if it does not redue the minimum initiation interval formodulo sheduling.

5.3. The Dynami Memory Interval Test 67foreah (LBl) doif (is_modulo_sheduling(LBl)=false) thenontinueendifforeah (Eij in LBl) doif (is_strided(Refi)=false and is_invariant(Refi)=false) thenontinueendifif (is_strided(Refj)=false and is_invariant(Refj)=false) thenontinueendifif (is_stati_dep(Eij)=true) thenontinueendifif (is_stati_indep(Eij)=true) thendelete_memdep(Eij)ontinueendiftest_dep_list += Eijenddoif (1 ≤ test_dep_list_size ≤ MAX_SIZE andhek_MII_redution(LBl, test_dep_list)=true) then
LBc = reate_loop_opy(LBl)
TBl = reate_test_blok(LBl, LBc, test_dep_list)foreah (Eij in test_dep_list) dodel_memdep(Eij , LBc)enddoendifenddo Figure 5.7. DMIT. Main algorithmIf any pair of memory referenes still remains in the list, the ompiler dupliates theloop and inserts the test blok. This blok ontains the operations needed to testeah of the seleted dependenes. Finally, dependenes in the list are removed in thedisambiguated loop version.The test blokSuppose an ambiguous memory dependene exists between two referenes whoseDMIs are [Li, Ui) and [Lj , Uj). Then, to ensure they are disjointed intervals, wemust test that:

Lj ≥ Ui or Li ≥ Uj

68 Chapter 5. Memory Disambiguation in Multimedia Appliationswhere Lk and Uk an be omputed in this way:if (Sk >= 0) then
Lk = ARk

Uk = ARk + (N − 1) ∗ Sk + DWkelse
Lk = ARk + (N − 1) ∗ Sk

Uk = ARk + DWkendifNote that it handles both positive and negative strides. In ase of a referene group,the group data width is used instead of the data width. The group data width anbe omputed as the di�erene between the highest and lowest onstant terms ofthe array index funtions plus the data width. The stride and the data width areusually known at ompile time, while the address register and sometimes the numberof iterations are not.The main steps to reate the test blok are summarized in Figure 5.8. The insert_-previous_ops funtion takes into aount the ase in whih the value of the reg-ister AR before entering the loop is not the value it will have when the memoryoperation is exeuted in the �rst iteration. This is the ase when the address reg-ister is de�ned inside the loopbody before being used by the memory operation.In that ase, the ompiler must also insert an equivalent opy of the de�ne oper-ation before the bounds omputation in order to get the right value of AR. Inthis opy, the register is renamed to avoid modifying the real value. Note thatinsert_previous_ops is a reursive funtion, as it must now ensure data depen-denes are maintained for eah operand of the de�ne operation. The funtion in-sert_interval_omputation_ops reates the low level produts and additions to om-pute L and U , and insert_ompare_intervals_ops inserts the operations to omparethese limits. Finally, insert_branh_op inserts the onditional branh.At �rst sight, for eah pair of intervals to be ompared, we would need two produts,six adds and two ompare operations. Suh a quantity of operations ould beomeprohibitive as the number of dependenes to be tested inreases. However, they areatually redued if we take into aount some trivial onsiderations. For instane,intervals with the same stride share a single produt. Furthermore, if a memoryreferene must be ompared with more than one other, the interval bounds areomputed just one, so that only the ompare operations are added.5.3.4 Code ExampleAs a ase of study, we will desribe the generation of the test blok for the innermostloop of the h2v2_fany_upsample funtion in Figure 5.1. This ase also proves therelevane of deteting referene groups. Without grouping, the two stores wouldprodue two single DMIs with a stride of two and data width one byte, and eah oneshould be ompared with the DMIs of all other referenes. However, if the ompiler

5.3. The Dynami Memory Interval Test 69foreah (Eij in test_dep_list) doif (is_dominator(de�ne_op(ARi, LBl), Refi)=true) theninsert_previous_ops(TBl, LBl, Refi)endifif (is_dominator(de�ne_op(ARj , LBl), Refj)=true) theninsert_previous_ops(TBl, LBl, Refj)endifinsert_interval_omputation_ops(TBl, Refi)insert_interval_omputation_ops(TBl, Refj)insert_ompare_intervals_ops(TBl, Refi, Refj)enddoinsert_onditional_branh_op(TBl, LBl, LBc)Figure 5.8. DMIT. Test blok generation algorithmdetets the group, it will onsider just one DMI with a stride of two and groupdata size two bytes (see Figure 5.9.a), saving an important number of arithmetiand ompare operations. The impat is even greater for loops with large referenegroups, suh as the DCT omputation, where the size of the groups is eight. Moreimportant is the fat that, in the �rst ase, the DMI of the two stores would beompared with eah other, and the test would fail.The ode of the test blok reated and inserted by the ompiler is given in Fig-ure 5.9.b. Let us assume that registers r3, r4, and r5 are the address registerspertaining to inptr0, inptr1, and outptr respetively, and the ontrol register LC(loop counter) ontains the number of iterations. Then, operations from 3 to 11 areinserted to ompute the interval bounds (r3, r4, and r5 are the lower bounds and
r13, r14, and r15 the upper ones).Next, the ompiler introdues the operations from 12 to 15 to hek whether theDMIs overlap. To support prediated exeution, the HPL-PD arhiteture [KSR00℄provides 1-bit prediate register �les and a rih set of ompare-to-prediate operationswhih set prediate registers. We make use of these apabilities to generate the odeof the test blok. In the example, prediate registers are denoted as pn. The OR-ompare operations (e.x., p2 | = (r3 < r15) if p3) write a 1 into the destinationregister (p2) only if both the prediate input (p3) and the result of the omparisonare true. Otherwise, they leave the destination unhanged.The onditional branh is performed in two steps. First, the prepare-to-branh(PBRR) operation loads the target address into a branh-target register (btrn). Se-ond, the branh-onditional (BRCT) operation branhes to the address ontainedin the btrn operand if the branh ondition (available in the spei�ed prediate) istrue. In the example, operation 2 sets the branh-target register btr2 to hold the

70 Chapter 5. Memory Disambiguation in Multimedia Appliations
1

inptr1

r4
2

outptr

r5

2

11
1

inptr0

r3 (a) Dynami Memory Intervals1: p2 = 02: btr2 = BB_503: r4 = r2 + r174: LC = LC - 15: r7 = LC � 16: r10 = r3 + LC7: r11 = r4 + LC8: r12 = r5 + r79: r13 = r10 + 110: r14 = r11 + 111: r15 = r12 + 212: p3 = (r3<r15)13: p4 = (r4<r15)14: p2 |= (r5<r13) if p315: p2 |= (r5<r14) if p416: BRCT btr2 if p2(b) Test blok odeFigure 5.9. Test blok ode generated for the h2v2_fany_upsample innermost loopaddress of the non-disambiguated loop (BB_50), and operation 16 branhes to it ifthe result of the omparisons is true.5.4 EvaluationThe before desribed algorithm has been ompletely built into the Trimaran om-piler. The original release of the ompiler only performs intraproedural analysis onlow level ode, whih is quite representative of urrent ommerial ompilers. Wehave implemented a new ompilation module into the Elor bak-end to do loop dis-ambiguation. Loop disambiguation is performed at the intermediate ode level justbefore any sheduling or register alloation (see Figure 5.10).For the pointer analysis omparison, we have replaed the original Impat front-endby an internal release able to perform Interproedural Pointer Analysis (IPA) [Gal95℄.Therefore, both tehniques are evaluated using the same ompilation and simulationframework.

5.4. Evaluation 71
SchedulingAllocationScheduling
Post-passRegister

ELCOR

Modulo
Scheduling

Acyclic
Disambiguation
Loop MemoryFigure 5.10. Inorporation of the Loop Memory Disambiguation module into the Elor bak-end5.4.1 CoverageCurrent implementation of the DMIT only applies to innermost modulo shedulingloops. This means that it annot disambiguate multi-dimensional array aesses(exept when the innermost loop has been fully unrolled). The algorithm ould beextended to work on nested loops. However, this would inrease the implementationomplexity, whih is one of the main advantages of our approah.There are also some loops that have no potential to be disambiguated, as they ontainno store operations. This is the ase, for example, of the main loop in the motionestimation algorithm of the mpeg2_en, where the sum of absolute di�erenes isomputed for two arrays of 16x16 elements.Table 5.1 shows the number and fration of yles and dynami operations of in-nermost, modulo sheduling, and modulo sheduling loops with store operations foreah appliation when they are exeuted in the 2-issue width arhiteture. Onlyloops that aount for more than 0.5% of the overall program yles are inluded.Loops in the last olumn are the input andidates to DMIT.Innermost +Mod.Shed. +Store Ops.Benhmark #L %Cy %Ops #L %Cy %Ops #L %Cy %Opsjpeg_en 6 47.96% 61.40% 6 47.96% 61.40% 6 47.96% 61.40%jpeg_de 4 82.85% 84.87% 2 25.52% 26.46% 2 25.52% 26.46%mpeg2_en 15 61.85% 76.47% 13 58.97% 74.71% 5 4.75% 1.91%mpeg2_de 11 35.49% 33.23% 7 10.31% 10.04% 6 9.18% 7.69%gsm_en 11 56.62% 73.68% 10 55.68% 73.04% 7 42.24% 33.60%gsm_de 5 91.92% 91.15% 3 5.11% 5.75% 3 5.11% 5.75%epi_en 12 53.25% 55.76% 7 39.20% 45.90% 1 2.18% 1.52%epi_de 12 69.22% 78.18% 7 47.73% 51.67% 5 45.64% 44.50%sum/average 76 62.40% 69.34% 55 36.31% 43.62% 35 22.82% 22.85%Table 5.1. DMIT. CoverageFour of the benhmarks show low potential for improvement based on overage issues.The rest of the benhmarks present a su�ient number of loops to optimize to givegood performane improvements as a result of inluding memory disambiguation. Itis important to note that our tehnique adds near-zero overhead over those odes

72 Chapter 5. Memory Disambiguation in Multimedia Appliationsthat ould not bene�t from memory disambiguation, thus overoming the fat thatthere exist benhmarks without potential for improvement.5.4.2 Loop Level AnalysisTable 5.2 shows the results of applying DMIT to the andidate loops for the 8-issue width arhiteture. It inludes the overage of the loop, the operations peryle rate of the non-disambiguated and the disambiguated loopbodies, the yleand operation ount of the test blok, the perentage of times the loop passes thetest at run-time, and �nally the overall speed-up ahieved in the loop (inluding thetest blok overhead). LBbase LBdis TB TB LoopBenhmark Loop name %Cy OPC OPC Cy Ops %Dis SPjpeg_en _forward_D.9 22.77% 1.53 6.75 9 18 100% 4.28_rgb_y_.5 14.07% 2.65 3.16 11 26 100% 1.19_forward_D.6 3.38% 1.49 3.20 9 12 100% 1.46_h2v2_down.4 2.58% 2.37 6.30 8 17 100% 2.64_jpeg_fdt.3 2.73% 4.30 4.55 − − − 1.00_jpeg_fdt.5 2.44% 4.91 5.90 5 6 100% 1.16jpeg_de _y_rgb_.5 17.12% 1.70 1.98 12 23 100% 1.17_h2v2_fan.8 8.40% 2.46 5.83 9 16 100% 2.36mpeg2_en _iquant_no.5 1.26% 1.08 1.08 9 19 0% 0.99_quant_non.3 1.12% 1.21 1.21 9 22 0% 0.99_quant_int.6 1.01% 1.10 1.10 9 22 0% 0.99_iquant_in.5 0.92% 1.09 1.09 9 19 0% 0.99_add_pred_.4 0.44% 1.70 3.67 8 21 100% 1.63mpeg2_de _Add_Blok.31 3.51% 1.59 3.64 8 15 100% 1.69_form_omp.58 2.18% 1.48 2.71 8 17 100% 1.54_Add_Blok.36 1.57% 1.32 2.47 8 15 100% 1.50_form_omp.18 0.85% 1.96 2.63 8 12 100% 0.98_form_omp.38 0.52% 1.77 3.87 8 17 100% 1.76_form_omp.73 0.56% 2.05 3.34 8 27 100% 1.43gsm_en _Short_ter.5 20.01% 2.79 3.63 9 14 100% 1.16_Autoorre.42 11.33% 1.11 6.87 7 11 100% 6.14_Weighting.3 4.62% 1.91 3.97 29 97 100% 1.97_Long_term.8 2.95% 1.09 6.04 8 25 100% 5.16_Gsm_Coder.5 1.48% 1.74 1.74 8 17 0% 0.98_Re�etio.52 1.19% 1.11 4.62 8 23 100% 3.40_Calulati.25 0.66% 2.45 7.36 8 12 100% 3.15gsm_de _Gsm_Long_.16 3.03% 2.32 6.84 8 17 100% 2.95_Gsm_Long_.24 1.56% 2.28 6.58 − − − 1.00_Gsm_Deod.5 0.53% 1.19 5.86 8 12 100% 4.57epi_en _quantize_.11 2.18% 0.71 4.75 9 14 100% 6.70epi_de _unquantiz.3 18.00% 0.86 4.63 9 15 100% 5.35_main.18 16.46% 0.94 5.67 9 12 100% 6.00_ollapse_.9 8.74% 1.84 1.84 − − − 1.00_write_pgm.3 1.83% 3.50 7.00 8 14 100% 2.00_ollapse_.191 0.60% 3.00 6.00 11 15 100% 2.00Table 5.2. DMIT. Loop level analysis for the 8-issue width arhiteture

5.4. Evaluation 73The test results support the assumption that multimedia loops are haraterizedby high amounts of parallelism. First, a high perentage of the loop andidatesdisambiguate (only 5 loops out of 32 fail the test). Furthermore, the result of thetest is always the same in all invoations of the loops. On the other hand, 3 loopsout of the 32 andidates do not require DMIT. In these ases, stati disambiguation(oinident memory referenes and/or store referene groups detetion) is enoughto determine the dependene or independene of the memory referenes, withoutthe requirement of a omplex array dependene analysis. As the existing parallelismbeomes visible to the ompiler, the average operation per yle rate in the loopbodiesinreases in a 138%.As an be seen, ommon sizes of the test bloks range from 11 to 27 stati operations,whih are usually sheduled in 8 or 9 yles. This ode is exeuted only one on eahinvoation of the loop, and it is minimal ompared with the redution in the shedulelength of the loopbody. In the _Weighting.3 loop in gsm_en, the ompiler fails todetet a referene group of nine loads and the independene of the store operationis tested for eah load operation, resulting in a very large test blok of 97 statioperations. But even in that ase, the overall exeution time of the loop is reduedin nearly 50%. On average, as a result of applying the DMIT we obtain a speed-upof 2.60X in the loops.5.4.3 Appliations AnalysisFigure 5.11 shows the performane speed-up obtained in omplete appliations fordi�erent issue widths, both with and without DMIT. All speed-ups are related tothe 2-issue width arhiteture without DMIT.Results show that memory disambiguation is a key tehnique to allow an e�etiveexploitation of the available ILP when the arhiteture is saled. In the originalversions of ode, inreasing the issue width from 2 to 8 introdues an average perfor-mane speed-up of 1.29X. In sharp ontrast, the disambiguated versions of ode showhigher performane improvements when saling the referene mahine, espeially forthose benhmarks with high overage, and saling from 2 to 8 produes an averagespeed-up of 1.40X. For the 8-issue width arhiteture, the DMIT exeeds the baselineperformane in a fator of 1.13X.On the other hand, we have observed a degradation of the memory behavior in thedisambiguated versions. As an e�et of inreasing the parallelism, memory pressurealso inreases, and the number of bank on�its grows up signi�antly. Moreover, asproessor yles go down, memory yles beome a greater perentage of the totalexeution time. For example, in the epi_de benhmark, the 9.32% of the exeutiontime is due to memory stalls in the 8-issue width baseline, and this perentageinreases to 14.67% in the 8-issue width disambiguated version. These memory o�setyles make the speed-up derease from an ideal 1.68X (without proessor memorystalls) to the 1.55X shown in the graph.

74 Chapter 5. Memory Disambiguation in Multimedia Appliations
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

jpeg_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

jpeg_dec

DMIT
BASE

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

mpeg2_enc

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

mpeg2_dec
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

gsm_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

gsm_dec

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

epic_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

epic_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8
sp

ee
d-

up

averageFigure 5.11. DMIT. Performane speed-up of 2-, 4- and 8-issue width arhitetures over the2-issue width baseline
5.4.4 Test Blok OverheadThe DMIT also involves an overhead in ode size and exeution time. Neverthe-less, this overhead is negligible when ompared with the rest of the ode. For eahappliation, Table 5.3 reports the average size in both yles and operations, andwhat perentage of the loops and appliations they mean. Results show that only0.59% of the overall exeution time is spent in test bloks. Even for the mpeg2_en,a benhmark without overage and in whih four of the �ve andidate loops fail thetest, there is not a relevant impat in performane.As far as stati ode size is onerned, experimental results show that the dupliatedloopbodies and the test bloks have an average size of 34 and 16 stati operationsrespetively. The inrease of the overall stati ode size ranges from 0.24% to 1.97%(0.83% in average).

5.4. Evaluation 75Cyles OperationsBenhmark avg %loop %appl avg %loop %appljpeg_en 8.45 4.11% 1.20% 12.11 1.37% 0.75%jpeg_de 10.00 0.13% 0.03% 19.00 0.09% 0.02%mpeg2_en 8.28 1.88% 0.09% 20.86 3.74% 0.07%mpeg2_de 8.00 20.52% 1.28% 15.33 13.92% 1.24%gsm_en 9.32 7.12% 2.04% 16.39 3.34% 1.16%gsm_de 8.00 7.79% 0.07% 14.50 2.48% 0.08%epi_en 9.00 0.05% 0.00% 14.00 0.02% 0.00%epi_de 9.28 0.03% 0.00% 14.78 0.01% 0.00%sum/average 8.79 5.20% 0.59% 15.87 3.12% 0.42%Table 5.3. DMIT. Test blok overhead5.4.5 Comparison with Interproedural Pointer AnalysisAs omplex pointer referenes is the main issue targeted by DMIT, it is of interest toompare it against advaned interproedural pointer analysis tehniques. Moreover,as they are not exlusive tehniques, we also report the results obtained when usinga ombination of both; that is, stati Pode interproedural analysis is �rst appliedat the front-end, and then DMIT is used before the sheduling to disambiguate thoseloops that have not been previously disambiguated.Loop level analysisTable 5.4 shows the operations per yle rate and the speed-up ahieved at loop levelby eah ompilation model. For the models that inlude DMIT, we also report thenumber of loops that require the dynami test to be disambiguated.We observe that DMIT ahieves in general better results than IPA (1.20X speed-upover IPA in average), even though it requires lower implementation omplexity. Afterinterproedural pointer analysis, the test blok is avoided for 16 loops. However, loopdupliation is still performed to 16 of the remaining loops, whih means that dynamiinformation is still needed to determine the existene or not of the dependene inthose loops. On the other hand, �ve loops ahieve signi�ant gains over pointeranalysis without doing the test; these loops are examples of oinident referenes(ase b in Figure 5.3) and/or store referene groups.Furthermore, most of the benhmarks exhibit a bene�ial e�et when both tehniquesare used together. In mpeg2_de, for example, the DMIT sueeds in disambiguatingfour loops (_form_omp.x) whih pointer analysis does not, while pointer analysis isable to disambiguate another one (_Add_Blok.42). This loop uses a table to performsaturation, and DMIT is unable to deal with this kind of non-strided referenes.

76 Chapter 5. Memory Disambiguation in Multimedia AppliationsBase DMIT IPA IPA+DMITBenhmark OPC T/L OPC SP OPC SP T/L OPC SPjpeg_en 2.23 5/6 4.44 1.91 5.14 2.30 1/6 5.60 2.39jpeg_de 1.95 2/2 2.74 1.40 3.48 1.79 1/2 5.15 2.64mpeg2_en 1.18 5/5 1.24 1.03 1.19 1.01 5/5 1.25 1.04mpeg2_de 1.59 6/6 3.06 1.51 1.91 1.19 4/6 3.16 1.55gsm_en 2.04 7/7 3.90 1.75 3.20 1.55 2/7 3.91 1.75gsm_de 1.65 2/3 6.34 3.62 2.26 1.37 1/3 6.34 3.62epi_en 0.71 1/1 4.75 6.70 4.75 6.70 0/1 4.75 6.70epi_de 1.21 4/5 3.45 2.84 1.79 1.47 2/5 3.45 2.84sum/average 1.57 32/35 3.74 2.60 2.96 2.17 16/35 4.20 2.82Table 5.4. DMIT vs IPA. Loop level analysis for the 8-issue width arhitetureOn the other hand, �ve loops fail the test at run-time with and without pointer anal-ysis. Their dependenes were probably proved to be ertain at the interproeduralpointer analysis phase, but this information is lost before DMIT, so that it an notdi�erentiate between likely and ertain dependenes. Maintaining this informationwould be useful to avoid unneessary tests.
Complete appliations analysisOne advantage of IPA is that it is performed at the beginning of the ompilationproess, so that it an provide useful information to other phases of ode optimizationsuh as loop invariant ode removal. On the ontrary, DMIT is only applied to afration of the ode and it only aids the sheduling proess.Figure 5.12 shows the speed-up obtained for the 2, 4 and 8-issue width arhiteturesover the 2-issue width baseline. Although DMIT outperforms IPA in an average16% in the targeted loops, these loops are only a 23% of the overall exeution time.At the sope of the omplete appliations, the average gains obtained with IPA(1.04X, 1.34X and 1.46X) are very similar to those obtained with DMIT (1.03X,1.33X, 1.45X). Moreover, the average speed-up inrease when both tehniques areused together (1.05X, 1.38X and 1.53X).To failitate the omparison, Figure 5.13 shows the speed-up ahieved by the threeoptions over the original ompiler for the 8-issue width arhiteture. The benhmarksdo not show a regular behavior. Although they perform similar in average, DMIToutperforms interproedural pointer analysis for three of the eight benhmarks, butit does worse in the remaining �ve. More interesting are the additional gains ob-tained with the ombination of both, speially for the jpeg_de and the mpeg2_deappliations.

5.4. Evaluation 77
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

jpeg_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

jpeg_dec

IPA+DMIT
IPA
DMIT
BASE

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

mpeg2_enc

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

mpeg2_dec
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

gsm_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

gsm_dec

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

epic_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

epic_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

averageFigure 5.12. DMIT vs IPA. Performane speed-up of 2-, 4- and 8-issue width arhitetures overthe 2-issue width baseline
5.4.6 E�et of DSP Oriented Salar OptimizationsDue to the intrinsi signi�ane of most multimedia algorithms, there has been agreat e�ort fousing on reduing the overall number of required operations. Un-fortunately, this e�ort has been oriented towards low-end DSP salar arhitetures,hiding in most ases the data parallel nature of the original algorithm.For example, the olor onversion funtion (whih stands for a 18% of jpeg_en ex-eution time) uses memory tables to perform multipliations. These table referenesannot be disambiguated using DMIT, as they do not have strided patterns. A simi-lar ase ours with saturation (lipping a result to a maximum/minimum value if itexeeds a given range), whih is also implemented using memory tables in jpeg_deand mpeg2_de.

78 Chapter 5. Memory Disambiguation in Multimedia Appliations
jpeg_enc

jpeg_dec
mpeg2_enc

mpeg2_dec

gsm_enc
gsm_dec

epic_enc
epic_enc

average

1.0

1.2

1.4

Sp
ee

d-
up DMIT

IPA

DMIT+IPA

1.
29

1.
08

1.
00 1.

03

1.
19

1.
05

1.
02

1.
40

1.
13

1.
41

1.
21

1.
02 1.
03

1.
18

1.
02 1.
04

1.
17

1.
14

1.
45

1.
28

1.
02 1.

06

1.
23

1.
05

1.
04

1.
41

1.
19

Figure 5.13. DMIT vs IPA. Performane speed-up over the 8-issue width baselineAnother typial salar optimization is a break ondition inside a loop. In the IDCT,for example, omputation is avoided for those rows and olumns whose elements areall zero. Nevertheless, on mahines with fast multipliation, it is possible that thetest takes more time than it is worth. Moreover, our ompiler does not target theoptimized ode as modulo sheduling; thus produing worse ode sheduling thanthe same ode without the break ondition.We are interested in evaluating the performane of our tehnique when we revertto the original ways of performing the omputation. Thus, we have analyzed thefollowing expliit parallel versions:
• jpeg_en_dlp: uses expliit produts to perform olor onversion instead ofthe tables.
• jpeg_de_dlp: inverse olor onversion and saturation are implemented with-out tables, and the zero ondition of the inverse DCT has been removed.
• mpeg2_de_dlp: saturation is implemented without tables and the zero ondi-tion of the inverse DCT has been removedFigure 5.14 ompares performane of DMIT, IPA, and the ombination of both overthe base ompiler for the 8-issue width arhiteture. As an be observed, the per-formane results leveraged by our tehnique have improved signi�antly. Espeiallynotieable are the signi�ant improvement of DMIT over IPA in jpeg_de_dlp andthe results leveraged by the ombination of both tehniques in mpeg2_de_dlp.5.5 SummaryMemory disambiguation of multimedia appliations is ompromised by the fat thatthey are often written in languages that support pointer referening, suh as C orC++. In this hapter, we have evaluated a simple but e�ient memory disam-

5.5. Summary 79
jpeg_enc dlp

jpeg_dec dlp

mpeg2_dec dlp

1.0

1.2

1.4

Sp
ee

d-
up DMIT

IPA

DMIT+IPA

1.
37 1.
39

1.
04

1.
40

1.
27

1.
03

1.
43 1.

