

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Analysis and Architectural Support

for Parallel Stateful Packet Processing

A Dissertation Presented

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Doctor per la Universitat Politécnica de Catalunya

by

Javier Verd́u Mulà

July 2008

ii

Analysis and Architectural Support

for Parallel Stateful Packet Processing

Author: Javier Verd́u Mulà

Advisors: Mario Nemirovsky

Mateo Valero Cort́es

A Dissertation Presented

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Doctor per la Universitat Politécnica de Catalunya

Departament d’Arquitectura de Computadors

Universitat Polit́ecnica de Catalunya

July 2008

A l’Ester, Pares, Germà i resta de la Famı́lia
que m’han recolçat i suportat. Gràcies!

vii

Acknowledgements

Per començar voldria agrair aquesta tesis als meus Pares, al Josep, a l’Anna i a la resta
de la faḿılia per ajudar–me a créixer com a persona i pel seu recolzament en els estudis.
I des de fa pocs anys a la meva nova famı́lia, pares i germans de l’Ester. També al Mart́ın
i a la Lidia, dos molt bons amics tant llunyans com propers. A tots ells GRÀCIES per
haver estat amb mi en diferents moments de la meva vida.

Per̀o sobretot a l’Ester, per haver sacrificat tots aquells caps de setmanes, vacances,
ponts ... i per aquelles nits i matinades en qu havia de treballar. Aixı́ que, prepara’t, ara
començarem a viure!!!!

Gràcies als meus directors de Tesis, Mario i Mateo, els quals sense ells no hagus
aprs a espavilar–me i per tant, a treure endavant la tesis. També a nivell professional,
agraeixo a Jorge Garcı́a per la gran ajuda que em va donar especialment al principi de la
tesis i a Enrique per haver–me obert les portes a un viatge doctoral que avui acaba.

El començament del doctorat va suposar molts canvis en la meva vida, que van ser
més f̀acils de pair al conviure amb bons amics. Fran, amb qui vaig començar l’aventura
del doctorat, i Gerḿan i Oliver, amb aquelles converses nocturnes inacabables.

Des de fa temps a l’Alex i al Rubén fan que els esmorzars es converteixin en un món
ple d’emocionants projectes, dels quals no descartem que algun dia es facin realitat.

Tamb́e voldria fer mencío d’altres amics que he trobat al llarg d’aquesta tesis, i
disculpeu–me tots aquells que ara no us recordi: Josep Maria, Tana, Carmelo, Jaume,
Oliver, Ayose, Daniel, Marco, Ale, Isidro, Pepe, Enric, Fernando, Pedro (que aquesta
mencío valgui per tots els Pedros que conec), Roberto, Llorenç, Ramón, Beti, Jordi,
Silvia, Montse, Pau, Ferḿın, Alex Raḿırez, Juli, Esther, Xavi, Ernest, Alba, Hema, Ho-
racio, Patry, Liz, Carmina, Nay, Rubén (tamb́e que valgui per els que conec d’America),
Raimir, Lemma, a els membres de sistemes i administració que m’han ajudat quan ho

viii Acknowledgements

he necessitat, i als que em van ajudar quan vaig he estat a Estats Units, Mario i Laura,
Enric i Encarna, i Rodolfo.

Per acabar, vull agrair a l’Alex i al Rodolfo que hagin sacrificat el seu temps en la
correccío d’alguns caṕıtols d’aquesta tesis. Els seus comentaris han estat de gran ajuda.

ix

Abstract

This dissertation focuses on the processing of packets in network nodes. The demand
of packet processing differ in significant ways from other typical processing required by
office applications or scientific data crunching. The system throughput requirements lead
to the exploitation of parallelism through parallel architectures. Massive multithreaded
processors emerge as a good alternative to provide the required resource capabilities.

Advanced network applications keep state information of processed packets. The
state can be related to packets of a given flow or packets across different flows. These
applications, called stateful, arise dependencies among packets and reduce the amount
of available parallelism. Moreover, current execution models of network applications
don’t take advantage of the massive multithreaded capabilities.

In this thesis, we address the limitations of parallelism in stateful network appli-
cations to maximize the throughput of advanced network devices. Furthermore, this
dissertation comprises three complementary sets of contributions focused on: network
analysis, workload characterization and architectural proposal.

The network analysis evaluates the impact of network traffic on stateful network
applications. We specially study the impact of network traffic aggregation on memory
hierarchy performance.

We categorize and characterize network applications according to their data man-
agement. The results point out that stateful processing presents reduced instruction level
parallelism and high rate of long latency memory accesses.

Our analysis reveal that stateful applications expose a variety of levels of parallelism
related to stateful data categories. Thus, we propose the MultiLayer Processing (MLP) as
an execution model to exploit multiple levels of parallelism. The MLP is a thread migra-
tion based mechanism that increases the positive affinity among streams in the memory

x Abstract

hierarchy and alleviates the contention in critical sections of parallel stateful workloads.
The main goal of MLP is to maximize the throughput of massive multithreaded archi-
tectures.

This thesis provides the first step forward to overcome the performance limitations
of oncoming stateful applications. In addition, it opens new research lines towards future
stateful network architectures.

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Trends of Packet Processing in the Internet. 3
1.2 Emerging of Massive Multithreaded Architectures. 5
1.3 Problem Statement. 7
1.4 Contributions . 8

1.4.1 Primary Contributions. 8
1.4.2 Other Contributions . 11

1.5 Organization. 12

2 Background 15
2.1 Deep Packet Inspection. 15
2.2 Statefulness. 17
2.3 Dependencies Among Packets. 18

3 Network Traffic Analysis 21
3.1 Chapter Roadmap. 22
3.2 Network Properties Under Analysis. 22

3.2.1 Sanitization. 22
3.2.2 Traffic Aggregation. 24

3.3 Validation of Sanitized Traffic Traces. 25
3.3.1 Methodology. 26
3.3.2 Evaluation . 28

3.4 Impact of Traffic Aggregation . 32

xii CONTENTS

3.4.1 Traffic Aggregation. 32
3.4.2 Methodology. 34
3.4.3 Evaluation . 36

3.5 Related Work. 41
3.6 Chapter Summary. 42

4 Characterization of Networking Applications 45
4.1 Chapter Roadmap. 46
4.2 Workload Classification. 46
4.3 Environment and Methodology. 48

4.3.1 Traffic Traces. 48
4.3.2 Benchmark Selection. 48
4.3.3 Evaluation Methodology. 49

4.4 Characterization of Network Workloads. 51
4.4.1 Stateful Data Requirements. 51
4.4.2 Instruction Mix. 53
4.4.3 Instruction Level Parallelism. 55
4.4.4 Data Cache Behavior. 57
4.4.5 Branch Prediction. 59
4.4.6 Performance Evaluation. 59

4.5 Characterization of Stateful Workloads Throughout a Flow. 61
4.5.1 Computational Workload. 62
4.5.2 Data Cache Behavior. 64
4.5.3 Branch Prediction. 65
4.5.4 Performance Variations. 68

4.6 Related Work. 70
4.7 Conclusions. 71

5 Principles of Parallel Stateful Processing 73
5.1 Motivation. 74
5.2 Workload Breakdown. 75
5.3 Critical Sections. 79
5.4 Order–of–Seniority. 81
5.5 Parallel Execution Models. 82

5.5.1 Run–to–Completion. 82
5.5.2 Software Pipeline. 84

CONTENTS xiii

6 MultiLayer Processing 87
6.1 Chapter Roadmap. 87
6.2 MultiLayer Processing. 88

6.2.1 The Ideal Parallel Stateful Processing. 89
6.2.2 MultiLayer Paradigm. 89
6.2.3 Identification of Processing Layers. 92
6.2.4 Load Balancing. 95
6.2.5 Processor Architecture. 96

6.3 Methodology . 99
6.3.1 Traffic Traces. 99
6.3.2 Workload . 99
6.3.3 Simulator. 100

6.4 Evaluation. 102
6.4.1 Affinity among Streams. 102
6.4.2 Lock Contention. 108
6.4.3 Performance Scalability. 110

6.5 Related Work. 116
6.6 Chapter Summary. 119

7 Conclusions and Future Work 121
7.1 Main Contributions. 121
7.2 Future Work. 125

7.2.1 Network Traffic Processing Issues. 125
7.2.2 Parallel Programming Tradeoffs 125
7.2.3 MultiLayer Processing. 126

Bibliography 129

xv

List of Figures

1.1 Internet Architecture Layers. 3
1.2 OSI Model . 4
1.3 Thesis Overview . 11

2.1 Packet Processing Flow Path. 17
2.2 Example of Order–of–Seniority Conflict. 19

3.1 IP address structure of a traffic trace (directly taken from [39]) 23
3.2 Example of Unique Flow Rates. 25
3.3 Workload of a given TCP flow. 29
3.4 Real versus sanitized traffic . 30
3.5 Sanitized traffic from multiple bandwidth links 31
3.6 Traffic aggregation methodology. 33
3.7 Example of aggregated traffic trace. 34
3.8 Traffic aggregation of several bandwidth links. 35
3.9 Example of theoretical memory requirements. 37
3.10 Traffic aggregation impact on L1 Data Cache. 38
3.11 Traffic aggregation impact on L2 Data Cache. 39
3.12 L2 Data Cache Requirements. 40

4.1 Network Processing Workload Categories. 47
4.2 Evaluation Methodology. 50
4.3 Lifetime of State Categories. 52
4.4 Statefulness of Benchmarks. 54
4.5 Instruction Mix of Stateful Benchmarks. 55
4.6 Available Instruction Level Parallelism. 56
4.7 Data Cache behavior. 58

xvi LIST OF FIGURES

4.8 Branch Prediction Hit Rate. 60
4.9 Performance Impact of Architectural Bottlenecks. 61
4.10 Normalized impact on IPC of Architectural Bottlenecks. 62
4.11 Workload per packet during the flow lifetime. 63
4.12 Data Cache Behavior. 65
4.13 L2 Cache Misses per packet during the flow lifetime. 66
4.14 Branch prediction study during the flow lifetime. 67
4.15 Performance per packet during the flow lifetime. 68
4.16 Variations of IPC per packet during the flow lifetime. 69

5.1 Massive multithreaded size to sustain stateful DPI for a 10Gbps link. . 74
5.2 Snort packet processing loop. 75
5.3 Multithreaded Snort packet processing. 76
5.4 Snort workload distribution according to the processing stages. 78
5.5 Example of nested locking due to stateful processing. 80
5.6 Distribution of critical sections and nested levels. 81
5.7 Run–To–Completion Execution Model. 83
5.8 Software Pipeline Execution Model. 85

6.1 Stateful data classification of Snort–MT. 90
6.2 MLP execution model of Snort–MT. 91
6.3 Example of stateful packet processing code. 92
6.4 Intermediate representation of Function ”Processing”. 93
6.5 Example of stateful MLP code. 94
6.6 Migrations in the ”Processing” Function. 95
6.7 Baseline Processor Block Diagram. 97
6.8 I$ Miss Rate with Core and Stream Scaling. 104
6.9 I$ Miss Rate Comparison. 105
6.10 D$ Miss Rate with Core and Stream Scaling. 106
6.11 D$ Miss Rate Comparison. 107
6.12 Example of Lock Contention. 109
6.13 Lock Conflict Rates. 110
6.14 Normalized Reduction of Lock Conflict. 111
6.15 Average Occupancy Time per Core. 112
6.16 Performance scalability. 114
6.17 Throughput scalability. 116

xvii

List of Tables

3.1 Example of resulting sanitized traffic 26
3.2 Traffic Traces . 27
3.3 Selected Benchmarks. 36

4.1 Benchmark Classification. 49
4.2 Baseline Configuration. 51

5.1 Workload Mixes. 77

6.1 Workload Mixes. 100
6.2 Simulation Parameters. 101
6.3 Distribution of stream occupancy per core. 113

1

Chapter 1

Introduction

The evolution of the technology in communications and processing capabilities, as well
as other sociologic factors (e.g. social progress, global networking, working connected
on remote devices), leads to the fact that both the entire Internet and a large range of
individual institutions nearly double the network traffic each year since 1997 [16, 61].

”Gilder’s Law” predicts that the need for bandwidth will grow at least three times
faster than computing power [25]. Regarding semiconductors, ”Moore’s Law” predicts
that the number of transistors that fit on a chip will double every eighteen months [56].
Even if there are studies that suggest the near end of ”Moore’s Law” [23, 52], it is ex-
pected that ”Gilder’s Law” will still hold true for the next years. Thus, as the gap between
network bandwidth and computing power widens, improved processor architectures are
needed to process network traffic without limiting system throughput.

The evolution of network services is closely related to the network technology trend.
Originally network nodes forwarded packets from a source to a destination in the net-
work by executing lightweight packet processing, or even negligible workloads. As links
provide more complex services, packet processing demands the execution of more com-
putational intensive applications. Complex network applications deal with both packet
header and payload (i.e. packet contents) to provide upper layer network services, such
as enhanced security, system utilization policies, and video on demand management.
Van Jacobson suggests the beggining of a new big step forward on the evolution of In-
ternet towards ubiquitous computing [35].

Computer architecture researches aim to maximize the system throughput to sustain

2 Introduction

the required network processing performance as well as other demands, such as memory
and I/O bandwidth. There are different processor architectures depending on the shar-
ing degree of hardware resources among streams (i.e.hardware context). Multiprocessor
architecture presents several processors in which there are no hardware resource shared
among processors, except the main memory and interconnection bus. Multicore archi-
tectures present multiple processing engines within a single chip that share cache levels
of memory hierarchy and interconnection network. Finally, multithreaded architectures
integrates multiple streams in a single processing engine sharing functional units, regis-
ter file, fecth unit, and inner levels of cache hierarchy. Scalable multicore multithreaded
architectures emerge as a solution to overcome the requirements of high throughput sys-
tems. Nevertheless, the efficient utilization of massively multithreaded architectures1

depends on the application characteristics. On one hand, emerging network applications
show large computational workloads with significant variations in the packet process-
ing behavior. Then, it is important to analyze the behavior of each packet processing
to optimally assign packets to threads (i.e. software context) for reducing any negative
interaction among them. On the other hand, network applications present Packet Level
Parallelism (PLP) in which several packets can be processed in parallel. As in other
paradigms, dependencies among packets limit the amount of PLP. Lower network layer
applications show negligible packet dependencies and PLP can be maximized. In con-
trast, complex upper network applications show dependencies among packets leading to
reduce the amount of PLP.

Multiple proposals maximize system throughput of low layer processing by exploit-
ing PLP in massively multithreaded architectures. In contrast, they doesn’t perform well
with upper layer applications due to the characteristics of the packet processing.

This thesis analyzes stateful network applications focused on the upper network lay-
ers. Statefulness is the capability for keeping information about previous packet process-
ing. The results will be used as basis to propose a new processing approach as well as
to describe the required software and hardware support. The code of the application in-
cludes information that allows the mechanism to identify multiple levels of parallelism
that enhance the PLP. As a result, the proposed architecture leverages the synergy among
streams for both data and instruction management. That is, enhancing the probability
that streams that use the same data and instructions are combined together. In addition,
this mechanism provides control thread management that reduces parallelism contention
in critical sections compared to other network processing approaches.

1We call massively multithreaded architectures to the architectures that comprise tens to hundreds of
streams distributed across multiple cores on a chip

1.1 Trends of Packet Processing in the Internet 3

1.1 Trends of Packet Processing in the Internet

The concept of Internet as a global network of networks was created during the seven-
ties [45]. Since then it has experienced an astonishing growth, both in traffic volume and
supported applications. The Internet design is largely built on the end–to–end principle
proposed by Saltzer et al. [73]. The core of the network just routes packets in a stateless
fashion, whereas the intelligence of network services is assigned to the endpoints.

Core Network

Edge Network
End Hosts

Figure 1.1:Internet Architecture Layers

Figure1.1 shows the three main layers of current Internet design in which the pre-
vious design principle is applied. The core network comprises several powerful back-
bone routers that forward packets based on destination addresses, without processing
the packet contents. When the packet arrives to the edge of the Internet, some additional
functions are performed to the packet, such as lightweight security filtering. Finally, the
end host manages the full packet contents as well as interacting with the user. In fact,
the end host is the responsible of doing complex packet processing.

According to the Open System Interconnection (OSI) model (see Figure1.2), the
core of the Internet provides services limited to the layer 2–3 (i.e. low layer). In contrast,
the end points provide services related to the upper layers of the OSI model.

4 Introduction

Physical1

Data Link (MAC)2

Network3

Transport4

Session5

Presentation6

Application7

deals with the physical aspects of the media being used
to transmit the data (e.g. Ethernet, RJ45)

provides the means to transfer data between network
entities and to detect and possibly correct errors that
may occur in the physical layer (e.g. IEEE 802.11)

is responsible for the delivery of packets end to end and
implements a logical addressing scheme (routing)
to help accomplish this (e.g. IP)

controls the reliability of a given link through flow control,
segmentation/desegmentation, and error control
(e.g. TCP, UDP)

defines how data conversations are started, controlled
and finished. Only after a completed conversation will
the data be passed up to layer 6 (e.g. NetBios, sockets)

defines the format of data being sent and any encryption
that may be used, and makes it presentable to
the Application layer (e.g. HTML)

implements end-to-end application protocols and
provides the interface to end-user processes
(e.g. Web browser)

Lo
w

La
ye

r
U

pp
er

La
ye

r

Layer Function

Figure 1.2:OSI Model

Due to the nowadays evolution of society and technology, the users demand new
kinds of network services. For this reason, the Internet starts to experience an interest-
ing transformation in which a part of the intelligence of the end hosts is moved to the
network. Some studies show that in the near future the Internet will be like a distrib-
uted ubiquitous computing system [35]. As a result, more complex network services are
assigned to the edge nodes.

Applications that provide complex network services arise two key capabilities that
differ from the low layer network applications: a) deep packet inspection examines the
packet payload tipically searching for a matching string or regular expression, and b)
stateful processing keeps track information of previous packet processing, unlike other
applications that don’t keep any data about other packet processing. In most cases, deep
packet inspection also integrates stateful processing. Further details can be found in
Chapter2.

1.2 Emerging of Massive Multithreaded Architectures 5

To understand the impact of the Internet evolution on the packet processing require-
ments, we describe the following example. Consider two averaged bandwidth links of
10 Gbps (OC–192 links2) and 40 Gbps (OC–768 links). Assuming a traffic that presents
a packet size of 500 bytes on average. Then, the network links require to sustain 2,5
Million Packets Per Second (MPPS) for OC–192 links and 10 MPPS for OC–768 links.
That is, a given packet has about 400ηsec and 100ηsec to be processed, respectively.

On the other hand, lighweight packet processing requires tens of instructions,
whereas complex applications need thousands of instructions [53]. Besides the above
mentioned packet processing time requirements, we assume a packet processing work-
load of 10K instructions, and a processor frequency is 1GHz. As a result, the required
processing performance is about 25 Instructions Per Cycle (IPC) for OC-192 links and
nearly 100 IPC for OC-768 links. Therefore, processor architectures must provide high
system performance to maximize the sustained throughput.

1.2 Emerging of Massive Multithreaded Architectures

Network processing requires high throughput as we discussed in the previous section.
The computer architects aim to maximize the throughput of systems by properly exploit-
ing parallel processing paradigms. However, a variety of dependency sources reduce the
amount of parallelism that can be exploited.

There is a wide range of applications that exhibit a large Instruction Level Paral-
lelism (ILP). Superscalar processors address this fine–grain parallelism by executing
small sections of code of a given thread3 in parallel. The compiler is able to signifi-
cantly reduce the impact of control dependencies (i.e. the execution flow is changed by
a control flow instruction, such as conditional branch) and data dependencies (i.e. an
instruction can start its execution when all its input dependencies are resolved) by re-
arranging the instructions. In addition, superscalar processors include mechanisms for
speculatively execution of instructions to further exploit ILP (e.g. branch predictor).
Unfortunately, the available ILP from a thread is limited to the mentioned dependencies,
and other factors such as hardware area and complexity constraints [96].

Other workloads, such as scientific applications, show large Data Level Parallelism

2Optical Carrier (OC) levels describe the signal rate multiples for transmitting digital signals on the
network. The base rate (OC–1) is 51.84. Other levels are given as OC–n.

3Throughout this thesis we use the word thread to refer to the software context and stream to refer to the
hardware context

6 Introduction

(DLP) since a given computation is repeated on multiple data items of large data struc-
tures, such as vectors or matrices. Vector processors address this paradigm with hard-
ware and compiler support that properly uses an specialized ISA (e.g. Multimedia Ex-
tensions, such as MMX [32], 3DNow! [4] by AMD, and SSE and SSE2 [33] by Intel
Corp). Vector processors are capable of hiding the memory latency by maximizing the
use of available memory bandwidth as well as reducing branch mispredictions by using
vector mask registers and predicated execution instead of conditional branches.

Even if the performance can be increased with ILP and DLP, there are systems that
need to exploit further levels of parallelism than the ones comprised within a sigle thread.
Multithreaded architectures are a good alternative, since they pursue increasing the sys-
tem performance by executing instructions from more than one thread, also known as
Thread Level Parallelism (TLP). TLP is orthogonal to the parallel paradigms exploited
inside a given thread (e.g. ILP, DLP). Depending on the architectural approach, mul-
tithreading can either increase the performance of a single program thread by concur-
rently executing several threads from a single sequencial program (e.g. trace proces-
sor [71], speculative multithreaded processor [49]) or increase the performance of a
multiprogramming or multithreaded workload (e.g. HEP system [80], Sun MAJC [88],
Piranha [9]). Multicore and/or multithreaded architectures are suitable for this type of
applications.

Recently there are processors that include additional resource sharing levels between
multithreaded and multicore processors (e.g. Sun UltraSPARC T2 [26]), where the
streams are partitioned into two pipelines and groups. The multithreaded processors in
which threads share the issue width present different execution approaches. A coarse–
grain multithreaded processor [2, 85] issues instructions from a single thread in a given
cycle. The processor switches to a different thread when it experiences a long latency
operation (e.g. an outer cache miss). In contrast, a fine–grain multithreaded proces-
sor [3, 66, 42, 80] switches to a different thread after each instruction fetch. Finally, a
simultaneous multithreaded processor [78, 104, 103, 29, 90, 22] can issue instructions
from multiple threads in a given cycle.

Regarding the network workloads, the architectures exploit the inherent parallelism
of network processing (i.e. PLP) through the execution of parallel applications. Early
packet processing relied on special–purpose architectures, since network processing pre-
sented lightweigth computational workloads, that is reduced number of instructions with
similar behavior among packet processing. In order to provide more flexibility and lower
implementation cost, programmable, high-throughput Network Processors (NPs) with

1.3 Problem Statement 7

specific network capabilities [21] were developed such as the Intel IXP network proces-
sor family [34] and the IBM PowerNP family [31]. The NPs exploit the TLP of network
workloads by leveraging multicore and/or multithreaded architectures.

NPs mostly focus on low network layer packet processing. As new network ser-
vices become common, NPs are not capable to provide the required capabilites for in-
tensive upper layer network workloads. For example, NPs are optimized to execute
reduced workloads that present well differentiated pipeline stages. In contrast, upper
layer processing presents large complex workloads with high demand for memory ac-
cess. Thus, architectures capable of running large number of streams in parallel are
needed to sustain the packet processing throughput required by the evolution of the In-
ternet as mentioned in the previous section. For this reason, massively MT architectures
provide the best alternative to contemporary network workloads.

Massive multithreaded processors comprise tens to hundreds of threads distributed
across multiple cores on a chip. In fact, there are several massive multithreaded proces-
sors mostly focused on network processing, such as Consentry Networks processor [18],
UltraSparc T1&T2 [86, 26], Cavium [12], Tilera64 [8]. One of the main challenges for
these processors is to maximize the utilization of large amount of available resources by
properly distributing parallel network workloads across multiple cores.

1.3 Problem Statement

While network applications can take advantage of packet level parallelism, stateful work-
loads present limitations that reduce the system throughput. Not only packet dependen-
cies limit the amount of parallelism, but the significant variations on packet processing
leads to significant negative interaction among threads. That is, the processing of several
packets can demand quite different instructions and data working set. For example, the
processing of a given packet may need to update statistics of a particular user, whereas
the following packet may only need to update the statistics of the connection and trigger
an action.

The natural question is:how can we exploit massively multithreaded architectures
to maximize system throughput of stateful packet processing?

This dissertation answers to that question focusing for the first time on stateful ap-
plications. The thesis analyzes their behavior and processing requirements and then pro-
poses a suitable software and hardware support to improve their performance running

8 Introduction

in massively multithreaded architectures. The dissertation demonstrates that stateful ap-
plications integrate multiple levels of parallelism suitable to be exploited in the above
mentioned architectures.

1.4 Contributions

This is the first thesis that challenges maximizing system throughput of stateful appli-
cations on parallel architectures. This dissertation describes the work done to achieve
this goal which comprises three main steps: firstly, analyzing network traffic properties
that affect stateful packet processing; secondly, workload characterization of network
applications and especially of stateful deep acket inspection workloads; thirdly, the de-
scription of the MultiLayer Processing (MLP) proposal.

1.4.1 Primary Contributions

This thesis makes three main contributions:

1. Network Tra ffic Analysis. Acquiring network traffic traces has always been a
difficulty to overcome, due to technical reasons and confidentiality issues. Several
network sites, such as NLANR [59], CAIDA [11], and RedIRIS [68] provide pub-
licly available traffic traces with different network bandwidth. The traces comprise
just a few bytes of each packet with anonymized IP addresses, thus preventing the
study of spatial IP address distribution. As a result, experimental packet process-
ing based on IP addresses can show misleading results.

The behavior of stateful DPI workload is related to the network connections, un-
like the lower layer applications that are sensitive to IP address distribution among
packets. Thus, it is important for stateful research to analyze the impact of traf-
fic aggregation (i.e. number of active flows within a window of packets) on the
network processing performance.

We present the first evaluation of the mentioned network properties of stateful ap-
plications. We evaluate the impact of sanitized traffic processing (i.e. anonymiza-
tion of any private data, mainly IP addresses of the packets). The goal is to vali-
date such traffic traces for being used in research proposals of stateful applications.

1.4 Contributions 9

Then, we study the impact of traffic aggregation on a variety of network applica-
tion categories. We analyze the differences between stateful processing and other
network applications. Further details can be found in Chapter3.

2. Workload Characterization. There are several network benchmark suites in the
community, such as CommBench [100], Netbench [54], and NpBench [44]. The
authors characterize each benchmark and analyze architectural bottlenecks. How-
ever, the mentioned suites do not include stateful applications and the authors
do not study the differences among applications according to the network layer
processing.

Throughout Chapter4 we propose a classification for better identifying the re-
quirements of network applications. This is the first taxonomy proposal of net-
work workloads according to data management during the packet processing. We
show there are several categories of network processing workloads depending on
the data management. We analyze representative network workloads according
to the proposed classification and, for the first time in the research community,
stateful DPI applications are characterized.

Stateful DPI presents different workload behavior depending on the goal of the ap-
plication. A number of stateful applications show constant workload when most
of the traffic presents similar packet processing, such as network monitoring. Yet
other stateful applications can show significant workload variations (e.g.network
security), due to the knowledge obtained by previous processing of packets of the
same flow. For example, complex network security presents computational inten-
sive workloads. However, once a given flow is marked as either a safe connection
or an attack hazard, it is likely to execute lightweight workloads.

In addition to the previous mentioned study, we characterize different stateful DPI
applications throughout the life of a particular network connection. We will es-
pecially discuss issues related to the impact of statefulness on the memory hierar-
chy. The conclusions provide key understanding of the processing requirements
of non–constant stateful workloads. Further details are available in Chapter4.

