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“An intellectual is someone whose mind watches itself.”

Albert Camus

“The difference between the right word and the almost right word is the difference

between lightning and the lightning bug.”

Mark Twain





Abstract

Multithreaded processors are now common in the industry as they offer high perfor-

mance at a low cost. Traditionally, in such processors, the assignation of hardware re-

sources between the multiple threads is done implicitly, by the hardware policies. How-

ever, a new class of multithreaded hardware allows the explicit allocation of resources

to be controlled or biased by the software. Currently, there is little or no coordination

between the allocation of resources done by the hardware and the prioritization of tasks

done by the software.

This thesis targets to narrow the gap between the software and the hardware, with re-

spect to the hardware resource allocation, by proposing a new explicit resource alloca-

tion hardware mechanism and novel schedulers that use the currently available hardware

resource allocation mechanisms.

It approaches the problem in two different types of computing systems: on the high per-

formance computing domain, we characterize the first processor to present a mechanism

that allows the software to bias the allocation hardware resources, the IBM POWER5TM.

In addition, we propose the use of hardware resource allocation as a way to balance

high performance computing applications. Finally, we propose two new scheduling

mechanisms that are able to transparently and successfully balance applications in real

systems using the hardware resource allocation. On the soft real-time domain, we pro-

pose a hardware extension to the existing explicit resource allocation hardware and, in

addition, two software schedulers that use the explicit allocation hardware to improve

the schedulability of tasks in a soft real-time system.

In this thesis, we demonstrate that system performance improves by making the soft-

ware aware of the mechanisms to control the amount of resources given to each running

thread. In particular, for the high performance computing domain, we show that it is

possible to decrease the execution time of MPI applications biasing the hardware re-

source assignation between threads. In addition, we show that it is possible to decrease

the number of missed deadlines when scheduling tasks in a soft real-time SMT system.
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Chapter 1

Introduction

As the process technology evolves and the number of available transistors in a chip

increases, limitations in exploitation of the instruction level parallelism and power con-

straints created a trend where modern processors started to execute multiple simultane-

ous execution flows. Simply increasing the frequency of a superscalar processor tends

to increase the power consumption beyond today’s acceptable limits and, therefore,

thread-level parallelism has become a common strategy to improve performance.

Multithreaded1 (MT) processors have widespread use in almost every class of com-

puter system. They offer high performance at a low cost by sharing processor’s internal

hardware resources among multiple execution flows or threads. In one extreme of the

spectrum, in SMT processors, the threads share most of the processor’s internal hard-

ware resources, while in the other extreme, in a CMP processor, they typically share

cache levels and memory bandwidth. Levels of resource-sharing are often combined, as

for instance, the IBM POWER5TM processor is both SMT and CMP: a POWER5 chip

has two cores, where each core has two SMT threads.

In addition to the achievement of higher throughput, MT processors have good perfor-

mance/cost ratio as they often present simpler cores replicated in the chip, which are

easier to design than more complex bigger cores. Furthermore, they commonly have

better watt per committed instruction ratio than large super-scalar processors.

In this domain several researchers have proposed many hardware improvements to max-

imize a number of metrics [68][77][76][75][13][19][14][11]. Hardware is often tailored

to share the processor’s internal resources in order to maximize throughput or fairness.

1In this thesis, we refer to multithreaded processors as being any kind of processor that executes

multiple threads at the same time. Simultaneous Multithreading (SMT), fine-grain multithreaded, coarse-

grain multithreaded or Chip Multi-Processor (CMP) are examples of MT processors.

1
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1.1 Background on resource allocation

One of the major drawbacks of MT processors is that, in most cases, the way the in-

ternal hardware resources are split between the different execution flows or threads

is not specified by the software, but implicitly decided by the hardware. In other

words, such systems have implicit resource allocation. For instance, the sharing in the

caches may be decided by the cache replacement policy [22][66], while the fetch band-

width may be split using a multithreading fetch policy like icount [76], FLUSH [75] or

FLUSH++ [13].

To better illustrate the problem, take for instance the fetch policy, which decides how

the instructions are fetched from the running threads in a SMT processor. The fetch

policy determines implicitly how the internal resources, like the renaming registers or

the instruction queue entries, are allocated. A common characteristic of many proposed

fetch policies is that they try to increase the processor’s throughput and/or fairness [59]

by stalling or flushing instructions from threads presenting L2 misses [75][55]. They

target to increase the overall system performance by seamlessly controlling the flow of

a thread.

FIGURE 1.1: Execution time of bzip2 when coscheduled with other benchmarks.
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MT’s internal hardware resource sharing creates undesirable behaviors like unpredictable

performance or interference between the concurrent executing threads. Such interfer-

ence can influence the performance negatively or positively, depending on the nature of

the workload and the underlying architecture. As a consequence, the execution time of

a program can be very hard to estimate. For instance, Figure 1.1 shows the execution

time of bzip2 on a POWER5 processor when coscheduled with other SPEC2006 bench-

marks on the same core. As we can see, its execution time variates from 24.07 seconds,

when running with gcc, to 29.03 seconds when running with another copy of bzip2.

(a) MT hardware as seen from the software

(b) MT hardware as it is in reality

FIGURE 1.2: Difference between the perception of an MT processor and reality

Figure 1.2 shows how an MT processor is perceived by the software layer and how

it may really be. To the software layer, each one of the threads in a multithreaded

processor is generally perceived as an independent processing unit and the system con-

siders them as having the same processing power, or the same amount of resources

(Figure 1.2(a)). However, the contexts in a MT processor share some common re-

sources, like some cache levels for CMP or internal functional units and fetch band-

width for SMT (Figure 1.2(b)). The interaction between simultaneous execution flows

is not taken into consideration outside of the hardware.

Another problem of this “lack of communication” between the software and the un-

derlying architecture is the following: a program with high Operating System (OS)

priority may receive less hardware resources than a program with low OS priority. For

instance, in a processor with FLUSH instruction fetch policy, if a program with high

OS priority have a large number of cache misses, it will receive less hardware resources

than a program with low OS priority and low cache miss rates coscheduled at one of
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the processor’s hardware contexts. We call this problem a hardware-software priority

inversion2.

To deal with these problems, a new class of MT processors have been proposed in the

literature. These proposals allow Explicit Resource Allocation (ERA) [15], where the

OS can specify or bias the hardware resource sharing to meet specific targets.

In academic research, proposals of explicit resource allocation provide “levers” through

which the OS can control the processor internal resource allocation [18], or even feed-

back mechanisms through which the OS can fine tune the resource allocation [17]. Fur-

thermore, the authors argue that it is important to control several layers of the resource

sharing in order to provide guarantees of performance to the programs sharing the hard-

ware resources [63].

Typically, the idea behind the explicit resource allocation mechanisms is that the soft-

ware layer should specify a given amount or percentage of resources to be used by a

thread. Then, a possible organization is that for every instruction, as soon as its re-

quired resources are known (usually at the decode stage) the hardware updates the list,

or counter, of the used resources for the thread that fetched this instruction. If this

thread reached its allocation limit, then it stops fetching or, depending on the proposal,

takes another action like flushing this thread’s instructions from the pipeline. Finally,

the used resources list is also updated to reflect the resources that are no longer being

used (usually at the commit stage). In that way, the hardware exercise a more direct

control over the resource distribution. The measured resources, the control mechanism

and the actions taken when threads exceed their quota of resources varies according to

the proposals.

There has been extensive research on hardware with explicit resource allocation and,

some of these research have been reflected in the industry. As for instance, the first pro-

cessor to allow the software to bias the internal hardware allocation, the IBM POWER5

processor, presents two levels of thread prioritization: the first level provides dynamic

prioritization through hardware, while the second level is a software-controlled priority

mechanism that allows a thread to specify a priority value from 0 to 7. Currently, this

mechanism is only used in few cases in the software platforms [60] even if it can provide

significant improvements on several metrics. In fact, the POWER5 software-controlled

hardware priorities are only used to decrease the resources of a context when there is

no useful computation being done [60] (Section 2.4.3). We argue that it is mainly due

to the fact that there are no previous works aimed at the characterization of the effects

of this mechanism.

2This problem is not to be confused with the classic scheduling priority inversion problem.
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Even if the majority of the commercial processors are in some form MT, currently,

most of the operating system task scheduling is done as if the logical processors were

fully independent, ignoring the interactions between the concurrent threads in a core, or

between cores of a chip. Very few optimizations exist today, such as considering cache

locality when re-scheduling a task, trying to keep a process within a core or a thread

that shares the same L2 cache where it was scheduled before. In addition, most of the

MT processors still have implicit resource allocation. In other words, there is no way to

explicitly allocate internal processor’s resources to one thread in detriment of another.

Although there are many hardware proposals to control multithreaded (SMT or CMP)

processors hardware resource sharing, in our view, there is a lack of integration between

the software and the hardware layers that sometimes yields to both parts working in

opposite directions. Furthermore, a given hardwired metric may not suit the needs of

the software when running a specific problem.

In this thesis we show that sometimes it may be necessary to sacrifice a processor’s

throughput to decrease the execution time of a program. Such situations not only happen

in user desktops, but in many other domains, like real-time systems or in the the High

Performance Computing (HPC) domain. For instance, in the case of a real-time system,

the ideal behavior may be that drawing the user interface receives just enough resources

so it does not slows down important packets being processed.

We believe that allowing the system software to control the resource sharing of the mul-

tithreaded hardware will allow the development of several techniques that improve the

appropriated targets of several application domains. This thesis narrows the gap be-

tween ERA hardware and system software mechanisms by proposing scheduling tech-

niques for ERA processors and an improved explicit resource allocation hardware for

soft-real time.

1.2 Thesis Contributions

The main goal of this thesis is to propose software and hardware mechanisms for HPC

and soft real-time systems, using software controlled hardware resource-allocation to

improve system’s performance. By doing so, we fill the gap between the explicit re-

source allocation hardware previously proposed in the literature and the software-level

prioritization.

The main contributions of this thesis are:
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• We characterize the first real HPC processor featuring a software-controlled hard-

ware prioritization, the IBM POWER5. Furthermore, we present the infrastruc-

ture needed to use this processor’s hardware support for explicit resource alloca-

tion.

This work resulted in the following publication:

∗ Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa, Chen-Yong Cher,

Alper Buyuktosunoglu andMateo Valero. Software-Controlled Priority Char-

acterization of POWER5 Processor. In International Symposium on Com-

puter Architecture (ISCA). Beijing, China. June 21-25, 2008.

• We present, for the first time, the idea of resource allocation as a means of bal-

ancing high performance computing applications.

– We propose a dynamic process scheduler for the Linux kernel that auto-

matically and transparently balances HPC applications according to their

behavior.

– We present an application-level load balancer that is easily deployed across

a large number of machines and provides automatic and transparent load

balancing for HPC applications.

The overall work on load-balacing resulted in the following publications:

∗ Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa, Julita Corbalan, Je-

sus Labarta and Mateo Valero. Balancing HPC Applications Through Smart

Allocation of Resources in MT Processors. In International Parallel & Dis-

tributed Processing Symposium (IPDPS). Miami, Florida, USA. April 14-

18, 2008.

∗ Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla and Mateo Valero. A

Dynamic Scheduler for Balancing HPC Applications. In International Con-

ference for High Performance Computing, Networking, Storage and Analy-

sis (SC). Austin, USA. November 15-21, 2008.

∗ Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla andMateo Valero. Us-

ing resource allocation to balance HPC applications. To appear in: Parallel

and Distributed Computing, IN-TECH, Viena, Austria ISBN978-3-902613-

45-5, 2009. (Book Chapter)

• In the soft real-time domain, we propose Resource Aware extensions for two well

known schedulers, the Earliest Deadline First and the Least Laxity First. These

extensions are respectively called RA-EDF and RA-LLF. In addition, we propose
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a novel hardware support that allows to dynamically improve a secondary metric,

in this case throughput, while guaranteeing a minimal resource allocation.

This work resulted in the following publication:

∗ Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa and Mateo Valero.

Soft Real-Time Scheduling on SMT Processors with Explicit Resource Al-

location. In International Conference on Architecture of Computing Systems

(ARCS). Dresden, Germany. February 25,2008. Lecture Notes in Computer

Science. Volume 4934/2008

1.3 Thesis Presentation

This thesis is organized as follows:

• Chapter 1 presents the research field and problem matters, along with the objec-

tives of this research. Furthermore, it presents the contributions of this research

and the thesis structure.

• Chapter 2 presents the characterization of the effects of the software-controlled

hardware prioritization of POWER5 on several different workloads. It presents

two application case studies targeting different performance metrics and shows

the circumstances where a background thread can be ran transparently without

effecting the performance of the foreground thread.

• Chapter 3 shows that by appropriately using the software-controlled prioritiza-

tion mechanism, it is possible to reduce the imbalance in parallel applications

transparently to the user and reducing the total execution time.

• Chapter 4 presents a dynamic process scheduler for the Linux kernel that automat-

ically and transparently balances HPC applications according to their behavior.

• Chapter 5 presents an application-level load balancer that is easily deployed across

a large number of machines.

• Chapter 6 targets the scheduling of soft real-time tasks on an explicit resource

allocation processor. It presents Resource Aware extensions for two well known

schedulers and a novel hardware support that allows to dynamically improve a

secondary metric while guaranteeing a minimal resource allocation.

• Chapter 7 presents the conclusions of this thesis.





Chapter 2

Software-Controlled Priority

Characterization of POWER5

Processor

2.1 Introduction

In the first part of this thesis, we focus on the High Performance Computing (HPC)

domain, in which some processors allow the control of the assignment of hardware

resources. Having a commercially available processor with explicit resource allocation

allows us to evaluate our proposals on a real hardware, with a real operating system.

We start with a detailed analysis of the IBM POWER5TM processor, which will be used

for our experiments in the remaining of the HPC sections.

The IBM POWER5 is a dual-core processor, where each core runs two threads. Threads

share many resources such as the Global Completion Table (GCT or reorder buffer), the

Branch History Table (BHT) and the Translation Lookaside Buffer (TLB).

It is well known that higher performance is realized when resources are appropriately

balanced across threads [49][50][69]. An IBM POWER5 system appropriately bal-

ances the usage of resources across threads with mechanisms in hardware [35][49].

Moreover, POWER5 employs a mechanism, through software/hardware co-design, that

controls the instruction decode rate with eight priority levels. Its main motivation is to

address instances where unbalanced thread priority is desirable. Several examples can

be enumerated such as idle thread, thread waiting on a spin-lock, software determined

9
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non-uniform balance and power management [50][69]. Software-controlled priority1

can significantly improve both throughput and execution time depending on the appli-

cation type.

In the literature, a wide range of mechanisms has been proposed on dynamically balanc-

ing of resources to improve SMT performance. Most of these proposals focus on the in-

struction fetch policy as the means to obtain such balancing [32][75]. In addition to the

instruction fetch policy, other mechanisms explicitly prioritize shared resources among

threads to improve throughput, fairness [19][23] and Quality of Service [17]. While

these studies do not correspond to the software prioritization mechanism of POWER5,

they could justify the use of the mechanism.

Nevertheless, the prioritization mechanism provided by POWER5 is rarely used among

the software community and, even in these rare cases, the prioritization mechanism is

mainly used for lowering the priority of a thread. For instance, the Linux kernel version

2.6.23 exploits the software-controlled priorities in few cases to reduce the priority of

a processor that is not performing any useful computation. Moreover, Linux makes the

assumption that the software-controlled priority mechanism is not used by the program-

mer and resets the priority to the default value at every interrupt or exception handling

point.

Currently, the lack of quantitative studies on software-controlled priority limit their use

in real world applications. In this chapter, we provide the first quantitative study of the

POWER5 prioritization mechanism. We show that the effect of thread prioritization de-

pends on the characteristics of a given thread and the other thread it is coscheduled with.

Our results show that, if used properly, software-controlled priorities may increase over-

all system performance, depending on the metric of interest. Furthermore, this study

helps Linux and other software communities to tune the performance of their software

by exploiting the software-controlled priority mechanism of the POWER5 processor.

The main contributions of this chapter are:

1. We provide a detailed analysis of the effect of the POWER5 prioritization mechanism

on execution time of applications with a set of selected micro-benchmarks that stress

specific workload characteristics. We show that:

• Threads executing long-latency operations (i.e., threads with a lot of misses in

the caches) are less effected by priorities than threads executing short-latency

1POWER5 software-controlled priorities are independent of the operating systems concept of process

or task priorities.
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operations (i.e. cpu-bound threads). For example, we observe that increasing the

priority of a cpu-bound thread could reduce its execution time by 2.5x over the

baseline. Increasing the priority of memory-bound threads causes an execution

time reduction of 1.7x when they are run with other memory-bound threads.

• By reducing the priority of a cpu-bound thread, its performance can decrease up

to 42x when running with a memory-bound thread and up to 20x when running

with another cpu-bound thread. In general, improving the performance of one

thread involves a higher performance loss on the other thread, sometimes by an

order of magnitude. However, decreasing the priority of a long-latency thread has

less effect on its execution time compared to a cpu-bound thread. For example,

decreasing the priority of a memory-bound thread increases its execution time by

22x when running with another memory-bound thread, while increases less than

2.5x when running with the other benchmarks. In Section 2.5.3 we show how to

exploit this to improve the overall performance.

• For the micro-benchmarks used in this chapter, the IPC throughput of the POWER5

improves up to 2x by using software-controlled priorities.

• We also show that a thread can run transparently, with almost no impact on the

performance of a higher-priority thread. In general, foreground threads with lower

IPC are less sensitive to a transparent thread.

2. We present two application case studies that show how priorities in POWER5 can be

used to improve two different metrics: aggregated IPC and execution time.

• In the case of a batch application where the main metric is throughput, the perfor-

mance improves up to 23.7%.

• In the case of an unbalanced MPI parallel application, execution time reduces up

to 9.3% by using priorities to re-balance its resources.

To our knowledge, this is the first quantitative study showing how software-controlled

prioritization of POWER5 effects performance on a real system. Since other processors

like the IBM POWER6TM [53] present a similar prioritization mechanism, this study

can be significantly useful for the software community.

This chapter is organized as follows: Section 2.2 presents the related work. Section

2.3 describes the POWER5 resource balancing in hardware and the software-controlled

priority mechanisms. Section 2.4 presents our evaluation environment, and Section 2.5

shows our results and their analysis. Finally, Section 2.6 concludes this work.
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2.2 Related Work

In the literature a wide range of mechanisms have been proposed to prioritize the execu-

tion of a thread in a SMT processor. Many of these proposals focus on the instruction-

fetch policy to improve performance and fairness in SMT processors, while other focus

on explicitly assigning processor resources to threads.

Instruction Fetch Policies: An instruction fetch (I-fetch) policy decides how instruc-

tions are fetched from the threads, thereby implicitly determining the way processor

resources, like rename registers or issue queue entries, are allocated to the threads.

Many existing fetch policies attempt to maximize throughput and fairness by reduc-

ing the priority, stalling, or flushing threads that experience long latency memory op-

erations [19][75]. Some other fetch policies focus on reducing the effects of mis-

speculation by stalling on hard-to-predict branches [51][58].

Explicit Resource Allocation: Some of the mechanisms explicitly allocate shared pro-

cessor resources targeting throughput improvements [19][23]. Other resource allocation

mechanisms provide better QoS guarantees for the execution time by ensuring a mini-

mum performance for the time critical threads [20][17].

2.3 The POWER5 Processor

IBM POWER5 [43] processor is a dual-core chip where each core runs two threads [50].

POWER5 employs two levels of control among threads, through resource balancing in

hardware (Section 2.3.1), as well as software-controlled prioritization (Section 2.3.2).

2.3.1 Dynamic hardware resource balancing

POWER5 provides a dynamic resource-balancing mechanism that monitors processor

resources to determine whether one thread is potentially blocking the other thread ex-

ecution. Under that condition, the progress of the offending thread is throttled back,

allowing the sibling thread to progress. POWER5 considers that there is an unbalanced

use of resources when a thread reaches a threshold of L2 cache or TLB misses, or when

a thread uses too many GCT (reorder buffer) entries.

POWER5 employs one of the following mechanisms to re-balance resources among

threads: 1) It stops instruction decoding of the offending thread until the congestion
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clears (Stall). 2) It flushes all of the instructions of the offending thread that are waiting

for dispatch and stopping the thread from decoding additional instructions until the

congestion clears (Flush). Moreover, the hardware may temporarily adjust the decode

rate of a thread to throttle its execution.

2.3.2 Software-controlled priorities

The number of decode cycles assigned to each thread depends on the software-controlled

priority. The enforcement of these software-controlled priorities is carried by hardware

in the decode stage. In general, the higher the priority, the higher the number of decode

cycles assigned to the thread.

Let us assume that two threads, a primary thread (PThread) and a secondary thread

(SThread), are running on one of the two cores of the POWER5 with priorities PrioP

and PrioS, respectively. Based on the priorities, the decode slots are allocated using the

following formula:

R = 2|PrioP−PrioS|+1 (2.1)

Table 2.1 shows the possible values of R and how many decode slots are assigned

to the two threads as the difference between ThreadA’s and ThreadB’s priority moves

from 0 to 4. Notice that R is computed using the difference of priorities of PThread and

SThread, PrioP-PrioS. At any given moment, the thread with higher priority receives R-

1 decode slots, while the lower priority thread receives the remaining slot. For instance,

assuming that PThread has priority 6 and SThread has priority 2, R would be 32, so

the core decodes 31 times from PThread and once from SThread (more details on the

hardware implementation are provided in [35]). The performance of the process running

as PThread increases to the detriment of the one running as SThread. On the case where

both threads have the same priority, R = 2, and therefore, each thread receives one slot,

alternately.

TABLE 2.1: Decode cycles allocation in the IBM POWER5 with different priorities

Priority difference R Decode cycles Decode cycles

(PrioP-PrioS) for A for B

0 2 1 1

1 4 3 1

2 8 7 1

3 16 15 1

4 32 31 1



Chapter 2. Software-Controlled Priority Characterization of POWER5 Processor 14

In POWER5, the software-controlled priorities range from 0 to 7, where 0 means the

thread is switched off and 7 means the thread is running in Single Thread (ST) mode

(i.e., the other thread is off). The supervisor or operating system can set six of the eight

priorities ranging from 1 to 6, while user software can only set priority 2, 3 and 4. The

Hypervisor can always use the whole range of priorities.

As described in [35] and [43], the priorities can be set by issuing an or instruction

in the form of or X,X,X, where X is a specific register number. This operation only

changes the thread priority and performs no other operation. If it is not supported (when

running on previous POWER processors) or not permitted due to insufficient privileges,

the instruction is simply treated as a nop. Table 2.2 shows the priorities, the privilege

level required to set each priority and how to change priority using this interface.

TABLE 2.2: Software-controlled thread priorities in the IBM POWER5 processor.

Priority Priority level Privilege level or-nop instruction

0 Thread shut off Hypervisor -

1 Very low Supervisor or 31,31,31

2 Low User/Supervisor or 1,1,1

3 Medium-Low User/Supervisor or 6,6,6

4 Medium User/Supervisor or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

The behavior of the software-controlled thread prioritization mechanism is different

when one of the threads has priorities 0 or 1 as shown in Table 2.3 [35][43]. For instance,

when both threads have priority one, instead of being considered as difference 0 and

perform as having no prioritization, the processor runs in low-power mode, decoding

only one instruction every 32 cycles.

TABLE 2.3: Resource allocation when the priority of any of the threads is 0 or 1

PThread SThread Action

> 1 > 1 Decode cycles are given to the two threads as

explained above

1 > 1 SThread gets all the execution resources;

PThread takes what is left over

1 1 Power save mode; both PThread and SThread

receive 1 of 32 decode cycles

0 > 1 Processor in ST mode. SThread receives all the

resources.

