
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



c© 2010 by Isaac Gelado. All rights reserved.



ON THE PROGRAMMABILITY OF HETEROGENEOUS
MASSIVELY-PARALLEL COMPUTING SYSTEMS

BY

ISAAC GELADO

Master of Science in Telecommunications Engineering
Universidad de Valladolid, 2003

Advisor: Nacho Navarro and Wen-mei W. Hwu

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Computer Architecture

Universitat Politècnica de Catalunya
2010

Barcelona, Spain



Abstract

Heterogeneous parallel computing combines general purpose processors with ac-

celerators to efficiently execute both sequential control-intensive and data-par-

allel phases of applications. This thesis aims to increase the programmability

of heterogeneous parallel systems formed by CPUs and massively data-parallel

accelerators. This thesis deals with the programmability problems due to sepa-

rate physical memories for CPUs and accelerators, which are key to accomplish

high performance. These separate memories are presented to application pro-

grammers as disjoint virtual address spaces, which harms programmability in

two different ways. First, extra code is needed to transfer data between system

and accelerator memories. Second, data structures are double-allocated in both

memories, which results in using different memory addresses (pointers) in CPU

and accelerator code to reference the same data structure. This thesis proposes

mechanisms to solve these problems from three different levels: programming

model, hardware modifications, and software run-time systems.

This thesis proposes a programming model that integrates accelerator and

system memories into a single virtual address space, allowing the CPU code to

access accelerator memories using regular load/store instructions. In this pro-

gramming model, data structures shared by CPUs and accelerators are hosted

in the accelerator memory and accessible from both the CPU and the accel-

erator code. Moreover, because a single copy of data structures exists in the

application virtual address space, applications can use the same virtual memory

address (pointer) to access such data structures.

The Non-Uniform Accelerator Memory Access (NUAMA) architecture is

proposed as an efficient hardware implementation of this programming model.

This architecture incorporates mechanisms to buffer and coalesce memory re-

quests from the CPU to the accelerator memory to reduce the performance

penalty produced by long-latency memory accesses to accelerator memory. More-

over, the memory hierarchy is modified to use a write-through cache policy for

accelerator-hosted data which results in an eager update of the accelerator mem-

ory contents. This eager update ensures that most of the accelerator memory

contents are updated on accelerator calls, effectively minimizing the accelerator

call latency.

The Asymmetric Distributed Shared Memory Model (ADSM) is also in-

iii



troduced in this thesis, as a run-time system that implements the proposed

programming model. In ADSM, the CPU code can access all memory locations

in the virtual address space, but accelerator code is restricted to access those

memory addresses mapped to the accelerator physical memory. This asymmetry

allows all required memory coherence actions to be executed by the CPU, which

allows the usage of simple accelerators. The ADSM model keeps a copy of the

accelerator-hosted data in system memory for the CPU to access it, and builds

an unified virtual address space by mirroring system and accelerator virtual

address space.

Finally, this thesis introduces the Heterogeneous Parallel Execution (HPE)

model, which allows a seamless integration of accelerators in the existent se-

quential execution model offered by most modern operating systems. The HPE

model introduces the execution mode abstraction to define the processor (i.e.,

CPU or accelerator) where the application code is being executed. The ex-

ecution mode abstraction provides full backwards compatibility with existent

applications and systems.

iv



To all those giants who gently offered me their shoulders to stand on. I hope

that what I reached to see was worthy their effort.

v



vi



Acknowledgments

I have been told to not forget acknowledging my advisors, so I will do it in

the first place. I have to acknowledge the great work my advisors, Nacho and

Wen-mei, have done during all these years. These two giants are responsible for

this thesis as much as the time I have devoted to its completion. I have to thank

Nacho for all the time he has shared with me, not only as an advisor, but as

the great person he is. I am grateful to Wen-mei, who gave me the opportunity

of learning from him and guided me in the dark. Wen-mei, thank you so much

for converting a visit to the middle of nowhere in such a delightful experience.

The ordering of the acknowledgments has been driving me crazy for quite a

long time. Finally, I have decided to follow a quite systematic approach to not

forget anybody, so I will do it in chronological ordering.

Although the memories are quite blurry, I think the first people I met were

my parents. Be sure that without them, this thesis would have never been com-

pleted. My dear mother, Adelina, has been always looking after me. Although

many times she did not understand what I was doing, she has always believed

in me, and so I appreciate such a hard task. The first seed of this thesis was

planted by my father, Juan Francisco, many years ago. He inculcated me the

love for science and engineering since I was a child, he taught me to read, to

calculate, and to wonder how stuff works. I sincerely believe that this thesis

started when my father and I reached the agreement to buy a computer only

after I learnt how it works. He is the giant I admire the most.

My brother, Jesús, was the third person I met. He has been living with me

for most of my life, quite a hard task for him, believe me. I would like to thank

my brother for letting me experiment with electricity on him when I was a child.

I have to acknowledge his patience with me on so many occasions I, in the name

of science, broke our computer at home.

I have to acknowledge Yannis Dimitriadis for his passionated lectures, where

I started to love computer architecture. I also have to thank my Ms thesis

advisor, Juan Ignacio Asensio, who fooled me to get into the PhD program.

This thesis has been also possible because I learnt from these two giants.

Carlos Villavieja and Carlos Boneti require a special mention. Carlos Villavieja,

my office mate for so many years, has been helping me during all the time I have

spent in Barcelona. I will never forget the time we spent in the fridge, the days

vii



in the lab, the conversations we had. Carlos Boneti and I were new in the city

when we started our PhD, and we have shared so many weekends at UPC, so

many days working together, so many pieces of our life. I do not want to thank

Carlos Villavieja and Carlos Boneti for being such a great support for me, I

thank them for being such great friends.

I have to acknowledge Mateo Valero for giving me the opportunity of study-

ing at UPC and learning from him. But this thesis is just a tiny thing for being

grateful to such a giant. Mateo, thank you so much for devoting your life to

make UPC one of the best places in the world to do research in computer archi-

tecture. I also want to thank Alex Ramı́rez, a giant who has given me so many

useful advises and shared so many drinks. Another giant who also has helped

me during this thesis is David Kaeli, whose sincerity served me to avoid false

steps.

I am deeply grateful to Yale Patt, the biggest giant, from whom I have

learnt about computer architecture and teaching during his lectures, and about

life while having coffee and dinner with him. Yale is also responsible for this

thesis; he has provided me continuous advise and helped me to be on the track.

Yale, you are done with your part of the deal, it is now my turn.

I also have to thank the lab crow. Ramón and I have shared many rejects,

some gin-tonics, and once a sofa. Javi has helped with the coding, testing, and

thinking of this thesis. Llúıs, the tool master, is the responsible for most of the

graphs. I also thank Shane Ryoo, Sain-zee Ueng, Christopher Rodrigues and

Sara Baghsorkhi, who kindly have helped me when visiting Urbana. I would

also thank Marie-Pierre for all the paper work she has done for me.

John Kelm has been a key player in this thesis, with whom I shared so

many conversations where most of the ideas of this thesis were born. I have to

acknowledge John’s work polishing my text in so many papers, and teaching me

educated English words.

Two giants I also have to thank are Steve Lumetta and Sanjay Patel. Steve,

thank you for teaching me the importance of little details when doing research.

Sanjay deserves a lot of credit for this thesis. I will never forget the meeting

where Wen-mei and Sanjay triggered the idea of ADSM in my brain. John Stone

also has contributed to the elaboration of this thesis with great insights about

programmers’ point of view, and deserves my acknowledge.

The last, but not the least, person to acknowledge is my precious Anna. I

have to thank her for being with me during these last years, supporting me,

taking care of me, loving me. Anna has become the main motivation of my life

and the reason to finish this thesis; without her I would have never done this

work.

viii



Abbreviations

ADSM Asymmetric Distributed Shared Memory

AMC Accelerator Memory Collector

API Application Programming Interface

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DP Data-Level Parallelism

DMA Direct Memory Access

DSM Distributed Shared Memory

FPGA Field Programmable Gate Array

GMAC Global Memory for Accelerators

GPU Graphics Processing Unit

HPE Heterogeneous Parallel Execution

IPC Instructions Per Cycle

I/O Input/Output

ISA Instruction Set Architecture

MMU Memory Management Unit

NUAMA Non-Uniform Accelerator Memory Access

POSIX Portable Operating System Interface for Unix

OS Operating System

SDK Software Development Kit

TLB Translation Look-aside Buffer

ix



x



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Heterogeneous Parallel Computing . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Accelerator-hosted Data Transfer Model . . . . . . . . . . 5
1.3.2 Unified Virtual Address Space . . . . . . . . . . . . . . . 5
1.3.3 Non-Uniform Accelerator Memory Access . . . . . . . . . 5
1.3.4 Asymmetric Distributed Shared Memory Model . . . . . . 6
1.3.5 HPE Model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . 7
2.1 CPU – Accelerator Architectures . . . . . . . . . . . . . . . . . . 7

2.1.1 Fine-grained Accelerators . . . . . . . . . . . . . . . . . . 7
2.1.2 Medium-grained Accelerators . . . . . . . . . . . . . . . . 7
2.1.3 Coarse-grained Accelerators . . . . . . . . . . . . . . . . . 8

2.2 CPU – Accelerator Data Transfers . . . . . . . . . . . . . . . . . 8
2.3 Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Function Call Based Programming Models . . . . . . . . . 9
2.3.2 Stream Based Programming Models . . . . . . . . . . . . 11
2.3.3 Task Based Programming Models . . . . . . . . . . . . . . 12
2.3.4 Comparison of Programming Models . . . . . . . . . . . . 12

2.4 Distributed Shared Memory . . . . . . . . . . . . . . . . . . . . . 13
2.5 Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Reference Hardware and Software Environment . 17
3.1 Reference CPU – Accelerator Architecture . . . . . . . . . . . . . 17

3.1.1 Distributed Memory . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Non-coherent Memory . . . . . . . . . . . . . . . . . . . . 19

3.2 Reference Programming Model . . . . . . . . . . . . . . . . . . . 20
3.3 NVIDIA R© CUDATM . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Multi-GPU Support . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 CUDA Streams . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . 23
3.4.2 Execution Environment . . . . . . . . . . . . . . . . . . . 24

3.5 The Parboil Benchmark Suite . . . . . . . . . . . . . . . . . . . . 25
3.5.1 Benchmark Description . . . . . . . . . . . . . . . . . . . 25
3.5.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . 26

xi



Chapter 4 Programmability of Heterogeneous Parallel Systems 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Accelerator Data Transfer Models . . . . . . . . . . . . . . . . . 30

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Per-Call Data Transfer Model . . . . . . . . . . . . . . . . 31
4.2.3 Double-Buffered Data Transfer Model . . . . . . . . . . . 34
4.2.4 Accelerator-Hosted Data Transfer Model . . . . . . . . . . 34

4.3 A Unified Shared Address Space . . . . . . . . . . . . . . . . . . 37
4.3.1 The Double-Pointer Problem . . . . . . . . . . . . . . . . 37
4.3.2 Single Pointer Solution . . . . . . . . . . . . . . . . . . . . 40

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 5 Non-Uniform Accelerator Memory Access . . . . . 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Non-Uniform Accelerator Memory Access Architecture . . . . . . 46
5.3 Accelerator Memory Collector . . . . . . . . . . . . . . . . . . . . 48
5.4 Benefits and Limitations . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.1 Benchmark Porting . . . . . . . . . . . . . . . . . . . . . . 51
5.5.2 Hardware Requirements . . . . . . . . . . . . . . . . . . . 54
5.5.3 NUAMA Performance . . . . . . . . . . . . . . . . . . . . 55
5.5.4 Memory Latency . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.5 Link Latency . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.7 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 6 Asymmetric Distributed Shared Memory . . . . . . 61
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Asymmetric Distributed Shared Memory . . . . . . . . . . . . . . 61

6.2.1 ADSM Programming Model . . . . . . . . . . . . . . . . . 61
6.2.2 ADSM Run-time Design Rationale . . . . . . . . . . . . . 63
6.2.3 Application Programming Interface and Consistency Model 64

6.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . . 65
6.3.1 Overall Design . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.2 Shared Address Space . . . . . . . . . . . . . . . . . . . . 67
6.3.3 Memory Coherence Protocols . . . . . . . . . . . . . . . . 68
6.3.4 I/O and Bulk Memory Operations . . . . . . . . . . . . . 71

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.1 Coherence Protocols . . . . . . . . . . . . . . . . . . . . . 72
6.4.2 Memory Block Size . . . . . . . . . . . . . . . . . . . . . . 75
6.4.3 Rolling Size . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 7 Heterogeneous Parallel Execution Model . . . . . . 81
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 HPE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.1 Rationale and Guiding Principles . . . . . . . . . . . . . . 82
7.2.2 Existing Heterogeneous Execution Models . . . . . . . . . 82
7.2.3 Execution Modes . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.4 Execution Mode Operations . . . . . . . . . . . . . . . . . 86
7.2.5 Benefits and Limitations . . . . . . . . . . . . . . . . . . . 86

7.3 GMAC Design and Implementation . . . . . . . . . . . . . . . . . 88

xii



7.3.1 Accelerator Management . . . . . . . . . . . . . . . . . . 88
7.3.2 Delegation, Copy and Migration . . . . . . . . . . . . . . 90

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.1 Asynchronous Accelerator Calls . . . . . . . . . . . . . . . 91
7.4.2 Context Creation and Switching . . . . . . . . . . . . . . 92
7.4.3 Context Copy and Delegation . . . . . . . . . . . . . . . . 94
7.4.4 Context Migration . . . . . . . . . . . . . . . . . . . . . . 94

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.6 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 8 Conclusions and Future Work . . . . . . . . . . . . . 99
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2.1 Accelerator Memory System . . . . . . . . . . . . . . . . . 101
8.2.2 Accelerator Memory Manager . . . . . . . . . . . . . . . . 101
8.2.3 Accelerator Virtual Memory . . . . . . . . . . . . . . . . . 102
8.2.4 Accelerator Scheduling and Operating System Integration 102
8.2.5 Multi-Accelerator Programming . . . . . . . . . . . . . . 102

Appendix A Application Partitioning for Heterogeneous Sys-
tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.2.1 Analysis and profiling tools . . . . . . . . . . . . . . . . . 108
A.2.2 Emulation platform . . . . . . . . . . . . . . . . . . . . . 112

A.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.3.1 Design driver: 462.libquantum . . . . . . . . . . . . . . . 114
A.3.2 Case study: 456.hmmer . . . . . . . . . . . . . . . . . . . 117
A.3.3 Case study: 464.h264ref . . . . . . . . . . . . . . . . . . . 118
A.3.4 Emulation platform evaluation . . . . . . . . . . . . . . . 119

A.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiii



xiv



List of Tables

3.1 Simulation parameters. Latencies shown in processor cycles rep-
resenting minimum values. . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Target systems used in the evaluation . . . . . . . . . . . . . . . 24
3.3 Data transfers in the Parboil benchmark suite . . . . . . . . . . . 26

6.1 Compulsory API calls implemented by an ADSM run-time . . . . 65

7.1 Basic accelerator object interface using in GMAC . . . . . . . . . 88
7.2 Accelerator usage data from the Parboil benchmark suite . . . . 91

A.1 Data-level parallelism present in loop bodies and mechanisms for
exploiting the cross-iteration parallelism . . . . . . . . . . . . . . 115

A.2 Slowdown for alternate execution modes with example applications.120

xv



xvi



List of Figures

1.1 Heterogeneous parallel computing paradigm . . . . . . . . . . . . 2

2.1 Example of application-specific pipelined logic . . . . . . . . . . . 11

3.1 Reference Single-Accelerator Architecture . . . . . . . . . . . . . 17
3.2 Architecture of a compute node of the RoadRunner supercomputer 18
3.3 Estimated memory bandwidth for different values of instruction

per cycle in some NASA parallel benchmarks . . . . . . . . . . . 20
3.4 Execution flow for the code in Listing 3.1 . . . . . . . . . . . . . 21
3.5 GPU bandwidth for two different GPUs (GTX285 and C870) . . 25

4.1 Flowchart for sorting function in the per-call and double-buffered
data transfer models . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Flowchart for the sorting function in the linked-list sorting exam-
ple when the accelerator-hosted data transfer model is used . . . 37

4.3 Example of disjoint processor – accelerator memory address spaces.
A data object is stored in both address spaces at different virtual
memory addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Example of disjoint processor – accelerator memory address spaces.
A data object is stored in both address spaces at different virtual
memory addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 CPU architecture in NUAMA . . . . . . . . . . . . . . . . . . . . 46
5.2 Actions performed in the AMC when a sacc instruction commits 49
5.3 Data movement in a NUAMA architecture . . . . . . . . . . . . . 49
5.4 Speed-up of NUAMA with respect to DMA for simulated bench-

marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Number of accesses to the CPU main memory or the accelerator

memory per access to the L2 cache. L2 write-backs and main
memory reads are accesses to the CPU main memory. L2 write-
through and local memory reads are accesses to the accelerator
memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 NUAMA L2 cache miss ratio normalized to DMA L2 cache miss
ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Speed-up of NUAMA with respect to DMA for different memory
latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 Speed-up of NUAMA with respect to DMA for different PCIe
configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Software layers that conforms the GMAC library. . . . . . . . . . 66
6.2 State transition diagram for the memory coherence protocols im-

plemented in GMAC. . . . . . . . . . . . . . . . . . . . . . . . . . 69

xvii



6.3 Slow down for different GMAC versions of Parboil benchmarks
with respect to CUDA versions . . . . . . . . . . . . . . . . . . . 72

6.4 Transferred data by different protocols normalized to data trans-
ferred by Batch-update . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Execution time for a 3D-Stencil computation for different volume
sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Execution time break-down for Parboil benchmarks . . . . . . . . 75
6.7 Execution times (lines) and maximum data transfer bandwidth

(boxes) for vector addition for different vector and block sizes . . 76
6.8 Execution time for tpacf using different memory block and rolling

sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1 IBM Cell SDK, NVIDIA CUDA run-time API, and ADSM ex-
ecution models for heterogeneous systems. In the figure ovals
represent processes, tables virtual address spaces, and arrows
execution threads. File descriptors are omitted to simplify the
figure. All examples assume two execution threads per process. . 83

7.2 Sample data-flow that illustrates the importance of fine-grained
synchronization between parallel control-flows in CPUs and ac-
celerators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Internal accelerator management GMAC structure for two exe-
cution threads on a single-accelerator system. White boxes rep-
resent GMAC abstractions and ACC a physical accelerator . . . 89

7.4 Execution model model implementation alternatives for CUDA
GPUs. Queues in ovals represent CUDA streams and tables ac-
celerator virtual address spaces. . . . . . . . . . . . . . . . . . . . 89

7.5 Execution time difference (in µsec) between consecutive asyn-
chronous and synchronous accelerator calls. . . . . . . . . . . . . 92

7.6 Average Per-context creation time (in microseconds) of an accel-
erator context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.7 Context Migration . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.1 Design Flow Overview . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2 Data Movement in Concurrent Data Access Models . . . . . . . . 112
A.3 Memory access intensity for 462.libquantum. The top three lines

indicate which function is executing at each point in time. . . . . 116
A.4 Liveness results for 456.hmmer with horizontal bars for data in-

dicating dead regions. (Note: Due to the resolution of the image,
function invocations appear to overlap.) . . . . . . . . . . . . . . 117

xviii



Listings

3.1 Example of the programming model used in this dissertation . . 21
3.2 Example of CUDA code . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Linked-list sorting using only the CPU . . . . . . . . . . . . . . . 31
4.2 Linked-list sorting in the per-call data transfer model . . . . . . . 32
4.3 Linked-list sorting in the double-buffer data transfer model . . . 35
4.4 Linked-list sorting in the accelerator-hosted data transfer model . 36
4.5 Double-pointer requirement of disjoint address spaces . . . . . . 38
4.6 Accelerator-mapped accelerator call example using system to ac-

celerator memory translation . . . . . . . . . . . . . . . . . . . . 39
4.7 Linked-list sorting in the per-call data transfer model . . . . . . . 39
4.8 Code snippet from linked-list sorting using a unified virtual ad-

dress space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1 Main loop of sample particle dynamics simulation application . . 47
5.2 Main function in PNS for DMA configuration . . . . . . . . . . . 51
5.3 Function invoking the accelerator in PNS for DMA configuration 52
5.4 Statistics computation in PNS for DMA and NUAMA configura-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Main function in PNS for NUAMA configuration . . . . . . . . . 53
5.6 Function invoking the accelerator in PNS for NUAMA configuration 54
6.1 Main function in MRI-FHD in ADSM . . . . . . . . . . . . . . . 62
7.1 Example OpenCL code that initializes an accelerator, generates

code suitable to be executed on the accelerator and executes the
code on the accelerator . . . . . . . . . . . . . . . . . . . . . . . . 83

xix



xx



Chapter 1

Introduction

1.1 Heterogeneous Parallel Computing

Data parallel code has the property that multiple instances of the code can

be executed concurrently on different data. Data parallelism exists in many

applications such as physics and biology simulations, weather prediction, finan-

cial analysis, medical imaging or media processing. Most of these applications

also have sequential control-intensive phases that are interleaved between data

parallel phases. A computing system that efficiently executes such applica-

tions requires high multi-thread throughput for data parallel phases and short

single-thread execution latency for sequential phases. However, maximizing

multi-thread throughput and minimizing single-thread execution latency are two

design goals that impose very different, and often conflicting, requirements on

processor design. General purpose processors implement out-of-order execution,

multi-instruction-issue, data caching, branch prediction and memory specula-

tion mechanisms using high frequency clock signals to concurrently execute as

many independent instructions as possible in the shortest possible time. This

is in contrast to, for instance, Graphics Processing Units (GPU) that achieves

high data throughput using many in-order multi-threaded cores that share their

control unit and instruction cache and run at moderate frequency. Analogously,

reconfigurable logic allows implementing many application-specific processing

units running at low frequencies that also deliver high data throughput.

Figure 1.1 illustrates how general purpose processors and accelerators are

combined to form heterogeneous parallel computing systems. In these systems,

sequential control-intensive code is executed by a CPU, while data parallel ap-

plication phases are executed by accelerators. There are many examples of

successful heterogeneous parallel systems [PH08]. For example, the RoadRun-

ner supercomputer couples AMD Opteron CPUs with IBM PowerXCell accel-

erators. If the RoadRunner supercomputer were benchmarked using only its

general purpose CPUs, rather than being the top-ranked system (June 2008),

it would drop to a 50th-fastest ranking [BDH+08]. In addition, practically all

modern desktop computers are heterogeneous parallel systems that combine

CPUs and GPUs. Moreover, heterogeneous systems also deliver a higher power

efficiency than traditional homogeneous systems. For instance, the NVIDIA

1



Figure 1.1: Heterogeneous parallel computing paradigm

GTX285 GPU offers 5.21 MFLOPS (single-precision) per watt when all hard-

ware resources are utilized, whereas the Intel i7 895 CPU delivers 0.83 MFLOPS

per watt. This high power efficiency in massively data parallel codes is another

reason for the adoption of heterogeneous massively-parallel computing systems

in both, High Performance Computing (HPC) and embedded environments.

A major architectural issue when designing a heterogeneous parallel sys-

tem is the programming model for data sharing between CPUs and the ac-

celerators. Programming models in current commercial systems typically ex-

pose separate physical memories of CPUs and accelerators, and data transfer

mechanisms based on Direct Memory Access (DMA) hardware to application

programmers through data copy routines. For example, in the CUDA program-

ming model [NVI09], an application programmer can transfer data from the

CPU to the accelerator device by calling a memory copy routine whose input

parameters include a source pointer to the CPU memory space, a destination

pointer to the accelerator memory space, and the number of bytes to be copied.

OpenCL [Mun09] and the IBM Cell SDK [KDH+05] define similar interfaces.

These explicit memory copy models can significantly increase the programming

complexity when using accelerators in large complex applications.

1.2 Overview

The main goal of this dissertation is to optimize programmability and perfor-

mance of heterogeneous parallel systems as a single metric, which could be

summarized as: to ease the coding task without decreasing the system perfor-

mance. This dissertation argues and provides experimental data to support that

a programming model for heterogeneous parallel systems, where application pro-

grammers are provided with a single virtual address space that includes system

and accelerator memories, accomplishes the goal of improving programmability

while not affecting system performance. This dissertation further studies, ana-

2



lyzes and evaluates the implementation and performance issues that arise when

unifying the disjoint physical address spaces of CPUs and accelerators into a

single virtual address space.