48

1.
12

Figure 5.14. DMIT vs IPA. Performane speed-up over the 8-issue width baseline for expliitparallel versions of ode
biguation tehnique spei�ally targeted at multimedia loops, or any other kind ofappliations with similar memory aess patterns.Taking into aount the disjointed behavior of ommon multimedia memory streams,our algorithm is able to evaluate at run-time whether or not the full loop is disam-biguated and exeute the orresponding loop version. By alulating at run-timethe dynami memory intervals of every memory referene in a very e�ient way, weavoid having to perform omparisons inside every loop iteration.In ontrast with other dynami approahes, the Dynami Memory Interval Testdoes not require any additional hardware or instrutions. It has negligible e�etsover ompilation time and ode size, and near-zero ost for all those loops withoutpotential for disambiguation. Nevertheless, one urrent limitation of this analysis isthe inability to deal with non-streaming data strutures.Experimental results also on�rm that memory disambiguation is a key tehniquefor exploiting the inherent parallelism of multimedia appliations. The DynamiMemory Interval Test provides signi�ant performane gains in most of our benh-marks. Furthermore, it allows performane salability of wider-issue mahines insharp ontrast with our baseline.Although the Dynami Memory Interval Test outperforms Pode interproeduralanalysis at the loop level, they perform similarly when we onsider omplete appli-ations. This an be explained by the fat that pointer analysis has the advantage ofbeing applied to the omplete program ode (not only to modulo sheduling loops),and at an earlier stage of the ompilation, so that the alias analysis information anbe used by further stages of the proess. On the other hand, Pode pointer anal-ysis laks array dependene analysis, whih ould be overome with simple statioptimizations (suh as the detetion of referene groups).

80 Chapter 5. Memory Disambiguation in Multimedia AppliationsFurthermore, we have shown that a ombination of both tehniques provides im-proved results. There is a signi�ant number of loops for whih some informationis missing at ompile time, and they still bene�t from Dynami Memory IntervalTest after interproedural pointer analysis. On the other hand, the test overhead isavoided for those loops that an be statially disambiguated.

Chapter 6A Vetor-µSIMD-VLIWArhiteture
In this hapter, we propose and evaluate adding vetor apabilities to a µSIMD-VLIW ore to speed-up the exeution of the regions with data level parallelism,while, at the same time, reduing the feth bandwidth requirements. We also dis-uss the main impliations in the ompilation proess, and more spei�ally in thesheduling proess. This enhanement has a minimal impat on the VLIW ore andprovides high performane with onsiderably less hardware omplexity and poweronsumption than wider issue µSIMD arhitetures.6.1 Salar and Vetor RegionsAs it has already been stated, media kernels exhibit high amounts of DLP. Never-theless, there is also a signi�ant portion of ode that is di�ult to vetorize. Thatis some protool related proessing overhead suh as �rst order reurrenes, tablelook-ups and non-streaming memory patterns with large amounts of indiretions.Therefore, a real media program is omposed of heterogeneous regions of ode withhighly variable levels of parallelism: some of them with high amounts of DLP andthe other ones with only modest amounts of ILP. We will refer to those regions thatan be vetorized with the term of Vetor Regions and to the remaining non-DLPregions of ode with the term of Salar Regions.In the media domain, µSIMD-VLIW proessors have been widely proposed [Gwe99,Sem99, Dev99, FBF+00℄, as they are able to exploit DLP by means of the µSIMDoperations and ILP by the use of wide-issue stati sheduling. Our laim is that, inmedia appliations, the remaining non-DLP part of ode is signi�ant in terms ofexeution time and it exhibits only modest amounts of ILP, thus taking little bene�tfrom inreasing the proessor resoures. Even though VLIW proessors are simplerthan supersalar designs, very high issue rates also require deoding more operationsin parallel and ompliate the register �les, whih learly inreases aess time andpower onsumption.

82 Chapter 6. A Vetor-µSIMD-VLIW ArhitetureIn order to evaluate the salability of salar and vetor regions separately, we havemarked the start and end point of the most omputational intensive vetor regionsin the soure odes. These regions generally orrespond to one or two levels of nestedloops plus some previous initializations. Table 6.1 lists the seleted benhmarks, theparts of eah program that have been onsidered as vetor regions, and the perentageof the exeution time they represent in a 2-issue width µSIMD-VLIW arhiteture.Benhmark %Vet Vetor Regionsjpeg_en 29.56 % R1: RGB to YCC olor onversionR2: Forward DCTR3: Quanti�ationjpeg_de 18.46 % R1: YCC to YCC olor onversionR2: H2v2 up-samplempeg2_en 52.29 % R1: Motion estimationR2: Forward DCTR3: Inverse DCTmpeg2_de 23.11 % R1: Form omponent preditionR2: Inverse DCTR3: Add blokgsm_en 18.66 % R1: LTP parametersR2: Autoorrelationgsm_de 0.91% R1: Long term �lteringTable 6.1. Vetor regionsFigure 6.1 shows the speed-up of 2, 4 and 8-issue width µSIMD-VLIW arhiteturesover the 2-issue width µSIMD-VLIW. The dashed lines represent the speed-up in thevetor/salar regions over the vetor/salar regions of the 2-issue width arhiteture.The solid lines refer to the speed-up in the omplete appliation.From the graphs, it an be inferred that, exept for the gsm_en, the salar regionsfail to sale above 4-issue width. While inreasing the width of the arhiteture from2 to 4 provides an average speed-up of 1.24X in the salar regions, moving from 4 to8-issue only introdues a small 1.03X performane improvement. As far as the vetorregions is onerned, they exhibit potential to bene�t from wider issue sheduling,but this parallelism ould be exploited in a more e�ient way by onventional DLPoriented tehniques. Furthermore, even though the vetor regions sale up to 3.19Xfor the jpeg_de appliation (2.49X in average), the vetorization perentage is low(24% in average) and the lak of salability in the salar regions (1.28X in average)limits the performane of the omplete appliation.Results state that the atual performane ahieved is very far from the theoretialpeak performane and do not pay o� the hardware omplexity inherent in veryaggressive arhitetures. We laim that Vetor-µSIMD extensions arise as a betterandidate to invest in, as they learly redue the feth pressure, simplify the ontrol

6.2. Adding Vetor Units to a VLIW proessor 83

2w 4w 6w 8w
1

2

3

sp
ee

d-
up

jpeg_enc
2w 4w 6w 8w

1

2

3

sp
ee

d-
up

jpeg_dec

APPLICATION
SCALAR REGIONS
VECTOR REGIONS

2w 4w 6w 8w
1

2

3

sp
ee

d-
up

mpeg2_enc

2w 4w 6w 8w
1

2

3

sp
ee

d-
up

mpeg2_dec
2w 4w 6w 8w

1

2

3

sp
ee

d-
up

gsm_enc
2w 4w 6w 8w

1

2

3

sp
ee

d-
up

gsm_decFigure 6.1. Salability of salar and vetor regions in µSIMD-VLIW arhitetures�ow and memory aess, and speed-up the performane of the vetor regions withoutdetrimental e�ets over the salar part.In [Cor02℄, a supersalar proessor is enhaned with MOM, a matrix ISA extensionthat is basially an hybrid between onventional vetor and MMX-like ISAs. Wehave used the same ISA to enhane our referene µSIMD-VLIW arhiteture. Itmust be stressed that additional issues arise mainly in the ompiler side, as it mustnow be able to shedule vetor operations.6.2 Adding Vetor Units to a VLIW proessorThis setion deals with the main impliations of adding vetor units to a µSIMD-VLIW proessor. First, we overview the main features of the Vetor-µSIMD ISAextension used for the study. Next, we desribe the proposed arhiteture, inludingthe datapath and the memory hierarhy. Finally, we disuss the main impliationsin the ompilation, and more spei�ally in the sheduling proess.6.2.1 Vetor-µSIMD ISA OverviewOur Vetor-µSIMD ISA is based on the Matrix Oriented Multimedia (MOM) exten-sion [CEV99℄. It an be viewed as a onventional vetor ISA where eah operation

84 Chapter 6. A Vetor-µSIMD-VLIW Arhiteture
B

. . .

A B

BA

. . .

0

15

0 0

1515

+

+

A

A

. . .

0

15

1 x 64 bits

VL = 16

B

+ =(a) Vetor
3 2 1 0BBBB BBBB 22 0

VL = 16

1

4 x 16 bits

013 2A AAA 3 3 1 0A AAA 1=+ ++++(b) µSIMD
++

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . VL = 16

+

B

B B

B B B

BB

+ =

+ + + +

+

0,00,3

15,015,115,215,3

0,00,10,20,3

15,015,115,215,3

0,1

4 x 16 bits

0,2 0,00,10,10,20,3 0,3 0,2

15,015,015,115,115,215,215,315,3

0,0

A BABAA BBA

A A A A

AAA

BA B A B A B A

() Vetor-µSIMDFigure 6.2. Comparison between onventional vetor, µSIMD and Vetor-µSIMD ISAsis a µSIMD operation (see Figure 6.2). It was designed to exploit the advantages ofboth onventional vetor arhitetures (low feth requirements, simple ontrol logiand strided aesses) and µSIMD ISAs (sub-word level parallelism and multimediaoriented features suh as saturation). It does not inlude ostly vetor operations,suh as onditional exeution, gathers or satters.It provides vetor registers of 16 64-bit words eah, vetor load and vetor storeoperations to move data from/to memory to/from the vetor registers, and a setof omputation operations that operate on vetor registers. Sine eah word anpak either eight 8-bit, four 16-bit or two 32-bit items, eah vetor register anhold a matrix of up to 16x8, 16x4 or 16x2 elements. The arhiteture also provides192-bit paked aumulators similar to those proposed in the MDMX multimediaextension [SIG97℄.Additionally, two speial registers are required to ontrol the exeution of vetoroperations: the vetor length register and the vetor stride register. The vetor lengthregister spei�es how many words (out of 16) of the vetor register are involved inthe vetor operation being performed. The vetor stride register is spei� to vetormemory operations and ditates the distane between two onseutive words in thevetor register.

6.2. Adding Vetor Units to a VLIW proessor 85

Figure 6.3. Vetor-µSIMD-VLIW arhitetureAs far as terminology is onerned, we reserve the term operation to refer to eahindependent mahine operation odi�ed into a VLIW instrution. Eah vetor op-eration exeutes so many sub-operations as the vetor length ditates. Finally, asthe maximum vetor length is 16 and eah sub-operation an operate on either eight8-bit, four 16-bit or two 32-bit items, a vetor operation an perform up to 16x8,16x4 or 16x2 miro-operations.6.2.2 Vetor-µSIMD-VLIW ArhitetureFigure 6.3 shows the main omponents of the proposed arhiteture. Essentially, itis a VLIW proessor with the addition of a vetor register �le, one or more vetorfuntional units, and a modi�ed ahe hierarhy speially targeted to serve vetoraesses.Both, the vetor register �le and the vetor funtional units an be lusterized in inde-pendent vetor lanes. This an be ahieved with relatively simple logi by repliatingthe funtional units, splitting eah vetor register aross eah lane and assigning eahfuntional unit to a ertain lane. The di�erent elements of a vetor register are inter-leaved aross lanes, allowing all lanes to work independently. The arhiteture alsoinludes a simple aumulator register �le and adds limited onnetion between thelanes to be able to perform the last series of aumulation in a redution operation.Only one of the lanes needs to read and write the soure and destination pakedaumulator. This lane is the responsible for performing the last redution. In thiswork, we use four independent vetor lanes; as our vetor lengths are relatively short,a larger number of lanes would not pay o�.

86 Chapter 6. A Vetor-µSIMD-VLIW Arhiteture
(a) Centralized register �le in µSIMD(4 FUs, 4 L1 ports, 20 ports)

Lane 3 Lane 2 Lane 1 Lane 0(b) Distributed register �le in Vetor-µSIMD(1 FU, 1 L2 port, 4 lanes, 5 ports/bank)Figure 6.4. Comparison between entralized and distributed register �le organizationsFrom the point of view of implementation, a vetor register �le sales better thana entralized one, due to the organization in lanes, whih redues the number ofports per luster (see Figure 6.4). When saling a entralized µSIMD register �le,the register �le storage and ommuniation between arithmeti units beome ritialfators, dominating in area, yle time and power dissipation of the proessor.Table 6.2 shows the harateristis of di�erent µSIMD and Vetor-µSIMD register�les on�gurations. Register �le area, delay and power have been estimated usingthe models desribed in [RDK+00℄. Register �le area is measured in square wiretraks (wt2). Delays are given in units of fan-out-of-four inverter (FO4) delays1. Ayle time of 20 FO4 is assumed, whih orresponds to a lok frequeny greaterthan 500 MHz. Normalized values over the 2-issue with µSIMD on�guration arealso inluded.As we an observe, for aggressive on�gurations, a vetor register �le an providelarger storage apaity with less area ost and aess time. Thus, the proposedarhiteture appears as a good andidate not only in terms of performane, but alsoin terms of ost-e�ieny.As far as the memory hierarhy is onerned, we use a vetor ahe in the seondlevel of the memory hierarhy (see Setion 3.3.3 for further details). Salar aessesare made to the L1 data ahe, while vetor aesses bypass the L1 to aess diretly1An FO4 delay is less than 100ps for a 0.18µm proess.

6.2. Adding Vetor Units to a VLIW proessor 87
µSIMD Vetor-µSIMD2w2u 4w4u 8w8u 2w1v4 2w2v4 4w2v4 4w4v4SIMD units 2 4 8 1x4 2x4 2x4 4x4memory ports 1 2 4 1x4 1x4 1x4 1x4SIMD registers 80 96 128 20 20 32 32bits per register 64 64 64 16x64 16x64 16x64 16x64number of lanes 1 1 1 4 4 4 4banks per lane 1 1 1 1 1 1 2ports per bank 8 16 32 5 8 8 8Aumulator registers 0 0 0 4 4 6 6bits per register 0 0 0 192 192 192 192ports per bank 0 0 0 2 4 4 4RF size (bytes) 640 768 1,024 2,656 2,656 4,240 4,240RF area ost (wt2) 675,840 2,334,720 10,321,920 1,497,600 2,746,368 4,389,888 4,389,888RF aess time (FO4) 10.31 12.17 15.80 9.71 10.31 11.31 9.86RF peak power (fJ/FO4) 5,340 18,953 83,044 11,057 21,692 34,257 34,913RF size (norm) 1.00 1.20 1.60 4.15 4.15 6.63 6.63RF area ost (norm) 1.00 3.45 15.27 2.22 4.06 6.50 6.50RF aess time (norm) 1.00 1.18 1.53 0.94 1.00 1.10 0.96RF peak power (norm) 1.00 3.55 15.55 2.07 4.06 6.42 6.54Table 6.2. Estimated area, delay and power of di�erent µSIMD and Vetor-µSIMD register �leon�gurationsthe L2 vetor ahe. A ohereny protool based on an exlusive-bit poliy plusinlusion is used to guarantee ohereny.6.2.3 Compilation IssuesThe suess of the proposed arhiteture is strongly dependent on the ompiler.First, it must be able to generate Vetor-µSIMD ode. Seond, it must perform thesheduling and register alloation for the new operations.Vetor-µSIMD ode generationNowadays there are ompilers that allow basi autovetorization for µSIMD arhite-tures, and the same ompilation tehniques ould be used to generate Vetor-µSIMDode. In the ase of short nested loops (typial in image and video appliations), thevetorization proess an be deoupled into two steps: �rst, generation of µSIMD op-erations over the inner loop, and seond, onventional vetorization of those µSIMDoperations over the outer loop. In the ase of only one larger loop (suh as those ofaudio appliations), the proess is in pratie the same: �rst, unrolling the loop in afator suitable to allow µSIMD vetorization, and seond, onventional vetorizationof the resulting loop.

88 Chapter 6. A Vetor-µSIMD-VLIW ArhitetureAs we do not have a reliable ompiler at our disposal yet, we have used emulationlibraries to hand-write µSIMD and Vetor-µSIMD ode to evaluate the approah.The ompiler has been modi�ed to replae the emulation funtions alls by theorresponding operations.Stati sheduling of Vetor-µSIMD operationsThe sheduler is the module that needs the most detailed information about the tar-get arhiteture, as it is responsible for assigning a shedule time to eah operation,subjet to the onstraints of data dependene and resoure availability. The newregister �les and funtional units have been added to the mahine desription �le.Flow analysis is then used to determine the dependene onstraints between opera-tions that de�ne or use the same register. For every input and output operand, anearliest and a latest read and write lateny must be spei�ed respetively [AKR98℄.Figure 6.5.a depits the exeution of a 2 yles fully-pipelined salar operation. Inthis example, the soure registers are read sometime during the �rst yle after theinitiation of the operation, and the result is written at the end of two yles.In the ase of a vetor operation, these values also depend on the vetor length(V L) and on the number of parallel vetor lanes (LN). As up to LN sub-operationsare initiated per yle, the last input operand will be read at ⌊(V L − 1)/LN⌋, andthe last output will be written at L + ⌊(V L − 1)/LN⌋, being L the lateny of onesub-operation (see Figure 6.5.b).The number of parallel vetor lanes is a �xed parameter from the arhiteture andit is known at ompile time. On the ontrary, the vetor length is variable for eahoperation, and will be dynamially set. Nevertheless, the vetor length register isusually initialized with an immediate value, and a simple data �ow analysis is able toprovide the right value to the ompiler. In the few ases in whih the vetor lengthis not known at ompile time, the ompiler must assume the maximum vetor length(16) in order to ensure orretness. Note that, for a vetor unit with four parallellanes, the penalty to pay would be three extra yles at worst (that is, if the vetorlength turns out to be four or less).The same lateny desriptors are taken for vetor memory operations, but replaingthe number of vetor lanes by the width of the L2 port (in elements). In the proposedmemory arhiteture, the exeution time of a vetor memory operation also dependson the stride. For simpliity, our ompiler shedules all vetor memory operationsas having a stride of one and hitting in the L2 vetor ahe, and the proessor stallsat run-time if either of the two assertions is not true.On the other hand, providing a register �le whih supports onurrent aesses tothe same vetor register, the ompiler an do haining [Rus78℄ of two vetor opera-tions with a dependene on a vetor register operand by just sheduling the seondoperation before the �rst one has ompleted exeution. Assuming the same number

6.2. Adding Vetor Units to a VLIW proessor 89
L

I0_0

I0_1

0

1 430 2 t65

a1

a0

Ter = 0

Tlr = 0

Tew = 0

Tlw = L0(a) Salar operation
0L

V0_0

V0_1

0 21 t6543

a0(8) a0(12)a0(0)

a1(0) a1(4) a1(8) a1(12)

a0(4)

Ter = 0

Tlr =
⌊

V L0−1

LN0

⌋

Tew = 0

Tlw = L0 +
⌊

V L0−1

LN0

⌋(b) Vetor operation
0

V1_1

V1_0

V0_0

V0_1

L

50 2 t61 3 4

b1(8)

a1(12)a1(8)a1(4)a1(0)

a0(4)a0(0) a0(12)a0(8)

b1(12)b1(4)b1(0)

b0(12)b0(8)b0(4)b0(0)

if (LN0 ≥ LN1)
L0→1 = L0else
L0→1 = L0 +

⌊

V L0−1

LN0

⌋

+
⌊

V L1−1

LN1

⌋

() ChainingFigure 6.5. Lateny desriptors (Ter = earliest read, Tlr = latest read, Tew = earliest write,Tlw = latest write, L = �ow lateny, VL = vetor length, LN = vetor lanes)of lanes, the distane between the initiation of these operations must be at least Lyles. It is worth noting that no additional hardware is needed.6.2.4 Code ExampleAs a ase of study, we show the Vetor-µSIMD ode of the motion estimation kerneland the sheduling generated by our ompiler. Motion estimation is one of the keyelements of many video ompression shemes. A video sequene onsists of a series offrames. To ahieve ompression, the temporal redundany between adjaent framesan be exploited. That is, a frame is seleted as a referene, and subsequent framesare predited from the referene using a tehnique known as motion estimation.In the mpeg2_en implementation of the algorithm, the urrent frame is divided intomarobloks, typially 16×16 pixels in size for the luminane omponent and 8×16for the hrominane omponents. Eah maroblok is ompared to a maroblok

90 Chapter 6. A Vetor-µSIMD-VLIW Arhiteture

V3V2 V4V1

8

16 x 8 bits

A2A1

lx

lx

r3

r1

a: VL_MOV 8b: VS_MOV lx: ADD r2, r1, 8d: ADD r4, r3, 8e: V_LD v1, r1f: V_LD v2, r2g: V_LD v3, r3h: V_LD v4, r4i: LVALACC_B a1, 0j: LVALACC_B a2, 0k: V_SAD_B a1, v1, v3l: V_SAD_B a2, v2, v4m: SSRCA_S_B r5, a1n: SSRCA_S_B r6, a2o: ADD r7, r5, r6p: S_MOV_REG r7,sFigure 6.6. Vetor-µSIMD implementation of the motion estimation algorithmin the referene frame using the sum of absolute di�erenes (SAD) as error mea-sure, and the best mathing maroblok is seleted. The searh is onduted over apredetermined searh area.Figure 6.7 shows the Vetor-µSIMD ode of the motion estimation kernel that om-putes the SAD of two 8× 16 bloks. It is assumed that registers r1 and r3 keep theinitial address of eah blok, and lx (the image width) is the stride between onse-utive rows. As the registers are 64 bit wide and the stride between rows is not one,we need two vetor registers to hold eah blok. The SAD operation is implementedusing a paked aumulator that allows parallel exeution over the vetor elements.Finally, the values paked in the aumulators are redued and the �nal result isstored.The orresponding sheduling is given in Figure 6.7. The target arhiteture is a2-issue width VLIW proessor with two integer units, two vetor units with fourparallel lanes, one port to the �rst level ahe and a 4 × 64 bit port to the seondlevel vetor ahe. Latenies are 1 yle for the integer units and �rst level ahe, 2yles for the vetor units and 5 yles for the vetor ahe.As an be observed in the resoure usage table, the Vetor-µSIMD ode of this kernelis memory bound. In fat, the seond vetor unit is not used at all, as the seondSAD operation (l) must wait for the data being loaded from memory and annot besheduled earlier. Chaining is performed between two vetor loads (g and h) and thevetor SAD operations (k and l). Note also that the vetor loads are sheduled ashaving a stride of one, that is, as if they produe four elements per yle. As thisassumption is not true, the proessor will be stalled at run-time, thus inurring in agreat penalty in performane, as we will see in the evaluation setion.