0 1 1 of 32 cycles are given to SThread

0 0 Processor is stopped
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2.4 Evaluation Methodology

Execution 1

0

MB1

Execution

ends here0

MB2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

`

Execution 2

FIGURE 2.1: Example of application of the FAME methodology. In this example

Micro-Benchmark 1 takes longer than Micro-Benchmark 2.

In order to explore the capabilities of the software-controlled priority mechanism in

the POWER5 processor, we performed a detailed set of experiments. Our approach

consists of analyzing the processor as a black-box, observing how the performance of a

workload changes as we increase or reduce the priority of threads.

In a SMT processor the performance of one process not only depends on the processor

architecture but also on the other processes running at the same time on the same core

and their specific program phases. Under such conditions, evaluating all the possible

programs and all their phase combinations is simply not feasible. Moreover, when

it comes to a real system evaluation, with the several layers of the running software,

the OS interferences and all the asynchronous I/O services, the problem becomes even

worse.

For this reason, we use a set of micro-benchmarks that stresses a particular processor

characteristic. While this scenario is not typical with real applications, this is one of

the best ways to understand the mechanism under evaluation. It provides a uniform

characterization based on specific program characteristics that can be mapped into real

applications. With real applications it would be impossible to attribute fine-grain per-

formance gain/loss to the prioritization mechanism due to applications own variability.

2.4.1 Running the experiments

This chapter uses the FAME (FAirly MEasuring Multithreaded Architectures) method-

ology [78][79]. In [78] the authors state that the average accumulated IPC of a program

is representative if it is similar to the IPC of that program when the workload reaches

a steady state. The problem is that, as shown in [78][79], the workload has to run for

a long time to reach this steady state. FAME determines how many times each bench-

mark in a multi-threaded workload has to be executed so that the difference between
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the obtained average IPC and the steady state IPC is below a particular threshold. This

threshold is called MAIV (Maximum Allowable IPC Variation). The execution of the

entire workload stops when all benchmarks have executed as many times as needed to

accomplish a given MAIV value.

For the experimental setup and micro-benchmarks used in this chapter, in order to ac-

complish a MAIV of 1%, each micro-benchmark must be repeated at least 10 times. In

our experiments we run two workloads, hence each experiment ends when both threads

re-execute at least 10 times. Note that, at this point the fastest thread might already

execute more than 10 times. Figure 2.1 shows an example where the second benchmark

is faster than the first. In this example, while the MB1 (MicroBenchmark1) executes

10 times, MB2 executes 14 times. It is important to note that the execution time differ-

ence is not constant. For instance, if we change the software-controlled priorities, MB2

may execute faster or slower, and therefore we must guarantee that both threads exe-

cute a minimum number of repetitions. In our experiments, the average execution time

for a thread is estimated as the total accounted execution time divided by the number

of complete repetitions. For example, in Figure 2.1, the total execution time of MB2 is

measured until it completes the 14th iteration and the time for the remaining incomplete

iteration is discarded.

Furthermore, as previously shown [34][36], normal software environment can insert

significant noise into performance measurements. To minimize such noise, both single-

thread andmultithreaded experiments were performed on the second core of the POWER5.

All user-land processes and interrupt requests (IRQ) were isolated on the first one, leav-

ing the second core as free as possible from noise.

2.4.2 Micro-benchmark

In a multi-threaded architecture, the performance of one process tightly depends on the

other process that it is running with. Moreover, the effect of the software-controlled pri-

orities depends on the characteristics of the benchmarks under study. In order to build a

basic knowledge of these effects, we developed a set of 15 synthetic micro-benchmarks,

each of them stressing a specific processor characteristic. This methodology allows us

to isolate independent behaviors of the platform. Furthermore, micro-benchmarks pro-

vide higher flexibility due to their simplicity.

We classify the micro-benchmarks in four groups: Integer, Floating Point, Memory

and Branch, as shown in Table 2.4. In each group, there are benchmarks with differ-

ent instruction latency. For example, in the Integer group there are short (cpu int)
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and long (lng chain int) latency operation benchmarks. In the Memory group,

ldint l2 is a benchmark with all loads always hitting in second level of data cache,

while ldint mem has all loads hitting in memory and, hence, missing in all cache lev-

els. As expected, ldint l2 has higher IPC than ldint mem. In the Branch group,

there are two micro-benchmarks with high (br hit) and low (br miss) hit prediction

rate.

All the micro-benchmarks have the same structure. They iterate several times on their

loop body and the loop body is what differentiates them. One execution of the loop body

is called a micro-iteration. Table 2.4 shows the details of the loop body structures for

the micro-benchmarks. The size of the loop body and the number of micro-iterations is

specific for each benchmark. The benchmarks are compiled with the xlc compiler with

-O2 option and their object code are verified in order to guarantee that the benchmarks

retain the desired characteristics.

TABLE 2.4: Loop body of the different micro-benchmarks.

Name Loop Body

cpu int a += (iter * (iter - 1)) - xi * iter : xi ∈ {1, 2, ..., 54}

cpu int add a += (iter + (iterp)) - xi + iter : xi ∈ {1, 2, ..., 54};

iterp = iter -1 + a

cpu int mul a = (iter * iter) * xi * iter : xi ∈ {1, 2, ..., 54};

lng chain int a += (iter * (iter - 1)) - x0 * iter : xi ∈ {1, 2, ..., 20}

b += (iter * (iter - 1)) - x1 * iter + a ...

a += (iter + (iter - 1)) - x10 * j ...

The cycle of instructions is repeated multiple times, for a total of 50 lines in the loop body.

br hit br miss if (a[s]=0) a=a+1; else a=a-1; s ∈ {1, 2, ..., 28}

a is filled with all 0’s for br hit and randomly (modulo 2) for br miss

ldint l1 ldint l2

ldint l3 ldint mem
a[i+s] = a[i+s]+1; where s is set that we always hit in the desired cache level.

ldfp l1 ldfp l2

ldfp l3 ldfp lmem
In the case of fp benchmarks, a is an array of floats.

cpu fp a += (tmp * (tmp - 1.0)) - xi * tmp—xi ∈ {1.0, 2.0, ..., 54.0}.

(float tmp = iter * 1.0)

After the first complete set of experiments, where we ran all the possible combinations,

we realized that some of the benchmarks behave equally and do not add any further in-

sight to the analysis. Therefore, we present only the benchmarks that provide differenti-

ation for this characterization work. For example, br hit, br miss, cpu int add,

cpu int mul and cpu int behave in a very similar way. Analogously, the load-

integers and load-floating-points do not significantly differ. Therefore, we present only

the results for cpu int, lng chain int, ldint l1, ldint l2, ldint mem and

cpu fp.
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2.4.3 The Linux kernel

Some of the priority levels are not available in user mode (Section 2.3.2). In fact,

only three levels out of eight can be used by user mode applications, the others are

only available to the OS or the Hypervisor. Modern Linux kernels (2.6.23) running

on IBM POWER5 processors exploit software-controlled priorities in few cases such

as reducing the priority of a process when it is not performing useful computation.

Basically, it makes use of the thread priorities in three cases:

• The processor is spinning for a lock in kernel mode. In this case the priority of

the spinning process is reduced.

• The kernel is waiting for operations to complete. For example, when the kernel re-

quests a specific CPU to perform an operation by means of a smp call function()

and it can not proceed until the operation completes. Under this condition, the

priority of the thread is reduced.

• The kernel is running the idle process because there is no other process ready to

run. In this case the kernel reduces the priority of the idle thread and eventually

puts the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of a processor’s context and restores it

to MEDIUM (4) as soon as there is some job to perform. Furthermore, since the kernel

does not keep track of the current priority, and to ensure responsiveness, it also resets the

thread priority to MEDIUM every time it enters a kernel service routine (for instance, an

interrupt, an exception handler, or a system call). This is a conservative choice induced

by the fact that it is not clear how and when to prioritize a processor context and what

the effect of that prioritization is.

In order to explore the entire priority range, we developed a non-intrusive kernel patch

which provides an interface to the user to set all the possible priorities available in kernel

mode:

• We make priority 1 to 6 available to the user. As mentioned in Section 2.3.2, only

three of the priorities (4, 3, 2) are directly available to the user. Without our kernel

patch, any attempt to use other priorities result in a nop operation. Priority 0 and

7 (context off and single thread mode, respectively) are also available to the user

through a Hypervisor call.
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• We remove the use of software-controlled priorities inside the Linux kernel, oth-

erwise the experiments would be effected by unpredictable priority changes.

• Finally, we provide an interface through the /sys pseudo file system which al-

lows user applications to change their priority.

For the experiments described in this chapter, the patch was applied to the standard

Linux kernel version 2.6.19.2.

2.5 Analysis of the Results

TABLE 2.5: IPC of micro-benchmarks in ST mode and in SMT with priorities (4,4).

pt stands for PThread and tt for total IPC.

Micro IPC in SMT (4,4)

benchmark IPC ldint l1 ldint l2 ldint mem cpu int cpu fp lng chain int

ST pt tt pt tt pt tt pt tt pt tt pt tt

ldint l1 2.29 1.15 2.31 0.60 0.87 0.79 0.81 0.73 1.57 0.77 1.18 0.42 0.91

ldint l2 0.27 0.27 0.87 0.11 0.22 0.17 0.19 0.27 0.87 0.25 0.65 0.27 0.72

ldint mem 0.02 0.02 0.81 0.02 0.19 0.01 0.02 0.02 0.90 0.02 0.39 0.02 0.48

cpu int 1.14 0.84 1.57 0.59 0.87 0.88 0.90 0.61 1.22 0.65 1.06 0.43 0.86

cpu fp 0.41 0.41 1.18 0.39 0.65 0.37 0.39 0.40 1.06 0.36 0.72 0.37 0.85

lng chain int 0.51 0.49 0.91 0.45 0.73 0.47 0.48 0.43 0.86 0.48 0.85 0.42 0.85

In this section, we show to what extent the prioritization mechanism of POWER5 effects

the execution of a given thread and the trade-off between prioritization and throughput.

The following sections use the same terminology as Section 2.3.2. We call the first

thread in the pair the “Primary Thread”, or PThread, and the second thread the “Sec-

ondary Thread” or SThread. The term PrioP refers to priority of the primary thread,

while PrioS refers to the priority of the secondary thread. The priority difference (often

expressed as PrioP − PrioS) can be positive in which case the PThread has higher

priority than the SThread or negative where the SThread has higher priority. The results

are normalized to the default case with priorities (4,4).

Table 2.5 presents the IPC values in single thread mode as well as in SMT mode with

priorities (4,4). For each row, the column pt shows the IPC of the primary thread and tt

shows the total IPC. For example, the second row presents the case where ldint l2

is the primary thread. The IPC ST column shows its single thread IPC value (0.27).

The third column present its IPC when running with ldint l1 (0.27) and the fourth

column shows the combined IPC of ldint l1 and ldint l2 when running together

(0.87).
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In the Sections 2.5.1 and 2.5.2 we discuss about the effects of negative and positive

prioritization. This effect is not symmetric as it follows the formula 2.1. For instance,

at priority +4 a thread receive 31 of each 32 decode slots, which represents an increase

of 93.75% of the resources when compared to the baseline, where a thread receives half

of the resources. However, at priority -4, a thread receives only one out of 32 decode

slots, which represents 16 times less resources.

On the Figures 2.2 and 2.3, the results represent the relative performance of the primary

thread shown in the graph’s caption when coscheduled with each one of the other bench-

marks in the legend. The results are a factor of the baseline case with no prioritization.

2.5.1 Effect of Positive Priorities

In this section, we analyze the performance improvement of the PThread with different

SThreads using positive priorities (PrioP > PrioS). Figure 2.2 shows the performance

improvement of the PThread as its priority increases with respect to the SThread. For

example, Figure 2.2(c) shows the results when we run cpu int as PThread.

In general, the threads that have low IPC and are not memory-bound, such as lng

chain int and cpu fp, benefit less from having high priorities. Memory-bound

benchmarks, such as ldint l2 and ldint mem, benefit from the prioritization mech-

anism when they run with another memory-bound thread. This improves performance

up to 240% for ldint l2 and 70% for ldint mem. On the other hand, high IPC

threads, like cpu int and ldint l1 are very sensitive to the prioritization as they

can benefit from the additional hardware resources. Therefore, their prioritization usu-

ally improves the total throughput and increases their performance.

The results show that the memory-bound benchmarks are also effected by the POWER5

prioritization mechanism, when competing with other benchmarks of similar require-

ments. They are less sensitive than the purely cpu-bound benchmarks, and they only

benefit from an increased priority when co-scheduled with other memory-bound bench-

marks. As a rule of thumb, memory-bound benchmarks should not be prioritized except

when running with other memory-bound benchmark. Section 2.5.3 shows that priori-

tizing these workloads is often in detriment of the overall system performance.

In addition, a priority difference of +2 usually represents a point of relative saturation,

where most of the benchmarks reach at least 95% of their maximum performance. The

memory-bound benchmarks represent an exception to this rule, where the largest per-

formance increase occurs from a priority difference of +2 to +3.
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FIGURE 2.2: Performance improvement of the PThread as its priority increases with

respect to the SThread. Note the different scale for ldint l1.

2.5.2 Effect of Negative Priorities

In this section, we present the effects of the negative priorities (PrioP < PrioS) on the

micro-benchmarks. Figures 2.3 (a) to (e) show that setting negative priorities heavily

impacts the performance of all micro-benchmarks except for ldint mem. The effect of

the negative priorities on the performance is much higher than the effect of the positive

priorities. While using positive priorities could improve performance up to four times,

negative priorities can degrade performance by more than forty times.

Figure 2.3 (f) presents that ldint mem is insensitive to low priorities in all cases other

than running with another thread of ldint mem. In general, a thread presenting high
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FIGURE 2.3: Performance degradation of the PThread as its priority decreases with

respect to the SThread.

latency memory operation, long dependency chains or slow complex operations is less

effected by a priority reduction.

Memory-bound benchmarks are the ones that impact the other threads the most. They

also present clear steps of performance impact when the priority difference changes

from -2 to -3, and from -4 to -5. The priority difference of -5 is extreme since the

PThread obtains only the left-overs from the memory thread. In general, a priority

difference like -5 should only be used for a transparent background thread in which the

performance is not important.

While priority difference of +2 usually yields close to the maximum performance, pri-

ority -3 results in a clear delta on performance loss. For memory-bound threads, there
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is no significant performance variation from 0 to -2. Considering that priority differ-

ence +2, most of the high IPC threads reach 95% of their maximum performance, this

suggests that priority differences larger than +/-2 should normally be avoided. Section

2.5.3 shows the additional throughput that can be obtained based on this conclusion.

2.5.3 Optimizing IPC Throughput
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FIGURE 2.4: Throughput w.r.t. execution (4,4). The legend shows the single-thread

IPC of benchmarks.

POWER5 employs several hardware mechanisms to improve the global throughput,

like stalling the decode of the low IPC tasks or flushing the dispatch of threads that
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would otherwise decrease the overall performance of the system. The POWER5 built-

in resource balancing mechanism is effective in most cases where changing the thread’s

priorities negatively impact the total throughput.

Even though the baseline is effective, Figure 2.4 shows several cases where the total

throughput can be improved up to two times or more. This comes at the expense of

severe slowdown of the low priority thread, especially when the low priority thread has

low IPC such as lng chain int. These cases can be exploited for systems where

total throughput is the main goal and where the low IPC thread can actually afford the

slowdown.

Furthermore, while the performance for the cpu-bound benchmarks increase with their

priority, the performance of a memory benchmark remains relatively constant. Us-

ing the prioritization mechanism for this combination yields, almost always, significant

throughput improvement. In general, we obtain an IPC throughput improvement when

we increase the priority of the higher IPC thread in the pair.

2.5.3.1 Case Study

In order to verify whether our findings can be applied to real workloads, this section

shows how software-controlled prioritization can improve total IPC. We analyze the

behavior of two pairs of SPEC CPU 2000 and 2006 benchmarks [41]. The first one is

composed of 464.h264ref (from now on referred as h264ref ) and 429.mcf (from now

on referred as mcf ). The second pair is composed of 173.applu (from now on referred

as applu) and 183.equake (from now on referred as equake). We take as the baseline the

scenario where they run side by side, on different contexts of the same core, without any

type of software-controlled prioritization (i.e., with the same priority). The experiments

follow the FAME methodology.

When running with the default priorities (4,4), h264ref has an IPC of 0.920 and takes

about 3254 seconds to complete, and mcf takes 1848 seconds and reaches an IPC of

0.144. The total IPC for this configuration is 1.064. Figure 2.5 (a) shows the perfor-

mance of both benchmarks as we increase the priority of h264ref. We can see that,

until priority difference +2, the performance of the mcf is reduced by 13.2%, while

h264ref gains 10.4%. While the gain and the loss are very similar in performance, the

overall throughput increases by 7.2%. Further increase in the throughput is possible by

degrading low IPC benchmark. The peak IPC is reached when mcf runs 32% slower

and h264ref runs 38% faster than the base case with default priorities. In this case, the

overall system performance increases by 23.7%.
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For the second pair, with the default priorities, applu has an IPC of 0.500 and completes

in 240 seconds. equake takes 74 seconds and has an IPC of 0.140. Together, they reach

a total IPC of 0.630 (Figure 2.5 (b)). In this case, the peak combined IPC is obtained

when applu receives priority +5. It represents a 14% of improvement when compared

to the default case.

(a) h264ref and mcf

(b) applu and equake

FIGURE 2.5: Total IPCs with increasing priorities
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2.5.4 Optimizing execution time

The highest throughput does not always directly translate into the shortest execution

time of a whole application [12]. Most of the parallel applications have synchronization

points where all the tasks must complete some amount of work in order to continue.

Load balancing in parallel application is a hard problem since it is rarely the case where

the synchronized tasks finish perfectly at the same time. In other words, usually a task

has to wait for other tasks to complete. This could clearly delay the progress of the

whole program.

2.5.4.1 Case Study

In this section we present an example where we are able to improve the overall ap-

plication execution time by using the prioritization mechanism. In this example, we

apply a LUmatrix decomposition over a set of results produced by a Fast Fourier Trans-

formation (FFT) for a given spectral analysis problem (Figure 2.6(a)). One possible

organization of the problem would create a software pipeline where one thread runs the

Fast Fourier Transformation, producing the results that will be consumed by the second

thread on the next iteration, by applying LU over parts of this output (Figure 2.6(b)).

(a) Single-threaded execution

(b) Multithreaded execution

FIGURE 2.6: Single-threaded and multithreaded (with a software pipeline) organiza-

tions of LU and FFT combination.
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In our measurement, the FFT takes for 1.86 seconds in single-thread mode, and the LU

takes 0.26 seconds to process its part of the problem. In single-thread mode, the pro-

cessor would first execute the FFT and then the LU, thus, each iteration would require

2.12 seconds to complete. In the multi-threaded scenario, there is only FFT running

in the first iteration to produce the first input of the LU. On the remaining iterations,

both threads would be running in parallel and the execution time of an iteration would

be the execution time of the longest thread. As we can see on the Table 2.6, when run

together in SMT mode, the FFT takes 2.05 seconds and the LU decomposition takes

0.42 seconds. The LU thread would waste 1.63 seconds waiting for the other task to

complete. Using the prioritization mechanism, we could increase the priority of FFT so

it executes faster, reducing the unbalance.

TABLE 2.6: Execution time, in seconds, of FFT and LU.

Priority Priority FFT exec. LU exec. Iteration exec.

Difference time time time

single-thread 1.86 –

mode - – 0.26 2.12

4,4 0 2.05 0.42 2.05

5,4 +1 2.02 0.48 2.02

6,4 +2 1.91 0.64 1.91

6,3 +3 1.87 2.33 2.33

Table 2.6 shows that the best case consists of running with a priority pair (6,4), which

yields an iteration execution time of 1.91 seconds. Effectively this represents a 10%

improvement when compared to the execution time in single thread mode (where it

would be necessary to run the FFT followed by LU) and 9.3% of improvement over the

default priorities. On the other hand, by applying too much prioritization, it’s possible

to inverse the unbalance, which normally represents a performance loss (priority (6,3)).

The idea of using POWER5 prioritization mechanisms to balance real HPC applica-

tions, reducing their execution time, will be further explored in the next chapters of this

thesis.

2.5.5 Transparent execution

Dorai and Yeung [28] propose transparent threads, which is a mechanism that allows

background threads to use resources that a foreground thread does not require for run-

ning at almost full speed. In POWER5 this is implemented by setting the priority of the

“background” thread to 1 [35].
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FIGURE 2.7: Primary thread Execution Time with respect to Single-Thread when

SThread has priority 1

Figure 2.7 shows the effect of background threads over foreground threads when a fore-

ground thread runs with priority 6 (Figure 2.7 (a)) and with priority 5 (Figure 2.7 (b)).

We observe that the most effected threads are ldint l1, cpu int and ldint l2,

when they are running with a memory-bound background thread.

Figure 2.7(c) presents the maximum effect that a background thread causes on the other

foreground threads (ldint l2, cpu fp, and lng chain int) as we reduce its pri-

ority from 6 to 2. In the figure, the different foreground threads run with ldint mem

in background as it proved to be the worst case for all combinations.

For cpu fp and lng chain int the effect of the background thread increases lin-

early as we reduce the priority from 6 to 2 until about 10% of their ST performance.

This is not the case for ldint mem that suffers a sudden increment when its prior-

ity is 3 or 2. In the chart, the label ’ld int mem 2’ represents the performance of the

ldint mem when it runs as a foreground thread and the ldint mem is not the back-

ground thread. The graph shows that the effect that any other micro-benchmark causes

on ldint mem is about 7%. We can conclude that, unless running with another copy
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of itself, ldint mem can always run as foreground thread without much performance

degradation.

Finally, Figure 2.7(d) shows the performance of the background threads. Each point

represents the average for all background threads: for example, the point ldint mem

(6,1) represents the average performance of the background thread in the experiments

(ldint mem, cpu int), (ldint mem, cpu fp), (ldint mem, lng chain int),

(ldint mem, ldint l1), and (ldint mem, ldint mem) using priorities (6,1). We

can observe that in the worst performance degradation case (under 10%) for cpu fp,

the background threads obtain an IPC of 0.23. For the lng chain int benchmark

this IPC is 0.15.

In general, we can establish that the high-latency threads are the best candidates for

foreground thread and the worst background thread. They suffer little impact from a

background thread, but heavily effect the performance when running in background.

Furthermore, threads with very high performance easily get effected by other threads

(see ldint l1 on Figure 2.7 (a)). They may not be suitable to run with a background

thread.

2.6 Conclusions

The IBM POWER5 processor presents two levels of thread prioritization: the first level

provides dynamic prioritization through hardware, while the second level is a software-

controlled priority mechanism that allows a thread to specify a priority value from 0 to

7. Currently, this mechanism is only used in few cases in the software platforms even if

it can provide significant improvements on several metrics. We argue that it is mainly

due to the fact that there are no previous works aimed at the characterization of the

effects of this mechanism.

In this chapter we perform an in-depth evaluation of the effects of the software-controlled

prioritization mechanism over a set of synthetic micro-benchmarks, specially designed

to stress specific processor characteristics. We present the following conclusions from

our micro-benchmarks. First, workloads presenting a large amount of long-latency op-

erations are less influenced by priorities then the ones executing low-latency operations

(i.e., integer arithmetic). Second, it is possible, by using the prioritization mechanism,

to improve the overall throughput up to two times, in very special cases. However,

those extreme improvements often imply drastic reduction of the low IPC thread’s per-

formance. On less extreme cases, it is possible to improve the throughput by 40%.
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And third, we show that, instead of using the full spectrum of priorities, only priorities

up to +/-2 should be used, while “extreme” priorities should be used only when the

performance of one of the two threads is not important.