Chapter 2 covers the related work of this dissertation. First, a review of

existent CPU – accelerator architectures and programming models for hetero-

geneous parallel systems is presented. CPU – accelerators architectures are

classified depending on the granularity of the computations accelerators per-

form. Existing mechanisms to transfer data between CPUs and accelerators

are also presented. Programming models are classified depending on how ac-

celerators are integrated in the application code. Finally, this chapter reviews

the previous work in Distributed Shared Memory (DSM) systems and operating

system support for distributed and heterogeneous systems that is extended by

this dissertation.

Chapter 3 presents the hardware and software reference system assumed

in this dissertation. The reference heterogeneous parallel system is formed by

CPUs and coarse-grained massively-parallel accelerators with physically sep-

arated memories. The reference programming model expose the existence of

these separate memories as disjoint virtual address spaces to programmers and

accelerators are invoked as function calls. The NVIDIA CUDA programming

model is presented as an example of such programming model and the specifics

of CUDA used in this dissertation are discussed. Finally, the simulation and

execution environments and the benchmarks used to evaluate the contributions

of this thesis are detailed.

Chapter 4 presents the benefits of a model where accelerator-accessible data

is only hosted by the accelerator memory, and where a global shared virtual

address space that includes system and accelerator memories is used. First,

three data hosting models for heterogeneous parallel systems are defined: per-

call, double-buffered, and accelerator-hosted. The per-call model imposes low

accelerator memory capacity requirements but it can potentially degrade the

overall system performance to unacceptable levels. The double-buffered model

requires a higher amount of accelerator memory than the previous model, deliv-

ers higher performance because it overlaps data communication between CPUs

and accelerators with computation, but it highly penalizes programmability. Fi-

nally, the accelerator-hosted model requires all data used by accelerators to be

hosted in their own memory, which imposes high memory capacity requirements

on accelerators, but increases programmability because data transfers between

system and accelerators memories are not required. In this dissertation, the

implementability issues and optimization opportunities of this later model are

discussed.

Chapter 5 presents the Non-Uniform Accelerator Memory Access (NUAMA)

architecture. NUAMA is an implementation of the accelerator-hosted model de-

fined in Chapter 4. In NUAMA, an Accelerator Memory Collector (AMC) is

integrated within the system memory controller. The AMC inspects all memory

3



requests going into and out of the system memory controller to identify writes

to data structures hosted by accelerators. The processor Translation Look-aside

Buffers (TLB) entries are extended with one extra field to identify those mem-

ory pages containing data hosted by accelerators. This field is used by the AMC

to identify memory requests affecting accelerator hosted data. The AMC also

ensures that all pending writes to accelerator hosted data have finished before

starting the execution at the accelerator. An experimental evaluation of the

NUAMA architecture using a cycle-accurate simulator shows that this architec-

ture delivers a performance similar to traditional DMA-based architectures.

Chapter 6 introduces the Asymmetric Distributed Shared Memory (ADSM)

model. ADSM is a software implementation of the accelerator-hosted data trans-

fer model. In this model, a unified virtual address space encompassing both

system and accelerators memory is built. In ADSM, CPUs can access any vir-

tual memory address within the unified virtual address space, but accelerators

are constrained to access virtual memory addresses corresponding to their own

physical memory. This asymmetric nature of the model allows the system to

rely on CPUs to perform all memory coherence activities; accelerators, there-

fore, do not need to provide additional hardware support for memory coherence.

The design and implementation issues of a complete ADSM system are consid-

ered in this thesis. Experimental results show that applications accomplish

similar performance and higher programmability when using the ADSM model

than when using commercially available run-time systems, which matches with

experimental results in Chapter 5.

Chapter 7 extends the ADSM model to fully integrate heterogeneity in the

application execution model. This chapter analyzes existent execution models

for different accelerators, which are not fully compatible with the current se-

quential execution model based on execution threads. Then, the Heterogeneous

Parallel Execution (HPE) model is presented. This model extends the current

execution thread abstraction with a set of execution modes, which effectively

represent the application capabilities when executing on different computational

devices (i.e., CPUs and accelerators). The HPE model is fully compatible with

the existent sequential model implemented by most operating systems. More-

over, HPE provides support for running applications for heterogeneous parallel

systems in current homogeneous (i.e., without accelerators) machines. The de-

sign and implementation space for this execution model is analyzed, and the

accelerator hardware support for an efficient implementation of this model is

described.

Chapter 8 concludes this dissertation. The key contributions and insights

presented in this thesis are reviewed. This chapter also presents potential fu-

ture work and the research lines this thesis has enabled. Potential problems

to be solved as part of the future work are analyzed and possible solutions are

sketched.

4



1.3 Contributions

This dissertation makes several contributions in the programming models and

computer architecture fields.

1.3.1 Accelerator-hosted Data Transfer Model

This dissertation introduces a data transfer model where accelerator-accessi-

ble data structures are hosted in the accelerator memory. Such data transfer

model removes data access and marshalling overheads incurred when using tra-

ditional accelerator programming models. Existent programming models for

heterogeneous parallel systems requires transferring all data used by accelera-

tors from system memory to accelerator memory prior starting the execution

at the accelerator. When data structures used by accelerators are scattered in

the application virtual address space (e.g., a linked-list), the code running on

the CPU first has to extract and arrange that data (i.e., data marshalling).

An accelerator-hosted model does not require explicit data transfer and data

marshalling, improving programmability.

1.3.2 Unified Virtual Address Space

A unified virtual address space that includes both system and accelerator mem-

ories is presented in this dissertation. Such a virtual address space improves pro-

grammability of heterogeneous parallel systems by elegantly solving the double-

pointer problem present in current programming models. This problem arises

from the separate physical accelerator and system memories in most heteroge-

neous parallel systems. Separate system and accelerator memories are presented

to application programmers as disjoint system and accelerator virtual address

spaces. Hence, two virtual memory addresses are required to reference a sin-

gle data structure: a system virtual memory address in the CPU code, and an

accelerator virtual memory address in the accelerator code. A unified virtual

address space for CPUs and accelerators hides the separate physical memories

to programmers and, therefore, removes the need for two different pointers to

reference a single data structure.

1.3.3 Non-Uniform Accelerator Memory Access

The NUAMA architecture is introduced in this dissertation. This architecture

allows applications to be programmed following the accelerator-hosted data

transfer model by allowing CPUs to access accelerator data using load/store

instructions. The NUAMA architecture includes hardware structures to buffer

and coalesce write requests to accelerator memory data, eagerly update the con-

tests of accelerator memories, and to cache read request for accelerator-hosted

data in the CPU. Hence, NUAMA reduces the cost of reaching accelerator

5



memory from the CPU. Simulation results for NUAMA show negligible perfor-

mance overheads and large programmability improvements with minor hardware

additions.

1.3.4 Asymmetric Distributed Shared Memory Model

This thesis introduces the ADSM mode, where data used by accelerators is

hosted by the memory attached to the accelerator using such data. Accelerator

memories are mapped into the application virtual address space, so CPUs can

access accelerator hosted data using regular load/store instructions. However,

a given accelerator is constrained to access those regions of the virtual memory

address space that contain data hosted by its own memory. This distribution

asymmetry allows all required memory coherence actions to be performed at

the CPU. The necessary API calls and memory coherence and consistency of

an ADSM system are discussed in this dissertation. The design choices for

a run-time system that implements the ADSM model are discussed too. A

concrete operating system and accelerator independent ADSM run-time system

design is detailed. The lack of hardware support in current accelerators does not

allow a straightforward way of implementing ADSM run-time systems. A set of

software techniques that allows building an user-level ADSM library for current

accelerators on top of existing operating systems is presented. The limitations

and overheads of each presented software technique are studied.

1.3.5 HPE Model

The HPE model for heterogeneous parallel systems is introduced in this disser-

tation. This model is fully compatible with the existent sequential model based

on execution threads. In this model, the execution thread abstraction is ex-

tended with execution modes, which represent the capabilities (e.g., accessible

virtual address space and ISA) of the execution thread when running on a given

execution mode. In this model, accelerator calls are implemented as execution

mode switches. On an execution mode switch, the application execution flow

might migrate to an accelerator, if present, or fall back to a compatibility accel-

eration emulator. This approach allows execution applications that make use of

accelerators in systems without them.

6



Chapter 2

Related Work

2.1 CPU – Accelerator Architectures

This section reviews existent CPU – accelerator architectures. First, a taxonomy

of CPU – accelerator architectures is presented. This taxonomy classifies accel-

erators depending on the granularity of the dataset of the computations done

by the accelerator. This taxonomy is used to help the reader to understand the

scope of the present dissertation.

2.1.1 Fine-grained Accelerators

Fine-grained accelerators, also known as co-processors, are typically integrated

in the CPU pipeline as functional units. Some examples of this kind of ac-

celerators are floating-point and SIMD units, such as the SSE [Int07] and

3DNow! [AMD06] instructions found in x86 CPUs, and more general inter-

faces, such as the MIPS [MIP01] and ARM [Sea00] accelerator interfaces. The

communication between integrated accelerator and the CPU is done by means

of registers and is controlled by instructions that extend the ISA. There are

several proposals for integrating more flexible and coarse-grained accelerator in

a similar way. For instance, Chimaera integrates reconfigurable logic as a func-

tional unit inside the core [HFHK04] which is able to access the general-purpose

registers of the CPU and perform arbitrary arithmetic functions.

There are examples of CPU – accelerator interconnects in the field of recon-

figurable accelerators. Garp [HW97] connects a reconfigurable accelerator to

the CPU registers and the data cache.

2.1.2 Medium-grained Accelerators

Medium-grained accelerators are typically integrated in the same chip that CPU

cores. These accelerators typically implement a small-size scratch-pad mem-

ory to store input, output, and temporary data, which is directly accessed

by the accelerator logic. Medium-grained accelerators systems, such as Mor-

phoSys [SLL+00] or MOLEN [VWG+04] implement a DMA engine to transfer

data between system memory and the accelerator scratch-pad memory. An

exception is OneChip, where the accelerator logic directly accesses to system

7



memory [JC99]. Most medium-grained accelerator platforms extend the CPU

ISA with new instructions to trigger DMA transfers between system memory

and the accelerator scratch-pad memory and to start the execution at the ac-

celerator.

Commercially available platforms, such as Xilinx Virtex 5 FXT FPGAs [Xil09],

allow implementing medium-grained accelerators that can be reconfigured at

run-time. In Virtex 5 FPGAs accelerators are typically attached to the Proces-

sor Local Bus (PLB) and implement a DMA engine to transfer data between

the accelerator scratch-pad memory and system memory. Accelerators also im-

plement control registers that are mapped to the system physical address space.

Hence, data transfers and computations are initiated writing predefined values

to the accelerator control registers.

2.1.3 Coarse-grained Accelerators

Coarse-grained accelerators and CPUs typically are separated chips with sepa-

rate memories. However, there are examples of coarse-grained accelerators and

CPUs that are integrated in the same chip. For instance, in the Cell BE, the

Power Processing Unit (general purpose processor), the Synergistic Processing

Units (accelerators), the L2 cache controller, the memory interface controller,

and the bus interface controller are connected through an Element Interconnect

Bus in the same chip [KDH+05]. AMD Fusion chips will integrate CPU, mem-

ory controller, GPU and PCIe controller into a single chip. The Intel Graphics

Media Accelerator [Int05] and the NVIDIA ION chips are examples of coarse-

grained accelerators that share memory access with general purpose processors.

These Integrated Graphics Processor (IGP) systems integrate a GPU inside the

Graphics and Memory Controller hub, which manages the flow of information

between the CPU, the system memory interface, and the I/O controller.

Examples of coarse-grained accelerators that have their own memory are

NVIDIA Tesla GPUs. These accelerators are connected to the CPUs through a

PCIe bus and include their own GDDR memory. Future graphics cards based on

the Intel Larrabee chip will have a similar configuration [SCS+08]. The Road-

Runner supercomputer is composed of nodes that include two AMD Opteron

CPUs (IBM BladeCenter LS21) and four PowerXCell chips (2x IBM BladeCen-

ter QS22). Each LS21 BladeCenter is connected to two QS22 BladeCenters

through a PCIe bus [BDH+08]. The Cray XD1 connects an FPGA chip to the

CPU using a direct connection through a dedicated I/O bus [FADJ+05].

2.2 CPU – Accelerator Data Transfers

The two preliminary steps for mapping applications into a data-parallel archi-

tecture are profiling to identify the computation intensive parts of the applica-

tions [EPP+01] and a detailed analysis of these parts to determine, for a given

8



accelerator architecture, if they are suitable to be implemented by an acceler-

ator [GNVV04]. With these analyses in hand, the application is modified to

perform data transfers and synchronization between the CPU and the acceler-

ator. Appendix A presents a framework that automates these tasks.

CPU – accelerator systems implement data transfer as a marshalling process

and a copy of the input data from system memory to the accelerator memory

and vice versa using DMA [KMK01]. For instance, MorphoSys [SLL+00], the

Cell processor [GHF+06], and the NVIDIA Tesla include DMA engines to copy

data between the accelerator and the system memory.

Garp [HW97] and OneChip [JC99] avoid data copying by allowing the accel-

erator to access the CPU memory hierarchy. This approach requires implement-

ing a memory controller for each accelerator that must implement the memory

coherence protocol, perform memory translation, and ensure protection.

Guo [GNVV04] identified the data transfer process as a bottleneck in accel-

erator architectures. He proposes the smart buffer, a compiler technique that

minimizes the data to be copied [GBN04]. A smart buffer compiler exploits the

fact that the input data on consecutive calls to a given accelerator frequently

share items with previous calls; these items do not need to be copied. There ex-

ist similar techniques for propagating values in shared memory multiprocessors,

such as data forwarding [KCPT95].

2.3 Programming Models

This section presents an overview of existent programming models for CPU –

accelerator systems. The scope of this section is the CPU – accelerator interface,

so the accelerator programming model is omitted.

Most existent programming models present a common characteristic: ac-

celerator and system memories are presented as two separate virtual address

spaces to programmers. The programming models presented in this section

significantly differ in the execution model (i.e., accelerator invocation). The dif-

ferent execution models involve different mechanisms to make accelerator input

data accessible to the accelerators present in the system, and the accelerator

output data accessible to general purpose processors. In this section we classify

programming models depending on how accelerators are invoked.

2.3.1 Function Call Based Programming Models

Computations at accelerators are presented to programmers as function calls

in many commercial programming models. These programming models re-

quire DMA transfers between CPUs and accelerators to move accelerator in-

put and output data between the system and accelerator address spaces. Ex-

amples of function call based programming models are the IBM SPE Run-

time Management [IBM07], NVIDIA CUDA [NVI09], ATI CTM [ATI06], and

9



OpenCL [Mun09].

The scope of the IBM SPE Runtime Management programming model is the

Cell BE chip (e.g., a single QS22 BladeCenter), where SPUs are accelerators and

the PPU the general purpose processor. Systems, such as the RoadRunner su-

percomputer, where the Cell BE chip is combined with general purpose processor

chips (e.g., AMD Opteron chips in the RoadRunner), only use the IBM SPE

Runtime Management for the code running on the Cell BE. Typically, these

systems also use a function call based programming model for the interaction

between the code running on the Cell BE chip and the code running on CPUs.

Function call based programming models expose DMA operations to ap-

plications programmers through memory copy routines. For instance, in the

CUDA programming model an application programmer can transfer data from

system memory to the accelerator memory by calling to a memory copy routine

which receives three parameters: a destination pointer to the accelerator mem-

ory space, a source pointer to system memory, and the number of bytes to be

copied. This memory copy interface ensures that the accelerator can only access

the part of the application dataset that is explicitly requested by the memory

copy parameters. In the remaining of this dissertation the terms DMA-based

programming model will be use to refer to these programming models too.

Typically, DMA operations can only be initiated by the code running on

the CPU. However, some DMA based programming models such as the IBM

SPE Runtime Management and NVIDIA CUDA, starting at version 3.0, sup-

port DMA transfers initiated from accelerators. Furthermore, NVIDIA CUDA

supports mapping system memory into the accelerator virtual address space

and, thus, mapped system memory regions can be directly accessed from the

accelerator. The IBM SPE Runtime Management includes the opposite fea-

ture: accelerator memory can be mapped into the application address space

and, therefore, general purpose processors can access accelerator memory.

Execution at the accelerator in these programming models is completely in-

dependent of data transfers. These programming models typically define an

accelerator invocation routine that takes a pointer in the accelerator virtual

address space to the first instruction to be executed. Most DMA based pro-

gramming models do not place any constraint on the parameters passed to

accelerators. An exception is the OpenCL standard that requires all point-

ers used by the accelerator to be passed as parameters during the accelerator

invocation [Mun09].

Function call programming models are being used in homogeneous parallel

systems too. Darlingtonet. al. [DFH+93] proposed using skeleton functions as

part of the programming model. Skeleton functions implement parallel algo-

rithms commonly used in a given class of applications. This approach is, for

instance, behind STAPL which provides parallel implementations of STL C++

functions [AJR+03].

10



Figure 2.1: Example of application-specific pipelined logic

2.3.2 Stream Based Programming Models

Stream based programming models, such as ImpulseC [MB06] and SGI [SGI08]

are mainly used for systems using FPGA based accelerators. These program-

ming models assume that accelerators process streams of data. FPGA accelera-

tors typically accelerate application execution by implementing application-spe-

cific logic that efficiently implements computations that are extensively used by

the application. Application-specific logic is typically pipelined to exploit data

parallelism, as shown in Figure 2.1. Each stage in the pipeline in Figure 2.1

operates over different parts of the application dataset. The application-spe-

cific logic is replicated few times to increase the amount of data parallelism

exploited by the accelerator: each replica operates over different parts of the

dataset. However, the number of replicas is typically low due to the limited

reconfigurable logic area available in current FPGA chips.

Stream programming models have been also used in massive data paral-

lel homogeneous systems, such as clusters of computers. For instance, AS-

SIST [Van02] decomposes programs into components that communicate through

data streams. ASSIST requires the programmer to declare modules and connect

them using streams. This data-dependence information is used by the ASSIST

run-time to schedule the execution of modules on different processors.

Stream based programming models provides application programmers with

routines to create accelerator input, output and input/output streams. There

are typically two operations the code running on the CPU can perform over

an accelerator stream: push data into input and input/output streams, and

pull data out of output and input/output streams. These push/pull operations

implement control-flow mechanisms: the application is blocked on a push op-

eration whenever the accelerator input buffer is full and on a pull operation

whenever the accelerator output buffer is empty.

Execution at the accelerator requires one input and one output stream, or

one input/output stream to be passed as parameters. Accelerators are con-

strained to read data from and write data to streams received as parameters,

so only data explicitly pushed by the application can be accessed.

11



2.3.3 Task Based Programming Models

Task based programming models for CPU – accelerator architectures divides

applications in a set of tasks that can be executed by both general purpose

processors and accelerators. Two examples of task based programming models

are StarSS [BPBL06] and WorkForce. These programming models are typically

build on top of DMA based programming models and aim to simplify the pro-

cess of coding applications for CPU – accelerator architectures. The OpenCL

specification also aims to provide a task-like approach, but in its current state

the OpenCL programming model is closer to function call based programming

models.

Task based programming models require programmers to define tasks com-

posing the application. Task definition can be done at compile time (e.g., using

#pragma constructions), such in StartSS, or at run-time, such in WorkForce.

Task definition requires application programmers to identify input, output and

input/output data structures for the task. This information is essential to allow

efficient task scheduling (e.g., scheduling two independent tasks to run concur-

rently on different accelerators). Data structures used by accelerators do not

require any special handling, contrary to explicit memory copies and push/pull

stream operations required by DMA and stream based programming models

respectively.

Tasks execution is started through task creation routines, which do not differ

from traditional execution thread creation routines available in most operating

systems. Additionally, task based programming models offer routines to wait

for a given task to complete its execution.

2.3.4 Comparison of Programming Models

The programming models discussed previously are not exclusive, and they present

different abstraction levels to programmers. Function call based programming

models present the lowest-level of abstraction. Programmers explicitly launch

the accelerator execution, being the programmer in charge of selecting the ac-

celerator executing each kernel. Furthermore, separate system and accelerator

virtual address spaces are presented to programmers, who must explicitly re-

quest DMA transfers before and after accelerator execution. This programming

model exposes hardware details, such as the existence of separate accelerators

and memory address spaces, to programmers. Such low-level of abstraction al-

lows building other programming models on top of function call programming

models. This dissertation extends the memory and execution model of function

call based programming models to improve programmability and performance.

Hence, higher-level programming models (i.e., task and stream based) also ben-

efit from the results presented in this dissertation.

Stream based programming models are typically built on top of function call

programming models as run-time systems. Computations at accelerators are

12



encapsulated as functions which are launched and terminated at accelerators

by the run-time system. Stream push and pull operations are implemented

through memory copy operations and synchronization primitives. For instance,

stream input buffers, filled by push operations, are transferred from system to

accelerator memory through memory copy routines1.

Task based programming models are typically implemented on top of func-

tion call based programming models too. User defined tasks are mapped to

function calls, being the run-time system in charge of selecting the most ad-

equate accelerator to execute the task. The run-time system copies the task

input and output data through memory copy routines provided by the low-level

programming model.

2.4 Distributed Shared Memory

Many hardware and software Distributed Shared Memory (DSM) systems exist,

that implement a shared address space on top of physically distributed memo-

ries. In this dissertation, Chapter 6 presents a DSM system for heterogeneous

parallel systems.

Hardware DSM systems include the necessary logic to implement coherence

protocols and detect accesses to shared data. Most hardware DSM systems im-

plement write-invalidate protocols, rely on directories to locate data, and have

a cache-line size sharing granularity [DSF88, WH88, LLG+90, MW90, Gus92,

FBR93]. There are also hardware implementations that rely on software to im-

plement data replication [BR90], to support the coherence protocol [ABC+95],

to virtualize the coherence directory [WLT93], or to select the appropriate co-

herence protocol [HKO+94].

Software DSM systems might be implemented as a compiler extension or as a

run-time system. Compiler based DSM systems add semantics to programming

languages to declare shared data structures. At compile time, the compiler

generates the necessary synchronization and coherence code for each access to

any shared data structure [ACG86, BT88].

Run-time DSM implementations provide programmers with the necessary

APIs to register shared data structures. A software run-time system uses the

memory protection hardware to detect accesses to shared data structures and to

perform the necessary coherency and synchronization operations. The run-time

system might be implemented as part of the operating system [FP89, DLAR91]

or as an user-level library [LH89, CBZ91, BZS93, KCDZ94]. The former allows

the operating system to better manage system resources (e.g., blocking a process

while data is being transfered) but requires a greater implementation effort.

For instance, in Amoeba [TvRvS+90] processes can declare shared memory

segments that are accessible from processes running in remote nodes, and access

1Different programming models define different policies to trigger data copy operations
between system and accelerator memories

13



to shared memory segments is grated through capability delegation and copy

operations. User-level DSM libraries require the operating system to bypass and

forward protection faults (e.g., as POSIX signals) and to provide system calls

to interact with the memory protection hardware. This approach is also taken

in TreadMarks [KCDZ94], CRL [JKW95], and Shasha [SGT96].

Object-based DSM systems allow applications to invoke methods of objects

that are shared among processes running on different network nodes. For in-

stance, Linda [ACG86] allows applications to insert objects into n-adas. Objects

within a n-ada are accessible by all processes in the system. A similar approach

is taken in Orca [Bal90], which defines a programming language that allows the

creation of shared objects and remote processes.

Heterogeneity has been also considered in software DSM systems [BF88,

ZSM90]. These works mainly deal with different endianisms, data type repre-

sentations and machines running different operating systems.

2.5 Operating Systems

Chapter 7 in this dissertation presents a novel execution model to integrate

accelerators in the operating system (OS). Previous research on OS support

for heterogeneous systems focuses on policies to manage the different proper-

ties (e.g., memory access latency) of heterogeneous processors and to manage

resource sharing (e.g., shared caches in many-core processors). The MIT ex-

okernel [EKO95] supports heterogeneity by exporting the hardware diversity

to user-level applications. The Infokernel [ADADB+03] supports hardware di-

versity by implementing abstractions that export the internal OS kernel state

to user-level. This abstractions might be used by programmers to implement

application-specific policies. The Infokernel assumes that all processors in the

system belong to the same process type (e.g., all processors can execute OS

kernel code).