6.3. Evaluation 91

k

l
l

l

k
kk

j
j

j
j

h
h

i

a

p
o

n
n

m
m

id
c

b

l

h:

g:

f:

k:

m:
l:

n:

o:
p:

e:
i:

S_MOV_REG r7,s
ADD r7,r5,r6

SSRCA_S_B r6,a2

V_SAD_B a2,v2,v4
SSRCA_S_B r5,a1

V_SAD_B a1,v1,v3
V_LD v4,r4

V_LD v2,r2

V_LD v3,r3
LVALACC_B a1,0
V_LD v1,r1
VS_MOV lx a:VL_MOV 8

d:
j:

c:

LVALACC_B a2,0
ADD r4,r3,8
ADD r2,r1,8

b:

e

g
g

g
g

g
g

g
g

g
g

e
e
e

ee
ee

e

e

h
h

h
h
h

h
h f

h

f
f
f

f

f

f

f
f

f
V

U
1_

0

1

2

3

4

9

5

6

7

8

10

pL
2_

3

V
U

0_
0

IU
1_

0

IU
0_

0

p
L

2_
0

p
L

1_
0

V
U

0_
1

V
U

1_
1

pL
2_

4

pL
2_

2

pL
2_

1

cyc

0

18

17

16

15

14

13

12

11

Figure 6.7. Sheduling of motion estimation for a 2-issue Vetor-µSIMD-VLIW proessorWe must highlight that the Vetor-µSIMD ode totally eliminates the two innerloopspresent in the salar version to san the bloks. Furthermore, the Vetor-µSIMD odeonly needs to deode 16 operations to proess one omplete blok, in front of the 172operations required in the µSIMD versions of ode.6.3 EvaluationThis setion provides quantitative data in order to analyze the behavior of theproposed arhiteture. Di�erent Vetor-µSIMD-VLIW on�gurations are omparedagainst µSIMD-VLIW and plain VLIW arhitetures. We must point out that thesalar versions of ode inlude memory disambiguation, both Pode Interproedu-ral Pointer Analysis and the Dynami Memory Interval Test tehnique proposed inChapter 5.First, we evaluate the impat of the multimedia extensions in the overall number ofoperations. Next, we present performane results on the vetor regions and analyzethe in�uene of the number of vetor units and lanes and the impat of the memoryhierarhy. To end up, we report the speed-up and operations per yle rates obtainedin the omplete appliations.6.3.1 Operation BreakdownFigures 6.8.a and 6.8.b show the dynami operation ount for the di�erent arhite-tures (VLIW, µSIMD-VLIW and Vetor-µSIMD-VLIW) normalized by the dynami

92 Chapter 6. A Vetor-µSIMD-VLIW Arhiteture
 VLIW

 +uSIM
D

 +Vector

 VLIW
 +uSIM

D

 +Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

0.0

0.2

0.4

0.6

0.8

1.0

valu
vmem
salu
smem
ctrl

jpeg_enc jpeg_dec mpeg2_enc mpeg2_dec gsm_enc gsm_dec average(a) By type
 VLIW

 +uSIM
D

 +Vector

 VLIW
 +uSIM

D

 +Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

0.0

0.2

0.4

0.6

0.8

1.0

R3
R2
R1
R0

jpeg_enc jpeg_dec mpeg2_enc mpeg2_dec gsm_enc gsm_dec average(b) By regionsFigure 6.8. Normalized operation ountoperation ount of the base VLIW arhiteture. The �rst graph shows the opera-tions lassi�ed into �ve ategories: ontrol, salar memory, salar arithmeti, vetormemory and vetor arithmeti. In the seond graph, we have distinguished the on-tribution of eah region. Regions from R1 to R3 are the frations of ode that havebeen vetorized in the µSIMD and Vetor-µSIMD versions in the same order theyare listed in Table 6.1 (for example, in mpeg2_en, R1 aounts for the motion esti-mation and R2 and R3 for the forward and inverse two dimensional DCT). Region
R0 always refers to the remaining salar part.The results on�rm that the µSIMD and Vetor-µSIMD versions of ode require toexeute muh less operations than the salar versions. This may not seem so obviousif we take into aount that these versions are sometimes based on algorithms thatrequire to exeute muh more operations [SCEV99℄. For example, the µSIMD andVetor-µSIMD versions of the DCT are based in the matrix produt, whih requiressigni�antly more operations than the optimized salar algorithm. We must alsopoint out that, in the salar version of the mpeg2_de benhmark, we are using

6.3. Evaluation 93the Fast IDCT (a fast salar algorithm) instead of the Referene IDCT (doublepreision matrix produt algorithm) also inluded in the standard, as the former isten times faster and we are interested in omparing against the best salar version.On the one hand, the semanti rihness of the µSIMD and Vetor-µSIMD ISAs toperform operations suh as the sum of absolute di�erenes or saturation arithmetiontributes to derease the operation ount. Furthermore, there is an additionalredution on the number of operations involved in the loop-related ontrol. Thisredution in the number of operations to feth and deode also translates into aderease in power onsumption.As an be observed, the Vetor-µSIMD arhiteture exeutes an average of 84% feweroperations in the vetor regions than the µSIMD one (19% fewer in the ompleteappliation). The obvious reason is that Vetor-µSIMD ISA an pak more miro-operations into a single operation (a maximum of 128 in the Vetor-µSIMD in frontof a maximum of 8 in the µSIMD). Table 6.3 reports the average vetor length foreah benhmark. V Lx refers to the number of elements paked on one word. V Lyorresponds with the vetor length register, that is, the number of operations toperform in a vetor operation, and it is always one in a µSIMD operation. Finally,
V Lxy represents the overall vetor length in a Vetor-µSIMD operation, that isthe produt of V Lx and V Ly, or in other words, the number of miro-operationspaked in one vetor operation. Although most multimedia kernels are haraterizedby small loop ounts, whih usually results on low or moderate vetor lengths inonventional vetor arhitetures, the Vetor-µSIMD ISA leverages quite fair miro-operations per operation rates (an average vetor length of 81.10 miro-operationsfor the jpeg_de appliation), due to its apability to vetorize two inner nestedloops. +µSIMD +VetorVLx VLx VLy Vlxyjpeg_en 3.55 3.88 7.59 28.47jpeg_de 5.11 5.08 15.96 81.10mpeg2_en 6.53 7.43 6.12 46.97mpeg2_de 3.57 4.23 3.97 17.46gsm_en 2.47 3.99 5.77 22.99gsm_de 3.36 3.22 10.61 35.67average 4.10 4.64 8.34 38.78Table 6.3. Average vetor lengthFinally, the redution in the overall dynami operation ount depends also on thevetorization perentage, whih is around 43% of the salar ode in average. As wealready saw in Setion 6.1, the exeptions are the mpeg2_en and the gsm_de appli-ations. In the �rst one, the motion_estimation and the DCT transforms aount forthe 87% of the overall dynami operation ount. On the ontrary, gsm_de exhibitsa very low overage (only 5% of the ode has been vetorized). As an be seen inFigure 6.8.b, the Vetor-µSIMD ISA ahieves to redue the number of operations

94 Chapter 6. A Vetor-µSIMD-VLIW Arhiteture

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

jpeg_enc
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

jpeg_dec

VLIW (2i/4i/8i)
+uSIMD (2u/4u/8u)
+Vector (1v4/2v4)

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

mpeg2_enc

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

mpeg2_dec
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

gsm_enc
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

gsm_decFigure 6.9. Speed-up in vetor regionsof the vetor regions to a minimum (less than 10% of the total dynami operationount).6.3.2 Speed-up in Vetor RegionsWe have evaluated the performane of 2- and 4-issue width Vetor-µSIMD-VLIW ar-hitetures with one and two vetor units and four vetor lanes respetively. Resultsare ompared against 2-, 4-, and 8-issue width VLIW and µSIMD-VLIW arhite-tures with so many integer and µSIMD units as the issue width respetively. Atten-tion must be paid to the fat that the Vetor-µSIMD arhitetures are not balanedagainst the same issue width VLIW or µSIMD arhitetures, as we onsider them asan alternative to wider issue proessors. For example, the arithmeti apability ofthe 4-issue Vetor-µSIMD on�guration is omparable to that of the 8-issue µSIMDon�guration, not to the 4-issue µSIMD.For eah arhiteture, Figure 6.9 shows the speed-up of the vetor regions over theexeution time of the vetor regions in the 2-issue width VLIW arhiteture. As itwas to be expeted, both µSIMD and Vetor-µSIMD arhitetures learly outperformthe same issue width VLIW. Moreover, the 2- and 4-issue width Vetor-µSIMDarhitetures outperform the same issue width µSIMD in a fator ranging from 2.0Xto 6.5X (3.2X in average) and 1.6X to 5.4X (2.8X in average) respetively. On theother hand, the 8-issue µSIMD arhiteture is outperformed by the 4-issue width

6.3. Evaluation 95
jpeg_enc jpeg_dec mpeg2_enc mpeg2_dec gsm_enc gsm_dec average

0

5

10

15

VLIW (4w)
+uSIMD (4u)
+Vector (1v4)
+Vector (2v4)
+Vector (4v4)
+Vector (8v4)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
001.

76

1.
60

4.
37

2.
61

2.
58 3.

95

2.
81

3.
02

1.
76

6.
70

5.
02

11
.6

0

9.
23

6.
22

4.
49

2.
85

6.
98

6.
07

13
.8

0

11
.8

2

7.
67

5.
33

3.
97

6.
98

6.
12

13
.8

7

12
.9

4

8.
20

5.
84

5.
01

6.
98

6.
12

13
.8

7

12
.9

4

8.
46

(a) In�uene of inreasing the number of vetor units
jpeg_enc jpeg_dec mpeg2_enc mpeg2_dec gsm_enc gsm_dec average

0

5

10

15

VLIW (4w)
+uSIMD (4u)
+Vector (1v8)
+Vector (2v4)
+Vector (4v2)
+Vector (8v1)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
001.

79

1.
51

4.
36

2.
70

2.
69 3.

80

2.
814.

37

2.
69

6.
74

5.
80

14
.4

7

10
.2

6

7.
39

4.
57

2.
70

6.
95

6.
27

14
.4

4

11
.3

6

7.
72

4.
45

2.
63

6.
55

6.
19

14
.1

1

11
.3

6

7.
55

3.
84

2.
47

6.
09

5.
30

13
.6

9

10
.2

6

6.
94

(b) Number of vetor units vs number of vetor lanesFigure 6.10. Speed-up in vetor regions for di�erent number of units and lanesVetor-µSIMD in a fator of up to 4.1X (1.9X in average), with the same arithmetiapability and onsiderably less hardware omplexity.It is worth noting that, even the 2-issue width Vetor-µSIMD arhiteture outper-forms the 8-issue µSIMD arhiteture for most of the benhmarks, with half the arith-meti apability and four times less issue width. The exeptions are the jpeg_enand jpeg_de appliations, whih as we will see next, are haraterized by havinghigher omputational demand than other appliations.Number of vetor unitsTo analyze the e�et of inreasing the number of vetor units, Figure 6.10.a showsthe performane improvement obtained in the vetor regions when inreasing thenumber of vetor units from 1 to 8. The graph shows speed-up with respet to theexeution of the vetor regions in the 4-issue width VLIW. The 4-issue width µSIMDarhiteture is also inluded as a referene.We observe that half of the benhmarks do not take muh bene�t from inreasing thenumber of vetor units. This is beause they have vetor regions similar to the mo-tion_estimation ode studied in setion 6.2.3, with small loops and very short vetorlengths. Examples of this inlude the form_omponent_predition and the add_blokregions in mpeg2_de and the alulation_of_the_long term_parameters in gsm_en.

96 Chapter 6. A Vetor-µSIMD-VLIW ArhitetureOn the ontrary, other benhmarks suh as the jpeg_en and jpeg_de, whose vetorregions are haraterized by larger vetor lengths (ex. olor_onversions or upsam-pling) and/or larger loop sizes (ex. DCT's), exhibit a signi�ant improvement inperformane when the number of vetor units is inreased.Number of vetor units vs number of vetor lanesThe Vetor-µSIMD arhiteture an be saled not only in the number of vetorfuntional units, but also in the number of vetor parallel lanes. To analyze thetrade-o� between them, Figure 6.10.b shows the speed-up in the vetor regions fordi�erent vetor on�gurations over the 4-issue width VLIW arhiteture, but nowkeeping the overall omputational apaity onstant.Results on�rm that distributing the register �le and units in four parallel lanesis a good hoie for our set of benhmarks. Apart from inreasing the area ostand power, reduing the number of lanes below four also results in performanedegradation. This an be explained by the fat that there are not enough vetoroperations to be exeuted in parallel to feed a greater number of units. On theontrary, there are data dependenes between operations, and a smaller numberof lanes translates into a greater exeution time for eah operation. On the otherhand, having more units than lanes bene�ts those operations that do not depend onthe vetor length, suh as aumulator redutions, as they an then be exeuted inparallel.E�et of the memory hierarhyTo analyze the in�uene of the memory hierarhy, Figure 6.9 shows the performanespeed-up obtained in the vetor regions with perfet memory simulation for thedi�erent arhitetures. By perfet memory we onsider that all aesses hit in ahe,but with the orresponding lateny. That is, all salar aesses are served after 1yle of lateny and all vetor aesses in the Vetor-µSIMD on�gurations go tothe L2 and take 5 yles plus the additional yles to serve all vetor data elements(whih slightly favours the VLIW and µSIMD-VLIW on�gurations). The shadowline represents the speed-up obtained with real memory simulation. All speed-upsare referred to the exeution time of the vetor regions in the 2-issue width VLIWarhiteture with perfet memory simulation.We observe that the Vetor-µSIMD arhitetures exhibit the highest performanedegradations when onsidering a realisti memory system. This fat may seem oun-terintuitive, sine vetor arhitetures are well known for their apability to toleratememory lateny. Two reasons explain this behavior. First, the vetor lengths are notlong enough to take bene�t from this harateristi. Seond, VLIW arhitetures arevery sensitive to non-deterministi latenies.As it was explained before, in the sheduling the ompiler assumes that all vetoraesses have a stride of one, and the proessor stalls at run-time if this assertion is

6.3. Evaluation 97

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

jpeg_enc
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

jpeg_dec

Perfect memory VLIW (2i/4i/8i)
Perfect memory +uSIMD (2u/4u/8u)
Perfect memory +Vector (1v4/2v4)
Real memory

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

mpeg2_enc

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

mpeg2_dec
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

gsm_enc
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

gsm_decFigure 6.11. Speed-up in vetor regions with perfet memory and impat of real memorynot true. That is what happens in the mpeg2_en benhmark, in whih the strideof the main region (the motion_estimation ode example analyzed in Setion 6.2.4)is the image width. Moreover, in this kernel, these memory operations represent animportant fration of the overall ode, resulting in a high performane degradation(lose to 200%). Apart from this, all benhmarks exhibit high hit ratios and verylow performane degradation when onsidering realisti memory.6.3.3 Speed-up in AppliationsFigure 6.12 shows the speed-up for omplete appliations. As it was to be expeted,the benhmark that exhibits the highest performane improvement is the mpeg2_en(up to 4.2X speed-up for the 4-issue Vetor-µSIMD on�guration). Even thoughthere are other benhmarks (suh as gsm_en) with onsiderably greater speed-upsin the vetor regions, the impat in the overall performane is not so signi�ant,due to the low vetorization perentage. Note also that the 4-issue Vetor-µSIMDarhiteture slightly outperforms the 8-issue µSIMD in all the appliations.It an also be observed that the gap between the di�erent arhitetures dereasewith the issue width of the proessor. For example, while the 2-issue Vetor-µSIMDexhibits an average fator of 1.22X of performane improvement over the 2-issue
µSIMD, the 4-issue Vetor-µSIMD only outperforms the 4-issue µSIMD in a 1.14X.

98 Chapter 6. A Vetor-µSIMD-VLIW Arhiteture

2w 4w 6w 8w
1

2

3

4

sp
ee

d-
up

jpeg_enc
2w 4w 6w 8w

1

2

3

4

sp
ee

d-
up

jpeg_dec

VLIW (2i/4i/8i)
+uSIMD (2u/4u/8u)
+Vector (1v4/2v4)

2w 4w 6w 8w
1

2

3

4

sp
ee

d-
up

mpeg2_enc

2w 4w 6w 8w
1

2

3

4

sp
ee

d-
up

mpeg2_dec
2w 4w 6w 8w

1

2

3

4

sp
ee

d-
up

gsm_enc
2w 4w 6w 8w

1

2

3

4

sp
ee

d-
up

gsm_decFigure 6.12. Speed-up in appliationsThis an be explained by the fat that a wide enough µSIMD-VLIW arhitetureis able to exploit as ILP the parallelism that the Vetor-µSIMD-VLIW exploits asDLP.On the other hand, the vetor regions represent less than 40% of the total exeutiontime in the 2-issue VLIW arhiteture. When most of the available DLP parallelismis exploited via multimedia extensions, the remaining salar part beomes the bottle-nek. In the 4-issue Vetor-µSIMD-VLIW arhiteture, the vetor yles representless than 10% of the overall exeution time (exept for the mpeg2_en). By theAmhdal Law, further improvements in the exeution of the vetor regions would beimpereptible in the omplete appliation.6.3.4 Operations per CyleTo onlude the analysis, Table 6.4 reports the average number of operations per ylein the salar and vetor regions of ode separately, and in the omplete appliations.For the µSIMD and Vetor-µSIMD versions, the operations per yle rate givesinformation about the feth bandwidth requirements, but is not representative of theexploited parallelism. To take this into aount, the table also inlude the averagenumber of miro-operations exeuted per yle.

6.4. Summary 99Salar regions Vetor regions AppliationOPC SP OPC µOPC SP OPC µOPC SP2w VLIW 1.44 1.00 1.80 1.80 1.00 1.59 1.59 1.00+µSIMD (2u) 1.44 1.00 1.78 4.68 2.87 1.52 2.32 1.47+Vetor (1v4) 1.44 1.00 0.87 7.91 9.32 1.36 2.12 1.79+Vetor (2v4) 1.44 1.00 0.98 10.10 10.60 1.37 2.15 1.804w VLIW 1.77 1.23 3.03 3.03 1.66 2.14 2.14 1.34+µSIMD (4u) 1.78 1.24 2.95 7.80 4.62 1.98 3.05 1.94+Vetor (2v4) 1.76 1.23 1.27 11.86 13.14 1.67 2.62 2.21+Vetor (4v4) 1.76 1.23 1.37 14.00 14.09 1.69 2.64 2.228w VLIW 1.84 1.28 4.54 4.54 2.47 2.42 2.42 1.50+µSIMD (8u) 1.84 1.29 4.47 12.07 6.76 2.18 3.38 2.15Table 6.4. Average operations per yle (OPC), miro-operations per yle (µOPC), and speed-up (SP) in the salar and vetor regions and in the full appliationResults on�rms our belief that the non-vetor regions of ode do not bene�t fromsaling the width of the mahine above 4 issue width. Fething 1.84 operations peryle does not pay o� the hardware omplexity of a 8-issue width arhiteture. TheVetor-µSIMD ISA obtains the highest speed-ups by exploiting more data parallelismin the vetor regions (up to 14.00 miro-operations per yle) and with the lowestfeth bandwidth requirements (just 1.37 operations per yle), making it an idealandidate for embedded systems, where high issue rates are not an option. However,for wide issues, the µSIMD ISA exhibits more �exibility to bene�t from wide statisheduling and also reahes signi�ant miro-operations per yle rates, but at ahigher ost.6.4 SummaryThe atual performane ahieved by very wide issue VLIW arhitetures is veryfar from the theoretial peak performane and do not pay o� the related hardwareomplexity. By analyzing the salability of the salar and vetor regions of odeseparately, we have shown that the salar regions do not bene�t from inreasing thewidth of the mahine above 4-issue width. On the other hand, the kind of parallelismfound in the vetor regions ould be exploited in a more e�ient way by means ofSIMD exeution.To exploit the data parallelism inherent in the vetor regions without inreasing theway of the arhiteture, we have proposed the addition of one or more vetor unitstogether with a vetor register �ler and a wide port to the L2 that provides the band-width required by the vetor regions. This extension an be viewed as a onventionalshort vetor ISA where eah element is operated in a MMX-like fashion. This en-hanement has a minimal impat on the VLIW ore and provides high performanein the vetor regions for low issue rates.

100 Chapter 6. A Vetor-µSIMD-VLIW ArhitetureWe have evaluated the proposed arhiteture for omplete appliations of audio,video and image proessing and ompared it against a VLIW arhiteture with andwithout µSIMD extensions. In the vetor regions, a 4-issue width Vetor-µSIMD-VLIW arhiteture outperforms the 8-issue µSIMD-VLIW arhiteture in a fator ofup to 4.1X (1.9X in average). Due to the low vetorization perentage, the impatin the omplete appliations is not so signi�ant, but a 4-issue Vetor-µSIMD-VLIWahieves greater or similar performane to that of the 8-issue µSIMD-VLIW withonsiderably less hardware omplexity and power onsumption.On the other hand, it has been seen that Vetor-µSIMD-VLIW arhitetures do notperform well in front of non-unit stride memory referenes and exhibit the highestperformane degradations when onsidering a realisti memory system, mainly dueto the high sensitivity of VLIW arhitetures to non-deterministi latenies. Futureresearh must be done to improve the memory hierarhy and to test more �exiblesheduling tehniques.Finally, we have observed that, one the high performane requirements of the kernelshave been satis�ed by the use of speial DLP-oriented multimedia extensions, mul-timedia appliations beome dominated by the salar performane. To address thisproblem, other soures of parallelism, suh as Thread Level Parallelism (TLP) mustbe exploited together with ILP and DLP to aomplish the real-time onstraints andhigh omputational throughput requirements of next generation of media workloads.

Chapter 7Conlusions
We onlude summarizing the main ontributions and some future researh options.7.1 ContributionsWe started this thesis realizing the growing interest that multimedia appliationshave experimented in the desktop and embedded domains and the inreasing om-putational power demands they involve. On the other hand, advanes in integrationtehnology do not involve the same performane improvement rates than some yearsago, mainly due to the limited available instrution level parallelism, the memorywall and the problem of power dissipation. There is an extended onern about theseonstraints and whether the next generation of proessors will be able to meet withsuess the inreasing requirements of future media appliations. Current trends inmiroproessor design point to the exploitation of di�erent soures of parallelism,the integration of larger ahes on-hip, and a great interest in energy e�ient im-plementations.We think that the ombination of 2-dimensional vetor proessing and the VLIWparadigm together with other ways of exploiting oarser grain parallelism, suh assimultaneous multithreading and hip multiproessing, are a promising alternativeto fae the requirements of future multimedia workload and the emerging tehnol-ogy onstraints. VLIW arhitetures perform well for multimedia proessing, whileavoiding the expensive and strongly tehnology dependent salability of supersalarproessors. On the other hand, 2-dimensional vetor extensions are an e�ient wayof exploiting the inherent DLP of multimedia kernels. They ombine the advantagesof both onventional vetor and sub-word level parallelism implementations, whileoveroming the salability limitations of urrent µSIMD multimedia extensions. Fi-nally, exploiting thread level parallelism is needed to deal with the proessing ofmultiple onurrent media streams.Our work has onentrated on improving the exploitation of instrution and datalevel parallelism in the ontext of VLIW arhitetures and multimedia workload.

102 Chapter 7. ConlusionsMore spei�ally, we have addressed two main topis: the problem of memory disam-biguation and the problem of exploiting DLP by means of Vetor-µSIMD extensionsin stati sheduling arhitetures. In order to evaluate the arhitetural improve-ments and ompilation tehniques proposed in this thesis, we have enhaned theTrimaran ompilation and simulation framework. The resulting tool set providesnew funtionalities, suh as obtaining a great range of statistis of the loops or re-gions in the sope of the programs, simulation of the memory hierarhy, loop memorydisambiguation, and sheduling and simulation of µSIMD and Vetor-µSIMD ode.Next, we summarize the main ontributions that this work has originated.Charaterization of multimedia appliations in VLIW arhiteturesUnderstanding the behavior of multimedia appliations is essential for our researh.Thus, we started our work performing a quantitative analysis of the exeution ofa set of image, video and audio appliations on VLIW arhitetures. Results haveorroborated that the streaming data aess patterns promote spatial loality, whihleads to very high ahe hit rates, even for small ahe sizes. We have also observedthat bank on�its are an important soure of performane degradation in VLIWarhitetures. Hene, we onluded that widening the ports is preferable to inreasingthe number of them; multi-porting a ahe is more expensive than widen the portsand alternative feasible multi-banking ahe designs produe the non-desired bankon�its. Paking several unit-stride array referenes into one wide aess wouldredue both the number of memory aess and the potential for bank on�its.Results also on�rmed that multimedia odes exhibit more parallelism than integerones. Nevertheless, this parallelism is not so high as it was to be expeted fromthe de�nition of the algorithms. One of the reasons that explain this fat is thatthese appliations use to inlude a lot of overhead to deal with di�erent options andformats. On the other hand, in the ourse of time, some of the algorithms havegone through a set of optimizations mainly oriented towards reduing the numberof instrutions in salar implementations, going so far as to hide the inherent vetornature of the algorithm. Furthermore, we notied that in most ases the ompiler wasunable to take bene�t from aggressive ILP optimizations, suh as modulo sheduling,mainly due to the existene of ambiguous memory referenes.Run-time memory disambiguation for multimedia loopsThe last observation motivated us to analyze the problem of memory disambiguationin the ontext of multimedia appliations. We realized that one of the main obstalesto memory disambiguation in multimedia odes is that they are often written inlanguages that support pointer referening, suh as C or C++. The inability ofthe ompiler to demonstrate at ompile-time that two pointers are not going toreferene the same memory loation in any iteration of the loop, fores it to generateonservative ode in whih di�erent iterations of the loop annot be overlapped.

7.1. Contributions 103Taking into aount the disjointed nature of most input and output multimedia mem-ory streams, we have proposed a memory disambiguation tehnique that dynamiallyanalyzes the region domain of every load and store to evaluate, before entering theloop, whether or not the full loop is disambiguated and exeute the orrespondingloop version. This tehnique has been ompletely implemented into the Trimaranompiler. In ontrast with other dynami approahes, it does not require any addi-tional hardware or instrutions. It has negligible e�ets over ompilation time andode size, and near-zero ost for all those loops without potential for disambiguation.We have also ompared our proposal against advaned interproedural pointer anal-ysis. Results show that, on average, our tehnique outperforms the later at theloop level (2.60X in front of 2.17X with relative to the non-disambiguated odes),although the average performane ahieved is similar at the sope of the ompleteappliations (1.13X on average). Furthermore, it is worth to remark that most ofthe benhmarks exhibit a bene�ial e�et when both tehniques are used together.This is due to the fat that, while pointer analysis overomes some limitations ofour tehnique, suh as the aess to non-streaming data strutures, run-time mem-ory disambiguation addresses the ases in whih dynami information is required todetermine the independene of two memory referenes. For the 8-issue width VLIWreferene arhiteture, the ombination of the two mehanisms inreases the speed-upup to an average of 2.82X in the loops and 1.19X in the omplete appliations.
Study of salability of the salar and vetor regions in µSIMD-VLIWarhiteturesThe general harateristis of multimedia kernels, whih are basially small loop-bodies that proess streams of small data types, have lead to the extended trendof exploiting DLP by means of sub-word level (or µSIMD) multimedia extensions.However, the e�ieny of sub-word level implementations is a�eted by the exis-tene of unaligned and non-unit stride memory aesses and the overhead needed toarrange the elements in the appropriate way.Another ontribution of this thesis is the identi�ation of the salar and vetor re-gions of eah program. The vetor regions are those parts of the ode that an bevetorized, and the salar regions are the remaining non-vetorizable parts of ode.In order to evaluate the e�ieny of aggressive on�gurations with multimedia ex-tensions, we have separately analyzed the salability of the salar and vetor regionsof our set of benhmarks in µSIMD-VLIW proessors. Results on�rm our assump-tion that the salar regions do not have enough ILP to take bene�t from inreasingthe width of the arhiteture above 4-issue width. On the other hand, although thevetor regions exhibit potential to sale, the vetorization perentage is not highenough, and the atual performane ahieved in the omplete appliations does notompensate the inrease in ost of wider issue arhitetures.