In addition, we present three case studies where priorities can be used to improve the

total throughput by 23.7%, the total execution time by 9.3% or to have a background

thread. Finally, we conclude that the prioritization mechanism in POWER5 is a pow-

erful tool that can be used to improve different metrics. This work opens a path into

broader utilization of a software/hardware co-design that allows better balancing of the

underlying hardware resources among the threads.

In the following chapters, we explore the use of software controlled hardware resource

allocation as a way to balance high performance computing applications. Chapter 3

presents a proof of concept of this technique with a deeper study than the one presented

in Section 2.5.4.1.



Chapter 3

Balancing HPC Applications Through

Smart Allocation of Resources in MT

Processors

3.1 Introduction

High Performance Computing (HPC) applications are usually Single Process-Multiple

Data (SPMD) and are implemented using an MPI or an OpenMP library. In MPI appli-

cations, all the processes execute the same code on different data sets and use synchro-

nization primitives (such as barriers or collective operations) to coordinate their work.

Since the processes execute the same code, they are supposed to reach their synchro-

nization points roughly at the same time. However, this is not always the case.

Some applications among those running on MareNostrum, the supercomputer installed

at the Barcelona Supercomputing Center (BSC), suffer from imbalance, i.e. the execu-

tion time of the processes in the parallel application is not the same (in Section 3.2 we

will see some causes of applications’ imbalance). Therefore, if a process runs for longer

than the others belonging to the same application, all the other processes have to wait

for that process to complete its execution. During this time the CPUs of the waiting

processes are idle, thus, not performing any useful job. As an example, let us assume

that one process has to complete its execution while all the other processes are waiting

for it to reach the synchronization point; then, in MareNostrum, up to 10239 processor

may be idle, resulting in a significant loss of performance and waste of resources.

31
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Resource sharing makes multi-threaded processors have good performance/cost and

performance/power consumption ratios [5], two desirable characteristics for a Super-

computer. As a consequence, most of the current Supercomputers already use proces-

sors with some multi-threaded features [4].

Usually, software has no control over how processor resources are distributed among

running threads in multi-threaded processors. For example, in an SMT processor the

instruction fetch policy, decides how instructions are fetched from the threads, thereby

implicitly determining the way internal processor resources are allocated to the threads.

This is an undesirable characteristic that makes the execution time of programs unpre-

dictable [17]. In order to alleviate this problem, recently, some processor vendors have

equipped their MT processors with mechanisms that allow the software to control pro-

cessor’s internals resource allocation, and thus, control application’s speed. Our view

is that these mechanisms open new opportunities to improve applications performance

as they offer fine-grain ways to control the progress of applications by allocating or

deallocating processor resources to them.

This chapter is a first step towards that direction. We show how re-assigning hardware

resources in a multi-threaded processor can reduce the imbalance in parallel applica-

tions, and hence improving performance. In particular we propose a way to regain

balance assigning more hardware resources to processes that computes for more time,

reducing their execution time and, thus, the waiting time of all the other processes be-

longing to the same HPC application. This solution is transparent to the users: since

the solution is at Operating System (OS)/hardware level, users do not need to know

the processor’s implementation details at compile time nor to adapt their programming

model in order to use our proposed solution. To the best of our knowledge, this is the

first time that such a solution is implemented in a real machine.

We explored this idea experimentally on a real system with a MT processor, the IBM

POWER5TM [69]. The POWER5 is a dual-core, 2-way SMT processor that allows us

to change the way hardware resources are assigned to the core’s contexts by means

of a thread context priority (or hardware thread priority1) that controls the number of

resources each context receives. This machine runs a Linux kernel that we had to mod-

ify in order to allow the HPC application to exploit the advantage of re-assigning the

processor’s resources. We performed several experiments with MPI applications:

1. We started from a micro-benchmark (Metbench), developed at BSC, where we

introduce some artificial imbalance.

1The hardware thread priorities mentioned here are independent of the operating systems concept of

thread priority.
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2. In the second experiment, we ran the widely used the BT-MZ NAS [64] bench-

mark; this version suffers of imbalance.

3. Finally, we used a real application running on MareNostrum, SIESTA [2].

Our results show an improvement of 18% for the NAS benchmark and 8.1% for SIESTA.

In addition, our results also show that this mechanism of controlling hardware resources

is a powerful tool that, if used incorrectly, may lead to significant performance loss.

Moreover, non-HPC applications may benefit differently from re-assigning hardware

resources or not at all.

The rest of this chapter is organized as follows: Section 3.2 shows the imbalance prob-

lem in HPC applications; Section 3.3 presents similar works in the same area; Sec-

tion 3.4 introduces our solution based on smart allocation of hardware resources; Sec-

tion 3.5 shows our set of experiments on the IBM POWER5 system for our micro-

benchmark, a standard benchmark and a real application; finally Section 3.6 provides

our conclusion and future work.

3.2 Imbalance in HPC applications

HPC applications are usually SPMD, which means that every process executes the same

code on different data. For example, let us assume that an HPC application is perform-

ing a matrix-vector multiplication and that each process receives a sub-matrix and the

part of the vector required to compute the sub-matrix by vector multiplication. If the

matrix can be divided into homogeneous parts (i.e., they require the same amount of

time to be processed), all the processes in the parallel application would finish, ideally,

at the same time.

However, the data set could be very different: let us say that, in the previous example,

the matrix is sparse or triagonal, hence, the time required to process the data sub-set

could vary as well. In this scenario the amount of time required to complete the sub-

matrix by vector multiplication depends on the number of non-zero values present in

the sub-matrix. In the extreme case, one process could receive a full sub-matrix while

another an empty one. It is clear that the former process requires much more time to

reach the synchronization point than the latter.

We classify the sources of imbalance in two main classes: intrinsic and extrinsic factors

of imbalance.
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3.2.1 Intrinsic imbalance

We refer to intrinsic imbalance as the imbalance an application experiences because of

data (for example a sparse matrix) or algorithm (master-slave architecture) imbalance.

The causes for the imbalance are internal to the application’s code, input set or both.

The intrinsic imbalance could be caused by several factors, here we point some of them

out:

Input set: As we already said, this scenario happens when a process has a small input

set to work on while another has a large amount of data to process.

Domain: Iterative methods approximate the solution of a problem (for example, Partial

Differential Equations, PDE) with a function in some domain starting from an initial

condition. The domain is divided in several sub-domains and each process computes its

part of the solution. At the end of every iteration, the error made in the approximation

is computed and, eventually, another iteration is to be started. If the function in some

part of the domain is smooth, only few iterations are required to converge to a good

approximation. Conversely, if the function has several picks in the sub-domain, more

iterations are necessary to find a good solution and/or more points in the domain have

to be considered during the computing phase.

Data exchanging: During their execution, processes may require to exchange data

among themselves. If the two peers are on the same node, the latency of the communi-

cation is small; if a process needs to exchange data with a neighbor on another node the

latency is large, even larger if the destination process is far away in the network.

In all the previous cases,the application might result to be imbalanced.

3.2.2 Extrinsic imbalance

Even if both the application’s algorithm and the input set are balanced, the execution of

the parallel application could still be imbalanced. This is caused by external factors that

slow some processes down (but not others). For example, the Operating System (OS)

might decide to run another process (say a kernel daemon) in place of the MPI process

running on one CPU. Since that MPI process is not able to run all the time while the

others are running, it takes more time to complete, making all the other processes wait

for it.
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Those external factors are the sources of extrinsic imbalance. There may be several

causes for the imbalance:

OS noise: The CPU is used by the OS to perform services such as handling interrupts,

reclaiming memory, assigning memory on demand, etc. The OS noise has been recog-

nized as one of the major source of extrinsic imbalance [36, 65, 74]. A classical example

is the interrupt annoyance problem present in Intel processors: all the interrupts coming

from external devices are routed to CPU0, therefore, the OS noise caused by executing

the interrupt handlers on CPU0 is higher than the noise on the other CPUs.

User daemons: It is common that HPC systems also run profile or statistic collectors

together with the HPC application. These activities could steal computing power from

one process, delaying it.

Network topology: Exchanging data between processes in the same sub-network is

faster than exchanging data between processes in different sub-network; the same rule

applies to processes communicating inside a NUMA domain versus processes running

in different NUMA domains. In general, if the job scheduler has placed processes that

need to communicate “far away”, their communication latency could increase so much

that the whole application will be affected.

An expert programmer could reduce the intrinsic imbalance in the application. How-

ever, this is not an easy task, as the imbalance can be caused by the algorithm, but it

can also by the input data set, changing distribution and intensity according to different

inputs. Even worse is the case of extrinsic imbalance: those factors are neither under

the control of the application nor of the programmer and there is no straightforward way

to solve this problem. Thus, it is clear that a mechanism that aims to solve the imbal-

ance of an application should be transparent to the user, regardless of the programming

model, libraries or input set.

3.3 Related work

Traditional solutions to attack the problem of load imbalance in HPC applications typ-

ically use dynamic data re-distribution. For OpenMP applications load balancing may

be performed using some of the existing loop scheduling algorithms that assigns iter-

ations to threads dynamically [7]. MPI applications are much more complex because

data communications are defined explicitly in the algorithm by programmers. Static

approaches for distributing data using sophisticated tools have been proposed: for ex-

ample, METIS [1] analyzes data and tries to find the best data distribution. These
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approaches achieve good performance results but have the drawback that they must be

repeated for each input data set and architecture. Dynamic approaches have also been

proposed in the literature (Schloegel et al. [67] and Walshaw et al. [80]). The authors

try to solve the load-balancing problem of irregular applications by proposing mesh

repartitioning algorithms and evaluating the convenience of repartitioning the mesh or

adjusting it.

Processing re-distribution is another approach that consists of assigning more resources

to those processes that compute for more time. In the case of OpenMP, this can be

useful when using nested parallelism, assigning more software threads to those groups

with high load [29]. The case of MPI is much more complex because the number of

processes is statically determined when starting the job (in case of malleable jobs),

or when compiling the application (in case of rigid jobs). This problem has been also

approached through hybrid programming models, combining MPI and OpenMP. Huang

and Tafti [42] balance irregular applications by modifying the computational power

rather than using the typical mesh redistribution. In their work, the application detects

the overloading of some of its processes and tries to solve the problem by creating new

software threads at run time. They observe that one of the difficulties of this method is

that they do not control the operating system decisions which could oppose their own

ones.

Concerning the use of SMT architectures for HPC applications, several studies [21, 24]

show that Hyper-Threading (the SMT implementation of Intel Processors) improve per-

formance for some workloads. However, for other workloads there are many conflicts

when accessing shared resources, creating a negative impact on the performance. In [24]

the study is performed for MPI applications while in [21] the study focuses in OpenMP

applications. In [21] the authors propose a mechanism that, given a multiprocessor ma-

chine with Hyper-Threading processors, dynamically deactivates the Hyper-Threading

in some processors in order to improve the performance of the workload under study.

Our proposal is orthogonal to both the thread re-distribution and the dynamically acti-

vating Hyper-Threading. Let us assume that we want to run an HPC application on a

cluster having several IBM POWER5 processors. The proposal in [21] can be used to

determine in which cores SMT has to be deactivated. For those cores with the SMT

feature active, our proposal can be used to select the appropriate hardware priority to

reduce imbalance. Compared with thread-distribution, our contribution can be seen as

low level solution for load balancing.



Chapter 3. Balancing HPC Applications Through Smart Allocation of Resources in MT

Processors 37

3.4 Our Proposal

Balancing a HPC application by hand is a time-consuming task and may require quite

a lot of effort. In fact, the programmer has to distribute the data among the processes

considering the way the algorithm has been implemented and the correctness of the

application. Moreover, this work has to be done for each application and, likely, every

time the input changes. As we will see later, our proposal is transparent to the user and

independent from the applications or the input set.

With the arrival of MT architectures, and in particular those that allow the software to

control processor’s resource allocation, new opportunities arise to mitigate the problem

of imbalance in HPC systems. This is mainly due to the fact that the software is allowed

to exercise a fine control over the progress of tasks, by allocating or deallocating pro-

cessor resources to them. Such a transparent, fine-grain control cannot be achieved by

previous solutions for load imbalance; in fact, even if a lot of processors with shared

resources have been introduced in the market since early 90s, very few of them allow

the software to control how internal resources are shared. We think that allowing the

software to control how to assign shared resources is a key factor for HPC systems. In

this view, having MT processor able to provide such mechanism will be essential for

improving the performance of HPC systems.

Our solution for balancing HPC applications consists of assigning more hardware re-

sources to the most compute-intensive processes (the bottleneck). Giving this process

more hardware resource shall decrease its execution time and, since this process is the

bottleneck of the application, the execution time of the whole MPI application.

Clearly the underlying processor has to support this capability to re-assign processor

resources among running threads. Currently, multi-threaded processors like the IBM

POWER5 [69] and POWER6 [53] or the Cell processor [44, 45] provide such a ca-

pability with their thread priority mechanisms: the higher the priority of one context,

the higher the amount of resources it receives. In this chapter, we focus on the IBM

POWER5 but our idea is general and can be also applied to other MT processors that al-

low the OS to the allocation of processor’s resources (for example, partitioning a shared

L2 cache in a multi-core CPU [62, 66]). The IBM POWER5 processor is used, among

others, by ASC Purple, installed at the Lawrence Livermore National Laboratory2.

2The 3rd supercomputer in the Top500 list of 06/2006, the 11th at the list of 11/2007.
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More details about the POWER5 prioritization mechanism are available in Chapter 2.

Specifically, the details about the prioritization interface to the software are available in

Section 2.3.2.

In addition, recall that, in the previous chapter (Section 2.4.3), we showed that not all the

priorities are available from the user-level and why a special kernel patch was needed to

enable the use of the full spectrum of POWER5 software-controlled hardware priorities.

For the proposal in the current chapter, we employ the same patch developed to perform

the characterization in Chapter 2 and described in Section 2.4.3.

In this moment the patch only provides a mechanism to set all the priorities (available

at OS level) from user applications. It is responsibility of the user applications (or run

time systems) to balance the system load using this interface. This is the first step to

prove that our proposal is a good solution for the problem of imbalance in HPC. Our

next step, explored in the following chapters of this thesis, will be to have systems that

dynamically change the priority of the running processes so that more resources are

assigned to the most intensive processes automatically.

(a) Imbalanced HPC application (b) More balanced HPC application

FIGURE 3.1: Expected effect of the proposed solution (T ′ < T ).

We should point out that increasing the performance of one process by giving it more

hardware resources, does not come for free. In fact, at the same time, the performance

of the other process running on the same core, therefore sharing the resources with the

former process, reduces. Figure 3.1 shows a synthetic example that illustrates this case:

in Figure 3.1(a) P1 shares resources with P2, while P3 shares them with P4; P2, P3

and P4 take the same amount of time to reach their synchronization point but P1 takes

much more time. As a result P2, P3 and P4 are idle for a long time. In Figure 3.1(b)

P1 uses more hardware resources and its execution time decreases; P2’s execution

time, instead, increases since it runs with less hardware resources. Still P2 has enough

“spare time” and its slowdown does not affect the application’s performance because it

is not the bottleneck. On the other hand, the performance improvement of P1 directly

translates into a performance improvement for the whole application, as it is possible to

see confronting Figures 3.1(a) and 3.1(b).
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Finally we would like to point out that we made no assumption on what kind of appli-

cation, the programming model or the input set the programmer has to use. Our only

assumption regards the underlying processor, which must provide a shared resource

control mechanism. Besides that, our solution is at OS level and completely transparent

to the users, who are free to use the MPI, OpenMP or whatever programming model

or library they wish. Moreover the approach is dynamic and the amount of resources

assigned to a process can change according to the input set provided to the application.

3.5 Experimental Results

In order to validate our proposal we performed experiments on an IBM OpenPower 710

server, which has one POWER5 processor.

Since MPI is the most common protocol, we tested our proposal using MPI applications

(in the experiments we used the MPI-CH 1.0.4p1 implementation of MPI protocol).

We present our results for three different cases: Section 3.5.1 shows how the IBM

POWER5 priority mechanism works using our micro-benchmark (Metbench); Sec-

tion 3.5.2 provides details on how we used the hardware priorities to balance a widely

used benchmark (BT-MZ) and improve its performance. Finally Section 3.5.3 presents

the results for a real application frequently executed on MareNostrum (SIESTA).

In order to present experiments in a simple way, we used as metric the total execution

time of the application. We used PARAVER [52], a visualization and performance

analysis tool developed at CEPBA, to collect data and statistics and to show the trace of

each process during the tests.

3.5.1 Metbench

Metbench (Minimum Execution Time Benchmark) is a suite of MPI micro-benchmarks

developed at BSC whose structure is representative of the real applications running on

MareNostrum. Metbench consists of a framework and several loads. The framework is

composed by a master process and several workers: each worker executes its assigned

load and then waits for all the others to complete their task. The role of the master is

to maintain a strict synchronization between the workers: once all the workers have fin-

ished their tasks, the master eventually starts another iteration (the number of iterations

to perform is a run time parameter). The master and the workers only exchange data
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during the initialization phase and use an mpi barrier() to get synchronized. In the

traces shown in this section, the master thread corresponds to the first thread and is not

balanced as it will be always idle, waiting for the conclusion of all worker threads.

One of the goals of Metbench is to allow researchers at BSC to understand the perfor-

mance and capabilities of a processor or a cluster. In order to do that, we developed

several loads, each one stressing a different processor resource (the Floating Point Unit,

the L2 cache, the branch predictor, etc) for a given amount of time. Most of these loads

are based on the micro-benchmarks presented in Section 2.4.2.

In this experiment we introduce imbalance in the MPI application by assigning to a

worker a larger load than the one assigned to the worker on the same core. In this way,

the faster worker will spend most of its time waiting for the slower worker to process its

load. As we will see in Section 3.5.2 and Section 3.5.3 this scenario is quite common

for both standard benchmarks and real applications. Figure 3.2 shows the effect of the

proposed solution on Metbench. Each horizontal line represents the activity of a process

and each color represents a different state: dark bars show computing time while grey

bars show waiting time (at the end of each computation phase there is a black bar that

represents statistical operations). In this example, processes P1 (the master), P2, and

P3 are mapped to the first core of the POWER5, while processes P4 and P5 are mapped

to the other core. The x-axis represents time.

Case A: Figure 3.2(a) represents our reference case, i.e., the MPI application is running

with default priorities (4). As we can see from figure 3.2(a) Metbench shows a great

imbalance: more specifically, processes P1 and P3 spend most of their time waiting for

processes P2 and P4 to complete their computing phase.

Case B: Using our solution we increased the priority of P2 and P4 (the most computing

intensive processes) up to 6, while the priority of P1 and P3 are set to 5 (remember from

Section 2.3.2 that what really matters is the difference between the thread priorities, here

P1 and P3 are running with less priority than in Case A). Figure 3.2(b) shows how the

imbalance has been reduced, also reducing the total execution time (from 81.64 sec to

76.98 sec, 5.71% of improvement).

Case C: Then we tried to reduce again the amount of hardware resources assigned to

P1 and P3, hoping to speed P2 and P4 up. Indeed, we obtained an even more balanced

situation where all the processes compute for (roughly) the same amount of time. The

total execution time reduces to 74.90 sec (8.26% of improvement over Case A).

Case D: Next, we reduced again the amount of resources given to P1 and P3. As

we can see from Figure 3.2(d) we reversed the imbalance, i.e., now P2 and P4 are so
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(a) Metbench Case A

(b) Metbench Case B

(c) Metbench Case C

(d) Metbench Case D

FIGURE 3.2: Effect of the proposed solution on Metbench. Each trace represents only

some iterations of the application.

much faster than P1 and P3 that they spend most of their time waiting. As a result the

execution time (95.71 sec) increases.

Case D shows an interesting property of the IBM POWER5 hardware priority mech-

anism: the hardware thread priority implementation is a powerful tool but the per-

formance of the penalized process can be reduced much more than linearly (in fact,

exponentially), thus, it could become the new bottleneck.
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TABLE 3.1: Metbench balanced and imbalanced characterization

Test Proc Core % Comp Priority Exec. Time

A P1 1 24.32 4 81.64s

P2 1 98.99 4

P3 2 24.31 4

P4 2 99.99 4

B P1 1 51.16 5 76.98s

P2 1 99.82 6

P3 2 51.18 5

P4 2 99.98 6

C P1 1 98.96 4 74.90s

P2 1 98.56 6

P3 2 97.01 4

P4 2 98.37 6

D P1 1 99.87 3 95.71s

P2 1 73.25 6

P3 2 99.72 3

P4 2 73.25 6

3.5.2 BT-MZ

Block Tri-diagonal (BT) is one of the NAS Parallel Benchmarks (NPB) suite. BT solves

discretized versions of the unsteady, compressible Navier-Stokes equations in three spa-

tial dimensions, operating on a structured discretization mesh. BT Multi-Zone (BT-

MZ) [48] is a variation of the BT benchmark which uses several mesh (named zone)

for, in realistic applications, a single mesh is not enough to describe a complex domain.

Besides the complexity of the algorithm, BT-MZ shows a behavior very similar to our

Metbench benchmark: every process in the MPI application performs some computa-

tion on its part of the data set and then exchanges data with its neighbors asynchronously

(using mpi isend() and mpi irecv()); after this communication phase (which

lasts for a very short time, around 0.10% of the total execution time) each process waits

(with a mpi waitall() function) for its neighbors to complete their communication

phases. In this way, each process gets synchronized with its neighbors (note that this

does not mean that each process gets synchronized with all the other processes). Once

a process has exchanged all the data it had to exchange, a new iteration can start and the

previous behavior repeats again till the end of the application (in our experiments we

used BT-MZ with default values: class A with 200 iterations).

Case A: Figure 3.3(a) shows the BT behavior in the reference case, i.e. when process

Pi is assigned to CPUi and the priority of all the processes is 4. After an initialization

phase (white bars at the beginning of the execution of each thread), all the processes
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(a) BT-MZ Case A

(b) BT-MZ Case B

(c) BT-MZ Case C

(d) BT-MZ Case D

FIGURE 3.3: Effect of the proposed solution on BT-MZ. Each trace represents only

some iterations of the application.

reach a barrier (synchronization point). From this point on, the real algorithm starts:

during every iteration, each process alternate computing phases (dark) with synchro-

nization phases (grey) at the end of communication phases (black).

It is easy to see from figure 3.3(a) that BT-MZ shows a great imbalance3.

The imbalance is caused by the fact that some processes (for example process P1)

have a small part of the data to work on, while other processes (for example, processes

P4) have a large amount of data to take care of. It is also clear that process P4 is

the bottleneck of the application and that speeding up this process will improve overall

performance.