The multikernel model [BBD+09] modifies the user process abstraction to be

a collection of dispatcher objects, one on each core on which it might execute.

The multikernel model also assumes that all processors in the system are capable

of executing OS kernel code (i.e., object dispatchers). This assumption does

not hold in most current heterogeneous systems. For instance, the IBM Cell

Synergistic Processing Elements, reconfigurable logic in FPGAs, and GPUs can

only execute user-level code.

OS support for reconfigurable hardware has been an active research field [Bre96,

WK01, WP03, KL08]. This research mostly investigates reconfigurable logic

placement and virtualization and assumes an execution model where accelera-

tors are abstracted as I/O devices.

The IBM Cell processor is currently supported by the Linux kernel [Ber05].

IBM Cell Synergistic Processing Elements are abstracted as execution threads

14



within the user process. This approach requires multi-threading to use acceler-

ators, which harms programmability.

The IBM BlueGene/L OS also handles the heterogeneity of the underlying

hardware. The BlueGene/L machine is formed by compute and I/O nodes, in-

terconnected in a regular topology. The Blue Gene/L OS abstracts the machine

in psets, which consist of one I/O node and a collection of compute nodes. A

pset maps to several user processes, each one running on an processor of the

compute nodes and one user process running in the I/O node. This latter user

process is the only one allowed to perform I/O operations [GBC+05]. The IBM

Blue Gene/L OS targets supercomputing environments, designed to efficiently

parallel Message Passing Interface (MPI) applications.

MOSIX [BL85] is a single image operating system that allows user processes

to migrate between nodes of a computer network. The Sprite network operating

system also implements a user process migration mechanism [DO99]. Process

migration has been also implemented in many distributed operating systems,

such as Amoeba [TvRvS+90], Mach [MZDG93] and Chorus [RAA+88]. Process

migration has been a quite active research area, and the reader is referred to

the survey from Milojicic et. al. [MDP+00] for further information.

15



16



Chapter 3

Reference Hardware and
Software Environment

3.1 Reference CPU – Accelerator Architecture

The target of this thesis are coarse-grained massively-parallel accelerators sys-

tems. For the sake of simplicity, the term accelerator is used to refer to this

kind accelerators in the remaining of this dissertation.

Figure 3.1: Reference Single-Accelerator Architecture

Figure 3.1 shows the base single-accelerator system assumed in this disser-

tation. The accelerator includes its own local memory and it is connected to

the CPU cores through a PCIe bus. Additional accelerators can be connected

to the PCIe bus to build a multi-accelerator system.

The base architecture in Figure 3.1 is currently implemented in most desk-

top systems that include a GPU card. There are examples of commercially

available desktop computers including up to four GPU cards. The RoadRun-

ner supercomputer [BDH+08] also implements the system architecture adopted

in this dissertation. Figure 3.2 shows the architecture of a single RoadRunner

node; The IBM LS21 BladeCenter includes two AMD Opteron chips, connected

through a HyperTransport link. Two I/O Hubs, are attached each one to an

AMD Opteron chip. Each I/O Hub in the LS21 BladeCenter and one IBM QS22

BladeCenter are connected through a PCIe bus. Notice that in the RoadRun-

17



Figure 3.2: Architecture of a compute node of the RoadRunner supercomputer

ner supercomputer, QS22 BladeCenters are used as accelerators and the Power

Processing Unit of the PowerXCell chips is only used to handle data transfers

between QS22 and LS21 BladeCenters. This is in contrast with an approach

taken, for instance, in the Sony PS/3 where the IBM Cell chip is a full hetero-

geneous system formed by one on-chip CPU (i.e., Power Processing Unit) and

up to six medium-grained accelerators (i.e., Synergistic Processing Elements).

The approach taken in the RoadRunner supercomputer is also adopted in this

dissertation.

This dissertation assumes that CPUs include on-chip cache memories and

Memory Management Units (MMU) that provides both memory protection and

virtualization. This dissertation assumes simple accelerators without virtual

memory and protection. Moreover, the reference architecture assumes that ac-

celerators are not capable of performing I/O operations. However, accelerators

might delegate the execution of these operations to CPUs using interrupts: the

accelerator sends an interrupt to the CPU, which is handled by the operating

system, to request I/O operations.

The base architecture assumed in this dissertation has two key properties:

• Distributed memory: CPUs and accelerators use memories that are phys-

ically separated.

• Non-coherent memory: memory accesses to memory elements that are not

physically attached to the processing element (i.e., a CPU or an accelera-

tor) do not trigger any coherence action.

Note that both distribution and non-coherency, are orthogonal properties. For

instance, commodity systems based on Intel GMA, AMD Fusion, and NVIDIA

ION chips connects both, GPU and general purpose processors to system mem-

ory. However, memory accesses from different processing elements do not trigger

any coherence action. The orthogonality of these properties allows a separate

analysis of each property.

18



3.1.1 Distributed Memory

Accelerators and general purpose processors impose very different requirements

on memory controllers. CPUs are designed to minimize single-thread execution

latency and typically implement some form of strong memory consistency (e.g.,

sequential consistency in MIPS CPUs). Accelerators design tries to maximize

multi-thread throughput and typically implement weak forms of memory consis-

tency (e.g., Rigel implements weak consistency [KJJ+09]). Memory controllers

for general purpose processors tend to implement narrow memory buses (e.g.,

192 bits for the Intel Core i7) compared to data parallel accelerators (e.g., 512

bits for the NVIDIA GTX280 GPU) to minimize the memory access time. Re-

laxed consistency models implemented by accelerators allow memory controllers

to serve several requests in a single memory access. Strong consistency models

required by CPUs do not offer the same freedom to rearrange accesses to system

memory. Memory access scheduling in the memory controller has also different

requirements for general purpose processors and accelerators (i.e., latency vs.

throughput). CPU – accelerator systems typically attach CPUs and accelerators

to separate memories to meet the different aforementioned requirements. Sys-

tems where CPUs and accelerators share the same physical memory (i.e., IGP

systems) typically deliver lower performance than those systems using separate

memories.

Figure 3.3 illustrates the need for a separate accelerator memory to accom-

plish high performance. This figure shows an estimation of the required mem-

ory bandwidth for different values of Instructions Per Cycle (IPC) in a set of

the NASA Parallel Benchmarks. Interconnection fabrics used in most modern

CPUs (i.e., Hyper-transport and QPI) limit the maximum IPC achievable in all

benchmarks. For instance, QPI only allows a value of IPC higher than 40 in

BT. However, the bandwidth delivered by the NVIDIA GTX295 GPU allows

IPC values of up to 100 for all benchmarks but UA.

3.1.2 Non-coherent Memory

Application phases amenable to be implemented by accelerators typically op-

erate over large datasets and, therefore, accelerators typically perform a high

number of concurrent memory accesses while executing. Fully coherent CPU

– accelerator systems might potentially produce high memory coherence traffic

that would degrade the overall system performance. For instance, this situation

occurs whenever data structures are sequentially accessed by general purpose

processors and accelerators. Accesses from the CPU will bring data to the CPU

cache memory. Consequent write accesses from the accelerator to this data will

require coherence traffic to invalidate cache-lines at the CPU containing data

being modified by the accelerator.

Fully coherent CPU – accelerator systems require both, CPUs and accel-

erators, to implement the same memory coherence protocol. Hence, it would

19



100 MBps

1 GBps

10 GBps

100 GBps

 0  20  40  60  80  100

PCIe

QPI

HyperTransport

NVIDIA GTX295 Memory

B
a
n
d
w

id
th

IPC

bt
ep
lu

mg
ua

Figure 3.3: Estimated memory bandwidth for different values of instruction per
cycle in some NASA parallel benchmarks

be highly difficult, if not infeasible, to use the same accelerator (e.g., a GPU)

in systems based on different CPU architectures. This constraint would im-

pose a significant economic penalty to accelerator manufacturers. Furthermore,

full system coherence require accelerators to implement the coherence protocol,

which would consume silicon area currently devoted to processing units and,

thus, reduce the benefit of using accelerators.

Most commercially available CPU – accelerator systems do not keep coher-

ence between system and accelerator memories. For instance, system memory

is shared between the CPU and the accelerator in IGP systems based on Intel

GMA, AMD Fusion, or NVIDIA ION chips. However, memory accesses from

the GPU do not produce any coherence traffic to access the CPU cache hierarchy

to check for an updated copy of the data being accessed.

Non-coherent accelerator memory requires the contents of CPU cache mem-

ories have to be flushed before transfers between system and accelerator mem-

ories. As a result, the application working-set has to be brought back from

system memory to cache memories after data transfers.

3.2 Reference Programming Model

This dissertation assumes a programming model where accelerators are encap-

sulated as function calls in the application code. This functions executed by

accelerators are called kernels. This programming model is similar to NVIDIA

CUDA [NVI09], OpenCL [Mun09], future Intel Larrabee [SCS+08] graphics pro-

cessors, ATI CMT [ATI06] and the RoadRunner supercomputer [BDH+08].

Listing 3.1 shows a simple example of a code that calculates the zeros of a

generic function and illustrates the programming model used in this dissertation.

The execution flow for the code at Listing 3.1 is shown in Figure 3.4. First,

20



Figure 3.4: Execution flow for the code in Listing 3.1

1 int main(int arc , char *argv [])

2 {

3 int i;

4 float *x, *accX;

5 float *y, *accY;

6 dim3 dimGrid , dimBlock;

7
8 /* Allocate and initialize input data */

9 x = malloc(SIZE * sizeof(float ));

10 for(i = 0; i < SIZE; i++) x[i] = i * DELTA;

11 accMalloc (&accX , SIZE * sizeof(float ));

12 accMemcpy(accX , x, SIZE * sizeof(float ));

13
14 /* Allocate output data */

15 y = malloc(SIZE * sizeof(float ));

16 accMalloc (&accY , SIZE * sizeof(float ));

17
18 /* Evaluate function at GPU */

19 evaluate(accY , accX);

20
21 /* Read output data and check for zeros */

22 accMemcpy(y, accY , SIZE * sizeof(float ));

23 for(i = 0; i < SIZE; i++)

24 if(y[i] == 0) printf("Function has a zero at %f\n", i * DELTA);

25
26 /* Free memory */

27 accFree(accX);

28 accFree(accY);

29 free(x);

30 free(y);

31 }

Listing 3.1: Example of the programming model used in this dissertation

the CPU starts executing the code until it reaches line 19 (evaluate(accY,

accX);), where kernel execution at the accelerator is invoked as a function call.

The kernel call triggers the execution and the accelerator and waits until the

kernel execution is done. When the kernel finishes executing at the accelerator,

the remaining code (lines 21 to 31) is executed sequentially by the CPU.

This programming model exports to the programmer the existence of two

separate virtual address spaces for system and accelerator memories, influencing

the application code in two different ways. First, data structures accessed by

the accelerator are allocated twice, one per address space. Second, consistency

between address spaces is explicitly managed through memory copy routines.

For instance, in Listing 3.1, system memory is allocated for the accelerator input

data at line 9, and accelerator memory is allocated for the same data structure

21



1 evaluate <<<dimGrid , dimBlock >>>(accY , accX);

Listing 3.2: Example of CUDA code

at line 11. This double allocation requires two separate variables (float *x,

*accX;) to keep the data structure memory address in system and accelerator

memory respectively. Analogously, two variables (float *y, *accY;) are used

to reference the accelerator output data, which is also double allocated (lines 15

and 16). Furthermore, allocated data structures must be released at both system

and accelerator memory (lines 27 – 30). Listing 3.1 also illustrates explicit

consistency management. The accelerator input data (*x) is initialized in the

for loop at line 10. However, only system memory is modified by this loop,

and, therefore, a explicit memory copy is required before the kernel call (line

12) to ensure that the accelerator memory contains the input data. Similarly,

data produced by the accelerator is only written to accelerator memory during

the kernel execution. Hence, a explicit copy from GPU to system memory is

required (line 22) to ensure that the loop at lines 23 and 24 access the data

produced by the accelerator.

3.3 NVIDIA R© CUDATM

The software proposals done by this dissertation (Chapters 6 and 7) target

NVIDIA GPUs (i.e., accelerators) and the CUDA programming model. The

execution and memory model of NVIDIA CUDA is quite similar to the refer-

ence programming model previously described. However, kernel invocation in

NVIDIA CUDA uses different semantics. For instance, Listing 3.2 shows an

example of a kernel call in CUDA. Kernel calls in CUDA take two additional

parameters (<<<dimGrid, dimBlock>>>) to set up the thread organization ex-

ecuting the kernel.

The specification of CUDA covers concepts ranging from the execution model

on GPUs to the interface between CPUs and GPUs. We refer the reader to the

NVIDIA CUDA documentation for a more comprehensive description of this

programming model [NVI09]. Only the specific concepts that are used in the

rest of the paper will be highlighted in this section.

3.3.1 Multi-GPU Support

CUDA allows applications to execute kernels in several GPUs through CUDA

contexts. A CUDA context effectively represents a GPU device that is binded

to an application execution thread. Kernel invocations and memory copy oper-

ations performed by the application thread will be done over the device asso-

ciated to the CUDA context. Application threads can request the creation of

new contexts, but CUDA imposes the following constrains:

22



Processor Memory Subsystem

Freq: 5GHz L1 ICache: 16K (4-way, 1 port)
Fet/Iss/Ret width: 4/4/5 L1 DCache:16K (4-way, 1 port)
LdSt/Int/FP units: 4/4/3 L1 Hit/Miss Delay: 2/13
RAS: 32 L2 Cache: 1MB (16-way, 2 ports)
BTB: 2K entries, 2-way assoc. L2 Hit/Miss Delay: 10/105
Branch pred: ITLB entries: 64 (4-way)
bimodal size: 16K entries DTLB ent: 64 (4-way)
gshare-11 size: 16K entries Main Mem: 271
I-window: 92 Acc Mem Delay: 271
ROB size: 176 Acc Link Channels: 16
Int regs: 96 Acc Link Latency: 1
FP regs: 80
Ld/St Q entries: 56/56
IMSHR/DMSHR: 4/16

Table 3.1: Simulation parameters. Latencies shown in processor cycles repre-
senting minimum values.

• An application thread can only have one active CUDA context. When-

ever an application thread attaches a new CUDA context, the old context

becomes inactive.

• A CUDA context can only be active in one application thread. Attaching

a CUDA context that is attached to other application thread will fail.

3.3.2 CUDA Streams

CUDA supports concurrent execution of kernels at the GPU and DMA transfers

from and to GPU memory by means of streams. A CUDA stream is a sequence

of commands that execute in order, but different CUDA streams might execute

their commands out of order with respect to one another or concurrently. Thus,

for kernel execution and DMA transfers to happen simultaneously, they must

belong to different CUDA streams. Applications might overlap kernel execution,

data transfers from system to GPU memory and from GPU to system memory

using three streams. In a multi-GPU system, a CUDA stream is associated to

the CUDA context where was created. Hence, all CUDA streams that belong

to the same CUDA context will execute all actions (i.e., kernel calls and data

transfers) in the GPU associated to such CUDA context.

3.4 Evaluation Methodology

3.4.1 Simulation Environment

Hardware modifications proposed in Chapter 5 are evaluated using execution-

driven simulations. The architecture of the simulated CPU is shown in Table 3.1.

The simulated DMA controller can read data from the L2 cache if present and

from main memory otherwise. DMA transfers use burst reads and writes of 128

bytes in memory blocks of up to 4KB.

The evaluation is performed using a cycle-accurate simulator based on SESC [RFT+10],

which is modified to incorporate DMA transfers, accelerator execution and the

23



System
CPU GPU

Processor Memory Processor Memory

GTX285
2x AMD Opteron 4x 2 GB 2x GTX285 2x 1 GB

2222 3 GHz DDR2 30 SM GDDR3
2MB L2 667 MHz 1476 MHz 1242 MHz

C870
2x Intel Xeon 4x 2 GB 2x C870 2x 1.5 GB
E5420 2.5 GHz DDR2 16 SM GDDR3

6MB L2 667 MHz 1350 MHz 800 MHz

Table 3.2: Target systems used in the evaluation

hardware modifications proposed in this dissertation. The simulated CPU code

is compiled using gcc version 3.4 with the -O3 flag to MIPS binaries.

Functional and timing simulation of the code executed by the CPU is per-

formed. The code executed by the accelerator is natively executed in a NVIDIA

GPU, so only CPU execution is considered. Total application execution time

is estimated using the contribution of accelerator execution time to the to-

tal application execution time. This contribution is obtained by executing the

benchmark on the systems described in the following section.

3.4.2 Execution Environment

Experiments in Chapters 6 and 7 are executed in the 64-bit x86 systems outlined

in table 3.2. All machines run a GNU/Linux system, with Linux kernel 2.6.32

and NVIDIA driver 195.36.15. Benchmarks are compiled using GCC 4.3.4 for

CPU code and NVIDIA CUDA compiler 3.0 for GPU code.

Execution times are taken using the gettimeofday() system call, which

offers a microsecond granularity. All experiments are executed 2048 times, and

samples that are two times higher than the arithmetic average are considered

outliers and discarded. All results use the arithmetic average value of the filtered

results, and the standard deviation is used as an estimation of the error range.

GTX285, in Table 3.2, is a commodity GPU system typically found in high-

end desktop systems; C870, in Table 3.2, is a GPU system designed for high-

performance environments. The GPUs in GTX285 are from a newer generation

than the GPUs included in C870. Hence, some hardware features , such as

concurrent DMA transfers and GPU execution, are only available on GTX285.

Moreover, the peak performance of each GPU in GTX285 is 1062 GFLOPS,

while each GPU is C870 reaches up to 518 GFLOPS. The peak performance

accomplished by the systems has little impact over the experimental results

presented in this dissertation because only data communication mechanisms

are studied. These mechanisms mainly depend on the available bandwidth

between system and accelerator memory in each system. Figure 3.5 shows the

effective data transfer bandwidth between CPU (host) and GPU (device) for

different data transfer sizes. Both systems accomplish a maximum data transfer

bandwidth for large data sizes. Moreover, in both cases, there is a significantly

hop in the effective accomplished bandwidth when the data transfer size goes

24



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

4
K

B

8
K

B

1
6
K

B

3
2
K

B

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
0
2
4
K

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

G
b
p
s

Size in bytes

GTX285 Input Bandwidth
GTX285 Output Bandwidth

C870 Input Bandwidth
C870 Output Bandwidth

Figure 3.5: GPU bandwidth for two different GPUs (GTX285 and C870)

from 1MB to 2MB. The available bandwidth in GTX285 is smaller than in

C870, so the impact of CPU – accelerator data transfers in this system is larger.

3.5 The Parboil Benchmark Suite

The Parboil benchmark suite is a set of benchmarks designed to measure the

performance of heterogeneous systems formed by general purpose processors and

GPUs [IMP]. The Parboil benchmark suite is used to evaluate most proposed

systems in the remaining of this dissertation. This section provides a brief

description of the Parboil benchmark suite, an information that is common to

most of the remaining of this dissertation.

3.5.1 Benchmark Description

MRI-Q

Magnetic Resonance Imaging Q (MRI-Q) is a computation of a matrix Q, rep-

resenting the scanner configuration, used in a 3D magnetic resonance image

reconstruction algorithm in non-Cartesian space.

MRI-FHD

Magnetic Resonance Imaging FHD (MRI-FHD) is a computation of an image-

specific matrix FHd , used in a 3D magnetic resonance image reconstruction al-

gorithm in non-Cartesian space.

25



Benchmark
Host to Device Device to Host

Total (MB) # Transfers Total (MB) # Transfers

MRI-Q 3.05 7 2.00 3

MRI-FHD 3.07 11 2.02 4

CP 0.61 10 1.00 1

SAD 0.05 1 8.49 1

TPACF 4.73 2 0.03 1

PNS 0.00 0 0.02 224

RPES 61.86 2 4.15 1

Table 3.3: Data transfers in the Parboil benchmark suite

CP

Coulombic Potential (CP) computes the coulombic potential at each grid point

over on plane in a 3D grid in which point charges have been randomly dis-

tributed. Adapted from ‘cionize’ benchmark in VMD.

SAD

Sum of Absolute Differences (SAD) is the sum of absolute differences kernel,

used in MPEG video encoders. Based on the full-pixel motion estimation algo-

rithm found in the JM reference H.264 video encoder.

TPACF

Two Point Angular Correlation Function (TPACF) is an equation used here as

a way to measure the probability of finding an astronomical body at a given

angular distance from another astronomical body.

PNS

Petri Net Simulation (PNS) implements a generic algorithm for Petri net sim-

ulation. Petri nets are commonly used to model distributed systems.

RPES

Rys Polynomial Equation Solver (RPES) calculates 2-electron repulsion inte-

grals which represent the Coulomb interaction between electrons in molecules.

3.5.2 Characterization

For the purposes of this dissertation, the characterization of data transfers be-

tween the CPU and the GPU is the most important factor. Table 3.3 summa-

rizes the data transfers between CPU (host) and GPU (device) for all Parboil

benchmarks obtained using application profiling.

Parboil benchmarks might be categorized into small-size transfer bench-

marks (PNS) and large-size transfer benchmarks (MRI-Q, MRI-FHD, and RPES).

26



SAD, and TPACF fit into both categories. SAD performs small-size data trans-

fers from CPU to GPU, but large-size transfers from GPU to CPU. Analogously,

TPACF performs large-size data transfers from CPU to GPU and small-size

data transfers in the other direction. Finally, CP is a medium-size transfer

benchmark, where data transfers are of moderate size in both directions. All

benchmarks, but PNS, perform few data transfers between CPU and GPU. PNS

requires 224 data transfers between the GPU and CPU.

The ratio of transferred data size over the number of data transfers can be

combined to estimate the efficiency of data transfers. The larger this ratio, the

more efficient data transfers are performed. SAD, TPACF, and RPES are the

benchmarks that larger data transfers perform and, therefore, best utilize the

PCIe bandwidth. PNS and CP, on the other hand, perform small data transfers

so data transfer bandwidth accomplished is relatively low.

27



28



Chapter 4

Programmability of
Heterogeneous Parallel
Systems

4.1 Introduction

This chapter discusses programmability issues of heterogeneous parallel systems

from the application programmer’s perspective. The two major programmabil-

ity problems present in current heterogeneous parallel systems identified in this

chapter are separated CPU – accelerator memories, and disjoint virtual ad-

dress spaces for CPUs and accelerators. The former harms programmability by

requiring application programmers to explicitly copy data structures between

system and accelerator memories. CPU – accelerator communication through

memory copy routines prevents by-reference parameter passing to accelerator

calls, requiring all parameters to be passed by-value. Moreover, this change in

the parameter passing semantics might harm the application performance due

to the cost of data marshalling (i.e., collecting the data to be copied) and the

memory copy. Disjoint virtual system and accelerator address spaces increase

the complexity of the code because data structures are referenced by different

virtual memory addresses (i.e., pointers) in CPU and accelerator code. Such a

constrain might also introduce performance penalties in the accelerator call.

This chapter first presents three different models for data transfers between

accelerator and system memory: per-call, double-buffered, and accelerator-

hosted. The first two models are currently in use and assume separate CPU

and accelerator memories. Hence, in these two models data communication

between CPU and accelerator happens through system and accelerator mem-

ories copy routines. These memory copy routines present a trade-off between

programmability and performance in these two models. The third model, accel-

erator-hosted, is a contribution of this thesis. In this model accelerator memory

is accessible from the CPU code and data structures required by the accelerator

are only hosted in accelerator memory. The accelerator-hosted model might

increase the accelerator memory capacity requirements but greatly improves

programmability of heterogeneous parallel systems. This chapter shows how

the accelerator-hosted model allows programmers to write simple CPU code for

heterogeneous parallel systems that resembles to the code they would produce

for a homogeneous (i.e., without accelerators) system. Hardware and software

implementation alternatives for this model are presented in Chapters 5 and 6

29



respectively.

Finally, the implications of a unified virtual address space over the accel-

erator code are presented. This chapter argues that a unified virtual address

space that includes both, system and accelerator memories, allows accelerator

code to be written in a more straightforward way, eases the task of using data

structures with embedded pointers (e.g., linked-lists) in the application code,

and allows for potential performance gains. This chapter also outlines potential

hardware and software approaches to build this unified virtual address space

from physically separated system and accelerator memories.