104 Chapter 7. Conlusions2-dimensional vetor extensions in stati sheduling arhiteturesTo exploit the DLP in the vetor regions without inreasing the way of the arhi-teture, we have proposed what stands for the main goal of this thesis: the Vetor-
µSIMD-VLIW arhiteture. This arhiteture is based on the addition of one ormore vetor units together with a vetor register �ler and a wide port to the L2that provides the bandwidth required by the vetor regions. This enhanement hasa minimal impat on the VLIW ore and reahes more parallelism than wider issue
µSIMD at a lower ost.Vetor proessing has several inherent advantages, suh as the redution in the num-ber of exeuted operations, a lower pressure in the instrution feth unit, the sim-pliity of the ontrol unit, the advane knowledge of the memory aesses, the abilityto amortize funtional units and memory start-up latenies, and the easiness to besaled by just repliating the funtional units. The union of onventional vetor pro-essing with sub-word level vetor proessing an be seen as a 2-dimensional matrixextension that ombines the best of eah one.Given that similar proposals have been suessfully evaluated for supersalar ores,the main potential handiaps we ould think of are in the ompilation side. In ourproposal, the assignment of operations to eah funtional unit, the sheduling, andthe register alloation have to be performed at ompile-time. Dynami values, suhas the vetor length and the vetor stride, are potential issues for stati sheduling.Nevertheless, these values an be obtained most of the times at ompile-time bymeans of data-�ow analysis. In the few ases in whih they annot, the ompilerassume default values. The penalty to pay if the assumption fails is aeptable, as weare working with short vetor lengths. Nevertheless, the study under a realisti ahehierarhy has evidened some bottleneks related to strided memory aesses, mainlydue to the high sensitivity of VLIW arhitetures to non-deterministi latenies.We have reported performane gains in the vetor regions of up to 4.1X (1.9X onaverage) for a 4-issue width arhiteture with two vetor units of four lanes eah withrelative to a 8-issue width with eight µSIMD units. Both on�gurations performssimilarly at the the sope of omplete appliations (the average gain is redued to1.02X). Nevertheless, this is speially meaningful taking into aount that the Vetor-
µSIMD on�guration has half the feth bandwidth, the same omputational power,and a register �le that, even though being four times larger than the entralized
µSIMD one, it allows for 70% less aess time and 30% less power and area ost.Overall, the original performane of the non-disambiguated odes running in thereferene 8-issue width VLIW arhiteture has been improved in a fator of up to2.72X (1.64X on average) by using a 4-issue width Vetor-µSIMD proessor withtwo vetor units, and even up to 2.26X (1.33X on average) with a 2-issue widthVetor-µSIMD proessor with only one vetor unit.

7.2. Future Work 1057.2 Future WorkThis researh opens several �elds for further analysis. Next, we enumerate somefuture work to be done regarding both the ompiler and the arhiteture.Vetor-µSIMD autovetorizationCompiler support is a key issue to exploit the full potential of the proposed ar-hiteture. In this thesis, we have faed the problem of sheduling Vetor-µSIMDoperations, but we have used emulation libraries to handwrite Vetor-µSIMD ode.We think that any ompiler able to generate ode for a µSIMD ISA ould be en-haned to vetorize in a seond dimension and generate ode for a Vetor-µSIMDISA.The proposed memory disambiguation test ould be used to aid in those ases inwhih ambiguous memory dependenes prevent the ompiler from generating vetorode. The ompiler generates both, the salar and the vetor versions of ode, andthe proposed test evaluates at run-time whih version must be exeuted.Memory hierarhyMemory performane is ritial for overall performane. The main bottleneks ofthe memory hierarhy must be identi�ed in order to suggest possible improvements.In this thesis, we have observed a signi�ant performane degradation in front ofstrided memory aess. Work to be done inlude the searh of both, more �exiblesheduling algorithms on the ompilation side and alternative designs to the vetorahe on the hardware side.Low-end Vetor-µSIMD-VLIW proessorsThe ahieved results suggest that the proposed arhiteture exhibit a high potentialfor the embedded domain, as it provides high performane at lower ost and withoutompromising the yle time. It would be interesting to evaluate the potential ofVetor-µSIMD-VLIW embedded proessors. Given the growing interest on ost-e�etive designs, speial attention must be paid to energy and area e�ieny.Vetor-µSIMD-VLIW Chip-MultiproessorsThis work has also demonstrated that, one the high performane requirements ofthe vetor regions have been addressed, the low performane of the salar regionsdominate program yles, resulting into low resoure usage. Given the high amountof TLP that seems to haraterize urrent and future multimedia appliations, wethink that TLP must be exploited together with ILP and DLP to aomplish the real-time onstraints and high omputational throughput requirements of next generationof media workloads.

106 Chapter 7. ConlusionsCurrently, there is a growing trend towards exploiting TLP by means of Chip-Multiproessors (CMPs). CMPs have the potential to provide high salability thanksto better ahe oherene mehanisms. There exists some ommerial systems thatombines the VLIW and the Chip-Multiproessor (CMP) paradigms to provide highperformane for multimedia at low ost. We think that Vetor-µSIMD-VLIW CMPsare a good math to e�iently exploit the heterogeneous parallelism of multimediaworkload.Alternative appliation domainsFinally, although this work has been motivated by our interest in improving theperformane of multimedia appliations, the proposals behind this thesis are notrestrited to this area. On the ontrary, the ideas presented in this thesis an beextended to other DLP appliations. We are urrently analyzing the bioinformatidomain. It would be interesting to evaluate the potential of VLIW CMPs with vetorextensions to fae the omputational intensive algorithms of this kind of appliations.

Appendix ALoop Statistis
This appendix provides detailed information about the loops of the eight applia-tions used in this thesis. For eah appliation, we present �rst a table with thegeneral information of all innermost loops in the benhmark, and seond, a moredetailed desription of the most representative loops.Reported data were obtainedompiling the benhmarks with the original ompiler for the 8-issue width referenearhiteture, and simulating them with the referene inputs.The table of innermost loops is sorted by their ontribution to the overall exeutiontime of the appliation in desending order, and inludes the following information:

• Loop name: The name of the loop is omposed by the �rst twenty haratersof the funtion it belongs to and the identi�er of the header basi-blok of theloop. It has been trunated to ten haraters for limitation of the table width.
• Dyn Cy (%a): Dynami yle ount. The perentage in brakets indiatesthe aumulated perentage of the omplete appliation exution time.
• Dyn Ops (%a): Dynami operation ount. The perentage in brakets indi-ates the aumulated perentage of the omplete appliation operation ount.
• OPC: Operations per yle rate.
• Inv: Invoations. Number of times the loop is exeuted.
• Iter: Average number of iterations per invoation.
• Nest: Nesting level. The lowest level orresponds to the outer nested loop.
• Cat: Category. The loops have been lassi�ed into the following ategories:� While_Loop(W): not ounted loops� Do_Loop(D): do-loops whih are not modulo sheduling� Mod_Shed(M): do-loops whih are modulo sheduling.

108 Appendix A. Loop Statistis
• Ops: Stati operation ount.
• LDs: Number of stati load operations.
• STs: Number of stati store operations.More detailed information is given for those loops whih represent more than 1% ofthe overall exeution time. It inludes:
• General information: soure �le name, funtion name, header blok, loopbloks, nesting level, ategory, invoations, iterations per invoations, dynamioperation ount and perentage of the omplete appliation, dynami yleount and perentage of the omplete appliation, operation per yle rate,and stall yles due to memory and perentage of the dynami yle ount. Inthe name of the bloks, BB stands for basi-blok and HB for hyper-blok.
• Sheduling: In the ase of modulo sheduling loops, it shows:� ReMII: minimum initiation interval due to reurrenes.� ResMII: minimum initiation interval due to resoure limitation.� II: resulting initiation interval.� ESC: epilogue stage ounter.In the other loops, it shows for eah blok:� wsl: weighted sheduling length.� pesl: sheduling length of the most likely exit.� per: probability of the most likely exit.� wgt: weight (number of times the blok is exeuted).In both ases, the overall sheduling length of the loop is reported.
• Operations breakdown: dynami and stati operation ounts lassi�ed into eightategories: loads, stores, integer arithmeti and logi, �oating point arithmetiand logi, integer ompares, �oating point ompares, prepare-to-branh, andbranhes. The number in brakets indiates the perentage of eah type.
• Memory operations: A list of all memory operations with the following infor-mation:� Name of the operation: omposed by the pre�x L for loads and S forstores plus an identi�er.� Size: data size in bytes.� Stride: distane between elements of onseutive iterations.Moreover, for eah referene group, that is, uniformly generated referenes tothe same array (see hapter 5), we show:

109� nOps: number of memory operations in the group.� gSize: data width of the group in bytes.� gStr: stride between onseutive elements of the group.Spill ounts are also inluded for those loops in whih the ompiler has gener-ated spill ode.

110 Appendix A. Loop StatistisA.1 Jpeg_enInnermost loops list# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs1 _forward_D.9 26,790,400 (23%) 40,919,950 (20%) 1.53 17,920 64 L2 M 39 2 12 _rgb_y_.5 16,549,691 (37%) 43,891,427 (41%) 2.65 739 1,024 L1 M 58 12 33 _forward_D.6 3,980,553 (40%) 5,949,440 (44%) 1.49 91,450 8 L2 M 9 1 14 _jpeg_fdt.3 3,208,256 (43%) 13,780,480 (51%) 4.30 17,920 8 L1 M 96 8 85 _h2v2_down.4 3,038,515 (46%) 7,199,460 (55%) 2.37 740 512 L1 M 19 4 16 _jpeg_fdt.5 2,867,200 (48%) 14,067,200 (61%) 4.91 17,920 8 L1 M 98 8 87 _enode_on.23 413,292 (48%) 444,975 (62%) 1.08 57,312 1 L2 W 5 0 08 _enode_on.5 187,590 (48%) 214,870 (62%) 1.15 15,694 2 L1 W 5 0 09 _jpeg_add_.7 4,436 (48%) 4,116 (62%) 0.93 4 64 L1 M 19 2 110 _jpeg_make.10 3,723 (48%) 5,220 (62%) 1.40 69 7 L2 W 10 1 111 _jpeg_make.13 3,720 (48%) 8,880 (62%) 2.39 6 87 L1 M 17 4 212 _jpeg_make.6 2,679 (48%) 4,176 (62%) 1.56 69 7 L2 W 8 1 113 _rgb_y_s.3 2,313 (48%) 8,705 (62%) 3.76 1 256 L1 M 34 0 814 _start_pas.19 975 (48%) 1,731 (62%) 1.78 3 64 L2 M 9 1 115 _ompress_.53 576 (48%) 896 (62%) 1.56 32 2 L4 W 14 4 116 _jpeg_make.37 361 (48%) 235 (62%) 0.65 69 1 L2 W 7 0 017 _allo_sma.14 264 (48%) 227 (62%) 0.86 31 1 L1 W 12 2 018 _emit_dqt_.5 201 (48%) 1,170 (62%) 5.82 3 64 L1 M 7 1 019 _allo_sar.12 98 (48%) 225 (62%) 2.30 6 6 L2 M 5 0 120 _emit_dht_.9 72 (48%) 328 (62%) 4.56 4 16 L1 M 5 1 021 _jpeg_set_.7 51 (48%) 129 (62%) 2.53 1 16 L1 M 8 0 322 _per_san_.22 48 (48%) 75 (62%) 1.56 3 2 L1 W 14 1 223 _jpeg_supp.7 40 (48%) 47 (62%) 1.18 1 4 L1 M 13 2 224 _selet_s.9 22 (48%) 36 (62%) 1.64 1 3 L1 W 12 2 125 _jinit_huf.3 20 (48%) 41 (62%) 2.05 1 4 L1 M 10 0 426 _jpeg_supp.3 20 (48%) 30 (62%) 1.50 1 4 L1 M 8 1 127 _jinit__.10 11 (48%) 51 (62%) 4.64 1 10 L1 M 5 0 128 _write_fra.19 10 (48%) 33 (62%) 3.30 1 3 L1 M 11 2 029 _jinit_for.8 5 (48%) 25 (62%) 5.00 1 4 L1 M 6 0 230 _jpeg_Crea.9 5 (48%) 25 (62%) 5.00 1 4 L1 M 6 0 231 _jpeg_Crea.7 5 (48%) 17 (62%) 3.40 1 4 L1 M 4 0 132 _jinit_mem.9 3 (48%) 13 (62%) 4.33 1 2 L1 M 6 0 2Table A.1. Jpeg_en innermost loops listDesription of the most representative loopsLOOP_0 _forward_DCT_jdtmgr.9Program: jpeg_enFile: jdtmgr.Funtion: forward_DCT_jdtmgrHeader blok: HB_9Loop bloks: HB_9Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 17920Iterations: 1146880Iter/Invo: 64Operations: 40919950 (19.97%)Cyles: 26790400 (22.77%)Ops/Cy: 1.53Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESC

A.1. Jpeg_en 111HB_9 23 5 23 1Shed length: 1495Operation breakdownDynami ounts Stati ountsLoad: 2293760 (6%) 2 (5%)Store: 1146880 (3%) 1 (3%)iAlu: 32820110 (80%) 32 (82%)fAlu: 0 (0%) 0 (0%)Cmpp: 3494400 (9%) 3 (8%)Pbr: 0 (0%) 0 (0%)Branh: 1164800 (3%) 1 (3%)Total: 40919950 39Memory operations Size Stride Group nOps gSize gStrL_72 2 1L_76 2 1S_135 2 1LOOP_1 _rgb_y_onvert_jo.5Program: jpeg_enFile: jolor.Funtion: rgb_y_onvert_joHeader blok: BB_5Loop bloks: BB_5Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 739Iterations: 756736Iter/Invo: 1024Operations: 43891427 (21.42%)Cyles: 16549691 (14.07%)Ops/Cy: 2.65Stall yles: 1400191 (8.46%)Sheduling ReMII ResMII II ESCBB_5 19 8 20 1Shed length: 20500Operation breakdownDynami ounts Stati ountsLoad: 9080832 (21%) 12 (21%)Store: 2270208 (5%) 3 (5%)iAlu: 31782912 (72%) 42 (72%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 757475 (2%) 1 (2%)Total: 43891427 58Memory operations Size Stride Group nOps gSize gStrL_47 1 3 G_47 3 3 1L_49 1 3 "L_51 1 3 "L_56 4 -L_59 4 -L_63 4 -L_70 4 -L_73 4 -L_77 4 -L_84 4 -L_87 4 -L_91 4 -S_67 1 1S_81 1 1

112 Appendix A. Loop StatistisS_95 1 1LOOP_2 _forward_DCT_jdtmgr.6Program: jpeg_enFile: jdtmgr.Funtion: forward_DCT_jdtmgrHeader blok: BB_6Loop bloks: BB_6Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 91450Iterations: 731605Iter/Invo: 8Operations: 5949440 (2.90%)Cyles: 3980553 (3.38%)Ops/Cy: 1.49Stall yles: 38153 (0.96%)Sheduling ReMII ResMII II ESCBB_6 5 2 5 1Shed length: 45Operation breakdownDynami ounts Stati ountsLoad: 645120 (11%) 1 (11%)Store: 645120 (11%) 1 (11%)iAlu: 3870720 (65%) 6 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 788480 (13%) 1 (11%)Total: 5949440 9Memory operations Size Stride Group nOps gSize gStrL_46 1 1S_54 2 1LOOP_3 _jpeg_fdt_islow.3Program: jpeg_enFile: jfdtint.Funtion: jpeg_fdt_islowHeader blok: BB_3Loop bloks: BB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 17920Iterations: 143360Iter/Invo: 8Operations: 13780480 (6.73%)Cyles: 3208256 (2.73%)Ops/Cy: 4.30Stall yles: 627776 (19.57%)Sheduling ReMII ResMII II ESCBB_3 14 12 16 1Shed length: 144Operation breakdownDynami ounts Stati ountsLoad: 1146880 (8%) 8 (8%)Store: 1146880 (8%) 8 (8%)iAlu: 11325440 (82%) 79 (82%)

A.1. Jpeg_en 113fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 161280 (1%) 1 (1%)Total: 13780480 96Memory operations Size Stride Group nOps gSize gStrL_11 2 8 G_11 8 16 1L_12 2 8 "L_19 2 8 "L_20 2 8 "L_27 2 8 "L_28 2 8 "L_35 2 8 "L_36 2 8 "S_53 2 8 G_53 8 16 1S_56 2 8 "S_64 2 8 "S_69 2 8 "S_105 2 8 "S_110 2 8 "S_115 2 8 "S_120 2 8 "LOOP_4 _h2v2_downsample_jsa.4Program: jpeg_enFile: jsample.Funtion: h2v2_downsample_jsaHeader blok: BB_4Loop bloks: BB_4Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 740Iterations: 378880Iter/Invo: 512Operations: 7199460 (3.51%)Cyles: 3038515 (2.58%)Ops/Cy: 2.37Stall yles: 1555 (0.05%)Sheduling ReMII ResMII II ESCBB_4 8 3 8 1Shed length: 4104Operation breakdownDynami ounts Stati ountsLoad: 1515520 (21%) 4 (21%)Store: 378880 (5%) 1 (5%)iAlu: 4925440 (68%) 13 (68%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 379620 (5%) 1 (5%)Total: 7199460 19Memory operations Size Stride Group nOps gSize gStrL_40 1 2L_41 1 2L_43 1 2 G_43 2 2 1L_45 1 2 "S_54 1 1LOOP_5 _jpeg_fdt_islow.5

114 Appendix A. Loop StatistisProgram: jpeg_enFile: jfdtint.Funtion: jpeg_fdt_islowHeader blok: BB_5Loop bloks: BB_5Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 17920Iterations: 143360Iter/Invo: 8Operations: 14067200 (6.87%)Cyles: 2867200 (2.44%)Ops/Cy: 4.91Stall yles: 286720 (10.00%)Sheduling ReMII ResMII II ESCBB_5 14 13 16 1Shed length: 144Operation breakdownDynami ounts Stati ountsLoad: 1146880 (8%) 8 (8%)Store: 1146880 (8%) 8 (8%)iAlu: 11612160 (83%) 81 (83%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 161280 (1%) 1 (1%)Total: 14067200 98Memory operations Size Stride Group nOps gSize gStrL_129 2 1 G_129 8 114 8L_130 2 1 "L_137 2 1 "L_138 2 1 "L_145 2 1 "L_146 2 1 "L_153 2 1 "L_154 2 1 "S_172 2 1 G_172 8 114 8S_176 2 1 "S_184 2 1 "S_189 2 1 "S_225 2 1 "S_230 2 1 "S_235 2 1 "S_240 2 1 "

A.2. Jpeg_de 115A.2 Jpeg_deInnermost loops list# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs1 _jpeg_idt.8 36,858,048 (40%) 68,989,748 (40%) 1.87 17,920 8 L1 D 532 114 1072 _y_rgb_.5 15,618,672 (58%) 26,486,499 (56%) 1.70 739 1,024 L1 M 35 10 33 _jpeg_idt.3 15,433,064 (74%) 31,127,431 (74%) 2.02 17,920 8 L1 D 510 110 974 _h2v2_fan.8 7,660,055 (83%) 18,871,480 (85%) 2.46 1,480 510 L3 M 25 2 25 _deompres.13 132,352 (83%) 265,088 (85%) 2.00 12,016 1 L4 W 30 7 06 _jpeg_make.21 4,809 (83%) 12,215 (85%) 2.54 87 17 L2 M 8 1 27 _jpeg_make.10 3,723 (83%) 5,220 (85%) 1.40 69 7 L2 W 10 1 18 _build_y.4 3,084 (83%) 6,401 (85%) 2.08 1 256 L1 M 25 4 49 _jpeg_make.6 2,679 (83%) 4,176 (85%) 1.56 69 7 L2 W 8 1 110 _start_pas.25 1,560 (83%) 1,347 (85%) 0.86 3 64 L2 M 7 1 111 _jpeg_make.13 1,326 (83%) 1,893 (85%) 1.43 6 16 L1 M 22 4 412 _make_funn.9 1,082 (83%) 23 (85%) 0.02 3 1 L2 M 5 1 113 _prepare_r.5 385 (83%) 1,537 (85%) 3.99 1 384 L1 M 4 0 114 _jpeg_make.57 361 (83%) 235 (85%) 0.65 69 1 L2 W 7 0 015 _jpeg_make.42 312 (83%) 720 (85%) 2.31 6 8 L2 D 20 2 016 _allo_sma.14 264 (83%) 227 (85%) 0.86 43 1 L1 W 12 2 017 _prepare_r.3 257 (83%) 1,025 (85%) 3.99 1 256 L1 M 4 0 118 _make_funn.5 176 (83%) 323 (85%) 1.84 3 13 L3 M 8 1 219 _set_wrapa.18 108 (83%) 83 (85%) 0.77 3 1 L2 M 20 4 420 _allo_sar.12 98 (83%) 225 (85%) 2.30 5 8 L2 M 5 0 121 _set_wrapa.4 84 (83%) 156 (85%) 1.86 3 1 L2 W 57 14 422 _set_botto.10 74 (83%) 105 (85%) 1.42 3 1 L1 W 43 9 223 _jinit_mar.3 68 (83%) 129 (85%) 1.90 1 16 L1 M 8 1 124 _per_san_.22 48 (83%) 75 (85%) 1.56 3 2 L1 W 14 1 225 _make_funn.7 44 (83%) 99 (85%) 2.25 3 2 L2 M 12 2 226 _get_sos_j.46 36 (83%) 36 (85%) 1.00 3 2 L2 D 8 1 027 _set_botto.9 34 (83%) 51 (85%) 1.50 3 2 L1 M 6 1 128 _get_soi_j.5 17 (83%) 129 (85%) 7.59 1 16 L1 M 8 0 329 _jinit_d_.12 11 (83%) 51 (85%) 4.64 1 10 L1 M 5 0 130 _jinit_huf.3 10 (83%) 25 (85%) 2.50 1 4 L1 M 6 0 231 _jpeg_Crea.9 5 (83%) 25 (85%) 5.00 1 4 L1 M 6 0 232 _jpeg_Crea.7 5 (83%) 17 (85%) 3.40 1 4 L1 M 4 0 133 _jinit_mem.9 3 (83%) 13 (85%) 4.33 1 2 L1 M 6 0 2Table A.2. Jpeg_de innermost loops listDesription of the most representative loopsLOOP_0 _jpeg_idt_islow.8Program: jpeg_deFile: jidtint.Funtion: jpeg_idt_islowHeader blok: HB_8Loop bloks: HB_8 HB_17Nesting level: 1Innermost: yesCategory: DO_LOOPInvoations: 17920Iterations: 143360Iter/Invo: 8Operations: 68989748 (40.25%)Cyles: 36858048 (40.41%)Ops/Cy: 1.87Stall yles: 157874 (0.43%)Sheduling

116 Appendix A. Loop Statistiswsl pesl per wgtHB_8 254.87 270 0.78 143360HB_17 10.12 10 0.88 16071Shed length: 2048Operation breakdownDynami ounts Stati ountsLoad: 15092060 (22%) 114 (21%)Store: 13549800 (20%) 107 (20%)iAlu: 39615017 (57%) 304 (57%)fAlu: 0 (0%) 0 (0%)Cmpp: 143360 (0%) 1 (0%)Pbr: 302791 (0%) 3 (1%)Branh: 286720 (0%) 3 (1%)Total: 68989748 532Memory operations Size Stride Group nOps gSize gStrL_202 4 1L_225 1 -L_206 4 8 G_259 8 32 1L_207 4 8 "L_209 4 8 "L_211 4 8 "L_213 4 8 "L_215 4 8 "L_217 4 8 "L_220 4 8 "L_259 4 8 "L_333 1 -L_340 1 -L_347 1 -L_354 1 -L_361 1 -L_368 1 -L_375 1 -L_382 1 -S_228 1 - G_334 8 8 1S_230 1 - "S_232 1 - "S_234 1 - "S_236 1 - "S_238 1 - "S_240 1 - "S_242 1 - "S_334 1 - "S_341 1 - "S_348 1 - "S_355 1 - "S_362 1 - "S_369 1 - "S_376 1 - "S_383 1 - "Dynami ount Stati ountSpill: 25162322 (36%) 186 (35%)LOOP_1 _y_rgb_onvert_jdo.5Program: jpeg_deFile: jdolor.Funtion: y_rgb_onvert_jdoHeader blok: BB_5Loop bloks: BB_5Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 739