3. MultiLayer Processing Proposal. Several processing approaches aim at max-
imizing parallel packet processing. They exploit the PLP by taking advantage
of well differentiated pipeline processing stages in lower network layer applica-
tions. As we demonstrate in this thesis, upper layer workloads significantly differ
from lower layer workloads (e.g.more complex computational workload presents
dependencies that makes pipelining hard). One of the outcomes is that proposed

10 Introduction

mechanisms have to consider the additional characteristics of stateful applications.

Parallel stateful DPI applications expose additional dependencies that can reduce
the amount of PLP. Instead, stateful DPI workloads present a different type of par-
allelism that can be exploited in addition to PLP. Stateful DPI applications com-
prise a variety of different code categories that are closely related to the TCP/IP
network layer stack. Each code category is called processing layer. Although
there are dependencies within the same processing layer, there are marginal de-
pendencies between different layers. Current compilers cannot detect processing
layers, since they are related to network knowledge about the stateful data struc-
tures. But, the developer can introduce information in the code to provide the
processing layer identification.

We propose the MultiLayer Processing (MLP) as an execution model to take ad-
vantage of the additional levels of parallelism of stateful applications. In fact, this
is the first approach focused on stateful applications that maximized the through-
put of massive multithreaded architectures. The mechanism is based on thread
migration and it is complementary to other proposals for network processing, such
as software pipelining. We describe the software and hardware support for MLP
implementation. The methodology uses the information of the code to split the
packet processing workload into a variety of processing layers. Then, a thread
that processes a given packet migrates from one core to another according to the
processing layer of the workload. The key issues of this approach are to identify
the variety of exploitable processing layers and to properly distribute the workload
among threads.

The goal of MLP is to increase the system throughput by a) increasing the positive
aliasing among threads in the memory hierarchy, and b) alleviating the contention
of parallel workloads in critical sections. The experiments assume stateful DPI
benchmarks with sub–optimal parallel design and manual processing layer detec-
tion. We will show that MLP presents better performance scalability than other
proposals for parallel network processing. Further details can be found in Chap-
ter6.

Figure1.3shows how the main contributions of this thesis fit together. The network
traffic analysis points out the key knowledge about the impact of traffic properties on
stateful applications. The conclusions lay down the basis of using representative traffic
traces to characterize network applications. The studies of stateful workloads describe
the requirements and behavior of this network workload category, and present the differ-
ences against other network applications. The analysis of stateful DPI codes leads to the

1.4 Contributions 11

Chapter
3

Chapter
4

Chapter
5

Chapter
6

Synthetic Aggregation of
Network Traffic

Parallelization of
Stateful DPI Workloads

Network
Traffic

Network
Applications

Processor
Architecture

MultiLayer Processing:
.- Generic Implementation
.- Performance Scalability
.- Contention on critical sections
.- Sinergy among Streams

Validation of
Network Traces Traffic Aggregation

Impact

Network
Workloads:

Characterization
&

Classification

MultiLayer
Processing

Figure 1.3:Thesis Overview

parallelization of current single–threaded stateful DPI benchmarks. Finally, we combine
the knowledge of network traffic and workload characterization to propose a mechanism
that maximizes the system throughput of stateful DPI in massive multithreaded architec-
tures.

1.4.2 Other Contributions

The thesis also presents other contributions:

1. First parallel implementation of a publicly available Network Intrusion Detection
System (NIDS) called Snort [10, 81] running on processors with tens to hun-
dreds of threads. This contribution overcomes the lack of parallel stateful ap-
plications, especially because there are emerging proposals on running Snort on
multithreaded architectures. It has already been used in several projects and it will
be likely used in many other studies.

12 Introduction

2. First technique that increases the traffic aggregation of a network link and over-
comes the lack of representative publicly available traffic traces. The mechanism
linearly scales the bandwidth of the base traffic. The resulting aggregated traffic
presents larger amount of unique flows between two packets of the same flow.

3. First taxonomy proposal of network workloads according to data management
during the packet processing. This classification allows the identification and
characterization of the different packet processing stages within the stateful DPI
applications.

1.5 Organization

Chapter2 provides background information to better understand the disertation. We pro-
vide information about stateful DPI and describe limitations of packet level parallelism
of such applications.

Chapter3 analyses network traffic traces. First, we validate sanitized network traffic
to be used with stateful applications for research purposes. We describe a mechanism
that synthetically generates traffic traces with more active flows than the original ones.
Finally, we study the impact of several traffic aggregation levels on memory hierarchy
performance.

Chapter4 characterizes network workloads. Network applications present a variety
of workload requirements. Thus, we introduce a network workload categorization to
classify applications according to data management. We analyze the key differences
among categories in order to understand why current network processors are not suitable
for stateful processing. We also characterize the application behavior throughout the
lifetime of a TCP connection. The results point out significant variations on processing
requirements among related packets.

Chapter5 introduces background information of parallel stateful DPI applications.
We demonstrate the need of parallel stateful DPI and describe key characteristics of
the parallel code. Besides, we present current proposals that distribute parallel network
applications into multithreaded architectures.

Chapter6 presents the MultiLayer Processing (MLP). We present the idea of MLP
as well as describe the software and hardware support for MLP implementation. We
discuss tradeoffs of load–balancing using the MLP model in a massive multithreaded

1.5 Organization 13

architecture. Finally, we evaluate this mechanism and analyze the results compared to
current proposals for parallel network applications.

Chapter7 summarizes the conclusions of this disertation and outlines future topics
for research. In fact, we are already working on some of them.

15

Chapter 2

Background

This dissertation focuses on the processing of packets in network nodes. The demands
of packet processing differ in significant ways from other typical processing required
by office applications, or scientific data crunching. In this chapter we set the stage by
reviewing the basics of packet processing.

This chapter is organized as follows. In Section2.1 we address a particular type
of packet processing, called deep packet inspection, followed by a discussion of state-
ful packet processing in Section2.2, and a specific discussion of the issues raised by
dependencies between packets in Section2.3.

2.1 Deep Packet Inspection

The formidable expansion of the Internet is largely due to its architecture, based on a
few basic principles that guaranteed its resilience and its scalability. Foremost among
them is the ”end–to–end” principle [73], which pushes most of the processing to the
endpoints (i.e. computers). The end–to–end principle assigns to the intermediate nodes
(i.e. switches, edge routers, and backbone routers) only the most basic operations, lim-
ited to the layers 2-3 of the Open System Interconnection (OSI) model, as shown in
Figure1.2. According to this model, a router as a trusted mailperson looks only at the
header (envelope) in order to deliver (route) the packet. It is also a memory less (state-
less) mailperson, in that it does not keep track of the fate of the packets. Thus, a router

16 Background

strictly implemented according to the end–to–end principle, has no business in inspect-
ing the content of a packet, or in keeping any sort of state. The end–to–end principle,
which was a radical departure break from the centralized architecture of the existing
telephone network, served well the Internet through its nascent and rapid growth peri-
ods. Pushing the responsibilities of guaranteeing a reliable transport to the endpoints
allowed for a rapid expansion of the network and enabled an explosive growth of the
applications.

Nowadays, the Internet touches every aspect of daily life. From the playground
of mutually trusting early researchers, it has become the lifeblood of business, social
interaction, and cultural and academic organizations. This expansion has brought its
own malaise, in that the Internet is no longer the safe sandbox of yore. Today we expect
much more than the ”best effort” delivery of a message or a file. Financial transactions,
video streaming, interactive voice and video impose demands that far exceed those of
the early years. Sure enough, the available bandwidth, due to the advances in optical
communications, is many orders of magnitude higher than in the early days [61]. Yet, the
need for differentiated services has challenged the end–to–end principle. So has the need
to support security. The Internet growth in volume and applications was accompanied
by a proliferation of so called ”middle-boxes”, which in many ways violate the end–to–
end principle. The trend towards ubiquitous computing accentuates the push of complex
services from the end points to the Internet cloud. Van Jacobson, a primary contributor
to the TCP/IP stack, offers a compelling perspective of this trend [35].

To address this evolution, network applications push to process upper layer network
layers involving deep packet inspection (DPI). We call DPI to those operations that ex-
amine the packet payload, typically searching for a matching string or regular expression.
This is akin to our mailperson opening the envelope and actually reading the content of
the letter. Pattern matching has some heavy processing requirements, but it does not
necessarily require keeping state.

Lower layer applications deal with well known located fields in the packet header.
For instance, a router forwards packet by searching an entry in the forwarding table
according to the IP destination address. On the contrary, DPI demands much more in-
tensive processing to deal with payload fields. DPI presents complex field recognition
process due to non–well known formats of payload. That is, there is a large variety
of protocols that lead to different packet payload formats. Moreover, DPI may require
additional processing requirements such as keeping statistics or information about the
packets.

2.2 Statefulness 17

Figure 2.1 depicts packet processing stages, namely: receiving (Rx), decoding,
processing, and transmitting (Tx). Receiving and transmitting show no special require-
ments, since they only read/write from/to memory buffer associated to the network card.
The decoding stage, although being actually part of the packet processing, it is depicted
as an isolated stage since it is performed before any packet processing. As we previously
mentioned, DPI tends to show heavy workload at the processing stage versus lower layer
applications.

Packets
IN

Packets
OUT

Packet
Processing

Rx

State
Management

TxDecoding Processing

P
H

Y
 /

M
A

C

P
H

Y
 /

M
A

C

Network Node

Figure 2.1:Packet Processing Flow Path

2.2 Statefulness

We define flow as the communication between two network end points, regardless the
connection protocol used (e.g. TCP, UDP). Consider now an application that demands
regular expression matching across a TCP stream, involving many packets in that TCP
connection. This type of pattern matching requires keeping state across packets in the
flow (intra–flow information). Other applications, particularly in the security area, may
require maintaining also inter–flow information. Thus, while DPI processing goes into
the payload of the packet without keeping state, stateful DPI maintains state information

18 Background

of packets within a flow, or packets across different flows. In most cases, DPI also
involves stateful DPI.

A stateful application requires maintaining a data structure by checking/updating in-
formation. In contrast, a stateless application accesses to data structures only to compare
packet contents to find a particular pattern (e.g. lookup table or rule based pattern match-
ing). The state information kept may be simple, such as the flow state required by layer
4 applications, or more complex, such as user state required by upper layer applications.
In Section4.4.1we discuss state categories handled by stateful applications.

Security, monitoring/billing, enhanced VoIP, management policies are some exam-
ples of stateful network processing. The action triggered by the processing of a packet
depends on the packet itself and previously processed packets. Upper layer network
processing tends to show more statefulness in handling the relation between packets.
There are many other areas where applications may perform stateful processing besides
networking, such as e-commerce and databases. In general, it is likely that applica-
tions that process data input items may require stateful processing to provide enhanced
services.

This thesis focuses on stateful processing performed by Network Intrusion Detection
Systems (NIDSs) as representative stateful DPI applications. NIDSs trigger alerts when
detects malicious activity, attacks, or anomalous traffic. NIDS is an ever–evolving area
in which stateful processing is a key requirement to detect sophisticated attack methods
in several security areas, such as malware, anomaly traffic detection, stateful worm de-
tection, stateful packet inspection. The attackers take advantage of stateless firewalls that
cannot look beyond the single individual packet while inspecting network traffic. For in-
stance, in 2001 a worm called Code Red infected over 350,000 hosts over a week and the
infection rate was doubling in about 37 minutes. Two years later, the Sapphire/Slammer
worm infected more than 90 percent of vulnerable hosts in the world within only 10
minutes [30]. More complex NIDS with stateful capabilities are being developed to
catch these most recent attacks.

2.3 Dependencies Among Packets

Lower layer applications can exploit packet parallelism since processing among packets
are completely independent. However, both DPI and stateful DPI applications introduce
important processing requirements that can limit parallelism among packets. For the

2.3 Dependencies Among Packets 19

sake of readibility we describe state–dependency and order–of–seniority processing.

Depending in the degree of statefulness, the application maintains information of
middle layers (e.g.flow) or upper layers (e.g.user). The higher the layer, the higher the
probability is that a particular state is shared by two or more in–flight packets, or that
two packets belong to the same user than to the same flow.

Order–of–seniority requires a particular input of data to be processed following a
certain order. In the network environment, the packets sometimes have to be processed in
the order of arrival to the network node. This feature specially impacts the performance
of systems that exploit packet processing parallelism. Due to a variety of reasons, a
given packet can be processed faster by a thread than others. That is, a thread can reach a
checkpoint before other threads, which are processing ”older” packets. If the checkpoint
needs order–of–seniority, the thread has to wait until the processing of previous packets
reaches that checkpoint.

In general, checkpoints are associated to updates of the stateful data, and the consis-
tency of the data is determined by the original order of arrival of the packets from the
network. However, order–of–seniority is not a requirement in all stateful applications.

Host A Host B

Pkt1: SYN

Pkt2: SYN + ACK

Pkt3: ACK

Network
Node

Network Node
Packet Processing

T
im

e

Pkt2 Pkt3

1
1

2 2

3

3

4
4

Figure 2.2:Example of Order–of–Seniority Conflict

20 Background

For example, NIDSs that detect TCP protocol based attacks need order–of–seniority
to update stateful data. If the three–step TCP handshake protocol is not correctly per-
formed, an alert is triggered. Otherwise, the system can trigger false positive alerts
(i.e. a false attack is detected) and false negative detections (i.e. a real attack is not
detected). Figure2.2 depicts this scenario. On the left part of the graph, we can ob-
serve the three–step TCP handshake protocol between two hosts A and B. In the middle,
there is a network node that performs stateful packet processing for security services.
The right part of the graph shows the packet processing of second and third packets. In
this scenario we assume both packets are processed in parallel. Each numbered block
represents a section of code for processing the packet. The section number 3 requires
order–of–seniority processing (e.g. updating the flow state). For different reasons, al-
though packet 3 starts to be processed after packet 2, it can process the section 3 earlier
than the other packet. Then, this packet processing has to be stalled until the packet 2
has finished the section 3.

To recapitulate, emerging complex network services present stronger likelihood of
experiencing packet depencencies that can significantly reduce the exploitation of packet
level parallelism, especially in stateful DPI applications on the highest network layers.

21

Chapter 3

Network Tra ffic Analysis

Representative network traffic traces are mandatory to do research in network process-
ing. Applications present significant performance variations according to the network
traffic features. Thus, it is critical to preserve key real traffic characteristics.

For reasons of confidentiality, most of the original packet data (both header and pay-
load) is faked or suppressed in the publicly available traffic traces. For example, IP ad-
dresses are anonymized in order to avoid revealing any real IP address. The anonymiza-
tion lead to lose some key network traffic properties, such as IP address distribution.
Indeed, network research community has demonstrated that anonymized traffic traces
are not useful to do research in lower network layers, but there is no study about the
impact on stateful.

The problem is stressed in stateful applications. Packet processing requires high
traffic bandwidth to simulate traffic of current and future network edge–nodes as well
as bidirectional traffic (i.e. source to destination traffic and vice versa) to correctly keep
track of states due to statefulness. Nowadays, the sites that provide public traffic present
many traces with unidirectional high bandwidth traffic and few traces with bidirectional
low bandwidth traffic.

This chapter addresses the effects of the previously mentioned network features
on network applications, especially stateful processing. We analyze the impact of
anonymized IP addresses on the memory workload of stateful processing. We also study
the impact of network traffic aggregation on the memory performance of several network
applications. In order to do this study, we present a mechanism to linearly increase traffic

22 Network Traffic Analysis

aggregation from a particular bandwidth link to another.

3.1 Chapter Roadmap

Section3.2 introduces key network properties that are under study in this chapter. Sec-
tions3.3and3.4show the two studies of this chapter focused on the effects of sanitized
traffic processing and the impact of traffic aggregation on network processing, respec-
tively. The former compares the data memory workload of sanitized traffic to real traffic
processing. The latter shows the impact of traffic aggregation on the memory perfor-
mance of several network applications, especially comparing layer 2 to stateful layer 4+

network processing.

Related work is presented in Section3.5and a summary of the chapter in Section3.6.

3.2 Network Properties Under Analysis

Network traffic features have serious implications in the analysis of network applications
and systems. Network workloads are sensitive to a variety of traffic characteristics. Thus,
if experimental traffic has a lack of critical features, the results can be misleading. This
section introduces two network traffic properties that affect the performance of networl
applications.

3.2.1 Sanitization

Sanitization is the procedure to anonymize any content with private data. In the network
area, sanitization means the modification of packet contents in order to skip any private
data (e.g. real IP addresses). Moreover, most of the publicly available traffic traces
show few bytes of every packet (i.e. 40 bytes of TCP/IP header plus a parametrized
number of bytes of the payload) to skip private payload. Thus, sanitized traffic presents
fake source/destination IP addresses and therefore it involves the loss of real IP address
distribution [39].

Leland et al. [46] studied the Ethernet traffic distribution and discovered self–
similarity and in both LAN and WAN traffic. That is, no matter what time scale you

3.2 Network Properties Under Analysis 23

use to examine the data, you see similar patterns. Kohler et al. [39] explore multifractal
models and present an example of self–similar IP address distribution (Figure3.1). In
this figure we can observe histograms of IP addresses with two succesive 32x magnifi-
cations from Figure3.1(a) to Figure3.1(c). There is a box for every non–empty address
prefix shown in the X axis. The Y axis is the prefix length. We can see the prefix
distribution patterns are similar in every prefix scale.

(a) (b)

(c)

Figure 3.1:IP address structure of a traffic trace (directly taken from [39])

There are several sanitization proposals. Some of them are: K. Cho [15] anonymizes
tcpdump traces by stripping packet contents and rewriting packet header fields; the
Crypto-pan [102] methodology provides a consistent prefix–preserving scheme by using
a shared cryptographic key; Pang et. al. [62] propose transformation scripts that operate
on application–level data elements and include packet payload in the result. Overall,
methodologies cannot keep all the real traffic features and some of them are lost.

Sanitized traces can be useful for some study purposes, since sanitization does not

24 Network Traffic Analysis

modify temporal locality traffic properties. However, when the packet processing de-
pends on IP address distribution (e.g. IP forwarding), sanitized traces can lead to unfair
results. The question that comes out is whether the sanitized traces can be used as rep-
resentative traffic for stateful processing. In Section3.3.2we answer to this question.

3.2.2 Traffic Aggregation

We define traffic aggregation as the distribution of packets from unique flows during a
period of time. On one hand, it is related to the bandwidth link. Higher traffic bandwidth
shows more packets during a time interval. On the other hand, traffic aggregation is
also related to the network utilization. The more users connected and the more network
utilization, the more unique flows in a period of time. Thus, traffic aggregation is defined
by the unique flow rate and the packet inter–arrival distribution.

We define unique flow rate as the ratio of active flows within a window of packets
(i.e. traffic window), as shown in Equation3.1. The traffic window size is defined by the
traffic interval between two packets of the same flow. A ratio of 0 denotes that packets
of a given flow are consecutively received. A ratio of 1 means that each packet belongs
to a different flow. The distribution of unique flow rates over the traffic is modeled by
the packet inter–arrival distribution.

Unique Flow Rate= Avg

(
Unique f lows

Tra f f ic Window S ize

)
(3.1)

Figure3.2 depicts two different scenarios of unique flow rates. On the left of the
figure, there is a of packets (boxes) of different flows (letters). We assume the window
of packets is defined by the packets between two packets of the flow ”A”. On the top of
the figure, there is a scenario in which every packet of the window belongs to a different
flow. Therefore, the unique flow is 1. On the bottom of the figure, we can observe other
scenario that shows several packets that belongs to the same flow (”B” and ”C”). In this
case, the unique flow is 0.5.

Packet inter–arrival distribution models how packets are scattered over the traffic.
Crovella et al. [63] demonstrate that the presence of self–similarity at the link layer de-
pends on whether reliable and flow–controlled communication is employed at the trans-
port layer. In the absence of reliability and flow control mechanisms (e.g. UDP protocol)
traffic shows less self–similarity compared to reliable communication (e.g. TCP proto-
col) that preserves long–range dependency as scale invariant. From this definition we

3.3 Validation of Sanitized Traffic Traces 25

Figure 3.2:Example of Unique Flow Rates

distinguish intra– and inter–flow temporal distribution. The former shows packet distri-
bution from a particular connection given by the flow control mechanism of the transport
protocol (e.g. TCP Window). The later shows the distribution of packets from multiple
flows between two packets of the same flow. More than 50% of the traffic presents
distance between two packets of the same flow from hundreds to thousands of packets
in low and high bandwidth links, respectively. Nevertheless, the distance between two
packets of the same flow is inherently sensitive to the intra–flow temporal distribution.

Traffic aggregation increases inside of the Internet core. However, current Internet
evolution leads to increments of traffic aggregation on the edge–nodes of the network.
Thus, high traffic aggregation shows high unique flow rate between two packets of the
same flow. We analyze the impact of traffic aggregation on memory hierarchy perfor-
mance running a variety of network applications with different processing requirements.

3.3 Validation of Sanitized Traffic Traces

In this section we study the overhead in stateful workload due to sanitized traffic traces.
Firstly, we introduce key issues of the experimental environment. Then we compare the
memory access workload of stateful applications using different sanitized traffic.

26 Network Traffic Analysis

3.3.1 Methodology

3.3.1.1 Traffic Traces

We use real traffic traces as baseline traffic. We take such traces from an OC–3 link (155
Mbps) that connects the Scientific Ring of Catalonia [5] to RedIRIS [68], the Spanish
national research network. The Scientific Ring of Catalonia comprises about 40 insti-
tutions (research centres and other organizations) connected through roughly 25 access
points.

Real Sanitized Traffic
Traffic SN1 SN2 SN3

192.161.35.48 10.0.0.1 10.0.0.1 147.83.53.35
145.32.148.23 10.0.0.2 10.0.1.1 158.109.7.38
192.161.35.48 10.0.0.1 10.0.0.1 147.83.53.35
137.239.42.12 10.0.0.3 10.1.1.1 146.19.5.248
195.232.62.17 10.0.0.4 11.1.1.1 65.167.55.24
131.25.105.36 10.0.0.5 11.1.1.2 211.243.8.86

Table 3.1:Example of resulting sanitized traffic

We develop three techniques to sanitize network traffic that are representative of san-
itized traffic traces publicly available. The sanitization only modifies source/destination
IP addresses of the packets. Table3.1 shows an example of resulting sanitized traffic.
The top left column provides real IP addresses from the baseline traffic. The remaining
columns present the proposed sanitizing methodologies. SN1 uses a counter that incre-
ments the last octet of the IP address every time a new address is found. SN2 is similar
than SN1, but the incremented octet is selected by round robin. SN3 uses random ad-
dresses for every unique real IP address. Most of the publicly available traffic traces are
sanitized by the SN1 approach.

Table3.2presents the network sites used to compare sanitized traffic between a va-
riety of network bandwidths. The traces are available in the National Laboratory for
Applied Network Research (NLANR) [59]. Selected traffic traces show about 25% on
average of network utilization and comprise anonimized packets by using methodologies
different to the above mentioned.

3.3 Validation of Sanitized Traffic Traces 27

Theoretical Bandwidth
Label Site Link (Mbps)
ANL Argonne National Laboratory OC-3 155
MRA Merit Abilene OC-12 620
IPLS Abilene IPLS router instrumentation OC-48 2480

Table 3.2:Traffic Traces

3.3.1.2 Workload

Most of the benchmark suites for network processing presents layer 2–3 applications:
NetBench [54], Commbench [100], NP Forum [60], and NpBench [44]. Only one bench-
mark initially included in the NetBench suite provides stateful DPI, called Snort [81].

Snort is a Network Intrusion Detection System (NIDS) for real–time traffic moni-
toring, packet logging, and detecting attacks on a system [10]. The packet processing
works as follows: decoding, where the application decodes the packet header and keeps
(if necessary) the packet payload; preprocessing, where some ”smart” preprocessors
deal with the packet to detect attack attempts; rule–matching, where multiple patterns
are checked against packet header and/or content. The stateful processing is found in
several preprocessing engines (e.g.keeping track the state of connection reliable flows).
Our configuration enables stateful preprocessors and the default rule set of 3200 rules.

3.3.1.3 Metrics

We instrument the binary code using the ATOM tool [84]. We use checkpoints to identify
start and end of packet processing. Instrumented code generates the memory access
footprint as well as the number of memory accesses per packet processing.

Snort only shows processing variations due to IP address distribution in the size of
memory access footprint, rather than cache miss rate. The reason behind this is that
Snort uses just a few small data structures based on IP address, while there are many
other linked lists and tree–based structures based on multiple packet header fields. Thus,
cache performance is very similar with sanitized IP addresses, but the memory access
workload can significantly differ. Especially when data structures need maintenance (e.g.
autobalancing of nodes) based on the distribution of flow states (i.e. using the 5–tuple of
TCP/IP packets, source/destination IP address, port, and protocol). For this reason, it is

28 Network Traffic Analysis

more likely to find variations by comparing footprint size.

Equation3.2 provides the relative error of the number of data memory accesses
between sanitized packets, MemS anit, and the packets of the original trace, MemOrig. In
addition, Equation3.3 calculates the relative error for complete flows. We focus this
study on TCP traffic because it represents over 90% of Internet traffic and Snort stateful
processing is focused on TCP connections.

Packet Relative Error=

∣∣∣MemS anit− MemOrig

∣∣∣
MemOrig

· 100% (3.2)

Flow Relative Error= Avg.


∣∣∣MemS anit(i) − MemOrig(i)

∣∣∣
MemOrig(i)

 · 100% (3.3)

We take metrics after a warm up period of 10K packet processing. We collect sta-
tistics of 50K packets and 5K complete flows. Larger traffic traces show no significant
variations.

3.3.2 Evaluation

Snort uses SplayTree data structures[79] as well as other hash tables. A SplayTree is
a self adjusting form of a binary search tree. The tree is autobalanced every time it is
accessed. That is, the last accessed node is the new root. The tree keeps the most recently
accessed nodes in the upper levels. Flow state nodes are sorted using the 5–tuple flow
identification (i.e. source/destination IP and port addresses and protocol). Node rotation
leads to different distributions depending on the sorting values. When memory has to
be released due to the lack of free memory, the first victim nodes are selected from the
lower levels, since they are not recently accessed.

Figure3.3 depicts an example of the memory access workload of a given flow us-
ing real packets from the baseline trace (real traffic) and SN1 sanitized packets. The X
axis shows the n–th packet of the flow, while the Y axis denotes the number of mem-
ory accesses. We can observe that most of the packets present negligible difference
between traces. As data structures are optimized, the cost of accessing to a given node
is similar for both traces. However, there are few isolated important peaks, due to self–
maintenance tasks of the tree. The number of packets that show large memory access

3.3 Validation of Sanitized Traffic Traces 29

0

5000

10000

15000

20000

25000

30000

0 1 2 3 4 5 6 7 8 9 10 11

Packet

N
u

m
b

er
 o

f
M

em
o

ry
 A

cc
es

se
s

Baseline Trace
Sanitized Trace

Figure 3.3:Workload of a given TCP flow

workloads is similar, although they are triggered by different n–th packets. In our ex-
ample, the baseline trace shows large workloads in the 3rd, and 5th packets, while the
sanitized trace shows large workloads in the 3rd and 7th packet.

Figure3.4(a) and Figure3.4(b) present the packet and flow relative error of memory
access workload, respectively, between the baseline trace and sanitized traces. The X
axis indicates the relative error according to the Equations3.2 and3.3 for packet error
and flow error, respectively. The Y axis denotes the accumulated percentage of the traffic
trace.