4.2 Accelerator Data Transfer Models

A data transfer model defines the exchange of data between accelerators and

CPUs during application execution. This dissertation identifies three differ-

ent data transfer models. The first model, per-call, is the simplest among the

three, but achieves the lowest performance. The second model, double-buffered,

achieves higher performance than the first model, but requires high level of

programming effort. The third model, accelerator-hosted, achieves the high-

est level of programmability among the three models and allows for potential

performance gains.

4.2.1 Preliminaries

Data transfer models are illustrated using a linked-list sorting benchmark code.

The sorting code implements the Batcher odd-even merge sort described by

Satish et. al. [SHG09]. This sorting algorithm takes a N-element unordered

vector of key/value pairs as input, and produces an ordered N-element vector

of key/value pairs. The sorting benchmark execution is divided in three main

stages:

• Initialization. The linked-list is initialized with random values. This phase

is implemented in a completely sequential way.

• Sorting. The implementation of this function in an homogeneous system

(i.e., without accelerators) is shown in Listing 4.1. First, a vector of key-

value pairs is extracted from the linked-list sequentially in a marshalling

process (lines 8 – 12). This vector is passed as input to the sorting func-

tion (line 15), which produces an ordered key-value vector. The output

vector is finally used to re-build the output ordered linked-list during a

unmarshalling process (lines 18 – 23).

• Checking. The linked-list is transversed to check for correctness in a se-

quential way.

The initialization and checking phases are inherently sequential processes

that are executed in the CPU. These two stages are common to all discussed

30



1 template <typename S>

2 S *sort(S *ptr , size_t size)

3 {

4 /* Allocate system and accelerator memory */

5 pair <float , S> *buffer = malloc(size * sizeof(pair <float , S>));

6
7 /* Marshall: Build the input vector from the linked list */

8 for(int i = 0; i < size; i++) {

9 buffer[i]. value =ptr ->weight;

10 buffer[i].ptr = ptr;

11 ptr = ptr ->next;

12 }

13
14 /* Call sorting function in the accelerator */

15 oddEvenMergeSort <float , S, pair <float , S> >(buffer , size);

16
17 /* Unmarshall : Re -build the linked list from the output buffer */

18 S *ptr = buffer [0]. ptr;

19 for(int i = 1; i < size; i++) {

20 ptr ->next = buffer[i].ptr;

21 ptr = buffer[i].ptr;

22 }

23 ptr ->next = NULL;

24
25 /* Release memory */

26 free(buffer );

27
28 return ptr;

29 }

Listing 4.1: Linked-list sorting using only the CPU

data transfer models. The sorting stage is composed by both kinds of code,

sequential and parallel, and, therefore, it might be executed by both the CPU

and the accelerator.

4.2.2 Per-Call Data Transfer Model

The per-call data transfer model uses the accelerator memory to hold the data

required by the following call to the accelerator. This model requires enough

accelerator memory to store input and output data structures for each kernel

call. In the linked-list sorting example, the sorting kernel uses a single input-

output vector of key-value pairs, and, therefore, only this data structure is

hold in the accelerator memory. In this example, sorting a 16-million element

linked-list with 4-byte key/value fields requires a total of 122 MB of accelerator

memory.

Figure 4.1(a) shows the flowchart for the sorting function in the linked-list

example, whose source code is shown in Listing 4.2. In this function, the code

at the CPU first allocates (lines 5 – 8) and builds (lines 11 – 15) the vector of

key/value pairs traversing the linked list (marshalling). This process requires

accessing each element in the list, which is a sequential process due to the

existent data dependency between accesses to two consecutive elements in the

list. Then, the input vector is transferred from system memory to the accelerator

memory (lines 18 – 19), the sorting kernel at the accelerator is called, and the

31



1 template <typename S>

2 S *sort(S *ptr , size_t size)

3 {

4 /* Allocate system and accelerator memory */

5 pair <float , S> *buffer =

6 (pair <float , S> *) malloc(size * sizeof(pair <float , S>));

7 pair <float , S> *device = NULL;

8 accMalloc ((void **)& device , size * sizeof(pair <float , S>));

9
10 /* Marshall: Build the input vector from the linked list */

11 for(int i = 0; i < size; i++) {

12 buffer[i]. value =ptr ->weight;

13 buffer[i].ptr = ptr;

14 ptr = ptr ->next;

15 }

16
17 /* Copy the input buffer to the accelertor memory */

18 accMemcpy(device , buffer ,

19 size * sizeof(pair <float , S>), memcpyHostToAcc );

20
21 /* Call sorting function in the accelerator */

22 accOddEvenMergeSort <float , S, pair <float , S> >(device , size);

23
24 /* Transfer the output buffer to system memory */

25 accMemcpy(buffer , device ,

26 size * sizeof(pair <T, S>), memcpyAccToHost );

27
28 /* Unmarshall : Re -build the linked list from the output buffer */

29 S *ptr = buffer [0]. ptr;

30 for(int i = 1; i < size; i++) {

31 ptr ->next = buffer[i].ptr;

32 ptr = buffer[i].ptr;

33 }

34 ptr ->next = NULL;

35
36 /* Release memory */

37 free(buffer );

38 accFree(device );

39
40 return ptr;

41 }

Listing 4.2: Linked-list sorting in the per-call data transfer model

CPU waits for the accelerator to finish executing (line 22). Once the accelerator

is done, the CPU code transfers the ordered output vector from accelerator to

system memory (lines 25 – 26) and uses this data to rebuild (lines 29 – 34)

the ordered linked-list (unmarshalling). This latter process also presents a data

dependency between the access to two consecutive elements in the list, so it is

executed at the CPU. Finally, the vector of key-value pairs is released (lines 37

– 38).

Figure 4.1(a) shows two I/O operations: a data transfer from system to ac-

celerator memory before executing the kernel (lines 18 – 19), and a data transfer

from accelerator to system memory after the kernel execution (lines 25 – 26).

These two data transfers, which are not present in the CPU-only code, force

accelerator kernel calls to follow a by-value calling convention. Hence, changes

to the parameters by the kernel code have no visibility in the caller’s scope.

32



(a) Flowchart for the
sorting function in the
linked-list sorting exam-
ple when the per-call
data transfer model is
used

(b) Flowchart for the sorting function in
the linked-list sorting example when the
double-buffered data transfer model is used

Figure 4.1: Flowchart for sorting function in the per-call and double-buffered
data transfer models

By-value calling convention might reduce the benefit of using accelerators. For

instance, in the linked-list sorting example, building the output ordered linked-

list from the output ordered vector of key/value pairs is a highly parallel task.

However, by-value parameter passing would require transferring the whole in-

put list from system to accelerator memory before the accelerator call, and

transferring the whole output list from accelerator to system memory on the

kernel return. The cost of these two data transfers voids the benefit of using

the accelerator and thus, the output linked-list is built by code executed in the

CPU. Another effect of by-value parameter passing is that the vector of key-

value vector is allocated (lines 5 – 8) and released (lines 37 – 38) twice, once

in system memory and once in accelerator memory. This is in contrast to the

CPU-only code, where only one allocation and release call is necessary. This

double allocation is discussed later on in this chapter.

Data transfers in the per-call model happen just after the CPU has finished

the marshalling process and just before the accelerator executes the kernel.

During the data transfer, both the CPU and the accelerator, are sitting idle,

waiting for the data to be transferred. This data transfer time might represent

a significant amount of the total execution time. For instance, in the linked-list

sorting example, the data transfer times from and to system and accelerator

memory is 4.11% of the benchmark execution time.

33



4.2.3 Double-Buffered Data Transfer Model

The double-buffered model aims to overlap data transfer and computation in

the CPU and/or the accelerator to mitigate the performance overheads of by-

value parameter passing. In the linked-list sorting benchmark, the double-

buffered model has the same accelerator memory capacity requirements: the

input/output vector of key/value pairs. In this example, a single call to the

accelerator is done and, hence, only CPU computation and data transfers are

overlapped. However, to overlap data transfers and accelerator computations

the double-buffer model requires twice the accelerator memory capacity as the

per-call model.

Figure 4.1(b) shows the flowchart for the sorting function in the linked-list

example when the double-buffered model is used, as in Listing 4.3. In this

Figure, the linked-list is tailed (bucket elements per tile in Listing 4.3) and the

marshalling (lines 14 – 28) and unmarshalling (lines 48 – 51) are implemented

for each tile. Hence, an input vector tile is transferred (lines 21 – 22) while the

CPU is producing the following vector tile.

The overlapping of data transfers and computation improves application

performance at the cost of harming programmability. For instance, for a 16

million item linked-list, the double-buffered liked-list sorting benchmark is 1.14X

faster than the per-call version of the same code. However, the code using a

double-buffered model in Listing 4.3 is far more complex than the code using the

per-call model in Listing 4.2. Moreover, the source code using a double-buffered

model hardly resembles to a code not using accelerators. The main difference

between the double-buffer and the CPU-only implementations are:

• The vector of key/value pairs is allocated (lines 5 – 8) and released (lines

60 – 61) twice in double-buffered instead of once, as occurs in the per-call

model.

• The marshalling (lines 14 – 18) and unmarshalling (lines 48 – 51) loops

are part of two different outer loop, where the process is done in tiles.

• Asynchronous data transfer functions (lines 21 – 22 and 42 – 43) are needed

to transfer memory between system and accelerator memories.

• Synchronization calls (lines 26 and 54) are needed to ensure that asyn-

chronous data transfers have finished.

4.2.4 Accelerator-Hosted Data Transfer Model

The accelerator-hosted model is the model adopted in this dissertation. In this

model, all data required by any accelerator call is hosted in the accelerator

memory. In the linked-list sorting benchmark, the accelerator-hosted model re-

quires both, the input linked-list and the input vector of value/key values to

be hosted by the accelerator memory, which means larger accelerator memory

34



1 template <typename S>

2 S *sort(S *ptr , size_t size)

3 {

4 /* Allocate system and accelerator memory */

5 pair <float , S> *buffer =

6 (pair <float , S> *) malloc(size * sizeof(pair <float , S>));

7 pair <float , S> *device = NULL;

8 accMalloc ((void **)& device , size * sizeof(pair <float , S>));

9
10 /* Marshall and transfer data in tiles of bucket elements */

11 const size_t bucket = 256 * 1024;

12 for(size_t offset = 0; offset < size; offset += bucket) {

13 /* Marshall: Build the input vector from the linked list */

14 for(int i = 0; i < backet; i++) {

15 buffer[i + offset ].value =ptr ->weight;

16 buffer[i + offset ].ptr = ptr;

17 ptr = ptr ->next;

18 }

19
20 /* Copy the input buffer to the accelertor memory */

21 accMemcpyAsync(device + offset , buffer + offset ,

22 bucket * sizeof(pair <float , S>), memcpyHostToAcc );

23 }

24
25 /* Wait for the last data transfer */

26 accSynchronize ();

27
28 /* Call sorting function in the accelerator */

29 accOddEvenMergeSort <float , S, pair <float , S> >(device , size);

30
31 /* Unmarshall and transfer data in tiles of bucket elements */

32 S *ptr = buffer [0]. ptr;

33
34 /* Transfer the first tile to system memory */

35 accMemcpyAsync(buffer , device ,

36 bucket * sizeof(pair <T, S>), memcpyAccToHost );

37
38 for(size_t offset = 0; offset < size; offset += bucket) {

39 /* Transfer the next tile to system memory */

40 size_t next = offset + bucket;

41 if(size < next) {

42 accMemcpyAsync(buffer + next , device + next ,

43 bucket * sizeof(pair <T, S>), memcpyAccToHost );

44 }

45
46 /* Unmarshall : Re -build the linked list from the

47 output buffer */

48 for(int i = 1; i < bucket; i++) {

49 ptr ->next = buffer[i + offset ].ptr;

50 ptr = buffer[i + offset ].ptr;

51 }

52
53 /* Wait for the next buffer tile */

54 accSynchronize ();

55 }

56
57 ptr ->next = NULL;

58
59 /* Release memory */

60 free(buffer );

61 accFree(device );

62
63 return ptr;

64 }

Listing 4.3: Linked-list sorting in the double-buffer data transfer model

35



1 template <typename S>

2 S *sort(S *ptr , size_t size)

3 {

4 /* Allocate system and accelerator memory */

5 pair <float , S> *buffer = NULL;

6 accMalloc ((void **)& buffer , size * sizeof(pair <float , S>));

7
8 /* Marshall: Build the input vector from the linked list */

9 for(int i = 0; i < size; i++) {

10 buffer[i]. value =ptr ->weight;

11 buffer[i].ptr = ptr;

12 ptr = ptr ->next;

13 }

14
15 /* Call sorting function in the accelerator */

16 accOddEvenMergeSort <float , S, pair <float , S> >(accPtr(buffer), size);

17
18 /* Unmarshall : Re -build the linked list from the output buffer */

19 S *ptr = buffer [0]. ptr;

20 for(int i = 1; i < size; i++) {

21 ptr ->next = buffer[i].ptr;

22 ptr = buffer[i].ptr;

23 }

24 ptr ->next = NULL;

25
26 /* Release memory */

27 accFree(buffer );

28
29 return ptr;

30 }

Listing 4.4: Linked-list sorting in the accelerator-hosted data transfer model

capacity requirements than in the per-call and double-buffered models. How-

ever, as discussed in Chapter 3, accelerator memory capacity is increasing, so

the extra memory requirements of the accelerator-hosted model are easily met

by current accelerators.

Figure 4.2 shows the flowchart for the linked-list sorting example when the

accelerator-hosted model is used, as in Listing 4.4. This code resembles to the

CPU-only version of the code in Listing 4.1. The accelerator-hosted model only

differs from the CPU-only version on the memory allocation (line 6) and release

(line 27) calls, and the sorting function call (line 16). Memory allocation and

release calls in the accelerator-hosted model use special forms to indicate to the

run-time system that the memory must be allocated/released in the accelerator

memory. The accelerator-hosted model allows by-reference parameter passing to

accelerators, but virtual addresses used by the accelerator call might differ from

the virtual addresses used by the CPU. Hence, the call to the sorting function

(line 16) requires translating from system to accelerator addresses (accPtr()

when passing parameters by-reference. This constrain is analyzed in the next

section.

By-reference parameter passing might also improve application performance.

For instance, in the linked-list sorting benchmark in Listing 4.4, if the linked-

list is allocated in accelerator memory, by-reference parameter passing enables

36



Figure 4.2: Flowchart for the sorting function in the linked-list sorting example
when the accelerator-hosted data transfer model is used

implementing an accelerator function to build the output sorted linked list. Such

an implementation process speeds up the unmarshalling process by 215X.

The accelerator-hosted model might greatly penalize the execution in the

CPU because accesses to accelerator-hosted data have to reach the accelera-

tor memory. This performance penalty is addressed in this dissertation using

hardware (Chapter 5) and software (Chapter 6) mechanisms that allow caching

accelerator-hosted data in system memory.

4.3 A Unified Shared Address Space

Chapter 3 argued that separate system and accelerator memories are key for

CPU – accelerator architectures to deliver high performance. Physically sepa-

rated memories typically are implemented as separate system and accelerator

physical address spaces. These two separate physical address spaces are pre-

sented by most commercial programming models (see Chapter 2) as two sep-

arate virtual address spaces to programmers (e.g., host and device memories

in CUDA [NVI09]). Exposing system and accelerator virtual address spaces to

application programmers harms the programmability of CPU – accelerator sys-

tems because duplicated memory references (one per virtual address space) are

needed. This programmability problem can be easily overcome by presenting

application programmers with a unified virtual address space that includes both

accelerator and system memories. This section discusses the programmability

harms due to separate accelerator and system address spaces and benefits of a

unified virtual address space.

4.3.1 The Double-Pointer Problem

DMA-based programming models for heterogeneous parallel systems present

programmers separate system and accelerator address spaces. This situation is

illustrated in Figure 4.3, where disjoint system and accelerator virtual address

spaces require programmers to use different virtual memory addresses to refer

to the same data objects: a system virtual memory address in the CPU code

37



Figure 4.3: Example of disjoint processor – accelerator memory address spaces.
A data object is stored in both address spaces at different virtual memory
addresses.

4 /* Allocate system and accelerator memory */

5 pair <float , S> *buffer =

6 (pair <float , S> *) malloc(size * sizeof(pair <float , S>));

7 pair <float , S> *device = NULL;

8 accMalloc ((void **)& device , size * sizeof(pair <float , S>));

Listing 4.5: Double-pointer requirement of disjoint address spaces

and an accelerator virtual memory address in the accelerator code. These two

virtual system and accelerator memory addresses appear in the source code as

two different variables (pointers in C/C++ code). The need for two pointers

to reference the same data object is referred as the double-pointer problem in

this dissertation. A similar problem also occurs, for instance, on UNIX systems

when two user processes shared memory; the shared memory region is referenced

by different virtual memory addresses by different processes.

Using duplicated-pointers to reference data structures is a quite straightfor-

ward approach when the per-call and the double-buffered data transfer models

are used. These two models require data structures to be copied from system

to accelerator memory and vice versa. Hence, using one pointer to reference

the data object copy in system memory and a different pointer to access the

data object copy in accelerator memory is a consistent approach. Listing 4.5

shows an extract from the sorting function in the linked-list example when the

per-call data transfer model is used1. This code snippet illustrates the usage

of double-pointer when separate system and accelerator address spaces are ex-

ported to programmers. First, the code in Listing 4.5 declares a system memory

pointer (buffer) and allocates a chunk of system memory (line 4 – 5). Then,

an accelerator memory pointer is declared (line 6) and accelerator memory is

allocated (line 7). However, both pointers, buffer and device, reference the

same data object: the input vector of key/value pairs.

The double-pointer problem of disjoint address spaces is mitigated by the

accelerator-hosted data transfer model. When this model is used, the CPU

code only requires a single pointer, which contains a system virtual memory

1The code snippet for the double-buffered model does not significantly differ from the code
in Listing 4.5

38



16 /* Call sorting function in the accelerator */

17 accOddEvenMergeSort <float , S, pair <float , S> >(

18 accPtr(buffer), size);

Listing 4.6: Accelerator-mapped accelerator call example using system to accel-
erator memory translation

1 template <typename T, typename S>

2 __global__ void accUnmarshall(pair <T, S> *buffer , size_t size)

3 {

4 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;

5 if(idx < size - 1) {

6 buffer[idx].device ->device_next = buffer[idx + 1]. device;

7 buffer[idx].device ->system_next = buffer[idx + 1]. system;

8 }

9 }

Listing 4.7: Linked-list sorting in the per-call data transfer model

address. However, code executed in the accelerator accesses data objects us-

ing accelerator virtual memory addresses. Hence, when parameters are passed

by-reference on accelerator calls, system to accelerator virtual memory address

translation has to be done. This memory translation ensures that the acceler-

ator code takes a valid accelerator virtual memory address. Listing 4.6 shows

the relevant sorting function code to illustrate how system memory references

are translated prior being passed by reference to accelerator calls. The call

to accOddEvenMergeSort() in Listing 4.6 takes two parameters: vector, an

accelerator virtual memory address where the vector of key/value pairs is lo-

cated in the accelerator memory, and size, the number of pairs in vector. The

accPtr() is used to translate from the system virtual memory address (vector)

to the accelerator virtual memory address where the vector is hosted.

Complex data objects with embedded pointers add a new dimension to the

double-pointer problem. For instance, in the linked-list sorting example, each

list element includes a pointer to the next element in the list. This pointer might

be used in both CPU and accelerator code and, therefore, each item actually re-

quires two pointers: one pointer containing the system virtual memory address

for the next element in the list, and one pointer with the accelerator virtual

memory address to that very same element. Duplicate pointers embedded into

data structures pose an additional problem: pointer consistency. Listing 4.7 il-

lustrates the pointer consistency problem using the sorted linked-list reconstruc-

tion code executed by the accelerator. The code in Listing 4.7 uses accelera-

tor virtual addresses to access each linked-list element (buffer[idx]->device),

and modifies both the system (system next) and accelerator (device next) vir-

tual memory addresses for the next element in the list (lines 6 and 7). Due to

the complexity of dealing with separate pointers embedded into data structures,

some programming models, such as OpenCL, explicitly forbid data structures to

include pointers. However, such a constrain forces programmers to use relative

39



addressing, which adds more complexity to the accelerator code.

Besides increasing the code complexity, keeping system and accelerator point-

ers consistent between them might impose an important penalty on application

performance too. For instance, in the CUDA code in Listing 4.7 setting the val-

ues for the system and accelerator pointers in each item requires two accesses

to global memory, which are extremely costly. If the code in Listing 4.7 would

require only accessing a single pointer for the next element, the execution time

for the linked-list reconstruction would be reduced by a half.

4.3.2 Single Pointer Solution

In the present dissertation, the double-pointer problem is solved by removing

the need for separate system and accelerator virtual memory addresses. Fig-

ure 4.4 illustrates the solution adopted in this dissertation. In Figure 4.4, sys-

tem and accelerator memories are combined to form a unified virtual address

space, where each data object is definitely identified by a single virtual memory

address. A unified virtual address space that includes both system and accelera-

tor memories, is the natural abstraction for the accelerator-hosted data transfer

model. Unlike the per-call and double-buffered transfer models, the accelera-

tor-hosted model assumes the existence of a single copy of data structures used

by accelerators that are hosted in accelerators memory. Hence, programmers

would expect using a single virtual memory address to reference data objects.

Listing 4.8 shows the linked-list sorting example function when both the ac-

celerator-hosted and the single virtual address space is used. The main benefits

provided by a single virtual address space are:

• Parameters passed by-reference to accelerator calls do not require any

special handling (line 8).

• Data structures with embedded pointers get simplified because a single

reference is needed (line 20).

• The accelerator code becomes simpler (lines 15 – 22) than when duplicated

pointers are required.

• The accelerator code performance might be improved due to the lack of ex-

plicit code to keep pointer consistency. For instance, the number of global

memory accesses in the code in Listing 4.8 is half the number required in

the analogous code when duplicated pointers are required (Listing 4.7).

This dissertation presents two different approaches to build a unified virtual

address space that includes both system and accelerator memories. The first

approach, used in Chapter 5, maps accelerator physical addresses to virtual

memory addresses using well-known virtual memory translation mechanisms,

such as pagination and segmentation. When this approach is used, accelerator

40



1 template <typename S>

2 S *sort(S *ptr , size_t size)

3 {

4 /* Allocate system and accelerator memory */

5 pair <float , S> *buffer = NULL;

6 accMalloc ((void **)& buffer , size * sizeof(pair <float , S>));

7
8 /* Marshall: Build the input vector from the linked list */

9 for(int i = 0; i < size; i++) {

10 buffer[i]. value =ptr ->weight;

11 buffer[i].ptr = ptr;

12 ptr = ptr ->next;

13 }

14
15 /* Call sorting function in the accelerator */

16 accOddEvenMergeSort <float , S, pair <float , S> >(accPtr(buffer), size);

17
18 /* Unmarshall : Re -build the linked list from the output buffer */

19 S *ptr = buffer [0]. ptr;

20 accUnmarshall <float , S>(buffer , size);

21 buffer[size - 1].device ->next = NULL;

22
23 /* Release memory */

24 accFree(buffer );

25
26 return ptr;

27 }

28
29 template <typename T, typename S>

30 __global__ void accUnmarshall(pair <T, S> *buffer , size_t size)

31 {

32 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;

33 if(idx < size - 1) {

34 buffer[idx].device ->next = buffer[idx + 1].ptr;

35 }

36 }

Listing 4.8: Code snippet from linked-list sorting using a unified virtual address
space

41



Figure 4.4: Example of disjoint processor – accelerator memory address spaces.
A data object is stored in both address spaces at different virtual memory
addresses.

memory allocation calls (i.e., accMalloc()) set up the necessary virtual mem-

ory translation data structures (e.g., page table entries) in the CPU and the

accelerator to map a range of accelerator physical memory addresses into the

same range of virtual memory addresses in system and accelerator memories.

If virtual memory is not supported by the accelerator or is not available to the

system software (i.e., operating system), memory space mirroring might be used

to build a unified virtual address space. Memory space mirroring ensures that

accelerator-hosted data structures are referenced by the same memory address

in different address spaces. In its simplest form, a range of accelerator physical

memory addresses are mapped to the same address range in the system virtual

memory space. Chapter 6 presents a detailed discussion about implementation

alternatives for memory space mirroring. A different approach to build a unified

virtual address space might be found in [SZC+09].