A.2. Jpeg_de 117Iterations: 756736Iter/Invo: 1024Operations: 26486499 (15.45%)Cyles: 15618672 (17.12%)Ops/Cy: 1.70Stall yles: 469172 (3.00%)Sheduling ReMII ResMII II ESCBB_5 20 5 20 1Shed length: 20500Operation breakdownDynami ounts Stati ountsLoad: 7567360 (29%) 10 (29%)Store: 2270208 (9%) 3 (9%)iAlu: 15891456 (60%) 21 (60%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 757475 (3%) 1 (3%)Total: 26486499 35Memory operations Size Stride Group nOps gSize gStrL_56 1 1L_59 1 1L_62 1 1L_65 4 -L_68 1 -L_71 4 -L_73 4 -L_78 1 -L_81 4 -L_84 1 -S_69 1 3 G_69 3 3 1S_79 1 3 "S_85 1 3 "LOOP_2 _jpeg_idt_islow.3Program: jpeg_deFile: jidtint.Funtion: jpeg_idt_islowHeader blok: HB_3Loop bloks: HB_3 HB_15Nesting level: 1Innermost: yesCategory: DO_LOOPInvoations: 17920Iterations: 143360Iter/Invo: 8Operations: 31127431 (18.16%)Cyles: 15433064 (16.92%)Ops/Cy: 2.02Stall yles: 756401 (4.90%)Sheduling wsl pesl per wgtHB_3 22.10 23 0.59 143360HB_15 244.12 244 0.88 47143Shed length: 819Operation breakdownDynami ounts Stati ountsLoad: 6628985 (21%) 110 (22%)Store: 5542765 (18%) 97 (19%)iAlu: 18191738 (58%) 296 (58%)fAlu: 0 (0%) 0 (0%)Cmpp: 143360 (0%) 1 (0%)

118 Appendix A. Loop StatistisPbr: 333863 (1%) 3 (1%)Branh: 286720 (1%) 3 (1%)Total: 31127431 510Memory operations Size Stride Group nOps gSize gStrL_24 2 1 G_38 8 114 8L_25 2 1 "L_27 2 1 "L_29 2 1 "L_31 2 1 "L_33 2 1 "L_35 2 1 "L_38 2 1 "L_75 2 1 "L_39 4 1 G_39 8 228 8L_59 4 1 "L_63 4 1 "L_76 4 1 "L_80 4 1 "L_98 4 1 "L_102 4 1 "L_106 4 1 "L_110 4 1 "S_43 4 1 G_43 8 228 8S_44 4 1 "S_45 4 1 "S_46 4 1 "S_47 4 1 "S_48 4 1 "S_49 4 1 "S_50 4 1 "S_159 4 1 "S_163 4 1 "S_167 4 1 "S_171 4 1 "S_175 4 1 "S_179 4 1 "S_183 4 1 "S_187 4 1 "Dynami ount Stati ountSpill: 9310343 (30%) 173 (34%)LOOP_3 _h2v2_fany_upsample_.8Program: jpeg_deFile: jdsample.Funtion: h2v2_fany_upsample_Header blok: BB_8Loop bloks: BB_8Nesting level: 3Innermost: yesCategory: MOD_SCHEDInvoations: 1480Iterations: 754800Iter/Invo: 510Operations: 18871480 (11.01%)Cyles: 7660055 (8.40%)Ops/Cy: 2.46Stall yles: 853535 (11.14%)Sheduling ReMII ResMII II ESCBB_8 9 4 9 1Shed length: 4599Operation breakdownDynami ounts Stati ounts

A.2. Jpeg_de 119Load: 1509600 (8%) 2 (8%)Store: 1509600 (8%) 2 (8%)iAlu: 15096000 (80%) 20 (80%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 756280 (4%) 1 (4%)Total: 18871480 25Memory operations Size Stride Group nOps gSize gStrL_95 1 1L_97 1 1S_109 1 2 G_109 2 2 1S_119 1 2 "

120 Appendix A. Loop StatistisA.3 Mpeg2_enInnermost loops list# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs1 _dist1_mot.9 237,589,058 (41%) 968,846,938 (58%) 4.08 6,232,293 16 L2 M 10 2 02 _dist1_mot.45 22,955,002 (45%) 103,208,256 (64%) 4.50 318,544 16 L2 M 21 5 03 _fdt.5 14,601,432 (48%) 27,844,608 (66%) 1.91 344,899 8 L2 M 11 2 04 _fdt.11 14,159,915 (50%) 26,695,680 (67%) 1.89 384,516 8 L2 M 9 2 05 _idt.8 12,000,482 (53%) 21,116,739 (68%) 1.76 8,448 4 L1 D 567 133 1056 _dist1_mot.24 9,118,042 (54%) 37,927,920 (71%) 4.16 164,904 16 L2 M 15 3 07 _iquant_no.5 7,236,353 (55%) 7,828,077 (71%) 1.08 4,494 64 L1 M 31 2 18 _dist1_mot.37 6,807,065 (57%) 37,524,960 (73%) 5.51 163,152 16 L2 M 15 3 09 _quant_non.3 6,402,057 (58%) 7,773,563 (74%) 1.21 4,494 64 L1 M 31 3 110 _quant_int.6 5,807,013 (59%) 6,359,104 (74%) 1.10 3,954 63 L1 M 29 3 111 _iquant_in.5 5,269,067 (60%) 5,758,632 (75%) 1.09 3,954 63 L1 M 25 2 112 _idt.3 4,506,548 (60%) 8,464,749 (75%) 1.88 8,448 3 L1 D 332 66 6313 _bdist1_mo.4 3,376,753 (61%) 13,111,296 (76%) 3.88 22,528 16 L2 M 37 9 014 _add_pred_.4 2,539,391 (61%) 4,325,376 (76%) 1.70 43,112 8 L2 M 14 4 115 _alSNR1_.4 2,509,345 (62%) 6,088,320 (76%) 2.43 1,920 264 L3 M 12 2 016 _dt_type_12 2,110,992 (62%) 3,435,520 (77%) 1.63 11,264 16 L4 M 19 5 217 _sub_pred_.4 1,311,950 (62%) 2,804,736 (77%) 2.14 43,112 8 L2 M 9 2 118 _variane_.4 1,210,878 (63%) 2,635,776 (77%) 2.18 22,528 16 L2 M 7 1 019 _pred_omp.49 1,098,653 (63%) 1,359,824 (77%) 1.24 11,376 11 L2 M 10 2 120 _bdist2_mo.4 867,816 (63%) 3,316,512 (77%) 3.82 5,776 16 L2 M 36 9 021 _var_sblk_.4 856,510 (63%) 3,289,088 (77%) 3.84 57,483 8 L2 M 7 1 022 _dt_type_.15 729,545 (63%) 3,066,624 (78%) 4.20 1,408 128 L3 M 17 2 023 _pred_omp.44 642,629 (63%) 789,712 (78%) 1.23 4,880 11 L1 M 14 3 124 _pred_omp.15 429,506 (63%) 478,704 (78%) 1.11 8,320 11 L2 M 5 1 125 _pred_omp.61 363,223 (64%) 633,712 (78%) 1.74 2,968 13 L1 M 16 4 126 _dist2_mot.34 307,986 (64%) 1,369,520 (78%) 4.45 4,240 16 L2 M 20 5 027 _pred_omp.10 273,000 (64%) 362,272 (78%) 1.33 3,464 11 L2 M 9 2 128 _pred_omp.56 260,018 (64%) 443,704 (78%) 1.71 1,536 13 L1 M 21 5 129 _dist2_mot.9 242,505 (64%) 789,096 (78%) 3.25 5,368 16 L2 M 9 2 030 _dist2_mot.19 236,476 (64%) 883,024 (78%) 3.73 3,840 16 L2 M 14 3 031 _learblo.7 181,458 (64%) 687,440 (78%) 3.79 10,544 16 L2 M 4 0 132 _fullsear.69 154,566 (64%) 128,805 (78%) 0.83 25,761 1 L2 W 8 0 033 _pred_omp.32 129,126 (64%) 186,288 (78%) 1.44 1,304 13 L2 M 10 2 134 _border_ex.8 105,097 (64%) 169,088 (78%) 1.61 128 264 L2 M 5 1 135 _pred_omp.48 68,064 (64%) 68,064 (78%) 1.00 11,376 1 L2 W 13 0 036 _putDC_put.17 50,932 (64%) 59,240 (78%) 1.16 3,528 3 L1 W 5 0 037 _dist2_mot.29 48,886 (64%) 239,992 (78%) 4.91 1,032 16 L2 M 14 3 038 _learblo.25 47,835 (64%) 174,504 (78%) 3.65 5,272 8 L2 M 4 0 139 _learblo.18 47,592 (64%) 174,504 (78%) 3.67 5,272 8 L2 M 4 0 140 _pred_omp.27 38,296 (64%) 50,456 (78%) 1.32 296 12 L2 M 14 3 141 _learblo.17 31,728 (64%) 15,864 (78%) 0.50 5,272 1 L2 W 7 0 042 _learblo.24 31,728 (64%) 15,864 (78%) 0.50 5,272 1 L2 W 7 0 043 _pred_omp.45 31,219 (64%) 52,145 (78%) 1.67 4,880 1 L1 W 11 0 044 _pred_omp.62 19,299 (64%) 34,737 (78%) 1.80 2,968 1 L1 W 12 0 045 _stats.12 12,672 (64%) 58,353 (78%) 4.60 1,408 6 L2 M 6 0 046 _putseq.84 12,076 (64%) 20,448 (78%) 1.69 1,408 1 L2 W 15 1 047 _pred_omp.57 10,060 (64%) 19,652 (78%) 1.95 1,536 1 L1 W 13 0 048 _putpit.190 5,939 (64%) 9,633 (78%) 1.62 657 1 L3 W 13 1 049 _init_idt.3 3,075 (64%) 10,755 (78%) 3.50 1 1,024 L1 M 12 1 150 _init_mpeg.26 3,075 (64%) 10,115 (78%) 3.29 1 1,024 L1 M 11 1 151 _putpit.193 2,984 (64%) 9,698 (78%) 3.25 748 3 L3 M 4 0 152 _readparmf.17 1,096 (64%) 67 (78%) 0.06 1 3 L1 M 22 5 553 _border_ex.7 768 (64%) 384 (78%) 0.50 128 1 L2 W 7 0 0Table A.3. Mpeg2_en innermost loops list

A.3. Mpeg2_en 121# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs54 _predit.3 384 (64%) 320 (78%) 0.83 64 1 L2 W 8 0 055 _al_atj.43 384 (64%) 192 (78%) 0.50 64 1 L2 W 6 0 056 _dt_type_.3 384 (64%) 192 (78%) 0.50 64 1 L2 W 6 0 057 _putpit.18 336 (64%) 980 (78%) 2.92 64 3 L3 M 4 0 158 _readquant.4 136 (64%) 321 (78%) 2.36 1 64 L1 M 5 1 159 _readquant.20 65 (64%) 257 (78%) 3.95 1 64 L1 M 4 0 1Table A.3. Mpeg2_en innermost loops (ont.)Desription of the most representative loopsLOOP_0 _dist1_motion_i_1920_.9Program: mpeg2_enFile: motion.Funtion: dist1_motion_i_1920_Header blok: HB_9Loop bloks: HB_9Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 6232293Iterations: 99716688Iter/Invo: 16Operations: 968846938 (57.76%)Cyles: 237589058 (41.41%)Ops/Cy: 4.08Stall yles: 13226582 (5.57%)Sheduling ReMII ResMII II ESCHB_9 1 2 2 2Shed length: 36Operation breakdownDynami ounts Stati ountsLoad: 199433312 (21%) 2 (20%)Store: 0 (0%) 0 (0%)iAlu: 545051150 (56%) 6 (60%)fAlu: 0 (0%) 0 (0%)Cmpp: 112181238 (12%) 1 (10%)Pbr: 0 (0%) 0 (0%)Branh: 112181238 (12%) 1 (10%)Total: 968846938 10Memory operations Size Stride Group nOps gSize gStrL_36 1 1L_38 1 1LOOP_1 _dist1_motion_i_1920_.45Program: mpeg2_enFile: motion.Funtion: dist1_motion_i_1920_Header blok: HB_45Loop bloks: HB_45Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 318544Iterations: 5096704

122 Appendix A. Loop StatistisIter/Invo: 16Operations: 103208256 (6.15%)Cyles: 22955002 (4.00%)Ops/Cy: 4.50Stall yles: 5753626 (25.06%)Sheduling ReMII ResMII II ESCHB_45 1 3 3 2Shed length: 54Operation breakdownDynami ounts Stati ountsLoad: 25483520 (25%) 5 (24%)Store: 0 (0%) 0 (0%)iAlu: 66257152 (64%) 14 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 5733792 (6%) 1 (5%)Pbr: 0 (0%) 0 (0%)Branh: 5733792 (6%) 1 (5%)Total: 103208256 21Memory operations Size Stride Group nOps gSize gStrL_155 1 1 G_155 2 2 1L_158 1 1 "L_161 1 1 G_161 2 2 1L_165 1 1 "L_170 1 1LOOP_2 _fdt.5Program: mpeg2_enFile: fdtref.Funtion: fdtHeader blok: BB_5Loop bloks: BB_5Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 344899Iterations: 2759196Iter/Invo: 8Operations: 27844608 (1.66%)Cyles: 14601432 (2.54%)Ops/Cy: 1.91Stall yles: 543960 (3.73%)Sheduling ReMII ResMII II ESCBB_5 4 2 4 2Shed length: 40Operation breakdownDynami ounts Stati ountsLoad: 4866048 (17%) 2 (18%)Store: 0 (0%) 0 (0%)iAlu: 14598144 (52%) 6 (55%)fAlu: 4866048 (17%) 2 (18%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 3514368 (13%) 1 (9%)Total: 27844608 11Memory operations Size Stride Group nOps gSize gStrL_18 8 1L_22 2 1LOOP_3 _fdt.11

A.3. Mpeg2_en 123Program: mpeg2_enFile: fdtref.Funtion: fdtHeader blok: BB_11Loop bloks: BB_11Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 384516Iterations: 3076128Iter/Invo: 8Operations: 26695680 (1.59%)Cyles: 14159915 (2.47%)Ops/Cy: 1.89Stall yles: 372779 (2.63%)Sheduling ReMII ResMII II ESCBB_11 4 2 4 1Shed length: 36Operation breakdownDynami ounts Stati ountsLoad: 5812224 (22%) 2 (22%)Store: 0 (0%) 0 (0%)iAlu: 14530560 (54%) 5 (56%)fAlu: 2906112 (11%) 1 (11%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 3446784 (13%) 1 (11%)Total: 26695680 9Memory operations Size Stride Group nOps gSize gStrL_51 8 1L_56 8 8LOOP_4 _idt.8Program: mpeg2_enFile: idt.Funtion: idtHeader blok: HB_8Loop bloks: HB_8Nesting level: 1Innermost: yesCategory: DO_LOOPInvoations: 8448Iterations: 39163Iter/Invo: 5Operations: 21116739 (1.26%)Cyles: 12000482 (2.09%)Ops/Cy: 1.76Stall yles: 250379 (2.09%)Sheduling wsl pesl per wgtHB_8 300.10 315 0.78 39163Shed length: 1391Operation breakdownDynami ounts Stati ountsLoad: 4911481 (23%) 133 (23%)Store: 3906285 (18%) 105 (19%)iAlu: 12107748 (57%) 324 (57%)fAlu: 0 (0%) 0 (0%)Cmpp: 39157 (0%) 1 (0%)Pbr: 78314 (0%) 2 (0%)Branh: 73754 (0%) 2 (0%)Total: 21116739 567

124 Appendix A. Loop StatistisMemory operations Size Stride Group nOps gSize gStrL_166 2 1 G_232 8 114 8L_170 2 1 "L_173 2 1 "L_176 2 1 "L_179 2 1 "L_182 2 1 "L_185 2 1 "L_232 2 1 "L_302 4 0L_306 2 -L_308 4 0L_312 2 -L_314 4 0L_318 2 -L_320 4 0L_324 2 -L_326 4 0L_330 2 -L_332 4 0L_336 2 -L_338 4 0L_342 2 -L_344 4 0L_348 2 -S_307 2 1 G_307 8 114 8S_313 2 1 "S_319 2 1 "S_325 2 1 "S_331 2 1 "S_337 2 1 "S_343 2 1 "S_349 2 1 "Dynami ount Stati ountSpill: 7671902 (36%) 206 (36%)LOOP_5 _dist1_motion_i_1920_.24Program: mpeg2_enFile: motion.Funtion: dist1_motion_i_1920_Header blok: HB_24Loop bloks: HB_24Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 164904Iterations: 2638464Iter/Invo: 16Operations: 37927920 (2.26%)Cyles: 9118042 (1.59%)Ops/Cy: 4.16Stall yles: 2851690 (31.28%)Sheduling ReMII ResMII II ESCHB_24 1 2 2 3Shed length: 38Operation breakdownDynami ounts Stati ountsLoad: 7915392 (21%) 3 (20%)Store: 0 (0%) 0 (0%)iAlu: 23746176 (63%) 10 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 3133176 (8%) 1 (7%)

A.3. Mpeg2_en 125Pbr: 0 (0%) 0 (0%)Branh: 3133176 (8%) 1 (7%)Total: 37927920 15Memory operations Size Stride Group nOps gSize gStrL_73 1 1 G_73 2 2 1L_76 1 1 "L_81 1 1LOOP_6 _iquant_non_intra.5Program: mpeg2_enFile: quantize.Funtion: iquant_non_intraHeader blok: HB_5Loop bloks: HB_5Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 4494Iterations: 287616Iter/Invo: 64Operations: 7828077 (0.47%)Cyles: 7236353 (1.26%)Ops/Cy: 1.08Stall yles: 244433 (3.38%)Sheduling ReMII ResMII II ESCHB_5 24 4 24 1Shed length: 1560Operation breakdownDynami ounts Stati ountsLoad: 573696 (7%) 2 (6%)Store: 286848 (4%) 1 (3%)iAlu: 5510883 (70%) 23 (74%)fAlu: 0 (0%) 0 (0%)Cmpp: 1165320 (15%) 4 (13%)Pbr: 0 (0%) 0 (0%)Branh: 291330 (4%) 1 (3%)Total: 7828077 31Memory operations Size Stride Group nOps gSize gStrL_24 2 1L_34 1 1S_48 2 1LOOP_7 _dist1_motion_i_1920_.37Program: mpeg2_enFile: motion.Funtion: dist1_motion_i_1920_Header blok: HB_37Loop bloks: HB_37Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 163152Iterations: 2610432Iter/Invo: 16Operations: 37524960 (2.24%)Cyles: 6807065 (1.19%)Ops/Cy: 5.51Stall yles: 607289 (8.92%)Sheduling

126 Appendix A. Loop StatistisReMII ResMII II ESCHB_37 1 2 2 3Shed length: 38Operation breakdownDynami ounts Stati ountsLoad: 7831296 (21%) 3 (20%)Store: 0 (0%) 0 (0%)iAlu: 23493888 (63%) 10 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 3099888 (8%) 1 (7%)Pbr: 0 (0%) 0 (0%)Branh: 3099888 (8%) 1 (7%)Total: 37524960 15Memory operations Size Stride Group nOps gSize gStrL_117 1 1L_119 1 1L_124 1 1LOOP_8 _quant_non_intra.3Program: mpeg2_enFile: quantize.Funtion: quant_non_intraHeader blok: HB_3Loop bloks: HB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 4494Iterations: 287616Iter/Invo: 64Operations: 7773563 (0.46%)Cyles: 6402057 (1.12%)Ops/Cy: 1.21Stall yles: 284127 (4.44%)Sheduling ReMII ResMII II ESCHB_3 21 4 21 1Shed length: 1365Operation breakdownDynami ounts Stati ountsLoad: 860544 (11%) 3 (10%)Store: 286848 (4%) 1 (3%)iAlu: 4586861 (59%) 20 (65%)fAlu: 0 (0%) 0 (0%)Cmpp: 1747980 (22%) 6 (19%)Pbr: 0 (0%) 0 (0%)Branh: 291330 (4%) 1 (3%)Total: 7773563 31Memory operations Size Stride Group nOps gSize gStrL_17 2 1L_20 1 1L_36 4 0S_48 2 1LOOP_9 _quant_intra.6Program: mpeg2_enFile: quantize.Funtion: quant_intraHeader blok: HB_6Loop bloks: HB_6

A.3. Mpeg2_en 127Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 3954Iterations: 249102Iter/Invo: 63Operations: 6359104 (0.38%)Cyles: 5807013 (1.01%)Ops/Cy: 1.10Stall yles: 222885 (3.84%)Sheduling ReMII ResMII II ESCHB_6 22 4 22 1Shed length: 1408Operation breakdownDynami ounts Stati ountsLoad: 749574 (12%) 3 (10%)Store: 249858 (4%) 1 (3%)iAlu: 3836728 (60%) 19 (66%)fAlu: 0 (0%) 0 (0%)Cmpp: 1269120 (20%) 5 (17%)Pbr: 0 (0%) 0 (0%)Branh: 253824 (4%) 1 (3%)Total: 6359104 29Memory operations Size Stride Group nOps gSize gStrL_35 2 1L_38 1 1L_59 4 0S_71 2 1

128 Appendix A. Loop StatistisA.4 Mpeg2_deInnermost loops list# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs1 _Fast_IDCT.8 7,054,772 (15%) 12,637,191 (15%) 1.79 7,920 3 L1 D 567 133 1052 _Fast_IDCT.3 2,759,648 (22%) 5,319,957 (21%) 1.93 7,920 2 L1 D 332 66 633 _Add_Blok.31 1,600,930 (25%) 2,539,680 (24%) 1.59 29,456 8 L2 M 12 4 14 _form_omp.58 995,785 (27%) 1,470,272 (25%) 1.48 12,352 11 L2 M 10 2 15 _form_omp.50 889,066 (29%) 1,133,312 (27%) 1.27 5,152 11 L1 W 29 3 26 _form_omp.10 785,524 (31%) 987,392 (28%) 1.26 5,872 12 L1 W 24 2 27 _Add_Blok.36 715,310 (32%) 945,120 (29%) 1.32 10,961 7 L2 M 12 3 18 _Clear_Blo.3 514,800 (34%) 2,035,440 (31%) 3.95 7,920 64 L1 M 4 0 19 _form_omp.18 388,284 (34%) 761,536 (32%) 1.96 12,736 11 L1 M 5 1 110 _form_omp.73 254,821 (35%) 522,736 (33%) 2.05 2,544 12 L2 M 16 4 111 _form_omp.38 235,644 (35%) 416,592 (33%) 1.77 3,152 13 L1 M 10 2 112 _form_omp.65 218,971 (36%) 368,640 (34%) 1.68 928 13 L2 W 38 7 213 _form_omp.30 214,640 (36%) 291,840 (34%) 1.36 1,200 12 L2 W 27 3 214 _form_omp.19 85,963 (37%) 124,924 (34%) 1.45 12,736 1 L1 W 10 0 015 _form_omp.9 37,804 (37%) 57,620 (34%) 1.52 5,872 1 L1 W 10 0 016 _form_omp.49 33,064 (37%) 55,672 (34%) 1.68 5,152 1 L1 W 11 0 017 _Flush_Buf.15 27,613 (37%) 24,588 (34%) 0.89 1,311 1 L1 M 17 5 218 _form_omp.37 20,456 (37%) 34,136 (34%) 1.67 3,152 1 L1 W 11 0 019 _Fill_Bu�.10 9,310 (37%) 10,270 (34%) 1.10 1 489 L1 M 21 4 420 _Initializ.3 3,609 (37%) 10,755 (34%) 2.98 1 1,024 L1 M 12 1 121 _Initializ.5 3,105 (37%) 10,115 (34%) 3.26 1 1,024 L1 M 11 1 122 _Update_Pi.3 710 (37%) 248 (34%) 0.35 4 3 L1 M 23 5 523 _sequene_.17 650 (37%) 1,089 (34%) 1.68 1 64 L1 M 17 4 224 _sequene_.7 260 (37%) 577 (34%) 2.22 1 64 L1 M 9 2 125 _sequene_.14 260 (37%) 449 (34%) 1.73 1 64 L1 M 7 1 126 _Fill_Bu�.8 15 (37%) 18 (34%) 1.20 1 2 L1 W 9 1 1Table A.4. Mpeg2_de innermost loops listDesription of the most representative loopsLOOP_0 _Add_Blok_getpi_i_1.31Program: mpeg2_deFile: getpi.Funtion: Add_Blok_getpi_i_1Header blok: BB_31Loop bloks: BB_31Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 29456Iterations: 235648Iter/Invo: 8Operations: 2539680 (2.93%)Cyles: 1600930 (3.51%)Ops/Cy: 1.59Stall yles: 77122 (4.82%)Sheduling ReMII ResMII II ESCBB_31 6 2 6 1Shed length: 54Operation breakdownDynami ounts Stati ountsLoad: 831168 (33%) 4 (33%)Store: 207792 (8%) 1 (8%)