We can observe in Figure3.4(a) that the three sanitized traces show similar packet
relative error. Using SN3 trace (triangle line) shows about 65% of traffic with less than
5% of packet relative error. SN1 (diamond line) and SN2 (square line) traces presents
slightly lower percentage of traffic with less than 5% of packet relative error. In addition,
over 95% of the traffic shows less than 20% of packet relative error. That is, most of the
packets shows similar number of memory accesses regardless the IP address. In contrast,
less than 4% of the packets present significant relative error, due to maintenance tasks
executed on different packets. Nevertheless, traces present similar number of workload
peaks (see Figure3.3).

30 Network Traffic Analysis

60

65

70

75

80

85

90

95

100

5 10 15 20 30 40 50 60 70 80 90 100

Packet Relative Error (%)

T
ra

ff
ic

 T
ra

ce
 (

P
ac

ke
ts

 %
)

SN1 Sanitized

SN2 Sanitized

SN3 Sanitized

(a) Packet relative error

60

65

70

75

80

85

90

95

100

5 10 15 20 30 40 50 60 70 80 90 100

Flow Relative Error (%)

T
ra

ff
ic

 T
ra

ce
 (

F
lo

w
s

%
)

SN1 Sanitized

SN2 Sanitized

SN3 Sanitized

(b) Flow relative error

Figure 3.4:Real versus sanitized traffic

In Figure3.4(b) we can observe that SN1 and SN3 traces present very similar flow
relative error. Over 85% of their flows show a relative error lower than 5%. SN2 trace,
however, falls 5 percentage points of flows in the lowest relative error of 5%. Slight
differences among packets due to data structure distribution are covered by flows. In
fact, all sanitized traces show over 97% of the flows with relative errors lower than 20%.
In contrast to the packet relative error, most of the eventual shifted workload peaks are
gathered to the same flow.

3.3 Validation of Sanitized Traffic Traces 31

60

65

70

75

80

85

90

95

100

5 10 15 20 30 40 50 60 70 80 90 100

Packet Relative Error (%)

T
ra

ff
ic

 T
ra

ce
 (

P
ac

ke
ts

 %
)

Real Traffic (SN1)

ANL (SN1)

MRA (SN1)

IPLS (SN1)

(a) Packet relative error

60

65

70

75

80

85

90

95

100

5 10 15 20 30 40 50 60 70 80 90 100

Flow Relative Error (%)

T
ra

ff
ic

 T
ra

ce
 (

F
lo

w
s

%
)

Real Traffic (SN1)

ANL (SN1)

MRA (SN1)

IPLS (SN1)

(b) Flow relative error

Figure 3.5:Sanitized traffic from multiple bandwidth links

Figure3.5 shows the relative error of multiple bandwidth links (see Table3.2). We
compare SN1 sanitized traces from ANL, MRA, IPLS sites to the original publicly avail-
able traces. The baseline traffic is the real traffic trace employed in the previous exper-
iments. Thus, the SN1 sanitized baseline trace is the same trace plotted in Figure3.4.
The baseline trace shows similar bandwidth than the ANL traffic (OC–3).

We can see in Figure3.5(a) that ANL traffic show more than 20% of packets com-
pared to baseline trace with relative error lower than 5%. In fact, MRA and IPLS present

32 Network Traffic Analysis

higher percentage of packets with the lowest relative error than the baseline traffic. The
reason behind this is that the original sanitized traces show more similar IP distribution
than the real traffic, but the impact on memory access workload per packet is marginal.
Overall, the traces present about 95% of packets with relative error lower than 20%, re-
gardless the bandwidth link. Figure3.5(b) depicts the flow relative error that manifest
higher similarity between flows, regardless bandwidth link. In fact, ANL traffic shows
about 98% of flows with relative error lower than 5%.

Above results validate that stateful processing show marginal impact on memory
access workload due to sanitization traffic. Moreover, we can see there is no relationship
between traffic bandwidth and the impact of sanitization.

3.4 Impact of Traffic Aggregation

The goal of this section is to analyze the impact of traffic aggregation on memory hier-
archy performance running network applications. To do this, we propose a mechanism
to aggregate traffic from a narrow bandwidth link. In this section we also provide a de-
scription of the experimental methodology. Finally, we evaluate the cache performance
running applications of multiple network layers.

3.4.1 Traffic Aggregation

In order to measure the impact of traffic aggregation, a particular link must provide traf-
fic traces with multiple aggregation rates. However, this environment is not currently
available. Thus, we develop a methodology to synthetically generate traffic by aggregat-
ing traffic from a given link. We assume linear network workload scalability, although
network utilization depends on many factors (e.g. time of the day, social events, users
connected). Thus, our methodology scales traffic aggregation as follows: traffic keeps
similar unique flow rate while lineraly increases the traffic window size (i.e. number of
packets between two packets of the same flow) and, therefore the packet inter–arrival
distribution (self–similarity and long range dependency are preserved).

Figure3.6depicts the proposed traffic aggregation methodology. Firstly, the original
set of traces is filtered to normalize sanitized IP addresses and guarantee independency
among sanitized traces. The mechanism merges traces according to the local timestamp
(in microseconds) of each trace. According to our experiments, there are few collisions

3.4 Impact of Traffic Aggregation 33

Traffic
Trace

Filter Filtered
Traffic
Trace

Aggregation
Engine

Aggregated
Traffic Trace

Simulation

Figure 3.6:Traffic aggregation methodology

due to packets with the same timestamp difference. In these cases an additional mech-
anism selects the merging order in a round robin fashion. We select the oldest local
timestamp and normalize the resulting trace timestamps. Finally, a new sanitized traffic
trace presents roughly N times wider network bandwidth than the original link, where N
is the number of merged baseline traces.

In Figure3.7we can observe an example of aggregated traffic trace that integrates 4
different traces. Each box represents a packet and each pattern means the traffic from a
particular traffic trace. The packets are combined according to the normalized timestamp
of the trace. Thus, it behaves as a network node with 4 network links.

Our methodology is similar to the proposal of Sagmeister et al. [72] in the sense that
we merge a number of traffic traces. However, the approach evenly merges the traces,
unlike our mechanism that normalizes the time sequence of the traces. Nevertheless, we
don’t provide a comparison among both approaches since it is out of the scope of the
study of this chapter.

34 Network Traffic Analysis

Trace 1

Trace 2

Trace 3

Trace 4

Aggregated
Trace

Time

Figure 3.7:Example of aggregated traffic trace

3.4.2 Methodology

3.4.2.1 Traffic Traces

For this study we use publicly available traffic traces. As discussed in Section3.3.2
stateful processing is not significantly sensitive to sanitization effects [92]. Although in
this study we run other types of network applications that can be sensitive to the lost of
IP address distribution, there is no other way to do this analysis.

We select a variety of traffic traces from the NLANR site [59] (see Table3.2) and
compare their traffic aggregation in Figure3.8. The X axis denotes the bandwidth link,
such as ANL (OC-3, 155Mbps), MRA (OC-12, 620Mbps), and IPLS (OC-48, 2.4Gbps).
The network utilization of these traces is about 25% on average. The left Y axis indicates
the average window size (i.e. number of packets or unique flows between two packets
of the same flow), while the right Y axis denotes the flow unique rate. The gray bars
show linear increment of packet window size from one bandwidth link to the other.
However, the number of unique flows within a traffic window (the bars with diagonal
lines) present non linear increments. As a result, MRA shows over 44% of unique flow
rate (the triangle line), unlike the other links that show lower rates. That is, the MRA
link presents higher traffic aggregation than the other links, even if it is not the highest

3.4 Impact of Traffic Aggregation 35

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ANL (OC-3) MRA (OC-12) IPLS (OC-48)

Bandwidth Link

A
vg

. T
ra

ff
ic

 W
in

d
o

w
 S

iz
e

0

5

10

15

20

25

30

35

40

45

50

U
n

iq
u

e
F

lo
w

 R
at

e
(%

)

Packets
Unique Flows
Unique Flow Rate

Figure 3.8:Traffic aggregation of several bandwidth links

bandwidth link.

Besides the highest unique flow rate, the MRA link provides the only trace with
bi–directional network traffic (i.e. packets from source to destination and vice versa).
This traffic feature is mandatory for stateful processing. Otherwise flow states can not
be correctly updated. Thus, we use MRA as the baseline set of traces to aggregate traffic
by using the methodology proposed in Section3.4.1. Thus, the baseline trace (MRA)
presents a real bandwidth of 100 Mbps and we synthetically generate four additional
traces of 400 Mbps, 1.6 Gbps, 6.4 Gbps, and 25 Gbps.

3.4.2.2 Benchmarks Selection

We select representative benchmarks from three different network layer processing, as
shown in Table3.3. Layer 2 applications process the packet without external data struc-
tures related to network characteristics. For example, CRC only needs the IP packet
header. Layer 3 workloads need external data to process the packet. For instance, IP
forwarding searches the next hop in the IP forwarding table. Finally, Layer 4 (stateful)
applications need information at the transport layer. Stateful applications keep track of

36 Network Traffic Analysis

Category App. Bench. Suite
Layer 2 AES NpBench

MD5 NpBench
Layer 3 NAT NetBench

Route NetBench
Layer 4+ (Stateful) Snort NetBench

Table 3.3:Selected Benchmarks

the state of previous packet processing; for example, TCP termination requires to keep
the state of the flows, unlike the other applications.

We select two applications that show similar cache performance than the average of
every workload category[54, 100, 44]. Regarding Layer 4 (stateful) workloads, there is
only one benchmark, Snort[10], which is configured to enable stateful packet processing.

3.4.2.3 Measurement

As in Section3.3.1.3, we instrument the binary code of applications using the ATOM
tool [84]. Applications are compiled with -O3 optimization. We use checkpoints to iden-
tify start and end of packet processing. The instrumented code generates data memory
access traces that are provided to a cache simulator.

We run every benchmark the same number of packets for each traffic trace. We
warmed up the environment by processing 10K packets. The memory access traces
are generated by processing 50K packets per application. All experiments show stable
results with these processing periods.

3.4.3 Evaluation

Figure 3.9 depicts a theoretical case of memory requirements for several bandwidth
links. The left graph shows the number of active flows within the average traffic window
size (Y axis). This study uses metrics of baseline trace (MRA, OC–12) discussed in
Figure3.8. We remark that baseline traffic shows a network utilization of about 25%.
We assume linear increment of traffic aggregation for higher bandwidth links as well as
for 100% of network utilization (the triangle line). The right graph presents memory

3.4 Impact of Traffic Aggregation 37

requirements in Bytes to keep stateful data for each active flow. Although Snort can
demand larger stateful data structures, we assume a Snort configuration that demands
500 Bytes to point out the memory requirements of stateful applications even presenting
lightweight statefulness.

1000

10000

100000

1000000

OC-12 OC-48 OC-192 OC-768

Bandwidth Link

A
ct

iv
e

F
lo

w
s

Full Network Utilization

25% Network Utilization

(a) Traffic Aggregation

100

1000

10000

100000

1000000

OC-12 OC-48 OC-192 OC-768
Bandwidth Link

M
em

 R
eq

u
ir

em
en

ts
 (

K
B

yt
es

)

Full Network Utilization

25% Network Utilization

(b) Memory Requirements

Figure 3.9:Example of theoretical memory requirements

We can observe that a theoretical OC–192 link showing 25% of network utilization
(i.e. nearly 2.4 Gbps of traffic out of 10Gbps of bandwidth link) demands about 10MBs

38 Network Traffic Analysis

to keep active states for roughly 20K active flows. The data working set can be expo-
nentially higher depending on the state size handled by the application. Current Internet
evolution leads to increase traffic aggregation in the network. It is very likely the near
future stateful DPI shows larger statefulness. For these reasons, upcoming network links
that provide complex stateful DPI will likely demand hundreds or thousands of MBs for
sustaining active stateful data structures.

0

1

2

3

4

5

6

7

8

9

10

16
K

64
K

25
6K 1M 16

K

64
K

25
6K 1M 16

K

64
K

25
6K 1M 16

K

64
K

25
6K 1M 16

K

64
K

25
6K 1M

AES MD5 NAT ROUTE SNORT

D
at

a
M

is
s

R
at

e
(%

)

100Mbps 400Mbps 1,6Gbps 6,4Gbps 25Gbps

Figure 3.10:Traffic aggregation impact on L1 Data Cache

In Figure3.10we can observe the miss rate according to L1 data cache sizes ranging
from 16KBs to 1MB running multiple network applications (X axis). The cache config-
urations assume 4–way set associative with 32Bytes line size. The Y axis indicates the
miss rate. We can identify three different behavior that are related to the network layer
processing. Firstly, layer 2 applications (AES, MD5) are not sensitive to variations on
traffic aggregation, even using reduced cache size. The workload is computational inten-
sive on the packet itself, but there is no need to deal with any external data structure. For
this reason, data cache miss rate is negligible. Layer 3 applications (NAT, ROUTER)
show a marginal impact. The packet processing deals with external data structures asso-
ciated to some information of the packet header, such as destination IP address. When
the traffic aggregation increases, temporal locality can be reduced depending on the size
of external data structures (e.g. forwarding table) and the distribution of data searched

3.4 Impact of Traffic Aggregation 39

(e.g. IP address). Larger cache sizes reduces cache miss rate and smooths temporal
locality impact.

Finally, SNORT shows considerably higher miss rates and significant impact due to
traffic aggregation. The cache miss rate of 64KBs L1 cache size increases from 4,2% to
6,5% as we move from 100Mbps to 25 Gbps. Although larger cache size reduce cache
miss rate, similar increments are shown regardless the cache size. The reason behind
this is that higher bandwidth traffic shows lower flow state temporal locality on stateful
data structures. Thus, it is very likely that memory accesses to a given flow state miss on
L1 cache. Under high traffic aggregation, flow state misses can not be overcomed with
a larger L1 cache. The impact on L1 data cache depends on both the percentage of flow
state memory accesses and the remaining variables handled during packet processing.
Snort presents significant impact, even with lightweight stateful processing. For this
reason, we suggest that upcoming stateful applications will present a higher impact on
L1 data cache performance.

0

1

2

3

4

5

51
2K 1M 2M 4M 8M

51
2K 1M 2M 4M 8M

51
2K 1M 2M 4M 8M

51
2K 1M 2M 4M 8M

51
2K 1M 2M 4M 8M

AES MD5 NAT ROUTE SNORT

D
at

a
M

is
s

R
at

e
(%

)

100Mbps 400Mbps 1,6Gbps 6,4Gbps 25Gbps

Figure 3.11:Traffic aggregation impact on L2 Data Cache

Figure 3.11 shows L2 miss rate comparing the number of data L2 misses to the
amount of memory accesses. We use a L1 cache of 256KB in order to measure traffic
aggregation impact without trashing L2 contents due to reduced L1 cache size. We can

40 Network Traffic Analysis

observe again three different behaviours among benchmarks. Layer 2 applications show
nearly zero L2 cache miss rate, since the data working set perfectly fits on L1 cache, even
with reduced size. Layer 3 applications present similar miss rates, but we can observe
slight variations with L2 cache of 512KB. The reason behind this is that only reduced
locality of data will lead to show L2 cache misses (e.g. huge IP forwarding table under
high traffic aggregation). In contrast, on systems with large L1 cache, SNORT only
accesses to L2 for stateful data. Comparing miss rates of L2 and L1 cache (see 256KB
configuration in Figure3.10) validates that most of the misses in L2 are related to flow
state accesses. Due to capacity constraints, L2 cache is likely to be unable to keep all
active stateful data structures. The impact of traffic aggregation on L2 cache is roughly
2.5x higher miss rate comparing traffic of 25Gbps to 100Mbps.

1x

3x

5x

7x

9x

11x

13x

15x

17x

19x

Original (1x) 4x 16x 64x 256x
Traffic Aggregation

L
2

D
at

a
C

ac
h

e
S

iz
e

No-State Stateless Stateful

(512KB)

Figure 3.12:L2 Data Cache Requirements

L2 cache size depends on many factors as we have discussed before, such as traffic
aggregation, flow state size, percentage and behavior of flow state accesses during packet
processing. Figure3.12 depicts the trend of L2 cache size required to sustain active
data structures as the traffic aggregation linearly increases. We average the demands
of each application category as described in Section3.4.2.2. The X axis shows traffic
aggregation scales, assuming that Original(1x) is relative to any particular level (e.g.
100 Mbps). The effects are the same for 100 Mbps or any other bandwidth link. The

3.5 Related Work 41

Y axis shows the increment of 512KB L2 cache size (1X). We can observe that Layer 2
applications show the same demand of L2 cache size regardless the traffic aggregation.
Layer 3 applications, such as IP forwarding, generally present smoothed linear growth.
In contrast, stateful applications show more than linear size increment. The slope can
show steep rise running more complex stateful applications.

3.5 Related Work

Research in network processing is very sensitive to network traffic properties. Repre-
sentative traffic traces are mandatory to present fair studies. Unfortunately, most of the
characterization studies of NP benchmark suites use sanitized network traffic traces, such
as CommBench [100], NetBench [54], and NpBench [44]. Although detailed workload
characterization of layer 2 and layer 3 applications are provided, authors do not analyze
any impact of network traffic on the results. Specially consequences due to the use of
sanitized traffic.

A large literature on analysis and proposals of sanitizing methods can be found in the
state-of-the-art. Kohler et al. [39] demonstrate the loss of Internet IP address distribution
through sanitization procedure. TCPdpriv, developed by Greg Minshall [55] and further
modified by K. Cho [15], can be viewed as a table based approach. It anonymizes tcp-
dump traces by stripping packet contents and rewriting packet header fields. However,
it may produce inconsistent prefix–preserving anonymization, i.e., same original prefix
may be mapped into different anonymized prefixes when independently used on multiple
traces.

Crypto-pan [102], a cryptographic algorithm, solves this problem and provides a
consistent prefix–preserving scheme. The scheme can maintain a consistent anonymiza-
tion mapping across multiple anonymizers using a shared cryptographic key. But
presents some limits at anonymizing in wire speed. A new approach to transform and
anonymize packet traces is proposed by Pang et. al. [62]. It is a tool for packet trace
anonymization and general purpose transformation. The tool offers a great degree of
freedom and convenience for trace transformation by providing a high-level program-
ming environment in which transformation scripts operate on application-level data el-
ements. Unlike previous packet trace anonymization efforts, packet payload contents
are included in the result. The authors verify the correctness of the traces under attack
scenarios for pattern matching purposes, but not for stateful purposes. We can see that
most of the studies highlight the impact of sanitized network traffic on layer 2 and layer

42 Network Traffic Analysis

3 applications due to the variations in the IP address distribution. But there is a lack of
knowledge on effects on stateful applications.

Studies have presented analytic models to characterize network traffic. Leland et
al. [46] demonstrate the presence of long–range dependence and self similarity in Eth-
ernet LAN and WAN traffic. Other studies evaluate the impact of traffic aggregation
on performance, but only from the network point of view. Instead we analyze perfor-
mance impact from the network processing point of view. Moreover, there is no analysis
of network processing applications about the impact of traffic aggregation on memory
performance, especially running stateful applications.

3.6 Chapter Summary

In this chapter we have analyzed the impact of two network traffic features on the per-
formance of stateful applications. We have focused our study on IP address sanitization
and traffic aggregation. The conclusions of this chapter are applied in the experimental
environment throughout this thesis and future work.

We have discussed that stateful applications show very few data structures based on
IP addresses, but main data structures are accessed by using hash functions or crossing
data tree based structures. Due to this, we have compared the memory access work-
load per packet between real traffic versus several sanitized versions of the same traffic
trace. Experiments from a variety of bandwidth links have been presented. The results
show that stateful processing is not sensitive to IP address sanitization. The main reason
behind this is that main data structures are based on several packet header values (e.g.
5-tuple for TCP and UDP packets). Thus, performance is sensitive to temporal distrib-
ution of several header values that are actually preserved by sanitized traffic (e.g. port
addresses and protocol).

We have proposed a methodology to aggregate traffic in order to generate high net-
work bandwidth traffic traces from lower bandwidth links. As traffic aggregation de-
pends on many network factors (e.g.network utilization, behavior of users and applica-
tions) it is hard to validate a given scalability trend. For this reason, we have assumed
that traffic characteristics linearly scale with bandwidth link. This mechanism overcomes
one of the main problems on network processing research. Otherwise, only few publicly
available low bandwidth traffic traces show the required features (e.g.bidirectional net-
work traffic) to be used as representative data input for stateful processing.

3.6 Chapter Summary 43

Finally, we have studied the impact of traffic aggregation on data cache performance
comparing different types of network applications. Layer 2 applications tend to deal
with self–contained packet data as well as external data structures that are not sensi-
tive to network features. Layer 3 applications use to manage data structures related to
network features (e.g.IP address distribution). Therefore they can show lower cache per-
formance using very large data structures, although it depends on the network property
locality. Nevertheless, the impact is generally marginal for applications like IP forward-
ing. Unlike stateful applications that shows significant impact even running lightweigth
stateful processing, since they need to keep states of active network connections. We
have shown that the more traffic aggregation the more memory requirements and the
lower temporal locality of flow states. Overall, the impact of traffic aggregation depends
on the application itself and on the data structures distribution.

We have not include network traffic characterization, since it is out of the scope of
the thesis. However, Section7.2proposes some future work on network traffic modeling
and correlation between network characteristics and stateful workload.

45

Chapter 4

Characterization of Networking

Applications

The trend of network processing is to increase the intelligence of the routers. This means
that there is an increment in the workload generated per packet and emerging types of
applications, such as stateful network services. In addition, as Internet traffic continues
to vigorously grow, traffic features, such as network bandwidth and traffic aggregation,
increase even more the stress on traffic processing, overloading the capacities of the
systems.

The overall goal of this chapter is to characterize workloads of network applications.
The results of the studies will be the basis for proposals to improve packet processing.
First, we classify the workloads according to the data management process. We analyze
the workload characterization of a representative set of applications of each category.
The analysis emphasizes the study of data cache behavior. We also characterize other
issues, such as branch prediction, instruction mix, and Instruction Level Parallelism.

We deeply study the impact of stateful applications on architectural bottlenecks
along the life of a given network connection. The memory impact is related to the state-
fulness of the application itself. Moreover, depending on the target of the application,
the memory bottleneck may be concentrated within a set of packets or distributed along
the TCP connection lifetime.

The results show an important memory bottleneck that involves new challenges to

46 Characterization of Networking Applications

overcome, especially for oncoming parallel architectures.

4.1 Chapter Roadmap

Section4.2 presents the proposed classification for network applications according to
the data management and processing. Section4.3 presents the evaluation methodology
employed in the experiments of this chapter.

The analysis is performed in two steps. First, we characterize every workload cate-
gory in Section4.4showing important differences among them. Then, we deeply study
the characterization of different stateful workloads throughout the life of TCP connec-
tions in Section4.5.

We conclude discussing related work and summarizing the chapter in Section4.6
and4.7, respectively.

4.2 Workload Classification

In general, network processing is classified as control plane and data plane [44]. The
former is focused on the management of the communications (e.g. quality of service)
and processing of the packets is not ”on the fly”. On the contrary, the latter is focused
on the network processing itself (e.g. packet forwarding) which is critical to the traffic
flow rate.

Control and data plane classifies packet processing, but network applications show
different workloads according to the data management. Figure4.1 depicts our classifi-
cation proposal to categorize the following workloads:

• self–contained: programs that only need the packet itself to perform the packet
processing. There is no need to search additional data related to the packet or
connection. For example, CRC only needs the IP packet header.

• stateless: applications that generate no record of previous packet processing.
Unlike self–contained category, stateless applications search information to be
checked against the packet header and/or payload (e.g. IP lookup data structures,
pattern–matching). Thus, they can demand large amount of memory for shared

4.2 Workload Classification 47

P
H

Y
 /

M
A

C

Packets
IN

Packets
OUT

P
H

Y
 /

M
A

C

Packet
Processing

Self-Contained
Processing

Memory

Stateless
Processing

Stateful
Processing

Figure 4.1:Network Processing Workload Categories

data structures. Nevertheless, there are negligible dependencies among packets,
since structures are occasionally updated.

• stateful: programs that keep track of the state of packet processing [53], usually
by setting fields of state related to the flows or connections. For example, TCP
termination requires to maintain the state of the TCP flows. The main difference
between stateful and stateless programs is that the former may update a variety of
fields within the state. Instead stateless applications only require the value and do
not update any information.

Most of the low layer applications show self–contained and stateless packet process-
ing, since only basic operations are applied to the packet. In fact, deep packet inspection
integrates stateless processing (e.g. pattern–matching of payload). Layer4 and upper
layer applications can present stateful packet processing to provide additional knowl-
edge about previous packet processing. In general, complex packet processing, such as
stateful DPI for security issues, integrates all above workload categories.

48 Characterization of Networking Applications

4.3 Environment and Methodology

4.3.1 Traffic Traces

In order to perform a fair comparison among applications from different benchmark
suites we cannot use the default traffic traces included in the suites, since the traffic is
not representative according to the properties discussed in Chapter3.

We select a public traffic trace from the NLANR site [59] with bidirectional traffic.
We apply the traffic aggregation methodology proposed in Section3.4.1and generate
a traffic trace that simulates a link of nearly 1Gbps with 20K active flows on average.
Since the stateful applications deal only with the flow state, the provided aggregation
level is enough to represent the low locality of flow states of larger network links.

While the resulting synthetic trace preserves sanitized IP addresses, stateful process-
ing is not sensitive to sanitization [92], as we validated in Section3.3.2. The selected
self–contained applications are not sensitive as well, because they don’t need the IP ad-
dress to perform any search processing. Instead, the stateless applications that we use
are affected by sanitized traffic. But, they show no significant variations in the memory
performance. Moreover, currently there is no better way to perform this analysis.

4.3.2 Benchmark Selection

We select different sets of benchmarks for the two parts of this Chapter. The first study
employs a set of applications of every workload category presented in Section4.2. We
can observe in Table4.1 the selected benchmarks representative for each workload cat-
egory. The column ”Workload Category” specifies the workload category associated to
the benchmark; the column ”State Categories” shows the states handled by the appli-
cation; the last two columns specify the names of the benchmark and benchmark suite.
We can observe that there are several state information categories: packet (Pkt), network
connection (Flow), global information (Global), and application (App).

The lack of stateful applications within the publicly available benchmark suites in-
volves that there is only a single application that presents stateful processing: Snort
2.4 [10]. We employ different configurations depending on the enabled features.
SnortSLessis configured to execute stateless preprocessors. The rest are tuned to use
the stateful preprocessors, called Stream4 and Flow Portscan.Stream4performs inspec-
tion of establishing TCP connections and their maintenance to prevent attacks such as

4.3 Environment and Methodology 49

Snot [82] and Stick [20]. Flow–portscanis an engine designed to detect portscans based
on flow creation and the goal is to catch one–to–many hosts and one–to–many port scans.
In addition, we selectArgus[6] (i.e. network Audit Record Generation and Utilization
System) even it is not included in any benchmark suite. This application is a fixed-model
Real Time Flow Monitor. That is, it can be used to monitor individual end systems or
activity on the entire enterprise network.