In order to solve the imbalance introduced by data repartition in BT-MZ, we ran pro-

cess P1 and P4 on the same core and assigned more hardware resources to the latter,

improving its performance while decreasing P1’s performance. This mapping should

3Even if the goal of this chapter is not to show whether SMT processors are useful in HPC or not, the

table also shows the ST mode performance (only one process per core) of the application.
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TABLE 3.2: BT-MZ balanced and imbalanced characterization

Test Proc Core % Comp Priority Exec. Time

ST P1 1 49.33 7 108.32s

P2 2 99.46 7

A P1 1 17.63 4 81.64s

P2 1 28.91 4

P3 2 66.47 4

P4 2 99.72 4

B P1 1 52.33 3 127.91s

P2 2 99.64 3

P3 2 28.87 6

P4 1 46.26 6

C P1 1 65.32 4 75.62s

P2 2 99.68 4

P3 2 53.78 6

P4 1 85.88 6

D P1 1 82.73 4 66.88s

P2 2 73.68 4

P3 2 66.40 5

P4 1 99.72 6

allow us to give a large amount of resources to process P4 without reversing the imbal-

ance, i.e., without making process P1 slower than P4 like it was the case for Metbench

(Case D). In fact, this mapping seems reasonable, for our goal is to increase the per-

formance of P4 (the most computing intensive process) and we know that, with this

operation, we will reduce the performance of the process running on the same core with

P4. We chose P1 because it is the process with the shortest computation phase.

Case B: In our first attempt to reduce the imbalance we assigned priority 3 to processes

P1 and P2 and priority 6 to processes P3 and P4. Figure 3.3(b) shows how 1) the

imbalance has been inverted (process P1 now takes longer than P4 and 2) the new

bottleneck is now process P2, which is also running with priority 3. As a consequence,

the total execution time now takes longer (127.91 sec instead of 81.62 sec), which means

the new bottleneck runs for much longer than the previous one.

Case C: In order to restore the original relative behavior between process P1 and P4

we incremented the resources assigned to process P1. Figure 3.3(c) shows that P1 now

runs for less time than P4, as in Case A. As we can see, giving more resource to P2

(which is again the bottleneck) reduced the total execution time to 75.62 sec, with a

7.37% of improvement with respect to Case A.
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Case D: Finally, we can argue that P2 and P3 execute their operation on a similar

amount of data, therefore the amount of resources given to each process should not

be as different as for P1 and P4. In our last test, we still assigned priority 4 to P1

and 6 to P4, as in the previous case, but we assigned priority 5 to P2 and 6 to P3,

sharing resources between these two processes running on the same core more equally.

Figure 3.3(d) shows that the imbalance has been reduced again with respect to Case C,

in fact, now P2 and P3 compute more or less for the same amount of time. Also the new

bottleneck is P4, which takes much shorter than P2 in Case C. Table 3.2 shows how the

total execution time has also been reduced to 66.88 sec, with a 18.08% of improvement

over the reference Case A.

3.5.3 Siesta

Our last experiment consists of running SIESTA as an example of real application.

SIESTA [72] is a method for ab initio order-N materials simulation, specifically it is a

self-consistent density functional method that uses standard norm-conserving pseudo-

potentials and a flexible, numerical linear combination of atomic orbitals basis set,

which includes multiple-zeta and polarization orbitals.

The application presents an imbalance caused by both the algorithm and the input set.

SIESTA behavior, however, is not constant during each iteration, as can be seen in

Figure 3.4(a); this makes our static balancing solution not as good as for the BT-MZ

case. Yet, we achieved a improvement of 8.1% of execution time reduction with respect

to the reference case (Case A).

Case A: Like for BT-MZ, Case A is the reference case, i.e., where process Pi is assigned

to CPUi and the priority of all the processes is set to 4. Figure 3.4(a) shows the trace

for this reference case. The program starts with an initialization phase (11.99% of the

total time) at the end of which each process in the application must reach a barrier. The

initialization phase already presents some little imbalance, which evidences how the

input set makes SIESTA not balanced. In the internal parts, each process exchanges

data only with a subset of the other processes in the application, and then reaches a

synchronization point (WaitAll()), waiting for all the others to complete their jobs.

In the last part, the processes finalize their work (13.41% of the total time): after the

last barrier, each process computes its function on its sub-set of data and then ends. A

complete execution of the program in this configuration takes 858.57 secs.

Case B: As we can see from the trace in Figure 3.4(a) is not easy to understand how

to balance the application and whether our balancing approach is worth. However,
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(a) SIESTA Case A

(b) SIESTA Case B

(c) SIESTA Case C

(d) SIESTA Case D

FIGURE 3.4: Effect of the proposed solution on SIESTA.

Table 3.3 shows some more information about SIESTA (hard to retrieve from the trace):

processes P1 and P2 spend a considerable amount of time waiting for P3 and P4 to

reach the barrier. Thus, the first hint would be to put P1 and P3 on one core and P2

and P4 on the other and then play with priority. We tried this case but then we realized

that P2 and P3 have almost the same amount of data to work on. Thus, in Case B we

put P2 and P3 on the first core and P1 and P4 on the second one and increased the

priority of P3 and P4 to 5. In this case we achieved a little improvement of 1.24% (the

total execution time is 847.91 sec). Figure 3.4(b) shows that, in this new configuration,

P2 is the new bottleneck of the finalization part.

Case C: In the previous case we obtained a little improvement, still the application re-

sults quite imbalanced. We realized that, since P2 and P3 work, more or less, on the

same amount of data, using a different priority for these two processes may introduce

even more imbalance. Figure 3.4(b) shows that, indeed, this is the case. In Case C we

restored the original relative behavior between process P2 and P3 setting both their pri-

ority to 4 (i.e., the difference is 0). Figure 3.4(c) shows how the application is now more
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TABLE 3.3: SIESTA balanced and imbalanced characterization

Test Proc Core % Comp Priority Exec. Time

ST P1 1 81.79 7 1236.05s

P2 2 93.72 7

A P1 1 75.94 4 858.57s

P2 1 75.24 4

P3 2 82.08 4

P4 2 93.47 4

B P1 2 79.57 4 847.91s

P2 1 87.06 4

P3 1 72.04 5

P4 2 77.73 5

C P1 2 83.04 4 789.20s

P2 1 79.66 4

P3 1 80.78 4

P4 2 78.74 5

D P1 2 90.76 4 976.35s

P2 1 65.74 4

P3 1 68.08 4

P4 2 63.95 6

balanced. For example, looking at the initialization and the finalization part, it is possi-

ble to see that the processes are much more balanced than in Case A and Case B. In fact,

re-balancing SIESTA reduces the total execution time to 798.20 sec, an improvement

of 8.1% with respect to the reference case.

Case D: Following the same idea of the previous case (i.e., leave P2 and P3 with the

same priority and play with P1 and P4), we increased the amount of resources assigned

to P4, penalizing P1. Figure 3.4(d) shows how we reverse the imbalance: SIESTA is

again imbalanced, though in a different way than in the reference case. In Case D,

P1 (the process with less hardware resources) is the bottleneck (in the initialization,

finalization and most of the internal phases) and the total execution time increases to

976.35 sec, with a loss of 13.72%.

BT-MZ and SIESTA are two cases of non-balanced HPC applications, though their

imbalance is quite different. BT-MZ executes several iterations, all of them similar

from the execution time, CPU utilization and imbalance point of view. SIESTA also

executes several iterations but each iteration is not necessarily similar to the previous or

the next one. In particular, the process that computes the most is not the same across all

the iterations. For example, in the i-th iteration P1 could be the bottleneck while in the

(i+1)-th the most computing process could be P4. This behavior suggests that a good

balancing mechanism would prioritize P1 in the i-th and P4 in the i+1-th iteration.
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Our static approach does not allow us to play in this way as we assign the priority at the

beginning of the execution and never change them during the execution. We argue that

a dynamic mechanism is required to correctly set priorities for applications that change

their behavior throughout their execution. Since real applications are likely to behave

like SIESTA rather than like BT-MZ, we intend to extend our balancing mechanism as

part of the Operating System, so that the OS can dynamically set the priority of each

process according to actual application behavior.

3.6 Conclusions

In this chapter we showed how allowing software to control the amount of shared re-

sources assigned to each thread in a MT processor may improve the performance of

HPC applications. In fact, some applications show an imbalanced behavior, i.e., some

processes require more time to complete their computing phase while all the other pro-

cesses are waiting at some synchronization point and cannot move forward. While the

imbalance can be caused by either external or internal factors (most likely both), it is

clear that it may reduce the performance of an HPC application, resulting in a signifi-

cant waste of resources in Supercomputers. Our results show how using our modified

Linux kernel to control a processor capable to dynamically assign processor resources

to running threads (the IBM POWER5 in our case), reduces the application imbalance

and, therefore, improves overall performance. The experiments we performed show an

improvement up to 18% for a widely used BT-MZ benchmark and up to 8.1% for a

real application. We achieved these results without putting the burden of balancing the

application on the programmer and regardless of the used programming model.

Our results suggest that an automatic mechanism could even increase the actual im-

provement, thus, motivating the use of MT processors with the capability to re-assign

hardware resources between threads in future Supercomputers. In the next chapter, we

extend our OS by introducing an algorithm able to automatically detect if a process

deserves a higher amount of resources and which process should be deprived of those

resources so that imbalance can be reduced. In addition, a user-level mechanism is

proposed in Chapter 5.



Chapter 4

A Dynamic Scheduler for Balancing

HPC Applications

4.1 Introduction

Modern Supercomputers are often designed with commodity hardware components (for

example, Intel or IBM POWER processors) and software. Generally, this kind of Super-

computers are distributed memory machines with a limited number of cores per-node

(2-8 cores); the Message Passing Interface (MPI) [3] standard is the most common pro-

gramming model used in those systems.

In Chapter 2 we performed a deep analysis of how the hardware prioritization mech-

anism of POWER5TM processors affects the performance of applications. Two of the

main conclusions, also used in this chapter, are the following:

1) In general, improving the performance of one task involves a higher performance

loss on the task running on the other context, sometimes by an order of magnitude. In

some cases, in order to reduce the execution time of a task by X% (with respect to the

case when both tasks run with the same priority) by increasing its priority, the execution

time of the other task in the same core may reduce by more 10X%.

2) Instead of using the full spectrum of priorities (from 0 to 7), we only explore prior-

ity differences up to ±2. Larger priority differences should be used mainly when the

performance of one of the two tasks is not important (e.g., background task).

In the previous chapter we showed how the hardware prioritization mechanism of POWER5

processors can be used to balance HPC applications. As a proof-of-concept, we ran a

49
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4-tasks MPI application on a POWER5: in a first test, where we applied the same pri-

ority to the two tasks running in a core (default case), we detected which processes, on

average, computed the longer and which tasks spent most of their time waiting for in-

coming messages or on a barrier. In the following experiments we manually increased

the priority of the most computing intensive tasks, increasing their speed and reducing

the load imbalance. In that chapter, the prioritization is applied to processes manually

and statically at the beginning of the execution and each process runs with the same

priority throughout its execution. With this solution we obtained an improvement of

8% on real HPC applications like SIESTA [2].

In the current chapter, we propose a dynamic solution implemented as a new task sched-

uler for Linux 2.6 kernels. The advantages of this new proposal over the static solution

are obvious, the most important being that the OS automatically establishes the hard-

ware priority to be assigned to each HPC process with no effort from the user. The

second advantage is that the solution is transparent to the user: the only modification in

the application source code concerns the scheduling policy (as shown in Section 4.3).

The third advantage is that our scheduler is able to detect the correct hardware priority

quickly (in one or two iterations) improving overall performance. Finally, the scheduler

is able to catch up with the application in case the application’s behavior is dynamic, i.e.,

not constant throughout the iterations. All these advantages reduce the load imbalance

of a HPC application, directly increasing the overall performance.

In order to test our dynamic scheduler, we compared the results we obtained running

HPC benchmarks and applications to the results we obtained in the last chapter. Most in-

teresting is the case of the real application (SIESTA): with our previous static approach

we were able to improve the total execution time by 8%; with the solution proposed in

this chapter, we are able to improve the execution time by almost 6%, combining the

effects of the load balancing and the high-responsive task scheduler without any effort

from the programmer.

The capability of the IBM POWER5 to allow the software to change processor’s inter-

nal resource allocation is not something isolated in the design of processors. Several

factors support the idea that future supercomputers will use this type of processors.

First, nowadays, Multi-Threaded processors are widely used in HPC systems (in ad-

dition to many other computing systems like desktops, real-time, etc.) for their good

performance/energy consumption and performance/cost ratios. Second, other recent

processors like the IBM POWER6TM [53], provide a similar prioritization mechanism.

Third, many computer-architecture researchers advocate that allowing the software to

control not only the decode stage of the processor, as it is the case in POWER5 and
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POWER6, but also other processor shared resources in the chip, like the cache [40, 46],

would increase the performance of HPC applications.

The rest of this chapter is structured as follows: Section 4.2 highlights some of the

features of the software designs of the new Linux scheduler framework. Section 4.3

proposes our dynamic task scheduler for balancing HPC applications. Section 4.4 shows

our experiments on benchmarks and real applications. Finally Section 4.5 provides our

conclusions and finalizes the paper.

4.2 The Linux Scheduler Framework

A new process task scheduler (the Complete Fair Scheduler, CFS) has been introduced

in the Linux kernel version 2.6.23. This new scheduler replaces the oldO(1) [10] sched-

uler used in Linux 2.6 for several years. TheO(1) scheduler provided good performance

and its overhead was constant regardless of the number of runnable processes. How-

ever, this scheduler was not free of problems, such as consuming too much memory

even with few runnable tasks. The CFS aims to solving some of those problems.

Together with the new CFS algorithm, a new scheduler framework has also been in-

troduced, mainly to simplify the structure of the task scheduler. The new framework

divides the scheduler in two main components: three Scheduling Classes, which imple-

ment the policy details, and a Scheduler Core, which handles the Scheduling Classes as

objects, i.e., calling the appropriate Scheduling Classes methods for any low-level op-

erations (for example, selecting the next task to run or accounting for the time elapsed).

Each of the three Scheduling Classes contains one ore more scheduling policies (see

Figure 4.1(a)).

In order to improve scalability, each CPU has a list of Scheduling Classes. Each class, in

turn, contains a list of runnable processes belonging to one of the policies handled by the

class. The first class (the highest priority) contains real-time processes (SCHED FIFO

and SCHED RR); the second class (the new CFS class) contains the normal processes

(SCHED NORMAL, previously called SCHED OTHER, and SCHED BATCH); finally, the

last class contains the idle process (SCHED IDLE).

The order with which the Scheduling Classes are linked together introduces an implicit

level of prioritization: no processes from a low priority class will be selected as long

as there are available processes in one of the higher priority classes. For example, no

processes from the CFS class will be selected if there is one process in the real-time



Chapter 4. A Dynamic Scheduler for Balancing HPC Applications 52

(a) Standard Linux Scheduling Classes

(b) HPCSched Scheduling Classes

FIGURE 4.1: Scheduling classes for the standard and the modified Linux kernel

class; this design choice preserves the semantic of the SCHED FIFO and SCHED RR

policies. In the same way, the idle process will never be selected if there are runnable

processes in one of the other classes.

When the scheduler is invoked, the Scheduler Core starts looking for the best process to

run from the highest priority class (i.e., the real-time class) and checks whether there are

runnable processes in this class. If the class contains at least one process, the scheduler

selects this process and assigns it to the CPU. If the class is empty, i.e., no runnable

process available, then the Scheduler Core moves to the next class. This operation

repeats until the Core Scheduler finds a runnable task to run on the CPU. Notice that the

idle class always contains at least the idle process, thus the scheduler cannot fail in its

search.

A very interesting property of the new scheduler framework is that each class may

provide different data structures and algorithms to select the next process to run. For

example, the real-time class uses a set of priority, round-robin run queue lists, one list

for each real time priority (0-99). The real-time scheduler first selects the highest (non-

empty) priority run queue and then picks up the first task in the list. In fact, a real-time

task is either SCHED FIFO, in which case the task stays in the first position until it

yields the CPU, or a SCHED RR, in which case the process is moved to the back of

the queue if its time slice expires. This algorithm is essentially the old O(1) scheduler

algorithm and maintains the O(1) scheduler’s implementation details (like the 0-cost

swap between the active and expired arrays).
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The CFS class, instead, uses a red-black tree and does not use the concept of time

quantum. Each process receives a time slice proportional to the actual workload (the

higher the number of running processes, the smaller the time slice). The key concept is

the time spent by a runnable task waiting for a CPU (i.e., waiting to be executed). This

value is used to sort the tasks in the red-black tree so that the “leftmost task” in the tree

is the process that has been waiting for more time (i.e., the one with gravest need to

run), therefore the next task to run. The CFS scheduler tries to balance the execution

of the runnable tasks so that no one waits for a CPU more than a maximum allowed

amount of time1 (latency). As the time passes, the waiting time of the running process

is decreased at every timer interrupt (or scheduling event) by the amount of time the

task has been running (minus its fair running time). As the waiting time of the running

task decreases, the task may eventually be moved to the right side of the red-black tree.

Sooner or later the running task will not be the “leftmost task” anymore, in that moment

the CFS scheduler will select another task.

As the previous examples show, the Scheduling Classes may have completely different

algorithm and data structures. As a matter of fact, the new scheduler framework allows

kernel developers to write scheduler algorithms specifically tailored for a class of appli-

cations. Moreover, adding a new scheduler algorithm is easier than in the past and does

not require heavy modification of pre-existing kernel code.

4.3 The HPC Scheduler

In this chapter we propose a dynamic mechanism to balance MPI applications using the

hardware priority mechanism provided by IBM POWER5 processors. We implemented

our dynamic solution inside the Linux kernel as a new scheduler (HPCSched) for a

special class of applications (HPC applications).

In order to balance the HPC application, the scheduler tracks the application behavior

and detects when to increase or decrease the amount of processor’s internal resources

assigned to a specific process.

Since we want to prioritize HPC over normal processes, we introduced the HPCSched

class between the Real-Time and the CFS class (see Figure 4.1(b)). In this way, we

preserve the semantic of the real-time tasks (SCHED FIFO and SCHED RR) and give a

higher priority to HPC processes over normal tasks.

1The default maximum value for normal tasks is 20ms.
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The HPC scheduler we propose is based on three components, mainly independent from

each other:

Scheduling policy: The scheduler algorithm used by the Scheduler Core to select the

next task to run among the runnable tasks in the HPC class.

Load Imbalance Detector and Heuristics: We use a Load Imbalance Detector and

heuristic functions to select, according to the scheduler metrics, the new hardware pri-

ority for the task.

Mechanism: Architecture-dependent, utility functions necessary to set the new hard-

ware priority or read the current priority of a task.

4.3.1 Scheduling policy

Taking advantage of the new scheduler framework described in the last Section, we in-

troduced a new Scheduler Class (sched hpc) and a new scheduler policy (SCHED HPC)

for HPC applications. A user can move an application to the HPC class by means of

the standard sched setscheduler() system call. Actually, this is all the effort the

user has to put in order to use our new scheduler (comparable to the use of the nice()

system call commonly used in HPC applications).

Our scheduler algorithm is specific for HPC applications, more specifically for MPI

applications. The typical way of running MPI applications on current supercomputers is

to run one MPI process per-CPU. Thus, we expect to have one process in the HPC class

of every CPU (maybe two or three during workload balancing). Under this assumption,

it is not worth to have a complex algorithm for selecting the next task to run. In fact,

with this small number of processes in the run queue list, a simple round-robin list is as

good as a more complex red-black tree. However, the code for a round-robin run queue

is much simpler and performing (for example, the scheduler does not have to balance

any tree). Nevertheless, we implemented two algorithms:

FIFO: Fist-In-First-Out algorithm. The selected task will run until the end or

until it yields the CPU.

RR: Round-Robin algorithm. Each task has a pre-defined time slice. When this

time slice expires, the task is placed at the end of the run queue.

We observed that, with one process per CPU running at any given moment, there is

essentially no difference between these two policies, thus, we only include the results
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for the round robin policy in this chapter. However, as we have already remarked, the

scheduling policy is independent of the other components, hence, it can be changed, if

required, without affecting the heuristics or the applying mechanism.

In the new Linux kernel framework, workload balancing, i.e., splitting evenly the work-

load among all the available domains [10] (at core-, chip- and system-level), is also

performed at Scheduling Class level. Every Scheduling Class has its own workload

balancing algorithm, which means that each CPU has, roughly, the same number of

real-time or normal tasks. As a side effect, each CPU runs, more or less, the same

number of tasks.

The workload balancer is invoked whenever the kernel detects that there is a big imbal-

ance or if one processor is idle. In the latter case, the idle CPU tries to pull tasks from

other, busiest run queue lists to its run queue.

We implemented our HPC workload balancing algorithm making each processor do-

main [10] running the same number of processes. For example, in a POWER5 system

there are three domain levels: chip level, core level and context level (a context is what

is recognized by the OS as a CPU). Our workload balancer tries to balance the number

of task at each domain level. Thus, a core domain running less tasks than another core

will try to pull tasks from the other core. For example, if one core of an IBM POWER5

processor (a domain composed by two contexts) contains one HPC task and the second

core contains three tasks, the first core will try to pull one HPC task from the second

core so that each core domain contains two processes so to make the workload balanced.

4.3.2 Load Imbalance Detector and Heuristics

MPI applications alternate computing phase (when a process is runnable) with waiting

phases (when a process is waiting for an incoming message or for synchronization, thus,

not runnable). We consider the sum of a computing phase and of a waiting phase as one

iteration of the MPI application.

In some HPC applications during each iteration all the tasks perform the same opera-

tions (most of the time on the same amount of data), with an iterative structure.

Our solution learns from the execution history of a process: the general idea is that

if a task does not have a high CPU utilization during the iteration i, it will perform in

the same way in the i + 1 iteration. This is a common case, for example, for those

applications that compute an approximation of a solution of a problem and than try
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to reduce the error in they made in the approximation. The Load Imbalance Detector

assumes that the iteration i is representative of the iteration i + 1, hence, the HPC

scheduler can change the task’s priority and apply the new priority before the iteration

i + 1 starts. The goodness of our solution strongly depends on how close this guessing

is to the optimum solution. If the guessing is not correct, in the iteration i + 1 the

application may result to be even more imbalanced than in the iteration i. Hopefully,

the scheduler will detect this anomaly during the iteration i + 1 and apply the right

priority in the iteration i + 2.

Clearly, not all the applications present a well defined iterative structure with a barrier at

the end of the iterations. Some applications, like SIESTA, are more dynamic or do not

require all the processes to be synchronized with a global barrier. If the iteration i is not

representative of the iteration i + 1, our current heuristics will probably fail to balance

the application and new heuristics are required. We leave the study of new heuristics

for future work.

The scheduler may require some iteration to converge to a balanced solution: the goal

of the heuristic is to find a stable state where the application is balanced and to remain

there as long as the application behavior is constant. Sometimes it is not possible to

balance an application, for example because the hardware priority mechanism of the

POWER5 processor is too coarse grain. In this case the scheduler will oscillate between

two solutions without being able to find the perfect balance, hopefully still reducing the

overall load imbalance.

The problem here is to find the correct trade-off between performance (computing the

next priority quickly), responsiveness (converging to the correct priority in few itera-

tions) and adaptability (changing the priority whenever the tasks’ behavior changes).

In order to compute the next task priority quickly our heuristics are based on the CPU

utilization of a process, a simple metric that does not require complex computations.

Ideally, the scheduler should look at the tasks running on the two contexts of a POWER5

core simultaneously and then compute the correct priority for the current task. In fact,

the performance of the current task depends on the difference between its priority and

the priority of the task running on the other context. However, this would require to

acquire a lock on the other context’s run queue (in order to ensure that no process switch

occurs), thus, stalling the other context until the new priority has been computed. Things

become even more complex as the HPC scheduler needs to be sure that the process

running on the other context is a SCHED HPC tasks, for the lock on the task descriptor

should also be acquired (in order to avoid concurrent access to the task descriptor).