A.4. Mpeg2_de 129iAlu: 1246752 (49%) 6 (50%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 253968 (10%) 1 (8%)Total: 2539680 12Memory operations Size Stride Group nOps gSize gStrL_175 4 0L_176 2 1L_177 1 1L_180 1 -S_181 1 1LOOP_1 _form_omponent_predi.58Program: mpeg2_deFile: reon.Funtion: form_omponent_prediHeader blok: BB_58Loop bloks: BB_58Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 12352Iterations: 145792Iter/Invo: 12Operations: 1470272 (1.70%)Cyles: 995785 (2.18%)Ops/Cy: 1.48Stall yles: 205065 (20.59%)Sheduling ReMII ResMII II ESCBB_58 5 2 5 1Shed length: 64Operation breakdownDynami ounts Stati ountsLoad: 291584 (20%) 2 (20%)Store: 145792 (10%) 1 (10%)iAlu: 874752 (60%) 6 (60%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 158144 (11%) 1 (10%)Total: 1470272 10Memory operations Size Stride Group nOps gSize gStrL_231 1 1L_234 1 1S_239 1 1LOOP_2 _form_omponent_predi.50Program: mpeg2_deFile: reon.Funtion: form_omponent_prediHeader blok: HB_50Loop bloks: HB_50 BB_52 HB_116Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvoations: 5152Iterations: 59648Iter/Invo: 12

130 Appendix A. Loop StatistisOperations: 1133312 (1.31%)Cyles: 889066 (1.95%)Ops/Cy: 1.27Stall yles: 108490 (12.20%)Sheduling wsl pesl per wgtHB_50 13.09 13 0.91 59648BB_52 1.00 1 1.00 0HB_116 9.00 9 1.00 0Shed length: 152Operation breakdownDynami ounts Stati ountsLoad: 178944 (16%) 3 (10%)Store: 59648 (5%) 2 (7%)iAlu: 536832 (47%) 13 (45%)fAlu: 0 (0%) 0 (0%)Cmpp: 119296 (11%) 3 (10%)Pbr: 119296 (11%) 4 (14%)Branh: 119296 (11%) 4 (14%)Total: 1133312 29Memory operations Size Stride Group nOps gSize gStrL_194 1 1L_196 1 1L_199 1 1S_212 1 1S_590 1 1LOOP_3 _form_omponent_predi.10Program: mpeg2_deFile: reon.Funtion: form_omponent_prediHeader blok: HB_10Loop bloks: HB_10 BB_12 HB_114Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvoations: 5872Iterations: 70528Iter/Invo: 12Operations: 987392 (1.14%)Cyles: 785524 (1.72%)Ops/Cy: 1.26Stall yles: 74372 (9.47%)Sheduling wsl pesl per wgtHB_10 10.08 10 0.92 70528BB_12 1.00 1 1.00 0HB_114 9.00 9 1.00 0Shed length: 121Operation breakdownDynami ounts Stati ountsLoad: 141056 (14%) 2 (8%)Store: 70528 (7%) 2 (8%)iAlu: 352640 (36%) 9 (38%)fAlu: 0 (0%) 0 (0%)Cmpp: 141056 (14%) 3 (12%)Pbr: 141056 (14%) 4 (17%)Branh: 141056 (14%) 4 (17%)Total: 987392 24Memory operations Size Stride Group nOps gSize gStrL_64 1 1

A.4. Mpeg2_de 131L_66 1 1S_76 1 1S_583 1 1LOOP_4 _Add_Blok_getpi_i_1.36Program: mpeg2_deFile: getpi.Funtion: Add_Blok_getpi_i_1Header blok: BB_36Loop bloks: BB_36Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 10961Iterations: 87694Iter/Invo: 8Operations: 945120 (1.09%)Cyles: 715310 (1.57%)Ops/Cy: 1.32Stall yles: 53726 (7.51%)Sheduling ReMII ResMII II ESCBB_36 7 2 7 1Shed length: 63Operation breakdownDynami ounts Stati ountsLoad: 231984 (25%) 3 (25%)Store: 77328 (8%) 1 (8%)iAlu: 541296 (57%) 7 (58%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 94512 (10%) 1 (8%)Total: 945120 12Memory operations Size Stride Group nOps gSize gStrL_201 4 0L_202 2 1L_205 1 -S_211 1 1LOOP_5 _Clear_Blok_getpi_i.3Program: mpeg2_deFile: getpi.Funtion: Clear_Blok_getpi_iHeader blok: BB_3Loop bloks: BB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 7920Iterations: 506880Iter/Invo: 64Operations: 2035440 (2.35%)Cyles: 514800 (1.13%)Ops/Cy: 3.95Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCBB_3 1 1 1 1Shed length: 65Operation breakdown

132 Appendix A. Loop StatistisDynami ounts Stati ountsLoad: 0 (0%) 0 (0%)Store: 506880 (25%) 1 (25%)iAlu: 1013760 (50%) 2 (50%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 514800 (25%) 1 (25%)Total: 2035440 4Memory operations Size Stride Group nOps gSize gStrS_16 2 1

A.5. Gsm_en 133A.5 Gsm_enInnermost loops list# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs1 _Short_ter.5 18,440,000 (20%) 51,484,480 (22%) 2.79 147,520 8 L2 MS 47 2 12 _Calulati.27 11,152,512 (32%) 88,104,845 (59%) 7.90 3,688 81 L1 MS 310 52 13 _Autoorre.42 10,438,884 (43%) 11,632,874 (64%) 1.11 922 152 L1 MS 83 18 94 _Weighting.3 4,259,728 (48%) 8,124,664 (68%) 1.91 3,688 40 L1 MS 57 9 15 _Long_term.8 2,721,744 (51%) 2,961,464 (69%) 1.09 3,688 40 L1 MS 22 2 26 _Gsm_Coder.5 1,360,872 (52%) 2,371,384 (70%) 1.74 3,688 40 L2 MS 18 2 17 _Re�etio.52 1,097,180 (54%) 1,219,806 (70%) 1.11 6,454 4 L2 MS 50 6 28 _gsm_div .11 868,952 (55%) 1,528,864 (71%) 1.76 7,364 15 L1 W 15 0 09 _Calulati.3 634,336 (55%) 2,638,037 (72%) 4.16 3,688 40 L1 MS 20 1 010 _Calulati.25 604,832 (56%) 1,478,888 (73%) 2.45 3,688 40 L1 MS 10 2 111 _Autoorre.3 598,495 (57%) 2,301,585 (74%) 3.85 922 160 L1 MS 18 1 012 _LARp_to_r.4 390,385 (57%) 634,917 (74%) 1.63 3,688 8 L1 D 66 1 413 _RPE_grid_.12 376,710 (57%) 800,296 (74%) 2.12 3,688 13 L1 W 17 1 314 _Calulati.42 324,544 (58%) 1,342,432 (75%) 4.14 3,688 40 L1 MS 9 1 015 _Autoorre.51 276,146 (58%) 434,473 (75%) 1.57 247 160 L1 W 11 1 116 _APCM_quan.3 236,032 (58%) 894,977 (75%) 3.79 3,688 13 L1 MS 20 1 017 _Autoorre.24 189,336 (59%) 282,436 (76%) 1.49 196 160 L1 MS 9 1 118 _Coe�ie.4 168,338 (59%) 211,138 (76%) 1.25 922 8 L1 MS 32 3 219 _Coe�ie.4 167,804 (59%) 211,138 (76%) 1.26 922 8 L1 MS 32 3 220 _RPE_grid_.9 154,896 (59%) 435,184 (76%) 2.81 3,688 13 L1 MS 9 1 121 _Coe�ie.4 84,824 (59%) 135,534 (76%) 1.60 922 8 L1 MS 20 2 122 _Autoorre.45 56,242 (59%) 98,654 (76%) 1.75 922 9 L1 W 12 1 123 _Autoorre.27 49,266 (59%) 73,491 (76%) 1.49 51 160 L1 MS 9 1 124 _Autoorre.38 39,646 (59%) 65,462 (76%) 1.65 922 9 L1 W 8 0 125 _Re�etio.18 36,880 (59%) 75,604 (76%) 2.05 922 9 L1 MS 9 1 126 _RPE_grid_.30 28,233 (59%) 34,255 (76%) 1.21 1,404 1 L1 W 13 0 127 _Re�etio.22 27,660 (59%) 67,306 (76%) 2.43 922 9 L1 MS 8 1 128 _Coe�ie.4 24,894 (59%) 52,554 (76%) 2.11 922 8 L1 MS 7 1 129 _APCM_quan.7 22,801 (60%) 30,745 (76%) 1.35 1,516 1 L1 W 13 0 030 _Re�etio.20 22,128 (60%) 52,554 (76%) 2.38 922 7 L1 MS 8 1 1Table A.5. Gsm_en innermost loops listDesription of the most representative loopsLOOP_0 _Short_term_analysis_.5Program: gsm_enFile: short_term.Funtion: Short_term_analysis_Header blok: HB_5Loop bloks: HB_5Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 147520Iterations: 1180160Iter/Invo: 8Operations: 51484480 (21.82%)Cyles: 18440000 (20.01%)Ops/Cy: 2.79Stall yles: 1180160 (6.40%)Sheduling ReMII ResMII II ESCHB_5 13 6 13 1Shed length: 117

134 Appendix A. Loop StatistisOperation breakdownDynami ounts Stati ountsLoad: 2360320 (5%) 2 (4%)Store: 1180160 (2%) 1 (2%)iAlu: 41305600 (80%) 39 (83%)fAlu: 0 (0%) 0 (0%)Cmpp: 5310720 (10%) 4 (9%)Pbr: 0 (0%) 0 (0%)Branh: 1327680 (3%) 1 (2%)Total: 51484480 47Memory operations Size Stride Group nOps gSize gStrL_27 2 1L_30 2 1S_35 2 1LOOP_1 _Calulation_of_the_L.27Program: gsm_enFile: long_term.Funtion: Calulation_of_the_LHeader blok: HB_27Loop bloks: HB_27Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 3688Iterations: 298728Iter/Invo: 81Operations: 88104845 (37.34%)Cyles: 11152512 (12.10%)Ops/Cy: 7.90Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCHB_27 2 36 36 3Shed length: 3024Operation breakdownDynami ounts Stati ountsLoad: 15533856 (17%) 52 (17%)Store: 15388 (0%) 1 (0%)iAlu: 75325620 (82%) 255 (82%)fAlu: 0 (0%) 0 (0%)Cmpp: 309792 (0%) 1 (0%)Pbr: 0 (0%) 0 (0%)Branh: 309792 (0%) 1 (0%)Total: 88104845 310Memory operations Size Stride Group nOps gSize gStrL_111 2 -1 G_111 40 80 1L_118 2 -1 "L_126 2 -1 "L_134 2 -1 "L_142 2 -1 "L_150 2 -1 "L_158 2 -1 "L_166 2 -1 "L_174 2 -1 "L_182 2 -1 "L_190 2 -1 "L_198 2 -1 "L_206 2 -1 "L_214 2 -1 "L_222 2 -1 "L_230 2 -1 "

A.5. Gsm_en 135L_238 2 -1 "L_246 2 -1 "L_254 2 -1 "L_262 2 -1 "L_270 2 -1 "L_278 2 -1 "L_286 2 -1 "L_294 2 -1 "L_302 2 -1 "L_310 2 -1 "L_318 2 -1 "L_326 2 -1 "L_334 2 -1 "L_342 2 -1 "L_350 2 -1 "L_358 2 -1 "L_366 2 -1 "L_374 2 -1 "L_382 2 -1 "L_390 2 -1 "L_398 2 -1 "L_406 2 -1 "L_414 2 -1 "L_422 2 -1 "Dynami ount Stati ountSpill: 3600124 (4%) 13 (4%)LOOP_2 _Autoorrelation_lp_.42Program: gsm_enFile: lp.Funtion: Autoorrelation_lp_Header blok: BB_42Loop bloks: BB_42Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 922Iterations: 140144Iter/Invo: 152Operations: 11632874 (4.93%)Cyles: 10438884 (11.33%)Ops/Cy: 1.11Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCBB_42 74 11 74 1Shed length: 11322Operation breakdownDynami ounts Stati ountsLoad: 2522592 (22%) 18 (22%)Store: 1261296 (11%) 9 (11%)iAlu: 7707920 (66%) 55 (66%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 141066 (1%) 1 (1%)Total: 11632874 83Memory operations Size Stride Group nOps gSize gStrL_442 4 0 G_442 9 36 1L_449 4 0 "L_456 4 0 "L_463 4 0 "L_470 4 0 "

136 Appendix A. Loop StatistisL_477 4 0 "L_484 4 0 "L_491 4 0 "L_498 4 0 "L_440 2 1 G_501 9 18 1L_452 2 1 "L_459 2 1 "L_466 2 1 "L_473 2 1 "L_480 2 1 "L_487 2 1 "L_494 2 1 "L_501 2 1 "S_448 4 0 G_448 9 36 1S_455 4 0 "S_462 4 0 "S_469 4 0 "S_476 4 0 "S_483 4 0 "S_490 4 0 "S_497 4 0 "S_504 4 0 "LOOP_3 _Weighting_�lter_rpe.3Program: gsm_enFile: rpe.Funtion: Weighting_�lter_rpeHeader blok: HB_3Loop bloks: HB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 3688Iterations: 147520Iter/Invo: 40Operations: 8124664 (3.44%)Cyles: 4259728 (4.62%)Ops/Cy: 1.91Stall yles: 781944 (18.36%)Sheduling ReMII ResMII II ESCHB_3 22 8 23 1Shed length: 943Operation breakdownDynami ounts Stati ountsLoad: 1327680 (16%) 9 (16%)Store: 147520 (2%) 1 (2%)iAlu: 6195840 (76%) 44 (77%)fAlu: 0 (0%) 0 (0%)Cmpp: 302416 (4%) 2 (4%)Pbr: 0 (0%) 0 (0%)Branh: 151208 (2%) 1 (2%)Total: 8124664 57Memory operations Size Stride Group nOps gSize gStrL_14 2 1L_20 2 1L_26 2 1L_32 2 1L_38 2 1L_44 2 1L_50 2 1L_56 2 1L_62 2 1

A.5. Gsm_en 137S_77 2 1LOOP_4 _Long_term_analysis_f.8Program: gsm_enFile: long_term.Funtion: Long_term_analysis_fHeader blok: HB_8Loop bloks: HB_8Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 3688Iterations: 147520Iter/Invo: 40Operations: 2961464 (1.26%)Cyles: 2721744 (2.95%)Ops/Cy: 1.09Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCHB_8 18 3 18 1Shed length: 738Operation breakdownDynami ounts Stati ountsLoad: 295040 (10%) 2 (9%)Store: 295040 (10%) 2 (9%)iAlu: 1917760 (65%) 15 (68%)fAlu: 0 (0%) 0 (0%)Cmpp: 302416 (10%) 2 (9%)Pbr: 0 (0%) 0 (0%)Branh: 151208 (5%) 1 (5%)Total: 2961464 22Memory operations Size Stride Group nOps gSize gStrL_36 2 1L_43 2 1S_41 2 1S_58 2 1LOOP_5 _Gsm_Coder.5Program: gsm_enFile: ode.Funtion: Gsm_CoderHeader blok: HB_5Loop bloks: HB_5Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 3688Iterations: 147520Iter/Invo: 40Operations: 2371384 (1.01%)Cyles: 1360872 (1.48%)Ops/Cy: 1.74Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCHB_5 9 3 9 1Shed length: 369Operation breakdownDynami ounts Stati ountsLoad: 295040 (12%) 2 (11%)

138 Appendix A. Loop StatistisStore: 147520 (6%) 1 (6%)iAlu: 1475200 (62%) 12 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 302416 (13%) 2 (11%)Pbr: 0 (0%) 0 (0%)Branh: 151208 (6%) 1 (6%)Total: 2371384 18Memory operations Size Stride Group nOps gSize gStrL_80 2 1L_82 2 1S_96 2 1LOOP_6 _Re�etion_oe�ie.52Program: gsm_enFile: lp.Funtion: Re�etion_oe�ieHeader blok: HB_52Loop bloks: HB_52Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 6454Iterations: 25816Iter/Invo: 4Operations: 1219806 (0.52%)Cyles: 1097180 (1.19%)Ops/Cy: 1.11Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCHB_52 34 7 34 1Shed length: 170Operation breakdownDynami ounts Stati ountsLoad: 154896 (13%) 6 (12%)Store: 51632 (4%) 2 (4%)iAlu: 851928 (70%) 37 (74%)fAlu: 0 (0%) 0 (0%)Cmpp: 129080 (11%) 4 (8%)Pbr: 0 (0%) 0 (0%)Branh: 32270 (3%) 1 (2%)Total: 1219806 50Memory operations Size Stride Group nOps gSize gStrL_194 2 1L_195 2 0L_203 2 1L_224 2 1L_225 2 0L_232 2 1S_220 2 1S_249 2 1

A.6. Gsm_de 139A.6 Gsm_deInnermost loops list# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs1 _Short_ter.6 70,375,431 (82%) 102,670,232 (82%) 1.46 3,688 320 L1 W 131 19 132 _Postproe.4 4,276,812 (87%) 4,867,238 (85%) 1.14 922 160 L1 W 37 1 13 _Gsm_Long_.16 2,602,389 (90%) 3,108,984 (88%) 1.19 3,688 40 L1 M 23 2 14 _Gsm_Long_.24 1,339,309 (91%) 3,101,608 (90%) 2.32 3,688 120 L1 M 7 1 15 _Gsm_Deod.5 453,705 (92%) 1,036,328 (91%) 2.28 3,688 40 L2 M 7 1 16 _LARp_to_r.4 390,385 (92%) 634,917 (92%) 1.63 3,688 8 L1 D 66 1 47 _RPE_grid_.12 376,710 (93%) 800,296 (92%) 2.12 3,688 13 L1 W 17 1 38 _Coe�ie.4 168,338 (93%) 211,138 (92%) 1.25 922 8 L1 M 32 3 29 _Coe�ie.4 167,804 (93%) 211,138 (93%) 1.26 922 8 L1 M 32 3 210 _Coe�ie.4 84,824 (93%) 135,534 (93%) 1.60 922 8 L1 M 20 2 111 _RPE_grid_.30 28,233 (93%) 34,255 (93%) 1.21 1,404 1 L1 W 13 0 112 _Coe�ie.4 24,894 (93%) 52,554 (93%) 2.11 922 8 L1 M 7 1 113 _APCM_quan.7 22,801 (93%) 30,745 (93%) 1.35 1,516 1 L1 W 13 0 0Table A.6. Gsm_de innermost loops listDesription of the most representative loopsLOOP_0 _Short_term_synthesis.6Program: gsm_deFile: short_term.Funtion: Short_term_synthesisHeader blok: HB_6Loop bloks: HB_6 HB_31Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvoations: 3688Iterations: 1180160Iter/Invo: 320Operations: 102670232 (81.53%)Cyles: 70375431 (81.84%)Ops/Cy: 1.46Stall yles: 753367 (1.07%)Sheduling wsl pesl per wgtHB_6 56.75 57 0.88 1180160HB_31 17.95 18 0.97 147520Shed length: 18878Operation breakdownDynami ounts Stati ountsLoad: 13129280 (13%) 19 (14%)Store: 10178880 (10%) 13 (10%)iAlu: 64613760 (63%) 82 (63%)fAlu: 0 (0%) 0 (0%)Cmpp: 9588800 (9%) 9 (7%)Pbr: 2655360 (3%) 4 (3%)Branh: 2504152 (2%) 4 (3%)Total: 102670232 131Memory operations Size Stride Group nOps gSize gStrL_31 2 -L_34 2 -L_190 2 1S_114 2 -

140 Appendix A. Loop StatistisS_122 2 0S_129 2 1Dynami ount Stati ountSpill: 19325120 (19%) 26 (20%)LOOP_1 _Postproessing_deod.4Program: gsm_deFile: deode.Funtion: Postproessing_deodHeader blok: HB_4Loop bloks: HB_4Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvoations: 922Iterations: 147520Iter/Invo: 160Operations: 4867238 (3.86%)Cyles: 4276812 (4.97%)Ops/Cy: 1.14Stall yles: 576 (0.01%)Sheduling wsl pesl per wgtHB_4 28.99 29 0.99 147520Shed length: 4638Operation breakdownDynami ounts Stati ountsLoad: 147520 (3%) 1 (3%)Store: 147520 (3%) 1 (3%)iAlu: 3245440 (67%) 26 (70%)fAlu: 0 (0%) 0 (0%)Cmpp: 737600 (15%) 5 (14%)Pbr: 295040 (6%) 2 (5%)Branh: 294118 (6%) 2 (5%)Total: 4867238 37Memory operations Size Stride Group nOps gSize gStrL_21 2 1S_54 2 1LOOP_2 _Gsm_Long_Term_Synthe.16Program: gsm_deFile: long_term.Funtion: Gsm_Long_Term_SyntheHeader blok: HB_16Loop bloks: HB_16Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 3688Iterations: 147520Iter/Invo: 40Operations: 3108984 (2.47%)Cyles: 2602389 (3.03%)Ops/Cy: 1.19Stall yles: 31853 (1.22%)Sheduling ReMII ResMII II ESCHB_16 17 3 17 1Shed length: 697Operation breakdownDynami ounts Stati ounts

A.6. Gsm_de 141Load: 295040 (9%) 2 (9%)Store: 147520 (5%) 1 (4%)iAlu: 2212800 (71%) 17 (74%)fAlu: 0 (0%) 0 (0%)Cmpp: 302416 (10%) 2 (9%)Pbr: 0 (0%) 0 (0%)Branh: 151208 (5%) 1 (4%)Total: 3108984 23Memory operations Size Stride Group nOps gSize gStrL_73 2 1L_79 2 1S_95 2 1LOOP_3 _Gsm_Long_Term_Synthe.24Program: gsm_deFile: long_term.Funtion: Gsm_Long_Term_SyntheHeader blok: BB_24Loop bloks: BB_24Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 3688Iterations: 442560Iter/Invo: 120Operations: 3101608 (2.46%)Cyles: 1339309 (1.56%)Ops/Cy: 2.32Stall yles: 565 (0.04%)Sheduling ReMII ResMII II ESCBB_24 3 1 3 1Shed length: 363Operation breakdownDynami ounts Stati ountsLoad: 442560 (14%) 1 (14%)Store: 442560 (14%) 1 (14%)iAlu: 1770240 (57%) 4 (57%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 446248 (14%) 1 (14%)Total: 3101608 7Memory operations Size Stride Group nOps gSize gStrL_103 2 1S_106 2 1

142 Appendix A. Loop StatistisA.7 Epi_enInnermost loops list# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs1 _internal_.75 24,301,056 (33%) 29,508,864 (39%) 1.21 1,243,968 1 L4 M 11 2 02 _internal_.73 7,463,808 (43%) 3,731,904 (44%) 0.50 1,243,968 1 L4 W 7 0 03 _quantize_.11 1,617,596 (45%) 1,145,883 (46%) 0.71 13 5,041 L1 M 19 3 14 _main.5 1,048,577 (46%) 1,245,184 (47%) 1.19 1 65,536 L1 W 19 5 15 _internal_.71 937,344 (48%) 1,093,568 (49%) 1.17 156,224 1 L3 W 15 0 16 _internal_.127 920,832 (49%) 849,408 (50%) 0.92 56,096 1 L4 M 11 2 07 _internal_.26 920,832 (50%) 849,408 (51%) 0.92 56,096 1 L3 M 11 2 08 _enode_st.7 547,930 (51%) 951,819 (52%) 1.74 13,998 3 L2 W 22 3 29 _internal_.58 471,552 (51%) 809,088 (53%) 1.72 16,256 4 L4 M 11 2 010 _internal_.93 471,552 (52%) 809,088 (54%) 1.72 16,256 4 L4 M 11 2 011 _run_lengt.5 438,094 (53%) 398,944 (55%) 0.91 3,072 18 L2 W 7 1 012 _quantize_.3 408,868 (53%) 557,019 (56%) 1.36 13 5,041 L1 M 10 1 013 _internal_.16 342,722 (54%) 412,808 (56%) 1.20 7,201 3 L2 W 21 2 214 _internal_.125 336,576 (54%) 168,288 (57%) 0.50 56,096 1 L4 W 7 0 015 _internal_.24 336,576 (55%) 168,288 (57%) 0.50 56,096 1 L3 W 7 0 016 _re�et1.108 181,602 (55%) 514,656 (57%) 2.83 6,696 1 L2 M 41 2 117 _hu�man_e.3 129,321 (55%) 262,145 (58%) 2.03 1 65,536 L1 M 4 0 118 _internal_.4 129,168 (55%) 53,820 (58%) 0.42 7,201 1 L2 W 5 0 019 _internal_.56 97,536 (55%) 48,768 (58%) 0.50 16,256 1 L4 W 7 0 020 _internal_.91 97,536 (55%) 48,768 (58%) 0.50 16,256 1 L4 W 7 0 021 _re�et1.36 40,176 (56%) 26,784 (58%) 0.67 6,696 1 L2 W 7 0 022 _internal_.54 27,648 (56%) 32,256 (58%) 1.17 4,608 1 L3 W 15 0 123 _internal_.89 27,648 (56%) 18,432 (58%) 0.67 4,608 1 L3 W 12 0 124 _internal_.123 24,768 (56%) 16,512 (58%) 0.67 4,128 1 L3 W 12 0 125 _internal_.22 24,768 (56%) 16,512 (58%) 0.67 4,128 1 L2 W 14 1 126 _internal_.11 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 027 _internal_.112 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 028 _internal_.142 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 029 _internal_.41 17,664 (56%) 18,816 (58%) 1.07 992 1 L2 M 11 2 030 _internal_.69 15,984 (56%) 17,760 (58%) 1.11 1,776 1 L2 W 20 4 031 _insert_in.13 15,605 (56%) 16,320 (58%) 1.05 106 14 L1 W 11 3 032 _re�et1.21 10,368 (56%) 49,248 (58%) 4.75 648 15 L1 M 5 0 133 _internal_.110 5,952 (56%) 2,976 (58%) 0.50 992 1 L3 W 7 0 034 _internal_.140 5,952 (56%) 2,976 (58%) 0.50 992 1 L3 W 7 0 035 _internal_.39 5,952 (56%) 2,976 (58%) 0.50 992 1 L2 W 7 0 036 _internal_.9 5,952 (56%) 2,976 (58%) 0.50 992 1 L3 W 7 0 037 _pak_tree.4 1,035 (56%) 1,449 (58%) 1.40 69 2 L1 M 10 2 238 _parse_epi.90 117 (56%) 85 (58%) 0.73 1 4 L1 W 22 3 1Table A.7. Epi_en innermost loops listDesription of the most representative loopsLOOP_0 _internal_�lter.75Program: epi_enFile: onvolve.Funtion: internal_�lterHeader blok: HB_75Loop bloks: HB_75Nesting level: 4Innermost: yesCategory: MOD_SCHEDInvoations: 1243968Iterations: 2343360