Workload Category State Categories Benchmark Bench. Suite
Self–Contained Pkt AES NpBench

Pkt MD5 NpBench
Stateless Pkt & Global Route NetBench

Pkt & Global Nat NetBench
Pkt & Global SnortSLess Snort

Stateful Pkt & Flow & Global Stream4 Snort
Pkt & Flow & Global Flow–portscan Snort
Pkt & Flow & Global SfPortscan Snort
Pkt & Flow & Global Merged Engines Snort
Pkt & Flow & Global Argus Argus

Table 4.1:Benchmark Classification

As the second part of this Chapter is completely focused on stateful workload char-
acterization, we include additional stateful configurations of Snort, besides Stream4 and
Flow–portscan:SfPortscandetects portscans in order to detect the different types of
scans Nmap (i.e. the most common port scanning tool in use today) can produce;Merged
Enginesis a configuration that enables all above stateful configurations of Snort, that is
Stream4, Flow-portscan, and SfPortscan. The combination of engines doesn’t neces-
sarily lead to a linear aggregation of the workload. There are engines that can share
information (e.g. flow state) and, therefore, preprocessors can collaborate in order to
create more robust application.

4.3.3 Evaluation Methodology

We use different tools for taking statistics through instrumentation and for measuring
performance through simulation, as shown in Figure4.2. We instrument the binary code
with ATOM [84] and generate statistics for instruction distribution. The applications
have been compiled with -O3 optimization.

50 Characterization of Networking Applications

Aggregated
Traffic Trace

Network
Application

Simulator

Statistics

Modify Arch
Configuration

Instrumentation

Statistics

Figure 4.2:Evaluation Methodology

We use a modified version of the SMTSim simulator [89] to simulate a single
threaded out–of–order architecture with the baseline configuration shown in Table4.2.
The baseline features a high–performance configuration in order to measure the actual
application behavior and to avoid any architectural limitation. Some experiments modify
the configuration to study the impact of different architectural bottlenecks, such as data
cache hierarchy and branch prediction.

We run every benchmark using the selected traffic traces and processing the same
number of packets. Before starting to take statistics, we run the applications until the
initial stage is finished, such as the creation of IP lookup table. The applications are
warmed by running enough packets in order to reach the stable behaviour of the program.
Our studies indicate that 10K packets are enough for the warming stage. Statistics are
collected by processing 25K packets to obtain representative results. Longer simulations
show negligible variations.

4.4 Characterization of Network Workloads 51

Processor Configuration
Fetch Width 4

Queues Entries 64 int, 64 fp, 64 ld/st
Execution Units 6 int, 3 fp, 4 ld/st

Physical Registers 384 int, 384 fp
ROB Size 256 entries

Branch Predictor Configuration
Branch Predictor 256 perceptrons,

Perceptron 4096 x 14 bit local
40 bit global history
6 cycles miss penalty

Branch Target Buffer 256, 4-way
RAS 256 entries

Memory Configuration
ICache 64KB, 4-way, 8 banks,
DCache 32B lines, 1 cycle access

LRU replacement policy
L2 Cache 2MB, 8-way, 16 banks,

32B lines, 20 cycles access
LRU replacement policy

Main Memory 500 cycles access

Table 4.2:Baseline Configuration

4.4 Characterization of Network Workloads

4.4.1 Stateful Data Requirements

Network applications process packets handling different types of information. The basic
data structures needed is the packet related data structures. Every packet manages its
own data structure that is completely independent to the other packets. Those include
most of the data structures employed by the self-contained applications, as opposed to
stateless and stateful applications, which need to access other type of information. The
data only covers the current packet processing, such as packet content. The lifetime of
these data structures is very short, since they are contained within each packet process-
ing. The inter–packet temporal locality of this data set is independent of any network

52 Characterization of Networking Applications

traffic parameter.

Networking applications usually handle a global state. Actually, the data can be clas-
sified in two subsets: global data structures that are independent of any network traffic
parameter, such as total number of processed packets, and global network data struc-
tures, such as IP lookup table, related to a particular network traffic property, such as IP
address distribution. Thus, the temporal locality of these data structures among packets
is determined by the network traffic features. The behavior of those data structures are
critical for the performance of stateless packet processing. In addition, the lifetime of
global data structures is as long as the lifetime of the application, unlike the packet–
processing dependent lifetime in packet data structures.

Lifetime

Flow

Application

User

Department

State Category

Figure 4.3:Lifetime of State Categories

Nevertheless, network applications with statefulness show additional categories of
data according to the granularity of the state managed by the application. Figure4.3
depicts several state categories (X–axis) and their lifetime (Y–axis):

• Flow: The data structures are related to the network connection, such as flow state.
The temporal locality is determined by the traffic aggregation level of the network
link and the burstiness of the traffic. Although the lifetime is longer than packet
state data structures, it is delimited by the lifetime of the flow. For example, most

4.4 Characterization of Network Workloads 53

of the web sites connections exchange from 10 to 20 packets per object according
to the HTTP protocol.

• Application: The data structures are associated to the application layer, such as
Real Time Protocol (i.e. a transport protocol designed to provide end-to-end de-
livery services for data with real-time characteristics). A similar granularity state
level could be defined as macro–flow, such as counters of a set of flows, which is
used for traffic monitoring/management. The temporal locality is determined by
the traffic aggregation level. However, the lifetime of the data is determined by
the group of flows.

• User: It includes all information regarding a given user. This state level is very
common on network monitoring applications, although it is employed in other
areas such as VoIP and policy management. A given user executes a number of
applications sending/receiving packets from many flows. The temporal locality is
determined by the traffic aggregation level, although it is more likely to increase
when the state belongs to upper levels. The lifetime of the data is determined by
the user and application requirements.

State categories that present longer lifetime also show higher probability that two
packets related to the same state are close together. In fact, it is very likely than future
applications present other states (e.g. office, department, company) as they provide ser-
vices related to those states. The behavior and locality properties depend on the traffic
aggregation level and the state itself.

Figure4.4 depicts the flow state kept by the studied applications. We can observe
the difference between any stateless program and the rest of stateful application. The
Merged Engines configuration shows the largest flow state with 1.5 KByte. SfPortscan
shows approximately 1 KByte of state, although some flows only require roughly 600
Bytes. Argus present a flow state base of over 500 Bytes. However, depending on the
configuration the state can be quite more than 1KByte. We use a configuration that
activates, at the most, 1KByte of state.

4.4.2 Instruction Mix

The applications show nearly 50% of instructions are arithmetic, shift and logic opera-
tions, regardless the workload category. Most of the applications presents similar branch
operations ranged from 10% to 20%. OnlyAESshows a lower percentage. Finally, an

54 Characterization of Networking Applications

0

500

1000

1500

2000

2500

3000

Merged
Engines

Stream4 Flow
Portscan

SF Portscan Argus Stateless
Apps

Benchmark

F
lo

w
 S

ta
te

 (
B

yt
es

)

Figure 4.4:Statefulness of Benchmarks

average of 40% of instructions are memory accesses, which more than 60% are loads.
The instruction distribution shows minor variations according to the application cate-
gories. Nevertheless, both stateless and stateful applications are slightly more memory
stressed, due to the search of additional data, such as IP lookup or flow state.

The amount of instructions per packet depends on the application itself rather than
the workload category. For example, AES, MD5, NAT, and Route benchmarks present
from about 100 to nearly 500 instructions per packet. However, SnortSLess (i.e. in-
trusion detection with only rule–matching engine) show from hundreds to thousands of
instructions depending on the size of rule set.

We can observe in Figure4.5 that stateful processing presents large workloads that
ranges from about 3K to nearly 7K instructions per packet. The Y–axis denotes the
number of instructions per packet, while the X–axis indicates the stateful benchmark.
The greatest part of the processing is covered by nearly 45% of integer computation and
35% of memory accesses. The rest of the workload consists of about 12% and 8% of
conditional and unconditional branches, respectively. Argus is more memory intensive
showing approximately 45% of memory accesses and less conditional and unconditional
branches with about 7% and 3%, respectively, basically due to the monitoring purpose

4.4 Characterization of Network Workloads 55

0

1000

2000

3000

4000

5000

6000

7000

8000

Stream4 Flow-Portscan SfPortscan Merged Engines Argus

In
st

ru
ct

io
n

s
p

er
 P

ac
ke

t

Integer Computation Uncond. Branch

Cond. Branch Load

Store

Figure 4.5:Instruction Mix of Stateful Benchmarks

of the application.

The results point out that the computational workload of stateful processing is in-
dependent of the packet size, unlike other DPI applications (e.g. pattern–matching of
packet payload). In contrast, the selected benchmarks show a relation between the size
of the flow state and the computational workload (see Figure4.4). Nevertheless, further
analysis should be done to validate this relationship.

4.4.3 Instruction Level Parallelism

The processor configuration used in this Section presents variations over some of the
baseline parameters (see Table4.2) towards avoiding any additional performance con-
straint and being able to evaluate the instruction level parallelism (ILP) of the applica-
tions. There are no limitations on both fetch bandwidth, instruction cache line size, and
functional units. The new configuration also presents an oracle branch predictor and a
perfect memory system, where all predictions are hit and every memory access has one
cycle latency, respectively.

56 Characterization of Networking Applications

Figure4.6 shows the available ILP of the applications as a function of the inherent
data dependencies and data flow constraints. The Y–axis denotes the IPC. The X–axis
indicates the benchmarks as well as the workload categories. We can observe that the
ILP is independent of the workload category, since it is inherent to the application itself.
For example,MD5 presents an IPC of 3.5 against the 4.7 ofAES, even though both
of them belongs to the same category. In fact, Lee et al. [44] show that Control Plane
applications show significantly higher ILP than Data Plane applications, regardless our
workload classification. The authors claim that Control Plane applications have more
opportunity to exploit ILP than Data Plane processing. The benchmarks used in our
studies are Data Plane applications.

0

1

2

3

4

5

A
E

S

M
D

5

N
at

R
ou

te

S
no

rt
_S

le
ss

S
tr

ea
m

4

F
lo

w
-

po
rt

sc
an

S
fP

or
ts

ca
n

M
er

ge
d

E
ng

in
es

A
rg

us

Self-Contained Stateless Stateful

IP
C

Figure 4.6:Available Instruction Level Parallelism

The stateful applications present an ILP of 3.5 on average, slightly lower than state-
less applications that shows about 4 on average. The data flow of stateful packet process-
ing presents high rate of dependencies and therefore the ILP is lower. Most of the packet
processing requires to search a state (probably it is not in the cache), check the value,
and trigger an action or modify the data structure depending on the value of the state.
Thus, the processing workload exposes large percentage of long latency instructions
(main memory access due to stateful data) and a significant rate of dependencies among
instructions. Therefore, techniques to exploit the ILP are not cost effective for improving
the performance of stateful programs.

4.4 Characterization of Network Workloads 57

4.4.4 Data Cache Behavior

In this section we discuss the data cache behaviour of the evaluated applications and
analyze the impact of data access distribution shown in the above section. We do not
include an analysis of instruction cache. As other papers explain [100, 54, 44], network
applications present on average near to 100% of instruction cache hit rate, since they are
simple applications executed in single threaded. Moreover, our experiments show simi-
lar results with selected stateful applications. Other more complex and/or multithreaded
network applications can arise important problems in the instruction cache. This issue is
studied in Chapter6.

Figure4.7(a) shows the L1 data cache miss rate using a variety of sizes, with 4–way
set associativity and 32B line size. The X–axis shows the sizes of L1 data cache. In
the legend of the graph we group the benchmarks according to the application category.
We can observe that the self–contained applications present very reduced data cache
miss rate, even with reduced size data caches. Most of the working set is related to the
packet state. Thus, hit rate is high since a reduced cache is able to succesfully keep
this type of structures. The working set of stateless applications is larger due to global
data structures, such as IP lookup table. As access rates to these structures are higher,
reduced caches present higher miss rates. However, a cache size of 16 KBytes or higher
presents a low data cache miss rate of 2% on average. On the other hand,SnortSLess
could present higher miss rates if it is a rule-based IDS and there is a large number of
rules. Finally, stateful applications present higher miss rates than the rest of applications,
due to larger working set and data structures sensitive to network traffic properties, such
as distance between two packets of the same flow.

We analyze the effects of increasing the associativity level, but there are no signif-
icant benefits. Because the main problem is not cache conflicts, but the cache inability
of maintaining the data of the active flows. However, using a larger cache line size we
take advantage of spatial locality within the packet processing itself, but it depends on
how the application processes the data. For example, if we enlarge from 32B up to 64B
cache line size we achieve a 3% reduction on average in the cache miss rate. This fact
corresponds to three times the improvement obtained by doubling the cache associativity
degree.

The main impact of statefulness resides in the L2 data cache miss rate shown in
Figure4.7(b). While self–contained and stateless applications present near to zero miss
rate, stateful applications show a saturated miss rate from 1% up to 1.7%. Even using
large L2 data cache the misses due to stateful data structures cannot be reduced. That is,

58 Characterization of Networking Applications

0

2

4

6

8

10

12

14

16

18

20

4 16 64 256 1024
Size (KB)

M
is

s
R

at
e

(M
is

se
s/

M
em

A
cc

s)

AES

MD5

Nat

Route

Snort_Sless

Stream4

SfPortscan

Argus

Stateless

Stateful

Self-
Contained

0

2

4

6

8

10

12

14

16

18

20

4 16 64 256 1024
Size (KB)

M
is

s
R

at
e

(M
is

se
s/

In
st

rs
)

AES

MD5

Nat

Route

Snort_Sless

Stream4

SfPortscan

Argus

Stateless

Stateful

Self-
Contained

(a) $DL1 Miss Rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4 16 64 256
Size (KB)

M
is

s
R

at
e

(M
is

se
s/

M
em

A
cc

s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4 16 64 256
Size (KB)

M
is

s
R

at
e

(M
is

se
s/

In
st

rs
)

AES

MD5

Nat

Route

Snort_Sless

Stream4

SfPortscan

Argus

Stateless

Stateful

Self-
Contained

(b) $L2 Miss Rate

Figure 4.7:Data Cache behavior

almost 100% of DL1 misses also are misses in L2 when we use a very large DL1 cache.

Depending on the size of flow-states and the traffic aggregation level, we can require
several MBytes of data structures for flow-states. In fact, the memory performance of
stateful applications is very sensitive to the traffic aggregation level [93], since the mem-
ory capacity requirements significantly grows and the temporal locality of flow state is
reduced. Obviously, with larger flow-states the sensitivity is higher. Stream4 and Argus
requires roughly 420 Bytes and 1 KByte, respectively. As we mentioned in Section4.3.1,
we handle roughly 20K flows on average. Thus, the memory requirements of Stream4
and Argus are roughly 8.4 MBytes and 20 MBytes, respectively. Larger network links
demand hundreds of MBs (see Figure3.9). This requirement is higher on applications
with more statefulness rates.

4.4 Characterization of Network Workloads 59

4.4.5 Branch Prediction

In Section4.4.2 we analyze the instruction mix of the selected benchmarks, which
present 12% on average of branch operations, which 70% are conditional branches.

In this section we evaluate the behavior of the branches through the study of branch
prediction accuracy. We use a perceptron predictor [36, 95]. We also study other branch
predictors, such as g-share [51] with different PHT size configurations. The experiments
show slightly worse results than the perceptron predictor (less than 3% of difference),
with marginal variations as a function of the PHT size.

Figure4.8shows the branch prediction hit rate of the perceptron predictor. Overall,
hit rates are higher than 96%. In fact, self–contained applications present the highest
rates, since the behavior of branches are similar among packets. The results also show
that there is no relation between prediction hit rate and flowstate size (see Figure4.4).

The branches of stateful processing, such as Stream4, are sensitive to network prop-
erties (e.g. traffic aggregation), unlike the self–contained and stateless applications. The
reason behind this is that the action depends on the state related to the packet. Thus,
there is a negative aliasing among independent packets. Instead, Flow–portscan and Ar-
gus present lower negative aliasing, since the behavior is similar among independent
packets, regardless the flow state.

4.4.6 Performance Evaluation

In this section, we use four different configurations: the baseline configuration, an oracle
branch predictor, a perfect memory system (i.e. every memory access has one cycle
latency), and an oracle predictor with a perfect memory system. We remark that the
baseline configuration is based on the architecture described in Table4.2. That is, an
out–of–order 4–width superscalar processor, with 64KB of IL1$ and DL1$, and 2MB of
unified L2$.

Figure4.9presents the IPC (Y–axis) of every benchmark according to the workload
category (X–axis). We can observe that self–contained applications present marginal
differences on IPC among architectural configurations. In contrast, stateless applications
experience a slight improvement moving from about 2.6 IPC (blue bar) up to 3.2 IPC (bar
with horizontal green pattern). However, the other stateless applications (SnortSLess)
shows marginal improvement, because it shows slightly lower data cache miss rate as
well as lower branch miss prediction. In fact, stateless applications can be sensitive to

60 Characterization of Networking Applications

92

93

94

95

96

97

98

99

100
A

E
S

M
D

5

N
at

R
ou

te

S
no

rt
_S

le
ss

S
tr

ea
m

4

F
lo

w
-

po
rt

sc
an

S
fP

or
ts

ca
n

M
er

ge
d

E
ng

in
es

A
rg

us

Self-Contained Stateless Stateful

H
it

 R
at

e
(%

)

Figure 4.8:Branch Prediction Hit Rate

variations on large data structures (see Section3.4.3), however it is out of scope of this
thesis to study stateless applications.

Stateful applications emphasize the impact on memory performance. The cache
performance is stressed since neither DL1 nor L2 cache are able to keep the states of
the active flows. We can observe that Merged Engines shows a very reduced IPC of
0.12. The other stateful benchmarks present higher IPCs, but all of them are lower than
0.9. The IPC of the benchmarks should tend to be inversely proportional to the flow
state size of the applications, due to the limitations and bottlenecks previously discussed
(e.g.negative aliasing on data cache and branch prediction, low ILP). However, we can
observe that SfPortscan shows better performance than Flow-Portscan, even similar to
Stream4. The main reason of these results is the reduced statefulness of the benchmarks,
since they reduce the negative impact of statefulness.

Figure4.10clarifies the results discussed above by showing the normalized speedup
(Y–axis) compared to the baseline configuration. We can see that self–contained applica-
tions shows less than 2% of speedup using perfect memory and oracle branch predictor.
Stateless applications increase the speedup up to nearly 20%. However, the highest
speedups are experienced running stateful applications. While perfect branch predictor

4.5 Characterization of Stateful Workloads Throughout a Flow 61

0

0.5

1

1.5

2

2.5

3

3.5

4

A
E

S

M
D

5

N
at

R
ou

te

S
no

rt
_S

le
ss

S
tr

ea
m

4

F
lo

w
-

po
rt

sc
an

S
fP

or
ts

ca
n

M
er

ge
d

E
ng

in
es

A
rg

us

Self-Contained Stateless Stateful

IP
C

Baseline

Perfect Branch

Perfect Mem

Perfect Mem & Perfect Branch

Figure 4.9:Performance Impact of Architectural Bottlenecks

improves the IPC about 10% on average, the perfect memory configuration show larger
speedups of 3x. In fact, Merged Engines shows the highest speedup with 22.7x using
perfect memory and oracle branch predictor.

4.5 Characterization of Stateful Workloads Throughout a

Flow

The previous section presents the differences among network processing workload cat-
egories, using averaged measurements among packets. Instead, this section deeply an-
alyzes a variety of stateful workloads throughout the life of TCP connections. That is,
a TCP flow with the three–way handshake connection stablishment (i.e. SYN, SYN–
ACK, ACK packets), data transfer, and the two–way handshake connection termination
(i.e. FIN, ACK packets). In these experiments, we collect metrics of flows of 10 packets
size (e.g.a typical HTTP transaction).

62 Characterization of Networking Applications

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
E

S

M
D

5

N
at

R
ou

te

S
no

rt
_S

le
ss

S
tr

ea
m

4

F
lo

w
-

po
rt

sc
an

S
fP

or
ts

ca
n

M
er

ge
d

E
ng

in
es

A
rg

us

Self-Contained Stateless Stateful

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

Baseline

Perfect Branch

Perfect Mem

Perfect Mem & Perfect Branch

(7.6x - 8.4x) (19.4x - 22.7x)

Figure 4.10:Normalized impact on IPC of Architectural Bottlenecks

4.5.1 Computational Workload

Low layer applications, such as IP forwarding, use mainly a set of selected bytes from
the packet header to proceed the packet processing. The computational workload is sim-
ilar across all packets. Other applications that process more information of the packet,
such as pattern matching in a DPI application, shows a direct relation between packet
payload size and the number of instructions executed per packet. The larger packet size
the more comparisons have to be done to find the keyword. This relation may slightly
vary depending on the processing algortihms and other features of the application. Fi-
nally, stateful applications associate the computational workload to other characteristics,
such as state size and the computational requirements of the states. Therefore, state-
ful applications can show heavyweight processing with short packets and lightweight
workloads with large packets.

Figure4.11depicts the average of instructions executed by the n-th packet process-
ing through the flow lifetime. The X–axis indicates the n–th packet and the transport
protocol stage. As the data transferring stage may be longer, it is represented with a
dot line. The measurements are similar among packets during the data transfering. The

4.5 Characterization of Stateful Workloads Throughout a Flow 63

0

2000

4000

6000

8000

10000

12000

1 2 3 … … n-3 n-2 n-1 n

Flow Live (N-th Pkt)

In
st

ru
ct

io
n

s

Merged Engines Stream4
Flow-Portscan SfPortscan
Argus

Connecting Data Transfering Closing

Figure 4.11:Workload per packet during the flow lifetime

results point out that the instruction mix is similar among packets, with the exception
of the first packet of a TCP connection, which shows nearly 3% higher memory access
rates, due to the initialization of data structures.

We can observe that the Stream4 and Argus show an almost constant behavior in
every packet due to the constant task through the flow lifetime. However, the other
benchmarks focused on security issues present lightweight packet processing when the
application detects that a given packet belongs to a flow previously identified as a safe
connection. In fact, we can see that once a connection is stablished Merged Engines
generate lower workload than SfPortscan, although the former manages almost double
flow state size than the latter. The Merged Engines comprises several preprocessors that
can share state leading to a more robust application. On the contrary, SfPortscan requires
to execute more instructions, because its engine is less ”intelligent” due to the lack of
additional state. Overall, if the application doesn’t have to do regular tasks on every
packet processing (e.g. monitoring), the hardest workload is concentrated on the first
packets of a connection.

64 Characterization of Networking Applications

4.5.2 Data Cache Behavior

Figure4.12shows the data cache behavior using different sizes (X–axis). The results
complement the results discussed in Section4.4.4. We isolate the stateful applications
to understand better the variations among different stateful processing. Figure4.12(a)
shows the DL1 miss rate. Increasing the cache size significantly reduces the miss rate
with reduced caches. Caches larger than 64 KBytes do not present important miss rate
reductions. Merged Engines shows more than 5% of cache misses even using 1MByte.

We can conclude that a DL1 cache of roughly 64 KBytes is able to maintain the
variables that present temporal locality between packets. These data are not sensitive to
the variations of network traffic characteristics discussed on Section3.2: structures to
temporally hold contents of the packet itself (e.g. packet header and payload); stateless
data shared among packets (e.g. global packet processing options); and coarse grain
stateful data (e.g.global counters).

Figure4.12(b) presents the L2 cache miss rate. There is a flat miss rate even with
a large L2 cache. Nearly 5% of the memory accesses of Merged Engines are L2 cache
misses, regardless the L2 cache size. Analyzing the misses, they are related to stateful
data. Thus, under high traffic aggregation we cannot reduce the miss rate due to low
temporal locality of flow state data even using several MBytes of cache. The network
traffic properties have stronger influence on the performance of cache when the flow
states are larger as well as there is more computational stateful workload.

Another interesting issue to discuss is the significant higher miss rate of Merged
Engines versus other stateful configurations. There is no direct relation between higher
miss rate and the combination of state data structures from a set of stateful engines. The
key insight is the interaction of each stateful engine to trigger a new different application
behaviour.

In order to go deeper in the analysis of stateful impact on cache, we analyze the
L2 miss rate per packet. Figure4.13shows the L2 miss rate generated by the stateful
data accesses of every packet through the flow lifetime. The process of the first packet
of a connection shows the highest miss rate due to the initialization of the flow state.
However, when the application is focused on detecting the safety of a TCP connection,
such as Merged Engines, most of the misses are concentrated in the first packets, since
most of decisions/actions are triggered in the first packets. In contrast, the applications
with constant workload, such as Argus and Stream4, shows a similar miss rate in every
packet, since the packet processing flow path is very similar among packets.

4.5 Characterization of Stateful Workloads Throughout a Flow 65

0%

5%

10%

15%

20%

25%

4 8 16 32 64 128 256 512 1024

$DL1 Size (KB)

M
is

s
R

at
e

Merged Engines Stream4

Flow-portscan SfPortscan

Argus

(a) $DL1 Miss Rate

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

1024 2048 4096 8192

$L2 Size (KB)

M
is

s
R

at
e

Merged Engines Stream4

Flow-portscan SfPortscan

Argus

(b) $L2 Miss Rate

Figure 4.12:Data Cache Behavior

4.5.3 Branch Prediction

We identify two different categories of branches within evaluated stateful benchmarks:
flow dependent and flow independent branches. The former includes the branches that
update the flow state and variables related to the flow, such as state of the connection.
As the prediction is dependent on the flow, these branches are sensitive to network

66 Characterization of Networking Applications

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

1 2 3 … … n-3 n-2 n-1 n

Flow Live (Pkt N-th)

T
o

ta
l D

at
a

L
2

M
is

s
R

at
e

Merged Engines Stream4

Flow-Portscan SfPortscan

Argus

Connecting Data Transfering Closing

Figure 4.13:L2 Cache Misses per packet during the flow lifetime

traffic features. Moreover, they are harder to predict due to a possible negative alias-
ing among packet processing. The latter includes the branches that are executed for
packet data itself and global tasks, such as packet header values and global variables.
These branches are insensitive to the previously mentioned traffic characteristics (see
Section3.2). Therefore, they are easy to predict, since the prediction is similar among
packets. Other stateful applications with wider range of stateful levels show more cate-
gories of branches according to the association between state levels and branches.

Figure4.14(a) presents the branch prediction analysis throughout the flow lifetime
with an environment of a single active connection. We can observe all benchmarks
present a high branch prediction hit rate in every packet. In fact, the hit rate is higher
than the average (see Figure4.8) and there are no significant variations among n-th
packets. On the other hand, Figure4.14(b) shows the results throughout the network
connection lifetime with an environment of high aggregation traffic level. That is, there
are many single packets of different unique flows leading to a polluted PHT. We can
observe that, on average, there is a lower hit rate in every packet, specially Merged
Engines and Stream4 present the most significant variations.

We can observe that there is a negative aliasing due to the processing of packets from

4.5 Characterization of Stateful Workloads Throughout a Flow 67

86%

88%

90%

92%

94%

96%

98%

100%

1 2 3 … … n-3 n-2 n-1 n

Flow Live (N-th Pkt)

B
ra

n
ch

 P
re

d
ic

ti
o

n
 H

it
 R

at
e

Merged Engines

Stream4

Flow-Portscan

SfPortscan

Argus

Connecting Data Transfering Closing

(a) Branch Prediction - Traffic without
aggregation level

86%

88%

90%

92%

94%

96%

98%

100%

1 2 3 … … n-3 n-2 n-1 n

Flow Live (N-th Pkt)

B
ra

n
ch

 P
re

d
ic

ti
o

n
 H

it
 R

at
e

Connecting Data Transfering Closing

(b) Branch Prediction - Traffic with
high aggregation level

Figure 4.14:Branch prediction study during the flow lifetime

independent flows. Due to this, there is a significant amount of flow dependent branches
that are affected by the traffic characteristics. However, the majority of the evaluated
benchmarks concentrates the main workload in the first packets of the connection. Thus,
the negative impact on performance is lower, with the exception of Stream4 and Argus
that present a similar workload throughout the n-th packets of the connection.