This solution could be quite expensive in terms of performance (though very precise).
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Hence, we decided to implement a simpler solution that only computes the new priority

of a HPC task according to its statistics (thus, not considering the task running on the

other context).

FIGURE 4.2: HPC application iterative behavior

While a task is running, the scheduler collects several metrics, such as the tasks’ exe-

cution and waiting time. Figure 4.2 shows a typical task trace: the process computes

for tR seconds and then goes to sleep, waiting for messages coming from the other pro-

cesses in the MPI application (tW ). If ti = tR + tW is the total execution time in the

iteration i, then the task utilization in the same iteration is Ui = tR/ti. The global task

utilization is the ratio of the accumulated running and iteration times: U =
∑

tR/
∑

ti.

These metrics are quite easy to compute, since the kernel already provides some of the

required values. We only had to add the values necessary to introduce the concept of

iteration that is not present in the standard Linux kernel.

From our study in [8], we learned that priority differences greater than 2 drastically

reduce the performance of the low priority task. Therefore, we limited the range of pri-

orities that the HPC scheduler explores to [4, 6] (where 4 is the normal priority assigned

to each task at the beginning), so that the maximum allowed priority difference is ±2.

In this way, the performance of the highest priority task might increase up to 95% of

the maximum performance improvement but the lower priority task’s performance does

not decrease too much.

Once the information about the tasks’ progress have been stored, the HPC scheduler has

to decide whether to increase, decrease or keep the same priority for the current process

in the next iteration. Since HPC applications can be very different, it is hard to find an

heuristic that works well in all the cases. In this chapter, we implemented and tested

two heuristics: the first heuristic (Uniform heuristic) targets constant applications, i.e.,

applications that do not change drastically their behavior from one iteration to another.

The second heuristic (Adaptive heuristic) is more aggressive and tries do adapt to dif-

ferent program phases. Which heuristic is better for a specific application depends on

the characteristics of the applications itself. Section 4.4 shows how an application takes
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more advantages from one heuristic than from the other. We decided to allow the user

to select which heuristic to use when compiling the kernel. Once the heuristic has been

chosen, the user can set some parameters at run time to tune the heuristic and make it

more suitable for the application.

Uniform prioritization: This heuristic uses the global utilization ratio of a task. Every

scheduling tick, the OS accumulates the running time for the active task and updates its

utilization; the sleeping time is accounted when a task wakes up at the beginning of the

new iteration. Just before starting the new iteration, the Load Balancer Detector checks

the application’s imbalance and the heuristic eventually applies the new task priority

according to the global utilization,

We introduced two configurable limits, LOW UTIL and HIGH UTIL that define the

boundaries when a task is considered to be a low, medium or high utilization task. Those

boundaries are required to avoid that the scheduler changes too quickly the priority of

a task, oscillating between two possible solutions. For the experiments presented in

Section 4.4, we set HIGH UTIL to 85 and LOW UTIL to 65. The heuristic can be tuned

by the user through specific entries in the sysfs filesystem.

The Uniform heuristic is very simple and adds negligible overhead to the task scheduler.

The heuristic properly balance applications with constant behavior although it could be

slow to adapt to different behaviors of the program. If the heuristic is able to balance the

application, i.e., to find a stable state, the Load Imbalance Detector only checks whether

the application maintain the same behavior or not, without changing the priority of each

task. If the application’s behavior changes, the Load Imbalance Detector tracks this and

the heuristic selects the right priority for the next iterations.

Adaptive prioritization: The Uniform heuristic may be too slow to adapt to new sce-

nario if the application changes its behavior quickly, especially if the application runs

for a long time (in which case it is hard to impact the global utilization, as Section 4.4.2

shows. We implemented another heuristic, that we called Uniform, which gives more

weight to the recent history of the application. With this heuristic, the task utilization

in the i − th iteration is computed as Ui = G ∗ Ug(i − 1) + L ∗ Ul(i), where Ug(i − 1)

is the global utilization until the iteration i − 1 and Ul(i) is the CPU utilization of the

last iteration i. G and L (with G + L = 1) weight, respectively, the global and the last

utilization. These parameters can be used to make the heuristic more or less aggressive:

in fact, an aggressive heuristic (for example, L = 0.90 and G = 0.10) quickly adapts to

the application’s behavior but may over-react, meaning that even small changes caused
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by external factors, like the OS noise, may cause the heuristic to change the task prior-

ity. On the other hand, if the value of G is close to 1, the Adaptive heuristic behaves like

the Uniform heuristic.

As for the Uniform heuristic, the Adaptive heuristic can also be tuned at run time us-

ing different values for HIGH UTIL, MAX PRIO (the maximum allowed priority) and

MIN PRIO. Moreover, if the Load Balancer stops to change the tasks’ priority if it

detects that the application is well balanced.

4.3.3 Mechanism

This is the only architecture-depended part of our solution. In fact, while the HPC

scheduler can be used on any architecture and may, eventually, provide some perfor-

mance improvement (because the HPC class has higher priority than the CFS class),

balancing an MPI application assigning more or less hardware resources to a process

can only be done if the underneath processor supports this feature.

4.4 Experiments

In this section we evaluate the performance of our HPC scheduler and compare it to the

standard CFS scheduler and the static solution proposed the previous chapter.As we said

in Section 4.3, the goodness of the HPC scheduler strongly depends on the heuristics we

apply. For this reason, some application may benefit more than other from an heuristic

while other may experiment some performance degradation.

Like in the previous chapter, we present our results for three different cases: Metbench,

our micro-benchmark suite (Section 4.4.1), BT-MZ from the NAS benchmark suite

(Section 4.4.3) and SIESTA, a real application (Section 4.4.4). In order to evaluate how

our HPC scheduler handles dynamic applications, in this chapter we also present results

for MetbenchVar (Section 4.4.2), a version of Metbench that changes its behavior after

k iterations, reversing the load imbalance.

We performed the experiments on an IBM OpenPower 710 server, equipped with one

POWER5 processor. We ran our experiments on a standard Linux 2.6.24 (the last avail-

able Linux kernel at the moment of writing this paper) and our modified Linux kernel,

also based on the same Linux kernel version. All the benchmarks are MPI applications

(in the experiments we used the MPI-CH 1.0.4p1 implementation of MPI protocol).
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In order to graphically show how HPCSched balances an MPI application, we used

PARAVER [52], a visualization and performance analysis tool developed at CEPBA to

collect data and statistics and to show the trace of each process during the tests.

As a performance metric we use CPU utilization of each task, and the total execution

time of the application. Reducing the load imbalance lead to higher CPU utilization

but does not necessarily improve performance: other factors, like the communication

pattern of the application, may play an important role and reduce the performance of

the application. On the other hand, HPCSched is also able to improve the performance

of an application reducing the overhead an application running with the standard CFS

scheduler may suffer.

4.4.1 Metbench

Metbench (Minimum Execution Time Benchmark) is a suite of MPI micro-benchmarks

developed at BSC which structure is representative of the real applications running on

MareNostrum. It is described in Chapter 3, Section 3.5.1.

Figure 4.3(a) shows part of the execution trace of our reference case where Metbench

runs with the default CFS (Completely Fair Scheduler). In this figure, dark areas rep-

resent the computing time, while the gray show the waiting or communication time.

Table 4.1 shows that two of the Metbench workers are idle for about 75% of the time.

Figure 4.3(b) shows the solution proposed in [9], where we were able to statically bal-

ance the application: the execution time decrease from 74.64sec to 70.90sec, with an

improvement of about 13%. The static approach we used in [9] require previous knowl-

edge of the application and effort from the programmer to detect the load imbalance and

to properly assign hardware resources to each task.

Figures 4.3(c) and 4.3(d) show how HPCSched is able to properly balance Metbench

after the first iteration. In fact, the behavior of Metbench is constant, thus, each iteration

is representative of the following ones. In Figure 4.3(c), the Load Imbalance Detector

detects the imbalance in the first iteration 2 and the Uniform heuristic computes and

apply the correct priority for each task before the beginning of the second iteration. At

the end of the second iteration, the Load Imbalance Detector detects no imbalance, thus

there is no need of trying to balance again the application. The execution time with the

Uniform heuristic is 71.74sec (about 12% of improvement), comparable with the static

solution shown in Figure 4.3(b) but without any effort from the programmer.

2Notice that the first iteration already uses non standard priority: this is the result of the initialization

phase, not visible in the trace
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(a) Standard execution

(b) Static prioritization

(c) Uniform prioritization

(d) Adaptive prioritization

FIGURE 4.3: Effect of the proposed solution on Metbench.

The Adaptive heuristic also provides good performance: the total execution time is

71.65sec (about 12% of improvement). In this experiment the Adaptive heuristic uses

a very aggressive approach (10% global history, 90% last iteration), thus, even a small

variation (caused, for example, by OS noise) may stimulate the heuristic to change the

priority of some task. If this happens, like in Figures 4.3(d), the heuristic may respond

too quickly and take the wrong decision. However, Figures 4.3(d) also shows how the

Adaptive heuristic is able to recover after the error.

4.4.2 MetbenchVar

MetbenchVar is a slightly modified version of Metbench where the workers change their

behavior after k iteration. Figure 4.4(a) shows the standard execution of MetbenchVar
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TABLE 4.1: Metbench balanced and imbalanced characterization

Test Proc % Comp Priority Exec. Time

Baseline P1 25.34 4 81.78s

2.6.24 P2 99.98 4

P3 25.32 4

P4 99.97 4

Static P1 99.97 4 70.90s

P2 99.64 6

P3 99.95 4

P4 99.64 6

Uniform P1 96.17 - 71.74s

P2 98.57 -

P3 90.94 -

P4 99.57 -

Adaptive P1 80.64 - 71.65s

P2 99.52 -

P3 87.52 -

P4 99.20 -

with k = 15: at the beginning P1 and P3 execute a small load while P2 and P4 a

large load. At the 15th iteration, P1 and P3 start to execute the large load while P2 and

P4 perform their task on the small load. In this way, we reverse the load imbalance at

run time making the application’s behavior dynamic. At the 30th iteration, we switch

again the behavior of the tasks. Figure 4.4(b) shows how a static works in this case: the

application is perfectly balanced in the first (iterations 1-15) and third period (iteration

31-45) but the prioritization is reversed in the second period (iterations 16-30), as a

result, in the second period the application performs worst than in the standard case.

Our dynamic solution, instead, is able to detect that the application’s behavior has

changed and dynamically adjust the priority of each task in order to re-balance the

application. Figure 4.4(c) shows how HPCSched performs in this experiment when

applying the Uniform heuristic: after the switching in the 15th iteration, the scheduler

needs two more iterations to detect and correct the new load imbalance. However, after

the second switch, the scheduler needs three more iterations to detect and correct the

load imbalance and the trend continue if the application runs for longer time. Since the

Uniform heuristic uses the global history to detect the imbalance, it is expected that the

longer the application runs, the less responsive is the scheduler. Thus, increasing the

value of k or the number of periods makes the scheduler slower to adapt to the new

scenario. As Table 4.2, the execution time reduces from 368.17sec to 327.17sec, with

an improvement of about 11%).
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(a) Standard execution

(b) Static prioritization

(c) Uniform prioritization

(d) Adaptive prioritization

FIGURE 4.4: Effect of the proposed solution on MetbenchVar.

Figure 4.4(d) shows how the Adaptive heuristic preforms in this experiment: with

k = 15, the scheduler always needs only two iterations to detect and correct the load

imbalance but, as for the previous case, some times the heuristic is too aggressive and

respond too quickly. Again, the Adaptive heuristic is able to correct its over-reaction

in the following iteration and to reduce the execution time to 326.41sec (about 11% of

improvement).
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TABLE 4.2: Variable-Metbench balanced and imbalanced characterization

Test Proc % Comp Priority Exec. Time

Baseline P1 50.24 4 368.17s

2.6.24 P2 75.09 4

P3 50.22 4

P4 75.08 4

Static P1 99.97 4 338.40s

P2 68.06 6

P3 99.94 4

P4 68.04 6

Uniform P1 91.47 - 327.17s

P2 95.55 -

P3 91.44 -

P4 95.33 -

Adaptive P1 89.61 - 326.41s

P2 93.08 -

P3 89.99 -

P4 95.15 -

4.4.3 BT-MZ

Block Tri-diagonal Multi-Zone (BT-MZ) is one of the NAS Parallel Benchmarks (NPB)

suite. It is better described in Chapter 3, Section 3.5.2. In our experiments we used BT-

MZ with default values: class A with 200 iterations.

TABLE 4.3: BT-MZ balanced and imbalanced characterization

Test Proc % Comp Priority Exec. Time

Baseline P1 17.63 4 94.97s

2.6.24 P2 29.85 4

P3 66.09 4

P4 99.85 4

Static P1 70.64 4 79.63s

P2 42.22 4

P3 60.96 5

P4 99.85 6

Uniform P1 70.31 - 79.81s

P2 37.18 -

P3 65.29 -

P4 99.85 -

Adaptive P1 70.31 - 79.92

P2 37.30 -

P3 65.30 -

P4 99.83 -



Chapter 4. A Dynamic Scheduler for Balancing HPC Applications 65

(a) Baseline execution

(b) Static prioritization

(c) Uniform prioritization

(d) Adaptive prioritization

FIGURE 4.5: Effect of the proposed solution on BT-MZ. Each trace represents only

some iterations of the application.

Figure 4.5 shows how HPCSched is able to balance BT-MZ achieving results similar

to the static prioritization (Figure 4.5(b)). Both the Uniform (Figure 4.5(c)) and the

Adaptive (Figure 4.5(d)) heuristics are able to balance the application and remain in the

stable state. Table 4.3 shows that the performance improvement is about 16% for both

heuristics over the standard case shown in Figure 4.5(a)

4.4.4 SIESTA

SIESTA [72] is a method for ab initio order-N materials simulation, specifically it is a

self-consistent density functional method that uses standard norm-conserving pseudo-

potentials and a flexible, numerical linear combination of atomic orbitals basis set,

which includes multiple-zeta and polarization orbitals. It is also described in Chapter 3,

Section 3.5.3.
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(a) Standard execution

(b) Uniform prioritization

(c) Adaptive prioritization

FIGURE 4.6: Effect of the proposed solution on SIESTA.

In this experiment we used thebenzene particle as input set and we noticed that the

application presents an imbalance caused by both the algorithm and the input set (see

Figure 4.6(a) and Table 4.4). SIESTA behavior, however, is not constant during each

iteration, as can be seen in Figure 4.6(a) and an iteration is not necessarily representative

of the next one; this variability decreased the effectiveness of our static balancing.

As can been seen in Table 4.4, both the Uniform and the Adaptive heuristics are only

able to reduce the load imbalance marginally (the CPU utilization of each task slightly

increases). However, the HPCSched is able to improve the application’s performance,

reducing the total execution time from 81.49sec to 76.82sec for the Uniform heuristic

and 76.91sec for the Adaptive heuristic. In both cases the improvement is about 6%.

Clearly this improvement does not come from load imbalance reduction but from the

other components of our solution, in this case, from the scheduler policy. Figure 4.6(a)

shows that the execution phases are very small and that the tasks need to exchange

several messages. While waiting for an incoming message, tasks sleep and need to be

waken up as soon as the message arrives. The time between the arrival of the message

and the moment the task resumes its execution is called scheduler latency: SIESTA

is very sensible to this kind of OS noise. With the CFS scheduler, whenever a task

becomes runnable, it has to compete with all the other processes in the system for the

CPU. An SCHED HPC task that wakes up, instead, has to compete only with the other

tasks in its class: considering our initial assumption (i.e., usually only one HPC task
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per-CPU at any given time) the task is able to immediately run on the CPU, thus, its

scheduling latency is reduced.

TABLE 4.4: SIESTA balanced and imbalanced characterization

Test Proc % Comp Priority Exec. Time

Baseline P1 98.90 4 81.49s

2.6.24 P2 52.79 4

P3 28.45 4

P4 19.99 4

Uniform P1 98.81 - 76.82s

P2 53.38 -

P3 31.41 -

P4 21.68 -

Adaptive P1 98.81 - 76.91s

P2 53.40 -

P3 31.47 -

P4 21.71 -

4.5 Conclusions and future work

HPC applications are, in most of the cases, Single Program Multiple Data (SPMD),

meaning that all processes execute the same code on different data sets. Because of

load imbalance these applications do not reach their synchronization points at the same

moment, as they are supposed to do.

In [9] we showed how assigning more hardware resources to the most intensive task

in an MPI application can reduce the load imbalance and improve performance. We

performed this study with a static, hand-tuned approach. In this chapter we proposed a

new dynamic solution for balancing HPC application, HPCSched. We implemented our

solution as a new task scheduler for Linux 2.6 kernels composed by three components:

the scheduling policy (SCHED HPC), the metrics and heuristics (Uniform and Adaptive)

and the hardware mechanism.

The heuristic used to balance the tasks in the parallel application is critical to achieve

good results: in this chapter we showed that the perfect heuristic depends on the appli-

cation’s characteristics and that constant applications may not react very well with an

aggressive, high-responsiveness heuristic and vice-versa.

We tested our new Linux scheduler on an IBM POWER5 machine using four different

applications: Metbench, a suit of micro-benchmarks, MetbenchVar (which performs
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like Metbench but with different periods of execution), BT-MZ, from the NAS bench-

marks suite, and SIESTA, a real application. The results we obtained are good, though

they depend on the used heuristic. Our solution works well for constant application like

Metbench or BT-MZ providing good results (12% and 16% of performance improve-

ment, respectively). For applications that changes their behavior at run time, HPCSched

achieve good performance compared with what a programmer can manually do: Met-

benchVar shows a performance improvement of 11% while SIESTA an improvement of

about 6%. Our previous static approach we could improve the overall execution time

by 8% but that solution required the programmer to manually balance the application

while HPCSched is able to balance the application automatically.

We also showed that the improvement comes from a combination of two factors: the

scheduling policy and the load balancing.

As future work we plan to expand our solution at cluster level: in fact, HPCSched is a

task scheduler able to balance HPC application inside a node but modern Supercomput-

ers consists of Thousands of nodes. In this case there is another level of load balancing

which consists of assigning the correct group of tasks to each node (gang scheduling)

considering that the local scheduler (in our case HPCSched) is able to dynamically as-

sign more or less hardware resource to each task. Moreover, we would like to find an

heuristic capable of performing well (even if not optimal) for both constant and dynamic

applications.

In the next chapter, we present an alternative solution to HPCSched, DLRB. It provides

similar functionality, but is implemented at the user level, with a minimalistic kernel

infrastructure.



Chapter 5

A User-Level Load and

Resource-Balancer for HPC

Applications

5.1 Introduction

In Chapter 3 we showed that the hardware prioritization mechanism of POWER5TM

processors can be used to balance HPC applications. First, we ran a 4-tasks MPI1

application on a POWER5 with equal priorities and detected which processes, on av-

erage, computed longer. Then, we manually increased the priority of the longer tasks,

increasing their speed and reducing the load imbalance. With this methodology, the

prioritization is applied by hand to processes at the beginning of the execution and each

process runs with the same priority throughout its execution. An improvement of 8%

was obtained on real HPC applications like SIESTA [2]. and 15% for BT-MZ [48], one

of the NAS benchmarks.

In a later step, in Chapter 4, we proposed a dynamic solution (HPCSched) implemented

as a new task scheduler for Linux 2.6 kernels. With this solution, the OS automatically

establishes the hardware priority to be assigned to each HPC process. The technique

is transparent to the user: the only modification in the application source code con-

cerns the scheduling policy. For applications that show iterative behavior, HPCSched

1Recall that he Message Passing Interface (MPI) [3] standard is the most common programming

model used in HPC systems.

69
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achieves similar results to the ones obtained by statically tuning the applications’ pri-

orities. Moreover, even if the application cannot have a speed-up, it suffers no slow

down.

For HPCSched, the ideal heuristic depends on the application’s behavior. We proposed

two different heuristics but expected to require more types to cover all kinds of appli-

cations. The problem is that a user could hardly implement and install a new kernel

heuristic by himself, as the number of available scheduling policies was fixed in the

kernel code, and developing new heuristics implied kernel development and debugging.

Furthermore, detecting, from kernel level, applications behavior is harder than at the

application level. A possible solution to the latter issue would be to implement a system

call that indicates to the kernel when iterations are starting or finishing. This would

require application’s change, and/or a linked periodicity detector that could monitor the

application.

In this chapter we present DLRB, an application-level resource balancing mechanism

that uses the prioritization interface exported by a minimalistic non-intrusive kernel

patch and fits between the application and the MPI interface. DLRB is implemented as

a linked library and has several components (see Section 5.2) that can be individually

changed, among them, an application periodicity detector. It has some key differences,

disadvantages and advantages from the kernel-level solution previously proposed. The

main advantages of DLRB, over the previous proposals are:

• As a linked library, each user can choose a different version of the library to suit

a specific program. Although several heuristics can be present at the kernel level,

there was no easy way to allow the user to implement new heuristics to run with

a new application. We found this limitation to be important.

Strictly speaking, a user-level library is not necessarily easier to deploy or expand,

when compared to a kernel scheduler, at least not in a way that can be easily

proved or compared. However, we believe that, at least in our environment, there

is much more expertise in debugging and implementing user-level code than code

in the static kernel sections.

In addition, installing a new kernel-level extension usually requires an adminis-

trator password (for instance, the password for root). It is seldom the case that on

large shared systems, users have the permissions to change the kernel-level code.

• Finally, if poorly implemented, a badly behaving heuristic can be better con-

strained to only effect a limited number of users (the ones using this specific
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implementation) than a distributed kernel bug, which could eventually crash sev-

eral nodes.

A disadvantage of a higher-level scheduler is a much bigger granularity. While the

kernel scheduler runs every few milliseconds and decides the priority for one thread at

time, by design and to avoid performance degradation, DLRB runs at the end of every

iteration, which typically lasts for seconds or even minutes. DLRB, however, benefits

from a global view of the application, and decides the priorities based on the behavior

of all threads.

As in the previous three chapters, we use the POWER5 prioritization system described

in Chapter 2 (Section 2.3.2). In addition, to allow the user-level mechanisms to access

the full range of hardware priorities, DLRB requires some support from the kernel. It

uses the same minimalistic non-intrusive kernel patch described in Section 2.4.3.

The rest of this chapter is structured as follows: Section 5.2 describes DLRB, our user-

level load and resource balancer for HPC applications. Section 5.3 shows our experi-

ments on benchmarks and real applications. Finally Section 5.4 provides our conclu-

sions and finalizes the chapter.

5.2 The DLRB

In this chapter we present a user-level Dynamic Load and Resource Balancer (DLRB).

DLRB uses the knowledge of the underlying architecture (threads or cores) to perform

load-balance, moving tasks across the cores, and resource-balance, changing the distri-

bution of resources between the hardware threads of the same core.

Our solution does not require any change to the application’s code and is presented as a a

dynamically linked library. It can be linked to the application or loaded at run time with

the LD PRELOAD environment variable present in most UNIX environments. Once

linked to the program, DLRB will be triggered by the MPI calls, both from Fortran or C,

and will try to detect iterative behaviors in the application. Once an iterative behavior

is detected, DLRB will try to redistribute the tasks within the available CPUs in the

node and then further decrease the load-imbalance by applying the thread prioritization

mechanisms. Furthermore, its structure allows the implementation of several heuristics

or optimizations.

In this section, we will better describe each of the DLRB components and its heuristics.

Section 5.2.1 describes the Dynamic Periodicity Detector (DPD) that is responsible for
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detecting the application’s iterations. Section 5.2.2 presents the load balancer, which

appropriately places the tasks in the processors. Finally, the resource balancer respon-

sible for the threads prioritization is described in the Section 5.2.3.