A.7. Epi_en 143Iter/Invo: 2Operations: 29508864 (39.22%)Cyles: 24301056 (32.72%)Ops/Cy: 1.21Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCHB_75 4 2 4 3Shed length: 20Operation breakdownDynami ounts Stati ountsLoad: 4686720 (16%) 2 (18%)Store: 0 (0%) 0 (0%)iAlu: 11716800 (40%) 5 (45%)fAlu: 7030080 (24%) 3 (27%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 6075264 (21%) 1 (9%)Total: 29508864 11Memory operations Size Stride Group nOps gSize gStrL_322 4 1L_324 4 1LOOP_1 _internal_�lter.73Program: epi_enFile: onvolve.Funtion: internal_�lterHeader blok: HB_73Loop bloks: HB_73Nesting level: 4Innermost: yesCategory: WHILE_LOOPInvoations: 1243968Iterations: 1243968Iter/Invo: 1Operations: 3731904 (4.96%)Cyles: 7463808 (10.05%)Ops/Cy: 0.50Stall yles: 0 (0.00%)Sheduling wsl pesl per wgtHB_73 6.00 6 1.00 1243968Shed length: 6Operation breakdownDynami ounts Stati ountsLoad: 0 (0%) 0 (0%)Store: 0 (0%) 0 (0%)iAlu: 1243968 (33%) 3 (43%)fAlu: 0 (0%) 0 (0%)Cmpp: 2487936 (67%) 2 (29%)Pbr: 0 (0%) 1 (14%)Branh: 0 (0%) 1 (14%)Total: 3731904 7Memory operations Size Stride Group nOps gSize gStrLOOP_2 _quantize_image.11Program: epi_enFile: quantize.Funtion: quantize_imageHeader blok: HB_11

144 Appendix A. Loop StatistisLoop bloks: HB_11Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 13Iterations: 65536Iter/Invo: 5041Operations: 1145883 (1.52%)Cyles: 1617596 (2.18%)Ops/Cy: 0.71Stall yles: 44420 (2.75%)Sheduling ReMII ResMII II ESCHB_11 24 3 24 1Shed length: 121014Operation breakdownDynami ounts Stati ountsLoad: 163499 (14%) 3 (16%)Store: 65536 (6%) 1 (5%)iAlu: 491179 (43%) 8 (42%)fAlu: 294571 (26%) 5 (26%)Cmpp: 65549 (6%) 1 (5%)Pbr: 0 (0%) 0 (0%)Branh: 65549 (6%) 1 (5%)Total: 1145883 19Memory operations Size Stride Group nOps gSize gStrL_56 4 1L_133 8 0L_135 8 0S_71 2 1LOOP_3 _main.5Program: epi_enFile: epi.Funtion: mainHeader blok: HB_5Loop bloks: HB_5Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvoations: 1Iterations: 65536Iter/Invo: 65536Operations: 1245184 (1.66%)Cyles: 1048577 (1.41%)Ops/Cy: 1.19Stall yles: 0 (0.00%)Sheduling wsl pesl per wgtHB_5 16.00 16 1.00 65536Shed length:1048577Operation breakdownDynami ounts Stati ountsLoad: 327680 (26%) 5 (26%)Store: 65536 (5%) 1 (5%)iAlu: 589824 (47%) 9 (47%)fAlu: 65536 (5%) 1 (5%)Cmpp: 65536 (5%) 1 (5%)Pbr: 65536 (5%) 1 (5%)Branh: 65536 (5%) 1 (5%)Total: 1245184 19Memory operations

A.7. Epi_en 145Size Stride Group nOps gSize gStrL_88 4 0L_90 4 -L_99 4 0L_100 4 0L_686 4 0S_96 4 -LOOP_4 _internal_�lter.71Program: epi_enFile: onvolve.Funtion: internal_�lterHeader blok: HB_71Loop bloks: HB_71Nesting level: 3Innermost: yesCategory: WHILE_LOOPInvoations: 156224Iterations: 156224Iter/Invo: 1Operations: 1093568 (1.45%)Cyles: 937344 (1.26%)Ops/Cy: 1.17Stall yles: 0 (0.00%)Sheduling wsl pesl per wgtHB_71 6.00 6 1.00 156224Shed length: 6Operation breakdownDynami ounts Stati ountsLoad: 0 (0%) 0 (0%)Store: 0 (0%) 1 (7%)iAlu: 624896 (57%) 9 (60%)fAlu: 156224 (14%) 1 (7%)Cmpp: 312448 (29%) 2 (13%)Pbr: 0 (0%) 1 (7%)Branh: 0 (0%) 1 (7%)Total: 1093568 15Memory operations Size Stride Group nOps gSize gStrS_343 4 1LOOP_5 _internal_�lter.127Program: epi_enFile: onvolve.Funtion: internal_�lterHeader blok: HB_127Loop bloks: HB_127Nesting level: 4Innermost: yesCategory: MOD_SCHEDInvoations: 56096Iterations: 61920Iter/Invo: 1Operations: 849408 (1.13%)Cyles: 920832 (1.24%)Ops/Cy: 0.92Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCHB_127 4 2 4 3Shed length: 16

146 Appendix A. Loop StatistisOperation breakdownDynami ounts Stati ountsLoad: 123840 (15%) 2 (18%)Store: 0 (0%) 0 (0%)iAlu: 309600 (36%) 5 (45%)fAlu: 185760 (22%) 3 (27%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 230208 (27%) 1 (9%)Total: 849408 11Memory operations Size Stride Group nOps gSize gStrL_495 4 1L_497 4 1LOOP_6 _internal_�lter.26Program: epi_enFile: onvolve.Funtion: internal_�lterHeader blok: HB_26Loop bloks: HB_26Nesting level: 3Innermost: yesCategory: MOD_SCHEDInvoations: 56096Iterations: 61920Iter/Invo: 1Operations: 849408 (1.13%)Cyles: 920832 (1.24%)Ops/Cy: 0.92Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCHB_26 4 2 4 3Shed length: 16Operation breakdownDynami ounts Stati ountsLoad: 123840 (15%) 2 (18%)Store: 0 (0%) 0 (0%)iAlu: 309600 (36%) 5 (45%)fAlu: 185760 (22%) 3 (27%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 230208 (27%) 1 (9%)Total: 849408 11Memory operations Size Stride Group nOps gSize gStrL_151 4 1L_153 4 1

A.8. Epi_de 147A.8 Epi_deInnermost loops list# Loop name Dyn Cy (%a) Dyn Ops (%a) OPC Inv Iter Nest Cat Ops LDs STs1 _unquantiz.3 1,289,469 (18%) 1,114,151 (13%) 0.86 13 5,041 L1 M 21 1 32 _main.18 1,179,666 (34%) 1,114,015 (25%) 0.94 1 65,536 L1 M 19 4 33 _ollapse_.9 626,525 (43%) 1,149,793 (38%) 1.84 236 90 L3 M 54 10 94 _ollapse_.56 412,965 (49%) 855,097 (47%) 2.07 3,254 1 L6 W 214 50 405 _ollapse_.147 364,726 (54%) 577,318 (54%) 1.58 235 90 L3 W 212 48 386 _internal_.16 345,804 (59%) 412,808 (59%) 1.19 7,201 3 L2 W 21 2 27 _ollapse_.102 224,085 (62%) 463,910 (64%) 2.07 1,949 1 L4 W 214 50 408 _internal_.4 191,592 (65%) 53,820 (64%) 0.28 7,201 1 L2 W 5 0 09 _write_pgm.3 131,074 (67%) 458,753 (70%) 3.50 1 65,536 L1 M 7 1 110 _ollapse_.4 87,628 (68%) 348,164 (73%) 3.97 4 21,760 L2 M 4 0 111 _run_lengt.6 62,704 (69%) 290,676 (77%) 4.64 5,711 9 L2 M 5 0 112 _ollapse_.191 43,014 (69%) 129,027 (78%) 3.00 3 7,168 L2 M 6 1 113 _ollapse_.263 17,001 (69%) 35,872 (79%) 2.11 236 1 L3 W 165 29 2614 _ollapse_.268 14,632 (70%) 32,096 (79%) 2.19 236 1 L3 W 151 22 2615 _ollapse_.273 14,632 (70%) 32,096 (79%) 2.19 236 1 L3 W 151 22 2616 _ollapse_.278 14,632 (70%) 32,096 (80%) 2.19 236 1 L3 W 151 22 2617 _ollapse_.19 4,849 (70%) 8,976 (80%) 1.85 4 59 L2 M 38 7 618 _ollapse_.72 4,800 (70%) 7,374 (80%) 1.54 4 59 L2 M 38 7 619 _ollapse_.125 4,800 (70%) 7,246 (80%) 1.51 4 59 L2 M 38 7 620 _ollapse_.178 4,800 (70%) 7,230 (80%) 1.51 4 59 L2 M 38 7 621 _ollapse_.171 4,800 (70%) 7,146 (80%) 1.49 4 59 L2 M 38 7 622 _ollapse_.65 4,800 (70%) 6,876 (80%) 1.43 4 59 L2 M 38 7 623 _ollapse_.118 3,840 (71%) 6,913 (80%) 1.80 4 59 L2 M 37 7 624 _ollapse_.26 3,153 (71%) 8,032 (80%) 2.55 4 59 L2 M 34 7 625 _ollapse_.33 2,645 (71%) 5,436 (80%) 2.06 4 59 L2 M 23 4 326 _ollapse_.79 2,640 (71%) 4,611 (80%) 1.75 4 59 L2 M 23 4 327 _ollapse_.86 2,640 (71%) 4,403 (80%) 1.67 4 59 L2 M 21 4 328 _ollapse_.40 2,400 (71%) 5,200 (81%) 2.17 4 59 L2 M 22 4 329 _ollapse_.132 2,400 (71%) 4,618 (81%) 1.92 4 59 L2 M 22 4 330 _ollapse_.164 2,400 (71%) 4,546 (81%) 1.89 4 59 L2 M 22 4 331 _ollapse_.111 1,440 (71%) 4,341 (81%) 3.01 4 59 L2 M 23 4 332 _ollapse_.157 1,200 (71%) 4,105 (81%) 3.42 4 59 L2 M 22 4 3Table A.8. Epi_de innermost loops listDesription of the most representative loopsLOOP_0 _unquantize_image.3Program: epi_deFile: quantize.Funtion: unquantize_imageHeader blok: HB_3Loop bloks: HB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 13Iterations: 65536Iter/Invo: 5041Operations: 1114151 (12.50%)Cyles: 1289469 (18.00%)Ops/Cy: 0.86Stall yles: 44038 (3.42%)Sheduling ReMII ResMII II ESC

148 Appendix A. Loop StatistisHB_3 19 3 19 1Shed length: 95802Operation breakdownDynami ounts Stati ountsLoad: 65536 (6%) 1 (5%)Store: 65536 (6%) 3 (14%)iAlu: 458752 (41%) 9 (43%)fAlu: 327680 (29%) 5 (24%)Cmpp: 131098 (12%) 2 (10%)Pbr: 0 (0%) 0 (0%)Branh: 65549 (6%) 1 (5%)Total: 1114151 21Memory operations Size Stride Group nOps gSize gStrL_22 2 1S_32 4 1S_45 4 1S_48 4 1LOOP_1 _main.18Program: epi_deFile: unepi.Funtion: mainHeader blok: HB_18Loop bloks: HB_18Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 1Iterations: 65536Iter/Invo: 65536Operations: 1114015 (12.50%)Cyles: 1179666 (16.46%)Ops/Cy: 0.94Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCHB_18 18 3 18 1Shed length:1179666Operation breakdownDynami ounts Stati ountsLoad: 262094 (24%) 4 (21%)Store: 65536 (6%) 3 (16%)iAlu: 327630 (29%) 5 (26%)fAlu: 262144 (24%) 4 (21%)Cmpp: 131074 (12%) 2 (11%)Pbr: 0 (0%) 0 (0%)Branh: 65537 (6%) 1 (5%)Total: 1114015 19Memory operations Size Stride Group nOps gSize gStrL_390 4 1L_392 8 0L_652 8 0L_654 8 0S_398 4 1S_403 4 1S_408 4 1LOOP_2 _ollapse_pyr.9Program: epi_deFile: ollapse_pyr.

A.8. Epi_de 149Funtion: ollapse_pyrHeader blok: HB_9Loop bloks: HB_9Nesting level: 3Innermost: yesCategory: MOD_SCHEDInvoations: 236Iterations: 21284Iter/Invo: 90Operations: 1149793 (12.90%)Cyles: 626525 (8.74%)Ops/Cy: 1.84Stall yles: 2445 (0.39%)Sheduling ReMII ResMII II ESCHB_9 28 7 29 1Shed length: 2644Operation breakdownDynami ounts Stati ountsLoad: 212840 (19%) 10 (19%)Store: 191547 (17%) 9 (17%)iAlu: 702366 (61%) 33 (61%)fAlu: 0 (0%) 0 (0%)Cmpp: 21520 (2%) 1 (2%)Pbr: 0 (0%) 0 (0%)Branh: 21520 (2%) 1 (2%)Total: 1149793 54Memory operations Size Stride Group nOps gSize gStrL_47 4 1L_51 4 2L_60 4 2L_67 4 2L_77 4 2L_86 4 2L_93 4 2L_104 4 2L_110 4 2L_117 4 2S_54 4 2 G_64 3 12 1S_64 4 2 "S_71 4 2 "S_80 4 2 G_90 3 12 1S_90 4 2 "S_97 4 2 "S_107 4 2 G_114 3 12 1S_114 4 2 "S_121 4 2 "LOOP_3 _ollapse_pyr.56Program: epi_deFile: ollapse_pyr.Funtion: ollapse_pyrHeader blok: HB_56Loop bloks: HB_56Nesting level: 6Innermost: yesCategory: WHILE_LOOPInvoations: 3254Iterations: 3996Iter/Invo: 1Operations: 855097 (9.59%)Cyles: 412965 (5.76%)Ops/Cy: 2.07

150 Appendix A. Loop StatistisStall yles: 0 (0.00%)Sheduling wsl pesl per wgtHB_56 103.78 104 0.80 3996Shed length: 127Operation breakdownDynami ounts Stati ountsLoad: 199800 (23%) 50 (23%)Store: 159840 (19%) 40 (19%)iAlu: 471528 (55%) 118 (55%)fAlu: 0 (0%) 0 (0%)Cmpp: 7992 (1%) 2 (1%)Pbr: 7992 (1%) 2 (1%)Branh: 7945 (1%) 2 (1%)Total: 855097 214Memory operations Size Stride Group nOps gSize gStrL_466 4 -L_475 4 -L_482 4 -L_492 4 -L_501 4 -L_508 4 -L_519 4 -L_525 4 -L_532 4 -L_3497 4 1S_469 4 - G_479 3 12 1S_479 4 - "S_486 4 - "S_495 4 - G_505 3 12 1S_505 4 - "S_512 4 - "S_522 4 - G_529 3 12 1S_529 4 - "S_536 4 - "Dynami ount Stati ountSpill: 283716 (33%) 71 (33%)LOOP_4 _ollapse_pyr.147Program: epi_deFile: ollapse_pyr.Funtion: ollapse_pyrHeader blok: HB_147Loop bloks: HB_147 HB_148Nesting level: 3Innermost: yesCategory: WHILE_LOOPInvoations: 235Iterations: 21284Iter/Invo: 90Operations: 577318 (6.48%)Cyles: 364726 (5.09%)Ops/Cy: 1.58Stall yles: 0 (0.00%)Sheduling wsl pesl per wgtHB_147 8.66 9 0.90 21284HB_148 97.98 98 0.99 1841Shed length: 1546Operation breakdownDynami ounts Stati ountsLoad: 107811 (19%) 48 (23%)Store: 69958 (12%) 38 (18%)

A.8. Epi_de 151iAlu: 266362 (46%) 115 (54%)fAlu: 0 (0%) 0 (0%)Cmpp: 42568 (7%) 3 (1%)Pbr: 46250 (8%) 4 (2%)Branh: 44369 (8%) 4 (2%)Total: 577318 212Memory operations Size Stride Group nOps gSize gStrL_1296 4 1L_1300 4 -L_1309 4 -L_1316 4 -L_1326 4 -L_1335 4 -L_1342 4 -L_1353 4 -L_1359 4 -L_1366 4 -S_1303 4 - G_1313 3 12 1S_1313 4 - "S_1320 4 - "S_1329 4 - G_1339 3 12 1S_1339 4 - "S_1346 4 - "S_1356 4 - G_1363 3 12 1S_1363 4 - "S_1370 4 - "Dynami ount Stati ountSpill: 123347 (21%) 67 (32%)LOOP_5 _internal_int_transpo.16Program: epi_deFile: ollapse_pyr.Funtion: internal_int_transpoHeader blok: HB_16Loop bloks: HB_16Nesting level: 2Innermost: yesCategory: WHILE_LOOPInvoations: 7201Iterations: 21752Iter/Invo: 3Operations: 412808 (4.63%)Cyles: 345804 (4.83%)Ops/Cy: 1.19Stall yles: 74048 (21.41%)Sheduling wsl pesl per wgtHB_16 12.33 12 0.67 21748Shed length: 37Operation breakdownDynami ounts Stati ountsLoad: 43504 (11%) 2 (10%)Store: 21520 (5%) 2 (10%)iAlu: 195528 (47%) 10 (48%)fAlu: 0 (0%) 0 (0%)Cmpp: 65252 (16%) 3 (14%)Pbr: 43504 (11%) 2 (10%)Branh: 43500 (11%) 2 (10%)Total: 412808 21Memory operations Size Stride Group nOps gSize gStrL_23 4 -L_26 4 1

152 Appendix A. Loop StatistisS_28 4 -S_30 4 1LOOP_6 _ollapse_pyr.102Program: epi_deFile: ollapse_pyr.Funtion: ollapse_pyrHeader blok: HB_102Loop bloks: HB_102Nesting level: 4Innermost: yesCategory: WHILE_LOOPInvoations: 1949Iterations: 2168Iter/Invo: 1Operations: 463910 (5.21%)Cyles: 224085 (3.13%)Ops/Cy: 2.07Stall yles: 0 (0.00%)Sheduling wsl pesl per wgtHB_102 103.87 104 0.89 2168Shed length: 116Operation breakdownDynami ounts Stati ountsLoad: 108400 (23%) 50 (23%)Store: 86720 (19%) 40 (19%)iAlu: 255824 (55%) 118 (55%)fAlu: 0 (0%) 0 (0%)Cmpp: 4336 (1%) 2 (1%)Pbr: 4336 (1%) 2 (1%)Branh: 4294 (1%) 2 (1%)Total: 463910 214Memory operations Size Stride Group nOps gSize gStrL_878 4 -L_887 4 -L_894 4 -L_904 4 -L_913 4 -L_920 4 -L_931 4 -L_937 4 -L_944 4 -L_3503 4 1S_881 4 - G_891 3 12 1S_891 4 - "S_898 4 - "S_907 4 - G_917 3 12 1S_917 4 - "S_924 4 - "S_934 4 - G_941 3 12 1S_941 4 - "S_948 4 - "Dynami ount Stati ountSpill: 153928 (33%) 71 (33%)LOOP_7 _internal_int_transpo.4Program: epi_deFile: ollapse_pyr.Funtion: internal_int_transpoHeader blok: HB_4

A.8. Epi_de 153Loop bloks: HB_4Nesting level: 2Innermost: yesCategory: WHILE_LOOPInvoations: 7201Iterations: 10764Iter/Invo: 1Operations: 53820 (0.60%)Cyles: 191592 (2.67%)Ops/Cy: 0.28Stall yles: 62424 (32.58%)Sheduling wsl pesl per wgtHB_4 11.67 12 0.67 10764Shed length: 17Operation breakdownDynami ounts Stati ountsLoad: 0 (0%) 0 (0%)Store: 0 (0%) 0 (0%)iAlu: 21528 (40%) 2 (40%)fAlu: 0 (0%) 0 (0%)Cmpp: 10764 (20%) 1 (20%)Pbr: 10764 (20%) 1 (20%)Branh: 10764 (20%) 1 (20%)Total: 53820 5Memory operations Size Stride Group nOps gSize gStrLOOP_8 _write_pgm_image.3Program: epi_deFile: �leio.Funtion: write_pgm_imageHeader blok: BB_3Loop bloks: BB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvoations: 1Iterations: 65536Iter/Invo: 65536Operations: 458753 (5.15%)Cyles: 131074 (1.83%)Ops/Cy: 3.50Stall yles: 0 (0.00%)Sheduling ReMII ResMII II ESCBB_3 2 1 2 1Shed length: 131074Operation breakdownDynami ounts Stati ountsLoad: 65536 (14%) 1 (14%)Store: 65536 (14%) 1 (14%)iAlu: 262144 (57%) 4 (57%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 65537 (14%) 1 (14%)Total: 458753 7Memory operations Size Stride Group nOps gSize gStrL_23 4 1S_25 1 1

154 Appendix A. Loop StatistisLOOP_9 _ollapse_pyr.4Program: epi_deFile: ollapse_pyr.Funtion: ollapse_pyrHeader blok: BB_4Loop bloks: BB_4Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvoations: 4Iterations: 87040Iter/Invo: 21760Operations: 348164 (3.91%)Cyles: 87628 (1.22%)Ops/Cy: 3.97Stall yles: 584 (0.67%)Sheduling ReMII ResMII II ESCBB_4 1 1 1 1Shed length: 21761Operation breakdownDynami ounts Stati ountsLoad: 0 (0%) 0 (0%)Store: 87040 (25%) 1 (25%)iAlu: 174080 (50%) 2 (50%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Branh: 87044 (25%) 1 (25%)Total: 348164 4Memory operations Size Stride Group nOps gSize gStrS_32 4 1

Bibliography
[ABI+95℄ K. Asanovi, J. Bek, B. Irissou, B. Kingsbury, N. Morgan, andJ. Wawrzynek. The T0 vetor miroproessor. In Hot Chips VII,pages 187�196, August 1995.[AKR98℄ S. Aditya, V. Kathail, and B. R. Rau. Elor's mahine desriptionsystem: Version 3.0. Tehnial Report HPL-98-128, Information Teh-nology Center, 1998.[AMD00℄ AMD. 3DNow! tehnology manual. Tehnial Report 21928G/0,Advaned Miro Devies, In, 2000.[AMD06℄ AMD. AMD Opteron proessor produt data sheet, 2006.http://www.amd.om/us-en/Proessors/TehnialResoures.[And94℄ L. O. Andersen. Program Analysis and Speialization for the C Pro-gramming Language. PhD thesis, DIKU, University of Copenhagen,1994.[AS90℄ E. H. Adelson and E. P. Simonelli. Subband image oding with three-tap pyramids. In Proeedings of the Piture Coding Symposium, pages3.9.1�3.9.3, 1990.[BBH+04℄ D. Boggs, A. Baktha, J. Hawkins, D. Marr, J. Miller, P. Roussel,R. Singhal, B. Toll, and K. S. Venkatraman. The miroarhiteture ofthe Intel Pentium 4 proessor on 90nm tehonology. Intel TehnologyJournal, 08(01):7�23, February 2004.[BCM94℄ D. Bernstein, D. Cohen, and D. E. Maydan. Dynami memory disam-biguation for array referenes. In Proeedings of the 27th Annual Inter-national Symposium on Miroarhiteture, pages 105�111, November1994.[BE94℄ W. Blume and R. Eigenmann. The range test: a dependene test forsymboli, non-linear expressions. In Proeedings of the 1994 onfereneon Superomputing, pages 528�537, 1994.[BLO02℄ C. Basoglu, W. Lee, and J. O'Donnell. The Equator MAP-CA DSP:an end-to-end broadband signal proessor VLIW. IEEE Transationson Ciruits and Systems for Video Tehnology, 12(8):646�659, 2002.