68 Characterization of Networking Applications

4.5.4 Performance Variations

In Section4.5.1we analyze the computational workload of every packet of a given flow.
The performance metrics shown in Section4.4.6are an averaged of all processed pack-
ets. However, the results don’t describe the performance of a particular packet. We use
the baseline architectural configuration shown in Table4.2. An out–of–order 4–width
superscalar processor, with 64KB IL1$ and DL1$, and 2MB unified L2$.

In Figure4.15we break down the performance of every packet during the life of a
given flow. The Y–axis denotes the IPC, while the X–axis indicates the n–th packet and
the transport protocol state. The average IPC approximates to the global performance
shown in Figure4.9.

Mostly stateful applications show similar performance for every packet. After the
first packet of a connection, there are slight increments of IPC, especially SfPortscan,
Stream4, and Argus. In addition, Stream4 preprocessor shows higher performance in
the middle of the connection. The reason behind this is that the required computation is
lower, since the flow state is only checked and neither modifications nor further actions
are triggered.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 … … n-3 n-2 n-1 n

Flow Live (N-th Pkt)

IP
C

Merged Engines Stream4
Flow-Portscan SfPortscan
Argus

Connecting Data Transfering Closing

Figure 4.15:Performance per packet during the flow lifetime

4.5 Characterization of Stateful Workloads Throughout a Flow 69

In order to better analyze the performance variations, we present the normalized IPC
in Figure4.16. The IPC is normalized to the performance of the first packet of the con-
nection. We can observe that Merged Engines manifests a curved trend. That is, the
IPC is increased in the second and third packet up to nearly 1.17x. Then it is sustained
until the last packets of the connection that presents lower performance. Merged En-
gines present higher differences than the other benchmarks, since it requires to do extra
workload in the first packets that degrades the overall performance. In contrast, the other
benchmarks demand less extra workload due to the flow establishment.

1

1.05

1.1

1.15

1.2

1.25

1.3

1 2 3 … … n-3 n-2 n-1 n

Flow Live (N-th Pkt)

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Merged Engines Stream4
Flow-Portscan SfPortscan
Argus

Connecting Data Transfering Closing

Figure 4.16:Variations of IPC per packet during the flow lifetime

Overall, the stateful benchmarks show a sustained increment of performance ranged
from 4% to 8%, excepting Merged Engines. Applications that demand special process-
ing for the first packets of the flow (e.g.security detection) increase the impact of extra
computation on stateful data (performance penalty due to stateful data memory manage-
ment). Even it may present slight variations during the flow lifetime (e.g. Stream4).
Instead, regular packet processing (e.g.argus monitoring) shows stable performance for
most of the packets.

70 Characterization of Networking Applications

4.6 Related Work

Benchmarking NPs is complicated by a variety of factors [13], such as confidential work-
load properties of proprietary applications and emerging applications that do not yet have
standard definitions. There is a high interest and an ongoing effort in the NP community
to define standard benchmarks [58].

Several benchmarks suites have been published in the NP area: CommBench [100],
NetBench [54] and NpBench [44]. Wolf et al. [100] present the CommBench benchmark
suite: a set of eight benchmarks classified in Header Processing Applications (HPA)
and Payload Processing Applications (PPA). The suite is focused on program kernels
typical of traditional routers. The workloads are characterized and compared versus
SPEC benchmarks.

Memik et al. [54] present a set of nine benchmarks, called NetBench. The authors
categorize the benchmarks into three groups, according to the level of networking appli-
cation: micro-level, IP-level and application-level. The workloads are compared versus
MediaBench programs.

Lastly, Lee et al. [44] propose a new set of ten benchmarks, called NpBench. It
is focused on both control and data plane processing. In this case, the benchmarks
are categorized according to the functionality: traffic management and quality of service
group (TQG), security and media processing group (SMG), and packet processing group
(PPG). The study of the workloads is compared against the CommBench workloads.

All the above benchmarks are not stateful applications, since they do not keep track
of the previous processed packets. In reality NetBench includes the only benchmark that
presents stateful features. The NIDS called Snort [10], although it is not included in
the original paper [54]. There are several publications that present studies about Snort
[70, 40, 75]. However, the workload and the cache behavior of the stateful configuration
have not been analyzed yet.

The processing behavior of low layer applications of NP benchmark suites are very
similar among packets. Thus, there is no characterization of workloads throughout the
lifetime of a flow. In contrast, stateful applications show significant variations in both
code footprint and data working set. The conclusions are important to propose alternative
schemes for distributing workload in multithreaded architectures.

4.7 Conclusions 71

4.7 Conclusions

In this chapter we present the first workload characterization of stateful processing. To
the best of our knowledge, this study is the first to analyze stateful workloads, specially
for networking applications.

In order to better understand the bottlenecks that the network applications generate,
we propose a new type of classification that distinguishes workloads according to the
management of data throughout packet processing: self–contained (each packet contains
all data needed for processing), stateless (shared data structures that are used to check
packet data and trigger an action), and stateful (keep track of previous packet processing
in order to provide higher knowledge about the current packet processing).

The results show important differences between workload categories. The main rea-
son for the variation in performance among workload categories relies on the data local-
ity. The study shows that stateful processing is related to state data and therefore it is
sensitive to traffic flow characteristics. In stateless applications, however, the locality is
sensitive to lower layer network features (e.g. IP address distribution), as well as to the
size of global information required by the packet processing.

In a single threaded system, the main bottleneck of stateful applications is the mem-
ory system, since even a larger L2 data cache is unable to maintain the state of active
flows. The evaluated applications show from 3x up to 19x of performance speedup on av-
erage using a perfect memory system. The speedup is sensitive to the statefulness degree
of the application and to the memory hierarchy configuration of the processor architec-
ture. Nevertheless, branch prediction is another critical issue once memory bottleneck is
overcomed, showing 16% on average of speedup. Also the percentage is sensitive to the
application characteristics and the state level processed during the packet processing.

In this chapter we also analyze the processing for each packet during the life of a
network connection. We compare packet requirements under different stateful configu-
rations of Snort. The analysis shows that the bottlenecks can be concentrated in the first
packets of the TCP connection, such as portscan detector, or can be distributed along the
flow lifetime, such as monitoring.

The variations increase as more stateful upper layer processing is performed to the
network traffic. Although this chapter discusses the variations among packets of a given
TCP connection, the performance can also be sensitive to the state related to other net-
work layers, such as group of flows, traffic of a given user, traffic of a given application.
Other applications may present different valuable results, but our studies suggest that the

72 Characterization of Networking Applications

critical bottlenecks will be preserved and even be more stressed.

The analysis is performed in single threaded processor. In Chapter6 we analyze
bottlenecks that arise due to parallel execution models in a multithreaded architecture
(e.g.negative aliasing in both data and instruction caches, contention due to shared data
structures).

73

Chapter 5

Principles of Parallel Stateful

Processing

In previous chapters we have characterized the stateful applications. We have demon-
strated that stateful applications present computational intensive workloads, reduced ILP,
and large amount of long latency memory accesses. Thus, providing more complex state-
ful DPI services for high bandwidth links leads us to explore multithreaded architectures
to exploit other levels of parallelism, such as the inherent packet level parallelism of
network processing.

There are two main execution models towards parallel network processing on mul-
tithreaded architectures: run–to–completion (RTC) and software pipeline (SPL). In the
RTC model, a thread is run to process packets in a discrete, indivisible RTC step. In the
SPL model, a thread is run to process packets in several steps according to the differenti-
ated pipeline stages of the workload. Both models aim to exploit packet level parallelism
(PLP). In addition, SPL aims to improve the affinity among threads.

Layer 2–3 processing exploit large amount of PLP, since there are negligible depen-
dencies among packets. In contrast, stateful processing shows significantly lower PLP,
since there are dependencies between packets (e.g.variety of states related to a particular
packet) as well as contention in the use of shared data structures.

In this chapter we introduce background information of parallel stateful processing.
The analysis is based on our parallelization of Snort [70], called Snort–MT. We present

74 Principles of Parallel Stateful Processing

an analysis of the parallel workload. In addition, we introduce both RTC and SPL exe-
cution models using Snort–MT.

5.1 Motivation

In this section we present an example of throughput demand to provide Snort stateful
DPI while sustaining 10Gbps traffic (i.e. OC–192 at full bandwidth utilization). We
assume a packet size of 500 bytes on average [53] and workloads from different Snort
configurations (see Table6.1). In addition, we assume a massive multithreaded archi-
tecture where each stream is single–issue and the processor runs at 1GHz. Figure5.1
depicts the required amount of streams in the architecture (Y–axis) running different
Snort workloads (X–axis).

0

50

100

150

200

250

300

350

400

450

500

Mix-1 Mix-2 Mix-3 Mix-12 Mix-13 Mix-23 Mix-123 Avg

T
o

ta
l N

u
m

b
er

 o
f

S
tr

ea
m

s

SingleStream IPC = 0,3

SingleStream IPC = 1

Figure 5.1:Massive multithreaded size to sustain stateful DPI for a 10Gbps link

The black bars indicate the architecture size assuming the best stream performance
case (i.e. IPC of 1 per stream). We can observe that the total number of streams ranges
from 30 to 130. However, as we demonstrated in Chapter4, the IPC of stateful DPI
applications is substantially lower. The gray bars indicate the requirements assuming a

5.2 Workload Breakdown 75

stream performance 0.3 IPC. It is the average performance of single threaded superscalar
processor shown in Section4.5.4. In this case, we need from 100 to about 450 streams
in the processor to sustain required throughput.

In fact, the theoretical requirements indicated in Figure5.1 increase in a real envi-
ronment. The dependencies among threads reduce the linear scalability of performance,
especially for architectures with tens to hundreds of streams.

5.2 Workload Breakdown

The parallel network applications assign packets to software contexts (i.e. threads). The
majority of network systems use the same amount of threads than the total number of
hardware contexts (i.e. streams). In this section we discuss the workload of a given
thread assigned to a particular stream.

Figure 5.2:Snort packet processing loop

Figure5.2 depicts the packet processing loop of Snort. According to the workload
classification proposed in Section4.2 (i.e. self–contained, stateless, stateful), there are
three main stages well differentiated: decoding, preprocessing, and rule matching. Once
the stream finishes the packet processing, the system releases the thread and checks
if there is any packet waiting to be processed (dotted line). Figure5.3 presents the
multithreaded Snort design that we develop in our implementation. We replicate the
packet processing loop per thread and there is no breaking of the packet processing loop.

The received packet from the network card (i.e. packet capturing) is allocated into
the memory waiting to be processed. The system assigns the packet to a given thread
that is processed in a particular stream. The processing starts to decode the packet header
and payload to initialize a number of data structures (i.e. decoding stage). The decoding

76 Principles of Parallel Stateful Processing

Decoding Preprocessing Rule MatchingRead
Packet

Decoding Preprocessing Rule MatchingRead
Packet

Thread Boundary

Figure 5.3:Multithreaded Snort packet processing

stage presents self–contained workload, since it only needs data from the packet itself.
The preprocessing engine receives the packet information and perform specialized tasks.
They can behave as either stateless or stateful processing depending on the configura-
tion. Nevertheless, throughout the experiments of this thesis we only enable stateful
preprocessors in order to enhance the stateful processing. The stateful preprocessing
keeps track of previous processed packets. Finally, the packet is scrutinized for signature
matching. This stage is categorized as stateless workload, since external information is
required (e.g.rules, signatures, keywords) and there is no need to keep track of previous
packet processing.

The description of Snort packet processing points out that stateful DPI comprises
several workload categories. This assumption can be extended to other stateful DPI
applications, but with different distribution rates. In contrast, layer 2–3 applications
present a single workload category (e.g. IP forwarding presents stateless workload).

We base our studies on different configurations of the Snort as a representative range
of stateful DPI applications. We select a number of stateful preprocessors that show
different behavior:

5.2 Workload Breakdown 77

• perfmonitor: it collects a wide range of statistics from packet processing intended
for network administrators.

• stream4: provides TCP stream reassembly and stateful analysis capabilities to
track simultaneous TCP streams and to ignore stateless attacks.

• frag3: is an IP defragmentation module that applies target-based host modeling
anti–evasion techniques for attacks based on information about how an individual
target IP stack operates.

Each workload presents a different configuration of enabled preprocessors. Table5.1
indicates the enabled preprocessors according to the workload identificator. Moreover,
in all configurations we employ the default configuration of rule set for rule–matching,
that includes a total of 3291 rules.

Enabled Preprocessors Workload ID

Perfmonitor Mix-1
Stream4 Mix-2
Frag3 Mix-3

Perfmonitor - Stream4 Mix-12
Perfmonitor - Frag3 Mix-13
Stream4 - Frag3 Mix-23

Perfmonitor - Stream4 - Frag3 Mix-123

Table 5.1:Workload Mixes

Figure5.4 shows the Snort workload distribution per packet processing stage. The
X–axis indicates the stateful DPI workload mix according to the configurations of Snort.
They differ in the enabled preprocessors. In the top graph we can observe the number
of instructions denoted by Y–axis. The decoding stage (the bars with diagonal lines)
shows similar workload (about 2K instructions per packet) regardless the Snort config-
uration, since there are no directives for setting up the Snort decoder. In contrast, the
preprocessing workload (indicated by the black bars) presents variations ranged from
2K up to about 8.3K instructions per packet, due to the different preprocessor configura-
tions. Regarding the rule–matching stage (the gray bars), there are significant workload
variations, although all configurations preserve the same rule–set. The reason behind
this is that the preprocessing provides further knowledge to the packet processing and
it can skip subsequent preprocessing or rule–matching for a given packet. We can ob-
serve the configurations that show reduced preprocessing workload (i.e. Mix–1, Mix–3,

78 Principles of Parallel Stateful Processing

Mix–13) present higher rule–matching workload than the rest of configurations. Thus,
rule–matching workload is sensitive to the preprocessing configuration.

0

10000

20000

30000

40000

50000

60000

Mix-1 Mix-2 Mix-3 Mix-12 Mix-13 Mix-23 Mix-123 Avg

Rule-Matching

Preprocessing

Decoding

(a) Instructions per Packet

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mix-1 Mix-2 Mix-3 Mix-12 Mix-13 Mix-23 Mix-123 Avg

Decoding Preprocessing Rule-Matching

(b) Workload Distribution

Figure 5.4:Snort workload distribution according to the processing stages

In addition, enabling more preprocessors doesn’t increase linearly the workload per
packet. Part of the knowledge provided by a given preprocessor is used by other pre-
processors (e.g. data structures). For example, the preprocessor workload of Mix–1,
Mix–3, and Mix–13 or Mix–1, Mix–2, and Mix–12 show marginal differences since
they share part of the processing workload. In addition, the remaining preprocessing

5.3 Critical Sections 79

may present lightweight computational workload (e.g.Mix–1 updates a number of coun-
ters), unlike other preprocessors with more complex (e.g. Mix–2 provides TCP stream
reassembly).

Figure5.4(b) depicts the percentages for each processing stage. This graph clarifies
the distribution of instructions per packet processing mentioned above. We can observe
that there is not a direct relationship between the number of preprocessors enabled and
the percentage of preprocessing and rule–matching workload. Most of the stateful DPI
presents stateless and stateful workload. In fact, the configuration Mix–123 comprises
the highest number of stateful preprocessors, whilst the packet processing presents about
60% of stateful workload.

It is very likely that more complex network services (e.g.complex network security
and monitoring systems) will show future stateful DPI applications with larger computa-
tional workload requirements (i.e. number of instructions per packet processing) as well
as stateful requirements (i.e. amount of state and stateful workload).

5.3 Critical Sections

The stateful applications present a large amount of critical sections to protect shared data
structures. The frequency of data updating is high leading to significant thread collision
rates in critical sections. Instead, lower layer applications comprise just a few critical
sections. In fact, the self–contained packet processing don’t share information among
packet processing and thus there are no collisions between parallel in flight threads.
In contrast, stateless workloads check data in global shared structures that show low
updating frequency (e.g. update frequency of IP forwarding table), so the probability of
thread stalling due to thread collision in a critical section is marginal.

In this thesis, we develop a suboptimal implementation of Snort version 2.3.4 [81],
called Snort–MT. We employ Pthread POSIX standard1. Although the design of critical
sections can be improved (e.g. finer grained locking and optimized allocation of locks),
the nested critical sections cannot be avoided.

1In Section7.2.2we outline some future work that addresses alternative parallel implementations of
Snort by using OpenMP [1] (i.e. a portable, threaded, shared-memory programming standard API with
”light” syntax) and Transactional Memory [43] (i.e. a promising mechanism that simplifies parallel pro-
gramming by providing a new abstraction to the protection of shared data).

80 Principles of Parallel Stateful Processing

�
Packet processing

�
Searching flow state

�
Updating flow state

�
Updating “upper layer” states

�
Updating “global” state

T
im

el
in

e

Locking Depth

0 1 2 3 4 5 …

Figure 5.5:Example of nested locking due to stateful processing

Figure5.5 depicts an example nested locking scenario due to stateful DPI. The ex-
ample is based on Snort stateful preprocessing, but it can be extended to other stateful
network applications. The X–axis denotes the nesting depth level and the Y–axis indi-
cates timeline. The lock free processing (i.e. zero locking depth) is related to the compu-
tation of packet contents. The first level of locking is either related to the data structure
of active flow states or global statistics. Processing a particular flow state requires to
check key data and eventually to update or to trigger an action. Other upper layer states
(e.g. user stats) may need to be updated during the period of flow state processing.

We can observe in Figure5.6 the distribution of critical sections and nested levels
of locked code in Snort–MT. We assume a particular stateful configuration of Snort–
MT (see Workload Mix–123 in Table6.1). The processing workload presents nearly
30% of the processing within critical sections dinamically distributed across 10 critical
sections on average. In fact, the rule–matching stage shows negligible critical sections
(less than 1%). The decoding stage presents about 12% of locked sections, due to global
counters (e.g.number of TCP packets). Most of them present a size of 100 instructions
on average and a frequency that ranges from about 500 to 1K instructions. The decoding
stage usually executes 3 critical sections on average.

5.4 Order–of–Seniority 81

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Snort-MT Snort-MT
Decoding

Snort-MT
Preprocessing

 Snort-MT
Rule-Matching

P
ro

ce
ss

in
g

 W
o

rk
lo

ad

Level 2
Level 1
Level 0

Figure 5.6:Distribution of critical sections and nested levels

In contrast, the preprocessing stage (i.e. mostly stateful workload) shows higher
percentage of locked processing, about 48%. In addition, 2% of the critical sections
present nested locking (see example in Figure5.5). In fact, applications that keeps larger
state categories (e.g.flow–state, application–state, user–state) will likely present deeper
nested levels. During the preprocessing, there are nearly 6 critical sections executed.
About 30% of the critical sections present a size that ranges from 2K to 3K instructions
(e.g.management of flow states), while the rest of critical sections shows a size of over
100 instructions (e.g. updating a particular state). The distance among critical sections
ranges from 200 to nearly 2K instructions.

5.4 Order–of–Seniority

The stateful processing presents critical sections that require to be processed following
a particular order. Most critical sections that need order enforcement are based on the
order of packet arrival, also known as order–of–seniority (see Section2.3). Thus, a given
thread can be stalled in a critical section, even there are no collision with other threads

82 Principles of Parallel Stateful Processing

at a given time.

The probability of thread stalling due to order–of–seniority is sensitive to two fac-
tors: the temporal locality among packets that use a given state, and the amount of
processing that require order enforcement. For example, keeping network statistics need
no order–of–seniority, unlike keeping the state of TCP handshake protocol.

Our experiments running Snort under high traffic aggregation present no conflicts
due to order–of–seniority. There are stateful data structures that require order enforce-
ment, but the high traffic aggregation leads to reduced temporal locality. The minimum
distance between two packets that requires the same state data present show hundreds of
packets. Further work is needed with other benchmarks to evaluate the effect of order–
of–seniority as part of the future work in Section7.2.

5.5 Parallel Execution Models

There is a relationship between the execution model and the approach to map parallel
workloads into a given multithreaded architecture. The parallel execution models adapt
workloads to enhance the exploitation of parallelism. The mapping approach takes ad-
vantage of the execution model benefits and distribute the parallel workload to enhance
the positive interaction among threads and thus to maximize the system throughput by
exploiting packet level parallelism.

In this section we introduce the two main execution models for parallel network
applications: Run–To–Completion, where a packet is processed in a single step; and
Software Pipeline, where the packet processing comprises a number of pipelined stages.

5.5.1 Run–to–Completion

The Run–To–Completion (RTC) execution model is the simplest approach to parallelize
a workload. The packet is processed in an indivisible single step. The processing loop is
entirely replicated for every thread. As we mentioned in Section5.2, there is the same
amount of threads than the total number of streams. Figure5.7depicts the generic RTC
model of Snort–MT assuming a multicore multithreaded architecture. We can observe
all streams run the entire Snort processing loop assigned to a thread.

The RTC model doesn’t specialize cores by gathering threads with similar execution

5.5 Parallel Execution Models 83

footprint or data working set. In addition, unless the OS migrates a given thread from a
core to a remote one, the RTC model shows no thread migrations.

Core 1 Stream

Interconnection Network

Memory

Core n

Decoding Preprocessing Rule MatchingRead
Packet

Decoding Preprocessing Rule Matching
Read

Packet

Decoding Preprocessing Rule MatchingRead
Packet

Decoding Preprocessing Rule Matching
Read

Packet

Thread

Figure 5.7:Run–To–Completion Execution Model

The RTC model is suitable for short workloads with similar execution footprint
among packet processing, such as layer 2–3 applications. Such workloads show reduced
instruction footprints as well as reduced data working sets. Thus, increasing the number
of threads running in parallel per core improves the memory performance by enhancing
positive aliasing in both instruction and data caches. As those applications do not update
shared data structures, there is no interaction with threads executed in remote cores.

The stateful DPI applications show large execution footprint and large data working
set with significant variations among packets. For this reason, it is very likely to increase
negative affinity between threads while scaling the number of streams per core. In addi-
tion, there are dependencies between packets (e.g. flow state, global counters) that can
reduce the scalability of this methodology.

84 Principles of Parallel Stateful Processing

5.5.2 Software Pipeline

In the Software–Pipeline (SPL) execution model the packet processing loop comprises
a number of steps, called pipeline stages. Threads executing the same stage ideally are
assigned to streams in the same core. The SPL model aims to specialize the instruction
and data cache of cores by gathering threads from a given pipeline stage. The code
footprint and the data working set of a given pipeline stage should be similar for most of
the packets and should present minimum dependencies with other cores. The main goal
of SPL is to overcome the negative cache affinity among threads under the RTC model.
Thus, increasing the number of threads assigned per core preserves the improvement in
the memory performance due to positive aliasing among threads on both instruction and
data caches.

One of the main proposals in the literature that addresses the SPL model is the
methodology presented by Weng et al. [98]. The authors use an annotated directed
acyclic graph (ADAG) to represent clusters of instructions. Each node provides informa-
tion about data and control dependencies between instructions. The goal is to minimize
inter–cluster dependencies, while maximizing cluster size of cohesive nodes. However,
the algorithm that generates the graph doesn’t take into account any information about
dependencies with other packets, states, or even dependencies due to shared data struc-
tures.

There are two different approaches to fit an application into a SPL model. On one
hand, the compiler automatically generates the pipeline stages according to a given set
of heuristics [98]. This distribution is statically generated at compile time. On the other
hand, the application developer manually introduces the boundaries of each pipeline
stage and deals with the communication mechanism between stages.

We can observe in Figure5.8 a generic SPL model of Snort–MT assuming a mul-
ticore multithreaded architecture. We can observe three pipeline stages: decoding, pre-
processing, and rule–matching. Each core executes a set of threads related to a given
pipeline stage. If there are more cores than pipeline stages, multiple cores will be as-
signed to each particular stage. There is a mechanism to communicate from a particular
pipeline stage to the next one. The graph depicts ”pipeline buffers” as the ”latches” for
SPL communication between pipeline stages.

There is a variety of mechanisms to communicate pipeline stages: thread migration,
where the context of a thread is moved to a remote core (e.g.Flowstorm processor [53]);
special purpose register set file, where the stream accesses to the registers of a stream
placed in a remote core (e.g. Tilera64 [8], IXP family processors [34]); and memory

5.5 Parallel Execution Models 85

Core 1 Stream

Interconnection Network

Memory

Core n

Thread

Core i

Decoding Preprocessing Rule Matching

Pipeline
Buffer

Pipeline
Buffer

Read
Packet

Decoding Preprocessing Rule Matching
Read

Packet

Figure 5.8:Software Pipeline Execution Model

buffer queues, where pointers to the required data structures are moved to buffers in
memory (e.g.UltraSPARC T1&T2 [86, 26]). The selection of the proper mechanism is
based on the characteristics of both the application and the processor architecture.

The SPL model is suitable for workloads related to layer 3 network processing. That
is, applications that present larger workloads than layer 2 network processing [53] (i.e.
hundreds of instructions per packet) with no dependencies among packets processed
in parallel. In addition, the applications comprise well differentiated pipeline stages.
Threads of a given pipeline stage positively interacts in instruction and data cache. Al-
though there are shared data structures used by different packet processing, there is neg-
ligible contention on critical sections. Most of the times shared data structures are ac-
cessed to check a particular value, but they are occasionally updated.

However, stateful DPI applications present a variety of obstacles that leads to theo-
retically reduce the benefits of the SPL execution model. Stateful DPI present irregular
code footprint and significant variations in data working set among packets. Especially
the stateful applications, since the processing deals with a variety of states related to
the packet that can trash with the data required by other packets. In addition, other
shared data structures are used in different moments of the processing timeline. Thus,

86 Principles of Parallel Stateful Processing

the workload shows fuzzy pipeline stages and it is likely to arise dependencies among
remote pipeline stages. For these reasons, it is difficult to fit a stateful DPI application
into a SPL execution model. Especially the near future stateful DPI applications will
enhance this problem leading to significantly reduce the benefits of the SPL approach.

87

Chapter 6

MultiLayer Processing

This chapter presents the MultiLayer Processing (MLP). MLP is an execution model
for exploiting several levels of parallelism through the specialization of core sets. The
methodology categorizes different stateful data structures. Then, it differentiates sections
of code according to the related stateful data category, called processing layers. We
distribute the processing resources of a massive multithreaded architecture according
to the processing layers. The results show that MLP is able to increase the positive
aliasing and reduce negative aliasing between threads in both data and instruction cache.
In addition, MLP alleviates contention in critical sections in heavy parallel systems.
Throughout this chapter we analyze the benefits and limitations of this methodology and
compare MLP against other parallel execution methodologies.

6.1 Chapter Roadmap

This chapter is outlined as follows. Firstly, we describe some critical features of par-
allel stateful processing that lead to categorize the variety of stateful data categories.
Moreover, we introduce the ideal parallel stateful processing.

Section6.2.2describes the MultiLayer paradigm. We define the concept of process-
ing layer and explain how the MultiLayer Processing (MLP) works. Subsequently, Sec-
tion 6.2.3introduces the identification of processing layers and an example of execution.
In Section6.4we present the evaluation of the MLP and other execution models. Finally,

88 MultiLayer Processing

we conclude with the survey of some related work and presenting the conclussions of
this chapter.