5.2.1 DPD

Real HPC applications often present iterative behaviors. To detect this behavior, DLRB

implements the Dynamic Periodicity Detector (DPD) proposed in [33].

In their work ([33]), the authors show that, by observing the MPI and OpenMP behavior

of an application, DPD is able to correctly identify applications’ iterative parallel struc-

tures. It presents a very small overhead between 0.012% and 0.064% in most cases,

except for hydro2d, one of the SPECfp95 benchmarks, where the overhead was 3.27%.

Having a good detection mechanism for the application’s iterations is a key element of

DLRB. Detecting the iterations in a precise manner allows DLRB to stabilize the pri-

oritization system on program phases and to properly read the unbalance for individual

iterations.

5.2.2 Load-Balancer

The biggest advantages of DLRB are leveraged when it can use one or several cores

in a node. In this case, its first step will be to distribute the tasks in the node in a way

that balances the sum of the tasks’ loads across the cores. This step is performed by the

load-balance module of DLRB.

The load-balancer implements an abstraction of domains similar to the one used inside

the Linux Kernel. In Figure 5.1, we show the domain organization for a hypothetical

machine with two chips, each chip being dual-core and dual-thread. For every logical

processor, there is a domain, and for every group of domains, there is another, higher

domain, comprehending these domains.

The goal of the load-balancer is to distribute the number of tasks and their load, in terms

of utilization, between sub-domains of a same domain, going top-down, from the whole

system domain to the chip domains, core domains and, finally, thread-domains.

During the first iteration of the HPC application, the loads are not known for the tasks,

and therefore a first blind load-distribution is performed. Knowing only the number of

tasks per domain, the load-balancer will try to divide equally the number of tasks to run
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FIGURE 5.1: DLRB scheduling domains for load-balancing.

into the domains of the same level. As for instance, a typical system will execute one

MPI task per CPU or hardware thread. After this step, every hardware thread will be

running exactly one MPI task.

Before the second iteration, once the utilization of every task is known, the load balancer

will migrate the tasks in order to balance the loads in a way that every domain has

roughly the same total utilization (summing up all the sub-domains utilizations). This

will lead, whenever possible, to a situation where cores will have a high-utilization task

in one hardware thread and a low-utilization task in the other hardware thread.

For instance, in a system with one dual-core, dual-thread chip, suppose a program has

four tasks (t1, t2, t3, t4) and they exhibit respectively the percent utilizations (15,23,50,99).

At the first iteration, the tasks’ utilizations are still unknown. They will be scheduled as

follows: t1 will run on the first thread of the first core, t2 will run on the first thread of

the second core, t3, on the second thread of the first core and, finally, t4 will run on the

second thread of the second core.

Once the utilizations are known, DLRB will realize that this distribution is not optimal,

as the first core has lower utilization than the second core, and that this difference could

be alleviated by migrating tasks. Tasks t1 and t4 will be coscheduled on the first core,

and t2 and t3 in the second core. This distribution will persist for the entire program

execution, unless a significant behavior change is detected.

Although there is an important architectural overhead from moving one task from one

core to another, or even between chips, we understand that usually HPC applications

present many iterations and, furthermore, may use a large memory footprint. Therefore,

having the risk of migration during the first iteration of a program iterative phase is not

a prohibitive impact and the benefits of having a good architectural placement are, by
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far, higher. In our experiments, the appropriate placement of the tasks represented a

huge impact on the application execution time.

In Chapter 4, we determined that one of the key factors to perform load or resource

balance of an application is to determine which are the tasks limiting the performance.

For this reason, in that work, the HPCSched only prioritized the tasks with utilization

higher than 90%. In DLRB, at every iteration, when the loads of the tasks are evaluated,

a bitmap of the tasks with utilization higher than 95% is quickly generated. When an

iteration finishes, the bitmap from this iteration is compared with the previous utiliza-

tion bitmap, if the pattern of the high-utilization tasks is changed, DLRB checks for a

behavior change and re-evaluates the load-balancing. As the utilizations of a task is af-

fected by the resource-balancing, the application is run without applying prioritization

(resource-balance) during one iteration after a phase change is detected.

While the load-balancer only runs when the program changes its utilization behavior,

the resource-balancer is run every time there is unbalance between threads of a core. Its

logic is explained in the next section.

5.2.3 Resource-Balancer

Every time an unbalance is detected between the two hardware threads of a core, the

resource-balancer tries to use the underlying thread prioritization mechanism to assign

more hardware resources to the thread running longer. If there is more than an MPI

task running on a hardware thread, the sum of their utilization will be accounted as the

hardware thread’s utilization.

This mechanism is fairly simple. While the difference of the two thread’s utilization

is higher than a threshold, the priority of the thread with higher utilization will be in-

creased. If the thread with higher utilization is already at the highest priority, because it

already reached the priority configured as maximum, then the priority of the thread with

lower utilization will be decreased (unless it reaches the priority defined as minimum).

In order to converge faster to the right priority difference, an unbalance compensation

is used: if the unbalance is higher than two times the threshold, the higher utilization

thread will be prioritized by two priority steps, increasing its priority two times, or de-

creasing the other thread’s priority if needed. In this work, we used priorities ranging

from four to six, inclusively, and an unbalance threshold of 20%2.

2In Chapter 2 we show that priority differences higher than two may incur in significant performance

degradation for the low priority thread.
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5.3 Experiments

In this section we evaluate the performance of DLRB, our user-level load and resource

balancer, and compare it to the standard environment, where no prioritization is used,

the static solution proposed in Chapter 3 and the best result obtained, in each situation,

from the two heuristics of HPCSched proposed in Chapter 4

We present results for Metbench, our micro-benchmark suite (Section 5.3.1), Metbench-

Var (Section 5.3.2), BT-MZ (Classes A, B, C) from the NAS benchmark suite (Sec-

tion 5.3.3) and SIESTA (Section 5.3.4).

The experimental infrastructure used is similar to the previous two chapters. The key

difference is that we used updated versions of MPI (MPI-CH 1.0.8) and Metbench/Met-

benchVar (1.1a). As a performance metric, we evaluate the total execution time.

5.3.1 Metbench

(a) Standard execution

(b) Static prioritization

(c) DLRB

FIGURE 5.2: Effect of the proposed solution on Metbench.

In this section we present the results, when running Metbench as previously described

in Chapter 3, Section 3.5.1.
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Figure 5.2(a) shows part of the execution trace of our reference case, where Metbench

runs with the standard Linux scheduler. Recall that, in this figure dark areas represent

the computing time, while gray areas represent the waiting or communication time. In

fact, two of the Metbench workers are idle for about 75% of the time. Figure 5.2(b)

shows the solution proposed in Chapter 3, where we were able to statically balance the

application: the execution time is improvement by about 15%. The static approach we

used in [9] require previous knowledge of the application and effort from the program-

mer to detect the load imbalance and to properly assign hardware resources to each

task.

FIGURE 5.3: Relative execution times for ten iterations of Metbench.

Figure 5.2(c) shows the execution of DLRB. It is able to converge to the appropriate pri-

oritization in two iterations, detecting the stable state of the application and maintaining

the best allocation until the end of the the program execution.

Figure 5.3 shows the relative performance of the standard execution (100%), the static

prioritization (85%), HPCSched (88%) and DLRB (89%).

Two issues are very important here:

1. the DLRB converges slightly slower than HPCSched, as it needs to wait until the

end of every iteration to detect the unbalance. Furthermore, it runs the first iteration

of a phase without applying any prioritization to test the load distribution. This extra

iteration represents a penalty to the achieved improvement of the solutions based on

DLRB. In fact, this effect is severely alleviated if Metbench is ran for a larger number

of iterations, as for instance, with a hundred iterations, the static prioritization achieves

85% of improvement and DLRB achieves 85.5%.

2. For a relatively small number of iterations, the initial placement of the tasks matters

and the speed of the first iteration is influenced by how the tasks are coscheduled. The

example shown is the worst case, where the two high utilization tasks are scheduled in

the same core until DLRB obtains their relative utilization and redistributes the loads.
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Observe that the first iterations on Figure 5.2(c) are slightly longer than the first itera-

tion on Figure 5.2(a). Metbench has five tasks (t1 to t5), the first one, the master, has

utilization close to zero and waits for the workers are performing their duty. The fol-

lowing four tasks are the workers, which, in this case have utilizations (25,99,25,99).

At the load-distribution step the utilizations are unknown and t1 and t5 are placed on

hardware thread one, t3 is placed on thread two, t2 on thread 3 and t4 on thread four.

Unfortunately, tasks two and four reveal to be the tasks with higher utilizations. Before

the second iteration the utilizations are known and the tasks are redistributed, t4 runs on

the first thread, t3 and t0 on the second, and t2 on the third and t1 on the last thread.

5.3.2 MetbenchVar

(a) Standard execution

(b) Static prioritization

(c) DLRB

FIGURE 5.4: Effect of the proposed solution on MetbenchVar. Observe that the static

prioritization has a different time scale.

MetbenchVar is described in Chapter 4, Section 4.4.2. As we mentioned before, it is a

modified version of Metbench (in this case, Metbench 1.1) that allows the workers to

change their behavior after a configurable number of iterations. Figure 5.4(a) shows the

default execution of this benchmark, when no prioritization is applied.
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FIGURE 5.5: Relative execution times for 45 iterations of MetbenchVar (changing

behavior every 15).

Figure 5.4(b) shows that, for this workload, the negative impact of applying the wrong

prioritization is extremely high and, although for 2
3
of the cases the benchmark runs

with the right priorities (4,6), the performance degradation of running with the wrong

priorities is by far more important. Figure 5.5 shows that overall, the static prioritization

presents a 50% performance degradation when compared to the standard case of this

benchmark. HPCSched obtains 11% of improvement.

Having an application that responds very negatively to wrong prioritization is the worst

case scenario, when a task has drastic changes in the utilization phases. Because DLRB

needs to wait until the end of a iteration to calculate the unbalances, it executes an en-

tire iteration before detecting that the application behavior changed (see Figure 5.4(c)).

Once it detects a change, it redistributes the tasks across the processors, then the appli-

cation runs for another iteration without applying the priorities (see Section 5.2.2) and

finally assumes the correct priorities for the next iteration (this is a two iteration con-

vergence time). Because of this overhead, DLRB only obtains 5% of improvement for

the benchmark. When MetbenchVar runs with phases of 45 iterations, for 180 iterations

in total, DLRB obtains a performance improvement of 12%, comparing to the standard

execution time. In both cases, DLRB converges to the right priority in two iterations

and is able to maintain a stable state during the rest of the application phase.

5.3.3 BT-MZ

Block Tri-diagonal Multi-Zone (BT-MZ) is one of the NAS Parallel Benchmarks (NPB)

suite. It is better described in Chapter 3, Section 3.5.2.

Figure 5.6 shows the execution of the standard execution, the static prioritization, DLRB.

Because of the granularity of the prioritization mechanism, DLRB is not able to fully

balance the application. Giving priorities four and six is not enough to fully balance the
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(a) Baseline execution

(b) Static prioritization

(c) DLRB

FIGURE 5.6: Effect of the proposed solution on BT-MZ. Each trace represents only

some iterations of the application.

FIGURE 5.7: Relative execution times for BT-MZ class A.

loads, whereas priorities six and three would over-prioritize the task with high utiliza-

tion and represent a significant performance loss (see Chapter 3).

As we can see in Figure 5.7, the static prioritization yields 17% of performance im-

provement, while HPCSched and DLRB both yield 16%. For classes B and C, the static

prioritization shows respectively 16% and 17% of improvement, while the rest of the

solutions show 16% of improvement.
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5.3.4 SIESTA

SIESTA [72] is described in Chapter 3, Section 3.5.3. It is a real application ran at the

BSC. Its behavior depends on the analyzed material and there is a plethora of available

inputs.

For our experiments, we analyze the benzene particle (the same presented in the pre-

vious chapter). With this material, the application presents a significant unbalance but

only a small region of the application presents iterative behavior. For most of SIESTA’s

execution, there is not an iteration that is representative of the behavior of the next

one. The solution presented in the previous chapter was not effective to balance this

application, but represented a performance improvement of 6% (See Figure 5.8). This

improvement came from the fact that the HPCSched increased the responsiveness of the

application and decreased the OS noise.

As shown in the Figure 5.8, DLRB obtains 5% of improvement. A result similar to the

one obtained by HPCSched.

FIGURE 5.8: Relative execution times for SIESTA.

5.4 Conclusions and future work

In the previous chapters, we presented the use of resource balancing, through hardware-

prioritization, as a way to decrease the unbalance presented by HPC applications (Chap-

ter 3) and developed a task scheduler for the Linux 2.6 kernels that, using one of the

two proposed heuristics was able to reduce the load imbalance and improve applica-

tions’ performance (Chapter 4). We concluded that the ideal heuristic depends on the

application.
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Although it is possible to add new heuristics in the kernel, it is hard to allow the users

to deploy new kernel-level heuristics on large clusters. Furthermore, debugging and

development at the kernel level is harder than at user-level.

In this chapter, we provided a user-level load and resource balancer, DLRB. It only

requires a slim infrastructure at the kernel level, to allow the hardware priorities to be

accessible from the user-level and provides an infrastructure that makes possible to the

user to implement new heuristics or scheduling policies that best fit their specific needs.

The mechanism proposed reaches similar results than the best heuristic of HPCSched in

most cases and does not present performance degradation.We conclude that the current

proposal is able to schedule both constant and dynamic applications with similar results

as our kernel scheduler, while presenting a higher level of flexibility.

As a future work, we would like to improve other metrics, like energy or temperature

reduction and using other hardware mechanisms to perform the resource balance.

Until this point of this thesis, we approached the problem of coordinating the hardware

resource allocation with the software targets for the high performance computing do-

main. In the next chapter, we analyze the problem of scheduling tasks in a soft real-time

SMT system. As there are no commercially available hardware with explicit resource

allocation for soft real-time, we developed and used a simulator that allowed to perform

the system’s task scheduling, taking into account the resource sharing in the underlying

simulated architecture.





Chapter 6

Scheduling for Soft Real-Time SMT

Systems

6.1 Introduction

In this last chapter, we approach the problem of scheduling tasks in soft real-time sys-

tems on SMT processors.

SMTs architectures have demonstrated to provide high-performance at a relative low

cost [68][76] and have motivated their use in high-performance processors [49][61].

SMT processors adapt a superscalar front-end to fetch from several threads while the

back-end is shared. They have high throughput but poor performance predictability.

The scheduling of a task set in such processors involves two main steps as shown in

Figure 6.1(a). In a first step, known as workload selection [47], the Operating System

(OS) scheduler selects a set of N tasks from the task set of M tasks, where N is the

number of contexts of the SMT processor and M is usually greater or equal than N .

This set of N tasks is called the workload. Next, the OS passes the workload to the

architecture. In a second step, known as resource sharing[47], the SMT internal re-

source allocation mechanism determines how resources are distributed among threads,

and how the threads are prioritized at a hardware level. In current processors this re-

source allocation mechanism is limited to the instruction fetch policy, like icount [76],

DCache Warn [14], data gating [32], FLUSH [75] or FLUSH++ [13], while the first

step is performed roughly every time slice (typically between 1 and 100ms), the second

step occurs every cycle.

83
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(a) Current approach
(b) Our approach

FIGURE 6.1: Collaboration between the OS job scheduler and the SMT hardware:

steps required to schedule a task set in classical SMT processors.

The key issue in the interaction between OS and a traditional SMT system is that the

OS only assembles a workload of N tasks while it is the processor that decides how

to execute this workload, implicitly by means of its internal resource allocation policy.

Hence, there are two different schedulers working, without any collaboration with each

other, and part of the traditional responsibility of the OS “disappears” into the processor,

sometimes reverting software priorities or simply disregarding them. Consequently,

the OS may not be able to guarantee time constraints on the execution of a thread if

that thread is running concurrently with other threads, even though the processor has

sufficient resources to do so. In order to deal with this variability, several hardware

(resource sharing policies) and software approaches have been proposed [47] [20] [16]

[17] [31] [30] [57] [25].

The objective of this chapter is to consistently bind the OS and the software targets

and priorities to the hardware resource allocation in a way that makes resource-sharing

become a viable option to increase performance predictability of real-time systems, at

a low cost.

In this work we address the problem of scheduling a task set in a SMT system from

the software and hardware layers in a collaborative way. Our proposal allows better

control of the underlying hardware resources (like the issue queues or the registers) by

the scheduling algorithm, increasing the task scheduling success rate. Assuming that

the Worst Case Execution Time (WCET) is given, for every task, our mechanism does

not require any additional profiling.

The original Earliest Deadline First (EDF) [56] and Least Laxity First (LLF) [26] algo-

rithms only aim to determine the order in which threads should be executed. This is not
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enough if the task set is scheduled on a SMT processor due to the execution time vari-

ability of threads. We developed and evaluated two new scheduling algorithms, called

SRA-EDF (Single-objective Resource-Aware EDF) and SRA-LLF (Single-objective

Resource-Aware LLF), that use the hardware support proposed in [16]. These resource-

aware algorithms, in addition to determine the execution order of threads, determine the

amount of resources given to co-scheduled threads. They are provided with the knowl-

edge of the processor resources and instruct it in how to split resources among threads

in order to meet the system deadlines. This increases the success rate when scheduling

tasks, outperforming state-of-the-art scheduling algorithms. In addition, we propose a

new hardware mechanism that allows to optimize a second objective function. When

running with the new hardware support, the schedulers were called DRA-EDF and

DRA-LLF (Double-objective Resource-Aware EDF and Double-objective Resource-

Aware LLF).

This work is structured as follows: Section 6.2 presents some background on real-time

scheduling and the related work; Section 6.3 explains our proposal; Section 6.4 presents

our methodology and experimental setup, while Section 6.5 provides the experimental

results; finally Section 6.6 is devoted to the conclusions.

6.2 Background and Related Work

This chapter focus on real-time SMT scheduling for independent tasks. In this case,

real-time systems are characterized by a group of tasks, called a task set. For each task,

the scheduler knows three main parameters: first, the period (pi), that is, the interval at

which new instances of a task are ready for execution. Second, the deadline (di), that is,

the time before which an instance of the task must complete. For simplicity, the deadline

is often set equal to the period resulting into an implicit-deadline system [37] [38]. This

means that a task has to be executed before the next instance of the same task. Third,

the Worst Case Execution Time (WCETi) is an upper bound of the time required to

execute any instance of the task, which should never be exceeded (for single threaded

executions). In the scope of this work, theWCET is known a priori and is not considered

profiling.

In soft-real time scheduling, many algorithms (e.g., EDF [56] or LLF [26]) have been

used to schedule a task set in single-threaded systems. However, these algorithms are

no longer sufficient on SMT processors, since the execution time of a thread is unpre-

dictable when this thread is scheduled with other threads. The high variability of SMTs



Chapter 6. Scheduling for Soft Real-Time SMT Systems 86

implies that a real-time job scheduler for SMT processors is much more complex and

challenging than for single-threaded processors.

Another problem is that algorithms like EDF are not optimum when scheduling on

a multiprocessor system, scheduling anomalies like the Graham anomaly [39] or the

Dhall effect [27] may occur. In our perception, a SMT system is a variable heteroge-

neous multiprocessor and therefore presents these anomalies, even on a single chip: the

fact that one single SMT processor or core presents multiple execution flows makes it

equivalent, from the scheduler perspective, to a multiprocessor. In addition, each ex-

ecution flow has a variable performance, depending on the characteristics of the tasks

coscheduled in the different threads.

6.2.1 Workload composition

In [47] the authors make a detailed design space exploration of scheduling algorithms.

From the many proposed algorithms, the best one is GLOB SYM US, while a second

algorithm, called GLOB NOSYM US presents the best relation between performance

and complexity. GLOB SYM US is actually a hybrid implementation that defaults to

GLOB NOSYM US when at least one task has Ui > N
2N−1

, being Ui the utilization

of a task τi and N the number of available hardware contexts, otherwise, it defaults

to GLOB SYM PLAIN. The latter extends EDF selecting first the task with earliest

deadline, and then, for the other N-1 tasks, assigns the tasks in order to maximize the

symbiosis factor of the running task set, which is defined in [70] as:

symbiosis factor =
N
∑

i=1

realized IPC of τi

single-threaded IPC of τi

(6.1)

Here, the number of Instructions per Cycle (IPC) is used as a measure of performance.

Hence, the higher is the symbiosis factor, the better should be the processor pipeline

utilization and, therefore, the higher the gain of throughput due to the SMT. This algo-

rithm is tuned to give the best processor utilization. Note, however, that this requires

the profiling of every N-way task combination (from the task set of M tasks) in or-

der to find task sets with best symbiosis, which leads to a number of profiles equal to

Cr(M,N) = (M+N−1)!
N !(M−1)!

. For instance, with our 10 benchmarks, we needed to profile 55

different combinations. If, instead of 10, we had 50 different benchmarks, we would

need to profile 1275 different combinations. Besides, if we take into consideration that

the IPC of a workload may change depending on the offset of the running threads, the

profiling complexity increases by orders of magnitude. Running all the combinations
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of the MediaBench benchmarks (as shown in the Table 6.2), in our hardware config-

uration, yielded a maximum symbiosis of 1.70, a minimum of 0.94 and an average of

1.40.

GLOB NOSYM US (also called EDF US [73]) extends EDF by giving higher priority

to tasks with utilization greater than N
2N−1

(deadlines are set to −∞ and ties are broken

arbitrarily).

In [57], the authors make an interesting theoretical study of scheduling algorithms for

SMT processors. They propose a scheduling mechanism for both non-adjustable and

adjustable processors. The authors define adjustable processors as processors that allow

some kind of resource allocation, they give as example the one proposed in [18]. Their

algorithm activate and deactivate the hardware contexts, going sometimes from a single-

threaded configuration to an 8-way SMT processor in order to adjust the relative speed

of threads. In this study it is considered that the different tasks simultaneously running

on the processor contexts share equally the resources, which is not always the case as

shown in [18]. In contrast to this study where no hardware model is simulated, we

provide performance results from a cycle-by-cycle simulator (smtsim [76]). This allows

us to accurately take into account the inter-task interferences.

6.2.2 Resource allocation

Several hardware mechanisms have been proposed in order to bias the execution of

a thread in a given workload with different degrees of success. In [71] an extension

to the icount fetch policy is proposed by including handicap numbers that reflect the

priorities of jobs. Although this mechanism is able to prioritize threads to some extent,

execution times of jobs are still hard to predict, making this approach unsuited for real-

time constraints.

In [47], the authors focus on workload selection in soft-real time systems, although they

also briefly discuss the resource sharing problem. The authors use two types of resource

sharing: dynamic and static. As a dynamic resource sharing they use the icount fetch

policy. In the static resource sharing the authors statically profile the performance of

each job with only the allocated resources in single-threaded mode. They assume that

the IPC of a job only depends on the resources allocated to it and not on the co-scheduled

jobs. This information is passed to the scheduling algorithm to find a feasible schedule.

The authors conclude that the dynamic resource sharing achieves better success rate

than the static one but at the cost of schedulability.
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Dorai [28] propose transparent threads, which is a mechanism that allows background

threads to use resources that a foreground thread does not require for running at almost

full speed. Their main metric is the multithreading level, which evaluates how many

threads are active for a given scheduling through some period of time.