156 BIBLIOGRAPHY[BS00℄ V. Bongiorno and G. Shorrel. Cray SV1, SV1e, SV1ex � Overview,2000. http://www.ray.om/produts/systems/sv1.[CBC93℄ J. Choi, M. Burke, and P. Carini. E�ient �ow-sensitive interproedu-ral omputation of pointer-indued aliases and side e�ets. In Proeed-ings of the 20th ACM SIGPLAN-SIGACT Symposium on Priniplesof Programming Languages, pages 232�245, 1993.[CDJ+97℄ T. M. Conte, P. K. Dubey, M. D. Jennings, R. B. Lee, A. Peleg,S. Rathnam, M. Shlansker, P. Song, and A. Wolfe. Challenges toombining general-purpose and multimedia proessors. IEEE Com-puter, 30(12):33�37, Deember 1997.[CEL+03℄ S. Ciriesu, R. Essik, B. Luas, P. May, K. Moat, J. Norris,M. Shuette, and A. Saidi. The reon�gurable streaming vetor pro-essor (RSVP). In Proeedings of the 36th annual IEEE/ACM Interna-tional Symposium on Miroarhiteture, pages 141�150, Washington,DC, USA, 2003. IEEE Computer Soiety.[CEV99℄ J. Corbal, R. Espasa, and M. Valero. Exploiting a new level of DLPin multimedia appliations. In Proeedings of the 32nd internationalsymposium on Miroarhiteture, pages 72�79, 1999.[CGH+04℄ L. N. Chakrapani, J. C. Gyllenhaal, W. W. Hwu, S. A. Mahlke,K. V. Palem, and R. M. Rabbah. Trimaran: An infrastruture forresearh in instrution-level parallelism. 17th International Workshopon Languages and Compilers for High Performane Computing. Le-ture Notes in Computer Siene, 3602:32�41, 2004.[CMT94℄ S. Carr, K. S. MKinley, and C. Tseng. Compiler optimizations forimproving data loality. In Proeedings of the 6th international on-ferene on Arhitetural Support for Programming Languages and Op-erating Systems, pages 252�262, 1994.[CNO+88℄ R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K.Rodman. A VLIW arhiteture for a trae sheduling ompiler. IEEETransations on Computers, C-37(8):967�979, August 1988.[Cor02℄ J. Corbal. N-Dimensional Vetor Instrution Set Arhiteturesfor Multimedia Appliations. PhD thesis, UPC, Departamentd'Arquitetura de Computadors, 2002.[DD97℄ K. Diefendor� and P. Dubey. How multimedia workloads will hangeproessor design. IEEE Computer, 30(9):43�45, Sept 1997.[Dev99℄ Analog Devies. Introduing TigerSHARC, 1999.http://www.analog.om/new/ads/html/SHARC2.[DP02℄ A. Dasu and S. Panhanathan. A survey of media proessing ap-proahes. IEEE Transations on Ciruits and Systems for Video Teh-nology, 12(8):633�645, August 2002.

BIBLIOGRAPHY 157[EAE+02℄ R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Her-nandez, T. Juan, G. Lowney, M. Mattina, and A. Sezne. Taran-tula: a vetor extension to the Alpha arhiteture. In Proeedings ofthe 29th annual International Symposium on Computer Arhiteture,pages 281�292, Washington, DC, USA, 2002. IEEE Computer Soiety.[EFK+98℄ K. Ebioglu, J. Fritts, S. Kosonoky, M. Gshwind, E. Altman,K. Kailas, and T. Bright. An eight-issue tree-VLIW proessor for dy-nami binary translation. In International Conferene on ComputerDesign: VLSI in Computers and Proessors, pages 488�495, 1998.[EGH94℄ M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive inter-proedural points-to analysis in the presene of funtion pointers. InProeedings of the ACM SIGPLAN'94 Conferene on ProgrammingLanguage Design and Implementation, pages 242�256, 1994.[EM01℄ A. H. M. R. El-Mahdy. A Vetor Arhiteture for Multimedia JavaAppliations. PhD thesis, Dept. of Computer Siene, University ofManhester, 2001.[Eme99℄ J. S. Emer. Simultaneous multithreading: Multiplying Alpha perfor-mane, 1999. Miroproessor Forum.[FBF+00℄ P. Faraboshi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood.Lx: a tehnology platform for ustomizable VLIW embedded proess-ing. In Proeedings of the 27th Annual International Symposium onComputer Arhiteture 2000, pages 203�213, June 2000.[Fea91℄ P. Feautrier. Data�ow analysis of array and salar referenes. Inter-national Journal of Parallel Programming, 20(1):23�53, 1991.[FG00℄ J. Fridman and Z. Green�eld. The TigerSHARC DSP arhiteture.IEEE Miro, 20(1):66�76, 2000.[Fis81℄ J. A. Fisher. Trae sheduling: A tehnique for global miroodeompation. IEEE Transations on Computers, C-30:478�490, July1981.[Fly72℄ M. Flynn. Some omputer organizations and their e�etiveness. IEEETransations on Computers, C�21(9):948�960, 1972.[Fri00℄ J. Fritts. Arhiteture and ompiler design issues in programmable me-dia proessors. PhD thesis, Dept. of Eletrial Engineering, PrinetonUniversity, 2000.[FST05℄ J. E. Fritts, F. W. Steiling, and J. A. Tuek. Mediabenh II video:Expediting the next generation of video systems researh. EmbeddedProessors for Multimedia and Communiations II. Proeedings of theSPIE, 5683:79�93, Marh 2005.

158 BIBLIOGRAPHY[Gal95℄ D. M. Gallagher. Memory Disambiguation to Failitate Instrution-Level Parallelism Compilation. PhD thesis, Dept. of Eletrial andComputer Engineering, University of Illinois, 1995.[GCM+94℄ D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, andW. W. Hwu. Dynami memory disambiguation using the memoryon�it bu�er. ACM SIGPLAN Noties, 29(11):183�193, 1994.[GHF+06℄ M. Gshwind, H. P. Hofstee, B. Flahs, M. H., Y. Watanabe, andT. Yamazaki. Synergisti proessing in Cell's multiore arhiteture.IEEE Miro, 26(2):10�24, 2006.[GHR96℄ J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau. HMDES version2.0 spei�ation. Tehnial Report IMPACT-96-03, University of Illi-nois,Urbana, IL, 1996.[GKT91℄ G. Go�, K. Kennedy, and C. Tseng. Pratial dependene testing. InProeedings of the ACM SIGPLAN`91 Conferene on ProgrammingLanguage Design and Implementation, pages 15�29, June 1991.[GMNR06℄ S. Gohman, A. Mendelson, A. Naveh, and E. Rotem. Introdutionto Intel Core Duo proessor arhiteture. Intel Tehnology Journal,10(2):89�98, May 2006.[Gwe99℄ L. Gwennap. MAJC gives VLIW a new twist. Miroproessor Report,13(12):12�15, September 1999.[HH02℄ H. C. Hunter and W. W. Hwu. Code overage and input variability:e�ets on arhiteture and ompiler researh. In Proeedings of the2002 International Conferene on Compilers, Arhiteture, and Syn-thesis for Embedded Systems, pages 79�87. ACM Press, 2002.[HMC+93℄ W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E.Haab, J. G. Holm, and D. M. Lavery. The Superblok: An e�etivetehnique for VLIW and supersalar ompilation. The Journal ofSuperomputing, 7:229�248, January 1993.[Hor82℄ R. M. Hord. The Illia IV, the �rst superomputer. Computer SienePress, 1982.[HP00℄ M. Hind and A. Pioli. Whih pointer analysis should I use? InProeedings of the 2000 ACM SIGSOFT International Symposium onSoftware Testing and Analysis, pages 113�123, 2000.[HSS94℄ A. Huang, G. Slavenburg, and J. Shen. Speulative disambiguation: Aompilation tehnique for dynami memory disambiguation. In Pro-eedings of the 21st International Symposium on Computer Arhite-ture, pages 200�210, April 1994.

BIBLIOGRAPHY 159[IBM06a℄ IBM. IBM BladeCenter QS20 datasheet, 2006.http://www.ibm.om/tehnology/splash/qs20/pdf/qs20_datasheet.pdf.[IBM06b℄ IBM. Press room - 2006-09-06. IBM to build world's�rst Cell Broadband Engine based superomputer, 2006.http://www.ibm.om/press/us/en/pressrelease/20210.wss.[Imp01℄ Improvsys. Jazz DSP proessor datasheet. Tehnial report, Im-provsys, 2001.[Int99℄ Intel. Pentium III proessor: Developer's manual. Tehnial report,INTEL, 1999.[Int04℄ Intel. Intel Itanium2 proessor referene manual for software devel-opment and optimization, 2004. http://developer.intel.om/design/-itanium2/manuals/251110.htm.[Int06℄ Intel. Dual-Core Intel Itanium 2 proessor 9000 series. Produtbrief, 2006. http://www.intel.om/produts/proessor/itanium2/-d_prod_brief.htm.[Joh91℄ M. Johnson. Supersalar Miroproessor Design. Prentie-Hall, En-glewood Cli�s, New Jersey, 1991.[Joh05℄ D. J. C. Johnson. Overview of the HP 9000 rp3410-2, rp3440-4, rp4410-4, and rp4440-8 servers, 2005.http://www.hp.om/produts1/servers/HP9000_family_overview.html.[JVTW01℄ B. Juurlink, S. Vassiliadis, D. Theressiz, and H. A.G. Wijsho�. Imple-mentation and evaluation of the omplex streamed instrution set. InProeedings of the International Conferene on Parallel Arhiteturesand Compilation Tehniques, pages 73�82, September 2001.[KAO05℄ P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-waymultithreaded Spar proessor. IEEE Miro, 25(2):21�29, 2005.[KDH+05℄ J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,and D. Shippy. Introdution to the Cell multiproessor. IBM Journalof Researh and Development, 49(4/5):589�604, 2005.[KIea00℄ A. Kunimatsu, N. Ide, and T. Sato et. al. Vetor unit arhiteture forEmotion synthesis. IEEE Miro, 20(2):85�95, Marh-April 2000.[Koe99℄ R. Koenen. Mpeg-4, multimedia for our time. IEEE Spetrum,30(9):26�34, February 1999.[Kon98℄ K. Konstantinides. VLIW arhiteture for media proessing. IEEESignal Proessing Magazine, 15(2):16�19, 1998.[Koz99℄ C. Kozyrakis. A media-enhaned vetor arhiteture for embeddedmemory systems. Tehnial Report UCB/CSD-99-1059, EECS De-partment, University of California, Berkeley, 1999.

160 BIBLIOGRAPHY[KP98℄ C. Kozyrakis and D. Patterson. A new diretion for omputer arhi-teture researh. IEEE Computer, 31(11):24�32, November 1998.[KSR00℄ V. Kathail, M. Shlansker, and B. R. Rau. HPL-PD arhiteture spe-i�ation: Version 1.1. Tehnial Report HPL-93-80(R.1), Hewlett�Pakard Lab., 2000.[Lan92℄ W. Landi. Undeidability of stati analysis. ACM Letters on Pro-gramming Languages and Systems, 1(4):323�337, De 1992.[Lee84℄ B. G. Lee. A new algorithm to ompute the Disrete Cosine Trans-form. IEEE Transations on Aoustis, Speeh, and Signal Proessing,vol. ASSP-32, 6:1243�1245, Deember 1984.[Lee95℄ R. B. Lee. Aelerating multimedia with enhaned miroproessors.IEEE Miro, 15(2):22�32, 1995.[Lee99℄ R. Lee. E�ieny of miroSIMD arhitetures and index-mapped datafor media proessors. In Proeedings of IS&T/SPIE Symposium onEletri Imaging: Media Proessors 99, pages 34�46, January 1999.[LPMS97℄ C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabenh: Atool for evaluating and synthesizing multimedia and ommuniatonssystems. In Proeedings of the 30th International Symposium on Mi-roarhiteture, pages 330�335, 1997.[LR92℄ W. Landi and B. G. Ryder. A safe approximate algorithm for inter-proedural pointer aliasing. SIGPLAN Noties, 27(7):235�248, June1992.[LS96℄ R. B. Lee and M. D. Smith. Media proessing: A new design target.IEEE Miro, 16(4):6�9, August 1996.[LW97℄ H. Liao and A. Wolfe. Available paralellism in video appliations. InProeedings of the 30th International Symposium on Miroarhiteture,pages 321�329, 1997.[MB04℄ C. MNairy and R. Bhatia. Monteito: The next produt in theItanium Proessor Family. In Conferene Reord of 16th Hot ChipsSymposium, 2004.[MH99℄ S. Moon and M. W. Hall. Evaluation of prediated array data-�owanalysis for automati parallelization. In Proeedings of the ACMSymposium on Priniples Pratie of Parallel Programming, pages 84�95, 1999.[MHL91℄ D. Maydan, J. Hennessy, and M. Lam. E�ient and exat data depen-dene analysis. In Proeedings of the ACM SIGPLAN'91 Confereneon Programming Language Design and Implementation, pages 1�14,June 1991.

BIBLIOGRAPHY 161[MLC+92℄ S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-mann. E�etive ompiler support for prediated exeution using theHyperblok. In Proeedings of the 25th International Symposium onMiroarhiteture, pages 45�54, De. 1992.[MNW+02℄ R. Mahajan, R. Nair, V. Wakharkar, J. Swan, J. Tang, and G. Vanden-top. Emerging diretions for pakaging tehnologies. Intel TehnologyJournal, 6(2):61�76, May 2002.[Moo65℄ G. E. Moore. Cramming more omponents onto integrated iruits.Eletronis Magazine, 38(8):114�117, 1965.[Ni89℄ A. Niolau. Run-time disambiguation: Coping with statially unpre-ditable dependenies. IEEE Transations on Computers, 38(5):663�678, May 1989.[NJ99℄ H. Nguyen and L. K. John. Exploiting SIMD parallelism in DSP andmultimedia algorithms using the AltiVe tehnology. In InternationalConferene on Superomputing, pages 11�20, 1999.[PHP98℄ Y. Paek, J. Hoe�inger, and D. Padua. Simpli�ation of array a-ess patterns for ompiler optimizations. In Proeedings of the ACMSIGPLAN'98 Conferene on Programming Language Design and Im-plementation, pages 60�71, 1998.[PP99℄ N. Pitsianis and G. Pehanek. High-performane FFT implementationon the BOPS ManArray parallel DSP. In Proeedings of the Interna-tional Symposium on Optial Siene, Engineering, and Instrumenta-tion, 1999.[PS91℄ J. C. Park and M. S. Shlansker. On prediated exeution. TehnialReport HPL-91-58, Hewlett�Pakard Lab., May 1991.[Pur98℄ S. Purell. The impat of Mpat 2. IEEE Signal Proessing Magazine,15(2):102�107, 1998.[PW96℄ A. Peleg and U. Weiser. MMX tehnology extension to the intel ar-hiteture. IEEE Miro, 16(4):42�50, August 1996.[PW98℄ W. Pugh and D. Wonnaott. Constraint-based array dependene anal-ysis. ACM Transations on Programming Languages and Systems,20(3):635�678, May 1998.[QCEV99℄ F. Quintana, J. Corbal, R. Espasa, and M. Valero. Adding a vetorunit on a supersalar proessor. In Proeedings of the InternationalConferene on Superomputing, pages 1�10, June 1999.[QEV98℄ F. Quintana, R. Espasa, and M. Valero. An ISA omparison betweensupersalar and vetor proessors. Seleted Papers and Invited Talksfrom the Third International Conferene on Vetor and Parallel Pro-essing. Leture Notes In Computer Siene, 1573:548�560, 1998.

162 BIBLIOGRAPHY[RAJ99℄ P. Ranganathan, S. V. Adve, and N. P. Jouppi. Performane of im-age and video proessing with general-purpose proessors and mediaISA extensions. In Proeedings of the International Symposium onComputer Arhiteture, pages 124�135, 1999.[Ram94℄ G. Ramalingam. The undeidability of aliasing. ACM Transationson Programming Languages and Systems, 16(5):1467�1471, Sept 1994.[Rau95℄ B. R. Rau. Iterative modulo sheduling. Tehnial Report HPL-94-115, Hewlett�Pakard Lab., 1995.[RDK+98℄ S. Rixner, W. J. Dally, U. J. Kapasi, B. K., A. Lopez-Lagunas, P. R.Mattson, and J. D. Owens. A bandwidth-e�ient arhiteture formedia proessing. In Proeedings of the 31th Annual InternationalSymposium on Miroarhiteture, pages 3�13, November 1998.[RDK+00℄ S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, andJ. D. Owens. Register organization for media proessing. In Pro-eedings of the 10th International Symposium on High PerformaneComputer Arhiteture, January 2000.[Red73℄ S. F. Reddaway. DAP-a distributed array proessor. In Proeedingsof the 1st annual symposium on Computer arhiteture, pages 61�65.ACM Press, 1973.[RF93℄ B. R. Rau and J. A. Fisher. Instrution-level parallel proessing: his-tory, overview, and perspetive. The Journal of Superomputing, 7(1-2):9�50, 1993.[RP94℄ L. Rauhwerger and D. Padua. The PRIVATIZING DOALL test:A run-time tehnique for DOALL loop identi�ation and array pri-vatization. In Proeedings of the ACM International Conferene onSuperomputing, 1994.[RS96℄ S. Rathnam and G. Slavenburg. An arhitetural overview of the pro-grammable multimedia proessor, TM-1. In Proeedings of the 41stIEEE International Computer Conferene, pages 319�326, Washing-ton, DC, USA, 1996. IEEE Computer Soiety.[Rus78℄ R. Russel. The Cray-1 omputer system. Comuniations of the ACM,21(1):63�72, January 1978.[RYYT89℄ B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle. The Cydra 5departmental superomputer. IEEE Computer, 22(1):12�35, January1989.[SA00℄ H. Sharangpani and K. Aurora. Itanium proessor miroarhiteture.IEEE Miro, 20(5):24�43, September 2000.

BIBLIOGRAPHY 163[SAS+05℄ F. Sánhez, M. Alvarez, E. Salamí, A. Ramírez, and M. Valero. Onthe salability of 1 and 2-dimensional SIMD extensions for multime-dia appliations. In IEEE International Symposium on PerformaneAnalysis of Systems and Software, pages 167�176, Marh 2005.[SC97℄ K. Skadron and D. W. Clark. Design issues and tradeo�s for writebu�ers. High Performane Computer Arhiteture, 00:144�155, 1997.[SCAV02℄ E. Salamí, J. Corbal, C. Alvarez, and M. Valero. Cost e�etive mem-ory disambiguation for multimedia odes. In Proeedings of the In-ternational Conferene on Compilers, Arhiteture, and Synthesis forEmbedded Systems, pages 117�126, Otober 2002.[SCEV99℄ E. Salamí, J. Corbal, R. Espasa, and M. Valero. An evaluation ofdi�erent DLP alternatives for the embedded media domain. In Pro-eedings of the 1st Workshop on Media Proessors and DSPs, pages100�109, November 1999.[Sem99℄ Philips Semiondutors. TriMedia TM-1300, 1999. http://www-us3.semiondutors.om/trimedia.[Ses98℄ N. Seshan. High VeloiTI proessing. IEEE Signal Proessing Maga-zine, 15(2):86�101, 1998.[SH97℄ M. Shapiro and S. Horwitz. Fast and aurate �ow-insensitive points-to analysis. In Proeedings of the ACM Symposium on Priniples ofProgramming Languages, pages 1�14, 1997.[SIG97℄ SIG. Mips extension for digital media with 3d. Tehnial report, MIPSTehnologies, In, 1997.[Sik95℄ T. Sikora. MPEG Digital Video Coding Standards. MGraw W-HillBook Company, Berlin, 1995.[SJ01℄ P. Shivakumar and N. P. Jouppi. CACTI 3.0: An integrated ahetiming, power, and area model. Tehnial Report WRL-2001-2, HPWestern Researh Labs, 2001.[SKT+05℄ B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eikemeyer, and J. B.Joyner. POWER5 system miroarhiteture. IBM Journal of Researhand Development, 49(4/5):505�521, 2005.[Smo02℄ M. Smotherman. Understanding EPIC arhitetures and implementa-tions. In 40th Annual ACM Southeast Conferene, pages 71�78, April2002.[SR00℄ M. S. Shlansker and B. Raw. EPIC: Expliitly parallel instrutionomputing. In IEEE Computer, pages 37�45, February 2000.[SS01℄ N. T. Slingerland and A. J. Smith. Cahe performane for multimediaappliations. In Proeedings of the 15th International Conferene onSuperomputing, pages 204�217, 2001.

164 BIBLIOGRAPHY[SS02℄ N. T. Slingerland and A. J. Smith. Design and haraterization of theBerkeley multimedia workload. Multimedia Systems, 8(4):315�327,2002.[Ste96℄ B. Steensgaard. Points-to analysis in almost linear time. In Proeed-ings of the 23rd ACM SIGPLAN-SIGACT symposium on Priniplesof Programming Languages, pages 32�41, 1996.[Sud00℄ S. Sudharsanan. MAJC-5200: A high performane miroproessor formultimedia omputing. In Proeedings of the 15 IPDPS 2000 Work-shops on Parallel and Distributed Proessing, pages 163�170, London,UK, 2000. Springer-Verlag.[SV05a℄ E. Salamí and M. Valero. Dynami Memory Interval Test vs. Inter-proedural Pointer Analysis in multimedia appliations. ACM Trans-ations on Arhiteture and Code Optimization, 2(2):199�219, June2005.[SV05b℄ E. Salamí and M. Valero. A Vetor-uSIMD-VLIW arhiteture formultimedia appliations. In Proeedings of the 2005 InternationalConferene on Parallel Proessing, pages 69�77. IEEE Computer So-iety, June 2005.[Tal01℄ D. Talla. Arhitetural Tehniques to Aelerate Multimedia Applia-tions on General-Purpose Proessors. Ph.D. thesis, The University ofTexas at Austin, 2001.[TCC+00℄ M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and S. S. Tse.The MAJC arhiteture: A synthesis of parallelism and salability.IEEE Miro, 20(6):12�25, 2000.[TDJ+02℄ J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Le, and B. Sinharoy.POWER4 System Miroarhiteture. IBM Journal of Researh andDevelopment, 46(1):5�26, 2002.[TEL95℄ D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multi-threading: maximizing on-hip parallelism. In Proeedings of the 22ndannual International Symposium on Computer Arhiteture, pages392�403, New York, NY, USA, 1995. ACM Press.[TI99℄ TI. TMS320C62XX family, 1999. http://www.ti.om/s/dos/-produts/dsp/tms3206201.html.[TJ01℄ D. Talla and L. K. John. Cost-e�etive hardware aeleration of mul-timedia appliations. In Proeedings of the International Confereneon Computer Design, page 415, Washington, DC, USA, 2001. IEEEComputer Soiety.[TONL96℄ M. Tremblay, J. M. O'Connor, V. Narayanan, and H. Liang. VISspeeds new media proessing. IEEE Miro, 16(4):51�59, August 1996.

BIBLIOGRAPHY 165[Tri01℄ A. Triggs. Leture 11: Global system for mobile ommuniations(GSM). Wireless Cellular & Personal Communiations Erisson In.,Southern Methodist University, 2001.[vdSD01℄ A. van der Steen and J. Dongarra. The NEC SX-5, 2001.http://www.top500.org/ORSC/2001.[vdWVD+05℄ J.-W. van de Waerdt, S. Vassiliadis, S. Das, S. Mirolo, C. Yen,B. Zhong, C. Basto, J.-P. van Itegem, D. Amirtharaj, K. Kalra, P. Ro-driguez, and H. van Antwerpen. The TM3270 media-proessor. InProeedings of the 38th annual IEEE/ACM International Symposiumon Miroarhiteture, pages 331�342, Washington, DC, USA, 2005.IEEE Computer Soiety.[vESV+99℄ J. T. J. van Eijndhoven, F. W. Sijstermans, K. A. Vissers, E.-J. D.Pol, M. J. A. Tromp, P. Struik, R. H. J. Bloks, P. van der Wolf, A. D.Pimentel, , and H. P. E. Vranken. TriMedia CPU64 arhiteture. InProeedings of the 1999 IEEE International Conferene on ComputerDesign, pages 586�592, Los Alamitos, CA, USA, 1999. IEEE Com-puter Soiety.[VLPA95℄ M. Valero, T. Lang, M. Peiron, and E. Ayguade. Con�it-free aessfor streams in multimodule memories. IEEE Transations on Com-puters, 44(5):634�646, 1995.[WAK+96℄ J. Wawrzynek, K. Asanovi, B. Kingsbury, J. Bek, D. Johnson, andN. Morgan. Spert-ii: A vetor miroproessor system. IEEE Com-puter, 29(3):79�86, Marh 1996.[Wal91a℄ D. W. Wall. Limits of instrution-level parallelism. SIGPLAN Noties,26(4):176�188, 1991.[Wal91b℄ G. K. Wallae. The JPEG still piture ompression standard. Com-muniations of the ACM, April 1991.[WL91℄ M. E. Wolf and M. S. Lam. A data loality optimizing algorithm.In Proeedings of the ACM SIGPLAN'91 onferene on ProgrammingLanguage Design and Implementation, pages 30�44, 1991.[WL95℄ R. P. Wilson and M. S. Lam. E�ient ontext-sensitive pointer anal-ysis for C programs. In Proeedings of the ACM SIGPLAN'95 Con-ferene on Programming Language Design and Implementation, pages1�12, 1995.[WM95℄ W. A. Wulf and S. A. MKee. Hitting the memory wall: impliationsof the obvious. SIGARCH Computer Arhiteture News, 23(1):20�24,1995.[Yu96℄ A. Yu. The future of miroproessors. IEEE Miro, 16(6):46�53, 1996.