6.2 MultiLayer Processing

RTC and SPL execution models present several issues that cannot optimally overcome.
On one hand, although RTC model is the simplest approach it creates negative aliasing
among threads assigned to streams of a given core. The whole packet processing is
executed in a single core leading to trashing data and instructions among streams. On
the other hand, SPL model differentiates packet processing pipeline stages and thus it
reduces negative aliasing rates. While this benefits are shown especially in low layer
network applications, stateful upper layer applications don’t present such improvement.
The reason behind this is that stateful data structures are spreaded over all the packet
processing. The pipeline stages are not capable of isolating well differentiated sections of
code. Moreover, there are large variations of flow paths in a particular pipeline stage due
to the computational complexity of upper layer packet processing. Limitations of RTC
and SPL are emphasized in massive multithreaded architectures that present reduced
caches per processing node for scalability reasons.

We identify the following key features of parallel stateful applications:

• The applications present sections of code related to different stateful data struc-
tures. They can be classified into a variety of categories called processing layers.

• The classification of processing layers offers multiple levels of parallelism.

• Shared data structures are processed several times during the packet processing
lifetime. Therefore, it is difficult to bind a given shared data structure to a pipeline
stage as the SPL execution model does.

Throughout this section we describe a proposal to take advantage of the character-
istics mentioned above in order to maximize throughput of parallel stateful processing.
First, we describe the basics of the ideal parallel stateful processing. Then, we define
the MultiLayer paradigm as well as the methodology to modify the code. Finally, we
describe a generic implementation of the mechanism and discuss a variety of tradeoffs.

6.2 MultiLayer Processing 89

6.2.1 The Ideal Parallel Stateful Processing

The main goal of a parallel stateful processing is to maximize the throughput system by
exploiting as many levels of parallelism as possible. To do this, threads must be assigned
to streams in such a way that dependencies among them are minimized, while resource
utilization provides the maximum performance of the system. In addition, the paradigm
must reduce conflicts in critical sections, reduce negative cache affinity among streams,
and maximize the reusability of data and instructions among different packets, such as
stateful data.

In Chapter4 we demonstrate that flow state data present very low temporal locality
under high traffic aggregation links. Thus, even large caches are not capable of keeping
a particular stateful data. However, not all the stateful data present the same temporal
locality.

6.2.2 MultiLayer Paradigm

6.2.2.1 Processing Layers

We define processing layer as a section of code related to the processing of a particular
stateful data. In the network area, there is a wide variety of stateful data categories as we
introduce in Section4.2.

We classify the stateful data into two groups: a) the main stateful categories (di-
rectly related to particular layers of the TCP/IP network stack), and b) the stateful sub–
categories (that differentiate multiple stateful data groups within a given main category).
On one hand, the classification denotes hierarchical categories. On the other hand, each
category can be processed in parallel with others as far as there are no dependencies
among them. Thus, processing layers related to those state categories expose multiple
levels of parallelism.

In the Snort–MT benchmark we identify three main categories: packet, transport,
and global layers. Then, within transport layer, we sub–categorize three additional lay-
ers: Flow, TCP Flow, and Fragmented Packet layers. In addition, global layers can be
also sub–categorized in two additional layers: Stats and Rule layers. Thus, according to
our manual classification of the Snort–MT code, there are six stateful data categories, as
shown in Figure6.1with the gray boxes. Some sub–categories may have dependencies
among other sub–categories within its parent category. In our scenario, TCP Flow and

90 MultiLayer Processing

Stats

Layer

Rule

Layer Flow

Layer

TCP
Flow

Layer

Fragmented

Packet

Layer

Packet
Layer

Global
Layer

Transport
Layer

Figure 6.1:Stateful data classification of Snort–MT

Fragmented Packet layers are connected to the Flow layer, since there are shared stateful
data structures.

In Section6.2.3we describe the approach to identify the processing layers (sections
of code) related to every stateful data category.

6.2.2.2 MultiLayer Processing

We define MultiLayer Processing (MLP) as a paradigm to exploit the parallelism of
workloads that comprise multiple processing layers. The basic idea is to exploit each
processing layer by assigning groups of streams (e.g. multistreamed cores) to a partic-
ular layer. In a multistreamed multicore architecture, the OS initializes the system by
assigning the cores to the processing layers [50].

Other techniques focused on exploiting multiple levels of parallelism [7, 57] iden-
tifies the maximum parallelism contained in the application through data and control
dependence analysis. However, MLP aims at classifying sections of code using the net-
work based knowledge of the stateful data classification.

Figure 6.2 shows the MLP execution model of Snort–MT. The system assigns a

6.2 MultiLayer Processing 91

packet to a particular available thread and this is assigned to a given stream. Once
the thread needs to move from the current processing layer to another, it migrates to
the proper core assigned to the required processing layer. Unlike the SPL model (see
Figure5.8), a given processing layer can be accessed several times during a single packet
processing. For example, the flow state is accessed at the beginning and the ending of a
packet processing.

Core 1 Stream

Interconnection Network

Memory

Core n

Thread

Core i

Packet
Layer

Migration
Buffer

Migration
Buffer

Read
Packet

Flow
Layer

Stats
Layer

Stats
Layer

Flow
Layer

Packet
Layer

Read
Packet

Figure 6.2:MLP execution model of Snort–MT

Threads migrate at the request of an explicit instruction introduced by the program-
mer. It is quite straightforward for the programmer to identify main stateful processing
layers. However, it is more difficult to optimally differentiate sub–categories of such lay-
ers. The programmer provides the total number of application’ processing layers. This
control information is included in the executable at compile time. Thus, the programmer
doesn’t need to know the underlying architecture. Once the application is launched, the
OS uses such information to initially assign cores to processing layers. A similar ap-
proach is employed for distributing multiple cores to use several virtual machines [50].
If there are more processing layers than cores, negative aliasing can be experienced as
we show in Section6.4.

92 MultiLayer Processing

6.2.3 Identification of Processing Layers

We use a recursive approach to identify processing layers. We analyze the parallel code
of Snort–MT and identify the main stateful data categories. That is, those categories that
can be directly related to different network layers according to the TCP/IP stack. Every
section of code related to a particular stateful data category denotes a processing layer.

Processing(Pkt)

{

...

TCP_Pkt_Counter++;

...

Flow = Flow_Search(Pkt_addresses);

if (Monitoring_Protocol(Pkt))

Update_User_Stats(Pkt, Flow);

else

Update_Flow_Stats(Flow);

...

if (Safe(Flow)) then

Action_Safe(Flow);

else

Action_Not_Safe(Flow);

...

}

Update_User_Stats(Pkt, Flow)

{

...

Pkts_User_Counter++;

...

User = User_Search(Flow);

...

if (Features(Flow) == Allowed_Flow(User))

Update_Flow_User(Flow, User);

else

Action_NotAllowed(Flow, User);

...

Update_Global_Counters(User,Flow);

...

Update_Application_Data(Flow);

...

}

Figure 6.3:Example of stateful packet processing code

We assign sections of code to each category. We also perform a graph representa-
tion of the analyzed code integrating the section code of a particular processing layer
into a single node. The next iteration aims at sub–categorizing different stateful data
layers within a given node. We distinguish three possible scenarios for a particular
node: there are multiple sub–categories with no data dependencies; there are multiple
sub–categories that present marginal data dependencies; and there are multiple sub–
categories that present significant data dependencies among them.

A conservative MLP approach doesn’t split a given node that presents significant
data dependencies among layer sub–categories. An eagger approach sub–classifies a
given layer until there are no additional sub–categories within a particular layer cate-
gory. The eagger implementation exposes larger variety of processing layers and then
exloits MLP more than a conservative approach. However, the eagger design can expe-
rience data dependencies among processing layers, whereas the conservative implemen-
tation show marginal dependencies among layers. Our MLP development of Snort–MT
assumes a conservative implementation.

Figure6.3 shows an example of source code of a stateful packet application. The

6.2 MultiLayer Processing 93

Processing(Pkt)

{

...

TCP_Pkt_Counter++;

...

Flow = Flow_Search(Pkt_addresses);

if (Monitoring_Protocol(Pkt)) then

Update_User_Stats(Pkt, Flow);

else

Update_Flow_Stats(Flow);

...

if (Safe(Flow)) then

Action_Safe(Flow);

else

Action_Not_Safe(Flow);

...

}

Layer

1

Layer

2

Layer

3

Layer

2

Layer

1

Layer

2

Layer 1: Packet Layer 2: Flow

Layer 3: User Layer 4: Global

Processing Layer

Order-of-Seniority
required

Migration

Layer

4

Layer

2

Layer

3

Layer

1

Layer

2

Layer

4

Layer

1

Layer

1

Figure 6.4:Intermediate representation of Function ”Processing”

example is based in one of the preprocessors of Snort (i.e. Stream4), but extended with
features of stateful applications that keeps other state categories. We remark that all the
sections of code that includes the management of stateful variables must be protected
by a synchronization mechanism (e.g. lock–unlock, transactions). The update of a given
stateful structure can lead to the modification of other stateful structures. The left column
indicates the section of code used to process a packet. Firstly, some global stats are
updated. Then, the flow related to the current packet is searched according to the packet
header. If this is a new flow, then the state is inserted and initializated in the global flow
data structure. Otherwise, the flow stats are updated. In this example, we also deal with
user stateful data (the right column of Figure6.3).

In Figure 6.4 we can observe the intermediate representation of the function
”Processing”. The left side of the figure depicts the relationship between the sections
of code and the processing layers, according to the stateful data classification of the
bottom–left of the figure. On the right side of the graph we can observe the migration
flow path (denoted by the arrows) between a processing layer and others. We highlight

94 MultiLayer Processing

two nodes in order to show specific sections of code that can require order–of–seniority
processing.

Processing(Pkt)

{

1 MIGRATE(Global_Layer);

TCP_Pkt_Counter++;

2 MIGRATE(Packet_Layer);

...

3 MIGRATE(Flow_Layer);

Flow = Flow_Search(Pkt_addresses);

if (Monitoring_Protocol(Pkt))

{

4 MIGRATE(User_Layer);

Update_User_Stats(Pkt, Flow);

}

else

Update_Flow_Stats(Flow);

5 MIGRATE(Packet_Layer);

...

6 MIGRATE(Flow_Layer);

if (Safe(Flow)) then

Action_Safe(Flow);

else

Action_Not_Safe(Flow);

7 MIGRATE(Packet_Layer);

...

}

Update_User_Stats(Pkt, Flow)

{

8 MIGRATE(Global_Layer);

Pkts_User_Counter++;

9 MIGRATE(User_Layer);

...

10 MIGRATE(Flows_User_Layer);

User = User_Search(Flow);

if(Features(Flow) == Allowed_Flow(User))

Update_Flow_User(Flow, User);

else

Action_NotAllowed(Flow, User);

11 MIGRATE(Global_Layer);

Update_Global_Counters(User,Flow);

12 MIGRATE(User_Layer);

...

13 MIGRATE(Application_Layer);

Update_Application_Data(Flow);

14 MIGRATE(User_Layer);

...

}

Figure 6.5:Example of stateful MLP code

In this example and according to our identification of processing layers, we differen-
tiate 6 processing layers: packet, flow, user, flowsuser, application, and global. There
are sections of code of a particular processing layer spreaded over multiple locations
(e.g. flow layer). Moreover, we can observe nested processing layers (e.g. flow, user,
and global layers in the first line of ”UpdateUserStats”). In Figure6.5 we present
the MLP implementation of the previous code. We insert a migration instruction (with
the ID of migration) for every transition to a new processing layer. In Figure6.6 we
present the execution timeline of the ”Processing” function. The labels on the top of the
picture denotes the processing layers. The dashed lines and number labels indicate the
migrations.

6.2 MultiLayer Processing 95

Packet
Layer

T
im

e
Flow
Layer

User
Layer

Global
Layer

2

3

4

5

6

7

1

Figure 6.6:Migrations in the ”Processing” Function

6.2.4 Load Balancing

Load balancing is the distribution of the workload and hardware resources in order to
maximize the throughput of the system. This issue is sensitive to several factors related
to: dependencies among available resources and network processing requirements.

Streams can present dependencies among them due to shared software resources (e.g.
shared data structure) and shared hardware resources (e.g. shared cache). Depending
on the sharing degree among streams, the load–balancing mechanism must use different
policies to provide quality of service. Otherwise, the system can experience performance
degradation.

As an example of this will be when multiple streams are assigned to a particular
layer in which most of the time only a single stream can process useful instructions
due to conflicts in critical sections. The other streams affect the stream that executes
useful instructions if they share hardware resources. In this case the system presents
performance slowdown compared to a system that presents reduced number of streams
for that particular layer. Some of those negative effects will be discussed in Section6.4.

Regarding the network processing requirements, the performance requirements can

96 MultiLayer Processing

vary when network traffic behavior changes. There are many factors that may generate
important variations in the network behavior (e.g. number of active users, applications
that handle connetions, time of the day). As we assume that the OS manages the distribu-
tion of cores across processing layers, the OS is responsible of collecting and monitoring
statistics about processing requirements. Nevertheless, the study of this load balancing
issue is out of scope of this thesis.

In addition, one of the weakness of MLP is the lack of a mapping algorithm to
distribute workload among multiple cores assigned to a particular layer. Our approach
assumes an even distribution of cores to processing layers and threads to cores. We
don’t use any mechanism to distribute threads according to a value of the packet (e.g.
all packets of a given flow ID are mapped in the same core). Other authors distribute
the workload according to values of the packet contents (e.g. flow ID). For example,
the threads that process packets of a given flow are mapped to a particular core. This
approach leads to unbalanced workload distributions.

6.2.5 Processor Architecture

6.2.5.1 Baseline Architecture

Our baseline architecture is based on a generic massive multithreaded architecture as de-
picted in Figure6.7(a). The processor comprises a number of processing nodes (Cores)
communicated through an interconnection network. Each core includes a processing en-
gine, a local cache system, and a migration unit. A given processing engine contains
from 1 to several hardware contexts, called streams. Each core is single–issue in–order
five stage pipelined: fetch, decode, execution, memory, write back.

The memory hierarchy design depends on the purpose of the processor. Thus, in
order to map our multiple processing layers, it is necessary to have a memory hierarchy
as shown in Figure6.7(b). The hierarchical design increases the benefits of MLP, since
processing layers that present dependencies can be assigned to closer levels within the
architectural hierarchy.

6.2.5.2 Summary of Commercial Processors for Packet Processing

Some current commercial processors present similar moves to exploit massive multi-
threaded architectures with different characteristics:

6.2 MultiLayer Processing 97

Memory

Global Shared $L2

Stream

Memory
Interconnection

Network

Core 1

$IL1 $DL1

Core n

$IL1 $DL1 Messaging
Interconnection

Network

Migration

Unit

Migration

Unit

(a) Baseline Processor Block Diagram

Memory

Shared $L2

$IL1 $DL1
Migration

Unit
$IL1 $DL1

Migration

Unit
$IL1 $DL1

Migration

Unit
$IL1 $DL1

Migration

Unit

Migration

Unit
Shared $L2

Migration

Unit

Global Shared $Ln

(b) Example of an Ideal Processor for MLP

Figure 6.7:Baseline Processor Block Diagram

• Consentry Networks [18]: comprises up to 128 cores in a single processor. A
similar predecesor processor (Kayamba [37]) contains 256 streams distributed

98 MultiLayer Processing

across 8 cores. Another massive multithreaded architecture also focused on net-
work security is the paper–processor published by Melvin et al. [53]. It includes 8
cores with 32 streams each (a total of 256 streams) simultaneously executed. Each
core also integrates an instruction cache, but there is no data cache in the system.
Streams access directly to a local or to an external memory. The interconnection
network is based on a crossbar that connects all cores. The paper–processor pro-
vides support for thread migration and for order–of–seniority packet processing.

• Cavium Networks [12]: the Octeon processor integrates up to 16 cores. Each
core is dual–issue superscalar with instruction and data caches. Cores are commu-
nicated through a synchronization bus and another bus to access to a global shared
L2 cache. There are several specialized engines for packet processing (e.g.regular
expression engines).

• Sun Microsystems [86, 26]: the UltraSPARC T1&T2 processors contain up to 8
cores with 4 and 8 streams (a.k.a. strands) per core, respectively. In fact, T2 in-
tegrates an additional level of shared resources within each core by separating the
streams into two groups of 4 strands each. Strands of a given core are executed in a
vertical multithreaded approach (i.e. similar than fine–grain multithreading). The
cores comprise reduced instruction and data caches. A crossbar connects the cores
to a global shared L2 cache. There are no migration on demand capabilities. That
is, there is no special migrate instruction, although the streams are moved by the
Operating System for load balancing and scheduling purposes. Nevertheless, ap-
plications can be distributed across cores communicated by software mechanisms
in memory (e.g.software buffer).

• Raza Microelectronics [67]: the XLR processor presents a multicore multi-
threaded architecture that integrates up to 32 streams distributed in 8 cores. Each
includes reduced instruction and data caches. A ring network communicates cores
and caches. Another interconnection network (fast messaging network) provides
communication between cores and I/O elements. In addition, the processor also
contains a number of accelerator engines for packet processing.

• Tilera [8]: the TILE64 processor comprises 64 3–way VLIW cores (a.k.a. tiles)
in a single chip interconnected through a multichannel 2D–mesh. The tiles are
arranged as a grid of 8x8 tiles. Each tile contains two levels of cache. The aggre-
gation of each L2 cache modul provides a virtual shared L3 cache. The processor
provides capabilities to distribute data processing across multiple tiles by using a
register–to–register communication protocol.

6.3 Methodology 99

6.3 Methodology

6.3.1 Traffic Traces

In order to preserve representative features of the traffic, we select a set of public bidirec-
tional traffic traces from the MRA Lab of 622Mbps in the NLANR site [59]. We combine
them through the traffic aggregation mechanism proposed in Section3.4.1. The resulting
traffic trace presents nearly 1Gbps with 20K active flows on average. Since the stateful
applications deal only with the flow state, the provided aggregation level is enough to
represent the low locality of flow states of larger network links.

6.3.2 Workload

We base our studies on different configurations of the Snort–MT (see Section5.2 for
further details) as a representative range of stateful DPI applications. We select and then
parallelize a number of stateful preprocessors that show different behavior:

• perfmonitor: it collects a wide range of statistics from packet processing intended
for network administrators.

• stream4: provides TCP stream reassembly and stateful analysis capabilities to
track simultaneous TCP streams and to ignore stateless attacks.

• frag3: is an IP defragmentation module that applies target-based host modeling
anti–evasion techniques for attacks based on information about how an individual
target IP stack operates.

Each workload presents a different configuration of enabled preprocessors. Table6.1
indicates the enabled preprocessors according to the workload identificator. Moreover,
in all configurations we employ the default configuration of rule set for rule–matching,
that includes a total of 3291 rules.

The right column denotes the identification number of the processing layers available
for each configuration of Snort–MT. We identify a total of six processing layers with the
following IDs:

1. Packet: the packet contents and internal data related to the packet itself.

100 MultiLayer Processing

Enabled Preprocessors Workload ID Processing Layer IDs

Perfmonitor Mix-1 1, 2, 5, 6
Stream4 Mix-2 1, 2, 3, 6
Frag3 Mix-3 1, 2, 4, 6

Perfmonitor - Stream4 Mix-12 1, 2, 3, 5, 6
Perfmonitor - Frag3 Mix-13 1, 2, 4, 5, 6
Stream4 - Frag3 Mix-23 1, 2, 3, 4, 6

Perfmonitor - Stream4 - Frag3 Mix-123 1, 2, 3, 4, 5, 6

Table 6.1:Workload Mixes

2. Flows: shared information among active network flows.

3. TCP Flows: state of the active TCP flows.

4. Fragmented Packets: state and collected contents of fragmented packets.

5. Stats: global shared statistics about the performance and behavior of the network.

6. Rules: the rule–set database.

We apply a conservative implementation for both MLP and SPL implementation.
Thus, the studied MLP code splits the code into six processing layers, whereas the
SPL design presents three pipeline stages: decoding, preprocessing, and rule–matching.
Further studies on finer–grain implementations are proposed as future work (see Sec-
tion 7.2.3).

Before collecting statistics, there is a warming stage that presents different number
of packets according to the processor architecture configuration. The more active threads
distributed across several cores the more packets are processed in the warming stage. On
average, we use 5K packets for warming stage per core. We use the same procedure to
take measurements in the simulation stage. We employ 30K packets on average per core.

6.3.3 Simulator

We use the SESC simulator [69], a cycle-accurate, execution driven simulator that pro-
vides support to simulate multicore multithreaded architectures while running multi-
threaded workloads. We modify the simulator to support different thread mapping ap-
proaches. Migration support have been also implemented in the simulator.

6.3 Methodology 101

Table6.2 shows the processor configuration. We base our architecture in the prop-
erties discussed in Section6.2.5.1. We have a number of processing nodes linked to an
interconnection network. Each node contains a single issue in–order, 5 stage pipelined
core, private instruction and data cache, and the migration logic.

Each core has a configurable number of streams. Register set file is replicated per
stream. Pipelined functional units are shared among streams. We employ an static
branch predictor that achieves nearly 98% of hit rate according to our studies. Branch
miss prediction has 3 cycles of penalty.

Processor Parameters
Cores 1-48
Streams per core 1-8
Fetch Policy I-COUNT
Issue-width single-issue
Instruction Buffer 8-entries per stream

IL1 cache 8KB, 4-way, LRU, 32B line
DL1 cache 8KB, 4-way, LRU, 16B line
L2 cache 3MB, 16-way, 12banks, LRU, 64B line
Store Buffer 8-entries per stream

IL1 cache 1 cycle
DL1 cache 1 cycle
Global L2 cache 50 cycles
Main memory 250 cycles

Coherency model Directory based
Consistency model RMO

Migration 65 cycles

Table 6.2:Simulation Parameters

Each core has private L1 instruction and write–through data caches. Caches are kept
coherent by traking directories in the L2 cache. The write–back non–blocking L2 cache
is shared among all cores. The total L2 access latency integrates the latency of crossing
the memory interconnection network (i.e. cores to shared cache) and the cache access.
The simulator follows the specification of Relaxed Memory Order (RMO) consistency
model. We assume a latency of 25 cycles as a representative latency of interconnection
network for large scale architectures (e.g.Tilera64 [8]).

102 MultiLayer Processing

In order to simulate the MLP model we modified the simulator by integrating mi-
gration support. We introduce a thread migration instruction with similar support to the
paper processor presented by Melvin et al. [53]. The operand of the instruction specifies
the destination processing layer. During migration, a single register access per cycle is
processed by the stream and sent to the messaging interconnection network. As net-
work processing doesn’t require floating point processing, we assume that a migration
only transfers the integer architectural registers, unlike other analysis that transfer both
integer and floating point register set files [19]. Thus, the migration transfer presents a
latency of 65 cycles: 25 for the initiation of the transfer and a cycle thereafter to trans-
mit the architectural registers and additional control information. If there are no idle
streams in the destination core, the migrated thread waits in a memory queue until it can
be assigned to a stream.

6.4 Evaluation

We first discuss the positive and negative aliasing among threads in both instruction and
data caches. Then, we analyze the impact on lock contention through the analysis of
conflict rates in critical sections according to the execution model. Finally, we study the
performance scalability.

6.4.1 Affinity among Streams

The performance of multithreaded architectures is sensitive to the affinity among
streams. Thus, when a thread is assigned to a given stream can produce positive aliasing
(sharing instructions and data in the local cache of a given core) or negative aliasing
(trashing instructions and/or data in the local cache of a given core).

6.4.1.1 Instruction Cache

Figure6.8 depicts instruction cache miss rates (Y–axis) in percentages of misses of the
total cache accesses per core. Figures6.8(a), (c), and (e) show miss rates as the number
of enabled cores (X–axis) increases in the system. The experiments graphed in those
figures assume 4 streams running in each core. Large configurations (more than 6 cores)
show flat rates in all models. The RTC shows flat higher miss rate regardless the system

6.4 Evaluation 103

scale, due to the computational complexity of stateful processing. In contrast, SPL and
MLP shows higher miss rates in reduced configurations, since there are different pipeline
stages or layers mapped in a particular core. SPL and MLP also needs different amount
of cores to show flatten miss rates due to they present different requirements to map
one–to–one each part of the packet processing (SPL has three pipeline stages and MLP
from four to six processing layers).

Figures6.8(b), (d), and (f) graph miss rates for stream scaling configurations (X–
axis). We assume a system with 12 cores. Unlike core scaling, we slightly differentiate
slopes among execution models. RTC shows higher increment since streams introduce
negative aliasing due to different execution footprints of streams. SPL reduces such neg-
ative aliasing because threads running in the same core belongs to the same pipeline
stage. MLP shows marginal difference with thread scaling experiments since the nega-
tive aliasing is reduced even more. Overall, MLP works better than the other execution
models, since there are less variations in code footprint among streams within a given
core.

We can observe in Figure6.9(a) the average miss rates of all execution models. The
X–axis denotes the number of streams per core and the number of cores in the system.
RTC ranges from 7.4% to 8.4% of miss rate. SPL ranges from 5.7% to 6.3% of miss rate
with 3 or more cores. Finally, MLP ranges from 4.5% to 4.9% of miss rate with more
than 6 cores. Figure6.9(b) shows the reduction of miss rates normalized to the I$ miss
rate shown by the RTC model. SPL presents about 25% less miss rate than RTC, while
MLP show 40% less than RTC.

We would like to remark that MLP shows the best miss rates in an enviroment that
can be better tunned for multilevel processing. That is, in applications with optimized
implementations for MLP, the instruction cache miss rate can be significantly reduced.

6.4.1.2 Data Cache

In this section we analyze the data cache miss rate. Unlike the studies presented in
Chapter4, we focus the study to the private L1 data cache instead of L2$. The reason
behind this is that the main difference among the execution models can be found in
the private L1$. The high traffic aggregation keeps low temporal locality of stateful
data and our experiments point out that the L2$ show no differences in the stateful data
management across the evaluated execution models.