4.4 Summary

The present chapter has presented three different data transfer models to be

used in processor – accelerator architectures:

• Per-Call : input data used by accelerator calls is copied to accelerators

memory just before accelerator calls and output data produced by accel-

erators is copied to system memory just after accelerator calls.

• Double-Buffered : accelerator call input and output data is copied in a

block-by-block basis to overlap data transfers with computations on the

processor and on accelerators.

• Accelerator-Hosted : accelerator input and output data is hosted by accel-

erator memories, so no data copies are needed. Whenever the CPU re-

quires accessing accelerator input and output data, it effectively accesses

the accelerator memory.

This dissertation advocates for the accelerator-hosted model because it improves

programmability. The programmability benefits offered by this model are:

42



• By-reference parameter passing to accelerator calls.

• Lack of explicit memory consistency and coherence code in user applica-

tions.

Per-call and double-buffered data transfer models are supported by most ex-

istent commercial programming models for heterogeneous systems. These two

transfer models require programmers to explicitly copy data between system

and accelerator memories and, therefore, export separate virtual address spaces

for system and accelerator memories. However, the existence of separate vir-

tual memory address spaces introduces the double-pointer problem: applications

must keep two different references (pointers) to the same data object; one ref-

erence is used to access the data object by the code executed in the processor,

while the other reference is used to access the same data object by the code

running on the accelerator. Double-pointers have to be kept consistent by the

application code, which might represent an important performance penalty.

The accelerator-hosted data transfer model adopted in this dissertation is

better exploited when a unified virtual address space that includes system and

accelerator memories is built. The programmability and performance drawbacks

introduced by the double-pointer problem are cleanly solved by such a unified

virtual address space. Different approaches to efficiently build a unified virtual

address space are explored in the following chapters of this dissertation.

4.5 Significance

The accelerator-hosted data transfer model described in this chapter eases the

task of programming heterogeneous parallel systems. This model removes the

two major drawbacks present in current programming models: the lack of sup-

port for by-reference parameter passing and the explicit memory coherence and

consistency management. The accelerator-hosted data is well suited for mod-

ern heterogeneous parallel systems, where accelerator memories tend to have a

larger capacity than system memories.

The accelerator-hosted model benefits from a unified virtual address space

that includes system and accelerator memories. This unified virtual address

space solves the double-pointer problem, which has been described and analyzed

in this dissertation for the first time in the literature. Solving the double-pointer

problem not only eases the programming of CPU and accelerator code for het-

erogeneous parallel systems, but has been shown to improve the performance of

some accelerator codes by reducing the total number of memory accesses.

The accelerator-hosted data transfer model and the unified virtual address

space presented in this chapter are the basis for the further developments

achieved during the elaboration of this thesis.

43



44



Chapter 5

Non-Uniform Accelerator
Memory Access

5.1 Introduction

The hardware modifications discussed in this chapter conform a Non-Uniform

Accelerator Memory Access (NUAMA) architecture model. In this model CPUs

can access accelerator memories using regular load/store instructions, but ac-

celerators are constrained to only access their own physical memory. Providing

CPUs access to the accelerator memory, applications can be coded using the

accelerator-hosted data transfer model presented in Chapter 4 which has been

shown to improve the programmability of heterogeneous parallel systems. In

NUAMA, accelerator-hosted data is cached by the CPUs so repeated access

to the same data, or accesses to contiguous memory locations are not penal-

ized. Moreover, the NUAMA architecture incorporates hardware mechanisms

to buffer and coalesce data request for accelerator memory to efficiently use the

available interconnection link (e.g., PCIe) bandwidth.

NUAMA allows the Operating System (OS) to build a unified virtual address

space that includes system and accelerator memories. The operating system

implements the address space mirroring technique discussed in Chapter 4. On

an accelerator memory allocation request, the OS sets up the virtual memory

translation data structures (e.g., page table entries) so the accelerator physical

address and the system virtual address matches.

A subset of the Parboil benchmarks, described in Chapter 3, has been ported

to use the accelerator-hosted data transfer model. This porting process high-

lights the programmability improvements of the accelerator-hosted data transfer

model. Simulation results of the NUAMA architecture show no execution time

slow-down across these benchmarks with respect to previous DMA-based CPU

– accelerator architectures, which have already shown speedups from 10X to

240X with respect to a baseline processor-only configuration [RRB+08]. These

simulation results show the viability of an efficient implementation of the ac-

celerator-hosted data transfer model with small hardware additions to existent

systems.

45



Figure 5.1: CPU architecture in NUAMA

5.2 Non-Uniform Accelerator Memory Access

Architecture

The NUAMA architecture hides the overheads due to data movement between

system and accelerator memory by dynamically collecting the accelerator input

data as it is being produced by the CPU. An Accelerator Memory Collector

(AMC) is integrated with the system memory controller, as illustrated in Fig-

ure 5.1. The AMC inspects every memory request going into and out of the

controller to identify writes to the data that are being hosted by the accelerator

memory. The AMC determines if an access is for the accelerator memory based

on mappings designated by the application. Whenever a memory write involves

the accelerator memory, the AMC forces a write-through action from the system

memory controller to the accelerator memory. With additional buffering, the

ACM coalesces writes to sequential locations for better transfer efficiency. The

AMC and the write-through policy for the accelerator-hosted data structure

when they reside in the L1 and L2 caches maximize the probability that, when

the accelerator starts computing, all of its input data will be already present in

its memory. This constraint of using a write-through L2 cache is relaxed later

in this chapter.

Consider the simplified particle dynamics simulation application in List-

ing 5.1, which uses the sorting function discussed in Chapter 4. In this example,

the marshalling and unmarshalling loops have been encapsulated as functions to

simplify the application code. The application first allocates accelerator mem-

ory (lines 4 and 6) to store a linked-list of the particles (list) forming the

system to be simulated and the vector of key/value pairs required by the sort-

ing function. The memory accelerator allocation call (nuamaAlloc()) requests

the OS to set up the necessary mappings. The OS code uses the address space

mirroring technique described in Chapter 4 to map the allocated memory at the

same virtual memory address in both the CPU and the accelerator. Then, the

46



1 int main(int argc , char *argv []) {

2 float dt = 0;

3 /* Allocate data structures */

4 particle_t *list = nuamaAlloc(N * sizeof(item_t ));

5 pair <particle_t *, float > vector =

6 nuamaAlloc(N * sizeof(pair <particle_t *, float >));

7
8 /* Init data structures */

9 initData(list , N);

10
11 /* Marshalling */

12 marshall(vector , list , N);

13
14 for(dt = 0; dt < T; dt += DELTA) {

15 /* Sort vector */

16 nuamaOddEvenSort(vector , N);

17 /* Unmarshall */

18 unmarshall(list , vector , N);

19 /* Compute trajectory */

20 computeForces(list , N);

21 /* Set new particle positions */

22 updatePositions(list , N);

23 }

24
25 printData(list , N);

26 nuamaFree(list);

27 nuamaFree(vector );

28 }

Listing 5.1: Main loop of sample particle dynamics simulation application

application executes a loop where the forces between particles are calculated,

and the position of the particles are updated. Finally, the application prints the

final position of the particles in the system.

While the application code reads the input from list of particles from the

disk (line 9), the AMC sees a series of memory writes to locations mapped to the

accelerator memory. The AMC buffers these writes, coalesces them into larger

transfer units, and sends them to the accelerator. Analogously, the marshaling

process (line 12) to build the initial vector of key/value pairs produces a series

of accelerator memory reads and writes, which are also handled by the AMC.

When the application calls the nuamaOddEvenSort() function (line 16), it first

writes the input parameters (*vector, and N) into the accelerator registers.

Notice that the vector of key/value pairs is passed by-reference using the vector

pointer. When the accelerator finishes computing, the CPU gets the output

value from one of the accelerator registers. A similar procedure is followed for

the unmarshall() (line 18). A first version of the application in Listing 5.1,

might implement the computeForces() (line 20) and computePositions() (line

22) functions in the CPU. In this case, memory accesses to the linked-list in

these functions are seen by the AMC, which brings the data from the accelerator

memory to the CPU caches.

A more elaborated version of the application in Listing 5.1 would implement

both functions (computeForces() and computePositions()) in the accelera-

tor. In this improved version, the code in Listing 5.1 remains unchanged. This

47



illustrates how NUAMA provides a progressive porting path for applications to

use accelerators. In a first stage, computation intensive functions amenable for

accelerator execution are moved to accelerators, while the rest of the application

remains begin executed in the CPU. Later on, other functions might be also

ported to be executed in accelerators, and so on. Once the data structures used

by accelerators have been allocated in the accelerator memory (nuamaAlloc()),

most of the application code remains unchanged, and only the functions moved

to the accelerator needs to be recoded.

5.3 Accelerator Memory Collector

Accelerator data hosting is implemented using a TLB assisted mechanism: the

page table entry is extended with a one-bit A field, which is set for those pages

containing data hosted by the accelerator. The L1 and L2 caches also store the

A field for each cache line.

The A field is used to implement a hybrid write-back/write-through L2

cache. The L2 cache controller follows a write-through/write-no-allocate policy

only for those cache lines whose A field is set. A hybrid policy provides three

main benefits:

1. The data will be present in the accelerator memory before launching the

computation.

2. Accelerator-hosted data is still cached so repeated CPU accesses or ac-

cesses to contiguous accelerator data are not penalized.

3. Write accesses to other data structures do not incur write-though actions

by the L2 cache.

The L2 cache controller sends the A field to the main memory controller for

every memory write operation. Write requests whose A bit is set are handled by

the AMC. The AMC implements a write buffer to store pending write operations

to the accelerator memory controller. Pending requests in the write buffer are

coalesced and sent to the accelerator memory through the PCIe link. A single

core system requires a write buffer with as many entries as the maximum number

of outstanding memory requests the L2 can support. If the ISA does not allow

write reordering, coalescing write operations might lead to race conditions. For

instance, a write to a lock variable might be done before actually writing the

data that is locked. The accelerator memory is expected to only host “pure

data” structures while synchronization variables are stored in main memory.

The AMC presents the following interface to the CPU: applications use the

sacc (Start Accelerator) instruction to signal the AMC to complete the data

movement necessary and begin execution of the accelerator. Figure 5.2 shows

the actions performed by the AMC when it gets a sacc request. First, it waits

for all pending write-through activities to the accelerator to finish. Then, the

48



Figure 5.2: Actions performed in the AMC when a sacc instruction commits

(a) The application
accesses data in system
memory and accelerator
memory through the
cache

(b) Before starting the
computation the AMC
invalidates those cache
lines containing accelera-
tor data

(c) When the accelerator
starts computing all the
data is only in its own
memory

Figure 5.3: Data movement in a NUAMA architecture

AMC invalidates those cache lines in the L1 and L2 caches whose A field is

set and sends the sacc request to the accelerator. Note that these two actions

can be performed in parallel if the CPU does not request any data during this

process. To enforce this constraint, when the sacc instruction enters into the

processor issue queue, the processor stops fetching new instructions. When the

sacc instruction commits, it is sent to the AMC. At this point there are no

other instructions in flight since the issue queue is empty. The AMC signals

completion (all write-through activities and invalidations are done) to the CPU

by asserting a line that enables fetching and issuing new instructions.

The write-through cache policy for the accelerator data allows overlapping

the execution in the CPU with the data movement, as illustrated in Figure 5.3(a).

When the application calls the accelerator, the AMC ensures that the single

valid copy for the accelerator data is in the accelerator memory (Figure 5.3(b)).

The application implements a polling loop or uses interrupts to wait for the

accelerator to finish. Hence, only the accelerator can access those data (Fig-

ure 5.3(c)) while it is computing. Once the accelerator is done, any CPU access

to the accelerator data will miss in the L1 and L2 caches since all the cache

lines containing data hosted by the accelerator memory were invalidated. Both

caches fill from the accelerator memory (Figure 5.3(a)).

49



5.4 Benefits and Limitations

NUAMA architectures have several implications for applications performance.

The hybrid write-back/write-through L2 cache used in NUAMA is the key to

overlap data transfers between the CPU and the accelerator. Furthermore, the

hybrid policy increases the probability of having the data present in the acceler-

ator memory when the CPU calls the accelerator. However, there is a potential

side-effect that might reduce the benefit of the hybrid write policy of NUAMA.

Every time the CPU modifies the data hosted by the accelerator memory, a

write-through action is triggered at the L2 cache. Hence, repeated writes to the

same memory location from the CPU before the accelerator is called lead to sev-

eral write-through actions, increasing the amount of data transferred from the

CPU to the accelerator memory. Thus, the average bandwidth of the L2 cache,

the L2 bus, the memory controller and, the PCIe link required by NUAMA is

higher than the bandwidth required by traditional DMA architectures. How-

ever, NUAMA redistributes write and reads operations to the accelerator mem-

ory across the total execution time of the application. Thus, in many cases

the maximum instantaneous bandwidth required by NUAMA is much smaller

than the instantaneous bandwidth required during a DMA transfer between the

CPU main memory and the accelerator memory. A given hardware element only

limits applications performance when it is not able to deliver the instantaneous

bandwidth required by the application. Because NUAMA reduces the maxi-

mum value of the instantaneous bandwidth requirements, NUAMA is expected

to perform better than current DMA-based architectures.

A benefit of NUAMA is its ability to perform DMA transfers from I/O

devices to the accelerator local storage, since this is mapped in the system

physical address space. In many applications, the data used by accelerators is

directly read from the disk. In these applications NUAMA might decrease the

amount of data transferred between the CPU main memory and the accelerator

memory significantly.

5.5 Experimental Evaluation

The NUAMA architecture is evaluated using the simulation environment and

benchmarks described in Chapter 3. The accelerator execution time, unless

explicitly stated, is omitted from the reported results. The accelerator execution

time represents most of the total benchmark execution time, and, if this time

is included, the execution time differences between NUAMA and DMA-based

architectures becomes inappreciable.

50



1 float results [4];

2 float *h_vars;

3 int *h_maxs;

4
5 int main(int argc , char** argv)

6 {

7 int N = atoi(argv [1]);

8 int s = atoi(argv [2]);

9 int t = atoi(argv [3]);

10 int N2 = N+N;

11 int NSQUARE2 = N * N2;

12
13 // Alloc system memory for the results

14 h_vars = (float *) malloc(t * sizeof(float ));

15 h_maxs = (int *) malloc(t * sizeof(int));

16
17 // Compute the simulation on the accelerator

18 Petrinet ();

19 // Compute statistics in the CPU

20 ComputeStatistics ();

21
22 // Release memory

23 free(h_vars );

24 free(h_maxs );

25
26 // Print statistics

27 printf("petri N=%d s=%d t=%d\n", N, s, t);

28 printf("mean_vars: %f    var_vars: %f\n", results [0], results [1]);

29 printf("mean_maxs: %f    var_maxs: %f\n", results [2], results [3]);

30
31 return 0;

32 }

Listing 5.2: Main function in PNS for DMA configuration

5.5.1 Benchmark Porting

The parboil benchmark suite described in Chapter 3 is used to evaluate the

NUAMA architecture. The SAD, MRI-Q and MRI-FHD are not included in

the evaluation because the I/O operations they require are not supported by

the simulation infrastructure.

The DMA configuration uses the NVIDIA CUDA version of each benchmark,

which has already been optimized to reduce the overhead of data movement be-

tween the CPU and the accelerator. The CUDA API calls for allocating DMA

memory buffers, performing data transfers and launching accelerator computa-

tion are substituted by the analogous ones provided by the simulation platform.

This porting process is illustrated in Listings 5.2, 5.3, and 5.4. Listing 5.2

shows the code of the main function in PNS for the DMA configuration, which is

exactly equal in the CPU-only version of the benchmark. The main function in

PNS calls two other functions: Petrinet() and ComputeStatistics(), shown

in Listings 5.3 and 5.4 respectively. The Petrinet() function implements the

per-call data transfer model discussed in Chapter 4. This function first allocates

memory in the accelerator (lines 7 – 11), then the accelerator is called inside a

loop for different blocks of the dataset (lines 16 – 34). Notice that after each

accelerator invocation, the output data produced by the accelerator is copied

51



1 void Petrinet ()

2 {

3 int unit_size = NSQUARE2 * (sizeof(int) + sizeof(char)) +

4 sizeof(float) + sizeof(int);

5 int block_num = MAX_DEVICE_MEM / unit_size;

6
7 // Allocate memory

8 int *g_places = (int *) accMalloc (( unit_size - sizeof(float) -

9 sizeof(int)) * block_num );

10 float *g_vars = (float *) accMalloc(block_num * sizeof(float ));

11 int *g_maxs = (int *) accMalloc(block_num * sizeof(int));

12
13 int *p_hmaxs = h_maxs;

14 int *p_hvars = h_vars;

15
16 // Launch the accelerator computation foreach block

17 for(int i = 0; i < t - block_num; i += block_num) {

18 accPetrinet(g_places , g_vars , g_maxs , N, s, 5489 * (i+1));

19
20 // Copy results to system memory

21 accMemcpy(p_hmaxs , g_maxs , block_num * sizeof(int),

22 MemcpyAccToHost );

23 accMemcpy(p_hvars , g_vars , block_num * sizeof(float),

24 MemcpyAccToHost );

25 // Move pointer to next block

26 p_hmaxs += block_num;

27 p_hvars += block_num;

28 }

29
30 // Launch the accelerator computation for the last

31 // block and copy back the results

32 accPetrinet(g_places , g_vars , g_maxs , N, s, time(NULL ));

33 accMemcpy(p_hmaxs , g_maxs , (t-i) * sizeof(int), MemcpyAccToHost );

34 accMemcpy(p_hvars , g_vars , (t-i)* sizeof(float), MemcpyAccToHost );

35
36 // Free accelerator matrices

37 accFree(g_places );

38 accFree(g_vars );

39 accFree(g_maxs );

40 }

Listing 5.3: Function invoking the accelerator in PNS for DMA configuration

1 void computeStatistics ()

2 {

3 float sum = 0;

4 float sum_vars = 0;

5 float sum_max = 0;

6 float sum_max_vars = 0;

7 for (int i=0; i < t; i++) {

8 sum += h_vars[i];

9 sum_vars += h_vars[i] * h_vars[i];

10 sum_max += h_maxs[i];

11 sum_max_vars += h_maxs[i] * h_maxs[i];

12 }

13 results [0] = sum/t;

14 results [1] = sum_vars/t - results [0] * results [0];

15 results [2] = sum_max/t;

16 results [3] = sum_max_vars/t - results [2] * results [2];

17 }

Listing 5.4: Statistics computation in PNS for DMA and NUAMA configura-
tions

52



1 float results [4];

2 float *h_vars;

3 int *h_maxs;

4
5 int main(int argc , char** argv)

6 {

7 int N = atoi(argv [1]);

8 int s = atoi(argv [2]);

9 int t = atoi(argv [3]);

10 int N2 = N+N;

11 int NSQUARE2 = N * N2;

12
13 // Alloc system memory for the results

14 h_vars = (float *) accMalloc(t * sizeof(float ));

15 h_maxs = (int *) accMalloc(t * sizeof(int ));

16
17 // Compute the simulation on the accelerator

18 Petrinet ();

19 // Compute statistics in the CPU

20 ComputeStatistics ();

21
22 // Release memory

23 accFree(h_vars );

24 accFree(h_maxs );

25
26 // Print statistics

27 printf("petri N=%d s=%d t=%d\n", N, s, t);

28 printf("mean_vars: %f    var_vars: %f\n", results [0], results [1]);

29 printf("mean_maxs: %f    var_maxs: %f\n", results [2], results [3]);

30
31 return 0;

32 }

Listing 5.5: Main function in PNS for NUAMA configuration

from the accelerator memory to system memory (lines 20 – 24 and 33 – 34).

Finally, once that all dataset tiles have been processed, the accelerator memory

is released (lines 36 – 39). The ComputeStatistics() function scans through

the output data produced in Petrinet() to compute different statistics from

the Petri network simulation.

Parboil benchmarks are ported to NUAMA performing the following modi-

fications:

• Calls to allocated data structures required by the accelerator are substi-

tuted by calls to the NUAMA API.

• Calls to accelerator memory allocation/release and data transfers between

system and accelerator memories are removed.

The NUAMA porting process is illustrated in Listings 5.5, and 5.6. The NUAMA

code for the main function in PNS does not significantly differ from the main

function in DMA and CPU-only versions of the benchmark. The system mem-

ory allocation/release calls, malloc()/free(), are substituted by the analo-

gous provided by the NUAMA run-time (lines 14 – 15, and 23 – 24), i.e.,

accMalloc()/accFree(). The ComputeStatistics() function in the NUAMA

version is exactly the same than in the DMA and CPU-only versions of the

53



1 void Petrinet ()

2 {

3 int unit_size = NSQUARE2 * (sizeof(int) + sizeof(char)) +

4 sizeof(float) + sizeof(int);

5 int block_num = MAX_DEVICE_MEM / unit_size;

6
7 // Allocate memory

8 int *g_places = (int *) accMalloc (( unit_size - sizeof(float) -

9 sizeof(int)) * block_num );

10
11 int *p_hmaxs = h_maxs;

12 int *p_hvars = h_vars;

13
14 // Launch the accelerator computation foreach block

15 for(int i = 0; i < t - block_num; i += block_num) {

16 accPetrinet(g_places , p_hvars , p_hmaxs , N, s, 5489 * (i+1));

17 // Move pointer to next block

18 p_hmaxs += block_num;

19 p_hvars += block_num;

20 }

21
22 // Launch the accelerator computation for the last

23 // block and copy back the results

24 accPetrinet(g_places , p_hvars , p_hmaxs , N, s, time(NULL ));

25
26 // Free accelerator matrices

27 accFree(g_places );

28 }

Listing 5.6: Function invoking the accelerator in PNS for NUAMA configuration

benchmark. However, the Petrinet() function, in Listing 5.6, differs signifi-

cantly from the same function in the DMA version. A comparison of code in the

Petrinet() function for DMA (Listing 5.3) and NUAMA (Listing 5.6) clearly

shows the programmability improvements provided by NUAMA.

5.5.2 Hardware Requirements

Experimental results show that AMC sizes over eight entries do not significantly

improve the performance of the NUAMA architecture in the simulated bench-

marks. Such an AMC size is sufficient because benchmarks tend to write to

contiguous accelerator memory locations, so several write requests are stored

into a single AMC entry. For the simulated L2 cache with 128 byte lines, an

AMC entry of 128 bytes is required. Such AMC entry size allows for 32 4-byte

memory requests to be buffered into a single AMC entry. Hence, 8 entries pro-

vide space in the AMC buffer for up to 256 accelerator memory write requests,

which is larger than the total number of outstanding memory requests supported

by contemporary CPUs.

The extra hardware required by NUAMA is relatively small. The simulated

8-entry AMC requires a 1KB fully-associative non-blocking cache. Additionally,

one extra bit is added to each TLB entry, and L2 cache-line. This requirement

means 16 extra bytes in the simulated TLBs, and one extra kilobyte in the L2

cache. Notice that the extra storage in the L2 cache and the TLB required by

54



 0

 0.2

 0.4

 0.6

 0.8

 1

cp pns rpes tpacf

S
p
e
e
d
-u

p
 o

f 
N

U
A

M
A

Benchmarks

CPU only
Full Application

Figure 5.4: Speed-up of NUAMA with respect to DMA for simulated bench-
marks

NUAMA are distributed among all entries. Hence, this modifications are not

likely to increase the TLB and L2 cache access times.

5.5.3 NUAMA Performance

The performance of NUAMA with respect to DMA data transfers between CPU

and accelerators is compared. Figure 5.4 shows the results for the different

configurations and benchmarks. Results are shown as the speed-up in NUAMA

with respect to DMA.

Execution times for NUAMA and DMA are almost the same for two of the

four benchmarks we simulate, but NUAMA slightly slows-down the execution

of the CPU code in CP and RPES. This small slow-down is due to the extra off-

chip memory accesses performed by NUAMA, as shown in Figure 5.5. In these

two benchmarks, accelerator-hosted data structures are initialized element by

element. This initialization results in a series of write requests to the accelerator

memory. In NUAMA, these requests are coalesced by the AMC, and sent in

batches to the accelerator memory. In DMA, these write requests are cached in

the L2, and accelerator data structures are initialized using one DMA transfer

per data structure. The degree of coalescing is higher in DMA than in NUAMA

due to the eager update of the accelerator memory done by the ACM. Figure 5.4

also shows that when the accelerator execution time is considered, both NUAMA

and DMA perform equally well because the accelerator execution time is much

larger than the CPU execution and data transfer times in all benchmarks.