In [6], the authors propose an approach suitable for hard real-time where the WCET

is specified assuming a virtual simple architecture (VISA). At execution time, a task is

executed on the actual processor. Intermediate virtual deadlines are established based

on the VISA. If, during its execution, a task fails to meet its intermediate deadlines, the

processor is reconfigured to implement the VISA, bounding the execution time of the

task. If the actual processor is an SMT and a task fails to meet its intermediate deadlines,

the SMT is switched to single-threaded mode, to ensure that tasks can meet their dead-

lines. The authors conclude that fetch policies that attempt to maximize throughput,

like icount, should be “balanced” to guarantee minimum forward progress of real-time

tasks. This is precisely the target of our work: we ensure a minimum amount of re-

sources for a given time-critical thread so that it meets its deadline regardless of the

other threads executed in its workload. Our approach is orthogonal to the VISA frame-

work: a time-critical thread is executed on the actual SMT processor that provides the

thread with a given percentage of resources.

Using VISA, in the event that a task does not meet its intermediate deadlines, the pro-

cessor switches to single-threaded mode. Here, we do not have intermediate deadlines,

but tasks get an amount of resources that should guarantee that they meet their dead-

lines. This amount is recalculated and is readjusted every time the scheduler runs. On

unlikely cases, it may even give all the resources to an urgent task, running the processor

in single-thread mode.

In [16], several mechanisms were proposed to allow the software to establish the amount

of resources to give to the critical thread, controlling in this way the interaction among

threads, and the slowdown suffered by each thread in SMTmode. The difference among

these mechanisms is the information required from the application: the higher the infor-

mation used by the hardware mechanism, the better the results, and the more complex

the mechanism is. However, in that paper no scheduling algorithm was proposed. That

is, the responsibility of determining the amount of resources to give to each thread so

that it meets its deadline is left to the OS.

To our knowledge, there is no work aimed to bind the OS prioritization to the hardware

priorities in such a coordinted way. Either resource aware hardware or software sched-

ulers were proposed. In this work, we aim to extend a software scheduler in order to



Chapter 6. Scheduling for Soft Real-Time SMT Systems 89

show that making this bridge is not only possible, but also profitable and desirable. We

developed a simulation environment that allows us to use a larger number of software

threads than available hardware contexts, we evaluated costs of context switches and

implemented different system schedulers, binding the task priorities to the hardware

allocation.

Such scheduler can be implemented in any explicit resource aware processor, or even

on SMT processors featuring priority control, like, for instance, IBM POWER5TM [49].

However, for this research we chose to use a simulated environment as, to our knowl-

edge, there is currently no commercially available processor with explicit prioritization

for real-time systems.

6.3 Our Proposals

In this chapter we propose two scheduling policies that take profit of SMT in-processor

resource-allocation mechanisms to guarantee better schedulability. As a baseline, our

new scheduling algorithms, SRA-EDF and SRA-LLF, use the hardware support pro-

posed in [16], called LVP or Low-Variability Performance. In addition, we propose a

new hardware support that allows the optimization of two targets: a minimum resource

allocation and the maximization of a second function, as for instance, throughput.

SRA-EDF and SRA-LLF allow a closer collaboration between the software level and

the SMT hardware. This tight collaboration shows many advantages: First, it achieves

better success rate than all the proposals previously explained in the Section 6.2. Sec-

ond, no additional profiling, other than the WCET estimation, is required from applica-

tions to carry out the scheduling task, assuming that there is an estimate of the Worst

Case Execution Time (WCET) of the tasks. Furthermore, when shared resources cannot

be controlled by software, it is often the case that the internal hardware prioritization

mechanism goes on the opposite direction of the OS priorities, for instance, giving fetch

priority of the task with lesser OS priority. Our mechanism fully avoids this situation,

as it binds the OS priorities to the hardware mechanism. We start by explaining in detail

the underlying hardware support used as a baseline, the LVP mechanism.

The basis of the hardware mechanism proposed in [16] is to partition the hardware re-

sources between the threads running on a SMT and reserve a minimum fraction of the

resources for a designated Most Critical Thread (MCT), enabling it to meet its dead-

line. In that work, the authors proposed two hardware resource allocators denominated

static and dynamic LVP (Low Variation Performance). These allocators differ on what
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information the hardware mechanism expects to receive from the OS 1. In the static

approach, it is assumed that the OS task scheduler provides a resource allocation that

is fixed for an entire period. While in the dynamic approach, it provides the target

IPC for the MCT. In the latter approach the resource allocator can dynamically vary

the amount of resources dedicated to the critical thread. The Predictable Performance

(PP) hardware, proposed in [17] differs from the dynamic LVP version as it receives

the percentage of the performance the thread must be run. That is, it takes into account

different program phases, being able to dynamically scale both resource allocation and

the thread IPC.

We chose to implement our algorithms with the static LVP version of the hardware.

We do not implement the dynamic LVP or the PP hardware approach because, although

they provide better results, they are more complex and have lower applicability than the

static LVP.

6.3.1 Overall functioning

When the WCET of a task is determined, it is assumed that this task has full access to

all the underlying platform resources. However, when this task runs with other tasks

in a multithreaded environment, it only uses a certain fraction of the resources. When

the amount of resources given to a thread is reduced, its performance may decrease

as well. The relation between the amount of resources allocated to a program and

the performance is different for each program and may vary for different inputs of the

same program. In [16] it was observed that in a SMT system the relation between the

amount of resources given to a thread and its relative performance 2 follows a “super-

linear” relation. That is, if we reserve X% of resources to a given thread its relative

performance is greater than or equal to X% of its performance when having all the

resources. It was also observed that the main shared resources to take into account are

the physical registers, the fetch bandwidth, and the instruction window. The proposed

hardware splits the shared hardware resources among running threads as indicated by

the OS task scheduler. That is, it allows the OS to specify the amount of resources to

use by each thread.

Our scheduling algorithms, SRA-EDF and SRA-LLF, use the hardware support pro-

posed in [16] to take profit of this relation. When the OS level task scheduler wants

1Recall that [20],[16] and [17] only focus on the hardware part and do not deal with the workload

composition problem.
2The relative performance is the IPC that a thread has when it is given X% of SMT resources, with

respect to its performance when it is run with all the resources. It ranges between 0 and 1.
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to execute a critical task τi, given its WCETsti (Worst Case Execution Time in Sin-

gle Thread mode) and a deadline di, it simply computes the allowable performance

slowdown that, initially, is represented by, Si(0) = WCETsti
di

, and instructs the hard-

ware to reserve, for that hardware context, a percentage of the resources equivalent

to Si(0)3. For such a value of Si(0), each instance of this task should finish before

its deadline, supposing that the real execution time of this instance is its WCETsti.

Hence, Ti

Si(0)
= di

WCETsti
·WCETsti = di. Refer to Section 6.3.2 to further analysis on

the allowable slowdown calculation.

The proposed methods use global scheduling: tasks are not bound to contexts of a SMT

and can be executed in any of the available contexts. For each workload we found the

MCT, the thread with the highest priority according to the scheduling algorithm under

study. The MCT is evaluated every time the running workload changes (whenever there

is a context-switch on a context). Therefore, at any given moment, there will be exactly

one thread running as MCT (also said that this thread has the MCT status) and as we

use a 2-context SMT, there will be another thread as LPT.

DRA-EDF and DRA-LLF operate in a very similar manner. They still specify the al-

lowable slowdown Si for the MCT, but due to the additional hardware support, the

processor is free to give it more resources, tuning the resource allocation to yield the

highest performance at a secondary metric. In this work we chose the processors aggre-

gated throughput as a secondary metric.

6.3.2 The SRA-EDF scheduler

This algorithm improves the normal EDF scheduler [56] in order to make it resource

aware. It adds the concept of a most critical thread (MCT) and a lower priority thread

(LPT) running together in the SMT and it is aware of the sharing of hardware resources

across the processor contexts.

SRA-EDF starts filling contexts, putting first the task with the closest deadline and,

therefore, the highest priority. This task is considered to be running as the most criti-

cal thread (MCT). Then, the second closest deadline will occupy the second hardware

context, being the second highest priority task or, to keep the notation of [16], the LPT.

The MCT will receive an amount of resources large enough to guarantee its deadline,

3Si(t) stands for the allowed slowdown that a thread can have to still fulfill its deadline at a given

instant t
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while the LPT will receive the rest of the available resources. This logic can be eas-

ily expanded to a n-way multithreaded processor as long as the first thread receives an

amount larger or equal to the resources needed to reach its deadline, while the other

threads can be considered as LPT and share the remaining resources.

After some time, one of the following things may occur:

• The task with nearest deadline finishes its execution. In this case, the second clos-

est deadline becomes the next deadline and, therefore, the previous LPT becomes

now the MCT. The resource allocation to the MCT context is re-evaluated and

the highest priority task receives the amount of resources necessary to fulfill its

deadline. The next task with the closest deadline is put in the newly free context.

• The LPT finishes before the MCT. The next task with the closest deadline is put

in the newly free context.

As we can see, during its execution time, a task can run as MCT, LPT or, more likely,

both (note that the status are mutually exclusive at a given instant). The resource al-

location that the MCT receives at a given period of time (RA(t)) is calculated on the

allowed slowdown (Si(t)) that a task τi can take at an instant t, in order to fulfill its

deadline, while the LPT runs with the remaining processor resources: RA(0) = Si(0).

The allowed slowdown is evaluated every time the running workload changes or when

the scheduler runs (typically at time slices boundaries). In other words, whenever tasks

are changed on any of the hardware context, the Si(t) for the thread with the nearest

deadline (MCT) is evaluated or adjusted.

Conceptually the Si(t) calculation is very simple as it consists on the ratio between the

Remaining Computation time for a task τi (RCi) and the remaining time to its deadline

(TTDi), i.e:

Si(t) =
RCi

TTDi

(6.2)

However, there are some considerations to be made on each of its factors, as we will see

below.

The Time to Deadline (TTD) is always evaluated as the difference between the dead-

line di of a task τi and the current time t (TTDi = di − t). However, we must take

into account its range. When a task crosses its deadline boundary, the TTDi becomes

negative, invalidating the resource allocation calculation. The appropriated action to be

taken in this case may vary according to the system. If it makes no sense to continue,

one may want to kill tasks that missed their deadlines, this is the case when processing
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video frames. On the other hand, for other applications, it may be interesting to give

them full priority, when the deadline is somehow malleable. Finally, it may also be de-

sirable to give them the minimum priority, understanding that the task is probably close

to finish or the last evaluated priority (probably very high).

The Remaining Computation time (RCi) evaluation is related to the difference between

the the total amount of work to be done and the one that was already done. The sim-

plest way to represent it, given our available data would be: RCi = WCETsti −

running time, where WCETsti represents the Worst Case Execution time, in single-

thread, for a given task. The running time can be evaluated in different ways, according

to how we take into consideration the impact of the resource sharing on the performance

of the MCT and the LPT.

The first option, is to consider them equally and simply use the number of cycles a

task has been scheduled in a hardware thread. In this case, the Si calculation would be

expressed as follows:

Si =
WCETi −

∑l

γ=1(ωγ)

di − t
(6.3)

Where
∑l

γ=1(ωγ) represents the sum of all intervals of size ωγ that a task τi ran in a

hardware thread.

We found that better results could be achieved improving this calculation as we must

consider that the processor was not entirely dedicated to only one task, and therefore the

processing already done for a task should consider the resources allocated to the task.

One step further is to consider the resource allocation a task received while running.

Assuming the relation between the resource allocation and the performance of a task

is linear, we simply calculated the processing done as the product of the time the task

was running and the resource allocation given to it. Using this concept, we obtain the

following formula:

Si(t) =
WCETi −

(

∑m

γ=1(ωγ ∗ RAγ) +
∑l

γ=1(ωγ ∗ (1 − RAγ))
)

di − t
(6.4)

Here,
∑m

γ=1(ωγ ∗ RAγ) represents all the resources that a given task τi received as a

MCT, that is, the sum of all the intervals of size ωγ ran with resource allocation RAγ

when τi was the top priority task of the system. In addition, we have
∑l

γ=1(ωγ ∗ (1 −

RAγ) as the total amount of processing done when running as LPT.
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In [16], it was shown that the performance for the MCT is super-linear4. As a con-

sequence, the relation among resources given to the LPT and its performance may,

sometimes, be sub-linear. Based on this conclusion, we chose to evaluate the remain-

ing computational time for a given task τi with different functions whether the task is

running as a MCT or LPT. When running as LPT, the worst case is assumed and the

performance is considered sub-linear. This correction basically makes the time a thread

runs as low priority accounts for less processing time than while it is running as a MCT.

We believe that this is the most accurate evaluation. To summarize, the allowed slow-

down for a task τi, is given by the following formula:

Si(t) =
WCETi −

(

∑m

γ=1(ωγ ∗ RAγ) +
∑l

γ=1(ωγ ∗ (1 − RAf
γ))
)

di − t
(6.5)

Formula 6.5 differs from Formula 6.4 on the calculation of the devoted resources for

the LPT as they are now evaluated as
∑l

γ=1(ωγ ∗ (1−RAf
γ). f is an empirical constant

aimed to reduce the total accounted resources for the LPT.
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FIGURE 6.2: Accounted performance for LPT based MCT RA.

4Recall that the MCT receives priority over the LPT when fetching instructions from the instruction

cache.
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We found, based on the results of [16] and on empirical data, that 0.7 is the most appro-

priated value for the constant f . In Figure 6.2 we can see the accounted IPC for LPT

when the relation between the LPT performance and resources allocated to the MCT is

linear (f = 1) or sub-linear (f = 0.7). As we can see, the same amount of resources for

both f = 1 and f = 0.7 translates into a lower performance accounted for the period a

task was executed in LPT mode..

The results, when using Formulas 6.3 and 6.4, showmuch less flexibility and the success

rates were significantly smaller. In all cases, the formula 6.5 yielded better results. For

simplicity, we only present experimental results for this evaluation method.

Furthermore, we observed that, for task sets with many tasks of relatively distant dead-

lines, the allowed slowdown can be very significant, allocating less than half of the

resources to the MCT . In such cases, we understand that there is no sense on giving

less than 50% of the resources to the thread that is, by definition, the highest priority of

the workload. We artificially constrain the Minimal Resource Allocation (MinRA) as

0.5. Hence, 0.5 ≤ RA(t) ≤ 1.0 for the RA version of our proposed algorithm. The

MCT resource allocation at a given moment is expressed as follows:

RA(t) = max(MinRa, Si(t)) (6.6)

It is also very important to observe that, even if the Si(t) calculation may seem complex,

it is done in software, by the OS task scheduler and the above described sums are simply

implemented as accumulators that are only updated when the resource allocation for the

MCT changes (because of a context-switch, for instance) and the entire value of Si(t)

is only evaluated for the MCT.

6.3.2.1 Example

Consider a set of 4 tasks with the deadlines, WCETs, and utilization as shown in the

Table 6.1. In a first step, the scheduler chooses the task τ1, the task with closest deadline.

It becomes the MCT. The operating system (OS) also chooses to run, at lower priority,

τ3, which is the task with second closest deadline. The OS finally assigns a RA to the

MCT. It is set to the MAX(S1, 0.5) and S1 is calculated as S1 = 1−0
5−0

= 0.2. Therefore,

the MCT receives RA = 0.5.

Assume that, at a given instant, say Υ = 1.25, τ1 finishes. τ3 becomes the task with

the closest deadline and the MCT. The context where τ1 was running, receives now τ2.
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TABLE 6.1: Hypothetical task set.

Task WCET Deadline Utilization

τ1 1.0 5 0.20

τ3 4.0 6 0.67

τ2 0.5 7 0.07

τ4 2.0 8 0.25

S3 is calculated as
4−(0+(1.25∗(1−0.50.7))

6−1.25
= 0.74, RA = MAX(0.74, 0.5) = 0.74. This

workload executes until the instant Υ = 3.8, when τ2 finishes. τ4 starts to run on the free

context and the new RA for τ3 is calculated as follows: RA = MAX(S3, 0.5) where

S3 = 4−((2.55∗0.76)+(1−0.50.7))
6−3.8

= 0.76. This behavior repeats during the entire execution

time.

6.3.3 The SRA-LLF scheduler

Our SRA-LLF (Least laxity first) algorithm follows the same logic as the SRA-EDF.

For each given workload, the Si is calculated in the same way and follows the same

constraints. However, recall that LLF periodically calculates the laxity of each task,

being the laxity: li = (TTDi) − (RCi). Recall that TTDi is the time to the dead-

line (deadlinei − actual time) of task τi and RCi is the remaining computation time

necessary to complete this task.

As discussed in the previous section, the RCi can be computed in several ways. We

chose the RCi calculation method used to determine the Si, explained in Formula6.5

(Section 6.3.2) and applied it to the laxity evaluation. Therefore, following the termi-

nology of the section 6.3.2 the final laxity formula was:

li = TTDi −

(

WCETi −

(

m
∑

γ=1

(ωγ ∗ RAγ) +
l
∑

γ=1

(ωγ ∗ (1 − RAf
γ))

))

Again, the sums are the same accumulators that already existed for the Si calculation

and represent no additional complexity for the algorithm.

Concerning task preemption, taking executing tasks out of the run queue while running

a EDF based scheduler did not make sense, as our deadlines are fixed at the beginning

of the execution, and, therefore, the priorities on the EDF would never change. For the

LLF, however, it is possible that a running task looses priority while running, if its lax-

ity becomes larger than another task that was previously evaluated as having more slack



Chapter 6. Scheduling for Soft Real-Time SMT Systems 97

time. Similar to the EDF based versions, for which there is no task preemption (tasks ex-

ecute until they finish as they priority cannot change), we found that our best SRA-LLF

implementation did not interrupt running tasks when they do not have the least laxity

any more. Although the switch time (including scheduling) is often neglected [37], our

results shown that schedulers with higher switch rates yielded to worse overall results.

A small correction was, however, found to be very useful to avoid the need to preempt a

running task. At any workload change (when one of the tasks finished), a new task was

inserted (being the task with the highest priority among the ready tasks) and the two

running tasks had their laxities compared between them to determine which of the two

would assume the role of MCT. In this way, the highest priority task in the processor is

set to the task-set highest priority task.

6.3.4 A hardware support for improved scheduling

In LVPs static approach, the MCT is allowed to use a given amount of resources es-

tablished by the OS, which is called Minimum Resource Allocation or MRA. The other

thread was allowed to use the remaining (1 − MRA)% of resources. If any thread use

more resources than given to it, that thread was stalled until it frees resources.

A characteristic of this hardware mechanism is that it was single-objective in the sense

that the hardware could only satisfy a single target function given by the OS. In this

case the objective was to ensure a minimum resource allocation to the MCT.

Our novel resource allocation, works with the assumption that the slowdown factor Si

is the minimal bound for the slowdown that the MCT can suffer. Therefore, we can

provide the MCT with any amount of resources x so that x ≥ Si. This is acceptable to

guarantee the deadline of the task τi.

Enabling the resource allocator to use any value x ≥ Si provides a new degree of

freedom to the hardware, allowing it to maximize a second objective function given by

the OS. For this reason, we call our resource allocator DRA that stands for Double-

Objective Resource Allocator.

In our approach, the OS provides the workload, a minimum resource allocation to

achieve for the MCT and a second objective function. In this work we use as a sec-

ond objective function the IPC throughput or sum of IPC of co-scheduled workloads.

Once the time-slice starts, our mechanism splits the execution of the given workload

into two intervals or states that are executed in alternate fashion as shown in Figure 6.3.
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FIGURE 6.3: States and sub-states in which our resource allocation divides the execu-

tion of a workload

During the first state, the Learning State the resource allocator tries different resource

allocations greater than or equal to the minimum resource allocation provided by the

OS for the MCT. The resource allocation leading to the highest value of the second

target function is chosen and used during the application state and maintained until the

next learning state. In Figure 6.3, we see an example where RAi is set to MRA and the

increment per step in the resource allocation (RAinc) is set to 10%, which is the value

used in our experiments.

The learning state is split in sub-states. In the first learning sub-state the MCT is

given RAi + (0 × RAinc) resources. In the second sub-state the MCT is given RAi +

(1 × RAinc), and so on while RAi + (k × RAinc) ≤ 100%. The number of learning

sub-phases or steps until 100% of the resources are allocated to the MCT depends on

the minimum resource allocation (RAi) set by the OS and the size of the increment for

each step (RAinc).

The duration of an application period is set 30 times larger than a learning sub-state and

the learning period is set to a maximum of 6 sub-states, as for the DRA versions the

lower bound for the resource allocation on the most critical thread is 0.4 (0.4 + (6 ∗

0.1) == 1).

We coupled RA-EDF and RA-LLF to this new hardware support. The resulting com-

bination of scheduling algorithms and hardware support were respectively called DRA-

EDF and DRA-LLF. Between a SRA and a DRA version of a resource-aware algorithm,

the only difference lays in the underlying hardware mechanisms and implementation.

6.3.4.1 Hardware Implementation

The DRA based schedulers require additional hardware support to track the phase and

sub-phase in which the mechanism is in. This hardware is similar to the mechanism
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proposed in [23], and can be done with a hardware-scheduler thread (or hs-thread) that

is programmed in micro-code.

APP DURATION: OS established value to indicate number of cycles of the application phase.

LEAR DURATION: OS established value to indicate number of cycles of the learning phase.

RAinc: OS established value to indicate the value incremented to the RAcurr at each

learning sub-state.

RAi: OS established initial value of RA.

RAcurr: register that establishes the resources to give to the MCT.

counter: countdown counter: decremented of 1 at each cycle.

inst: counter that increments at each committed instruction.

app period: Boolean variable that indicates whether it is in application or learning phase.

best inst: storage for the best result on an application sub-state.

RAbest: storage for the resource allocation that obtained the best result.

RAavgi: storage for the internal accumulator for the average resource allocation from

the last RA set to now.

RAavge: storage for the average resource allocator (visible to the OS) of the last period

between two RA sets.

FIGURE 6.4: Registers and variables needed by the hs-thread.

The pseudo code for the hs-thread can be seen in the Figure 6.5, while the variables

needed by the algorithm are described in the Figure 6.4. The first piece of code (Fig-

ure 6.5(a)) is executed every time a new resource allocation (RAi) is defined by the OS

and passed to the processor, usually when switching tasks. It consists of few simple in-

structions where, only in the line 6, the assigned value is not an internal value. The first

branch tests in which phase the processor was and, according to it, accumulate on the

internal register RAavgi the amount of resources given on the last running period. The

line 6 sets the internal RAcurr to the RAi, which is the value passed from the OS. The

7th makes the internal counter receive the value of the learning duration, the 8th line

makes the hardware enter in learning period and the last one updated the visible special

register that indicates the total average resource allocation for the last period between

two RA sets. This value may be used by the OS to calculate the next allowed slow-

down. Otherwise, the OS wouldn’t be able to determine the exact amount of resources

that each thread received on the last time-slice.

Whenever counter reaches zero, the running threads (MCT and LPT) are stopped and,

the second part of the code (Figure 6.5(b)) is executed in order to reset the amount of

resources given to each thread. If it is the end of the application period or the end of a

learning-sub period, different actions can be taken. In the first case, it executes the code

block from line 2 to 5: it accumulates the internal average resource allocation given

to the MCT on the last application period, sets the counter to the size (in cycles) of a

learning sub-state and re-set the hardware to the learning period, it also sets the RAcurr
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1 if(app period){
2 set RAavgi to RAavgi + (RAcurr × (APP DURATION - counter))

3 }else{
4 set RAavgi to RAavgi + (RAcurr × (LEAR DURATION - counter))

5 }
6 set RAcurr to RAi;

7 set counter to LEAR DURATION;

8 set app period to false;

9 move RAavgi to RAavge;
(a) Processing when the resource allocation is re-set.