In Figure 6.10 we can observe data cache miss rates (Y–axis) in percentages of

104 MultiLayer Processing

4.0

5.0

6.0

7.0

8.0

9.0

1 3 6 12 24 48

Architecture (#Cores with 4 Streams each)

I$
 M

is
s

R
at

e
(%

)

(a) RTC (core scaling)

4.0

5.0

6.0

7.0

8.0

9.0

1 2 4 8
Architecture (#Streams per core [12 cores total])

I$
 M

is
s

R
at

e
(%

)

(b) RTC (stream scaling)

4.0

5.0

6.0

7.0

8.0

9.0

1 3 6 12 24 48
Architecture (#Cores with 4 Streams each)

I$
 M

is
s

R
at

e
(%

)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(c) SPL (core scaling)

4.0

5.0

6.0

7.0

8.0

9.0

1 2 4 8
Architecture (#Streams per core [12 cores total])

I$
 M

is
s

R
at

e
(%

)

Mix-1 Mix-2 Mix-3

Mix-12 Mix-13 Mix-23

Mix-123

(d) SPL (stream scaling)

4.0

5.0

6.0

7.0

8.0

9.0

1 3 6 12 24 48

Architecture (#Cores with 4 Streams each)

I$
 M

is
s

R
at

e
(%

)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(e) MLP (core scaling)

4.0

5.0

6.0

7.0

8.0

9.0

1 2 4 8
Architecture (#Streams per core [12 cores total])

I$
 M

is
s

R
at

e
(%

)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(f) MLP (stream scaling)

Figure 6.8:I$ Miss Rate with Core and Stream Scaling

misses of the total data cache accesses per core. Figures6.10(a), (c), and (e) show

6.4 Evaluation 105

4.0

4.4

4.8

5.2

5.6

6.0

6.4

6.8

7.2

7.6

8.0

8.4

8.8

9.2

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48
Architecture (#Streams / #Cores)

I$
 M

is
s

R
at

e
(%

)

RTC SPL MLP

(a) Avg. I$ Miss Rate

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48
Architecture (#Streams / #Cores)

R
ed

u
ct

io
n

 o
f

I$
 M

is
s

R
at

e
(N

o
rm

al
iz

ed
 t

o
 R

T
C

)

SPL MLP

(b) Normalized Reduction of avg. I$ Miss Rate

Figure 6.9:I$ Miss Rate Comparison

miss rates as the number of enabled cores (X–axis) increases in the system. The exper-
iments graphed in those figures assume 4 streams running in each core. All execution
models show higher miss rates with larger configurations, although RTC seems to show
more than linear increments. SPL and MLP are very similar, especially for large con-
figurations, since the same data structures are used in multiple cores assigned to a given
pipeline stage or processing layer. As MLP does not apply any data mapping algorithm
to select cores within the same level, multiple cores are candidate to be selected and thus

106 MultiLayer Processing

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

1 3 6 12 24 48

Architecture (#Cores with 4 Streams each)

D
$

M
is

s
R

at
e

(%
)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(a) RTC (core scaling)

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

1 2 4 8
Architecture (#Streams per core [12 cores total])

D
$

M
is

s
R

at
e

(%
)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(b) RTC (stream scaling)

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

1 3 6 12 24 48
Architecture (#Cores with 4 Streams each)

D
$

M
is

s
R

at
e

(%
)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(c) SPL (core scaling)

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

1 2 4 8
Architecture (#Streams per core [12 cores total])

D
$

M
is

s
R

at
e

(%
)

Mix-1 Mix-2 Mix-3

Mix-12 Mix-13 Mix-23
Mix-123

(d) SPL (stream scaling)

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

1 3 6 12 24 48

Architecture (#Cores with 4 Streams each)

D
$

M
is

s
R

at
e

(%
)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(e) MLP (core scaling)

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

1 2 4 8

Architecture (#Streams per core [12 cores total])

D
$

M
is

s
R

at
e

(%
)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(f) MLP (stream scaling)

Figure 6.10:D$ Miss Rate with Core and Stream Scaling

negative aliasing cannot be avoided.

On the other hand, Figures6.10(b), (d), and (f) present miss rates for stream scaling

6.4 Evaluation 107

1

2

3

4

5

6

7

8

9

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48
Architecture (#Streams / #Cores)

D
$

M
is

s
R

at
e

(%
)

RTC SPL MLP

(a) Avg. D$ Miss Rate

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48
Architecture (#Streams / #Cores)

R
ed

u
ct

io
n

 o
f

D
$

M
is

s
R

at
e

(N
o

rm
al

iz
ed

 t
o

 R
T

C
)

SPL MLP

(b) Normalized Reduction of avg. D$ Miss Rate

Figure 6.11:D$ Miss Rate Comparison

configurations (X–axis). We assume a system with 12 cores. RTC shows slightly sharpen
slope than the others. That is, multiple threads introduce negative aliasing in cache. MLP
shows slightly more flatten results than SPL, since MLP takes advantage of clustering
data of a given processing level. However, the positive aliasing improvement of MLP
against SPL is not as much as in instruction cache. As we do not apply any distribution
policy to allocate data among cores of a given level, MLP shows similar results than
SPL. In fact, such policies would have high cost, since data allocation depends on values

108 MultiLayer Processing

of the packet payload.

Figure6.11(a) shows the average miss rates of all execution models. The X–axis
denotes the number of streams per core and the number of cores in the system. All
execution models show similar results with reduced system configurations of 1, 3, and 6
cores. The differences among models arise with larger configurations. A system with 48
cores shows DL1$ miss rates using RTC model that ranges from about 5.2% to nearly
8.5%. Instead, SPL ranges from 5.2% to 5.8% and MLP ranges from 4.6% to 5.2%.
Figure6.11(b) clarifies the differences among models by showing the reduction of miss
rates normalized to D$ miss rate shown by the RTC model. SPL shows higher miss
rate than RTC with single streamed cores due to data sharing among cores assigned to
a particular pipeline stage. Instead MLP reduces this negative effect. Moreover, MLP
reduces nearly 40% the miss rate of RTC compared to 33% of SPL.

Overall, the improvement of MLP is slightly lower than the I$ miss rates due to the
sharing of data among cores assigned to the same processing layer.

6.4.2 Lock Contention

During the implementation of Snort–MT we analyze that locks are statically assigned to
a particular processing layer. That is, a set of locks usually protects the critical sections
of a particular state category. For example, the lock used to protect the hash table of flow
states is not used to also protect the global counter of processed packets. Figure6.12
graphs an example of lock contention in the RTC, SPL, and MLP model. The Y–axis
denotes the timeline, while ”Lock x” and ”Unlock x” indicates the lock used in each
critical section. The top of each graph, indicates the core IDs and the workload assigned
to each core. The RTC model allows that any stream of any core can acquire a particular
lock and cause a conflict. The SPL execution model reduce the number of streams
that can acquire a particular lock only if the lock is acquired in a single pipeline stage.
However, a given lock can be used in multiple pipeline stages. Finally, the MLP model
significantly reduces the streams that contend for a given lock, since the model provides
a queue–like approach to acquire the lock. The reason behind this is that the locks are
related to processing layers. However, this benefit is reduced with the increment of cores
assigned to a given processing layer.

Figures6.13(a), (b), and (c) presents the probability in percentage (Y–axis) that two
threads cause a lock conflict (i.e. a thread requests a locked lock to access a given crit-
ical section) for RTC, SPL, and MLP architectures, respectively. All workloads present

6.4 Evaluation 109

Core1
pkt1

T
im

e

Core2
pkt2

Core3
pkt3

Lock A

…

Unlock A

Lock B

…

Unlock B

Lock A

…

Unlock A

Lock B

…

Unlock B

Lock A

…

Unlock A

Lock B

…

Unlock B

(a) RTC

Core1
Stage1

T
im

e

Core2
Stage2

Core3
Stage3

Lock A

…

Unlock A
Lock B

…

Unlock B

pkt1

pkt2

pkt3

Lock A

…

Unlock A

Lock A

…

Unlock A

pkt1

pkt2

Lock B

…

Unlock B

Lock A

…

Unlock A

pkt1

(b) SPL

Core1
Layer1

T
im

e

Core2
Layer2

Core3
Layer3

Lock A

…

Unlock A
Lock B

…

Unlock B

pkt1

pkt2

pkt1

Lock A

…

Unlock A

Lock A

…

Unlock A

pkt1

pkt2

Lock C

…

Unlock C

(c) MLP

Figure 6.12:Example of Lock Contention

similar percentages regardless the architecture configuration. For reduced number of
cores we can observe significant impact when increasing the number of streams per
core. However, the incremental impact of stream scaling per core is reduced with larger
configurations. The average results shown in Figure6.13(d) manifest that the largest
differences between execution models are with architecture configurations of 3, 6, and
12 cores. Larger configurations SPL and MLP presents lower slope than the RTC model.

We can observe in Figure6.14the reduction of lock conflict normalized to RTC rates
(Y–axis) using SPL and MLP. A system with 3 cores shows large conflict reduction using
SPL than MLP, since MLP doesn’t properly map the cores to processing layers because
there are more processing layers than cores. Thus, the benefits of core specialization are
reduced. However, with larger architecture configurations MLP works better than SPL,
because the model reduced the number of threads contending for a given lock. The most
significant difference, especially with RTC model, is shown by the configuration with 6

110 MultiLayer Processing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48

Architecture (#Streams / #Cores)

L
o

ck
 C

o
n

fl
ic

t
(%

)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(a) RTC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48

Architecture (#Streams / #Cores)
L

o
ck

 C
o

n
fl

ic
t

(%
)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(b) SPL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48

Architecture (#Streams / #Cores)

L
o

ck
 C

o
n

fl
ic

t
(%

)

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(c) MLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48

Architecture (#Streams / #Cores)

L
o

ck
 C

o
n

fl
ic

t
(%

)

RTC SPL MLP

(d) Averaged Rates

Figure 6.13:Lock Conflict Rates

cores and 1 stream per core, because cores are mapped one–to–one to processing layers.
With this configuration MLP presents about 0.67 lower lock conflict than the RTC model.
With larger configurations MLP reduces about 10% the lock conflict probability of RTC
model and about 5% of the SPL model.

6.4.3 Performance Scalability

To better understand the analysis of performance scalability, in Figure6.15we compare
the occupancy time per core (Y–axis). We define occupancy time as the time that a
given core is executing at least one stream, although it is waiting to acquire a lock of a
particular critical section. The core is not active when there are no threads assigned to

6.4 Evaluation 111

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48

Architecture (#Streams / #Cores)

R
ed

u
ct

io
n

 o
f

L
o

ck
 C

o
n

fl
ic

t
(N

o
rm

al
iz

ed
 t

o
 R

T
C

)
SPL MLP

Figure 6.14:Normalized Reduction of Lock Conflict

the core (i.e. all threads migrate to remote cores). We show average metrics for Mix–
123 workload, because it maximizes the exploitation of all processing levels and pipeline
stages. The X–axis indicates the system configuration with the number of streams per
core, assuming a system with 12 cores. RTC is not shown in the graph since all cores
are active 100% of the time.

In the top graph, we can observe that SPL presents nearly 100% of core utilization,
due to preprocessing stage (bars with horizontal lines). This stage comprises most of
the packet processing time. Rule matching stage (the solid bars) increases occupancy
rate from 37% with single stream cores to 67% with 8 streams per core. In contrast,
the cores assigned to decoding stage show the minimum core utilization of all pipelined
processing ranging from 24% to 39%. As a consequence of high processing contention
localized in preprocessing stage, the remaining pipeline stages show reduced occupancy
rates.

In Figure6.15(b) we can observe that MLP presents wide variety of active time dis-
tribution. Layer ”L4 (Fragmented Packets)” shows the lowest core utilization with over
10% in all configurations. Instead, the layer ”L5 (Stats)” presents the highest occupancy
rate in all cases with about 98% with multithreaded cores. In fact, all processing layers
increase core utilization while the number of streams per core increases, except for the
processing layer ”L1 (Packet)” that keeps about 45% of active time.

Nevertheless, stream occupancy has to be analyzed in order to break down the core

112 MultiLayer Processing

0

20

40

60

80

100

120

1 2 4 8

Streams per Core (Architecture with 12 Cores)

T
im

e
(%

)

Decoding Preprocessing Rule Matching

(a) SPL model

0

20

40

60

80

100

120

1 2 4 8

Streams per Core (Architecture with 12 Cores)

T
im

e
(%

)

L1 (Packet) L2 (Flows) L3 (TCP Flows)

L4 (Fragm.Pkts) L5 (Stats) L6 (Rules)

(b) MLP model

Figure 6.15:Average Occupancy Time per Core

utilization. Table6.3 presents stream occupancy time rates normalized to the core uti-
lization previously discussed. The most left column denotes the core configuration in
terms of streams per core. For each configuration we show the percentage of the time
a number of streams (indicated by the second column) are active. The total sum of all
rates for a given configuration and a particular column must be 1. For example, the dual
stream cores assigned to ”L1 Layer” of MLP execution model use 40% of the time only
one thread. The two threads are active the remaining 60% of the time.

6.4 Evaluation 113

Stream Occupancy Rate

MLP SPL RTC
Config. #Strs. L-1 L-2 L-3 L-4 L-5 L-6 Decod. Preproc. Rule Mat. All

1Str. 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2Strs.
1 0.40 0.40 0.73 1.00 0.03 0.39 0.86 0.00 0.67 0.00
2 0.60 0.60 0.27 0.00 0.97 0.61 0.14 1.00 0.33 1.00

4Strs.

1 0.37 0.47 0.91 1.00 0.22 0.70 0.65 0.00 0.65 0.00
2 0.36 0.38 0.07 0.00 0.39 0.26 0.25 0.00 0.25 0.00
3 0.18 0.14 0.01 0.00 0.31 0.04 0.08 0.00 0.07 0.00
4 0.09 0.01 0.01 0.00 0.08 0.00 0.01 1.00 0.03 1.00

8Strs.

1 0.28 0.17 0.63 1.00 0.07 0.37 0.54 0.00 0.55 0.00
2 0.17 0.20 0.20 0.00 0.10 0.29 0.24 0.00 0.27 0.00
3 0.15 0.19 0.09 0.00 0.14 0.18 0.12 0.00 0.13 0.00
4 0.12 0.17 0.03 0.00 0.18 0.10 0.05 0.00 0.04 0.00
5 0.08 0.12 0.02 0.00 0.18 0.06 0.02 0.00 0.01 0.00
6 0.08 0.08 0.01 0.00 0.14 0.00 0.01 0.02 0.00 0.00
7 0.05 0.04 0.01 0.00 0.09 0.00 0.00 0.03 0.00 0.00
8 0.06 0.03 0.02 0.00 0.10 0.00 0.00 0.94 0.00 1.00

Table 6.3:Distribution of stream occupancy per core

As RTC doesn’t migrate threads, all streams are always active regardless the system
configuration. For dual stream cores, we can see that SPL shows from 67% to 86% of
the time running a single thread in both decoding and rule matching stages. Even scaling
the number of streams per core in both stages, 90% of the time only are active two and
three streams. Instead, preprocessing stage always requires full utilization of streams
regardless the configuration. Thus, the system doesn’t take advantage of large stream
configurations and throughput will not be significantly increased for those cores.

The MLP model shows about 60% of the time layers ”L1”, ”L2”, and ”L6” exploit
utilization of two threads in dual threaded cores. These layers increase stream utilization
in 4–stream cores and 8–stream cores. Nevertheless, in the largest configuration they
only use two streams over 50% of the time on average. In addition, ”L3” requires fewer
streams, since it uses one stream nearly 75% of the time, regardless the core configu-
ration. With largest configurations it shows similar occupancy than decoding and rule
matching SPL stages, due to the coarse–grain implementation of MLP. ”L4” presents
very lightweight requirements, because fragmentation packet shows reduced processing
workload due to the properties of our network traffic. Finally, ”L5” is the processing
layer that exploits occupancy of larger configurations.

Figure6.16depicts the performance scalability for RTC, SPL, and MLP processing

114 MultiLayer Processing

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

1 3 6 12 24 48
Architecture (#Cores with 4 Streams each)

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(a) RTC (core scaling)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 4 8
Architecture (#Streams per core [12 cores total])

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(b) RTC (stream scaling)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

1 3 6 12 24 48

Architecture (#Cores with 4 Streams each)

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Mix-1 Mix-2 Mix-3

Mix-12 Mix-13 Mix-23
Mix-123

(c) SPL (core scaling)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 4 8
Architecture (#Streams per core [12 cores total])

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(d) SPL (stream scaling)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

1 3 6 12 24 48
Architecture (#Cores with 4 Streams each)

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(e) MLP (core scaling)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 4 8
Architecture (#Streams per core [12 cores total])

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Mix-1 Mix-2 Mix-3
Mix-12 Mix-13 Mix-23
Mix-123

(f) MLP (stream scaling)

Figure 6.16:Performance scalability

approaches. The results are normalized to the smallest configuration in both core and
stream scaling graphs. Figure6.16(a) graphs RTC performance scalability with core

6.4 Evaluation 115

scaling. We can observe that systems with 3 cores provide nearly 2x of speedup com-
pared to a single core system. However, scalability is flatten for larger systems showing
4x of speedup for systems with 48 cores.

In contrast, SPL and MLP present slightly lower speedup for systems with 3 cores,
but sharpen scalabilities for larger configurations in Figures6.16(c) and (e), respectively.
In fact, SPL shows almost 6x of speedup with 48 cores system, while MLP presents over
10x of speedup.

Performance scalability with stream scaling can be seen in Figures6.16(b),(d), and
(f) for RTC, SPL, and MLP, respectively. RTC shows slowdown as we increase the
number of streams per core up to 20% with a maximum of 8 streams, due to instruction
and data cache trashing. On the contrary, SPL and MLP show similar speedup regardless
stream scaling. In fact, we observe speedup of 1.4x with 2 streams for both processing
approaches. But the non–scaling performance is due to the occupancy rates for large
configurations previously discussed (i.e. conflicts on critical sections and distribution of
workload).

Figure6.17(a) and (b) graphs the average system throughput in terms of total IPC and
thousands of packets per second (KPPS), respectively. We can observe in Figure6.17(a)
that RTC shows similar behavior and performance than SPL and MLP for reduced ar-
chitectures. As configuration increases SPL and MLP present higher performance than
RTC. In fact, the MLP model shows the highest performance in systems with more than
6 cores. We go from IPC of 0.18 in a single stream single core system to maximum IPCs
of 2.42, 1.6, and 1.05 in the best performance system configuration of MLP, SPL, and
RTC models, respectively.

Figure6.17(b) translates total IPC to KPPS metric. While single stream single core
architecture is able to provide nearly 21 KPPS, largest system configurations show about
281 KPPS, 188 KPPS, and 122 KPPS for MLP, SPL, and RTC models, respectively. We
can see that MLP systems is the only model able to provide more than 200 KPPS that is
representative requirements for 1Gbps networks.

116 MultiLayer Processing

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48
Architecture (#Streams / #Cores)

G
lo

b
al

 IP
C

RTC SPL MLP

(a) Avg. IPC scalability

0

50

100

150

200

250

300

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 3 6 12 24 48
Architecture (#Streams / #Cores)

(1
00

0
P

ac
ke

ts
)

/ S
ec

RTC SPL MLP

(b) Avg. Packets per Second scalability

Figure 6.17:Throughput scalability

6.5 Related Work

6.5.0.1 Parallel Network Processing

Wolf et al. [97] analyzed network workloads according to resource utilization. They em-
ployed annotated directed acyclic graphs (ADAG) in order to capture runtime properties,

6.5 Related Work 117

such as number of instructions, memory reads and writes, and dependencies between in-
structions and clusters of instructions. ADAG should allow to identify parallelizable
application parts. Several methodologies have been proposed in order to map workloads
on multicore network processors according to ADAGs profiling results [98] or other
profiling analysis [24, 101, 48, 65, 83]. However, current proposals are focused on layer
2-3 applications in order to maximize resource utilization. These algorithms, however,
are too simplistics for DPI workloads. They do not take into account multiple levels of
stateful data sharing nor the complexity of DPI applications.

Hayes and Luo presented a compact finite automata, called DPICO, to provide high
speed deep packet inspection [28]. Kim et al. [38] proposed another system architecture
for high speed DPI in signature based network intrusion prevention. Both architectures
address pattern matching scalable optimizations to achieve high speed processing over
10Gbps. Hardware support for deep packet inspection has also been proposed by Yu
et al. [106]. However, the authors deal with rule–based intrusion detection rather than
statefulness and other deep–processing tasks.

Paxson et al. [91] proposed a NIDS cluster in order to scale performance while sus-
taining distributed stateful processing. Colajanni and Marchetti [17] employed several
distributed sensors to propose parallel architectures for stateful intrusion detection. In
this case, they migrate a given state from one system to another to sustain scalability
while states and alerts are correctly maintained. Previously, Kruegel et al. [41] also
proposed distributed sensors architecture to provide stateful processing for high speed
networks. Additionally, Paxson et al. [64] also proposed multicore architecture to sus-
tain stateful packet processing at high speed networks. The system distributes threads
according to state location to enhance cache locality. However, those proposals don’t
distinguish among multiple stateful data categories.

Regarding Snort few authors have previously proposed parallel designs and analy-
ses. Haagdorens [27, 94] presented several multithreaded designs of Snort. However,
they don’t assign synchronization mechanisms to shared data structures, but preproces-
sors. Then, reduced performance scalability is achieved with those approaches and no
further advantages are obtained from massively multithreaded architectures. In fact, the
authors evaluated performance scalability using reduced parallel architectures and show
low throughput. Recently, Schuff et al. [77, 76] have analyzed and proposed parallel
designs of Snort running in parallel architectures, but there is no information about the
synchronization mechanisms employed to protect shared data structures. Moreover, they
distributed flows across cores according to the flow ID to increase temporal locality of
data structures and reduce the probability of dependencies due to order–of–seniority,

118 MultiLayer Processing

since all packets of a given flow are processed by a given thread. Our studies show
that high aggregation traffic networks show low temporal flow locality and thus, re-
duced locality improvement will be achieved. Additionally, the authors only measured
throughput for reduced parallel architectures, but they did not analyse neither memory
performance nor parallelism limitations.

6.5.0.2 Distributed Workload in Parallel Architectures

Yeung et al. proposed a similar processing approach, called Multigrain Architec-
tures [105]. They differentiate fine and coarse grain sharing, in the sense of temporal and
spatial data locality, to heterogeneously exploit parallelism in distributed shared mem-
ory systems. Workload is distributed in order to exploit fine grain cache line sharing
within each parallel workstation and coarse grain page sharing across parallel worksta-
tions. Our concept of multilayer is similar to multigrain, but the differences are twofold.
First, our concept of processing level parallelism related to a particular layer processing
is based on dependencies among packets, instead of dependencies among different parts
of a single parallel workload processing. And second, as first design step, the conceptual
processing layers are identified by the application developer in terms of critical section
(fine grain) and sets of functions (coarse grain) categories.

The RAW architecture [87] is the basis of the recently commercialized TILE64
processor [8] that statically partitions code onto multiple tiles and statically orders com-
munications between these tiles so as to lower communication delay, enabling fine-
grained parallelism. This architecture is suitable for stream processing by exploiting
low overhead communications in the high performance 2D-mesh network [99]. Other
proposed architectures, such as TRIPS [74] and Smart Memories [47] can be dinamically
configured to suit and exploit different application classes and granularities. However,
they are not addressed to detect and exploit granularities among different packets. We
add some functionality to similar multicore architecture, but we address parallelism ex-
ploitation analysis for stateful DPI properties, which show different dependency features
than general applications. If a particular processing layer is more stressed than others
due to variation of network traffic, OS can monitor stats and re–assign cores to process-
ing layers by updating its own lookup tables.

Chen et al. proposed Network-Driven Processor (NDP) as a methodology to exploit
parallelism by partitioning workload with support for thread creation, scheduling and
context-switching in order to reduce mapping overheads, maintaining energy and speed-
balancing among cores [14]. Although they show similarities in the architecture, our

6.6 Chapter Summary 119

methodology goes one step further. It does not create threads, but it performs migra-
tions between cores to enhance positive aliasing among threads. In addition, they are
focused on other types of applications, instead of network based workloads that present
features related to network traffic. Thus, we assign cores to processing layers, unlike
their hardware support that does not show this concept.

Marty and Hill [50] proposed virtual hierarchies as a way to enhance positive interac-
tion of several virtual machines mapped to different cores. Their main concern is focused
on optimization of memory system to maximize shared memory accesses within a given
virtual machine while minimizing the interference due to memory accesses from other
virtual machines. Our methodology is similar in the sense of assigning cores to process-
ing layers instead of virtual machines. However, we exploit other parallelism properties
of the workload, introduced by the programmer and identified with the network traffic
knowledge.

6.6 Chapter Summary

In this chapter we have presented a new processing paradigm to maximize throughput of
massive multithreaded architectures running stateful parallel applications, called Mul-
tiLayer Processing. According to the characteristics described in Chapter5, there are
nested levels of critical sections and significant percentage of code within critical sec-
tions. In fact, it is likely that applications of the near future will enhance the features
described in this thesis.

The code of parallel stateful applications can be categorized in layers similar to the
TCP/IP network layer stack, so that each layer is an exploitable parallelism level. We
have presented MLP as an execution model able to exploit the wide variety of parallelism
levels of stateful workloads, such as packet, flow, application, user. We have described
the user–defined layer detection methodology as well as a generic MLP implementation
with software and hardware support. The main goal of this chapter is to validate the
performance scalability of MLP as an alternative to improve parallel stateful processing.

Our analyses validate that MLP increases positive aliasing and reduces negative
stream interefences in private instruction and data caches in multicore multistream ar-
chitectures. We show that MLP reduces up to about 40% the instruction cache miss rate
and up to 30% the data cache miss rate compared to the RTC model. The penalty of
this technique is the cost of migration. However, our experiments show there are no

120 MultiLayer Processing

significant cold cache negative effects in the destination core.

Finally, lock conflicts in a non–optimal MLP implementation reduces about 10%
compared to the RTC execution model and about 5% against the SPL model. For this
reason, we think that MLP is a good alternative employing optimized parallel code with
multiple processing layers like stateful applications. Nevertheless, even with a non–
scalable implementation using pthread POSIX, performance scales better with MLP than
RTC and SPL models. In fact, MLP is the only processing approach able to provide
required throughput for 1 Gbps networks (i.e. more than 250 KPPS) even using a system
with 48 streams. MLP allows better scalability of parallel network DPI workloads and
we think it can be adapted to other network–like parallel workloads.

121

Chapter 7

Conclusions and Future Work

This thesis provides the first analysis of stateful applications as well as proposes the first
processing approach to overcome the bottlenecks of parallel stateful packet processing
running on massive multithreaded processors. This chapter summarizes the main contri-
butions of the work in Section7.1and outlines some future work in Section7.2.

7.1 Main Contributions

This thesis comprises three sets of contributions, namely: network traffic analysis, work-
load characterization, and architectural support to exploit parallelism.

7.1.0.3 Network Traffic Analysis

Chapter3 presents the first twofold network traffic analysis in the area of stateful packet
processing. Firstly, we have demonstrated that stateful processing is not sensitive to
the loss of IP address distribution due to traffic sanitization, unlike other applications of
layer 2–3. Without this conclusion, experimental simulations could not be done because
publicly available traces have their IP addresses sanitized.

Secondly, we have presented the impact of traffic aggregation on the memory perfor-
mance of network applications. To do this study, we have also developed a methodology

122 Conclusions and Future Work

to aggregate network bandwidth starting from narrower bandwidth traces, while keeping
representative network properties. We assume close to linear increment of traffic aggre-
gation. This behavior actually depends on several network parameters. Nevertheless,
the close–to–linear assumption can be representative of real environments. The analysis
concludes that stateful applications are more sensitive to traffic aggregation than other
network workloads. Especially in the L2 cache, since it is not capable of keeping state-
ful data, due to the reduced temporal locality of flow states within a window of packets.
Other layer 2–3 applications can be also sensitive with large shared data structures, such
as the IP forwarding table. In contrast, the impact is lower compared to the stateful
workloads.

7.1.0.4 Characterization of Network Applications

We have applied the results of network traffic analysis to properly characterize network
workloads in Chapter4. We have proposed a new classification based on the data man-
agement of packet processing:

• Self–Contained: each packet contains all data needed for processing.

• Stateless: shared data structures are used to check packet data and trigger an ac-
tion.

• Stateful: the application keeps track of packet processing in order to provide
higher knowledge about the packet processing.

Workload characterization is performed on single threaded applications to better an-
alyze the application behavior and reduce the interaction effects of multithreaded ex-
ecution. We have compared workload categories focusing the analysis on application
performance as well as ILP, cache performance, and branch prediction. The main re-
sults show that stateful applications present significantly lower performance than self–
contained and stateless applications. The main reasons behind this are the reduced ILP
and large percentage of long latency memory accesses due to the statefulness (e.g. flow
state, application state). Stateful processing requires to keep large amount of memory
for state data structures that present low temporal locality due to the current and near
future network traffic characteristics. Upper layer states, such as user state, can present
higher temporal locality, but other issues arise (e.g. higher contention on critical sec-
tions, stronger likelyhood of packet dependencies, larger data structure size, probably

7.1 Main Contributions 123

lower spatial locality). Instead, stateless and self-contained applications present mar-
ginal cache miss rates.