Figure 5.5 shows that NUAMA actually produces a larger number of total

off-chip memory access. The number of accesses to system memory is smaller in

NUAMA than in DMA because NUAMA does not double allocate in system and

accelerator memory those data structures used by the accelerator. These ex-

55



 0

 0.05

 0.1

 0.15

 0.2

 0.25

cp-nuam
a

cp-base

pns-nuam
a

pns-base

rpes-nuam
a

rpes-base

tpacf-nuam
a

tpacf-base

S
y
s
te

m
 a

n
d
 A

c
c
e
le

ra
to

r 
m

e
m

o
ry

 t
o
 L

2
 c

a
c
h
e
 a

c
c
e
s
s
 r

a
ti
o

Benchmarks

System Memory
Accelertor Memory

Figure 5.5: Number of accesses to the CPU main memory or the accelerator
memory per access to the L2 cache. L2 write-backs and main memory reads are
accesses to the CPU main memory. L2 write-through and local memory reads
are accesses to the accelerator memory.

perimental results, jointly to the execution time results in Figure 5.4 illustrates

that larger memory bandwidth requirements do not mean performance penal-

ties because application performance is degraded whenever the instant memory

bandwidth requirements can not be meet by the hardware.

NUAMA effects the CPU performance by increasing the number of TLB

misses. The number of page table entries in NUAMA is larger because data

structures hosted in accelerator memory require additional page table entries.

Simulation results show that the number of TLB misses in CP, PNS and RPES is

slightly larger in NUAMA than in DMA. However, NUAMA decreases the num-

ber of TLB misses by 1.1X in TPACF. In this benchmark, using separate page

table entries for accelerator hosted data decreases the number of TLB conflicts

due to the memory allocation algorithm. In DMA, the memory allocator maps

accelerator data to virtual memory addresses that conflict with static allocated

data structures. However, NUAMA maps accelerator hosted data structures

into virtual addresses that do no conflict with any other allocated data struc-

ture. These experimental results show the importance of TLB-aware memory

allocation to reduce the performance penalty due to TLB misses.

Figure 5.6 illustrates the effect of NUAMA over cache memories due to

the write-through/write-non-allocate policy for accelerator-hosted data. The

number of read and write L2 cache misses in NUAMA is higher than the DMA

in CP, while it is similar in PNS, RPES and TPACF. The larger number of

L2 cache misses of NUAMA with respect to DMA in CP is due to the memory

access pattern in the CPU code. For instance, the CPU code in PNS, RPES and

TPACF does not perform any write access to accelerator-hosted data, so the

L2 cache write miss ratio in these two benchmarks is similar in both NUAMA

56



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

cp pns rpes tpacf

N
o
rm

a
liz

e
d
 C

a
c
h
e
 M

is
s
e
s

Benchmarks

L2 Read Miss Ratio
L2 Write Miss Ratio

Figure 5.6: NUAMA L2 cache miss ratio normalized to DMA L2 cache miss
ratio.

and DMA. The CPU code for CP performs a series of writes to initialize the

accelerator input data. In this case, the write-through/write-non-allocate policy

causes writes to consecutive memory positions to miss in the L2 cache. Despite

the higher L2 cache miss ratio in NUAMA than in DMA for some benchmark,

both architectures perform equally well. The reason for this similar performance

is that the L2 cache miss latency is shorter in NUAMA than in DMA. L2

cache misses in NUAMA are distributed between system memory, for regular

data, and the accelerator memory, for accelerator-hosted data. This distribution

reduces the contention in the access to the system memory controller and to

system memory and, which results in a shorter cache miss latency for NUAMA

compared to DMA.

5.5.4 Memory Latency

Figure 5.7 shows the speed-up of NUAMA with respect to DMA for different

system and accelerator memory latencies. Many existing accelerators, such

as GPUs, include GDDR memories which deliver higher bandwidth compared

to regular DDR memories. However, the same latency for both system and

accelerator memory is assumed conservatively.

NUAMA slows-down the execution of the CPU code with respect to DMA as

the memory lantency increases. This slow-down is more pronounced on CP and

RPES, the benchmarks where NUAMA increases the number of off-chip memory

accesses the most. In TPACF, where NUAMA and DMA require almost the

same number of off-chip memory accesses, both configurations perform similarly

well as the memory latency increases. NUAMA and DMA performs equally well

for all memory latencies if the total application execution time is considered.

The speed-up of NUAMA with respect to DMA for PNS exhibits a quite

57



 0

 0.5

 1

 1.5

 2

 200  300  400  500  600

N
U

A
M

A
 S

p
e
e
d
-u

p
 w

it
h
 r

e
s
p
e
c
t 
to

 D
M

A

Memory Latency (cycles)

CP
PNS

RPES
TPACF

Figure 5.7: Speed-up of NUAMA with respect to DMA for different memory
latencies

irregular pattern. In this benchmark, the NUAMA execution time is almost

constant for all memory latencies, but the DMA execution time greatly varies

for different memory latencies. This variability is due to the different simulated

clock frequencies for the DMA controller and the CPU and the short execution

time of PNS. DMA transfers require the application writing to the DMA status

and control registers the source and destination addresses, and the transfer size.

On some simulations this write happens near the end of the DMA clock cycle,

and the DMA transfer starts immediately. However, in other simulations these

writes happens at the start of the DMA clock cycle so the start of the DMA

transfer is delayed until the next DMA clock cycle. The contribution of this

delay in the start of DMA transfers is relatively large in PNS due to its short

execution time and the high number of DMA transfers done by this benchmark.

5.5.5 Link Latency

Figure 5.8 shows the speed-up of NUAMA with respect to DMA for different

PCIe link configurations. There is an important slow-down for CP and RPES

when the bandwidth delivered by the PCIe bus is small due the high off-chip

memory traffic produced by NUAMA in these benchmarks (see Figure 5.5). As

the PCIe bandwidth increases, the slow-down in NUAMA for these benchmarks

becomes smaller, being almost null for RPES when a 32X PCIe link is used.

For PNS and TPACF, NUAMA and DMA perform similarly well for all consid-

ered PCIe configurations because both configurations produce barely the same

number of accesses to the accelerator memory.

The inverse dependence between the PCIe bandwidth and the slow-down of

NUAMA with respect to DMA shows that NUAMA is best suited for low-laten-

cy/high-bandwidth interconnections between CPUs and accelerators. The CPU

58



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5  10  15  20  25  30

N
U

A
M

A
 S

p
e
e
d
-u

p
 w

it
h
 r

e
s
p
e
c
t 
to

 D
M

A

PCIe lanes

CP
PNS

RPES
TPACF

Figure 5.8: Speed-up of NUAMA with respect to DMA for different PCIe con-
figurations

– accelerator interconnections bandwidth is growing (e.g., 250MB/s in PCIe 1.0

and 32GB/s in future PCIe 3.0). This shows that the NUAMA architecture is

well suited for current and future systems.

5.6 Summary

This chapter has described NUAMA, a hardware implementation of the accel-

erator-hosted data model described in Chapter 4. NUAMA allows CPUs to

efficiently access the accelerator memory using regular load/store instructions.

The key architectural modifications required by NUAMA are:

• Page table entries are extended with an accelerator bit to identify those

memory pages hosted by the accelerator memory.

• L2 cache memory implements a write-back/write-allocate for regular data,

while a write-through/write-non-allocate policy is used for data hosted in

the accelerator memory.

• An Accelerator Memory Collector is integrated in the memory controller

to identify and coalesce memory request for the accelerator memory, and

to ensure memory consistency on accelerator calls.

The write-through L2 cache policy provides an eager update of the accel-

erator memory contents. Due to this eager update, NUAMA overlaps com-

putations in the CPU and data transfers to the accelerator memory. Hence,

when the accelerator is called, most data is already in the accelerator memory

and, therefore, the accelerator call latency is reduced. However, eager updates

would under-utilize the interconnection between the CPU and the accelerator

59



(e.g., PCIe bus). Improving the efficiency of data transfers is the key role of

the AMC, which coalesces memory request to contiguous accelerator memory

locations to perform large transfer transactions.

Simulation results of the NUAMA architecture show that applications per-

form equally well than in traditional DMA based systems. NUAMA slightly

slows-down the performance of the code executed by the CPU in certain bench-

marks, but the overall effect of this slow-down over the complete application

execution time is negligible. The benchmark porting experience shows that

NUAMA provides a higher degree of programmability than traditional DMA-

based CPU – accelerator architectures. This chapter has shown that NUAMA

improves programmability without producing performance penalties with little

hardware additions.

5.7 Significance

The NUAMA architecture has shown the viability of the accelerator-hosted

model for CPU – accelerator systems. Benchmarks ported to NUAMA have

required less number of lines of code than the original code targeted for a DMA-

based data transfer model. Moreover, the source code for NUAMA simplifies the

source code by removing the need of separate pointers for system and accelerator

memory.

The NUAMA architecture has been only implemented within a simulator,

which restricts its applicability. Moreover, the architectural modifications re-

quired by NUAMA are not likely to be adopted in the short-term in actual

CPUs because the current market-share of CPU – accelerator systems is still

too small. However, the design of the NUAMA architecture leads to two key

observations:

• Eager update of the accelerator memory contents is essential to overlap

data transfers and CPU computations, and, therefore, reduce the acceler-

ator call latency.

• Buffering and coalescing of accelerator-hosted data is key to accomplish

high data transfer bandwidths.

The evaluation of the NUAMA architecture has shown that its performance

is comparable to traditional DMA-based architectures. Hence, the performance

– programmability product, the metric being optimized in this dissertation, is

higher in NUAMA than in existent CPU – accelerator architectures.

60



Chapter 6

Asymmetric Distributed
Shared Memory

6.1 Introduction

Chapter 5 presented, NUAMA, a hardware implementation of the accelerator-

hosted data transfer model and the unified virtual address space for CPU –

accelerator systems discussed in Chapter 4. This chapter presents the Asym-

metric Distributed Shared Memory (ADSM) model, the software counterpart

of NUAMA, which presents several advantages. First, ADSM brings the pro-

grammability benefits of the accelerator-hosted data transfer model and the

unified virtual address space to current CPU – accelerator systems. Second, a

software implementation allows for different data transfer policies (e.g., eager

update in NUAMA) to be available to applications. Third, a software run-time

might extract high-level information from applications, which would allow for

additional performance optimizations.

ADSM maintains an unified virtual memory address space for CPUs to access

objects in the accelerator physical memory but not vice versa. This asymme-

try allows all coherence and consistency actions to be executed on the CPU,

allowing the use of simple accelerators. This chapter also presents GMAC, a

user-level ADSM library, and discusses design and implementation details of

such a system. Experimental results using GMAC show that an ADSM system

makes heterogeneous systems easier to program with negligible performance

overheads.

6.2 Asymmetric Distributed Shared Memory

Asymmetric Distributed Shared Memory (ADSM) maintains a shared logical

memory space for CPUs to access objects in the accelerator physical memory

but not vice versa. This section presents ADSM as a data-centric programming

model and the benefit of an asymmetric shared address space.

6.2.1 ADSM Programming Model

In the ADSM programming model, programmers allocate or declare data objects

that are processed by methods, and annotate performance critical methods (ker-

nels) that are executed by accelerators. When such methods are assigned to an

61



1 __kernel__ void computeRhoPhi(int , float *, float *, float *,

2 float *, float *, float *);

3
4 __kernel__ void computeFH(int , int , float *, float *, float *,

5 kValues *, float *, float *);

6
7
8 int main (int argc , char *argv [])

9 {

10 /* Allocate data structures */

11 allocate(numX , &kx , &ky, &kz , &x, &y, &z, &phiR , &phiI , &dR, &dI);

12
13 /* Read in data */

14 readData(inFiles , numX , kx, ky, kz, x, y, z, phiR , phiI , dR, dI);

15
16 /* Create CPU data structures */

17 createDataStructs(numK , numX , realRhoPhi , imagRhoPhi , outR , outI);

18 kVals = (kValues *) calloc(numK , sizeof (kValues ));

19
20 /* Pre -compute the values of rhoPhi on the GPU */

21 computeRhoPhi(numK , phiR , phiI , dR , dI , realRhoPhi , imagRhoPhi );

22 assert(gmacThreadSynchronize () == gmacSuccess );

23
24 /* Fill in kVals values */

25 fillKVals(numK , kVals , kx , ky , kz , realRhoPhi , imagRhoPhi );

26
27 /* Compute FH on the GPU (main computation ) */

28 computeFH(numK , numX , x, y, z, kVals , outR , outI);

29 assert(gmacThreadSynchronize () == gmacSuccess );

30
31 writeData(params ->outFile , outR , outI , numX);

32
33 /* Release Memory */

34 free(kVals);

35 release(kx, ky, kz , x, y, z, phiR , phiI , dR , dI,

36 realRhoPhi , imagRhoPhi , outR , outI);

37
38 return 0;

39 }

Listing 6.1: Main function in MRI-FHD in ADSM

accelerator, their corresponding data objects are migrated to on-board accelera-

tor memory. This model is illustrated in Listing 6.1, which shows the main func-

tion of MRI-FHD from the Parboil benchmark. In this code, computeRhoPhi()

(line 1) and computeFH() (line 3) are performance critical and are executed in

accelerators.

ADSM removes the need to explicitly request memory on different memory

spaces (line 11). Programmers assign data objects to methods that might or

might not be executed by accelerators. Run-time systems can be easily built

under this programming model to automatically assign methods and their data

objects to accelerators, if they are present in the system. High performance

systems are likely to continue having separate physical memories and access

paths for CPUs and accelerators. However, CPUs and accelerators are likely

to share the same physical memory and access path in low-cost systems. An

application written following the ADSM programming model will target both

kinds of systems efficiently. When the application is run on a high performance

62



system, accelerator memory is allocated and the run-time system transfers data

between system memory and accelerator memory when necessary. In the low-

cost case, system memory (shared by CPU and accelerator) is allocated and no

transfer is done. Independence from the underlying hardware is the first benefit

provided by ADSM.

Analogously to the NUAMA architecture discussed in Chapter 5, ADSM

offers a convenient software migration path for existing applications. Perfor-

mance critical libraries and application code are moved to accelerator engines,

leaving less critical code porting for later stages [BDH+08]. For instance, in

Listing 6.1, computeFH() (line 28) is first ported to be executed in an acceler-

ator. However, computeRhoPhi() (line 21) remains being executed in the CPU

in at first, and ported to the accelerator later on. Finally, fillKVals() (line

25) is currently executed in the CPU, but future versions of the code might also

execute this function in an accelerator. CPUs and accelerators do not need to

be ISA-compatible to interoperate, as long as data format and calling conven-

tions are consistent. This programming model provides the run-time system

with the information necessary to make data structures accessible to the code

that remains for execution by the CPU. This is the second gain offered by the

ADSM programming model.

Data objects used by kernels are often read from and written to I/O devices

(e.g., a disk or network interface). ADSM enables data structures used by ac-

celerators to be passed as parameters to the corresponding system calls that

read or write data for I/O devices (e.g. read() or write()). In Listing 6.1,

readData() (line 14) and writeData() (line 31) reads and writes, respectively,

the data structures passed by-reference to disk. If supported by the hardware,

the run-time system performs DMA transfers directly to and from accelera-

tor memory (peer DMA), otherwise an intermediate buffer in system memory

might be used. Applications benefit from peer DMA without any source code

modifications, which is the third advantage of this programming model.

6.2.2 ADSM Run-time Design Rationale

As discussed in Chapter 2, distributed memories are necessary to extract all the

computational power from heterogeneous systems. However, the accelerator-

hosted data transfer model presented in Chapter 4 hides the complexity of

this distributed memory architecture from programmers by unifying distributed

memories into a single virtual address space.

A DSM run-time system reconciles physically distributed memory and log-

ical shared memory. Traditional DSM systems are prone to thrashing, which

is a performance limiting factor. Thrashing in DSM systems typically occurs

when two nodes compete for write access to a single data item, causing data

to be transferred back and forth at such a high rate that no work can be done.

Access to synchronization variables, such as locks and semaphores, tends to

63



be a primary cause of thrashing in DSM. This effect is unlikely to occur in

heterogeneous systems because hardware interrupts are typically used for syn-

chronization between accelerators and CPUs and, therefore, there are no shared

synchronization variables.

If synchronization variables are used (e.g., polling mode), special hardware

mechanisms are typically used. These special synchronization variables are out-

side the scope of our ADSM design. False sharing, another source of thrashing

in DSM, is not likely to occur either because sharing is done at the data object

granularity.

A major issue in DSM is the memory coherence and consistency model.

DSM typically implements a relaxed memory consistency model to minimize

coherence traffic. Relaxed consistency models (e.g., release consistency) reduce

coherence traffic at the cost of requiring programmers to explicitly use synchro-

nization primitives (e.g. acquire and release). In the ADSM model memory

consistency is only relevant from the CPU perspective because all consistency

actions are driven by the CPU at method call and return boundaries. Shared

data structures are released by the CPU when methods using them are invoked,

and data items are acquired by the CPU when methods using them return.

DSM pays a performance penalty for detection of memory accesses to shared

locations that are marked as invalid or dirty. Memory pages that contain invalid

and dirty items are marked as not present in order to get a page fault whenever

the program accesses any of these items. This penalty is especially important

for faults produced by performance critical code whose execution is distributed

among the nodes in the cluster. Data cannot be eagerly transferred to each

node to avoid this performance penalty because there is no information about

which part of the data each node will access. This limitation is not present in

ADSM since the accelerator executing a method will access only shared data

objects explicitly assigned to the method.

The lack of synchronization variables hosted by shared data structures, the

implicit consistency primitives at call/return boundaries, and the knowledge of

data structures accessed by performance critical methods are the three reasons

that lead us to design an ADSM as an efficient way to support a data-centric

programming model on heterogeneous parallel systems.

6.2.3 Application Programming Interface and

Consistency Model

Four fundamental functions must be implemented by an ADSM system: shared-

data allocation, shared-data release, method invocation, and return synchroniza-

tion. Table 6.1 summarizes these necessary API calls.

Shared-data allocation and release calls are used by programmers to declare

data objects that will be used by kernels. In its simplest form, the allocation

call only requires the size of the data structure and the release requires the

64



API Call Description
adsmAlloc(size) Allocates size bytes of shared memory and returns the

shared memory address where the allocated memory begins.

adsmFree(addr) Releases a shared memory region that was previously allo-
cated using adsmAlloc().

adsmCall(kernel) Launches the execution of method kernel in an accelerator.

adsmSync() Yields the CPU to other processes until a previous acceler-
ator calls finishes.

Table 6.1: Compulsory API calls implemented by an ADSM run-time

starting memory address for the data structure to be released. This minimal

implementation assumes that any data structure allocated through calls to the

ADSM API will be used by all accelerator kernels. A more elaborate scheme

would require programmers to pass one or more method identifiers to effectively

assign the allocated/released data object to one or more accelerator kernels.

Method invocation and return synchronization are already found in many

heterogeneous programming APIs, such as CUDA. The former triggers the

execution of a given kernel in an accelerator, while the latter yields the CPU

until the execution on the accelerator is complete.

ADSM employs a release consistency model where shared data objects are

released by the CPU on accelerator invocation (adsmCall()) and acquired by

the CPU on accelerator return (adsmSync()). This semantic ensures that ac-

celerators always have access to the objects hosted in their physical memory by

the time a kernel operates on them. Implicit acquire/release semantics increase

programmability because they require fewer source code lines to be written and

it is quite natural in programming environments such as CUDA, where pro-

grammers currently implement this consistency model manually, through calls

to cudaMemcpy().

6.3 Design and Implementation

This section describes the design and implementation of Global Memory for AC-

celerators (GMAC), a user-level ADSM run-time system. The design of GMAC

is general enough to be applicable to a broad range of heterogeneous systems,

such as NVIDIA GPUs or the IBM PowerXCell 8i. GMAC is implemented for

GNU/Linux based systems that include CUDA-capable NVIDIA GPUs. The

implementation techniques presented here are specific to the target platform

but they can be easily ported to different operating systems (e.g. Microsoft

Windows) and accelerator interfaces (e.g. OpenCL).

ADSM might be implemented using a hybrid approach, where low-level func-

tionalities are implemented in the operating system kernel and high-level API

calls are implemented in a user-level library. Implementing low-level layers

within the operating system kernel code allows I/O operations involving shared

data structures to be fully supported without performance penalties. All GMAC

65



Figure 6.1: Software layers that conforms the GMAC library.

code is implemented in a user-level library because there is currently no operat-

ing system kernel-level API for interacting with the proprietary NVIDIA driver

required by CUDA.

6.3.1 Overall Design

Figure 6.1 shows the overall design of the GMAC library. The lower-level layers

(OS Abstraction Layer and Accelerator Abstraction Layer) are operating system

and accelerator dependent, and they offer an interface to upper-level layers for

allocation of system and accelerator memory, setting of memory page permis-

sion bits, transfer of data between system and accelerator memory, invocation

of kernels, and waiting for completion of accelerator execution, I/O functions,

and data type conversion, if necessary. The reference implementation the OS

Abstraction Layer interacts with POSIX-compatible operating systems such as

GNU/Linux. One Accelerator Abstraction Layer is implemented to interact

with CUDA-capable accelerators: the CUDA Driver Layer. This layer interacts

with the CUDA driver, which offers a low-level API and, thus, allows having

full control over accelerators at the cost of more complex programming of the

GMAC code base. The top-level layer implements the GMAC API to be used

by applications and libraries.

The Shared Memory Manager in Figure 6.1 manages shared memory areas

and creates the shared address space between host CPUs and accelerators. An

independent memory management module allows testing of different manage-

ment policies and coherence protocols with minor modifications to the GMAC

code base. The kernel scheduler selects the most appropriate accelerator for exe-

cution of a given kernel, and implements different scheduling policies depending

on the execution environment. A detailed analysis of kernel scheduling is out

of the scope of the present dissertation and the reader is referred to Jimenez et

al. [JVG+09] for a deeper analysis.

66



6.3.2 Shared Address Space

GMAC builds a shared address space between the CPUs and the accelerator.

When the application requests shared memory (adsmAlloc()), accelerator mem-

ory is allocated on the accelerator, returning a memory address (virtual or

physical, depending on the accelerator) that can be only used by the acceler-

ator. Then, GMAC requests the operating system to allocate system memory

over the same range of virtual memory addresses. In a POSIX-compliant oper-

ating system this is done through the mmap system call, which accepts a virtual

address as a parameter and maps it to an allocated range of system memory

(anonymous memory mapping). At this point, two identical memory address

ranges have been allocated, one in the accelerator memory and the other one in

system memory. Hence, a single pointer can be returned to the application to

be used by both CPU code and accelerator code.

The operating system memory mapping request might fail if the requested

virtual address range is already in use. In the single-GPU target system this

is unlikely to happen because the address range typically returned by calls to

cudaMalloc() is outside the ELF program sections. However, this implementa-

tion technique might fail when using other accelerators (e.g. ATI/AMD GPUs)

or on multi-GPU systems, where calls to cudaMalloc() for different GPUs are

likely to return overlapping memory address ranges. A software-based solution

for this situation requires two new API calls: adsmSafeAlloc(size) and adsm-

Safe(address). The former allocates a shared memory region, but returns a

pointer that is only valid in the CPU code. The latter takes a CPU address

and returns the associated address for the target GPU. GMAC maintains the

mapping between these associated addresses so that any CPU changes to the

shared address region will be reflected in the accelerator memory. Although

this software technique works in all cases where shared data structures do not

contain embedded pointers, it requires programmers to explicitly call adsmPtr()

when passing references to the accelerator. Since OpenCL does not allow the use

of pointers in GPU kernel code, such kernels are already written using relative

memory indexing arithmetic.