1 if(app period){ /* end of app phase */

2 set RAavgi to RAavgi + (RAcurr × APP DURATION)

3 set counter to LEAR DURATION;

4 set app period to false;

5 set RAcurr to RAi;

6 }else{ /* end of a learning period */

7 if(inst > best inst){
8 set best inst to inst;

9 set RAbest to RAcurr;

10 }
11 set RAavgi to RAavgi + (RAcurr × LEAR DURATION)

12 add RAinc to RAcurr;

13 if(RAcurr > 1.0){
14 set app period to true;

15 set RAcurr to RAbest;

16 set counter to APP DURATION

17 }else{
18 set counter to LEAR DURATION

19 }
20 }

(b) Processing done at the end of each phase (invoked when counter reaches zero).

FIGURE 6.5: Hs-thread pseudo-code.

back to the to the RAi(line 5). On the other hand, if it is the end of a learning sub-

period, the hardware stores the best resource allocation until the moment (lines 8,9),

accumulate the resources given to the MCT on the last learning sub-period (line 11),

and increment the RAcurr by RAinc (line 12). This procedure repeats, on every learning

sub-state boundary, until the RAcurr gets bigger than 1.0, when it sets the app period

to true (line 12), the RAcurr to the RAbest and the counter to APP DURATION.

We modeled the internal overhead of this code (in the pipeline) as 50 cycles, however,

as one can see, the worst case is composed by 3 branches, 5 assignments, two adds and

one multiplication which probably executes much faster. Moreover, this code will only

execute at each sub-phase boundary, defined by the OS.
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Every cycle the counter is decremented until it reaches zero, at the beginning, APP PERIOD

is set as false and, therefore, a learning sub-state will start with a given resource allo-

cation (each time incremented by 0.1). This will undergo until the resource allocation

reaches a value superior to 1.0. At that time, the APP PERIOD gets the number of

cycles it must execute (we used 240k cycles).

6.4 Methodology and Experimental Environment

In this section we describe the experimental methodology used to evaluate the perfor-

mance of the proposed and the previous scheduling algorithms. Our experimental setup

is similar to the experimental setup shown in [30]. This section covers the definition of

the task set, metrics, and the architecture simulator.

6.4.1 Task sets and Metrics

In this work, we use the MediaBench benchmark suite [54]. We compose task sets with

3 different sizes: 4, 8 and 12 tasks randomly chosen from the MediaBench benchmarks

shown in Table 6.2. We believe the choice of these task sizes is reasonable. Since in

our experiments we use a two-way SMT, a 2-task scheduling defaults to no scheduling

needed (as they don’t need to be multiplexed between the two hardware contexts) and

significantly larger task sets (say of hundreds of tasks), would take too long (weeks) to

simulate on a cycle accurate OS/architecture simulator. Right now, one 12-task simula-

tion takes around 6 to 10 hours to execute alone.

TABLE 6.2: MediaBench benchmarks used in this work.

Benchmark name Media Language WCET for a 1GHz proc. input

adpcm c speech C 1.6772 ms clinton.pcm

adpcm d speech C 1.4599 ms clinton.pcm

epic c image C 17.8306 ms test image.pgm

epic d image C 6.1524 ms test image.pgm

gsm c speech C 55.9323 ms clinton.pcm

gsm d speech C 50.8701 ms clinton.pcm

g721 c speech C 39.7142 ms clinton.pcm

g721 d speech C 18.1077 ms clinton.pcm

mpeg2 c video C 34.9833 ms test2.mpeg

mpeg2 d video C 2.5358 ms test2.mpeg
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For a given task τi the utilization is defined as Ui = WCETsti/pi, where WCETst is

the Worst Case Execution Time (WCET) of the task in single-thread mode and pi is the

period of the task. As shown in [47], for a task set the serial utilization (SU) is defined

as the sum of the utilization of each of its tasks. In other words, given a task set with M

tasks:

SU =
M
∑

i=1

WCETsti
pi

(6.7)

The term scalar utilization is also used in [30] with the exact same meaning. In this

work, we will use the term serial utilization.

We evaluate the performance of each scheduling algorithm under different scenarios of

increasing difficulty. We vary the serial utilization from 1.0 to 2.6 with a step of 0.2,

for a total of 9 scenarios. We do not present the results for serial utilization higher

than 2.6 as, even if they were simulated, they fail to add any new information: the

processor is already saturated with a 2.6 serial utilization. For each task set size and

serial utilization (SU ) we created 50 task sets. Thus, for each scheduling algorithm

we ran 1350 simulations (3 task set sizes, times 50 task sets, times 9 serial utilization).

As evaluation metric we use the Success Rate, which measures how many task sets are

successfully scheduled. We consider that a task set is successfully scheduled when all

tasks in that task set finish before their deadline.

6.4.2 Simulator

We use a trace driven SMT simulator derived from smtsim [77]. The simulator consists

of our own trace driven front-end and an improved version of smtsim’s back-end. It

allows executing wrong path instructions by using a separate basic block dictionary that

contains all static instructions.

Our baseline instruction fetch policy is icount [76]. Instructions are decoded and re-

named to track data dependencies. When an instruction is renamed, it is allocated an

entry in the window or issue queues (integer, floating point and load/store) until all its

operands are ready. Each instruction also allocates one Re-Order Buffer (ROB) entry

and a physical register in the register file. ROB entries are assigned in program order

and instructions wait in this buffer until all earlier instructions are resolved. When an

instruction has all its operands ready, it reads its source operands, executes, writes its

results, and finally commits.
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Processor Configuration

Pipeline depth 12 stages

Fetch/Issue/Commit 8 entries

Queues Entries 32 int, 32 fp, 32 ld/st

Execution Units 6 int, 3 fp, 4 ld/st

Physical Registers 120 integer, 120 fp

(shared)ROB size 512 entries

Branch Predictor 16K entries gshare

Branch Target Buffer 256-entry, 4-way assoc.

Return Address Stack 256 entries

Memory Configuration

Icache, Dcache 64 KB, 2-way,

8-bank, 64-byte lines,

1 cycle access

L2 cache 512 KB, 8-way, 8-bank,

64-byte lines, 20 cyc.acc.

Main memory latency 300 cycles

TLB miss penalty 160 cycles

FIGURE 6.6: Processor and memory configuration for the simulation infrastructure

FIGURE 6.7: Schematic view of the simulation infra-structure

We use an aggressive configuration, shown in Figure 6.4.2: many shared resources (is-

sue queues register, functional units, etc.), out-of-order execution, wide superscalar, and

a deep pipeline for high clock frequency. These features cause the performance of the

processor to be very unstable, depending on the mix of threads. Thus, we evaluate our

proposals on an unfavorable scenario. If those proposals work in this hard configuration,

they will work better in narrower processors with fewer shared resources. Figure 6.4.2

gives a schematic view of our processor while Figure 6.4.2 shows our baseline configu-

ration.

To be able to validate the system scheduling, we adapted the simulator, allowing it to
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receive an input of µ traces (µ > η) and multiplex them over the η processor contexts

in a way similar to the operating system (OS) task-scheduler. The context-switches are

commanded by the task scheduling algorithm and can be timely dependent (say, every

10 or 20ms) or after the execution of a task instance (on a period), according to the

scheduler characteristics.

Every context-switch clears the pipeline of the affected context, flushing the active in-

structions. We also chose to be conservative concerning the memory impact of this

switch and assumed the worst case concerning the memory footprint of the task running

on the physical context. Therefore, we flush the cache and completely invalidate TLB

entries for a context after a context switch, as it is done in some real processors [61].

The evaluation of the Worst Case Execution Time (WCET) in single-thread mode takes

into account this overhead. Another key reason for clearing the cache is that the traces

may have equal physical addresses, because they were not generated at the same time.

In that case, extra care must be taken in order to avoid false hits on the cache after

multiplexing some successive traces.

6.5 Experimental Results

In this section we present the results obtained with the several scheduling algorithms

implemented and compared in this chapter. Figures 6.8, 6.9 and 6.10 show the number

of successfully scheduled task sets for the different scheduling algorithms. We present

the aggregated results for the three task set sizes shown in Section 6.4.1, in total, for

every serial utilization, 150 different sets were ran. The higher the number of task sets

scheduled by an algorithm, the better the result.

As EDF is one of the best known and most common scheduling algorithms for soft-real

time systems, we will use it as the main baseline to compare the results obtained by

the different algorithms. Recall that SRA-EDF is our EDF based algorithm that runs

with the single-objective hardware proposed in [16], while the DRA-EDF refers to the

case where the equivalent resource-aware EDF based algorithm runs with our novel

double-objective hardware.

The second baseline will be the LLF algorithm, used when comparing LLF the based

schedulers. Recall that, SRA-LLF is our LLF based algorithm that runs on the single-

objective hardware, and DRA-LLF runs with the double-objective hardware support.

In this work, the results for GLOB SYM US and GLOB NO SYM US differ from the

ones presented in [47]. This is expected, up to some level, due to several differences in
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FIGURE 6.8: Comparison between various EDF based algorithms (4-,8-,12-tasks).

the simulated scenario. First, as described in Section 6.4.1, we have different task sets

distribution and generation mechanisms. Second, we considered a task set not schedu-

lable when at least one task miss its deadlines, while in [47] the authors considered a

task set not schedulable when more than 5% of the tasks have missed deadlines.

Figure 6.8 shows a comparison between the various algorithms based on EDF. The first

thing to note is the unexpected behavior of GLOB SYM US and GLOB NOSYM US.

For the latter, recall that its behavior only differs from the EDF for tasks presenting

utilization superior to N
2N−1

. As the percentage of these tasks in our task sets is only of

11.3%, the results of this algorithm are very similar to those of the EDF. In fact, for our

infrastructure, it obtains the same results as EDF.

GLOB SYM US starts by co-scheduling the task with the earliest deadline (τedf ) and

the task that provides the highest symbiosis with this task (τsymb). In [47], authors

do not explain how the algorithm performs the rearrangement of the running workload

once the τedf finishes.

It is not clear how the algorithm performed the reconfiguration of the running workload

once the task with the closest deadline finishes. In other words, given that the task with

the earliest deadline is running on one of the hardware contexts, and the others occupied

with the tasks that maximize the symbiosis, many decisions can be taken once the task
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with highest priority finishes. We tuned the following factors in order to have the best

performance:

• As the task left running is the τsymb, should the algorithm choose the next job in

order to maximize the running workload symbiosis or should it pick the task with

the nearest deadline?

• Given that, during the previous step, the job with the closest deadline was inserted.

If the context running the other (less priority) task did not offer the best symbiosis,

should it be preempted in order to have always the best running symbiosis?

We implemented and benchmarked every combination of the previous decisions and

concluded that the best option presented the following behavior: Once the task with the

closest deadline finishes (τedf ), the one with the next closest deadline is chosen. If this

job is the one already running (previously chosen to improve symbiosis), we insert the

task that maximizes the symbiosis of the running task set. If this is not the case (the

thread with the earliest deadline is not in the SMT processor), then we insert the job

with the closest deadline and, if and only if necessary, preempt the other running job in

order to run the one with higher symbiosis on the task set. Although this option yields

a larger number of context-switches, it proved to be the most efficient version of this

algorithm. Still, in the overall, it schedules 32.7% less task sets than EDF.

For EDF, one may observe that some task sets miss even when SU = 1.0. This oc-

curs because of a hardware-software priority inversion problem, where the hardware is

prioritizing threads in the opposite direction of the software-priorities. The first two

cases occurred when adpcm c was running with epic d. As we can see in Table 6.3

(task set 1), the default icount policy prioritizes epic d, in order to increase the overall

processor throughput, disregarding the fact that adpcm c had a closer deadline (due to

the lack of collaboration between the OS and the processor schedulers). For the third

case, shown in the Table 6.4 (task set 2) the same problem occurs: epic d was the task

with the closest deadline and was scheduled with epic c, of lesser priority. Internally,

icount policy prioritized the latter in order to increase the overall throughput. Observe

that the symbiosis factor for these cases are larger than one, meaning that scheduling

those tasks together gives a higher throughput than in single thread.

GLOB SYM US tends to privilege cases with higher symbiosis, but is not able to tune

the internal processor’s resource allocation to prioritize the task with closest deadline.

It misses three more task sets than EDF and GLOB NOSYM US when running with

serial utilization 1.0.
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TABLE 6.3: Benchmark interactions without explicit resource allocation.

Task set 1:

Benchmark IPC Alone IPC Together Relative IPC

adpcm c 4.181 1.281 0.306

epic d 1.642 1.333 0.812

Symbiosis factor: 1.118

TABLE 6.4: Benchmark interactions without explicit resource allocation.

Task set 2:

Benchmark IPC Alone IPC Together Relative IPC

epic d 1.642 0.787 0.479

epic c 3.175 1.912 0.602

Symbiosis factor: 1.081

Another interesting fact is that, even if the 4-, 8- and 12-task simulations follow the same

trend of behavior, the 12-task sets yield better success rates. This can be explained

by the fact that the as the number of tasks per task set increases, the individual per-

task utilization utilization tends to decrease, becoming easier to accommodate a larger

individual slowdown (traded for a global throughput increase).

FIGURE 6.9: Comparison between the LLF based algorithms (4-,8-,12-tasks).

As we can see in the Figure 6.8, our RA-EDF algorithm outperforms EDF in all cases.

Comparing to the original EDF algorithm, the RA-EDF has, in average, 11.8% higher
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success rate5. In addition, our SRA-EDF and DRA-EDF successfully schedule task sets

when others fail because of hardware-software priority inversion, as they are able to

explicitly control the hardware resource allocation to the task with the highest priority.

Compared to EDF, DRA-EDF schedules 13.9%more tasks. It achieves similar or higher

results than SRA-EDF in all cases except for serial utilizations 1.6 and 2.6, where it

schedules respectively one less and three less task sets.

Figure 6.9 shows the LLF based algorithms. When compared to LLF, SRA-LLF sched-

ules 10.5% more task sets, while DRA-LLF schedules 11.2% more task sets. For serial

utilizations inferior to 1.8, DRA-LLF seems to be slightly worse than, or equal to, SRA-

LLF. From 1.8 to 2.4, it is better than SRA-LLF. LLF schedules about 1.6% more task

sets than EDF (Figure 6.11).

FIGURE 6.10: Comparison between our proposed algorithms (4-,8-,12-tasks).

Putting all together, Figure 6.10 shows all our proposed algorithms. They schedule very

similar number of tasks, which highlights the fact that the biggest improvement comes

from coupling the internal processor’s resource allocation to the software targets. The

DRA versions tend to outperform by a small margin the SRA versions, among them,

SRA-EDF is the scheduler that presents the smallest performance improvement (11.8%

when compare do EDF). Nevertheless, we expect the choice between our proposals

5Recall that we consider a task set successfully scheduled when there is no missed deadline.
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to depend on more than their comparative performance. For instance, LLF based algo-

rithms increase the scheduling complexity due to the fact that frequent laxity calculation

must be performed for all tasks. On the other hand, DRA based algorithms require a

more complex hardware support that may not be available.

FIGURE 6.11: Aggregated success rate for all serial utilizations normalized to EDF.

Figure 6.11 shows the number of scheduled task sets, normalized to EDF, for all serial

utilizations and all schedulers. As we can see, the benchmark that performs the worse

in our environment is the GLOB SYM US, scheduling 32.7% less task sets than EDF.

The best aggregated result is the one obtained by DRA-EDF, which is very similar to

the one obtained by DRA-LLF (0.9% difference).

We should observe that, except for one task set, with serial utilization of 1.6, where

DRA-EDF and DRA-LLF miss, there is no case in which our proposed algorithm has

lower success rate than any of the others. Furthermore, using this resource aware

scheduling algorithms eliminates the hardware-software priority inversion problems.

That is, in contrast to normal SMT processors, where the hardware scheduler (fetch

priority mechanism) and the OS scheduler are not aware of each other, there is no case

where a lesser priority thread consumes more resources than the higher priority one. In

addition, our solutions do not require profiling of the tasks to schedule.
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Another key observation is the fact that we used a very aggressive WCET estimate.

The closer is the WCET to the average execution time, the harder will it be to schedule

the task set, as there will be close to zero extra time on normal execution. On real

systems, WCET are normally an upper bound on the execution time, and, therefore,

even more task sets would be scheduled on the common case. Considering a soft real-

time scenario, using this slack between the WCET and the “expected execution time”

would be, on some cases, an acceptable situation.

From our proposals, whenever the necessary hardware support can be implemented, we

estimate that DRA-EDF should be chosen. Otherwise, SRA-EDF should be preferred.

It presents very similar results to SRA-LLF and much lower complexity.

6.6 Conclusions

Embedded systems require increasingly high throughput rates. To reach those rates,

current embedded processors use features that resemble to the ones used in the high-

performance processors. The use of these features impacts the performance predictabil-

ity and creates new problems for real-time system. SMT processors are a clear example

of this new trend. SMTs provide higher throughput with reduced costs but make harder

the problem of computing the worst case execution time, generating task interference

or even giving most of the shared hardware resources to a task with lower priority when

multiple tasks are running on different hardware threads.

In this chapter, we address the problem of scheduling a task set in a soft real-time SMT

system from the software and hardware layers in a collaborative way. Our proposal

allows better control of the underlying hardware resources by the scheduling algorithm,

increasing the task scheduling success rate. Assuming that the Worst Case Execution

Time (WCET) is given, for every task, our mechanisms do not require any additional

profiling.

The original Earliest Deadline First (EDF) algorithm, used in most RT systems, only

aims to determine the order in which tasks should be executed. This is not enough if

the task set is scheduled on an SMT processor due to the execution time variability of

threads. We developed and evaluated, in a simulated environment, a new scheduling

algorithm, called RA-EDF (Resource-Aware EDF), that uses a hardware support pro-

posed in [16]. RA-EDF, in addition to determine the execution order of threads, controls

the amount of resources to give to co-scheduled threads. We provide EDF with knowl-

edge of the processor resources and instruct it in how to split resources among threads
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in order to meet their deadlines. This increases the success rate when scheduling tasks,

outperforming state-of-the-art scheduling algorithms. The proposed scheduler algo-

rithm obtains better results than EDF on every case when compared to the previous

proposed task schedulers: 11.8% average improvement.

In addition, we developed RA-LLF, a resource-aware LLF variant that, in addition to

control the resource allocation, improves the laxity accounting. RA-LLF achieves better

results than RA-EDF when there is skewed distribution of utilization between the tasks.

Furthermore, we propose a new hardware support that allows hardware-level fine-grain

dynamic prioritization. The RA-EDF and RA-LLF versions adapted to the dynamic

prioritization hardware were called DRA-EDF and DRA-LLF respectively. DRA-EDF

and DRA-LLF achieve better results than RA-EDF and RA-LLF. As a future work,

we plan to expand the proposed mechanisms to an N-way SMT machine: keeping one

MCT and many LPT would make it feasible. Furthermore, we would like to evaluate

other secondary metrics for the double-objective hardware.





Chapter 7

Conclusions

Multithreaded processors became widely used in academia and industry as a way to

increase the aggregated performance (throughput). They offer additional performance

at a low cost and low complexity. Furthermore, they allow to increase the processor’s

throughput with relatively small power increase.

Due to their resource sharing, these processors present specific problems and character-

istics. Hardware-software priority inversion (by the hardware resource allocation) and

performance variability are two examples of such problems. These problems are caused

or worsened by the fact that several separated hardware policies rule the allocation of

the many levels of resource sharing: the cache replacement policy is not coordinated

with the internal resource sharing policy or the fetch policy and so on. And even worse,

the operating system or the software layer has no way to enforce the software targets.

In this thesis, we use a comprehensive approach, coordinating targets of software and

hardware. We employ hardware with explicit resource allocation and propose new hard-

ware support when such hardware is not commercially available. For both the new sim-

ulated hardware and ones commercially available, we propose new software-controlled

mechanisms to narrow the gap between software and hardware policies.

The main contributions of this thesis are:

1. On the real time domain, we addressed the problem of scheduling a task set in a SMT

system from the software and hardware layers in a collaborative way. We made

two sets of contributions: scheduling mechanisms that improve the schedulability

of the previous proposed soft real-time task schedulers, and an improved hardware

support for explicit resource allocation that allows targeting a given metric while still

guaranteeing a minimum performance for the high priority task.

113
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The scheduling algorithms, RA-EDF and RA-LLF, when compared to EDF and LLF,

improved success ratio scheduling soft real-time tasks by 11.8% and 10.5%, respec-

tively. When running with the new hardware support, another 2.1% are harvested for

DRA-EDF, improving EDF by 13.9%. DRA-LLF improves LLF by 11.2%.

2. On the HPC domain, we made the following contributions:

• We characterized a real processor, the IBM POWER5, and perform an in-depth

evaluation of the effects of this processor’s software-controlled prioritization

mechanism over several different loads.

We present the following conclusions: first, workloads presenting a large amount

of long-latency operations are less influenced by priorities then the ones exe-

cuting low-latency operations (i.e., integer arithmetic). Second, it is possible,

by using the prioritization mechanism, to improve the overall throughput up to

two times, in very special cases. However, those extreme improvements often

imply drastic reduction of the low IPC thread’s performance. On less extreme

cases, it is possible to improve the throughput by 40%. And third, we show that,

instead of using the full spectrum of priorities, only priorities up to +/-2 should

be used, while “extreme” priorities should be used only when the performance

of one of the two threads is not important.

• We propose the use of the thread prioritization mechanism as a way to perform

load-balance in HPC applications and significantly reduce their execution time.

• We propose HPCSched, a scheduler for the Linux kernel that is able to per-

form load-balancing transparently and dynamically, adapting to application’s

behavior changes and requiring no changes in the program code.

• We propose DLRB, a transparent dynamic user-level load and resource bal-

ancer in the form of a linked library.

Our experiments show that HPCSched and DLRB achieve results close to the

one obtained by static hand-tuning of the priorities for applications with con-

stant behavior. In addition, for the cases where the static hand tuning cannot

perform well due to the fact that the applications exhibit dramatic changes in

behavior, both HPCSched and DLRB are able to adapt and re-balance the re-

sources appropriately.

Summing up our findings, we conclude that, by a coordinated hardware/software ap-

proach in which the system software and the hardware tightly collaborate, it is possible

to develop improved heuristics to target different metrics. In this thesis, we control,

from the software, the hardware resource allocation to improve two of the possible
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metrics: the resource allocation to improve the schedulability of tasks in soft real-time

systems and the resource balancing as a way to reduce applications execution time in

high performance computing.

7.1 Future work

This thesis opened several new topics that we want to better explore. Among others, we

would like to highlight the following:

• In the real time systems, we would like to explore mechanisms that allow pre-

dictable performance and improved scheduling in new hardware with more than

two hardware threads and/or with multiple cores.

• In HPC systems, we are now working on the combined use of hardware explicit

resource allocation and additional actuation mechanisms (for instance, dynamic

voltage scaling or coscheduling) to improve additional metrics, like power or en-

ergy. In fact, the prioritization may be an alternative to situations when dynamic

voltage scaling is not desirable or too coarse grain. Our current work targets

a scheduler that is able to use several actuation mechanisms coordinated at the

same time.

• Also, for HPC systems, we plan to expand our load-balancing solutions to a clus-

ter level: HPCSched and DLRB are able to balance HPC application inside a node

but modern Supercomputers consists of Thousands of nodes. In this case there

is another level of load balancing which consists of assigning the correct group

of tasks to each node considering that the local scheduler is able to dynamically

assign more or less hardware resource to each task.

Some of these topics are already being developed. We hope to deal with the remaining

topics in the near future.
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