In addition, we have presented the first characterization of stateful processing during
the lifetime of network connections. We have shown that the processing and memory
requirements are sensitive to the position of a packet within the TCP connection lifetime.
There are applications that present irregular workloads. For example, security network
services can show the highest requirements in the first packets of a connection. But the
requirements are reduced once the application marks the connection as safe or attack
hazard. On the contrary, other stateful workloads, such as monitoring or billing, show
constant processing requirements among packets. The results of this chapter point out
key features for understanding the behavior and requirements of stateful processing in
order to properly overcome architectural bottlenecks.

We have devoted a great effort to parallelize the most well known stateful DPI bench-
mark, called Snort, to evaluate parallel architectures. Although it is a minor contribu-
tion of this thesis, the resulting Snort Multithreaded (Snort–MT) application is a key
tool for the research community because there are no publicly available multithreaded
implementations. Other authors have presented different designs, but this is the first
implementation that is addressed to run on heavy parallel architectures.

7.1.0.5 MultiLayer Processing

In Chapter5 we have introduced key knowledge about parallel stateful processing for
better understanding the parallelism limitations as well as the throughput requirements
to sustain a given network traffic bandwidth. We emphasize the significant percentage
of code within multiple nested levels of critical sections. Although Snort–MT presents
up to three levels of nested critical sections, it is likely that more complex stateful DPI
applications can present deeper levels of nesting. The main drawbacks of current par-
allel network processing approaches can be summarized in two issues: high negative
interaction among threads and fuzzy identifiable processing pipeline stages.

In Chapter6 we have proposed a new execution model, called MultiLayer Processing
(MLP), to properly exploit the parallelism of stateful workloads while overcoming the
above mentioned issues. The analysis of Snort–MT presents multiple layers of data man-
agement (e.g.packet, flow, application, user). The application can be split in sections of
code according to the handled layer. In this dissertation we assume that the application

124 Conclusions and Future Work

developer identifies coarse grain processing layers. These layers show processing simi-
larities among packets in both code and data. It is common in stateful applications that
a given layer is spreaded over the packet processing timeline.

In the MLP approach, the thread that processes a particular packet migrates from one
core to another according to the layer that is processed. The main advantage of the layer
based migration is that it is not sensitive to the spreading of a given layer over the packet
processing timeline. On the contrary, software pipelining cannot gather such properties
in a single pipeline stage. Nevertheless, the more distributed layers the more penalty can
arise due to migrations.

We have presented the software and hardware support to implement MLP in a mas-
sive multithreaded architecture. OS initially assigns cores to processing layers as well as
it is in charge of system control management for required reassignment. Hardware sup-
port migrates threads by selecting one of the assigned cores to the destination processing
layer.

We have compared MLP against current network parallel execution approaches:
run–to–completion (RTC) and software pipelining (SPL). Our results point out that MLP
is the approach that better reduces negative aliasing of threads in the instruction cache.
Even though negative aliasing in data cache is also reduced in the SPL approach, MLP
presents a higher reduction due to its finer–grain task balancing. The main reason be-
hind the SPL lower improvements is the inability of a thread to optimally map to a core
within a given processing layer. Another important benefit of MLP is the ability to re-
duce the contention on a given critical section, since it provides an inherent serialization
of critical section execution. MLP is able to reduce up to 20% the probability of lock
conflict of RTC. However, it only shows 5% less than the SPL approach due to the
coarse grain implementation of the application. We have also analyzed thread and core
utilization and its impact on performance scalability. The results show that MLP scales
better in parallel architectures than the other approaches. In large configurations (i.e.
192 threads distributed in 48 cores of 4 threads each) MLP sustains 20% of throughput
scaling efficiency, while RTC and SPL present over 10%. For example, while MLP pro-
vides enough throughput with 48 threads to sustain stateful DPI service at 1Gbps (more
than 250 KPPS), 384 threads are not enough for SPL and RTC to provide the required
throughput.

7.2 Future Work 125

7.2 Future Work

We have discussed the current trend to exploit network bandwidth and to provide more
complex stateful DPI services in the Internet. We are confident that this trend will be
steeper in the near future. For this reason, there are several research topics that are an
interesting follow-up to this thesis.

Further analysis of network traffic, gradual changing of parallel programming mod-
els, and additional proposals to improve MLP approach are some of the research areas
we believe that are important to focus on. In fact, we are already working on some of
these topics. Furthermore, the resulting knowledge of this thesis has lead to do other
research works.

7.2.1 Network Traffic Processing Issues

As pointed out in the introduction of this thesis, new network services are emerging in
the Internet. These services employ new methodologies to manage network connections
leading to different patterns of traffic workload. We think that further characterization of
network traffic is required to understand the evolution of the Internet and its implications.

The evaluation of systems for network processing under different traffic and stateful
DPI scenarios arises several difficulties. There is a lack of available traffic traces that
present the required range of network features. In addition, there is also a lack of differ-
ent stateful applications. We think that both limitations can be overcome by developing
analytical models that mimic a variety of traffic and stateful DPI behavior. This thesis
provides charaterization studies that can be used as the basis of analytical models.

7.2.2 Parallel Programming Tradeoffs

We strongly believe that new kinds of stateful require to employ optimized parallel
programming techniques to exploit parallelism while providing the required order–of–
processing restrictions. Current parallel programming models (e.g. transactional mem-
ory) provide most of the parallel requirements. But, there is still room for improvement
for order–of–processing requirements, such as parallel execution of transactions accord-
ing to the packet order–of–arrival. We think that future stateful applications will present
more requirements regarding the processing order.

126 Conclusions and Future Work

Another important topic to be addressed is the compiler cooperation for enhancing
the inherent parallelism of stateful packet processing. It is very complex to detect all
levels of parallelism of such applications, due to the complexity of workloads and re-
quired network knowledge to properly exploit the processing layers. Many times the
programmers under–exploit, undetect, or even incorrectly use parallelism in the appli-
cation. Thus, it would be very useful to focus on compiler techniques to overcome the
weakness of network parallelism exploitation.

Finally, although we develop an scalable parallel design of Snort, we think it is nec-
essary to propose other implementations using different parallel programming models.
This topic will provide useful benchmarks for doing research in network processing and
parallel programming models. We think that oncoming parallel stateful applications will
be a representative pool of benchmarks for parallel programming issues. Even some
initial research has been started on this direction.

7.2.3 MultiLayer Processing

This thesis presents a new parallel processing approach, called MultiLayer Processing,
and we propose an implementation on a massive multithreaded architecture. However,
we believe there are four interesting research topics in this area.

• We have proposed a general implementation of the MLP architecture making the
OS responsible for managing lookup tables of the processing nodes. However, it
is necessary to have knowledge about the network traffic properties and workload
requirements in order to properly reassign cores to processing layers. It would be
good to propose a mechanism that gather such information to dynamically modify
the lookup tables and core assignment. Moreover, the dynamic rebalancing of the
system will lead to performance impact as we discussed in Section6.2.4.

• The proposed MLP implementation needs some information from the program-
mer, such as number of processing layers, allocation of migration instructions,
and the destination processing layer of a migration. The programmer needs to
have a good global vision of the application in order to identify the mentioned
processing layers. Therefore, it would be very interesting to develop techniques
that let the architecture dynamically detect and exploit MLP without the informa-
tion from the programmer. That is, a mechanism that automatically detects the
processing layers that can be exploited.

7.2 Future Work 127

• Our experimental environment is based on a conservative MLP parallel version
of Snort. We think it is necessary to devote some effort to develop eagger MLP
designs to evaluate other tradeoffs. For example, migration dead–lock hazards,
improvement of MLP running workloads with wider range of layers, and perfor-
mance degradation due to high migration frequency.

• This thesis is mainly focused on analyzing the performance scalability of MLP,
but it does not provide an analysis about area and power consumption of the MLP
designs. We are concerned on such issues as well as other parallel architectural
tradeoffs (e.g. on chip interconnection bandwidth) that can impact on MLP per-
formance.

129

Bibliography

[1] OpenMP Organization.http://www.openmp.org.

[2] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. April:
a processor architecture for multiprocessing.SIGARCH Comput. Archit. News,
18(3a):104–114, 1990.

[3] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan
Porterfield, and Burton Smith. The Tera Computer System.Proceedings of the
4th Intl. Conference on Supercomputing, pages 1–6, June 1990.

[4] AMD. http://www.amd.com, 3DNow! technology manual. In Technical Report,
1999.

[5] Scientific Ring of Catalonia.www.cesca.es/comunicacions/anella.html.

[6] Argus - auditing network activity.http://www.qosient.com/argus.

[7] Eduard Ayguade, Xavier Martorell, Jesus Labarta, Marc Gonzalez, and Nacho
Navarro. Exploiting Multiple Levels of Parallelism in OpenMP: A Case Study. In
ICPP ’99: Proceedings of the 1999 International Conference on Parallel Process-
ing, page 172, Washington, DC, USA, 1999. IEEE Computer Society.

[8] Max Baron. Tilera’s cores communicate better.Microprocessor Report, Nov
2007.

[9] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas
Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Vergh-
ese. Piranha: a scalable architecture based on single-chip multiprocessing. In
ISCA ’00: Proceedings of the 27th annual international symposium on Computer
architecture, pages 282–293, New York, NY, USA, 2000. ACM.

130 BIBLIOGRAPHY

[10] J. Beale, J. C. Foster, J. Posluns, and B. Caswell.Snort 2.0 Intrusion Detection.
Syngress Publishing Inc., 2003.

[11] Cooperative Association for Internet Data Analysis.http://www.caida.org.

[12] Cavium Networks Inc.http://www.caviumnetworks.com/pdfFiles.

[13] P. Chandra, F. Hady, R. Yavatkar, T. Bock, M. Cabot, and P. Mathew. Benchmark-
ing network processors. InProc. of 1st Workshop on Network Processors - NP1,
Held in conjunction with the 8th International Symposium on High-Performance
Computer Architecture, Cambridge, MA, USA, February 2002.

[14] Julia Chen, Philo Juang, Kevin Ko, Gilberto Contreras, David Penry, Ram Ran-
gan, Adam Stoler, Li-Shiuan Peh, and Margaret Martonosi. Hardware-modulated
parallelism in chip multiprocessors.SIGARCH Comput. Archit. News, 33(4):54–
63, 2005.

[15] K. Cho, K. Mitsuya, and A. Kato. Traffic data repository at the WIDE project. In
USENIX 2000 Annual Technical Conference: FREENIX Track, pages 263–270,
San Diego, CA, June 2000.

[16] K. G. Coffman and A. M. Odlyzko. Internet growth: is there a ”Moore’s law” for
data traffic? pages 47–93, 2002.

[17] Michele Colajanni and Mirco Marchetti. A parallel architecture for stateful intru-
sion detection in high traffic networks. InIEEE / IST Workshop on Monitoring,
Attack Detection and Mitigation, Tuebingen, Germany, September 2006.

[18] Network Security: 128-core processor is designed for secure LAN.
http://www.eetimes.com.

[19] Theofanis Constantinou, Yiannakis Sazeides, Pierre Michaud, Damien Fetis, and
Andre Seznec. Performance implications of single thread migration on a chip
multi-core.SIGARCH Comput. Archit. News, 33(4):80–91, 2005.

[20] G. Coretez. Fun with packets: Designing a stick; draft white paper on stick.
http://www.eurocompton.net/stick/.

[21] P. Crowley, M. A. Franklin, H. Hadimioglu, and P. Z. Onufryk.Network Proces-
sor Design: Issues and Practices, volume 1, chapter Network Processors: An
Introduction to Design Issues. Morgan Kaufmann Publishers, San Mateo, CA,
USA, 2002.

BIBLIOGRAPHY 131

[22] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L. Stam, and
Dean M. Tullsen. Simultaneous multithreading: A platform for next-generation
processors.IEEE Micro, September 1997.

[23] N. Forbes and M. Foster. The end of Moore’s law?Computing in Science&
Engineering, 5(1):18–19, Jan/Feb 2003.

[24] M. Franklin and S. Datar. Pipeline task scheduling on network processors. In
Proc. of 3rd Workshop on Network Processors - NP3, Held in conjunction with
the 10th International Symposium on High-Performance Computer Architecture,
Madrid, Spain, February 2004.

[25] George Gilder. Telecosm. Free Press, September 2000.

[26] R. Golla. Niagara2: A highly threaded Server-on-a-Chip.
http://www.opensparc.net/pubs/preszo/06/04-Sun-Golla.pdf, 2006.

[27] Bart Haagdorens, Tim Vermeiren, and Marnix Goossens. Improving the perfor-
mance of signature-based network intrusion detection sensors by multi-threading.
In Information Security Applications, 5th International Workshop, WISA, Jeju Is-
land, Korea, Revised Selected Papers, volume 3325 ofLecture Notes in Computer
Science, pages 188–203. Springer, August 2004.

[28] Christopher L. Hayes and Yan Luo. DPICO: a high speed deep packet inspec-
tion engine using compact finite automata. InANCS ’07: Proceedings of the
3rd ACM/IEEE Symposium on Architecture for networking and communications
systems, pages 195–203, New York, NY, USA, 2007. ACM.

[29] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki Mochizuki, Akio
Nishimura, Yoshimori Nakase, and Teiji Nishizawa. An elementary processor
architecture with simultaneous instruction issuing from multiple threads.Pro-
ceedings of the 19th Annual Intl. Symposium on Computer Architecture, pages
136–145, 1992.

[30] J. Won-Ki Hong. Invited Talk: Internet Traffic Monitoring and Analysis using
NG-MON. In IEEE 6th International Conference on Advanced Communication
Technology (ICACT-6), Phoenix Park, Republic of Korea, February 2004.

[31] IBM PowerNP Family.http://www.research.ibm.com/journal/rd/472/allen.html.

[32] Intel Pentium III processor: Developers manual. In Technical Report, 1999.

132 BIBLIOGRAPHY

[33] Intel Pentium II processor - datasheets. In Technical Report, 2002.

[34] Intel IXP Network Processor Family.
http://www.intel.com/design/network/products/npfamily/.

[35] Van Jacobson. A new way to look at networking.http://video.google.com, August
2006.

[36] Daniel A. Jiḿenez and Calvin Lin. Neural methods for dynamic branch predic-
tion. ACM Transactions on Computer Systems, 20(4):369–397, November 2002.

[37] NPU startup Kayamba packs 256 threads.http://www.eetimes.com.

[38] Sunil Kim and Jun yong Lee. A system architecture for high-speed deep packet
inspection in signature-based network intrusion prevention.J. Syst. Archit., 53(5-
6):310–320, 2007.

[39] E. Kohler, J. Li, V. Paxson, and S. Shenker. Observed structure of addresses
in IP traffic. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment workshop, pages 253–266, Pittsburgh, PA, USA, August 2002.

[40] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion detection
for high-speed networks. InProc. IEEE Symposium Security and Privacy, IEEE
Computer Society Press, CA, USA, 2002.

[41] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Richard Kemmerer.
Stateful intrusion detection for high-speed networks. InSP ’02: Proceedings of
the 2002 IEEE Symposium on Security and Privacy, page 285, Washington, DC,
USA, 2002. IEEE Computer Society.

[42] J. T. Kuehn and B. J. Smith. The horizon supercomputing system: architecture
and software. InSupercomputing ’88: Proceedings of the 1988 ACM/IEEE con-
ference on Supercomputing, pages 28–34, Los Alamitos, CA, USA, 1988. IEEE
Computer Society Press.

[43] J. Larus and R. Rajwar.Transactional Memory. Morgan Claypool, 2006.

[44] B. K. Lee and L. K. John. NpBench: A Benchmark Suite for Control Plane and
Data Plane Applications for Network Processors. InIEEE International Con-
ference on Computer Design: VLSI in Computers& Processors (ICCD), pages
226–233, San Jose, CA, USA, October 2003.

BIBLIOGRAPHY 133

[45] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn,
Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and
Stephen Wolf. A brief history of the Internet. Retrieved 8/8/02 from
http://www.isoc.org/internet/history/brief.shtml, 2000.

[46] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the
self-similar nature of ethernet traffic (extended version).IEEE/ACM Trans. Netw.,
2(1):1–15, 1994.

[47] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark
Horowitz. Smart memories: a modular reconfigurable architecture. pages 161–
171, 2000.

[48] Arindam Mallik, Yu Zhang, and Gokhan Memik. Automated task distribution
in multicore network processors using statistical analysis. InANCS ’07: Pro-
ceedings of the 3rd ACM/IEEE Symposium on Architecture for networking and
communications systems, pages 67–76, New York, NY, USA, 2007. ACM.

[49] Pedro Marcuello, Antonio González, and Jordi Tubella. Speculative multi-
threaded processors. InICS ’98: Proceedings of the 12th international conference
on Supercomputing, pages 77–84, New York, NY, USA, 1998. ACM.

[50] Michael R. Marty and Mark D. Hill. Virtual hierarchies.IEEE Micro, 28(1):99–
109, 2008.

[51] Scott McFarling. Combining branch predictors. Technical Report TN-36, Com-
paq Western Research Lab., June 1993.

[52] James D. Meindl. Beyond Moore’s Law: The Interconnect Era.Computing in
Science and Engg., 5(1):20–24, 2003.

[53] S. Melvin, M. Nemirovsky, E. Musoll, J. Huynh, R. Milito, H. Urdaneta, and
K. Saraf. A massively multithreaded packet processor. InProc. of 2nd Work-
shop on Network Processors - NP2, Held in conjunction with the 9th Interna-
tional Symposium on High-Performance Computer Architecture, pages 64–74,
Anaheim, CA, USA, February 2003.

[54] G. Memik, W. H. Mangione-Smith, and W. Hu. Netbench: A benchmarking
suite for network processors. InIEEE International Conference Computer-Aided
Design (ICCAD), San Jose, CA, USA, November 2001.

134 BIBLIOGRAPHY

[55] G. Minshall. TCPdpriv: Program for Eliminating Confidential Information from
Traces. Ipsilon Networks, Inc. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html.

[56] Gordon E. Moore. Cramming more components onto integrated circuits.Read-
ings in computer architecture, pages 56–59, 2000.

[57] Jose Eduardo Moreira.On the implementation and effectiveness of autoscheduling
for shared-memory multiprocessors. PhD thesis, Champaign, IL, USA, 1995.

[58] A. Nemirovsky. Towards characterizing network processors: Needs and chal-
lenges.Xstream Logic Inc., white paper, November 2000.

[59] National Lab of Applied Network Research.http://pma.nlanr.net/Traces.

[60] Network Processing Forum.http://www.npforum.org.

[61] A. M. Odlyzko. Internet traffic growth: Sources and implications. InOptical
Transmission Systems and Equipment for WDM Networking II, B. B. Dingel, W.
Weiershausen, A. K. Dutta, and K.-I. Sato, eds., Proc. SPIE, vol. 5247, pages
1–15, September 2003.

[62] R. Pang and V. Paxson. A high-level programming environment for packet trace
anonymization and transformation. InProceedings of the ACM SIGCOMM Con-
ference, Karlsruhe, Germany, August 2003.

[63] Kihong Park, Gitae Kim, and Mark Crovella. On the relationship between file
sizes, transport protocols, and self-similar network traffic. In Procs. of the 1996
International Conference on Network Protocols (ICNP ’96), page 171, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[64] V. Paxson, R. Sommer, and N. Weaver. An architecture for exploiting multi-core
processors to parallelize network intrusion prevention. InProc. IEEE Sarnoff
Symposium, May 2007.

[65] William Plishker. Automated task allocation for network processors, October
2004.

[66] Jr. R. H. Halstead and T. Fujita. MASA: a multithreaded processor architecture for
parallel symbolic computing.SIGARCH Comput. Archit. News, 16(2):443–451,
1988.

[67] Raza Microelectronics Inc.http://www.razamicroelectronics.com.

BIBLIOGRAPHY 135

[68] RedIRIS: Spanish National Research Network.http://www.rediris.es.

[69] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos. SESC simulator, January 2005.
http://sesc.sourceforge.net.

[70] M. Roesch. Snort: Lightweight intrusion detection for networks. InProceedings
of the 13th Conference on Systems Administration (LISA-99), pages 229–238,
Seattle, WA, USA, November 1999. USENIX.

[71] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and Jim Smith. Trace
processors. InProcs. of the 30th annual ACM/IEEE international symposium on
Microarchitecture, pages 138–148, Washington, DC, USA, 1997. IEEE Computer
Society.

[72] P. Sagmeister, G. Dittmann, A. Herkersdorf, and D. Webb. ”methodology for
testing high-speed network devices with predicted traffic”. In IEEE Gigabit Net-
working Workshop (GBN), Anchorage, Alaska, April 2001.

[73] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in
system design.ACM Transactions on Computer Systems, 2(4):277–288, Novem-
ber 1984.

[74] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,
Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R. Moore. Exploit-
ing ILP, TLP, and DLP with the polymorphous TRIPS architecture.SIGARCH
Comput. Archit. News, 31(2):422–433, 2003.

[75] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland. Characterizing the perfor-
mance of network intrusion detection sensors. InProcs. of the 6th International
Symposium on Recent Advances in Intrusion Detection (RAID), Pittsburgh, PA,
USA, September 2003.

[76] Derek L. Schuff, Yung Ryn Choe, and Vijay S. Pai. Conservative vs. opti-
mistic parallelization of stateful network intrusion detection. InProcs. of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel programming
(PPoPP), pages 138–139, 2007.

[77] Derek L. Schuff and Vijay S. Pai. Design alternatives for a high-performance self-
securing ethernet network interface. InProcs. of 21th International Parallel and
Distributed Processing Symposium (IPDPS), pages 1–10. IEEE, March 2007.

136 BIBLIOGRAPHY

[78] M. J. Serrano, R. Wood, and M. Nemirovsky. A study on multistreamed super-
scalar processors. Technical Report 93-05, University of California Santa Bar-
bara, 1993.

[79] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees.J. ACM, 32(3):652–686, 1985.

[80] B. J. Smith. Architecture and Applications of the HEP Multiprocessor Computer
System. InReal Time Signal Processing IV, Proceedings of SPIE, 1981.

[81] The open source network intrusion detection system.http://www.snort.org.

[82] Snot v0.92 alpha.http://www.stolenshoes.net/sniph/snot-0.92a-README.txt.

[83] Anand Srinivasan, Philip Holman, James Anderson, Sanjoy Baruah, and Jasleen
Kaur. Multiprocessor scheduling in processor-based router platforms: Issues and
ideas. InNetwork Processor Design: Issues and Practices, November 2003.

[84] A. Srivastava and A. Eustace. ATOM - A system for building customized program
analysis tools. InProc. ACM SIGPLAN Conf. on Programming Language Design
and Implementation, pages 196–205, June 1994.

[85] S. N. Storino, A. G. Aipperspach, J. M. Borkenhagen, R. J. Eickemeyer, S. R.
Kunkel, S. B. Levenstein, and G. J. Uhlmann. A Commercial Multithreaded RISC
Processor. InDigest of Papers, International Solid-State Circuits Conference,
pages 236–237, San Francisco, CA, February 1998.

[86] Sun Microsystems. UltraSPARC T1 Supplement to the UltraSPARC Architecture
2005, 2006.

[87] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt,
Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind
Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and
Anant Agarwal. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay
Architecture for ILP and Streams. InProcs. of the 31st annual International
Symposium on Computer Architecture, page 2, Munchen, Germany, 2004.

[88] Marc Tremblay, Jeffrey Chan, Shailender Chaudhry, Andrew W. Conigliaro, and
Shing Sheung Tse. The MAJC Architecture: A Synthesis of Parallelism and
Scalability. IEEE Micro, 20(6):12–25, 2000.

BIBLIOGRAPHY 137

[89] Dean M. Tullsen. Simulation and modeling of a simultaneous multithreading
processor. InProcs. of 22nd Annual Computer Measurement Group Conference,
pages 819–828, December 1996.

[90] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo,
and Rebecca L. Stamm. Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor. InProceedings of the 23rd
Annual Intl. Symposium on Computer Architecture, pages 191–202, May 1996.

[91] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and
Brian Tierney. The NIDS Cluster: Scalable, Stateful Network Intrusion Detection
on Commodity Hardware. InProcs. of 10th International Symposium Recent
Advances in Intrusion Detection (RAID), pages 107–126, September 2007.

[92] J. Verd́u, J. Garćıa, M. Nemirovsky, and M. Valero. Analysis of traffic traces
for stateful applications. InProc. of 3rd Workshop on Network Processors - NP3,
Held in conjunction with the 10th International Symposium on High-Performance
Computer Architecture, pages 120–124, Madrid, Spain, Feb 2004.

[93] J. Verd́u, J. Garćıa, M. Nemirovsky, and M. Valero. Traffic aggregation impact.
In Proc. of 5th Workshop on Memory Performance: Dealing with Applications,
systems and architecture - MEDEA5, Held in conjunction with the International
Conference on Parallel Architectures and Compilation Techniques (PACT-2004),
Antibes Juan-les-Pins, France, September 2004.

[94] Tim Vermeiren, Eric Borghs, and Bart Haagdorens. Evaluation of software tech-
niques for parallel packet processing on multi-core processors. InProceedings of
IEEE Consumer Communications& Networking Conference (CCNC), Las Vegas,
NV, USA, January 2004.

[95] Lucian N. Vintan and Mihaela Iridon. Towards a high performance neural branch
predictor. InProceedings of the International Joint Conference on Neural Net-
works, volume 2, pages 868–873, July 1999.

[96] David W. Wall. Limits of instruction-level parallelism. InProceedings of the 4th
International Conference on Architectural Support for Programming Languages
and Operating System (ASPLOS), volume 26, pages 176–189, New York, NY,
1991. ACM Press.

138 BIBLIOGRAPHY

[97] N. Weng and T. Wolf. Pipelining vs. multiprocessors - choosing the right net-
work processor system topology. InProcs. of Advanced Networking and Com-
munications Hardware Workshop (ANCHOR) in conjunction with ISCA, Munich,
Germany, June 2004.

[98] N. Weng and T. Wolf. Profiling and mapping of parallel workloads on network
processors. InProc. of The 20th Annual ACM Symposium on Applied Computing
(SAC), pages 890–896, Santa Fe, NM, March 2005.

[99] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. On-chip interconnection architecture of the tile processor.IEEE Micro,
27(5):15–31, 2007.

[100] T. Wolf and Mark A. Franklin. Commbench - a telecommunications benchmark
for network processors. InIEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), pages 154–162, Austin, TX, USA, April
2000.

[101] T. Wolf, P. Pappu, and M. A. Franklin. Predictive scheduling of network proces-
sors.Computer Networks, 41(5):601–621, April 2003.

[102] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and performance of
prefix-preserving ip traffic trace anonymization. InIMW ’01: Proceedings of the
1st ACM SIGCOMM Workshop on Internet Measurement, pages 263–266, New
York, NY, USA, 2001. ACM.

[103] W. Yamamoto and M. Nemirovsky. Increasing superscalar performance through
multistreaming. InProceedings of the Intl. Conference on Parallel Architectures
and Compilation Techniques, pages 49–58, Sept 1995.

[104] W. Yamamoto, M. Serrano, A. Talcott, R. Wood, and M. Nemirovsky. Perfor-
mance estimation of multistreamed, supersealar processors. InProcs. of 27th An-
nual Hawaii International Conference on System Sciences (HICSS), pages 195–
204, Maui, Hawaii, January 1994. IEEE Computer Society.

[105] Donald Yeung, John Kubiatowicz, and Anant Agarwal. MGS: a multigrain shared
memory system.SIGARCH Comput. Archit. News, 24(2):44–55, 1996.

[106] Fang Yu.High Speed Deep Packet Inspection with Hardware Support. PhD thesis,
EECS Department, University of California, Berkeley, Nov 2006.