GMAC also implements a multi-accelerator safe allocation code that allows

using 64-bit virtual system memory addresses within the code executed by 32-

bit legacy GPUs. First, memory is allocated in the accelerator (cudaMalloc())

and an accelerator physical memory address is returned. Then, GMAC allocates

system memory in a 4 GB region in such a way that the 32 least significant bits

of the system virtual memory address and the accelerator physical memory ad-

dress match. For instance, assume that the allocated range in accelerator mem-

ory starts at accelerator physical address 0x00010100. The gmacMalloc() code

will request a system memory allocation starting at the system virtual memory

address 0x100010100. When this system virtual memory address is interpreted

by the accelerator as an accelerator physical memory address, the hardware

67



truncates the value to 32 bits (0x00010100), which is the accelerator physical

address where the data is hosted. A second execution thread, using a different

accelerator, might also request a shared data allocation, and CUDA might allo-

cate accelerator memory starting at (or overlapping with) the same accelerator

physical memory range (i.e., 0x00010100). The code in GMAC identifies this

new allocation as belonging to a different accelerator and, thus, will use a dif-

ferent 4 GB system virtual memory address range (e.g., 0x200010100). This

implementation approach requires a 4 GB virtual memory address range per ex-

ecution thread making use of accelerators. This is an affordable cost in current

systems. For instance, current 64-bit x86 processors use 47 bits to address the

user-accessible virtual memory space, which means up to 32768 4 GB chunks

are available. Multi-accelerator systems, such multiple GPUs card servers, will

likely include few accelerators and, thus, only require a few 4 GB chunks in the

virtual address space. Note that this implementation approach is only valid for

32-bit accelerators.

A good solution to the problem of conflicting address ranges between mul-

tiple accelerators is to have virtual memory mechanisms in accelerators. With

virtual memory mechanisms in both CPUs and accelerators, the adsmAlloc()

can be guaranteed to find an available virtual address in both CPU’s address

space and accelerator’s address space. Thus, accelerators and CPUs can always

use the same virtual memory address to refer to shared data structures. Ad-

ditionally, accelerator virtual memory simplifies the allocation of shared data

structures. In this case, the implementation of adsmAlloc() first allocates sys-

tem and accelerator memory and fills the necessary memory translation data

structures (e.g., a page table) to map the allocated physical system and accel-

erator memory into the same virtual memory range on the CPU and on the

accelerator. Virtual memory mechanisms are implemented in latest GPUs, but

not available to programmers [HS09]

6.3.3 Memory Coherence Protocols

The layered GMAC architecture allows multiple memory coherence protocols

to coexist and enables programmers to select the most appropriate protocol at

application load time. The GMAC coherence protocols are defined from the

CPU perspective. All book-keeping and data transfers are managed by the

CPU. The accelerators do not perform any memory consistency or coherence

actions. This asymmetry allows the use of simple accelerators.

Figure 6.2 shows the state transition diagrams for the coherence protocols

provided by GMAC. In the considered protocols, a given shared memory range

can be in one of three different states. Invalid means that the memory range

is only in accelerator memory and must be transferred back if the CPU reads

this memory range after the accelerator kernel returns. Dirty means that the

CPU has an updated copy of the memory range and this memory range must be

68



(a) Batch-update

(b) Lazy-update and Rolling-update

Figure 6.2: State transition diagram for the memory coherence protocols imple-
mented in GMAC.

transferred back to the accelerator when the accelerator kernel is called. Read-

only means that the CPU and the accelerator have the same version of the data

so the memory region does not need to be transferred before the next method

invocation on the accelerator.

Batch-update is a pure write-invalidate protocol. System memory gets

invalidated on kernel calls and accelerator memory gets invalidated on kernel

return. On a kernel invocation (adsmCall()) the CPU invalidates all shared

objects, whether or not they are accessed by the accelerator. On method return

(adsmSync()), all shared objects are transferred from accelerator memory to

system memory and marked as dirty, thus implicitly invalidates the accelerator

memory. The invalidation prior to method calls requires transferring all objects

from system memory to accelerator memory even if they have not been modified

by the CPU. The memory manager keeps a list of the starting address and size

of allocated shared memory objects in order to perform these transfers. This is

a simple protocol that does not require detection of accesses to shared data by

the code executed on the CPU. This naive protocol mimics what programmers

tend to implement in the early stages of application implementation.

Lazy-update improves upon batch-update by detecting CPU modifications

to objects in read-only state and any CPU read or write access to objects in

invalid state. These accesses are detected using the CPU hardware memory

protection mechanisms (accessible using the mprotect() system call) to trigger

a page fault exception (delivered as a POSIX signal to user-level), which causes

a page fault handler to be executed. The code inside the page fault handler

implements the state transition diagram shown in Figure 6.2(b).

Shared data structures are initialized to a read-only state when they are

allocated, so read accesses do not trigger a page fault. If the CPU writes to

69



any part of a read-only data structure, the structure is marked as dirty, and

the memory protection state is updated to allow read/write access. Memory

protection hardware is configured to trigger a page fault on any access (read or

write) to shared data structures in invalid state. Whenever a data structure in

invalid state is accessed by the CPU, the object is transferred from accelerator

memory to system memory, and the data structure state is updated to read-only,

on a read access, or to dirty on a write access.

On a kernel invocation all shared data structures are invalidated and those

in the dirty state are transferred from system memory to accelerator memory.

On kernel return no data transfer is done and all shared data objects remain

in invalid state. This approach presents two benefits: (1) only data objects

modified by the CPU are transferred to the accelerator on method calls, and

(2) only data structures accessed by the CPU are transferred from accelerator

memory to system memory after method return. This approach produces im-

portant performance gains with respect to batch-update in applications where

the code executed on the accelerator is part of an iterative computation and the

code executed on the CPU after the accelerator invocation only updates some of

the data structures used or produced by the code executed on the accelerator.

Rolling-update is a hybrid write-update/write-invalidate protocol. Shared

data structures are divided into fixed size memory blocks. The memory man-

ager, as in batch-update and lazy-update, keeps a list of the starting addresses

and sizes of allocated shared memory objects. Each element in this list is ex-

tended with a list of the starting addresses and sizes of the memory blocks

composing the corresponding shared memory object. If the shared object size

of any of these blocks is smaller than the default memory block size, the list

will include the smaller value. The same memory protection mechanisms that

lazy-update uses to detect read and write accesses to dirty and read-only data

structures are used here to detect read and write accesses to dirty and read-only

blocks. This protocol only allows a fixed number of blocks to be in the dirty

state on the CPU, which is called rolling size. If the maximum number of dirty

blocks is exceeded due to a write access that marks a new block as dirty, the

oldest block is asynchronously transferred from system memory to accelerator

memory and the block is marked as read-only (dotted line in Figure 6.2(b)). In

the base implementation, an adaptive approach to set the rolling size is used:

every time a new memory structure is allocated (adsmAlloc()), the rolling size

is increased by a fixed factor (with a default value of 2 blocks). This approach

exploits the fact that applications tend to use all allocated data structures at

the same time. Creating a dependence between the number of allocated regions

and the maximum number of blocks in the dirty state ensures that, at least,

each region might have one of its blocks marked as dirty.

Rolling-update exploits the spatial and temporal locality of accesses to data

structures in much the same way that hardware caches do. It is expected that

codes that sequentially initialize accelerator input data structures will benefit

70



from rolling-update. In this case, data is eagerly transfered from system memory

to accelerator memory while the CPU code continues producing the remaining

accelerator input data. Hence, rolling-update will automatically overlap data

transfers and computation on the CPU. Each time the CPU reads an element

that is in invalid state, it fetches only the fixed size block that contains the

element accessed. Therefore, rolling update also reduces the amount of data

transferred from accelerators when the CPU reads the output kernel data in a

scattered way.

All coherence protocols presented in this section contain a potential defi-

ciency. If, after an accelerator kernel returns, the CPU reads a shared object

that is not written by the kernel, it must still transfer the data value back from

the accelerator memory. Interprocedural pointer analysis [CH00] in the com-

piler or programmers can annotate each kernel call with the objects that the

kernel will write to, then the objects can remain in read-only or dirty state at

accelerator kernel invocation. ADSM enables interprocedural pointer analysis to

detect those data structures being accessed by kernels, because both CPU and

accelerator use the same memory address to refer to the same memory object.

6.3.4 I/O and Bulk Memory Operations

An I/O operation might, for instance, read data from disk and write it to a

shared object. First, a page fault occurs because the call to read() requires

writing to a read-only memory block. Then, GMAC marks the memory block as

read/write memory and sets the memory block to the dirty state, so the call to

read() can proceed. However, when using rolling-update, once the first memory

block is read from disk and written to memory, a new page fault exception is

triggered because read() requires writing to the next memory block of the

shared object. However, the second page fault aborts the read() function and

after handling the second page fault, the read() function cannot be restarted

because the first block of its data has already been read into the destination. The

operating system prevents an ongoing I/O operation from being restarted once

data has been read or written. GMAC uses library interposition to overload I/O

calls to perform any I/O read and write operations affecting shared data objects

in block sized memory chunks and, thus, avoids restarting system calls. GMAC

offers the illusion of peer DMA to programmers, but the current implementation

still requires intermediate copies in system memory.

Library interposition is used in GMAC to overload bulk memory operations

(i.e. memset() and memcpy()). The overloaded implementations check if the

memory affected by bulk memory operations involve shared objects and they use

the accelerator-specific calls (e.g. cudaMemset() and cudaMemcpy()) for shared

data structures, while forwarding calls to the standard C library routines when

only system memory is involved. Overloading bulk memory operations avoids

unnecessary intermediate copies to system memory and avoids triggering page

71



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

cp m
ri-fhd

m
ri-q

pns
rpes

sad
tpacf

S
p

e
e

d
-u

p
 w

it
h

 r
e

s
p

e
c
t 

to
 C

U
D

A

Benchmarks

CUDA
GMAC Batch C870

GMAC Batch GTX285
GMAC Lazy C870

GMAC Lazy GTX285
GMAC Rolling C870

GMAC Rolling GTX285

Figure 6.3: Slow down for different GMAC versions of Parboil benchmarks with
respect to CUDA versions

faults on bulk memory operations.

6.4 Experimental Results

This Section presents an experimental evaluation of the GMAC library. The

experiments described in this section use the benchmarks and systems described

in Chapter 3 and follows the experimental methodology also discussed in that

chapter.

The porting time from CUDA to GMAC for the seven benchmarks included

in Parboil took less than eight hours of work. The porting process does not

significantly differ from the porting of applications to NUAMA, which has been

already discussed in Chapter 5.

6.4.1 Coherence Protocols

Figure 6.3 shows the slow-down for all benchmarks included in the Parboil

Benchmark Suite with respect to the default CUDA implementation for GMAC

using different coherence protocols. The GMAC implementation using the batch-

update coherence protocol always performs worse than other versions, producing

a slow-down of up to 65.18X in pns and 18.64X in rpes. GMAC implementations

using lazy-update and rolling-update achieve performance equal to the original

CUDA implementation.

Figure 6.4 shows data transferred by lazy-update and batch-update normal-

ized to the data transferred by batch-update. The batch-update coherence pro-

72



 0

 0.1

 0.2

 0.3

 0.4

 0.5

lazy-update

rolling-update

lazy-update

rolling-update

lazy-update

rolling-update

lazy-update

rolling-update

lazy-update

rolling-update

lazy-update

rolling-update

lazy-update

rolling-update

T
ra

n
s
fe

r 
S

iz
e

 n
o

rm
a

liz
e

d
 t

o
 B

a
tc

h
-U

p
d

a
te

Host-to-accelerator
Acccelertor-to-host

tpacfsadrpespnsmri-qmri-fhdcp

Figure 6.4: Transferred data by different protocols normalized to data trans-
ferred by Batch-update

tocol produces long execution times because data is transferred back and forth

from system memory to accelerator memory on every accelerator invocation.

This illustrates the first benefit of a data-centric programming model, where

data transfers are automatically handled by the run-time system. Inexperienced

programmers tend to take an over-conservative approach at first, transferring

data even when it is not needed. A data-centric programming model automates

data transfer management and, thus, even initial implementations do not pay

the overhead of unnecessary data transfers.

The original CUDA code, lazy-update, and rolling-update achieve similar

execution times. In some benchmarks, there is a small speed-up for GMAC

with respect to the CUDA version. This shows the second benefit of GMAC:

applications programmed using GMAC perform as well as a hand-tuned code

using existing programming models, while requiring less programming effort.

Fine-grained handling of shared objects in rolling-update avoids some un-

necessary data transfers (i.e. mri-q in Figure 6.4). A 3D-Stencil computation

illustrates the potential performance benefits of rolling-update. Figure 6.5 shows

the execution time of this benchmark for different input volume sizes and mem-

ory block sizes. As the volume size increases, rolling-update offers a greater

benefit than lazy-update. The 3D-Stencil computation requires introducing a

source on the target volume on each time-step, which tends to have zero values

for most of the volume because it represents a small emitter localized at some

point in space. In this version, the CPU executes the code that performs the

source introduction. Lazy-update requires transferring the entire volume prior

to introducing the source, while rolling-update only requires transferring the few

73



 0.01

 0.1

 1

 10

 100

64x64x64 128x128x128 192x192x192 256x256x256 384x384x384

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Volume Size

GMAC Lazy
GMAC Rolling (4KB)

GMAC Rolling (256KB)
GMAC Rolling (1MB)

GMAC Rolling (32MB)

Figure 6.5: Execution time for a 3D-Stencil computation for different volume
sizes

memory blocks that are actually modified by the CPU. This is the main source

of performance improvement of rolling-update over lazy-update.

The combining effects of eager data transfer versus efficient bandwidth us-

age are illustrated in Figure 6.5 too. This Figure shows that execution times

are longer for a memory block size of 32MB than for memory block sizes of

256KB and 1MB, but the difference in performance decreases as the size of

the volume increases. Source introduction typically requires only accessing to

one single memory block and, hence, the amount of data transferred depends

on the memory block size. 3D-Stencil also requires writing to disk the output

volume every certain number of iterations and, thus, the complete volume must

be transferred from accelerator memory. Writing to disk benefits from large

memory block because large data transfers make a more efficient usage of the

interconnection network bandwidth than smaller ones. As the volume size in-

creases, the contribution of the disk write to the total execution time becomes

more important and, therefore, a large memory block size reduces the writing

time.

These results shows the importance of reducing the amount of transferred

data. Figures 6.3 and 6.4 show the relationship between the amount of trans-

ferred data and the execution time. The largest slow-downs in batch-update

are produced in those benchmarks that transfer the most data, (rpes and pns).

Programmer annotation and/or compiler or hardware support to avoid such

transfers is a clear need.

Figure 6.6 shows the break-down of execution time for all benchmarks when

using rolling-update. Most execution time is spent on computations on the

74



 0

 20

 40

 60

 80

 100

cp m
ri-fhd

m
ri-q

pns
rpes

sad
tpacf

%
 o

f 
E

x
e

c
u

ti
o

n
 T

im
e

Benchmarks

Copy
Malloc

Free
Launch

Sync
Signal

cudaMalloc
cudaFree

cudaLaunch
GPU

IORead
IOWrite

CPU

Figure 6.6: Execution time break-down for Parboil benchmarks

CPU or at the GPU. I/O operations, on those benchmarks that require reading

from or writing to disk, and data transfers are the next-most time consuming

operations in all benchmarks. The first remarkable fact is that the overhead

due to signal handling to detect accesses to non-present and read-only memory

blocks is negligible, always below 2% of the total execution time. Figure 6.6

also shows that some benchmarks (mri-fhd and mri-q) have high levels of I/O

read activities and would benefit from hardware that supports peer DMA.

6.4.2 Memory Block Size

The memory block size is a key design parameter of the rolling-update protocol.

The larger the memory block size, the less page fault exceptions are triggered

in the processor. However, a small memory block size is essential to eagerly

transfer data from system memory to the accelerator memory and to avoid

transferring too much data from accelerator memory to system memory when

reading scattered data from the accelerator memory.

The first experiment consists of running the Parboil benchmarks using dif-

ferent memory block sizes and fixing the maximum number of memory blocks in

dirty state. Experimental results show that there is no appreciable difference in

the execution time of Parboil benchmarks in this experiment, due to the small

contribution by the CPU code accessing accelerator-hosted data to the total

execution time.

A micro-benchmark that adds up two 8 million elements vectors is used

to show how the execution time varies for different memory block size values.

Figure 6.7 shows the execution time for different block sizes of this synthetic

75



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

4KB 8KB 16KB 32KB 64KB 128KB256KB512KB 1MB 2MB 4MB 8MB 16MB 32MB
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

T
ra

n
s
fe

r 
T

im
e

 (
s
)

B
a

n
d

w
id

th
 (

G
B

p
s
)

Memory Block Size

PCIe CPU to GPU Bandwidth
PCIe GPU to CPU Bandwidth

CPU to GPU Time
GPU to CPU Time

Figure 6.7: Execution times (lines) and maximum data transfer bandwidth
(boxes) for vector addition for different vector and block sizes

benchmark using different block sizes. The average transfer bandwidth for each

block size is also plotted. The data transfer bandwidth increases with the block

size, reaching its maximum value for block sizes of 32MB. Data transfer times

for vector addition decrease as the transfer bandwidth increases. The execution

time reduction when moving from memory block sizes from 4KB to 8KB and

from 8KB to 16KB is greater than the increase in the data transfer bandwidth.

Small memory block sizes produce many page faults to be triggered by the CPU

code producing and consuming the data objects. On a page fault, the GMAC

code searches for the faulting block in order to modify its permission bits and

state. GMAC keeps memory blocks in a balanced binary tree, which requires

O(log2(n)) operations to locate a given block. For a fixed data object size, a

small memory block size requires more elements to be in the balanced binary

tree and, thus, the overhead due to the search time becomes the dominant over-

head. A large memory block size allows an optimal utilization of the bandwidth

provided by the interconnection network and reduces the overhead due to page

faults.

There is an anomaly in Figure 6.7 for a block size of 64KB. The CPU-to-

accelerator transfer time for a 64KB memory block is smaller than for larger

block sizes. The reason for this anomaly is the eager data transfer from the CPU.

A small block size triggers a higher number of block evictions from the CPU

to the accelerator which overlaps with other computations in the CPU. In this

benchmark, when the block size goes from 64KB to 128KB, the time required

to transfer a block from the CPU to the accelerator becomes longer than the

time required by the CPU to initialize the next memory block and, therefore,

76



evictions must wait for the previous transfer to finish before continuing. Hence,

a small enough memory block size is essential to overlap data transfers with

computations at the CPU.

6.4.3 Rolling Size

This experiment uses a variable rolling size (maximum number of memory blocks

on dirty state). The rolling size affects application performance in two different

ways. First, the smaller the rolling size, the more eagerly data is transferred

to accelerator memory and, thus, the more overlap between data transfers and

computation. Second, memory blocks are marked as read-only once they are

evicted from the memory block cache. Hence, any subsequent write to any

memory location within a evicted block triggers a page fault and the eviction

of a block from the memory block cache. This experiment shows that for all

Parboil benchmarks, except for tpacf, the rolling size does not affect application

performance in an appreciable way due to the way they are coded.

Execution time results for the tpacf benchmark illustrates quite a patholog-

ical case that might be produced by small rolling sizes. Figure 6.8 shows the

execution time of tpacf for different block sizes using rolling sizes of 1, 2, and 4.

For rolling size values of 1 and 2, and small memory block values, data is being

transferred from system memory to accelerator memory continuously. The tpacf

code initializes shared data structures in several passes. Hence, memory blocks

of shared objects are written only once by the CPU before their state is set to

read-only and they are transferred to accelerator memory. As the memory block

size increases, the cost of data transfers becomes higher and, thus, the execution

time increases. When the memory block size reaches a critical value (2MB for

tpacf-2 and 4MB for tpacf-1 ), memory blocks start being overwritten by sub-

sequent passes before they are evicted, which translates to a shorter execution

time. Once the complete input data set fits in the rolling size, the execution

time decreases abruptly because no unnecessary updates are done. For a rolling

size value of 4, the execution time of tpacf is almost constant for all block sizes.

In this case, data is still being transferred, but the larger number of memory

blocks that might be in dirty state allows memory blocks to be written by all

passes before being evicted.

This results reveals an important insight that might be especially important

for a hardware ADSM implementation. In such an implementation, given a

fixed amount of storage, there is a trade-off between the memory block size and

the number of blocks that can be stored. Experimental results shows that it is

more beneficial to allow a higher number of blocks in dirty state than providing

a large block granularity. Other considerations, such different costs for DMA

transfers and page faults must be taken into account when designing a hardware

ADSM system.

77



 1

 10

 100

 1000

 10000

128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Memory Block Size

tpac-1
tpac-2
tpac-4

Figure 6.8: Execution time for tpacf using different memory block and rolling
sizes

6.5 Summary

This chapter has introduced the ADSM programing model for heterogeneous

parallel systems. ADSM implements the accelerator-hosted data transfer model

that presents programmers with a shared address space between general purpose

CPUs and accelerators. CPUs can access data hosted by accelerators, but not

vice versa. This asymmetry allows memory coherence and consistency actions

to be executed solely by the CPU. ADSM exploits this asymmetry (page faults

triggered only by CPU code), the characteristics of heterogeneous systems (lack

of synchronization using program-level shared variables), and the properties

of synchronous function call programming models (release consistency and data

object access information) to avoid performance bottle-necks traditionally found

in symmetric DSM systems.

GMAC, a software user-level implementation of ADSM, and the software

techniques required to build a shared address space and to deal with I/O and

bulk memory in an efficient way using mechanisms offered by most operating

systems has been discussed. Three different coherence protocols to be used in

an ADSM system has been introduced: batch-update, lazy-update and rolling-

update, each one being a refinement of the previous one. Experimental results

show that rolling-update and lazy-update greatly reduces the amount of data

transferred between system and accelerator memory and performs as well as

existent programming models.

Based on the experience with ADSM and GMAC, it might be argued that

future application development for heterogeneous parallel computing systems

78



should use ADSM to reduce the development effort, improve portability, and

achieve high performance. Moreover, there is a clear need for memory virtu-

alization to be implemented by accelerators in order to ADSM systems to be

robust for heterogeneous systems containing several accelerators. Furthermore,

hardware supported peer DMA can increase the performance of certain appli-

cations.

6.6 Significance

The ADSM model brings the accelerator-hosted model and the unified virtual

address space to existent CPU – accelerator systems. Moreover, ADSM provides

architecture independence, legacy support, and efficient I/O support.

The ADSM model illustrates how distribution asymmetric in terms of asym-

metric visibility of the virtual address space and asymmetry in the memory co-

herence management is able to achive performance comparable to their counter-

parts using programmer-managed data transfers. Moreover, with the adequate

hardware support, ADMS is likely to achieve higher performance than current

programming models for processor – accelerator systems.

GMAC introduces two novel approaches to build an unified virtual address

space on top of existent operating systems. GMAC also shows how library in-

terposition might be used to optimize the performance of I/O and bulk memory

operations. This very same technique can be use to allow ADSM systems to

also achieve high performance on MPI applications.

Different memory coherence protocols for ADSM has been implemented in

GMAC. The experimental results show the importance of ADSM coherence

protocols that minimizes the amount of data transferred and are able to eagerly

update the contents of the accelerator memory.

GMAC is current publicity available and has been successfully used in pro-

duction applications.

79



80



Chapter 7

Heterogeneous Parallel
Execution Model

7.1 Introduction

This chapter describes the Heterogeneous Parallel Execution (HPE) model for

applications programmed following the accelerator-hosted data transfer model

presented in Chapter 4. The HPE model extends the synchronous function call

programming model discussed in Chapter 3 and defines how accelerators are

integrated into user applications

This chapter first argues that existent OS abstractions are not sufficient for

heterogeneous parallel systems and have to be modified, but these modifications

should be backwards compatible with existent applications and systems. The

OS extensions adopted by existent function call based programming models for

CPU – accelerator systems are analyzed and shown to increase the complexity

of programming heterogeneous parallel systems.

The HPE model extends the existent execution thread abstraction with exe-

cution modes. An execution mode defines the hardware resources (e.g., CPU or

accelerator) accessible by an execution thread. In the HPE model all execution

threads belonging to the same user process share a single CPU execution mode

and each execution thread owns as many additional execution modes as accel-

erator types are supported by the system. The shared CPU execution mode

provides compatibility with the existent execution model and the accelerator

execution modes accelerator virtualization. In HPE, execution threads can only

be in one execution mode at a time and accelerator calls are implemented as

execution mode switches, so accelerator calls are synchronous. The HPE model

based on execution modes provides full backwards compatibility with existent

applications and systems.

This chapter also presents two different implementations of the HPE model

in the GMAC library introduced in Chapter 6. There is a trade-off between

performance and memory isolation between these implementations. The ac-

celerator hardware support necessary to allow a efficient HPE implementation

that provides memory isolation is described. Experimental results show that

the HPE model, while improving programmability of heterogeneous parallel

systems, produces little overheads.

81



7.2 HPE Model

This section presents an execution model for ADSM systems. First, the neces-

sity for operating system (OS) abstractions to be modified to include different

classes of processors (i.e., CPUs and accelerators) is identified. Furthermore,

such modifications must be backwards compatible with existing abstractions in

order to succeed. Modifications to the OS abstractions in current execution

models for heterogeneous systems are then analyzed. Based on this analysis,

the fundamental properties of an execution model for heterogeneous parallel

computing systems are described.

7.2.1 Rationale and Guiding Principles

Most OSs export system resources to application programmers via user pro-

cesses. User processes are composed by three main OS abstractions: a virtual

address space, file descriptors and execution threads. The virtual address space

abstracts the memory available to the programmer, file descriptors abstract I/O

devices, and execution threads abstract CPUs. These three abstractions define

an execution model where programmers create execution threads to spawn new

execution flows. In this model, execution threads can access all file descriptors

and virtual memory addresses of the process they belong to. This property is

based on the assumption that all processors in the system have the same set

of capabilities (e.g., the ability of accessing I/O devices). However, such an as-

sumption does not remain valid on a heterogeneous system (e.g., GPUs cannot

access I/O devices). Hence, existing OS abstractions have to be modified to

accommodate the reality of heterogeneous systems.

Existing OS abstractions and execution models for homogeneous systems

are well understood by most programmers and are used in most applications.

An execution model that is incompatible with existing applications would re-

quire a huge porting effort that most users are not likely to afford. Moreover,

most programmers are likely to be reticent to adopt an execution model that is

incompatible with the model that they have been successfully using for years.

Furthermore, a backwards-compatible execution model cleanly supports existing

(homogeneous) systems, by disabling or emulating the OS accelerator support.

Hence, a single OS code-base might be able to support existing (homogeneous)

and heterogeneous systems. Therefore, backward compatibility is a key require-

ment for the HPE execution model.

7.2.2 Existing Heterogeneous Execution Models

A first approach to integrate accelerators into the OS is to define a new abstrac-

tion for these devices. Such an abstraction would represent an execution flow

running on the accelerator. However, application execution flows are already

abstracted via execution threads, therefore such an abstraction would produce

82



1 // create a compute context with GPU device
2 ctx = clCreateContextFromType(CL_DEVICE_TYPE_GPU );
3
4 // create a work -queue
5 q = clCreateWorkQueue(ctx , NULL , NULL , 0);
6
7 // create the compute program
8 prg = clCreateProgramFromSource(ctx , 1, &src , NULL);
9

10 // build the compute program executable
11 clBuildProgramExecutable(prg , false , NULL , NULL);
12
13 // create the compute kernel
14 krn = clCreateKernel(prg , k e r n e l );
15
16 // set the args values
17 clSetKernelArg(krn , 0, (void *)&foo , 4, NULL);
18 clSetKernelArg(kr , 1, (void *)&bar , 4, NULL);
19
20 // execute kernel
21 clExecuteKernel(q, krn , NULL , range , NULL , 0, NULL);

Listing 7.1: Example OpenCL code that initializes an accelerator, generates
code suitable to be executed on the accelerator and executes the code on the
accelerator

(a) Execution Model in
the IBM Cell SDK

(b) Execution Model in
NVIDIA CUDA run-time
API

(c) HPE Model

Figure 7.1: IBM Cell SDK, NVIDIA CUDA run-time API, and ADSM execu-
tion models for heterogeneous systems. In the figure ovals represent processes,
tables virtual address spaces, and arrows execution threads. File descriptors are
omitted to simplify the figure. All examples assume two execution threads per
process.

an incongruent execution model. Such incongruence is likely to require OS code

duplication (e.g., duplicated scheduling code for CPUs and accelerators), in-

creasing chances of introducing bugs in the OS code and the complexity of the

OS code and its maintainability. A different approach consists of reusing ex-

isting OS abstractions and incorporating accelerators into the execution model.

This is the approach adopted by existing commercial programming models for

heterogeneous systems using different base abstractions.

OpenCL [Mun09] and the CUDA driver API [NVI09] integrate accelerators

into the execution model using file descriptor semantics. In this model, acceler-

ators are abstracted as contexts and different context operations (e.g., allocat-

ing accelerator memory or launching a computation) available to programmers.

These semantics increase the complexity of using accelerators. For instance,

Listing 7.1 shows the code required to run a program that only performs a sin-

83



gle accelerator call in OpenCL. The required code in this example, is far more

complex than, for instance, the single line of code required to perform a function

call or to create a new execution thread in traditional systems. However, these

semantics are quite convenient when managing accelerators inside the OS.

The IBM Cell SDK [IBM07] abstracts accelerators as execution threads, as

illustrated in Figure 7.1(a). In this model, applications create new accelera-

tor execution threads to execute code at accelerators. This model effectively

requires programmers to transform sequential applications to multi-threaded

applications when using accelerators. As a consequence, inter-thread synchro-

nization code is required to use accelerators, increasing the complexity of pro-

gramming heterogeneous systems. Moreover, the implementation of this model

requires a shadow CPU thread per accelerator thread because accelerators in-

cluded in the IBM Cell chip are not capable of executing OS kernel code. This

implementation effectively couples accelerator execution to CPU execution and,

for instance, when an accelerator thread is created, it has to wait for their

correspondent shadow thread to be selected for execution by the OS to start

running in the accelerator. This coupling might also have additional undesired

side-effects in the overall system performance [MGN08].

The NVIDIA CUDA run-time API, in contrast to the CUDA driver API,

uses processes to abstract accelerators, as illustrated in Figure 7.1(b). In this

model each execution thread is associated to an accelerator process (i.e., CUDA

context) for its whole lifetime. Accelerator processes are composed of an accel-

erator virtual address space and accelerator execution threads. In this model,

computations in the accelerator are Remote Procedure Calls [BN84] (RPC) and,

therefore, accelerator code is isolated from the CPU code and parameters are

passed by-value. This approach is hard to adopt in the ADSM model, which

implements single virtual address space for the code executed by both CPUs

and accelerators, and, thus, allows by-reference parameter passing.

7.2.3 Execution Modes

The key insight to design the proposed HPE model is that programmers typi-

cally integrate accelerators into applications as execution flow migrations: the

execution flow leaves the CPU and starts executing in the accelerator. From

this perspective, the code executed by the CPU and by the accelerator belongs

to the same execution flow, that is, to the same execution thread.

However, High Performance Computing (HPC) programmers tend to use

asynchronous accelerator calls; on an asynchronous accelerator call, the appli-

cation execution flow is split into a CPU and an accelerator execution flows.

Asynchronous accelerator calls are used to execute accelerator and CPU code

concurrently. This thesis argues that asynchronous accelerator calls should be

allowed by the HPE model, but not supported natively. Despite the perfor-

mance gains, asynchronous accelerator calls pose several problems if supported

84



directly by the OS. First, the execution thread’s state (i.e., running, waiting,

blocked) becomes undetermined. For instance, consider an application that

asynchronously calls an accelerator and continues executing code in the CPU.

Then, the OS scheduler preempts the execution thread because its time quan-

tum has expired. At this point, the execution thread is in a quantum state: the

execution thread is both waiting for the CPU and running in the accelerator.

A potential solution to this problem is to avoid preempting threads that are

running in the accelerator. However, such a solution would waste CPU cycles

in the usual case of the code at the CPU is simply waiting for the accelerator

to finish. Second, applications programmed assuming asynchronous accelerator

calls might potentially fail on systems where such calls are not supported by

the underlying hardware. Hence, this dissertation advocates for an execution

model where execution threads are extended to include both CPUs and accel-

erators. In this model, illustrated in Figure 7.1(c), an execution thread might

be executing on the CPU or on an accelerator, but not on both of them at

the same time. This approach integrates accelerators as such, devices intended

to speed up the execution of some computations. In this model, asynchronous

accelerator calls, that is parallel CPU and accelerator execution, are supported

by spawning new application execution threads. Moreover, existing run-time

systems might be used on top of the HPE model to provide programmers with

asynchronous accelerator calls.

In the HPE model, execution threads have different execution modes. Each

thread owns as many different execution modes as processor classes (e.g., CPU

or GPU) are present in the system. An execution mode defines the thread’s

execution environment:

• The processor properties, such as Instruction Set Architecture (ISA) (e.g.,

x86 or cubin) of the instructions executed by the thread on the execution

mode. Processor properties also include the thread’s ability to execute

OS code, preemptibility, or accessibility of I/O devices in each execution

mode.

• Virtual address space visibility. Each execution mode defines the subset of

the user process virtual address space accessible by the execution thread.

For instance, the CPU execution mode (i.e., the execution thread is run-

ning in the CPU) allows the thread to access any virtual memory address.

However, the accelerator execution mode (i.e., the execution thread is run-

ning on the accelerator) only allows access to virtual memory addresses

mapped to the accelerator physical memory.

The ADSM model is mapped to execution modes as follows: execution

threads belonging to the same user process share a single CPU mode, but

each execution thread has its own accelerator mode. In the HPE model, an

accelerator call is translated into a switch from the CPU execution mode to an

accelerator execution mode, analogously to a system call that is a privilege-level

85



switch from user to kernel-level. Returning from the accelerator switches the

thread’s execution mode back to the CPU. For the sake of simplicity, in the

remainder of this chapter assumes two execution modes (CPU and accelerator)

per thread. However, the concepts here developed are easily generalizable to an

arbitrary number of thread execution modes.

7.2.4 Execution Mode Operations

Execution modes might be understood as a set of thread capabilities; an exe-

cution mode is a token that gives the thread permission to execute instructions

from a specific ISA, and access to a subset of the virtual address space and

file descriptors [Lev84]. This view is taken in the HPE model and, hence, two

fundamental execution mode operations are offered to programmers: delegation

and copy.

Delegation transfers the execution mode from the thread invoking the oper-

ation to a target thread, effectively revoking the permission of the caller thread

to switch to such execution mode. For instance, context delegation might be

used in streaming applications, where each execution thread switches to an

accelerator mode to perform some computation over a tile of the application

dataset, and, when this computation is done, the execution thread delegates its

accelerator execution context to the following thread in the pipeline.

Execution mode copy duplicates the execution mode of the invoking thread

and transfers one copy to a target thread. This operation effectively allows

several execution threads to share one accelerator execution mode. One sample

application that uses execution mode copy is, for instance, hybrid filtering where

several filters are applied to an input set and the output data from all filters

are combined into a single output. However, sharing one accelerator execution

mode among several threads might serialize the execution of these threads in

accelerator mode. The accelerator execution mode copy operation provides a

means to share data between several threads when running in accelerator mode.

The data sharing granularity accomplished by execution mode copy is the whole

virtual address sub-space accessible from the accelerator execution mode.

7.2.5 Benefits and Limitations

The HPE model simplifies the task of programming heterogeneous multi-ac-

celerator systems. This model is fully compatible with existing programming

models and simplifies the task of porting applications to use accelerators. Per-

formance-critical functions can be substituted by accelerator calls in our model

because it offers the same calling semantics. This simple porting path is not

possible in the other execution models previously discussed. For instance, the

IBM Cell SDK requires encapsulating performance critical functions into sep-

arate execution threads. This might require major changes in the application

code if non-thread-safe libraries or code is used. The CUDA driver API and

86



Figure 7.2: Sample data-flow that illustrates the importance of fine-grained
synchronization between parallel control-flows in CPUs and accelerators.

OpenCL may require a major re-write of application code to incorporate context

creation and management. The NVIDIA CUDA run-time API does not support

by-reference parameter passing, so complex wrapping functions are required, as

discussed in Chapter 4.

A potential limitation of the ADSM model is the need for specific calls to allo-

cate data objects used in the accelerator code, but this limitation is also present

in all existing programming models for heterogeneous systems. However, shared

data object allocations are done with a single call, while the other models re-

quire two separate calls to allocate system and accelerator memory. This is key

to accomplish backward compatibility; ADSM shared data allocations in accel-

erator-less systems only allocate system memory. However, accelerator memory

allocation calls in other models simply fail, aborting the application execution.

HPE cleanly complements ADSM to allow applications using accelerators to

run on accelerator-less systems. In these systems, accelerator execution mode

triggers the emulation of the accelerator code using the CPU [DKK09]. This ac-

celerator emulation mode does not differ from floating-point emulation already

implemented in by most OS’s [HH97].

Asynchronous accelerator execution is not directly supported in the HPE

model. On the contrary, all accelerator calls in OpenCL and CUDA execu-

tion models are asynchronous. Moreover, these models compel programmers to

extensively use asynchronous accelerator calls and to defer accelerator synchro-

nization (i.e., waiting for the accelerator to finish) as much as possible [NVI09].

Hence, the lack of asynchronous accelerator calls might be viewed as a major

limitation of our execution model. However, HPE intentionally prevents asyn-

chronous accelerator calls because they do not follow the sequential execution

model and provides a limited form of parallel execution on CPUs and accelera-

tors.

For instance, consider the data-flow in Figure 7.2, where dark-grey circles

represent accelerator computations and light-grey circles CPU computations.

This data-flow is a simplified version of a pattern found, for instance, in an Finite

Difference Time Difference simulation of electromagnetic wave propagation in

unbounded volumes, where snapshots of electromagnetic fields are taken every

few iterations. In the data-flow in Figure 7.2, computations A and B, and C

and D can proceed in parallel. However, the code in the CPU has to ensure

that B has finished before starting C, but the GPU code can start D just after

87



Operation Description

accAlloc Allocates memory at the accelerator
accRelease Releases accelerator memory
accLaunch Launches a computation in the accelerator

Table 7.1: Basic accelerator object interface using in GMAC

finishing B. Asynchronous accelerator calls do not provide an easy mapping

of this data-flow. The programmer asynchronously calls to B and compute

A concurrently. Then, a synchronization call between CPU and accelerator is

required to ensure that B has finished, before launching D asynchronously and

start computing C. This CPU – accelerator synchronization, required due to

the data dependency between B and C, degrades the application performance.

For instance, the execution of D is delayed because the CPU has not finished

computing A. HPE provides an elegant way to map the data-flow in Figure 7.2.

The application uses one execution thread to compute A and C in the CPU, and

another execution thread to compute B and D in the accelerator. A semaphore,

for instance, can be used to avoid start computation C before B has finished: the

first execution thread waits on the semaphore after finishing A, and the second

thread increments the semaphore after finishing computation B. As illustrated

in this example, the fine-grained inter-thread synchronization provided by HPE

allows efficient CPU – accelerator parallel execution.

7.3 GMAC Design and Implementation

This section discusses the design of the HPE model. Different implementation

options for this model in GMAC. The implementation techniques discussed in

this section are applicable into the OS kernel-level. Furthermore, a OS kernel-

level implementation would be preferred, so OS thread scheduling and memory

management policies could be applied globally to both CPUs and accelerators.

7.3.1 Accelerator Management

Accelerators present in the system are discovered during the GMAC bootstrap

process. Physical accelerators (e.g., ACC in Figure 7.3) are encapsulated inside

accelerator objects, whose implementation depends on the accelerator architec-

ture (e.g., CUDA or OpenCL). All accelerator objects implement the common

interface shown in Table 7.1, so most GMAC code is accelerator-independent.

Accelerator objects in GMAC are stored in a map of accelerator lists indexed

by an accelerator-architecture key.

Accelerator objects are accessible to execution threads via accelerator con-

texts (or contexts, in short). The internal structure is illustrated in Figure 7.3.

A context contains a reference to an accelerator object and one reference to

a memory map object. The memory map object keeps the information about

88



Figure 7.3: Internal accelerator management GMAC structure for two execution
threads on a single-accelerator system. White boxes represent GMAC abstrac-
tions and ACC a physical accelerator

(a) Execution model implementation
using one CUDA context per context

(b) Execution model implementation
using one CUDA context per acceler-
ator

Figure 7.4: Execution model model implementation alternatives for CUDA
GPUs. Queues in ovals represent CUDA streams and tables accelerator vir-
tual address spaces.

CPU – accelerator shared data. A reference to an accelerator object is required

at context creation-time to allow the eager update of the accelerator memory, as

presented in Chapter 6. At thread creation time, a context reference for each ac-

celerator type present in the system is stored in the thread-specific data [iee09].

In an OS kernel-level implementation, this accelerator reference would be stored

in the thread’s task structure. Contexts are initialized lazily (i.e., when first re-

quired by the thread) to avoid context initialization times on threads not using

accelerators.

Figure 7.4 illustrates two possible accelerator and context implementations

for NVIDIA CUDA GPUs. In the implementation in Figure 7.4(a), each ac-

celerator keeps a different CUDA device identifier, and each context a different

CUDA context and a set of CUDA streams (represented as queues in elipses in

Figure 7.4). In the implementation in Figure 7.4(b), accelerators keep a CUDA

device identifier and one CUDA context, while contexts only use a set of CUDA

streams. In both implementations, the set of CUDA streams per context allows

automatic overlapping of execution and data transfers.

The implementation in Figure 7.4(a) is a natural approach, because the

use of separate CUDA contexts provides accelerator memory isolation across

contexts, as defined by the ADSM model. However, this implementation might

produce important overheads due to the CUDA context creation and switch

89



costs. Moreover, using separate CUDA contexts also prevents exploitation of

concurrent GPU kernel execution in new NVIDIA Fermi GPUs [HS09]. The

implementation in Figure 7.4(b) uses one CUDA context per accelerator to

eliminate the potential for the aforementioned performance overheads. However,

such an implementation does not provide memory isolation across contexts when

scheduled to run in the same physical GPU. GMAC allows selection of either

implementation at compile-time, so users can choose the trade-offs between

performance and protection.

Additional GPU hardware support can potentially remove the trade-off be-

tween performance and protection in the HPE implementation. The first possi-

bility is hardware modifications to improve CUDA context creation and switch-

ing times. These two latencies are greatly reduced in new NVIDIA Fermi

GPUs [HS09], but CUDA context creation and switch still are quite costly

and are likely to remain relatively long due to the internal GPU architec-

ture [LNOM08]. A second possibility is the addition of hardware structures

to provide memory protection at the CUDA stream level. There is no funda-

mental design obstacle that prevents such hardware from being included in the

GPU. For instance, a potential implementation adds a stream identifier regis-

ter per processor (or Streaming Multiprocessor in CUDA terminology). GPU

page table entries are also extended with a permission bitmap, where each bit

indicates the access rights of the memory page for each stream. The stream

identifier register is used to check the permission bitmap on memory accesses

to ensure protection. This implementation provides full backward-compatibility

by simply setting all permission bits in the permission bitmap.

7.3.2 Delegation, Copy and Migration

Execution mode delegation and copy operations are implemented in GMAC

in two new API calls. These new calls delegate or copy the current context

to the thread specified as a parameter. A per-thread context receive buffer is

implemented to store contexts sent to each thread. On a context copy call,

GMAC increments the usages count of the caller thread context and pushes

this context into the target thread’s receive buffer. Context delegation first

detaches the context from the caller thread and, then, pushes this context into

the destination thread receive buffer. Execution threads dequeue contexts from

their receive buffers by invoking a context call receive operation.

The previous implementation of accelerator copy and delegation effectively

changes the physical accelerator used in the accelerator execution mode because

contexts are assigned to a physical accelerator at creation time. Hence, these

operations might become an important source of accelerator load imbalance;

for instance, consider an application running on a dual-GPU system where all

threads assigned to the second accelerator copy their contexts to threads as-

signed to the first accelerator. Another source of load imbalance is an unequal

90



Benchmark Conse- GPU Sync Calls Dataset
cutive Time Overhead (MB)
Calls (µsec)

CP 10 13633 0.05% 1.00
MRI-FHD 2.5 4734 0.13% 5.05
MRI-Q 1.5 6075 0.08% 5.02
PNS 1 9912 0.04% 686.65
TPACF 1 940862 0.00% 4.77
SAD 3 424 1.52% 8.53
RPES 71 1752 0.40% 79.40

Table 7.2: Accelerator usage data from the Parboil benchmark suite

distribution of accelerator workload among application threads. Load balancing

can be accomplished by migrating contexts from overloaded accelerators to any

that are underutilized. GMAC implements a simple load balancing algorithm

using the usages count for each physical accelerator to estimate the accelerator

load. Whenever the usage count of one accelerator is much higher than the aver-

age accelerator usage count, a context assigned to this accelerator is considered

for migration to the least utilized accelerator. The migration is only performed

if the data movement cost is below a given threshold. More elaborate migration

algorithms might be implemented, but a detailed analysis of context migration

algorithms is left as future work.

7.4 Experimental Evaluation

7.4.1 Asynchronous Accelerator Calls

The major difference between the HPE model and existent OpenCL and CUDA

execution models is the asynchronicity of accelerator calls; OpenCL and CUDA

implement asynchronous accelerator calls, while HPE uses synchronous accel-

erator calls. In this experiment, we measure the overhead produced due to

synchronization after accelerator calls in GMAC. The extra performance gains

due to parallel CPU and GPU execution of asynchronous calls is not consid-

ered because concurrent CPU and GPU execution in HPE is supported using

multiple execution threads.

Two synthetic benchmarks are used: Null.Async and Null.Sync. Null.Async

performs several null asynchronous accelerator calls in a row, and then waits

for the accelerator to finish computing. Null.Sync also performs several null

accelerator calls, but waits for the accelerator to finish computing just after

each accelerator call. The null accelerator call returns immediately after the

invocation, so its execution time can be approximated to be zero. Hence, the

execution time difference between these two benchmarks measure the cost of

synchronization calls in HPE. Additionally, we have also run several tests that

execute non-null accelerator calls with different GPU execution time values

to check that the costs remain constant regardless the complexity of the code

executed by the GPU.

Figure 7.5 shows the average difference in accelerator call cost between

91



 0

 1

 2

 3

 4

 5

 6

 7

 8

 5  10  15  20  25  30

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

# of accelerator calls

Null.Diff.GTX285
Null.Diff.C870

Figure 7.5: Execution time difference (in µsec) between consecutive asyn-
chronous and synchronous accelerator calls.

Null.Sync and Null.Async for different NVIDIA GPUs. Asynchronous acceler-

ator calls are 6 µseconds faster per call than synchronous calls for C870 GPUs,

and 7 µseconds for GTX285 GPUs when the number of consecutive accelerator

calls is large. However, for a small number of consecutive accelerator calls, the

time difference decreases, becoming 4 µseconds in both systems for three consec-

utive accelerator calls. These extra costs might be contextualized using profiling

data from the Parboil benchmark suit [IMP], shown in Table 7.2. The acceler-

ator execution time overhead due to synchronous accelerator calls is 0.08% for

MRI-Q, and 0.05% for CP due to the long average latency execution of each

accelerator call. There is a 0.40% overhead in RPES, which performs a high

number of short-latency consecutive accelerator calls. The largest overhead is

produced in SAD because the very short average accelerator call execution time.

These experimental results show that synchronous accelerator calls introduce a

negligible overhead in the total accelerator execution time.

7.4.2 Context Creation and Switching

Two different execution model implementations for NVIDIA GPUs were dis-

cussed in the previous section. These implementation differ in the usage of

CUDA contexts; the first implementation uses one CUDA context per accel-

erator context, while the second implementation uses one CUDA context per

accelerator. The performance difference between these two implementations is

measured using synthetic benchmarks. The Create benchmark measures the

92



 0

 20000

 40000

 60000

 80000

 100000

 1  2  3  4  5  6  7  8

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

# of accelerator contexts

Creation.Context.GTX285
Creation.Stream.GTX285

Creation.Context.C870
Creation.Stream.C870

Figure 7.6: Average Per-context creation time (in microseconds) of an acceler-
ator context

performance difference on accelerator context creation time. This benchmark

consists of a loop where several GMAC contexts are created and initialized. The

accelerator context switch time is measured using the Switch benchmark. This

benchmark performs several consecutive null accelerator calls from different ex-

ecution threads, and the accelerator call execution time is reported.

Figure 7.6 shows the creation time of an accelerator context as the num-

ber of accelerator contexts per user process increases. This figure shows results

for the two implementation approaches: using one CUDA context per acceler-

ator context (Creation.Context) and using one CUDA context per accelerator

(Creation.Stream). Both implementations produce the same average overhead

when a single accelerator context per physical accelerator is used. However, this

overhead decreases exponentially as the number of accelerator contexts increase

in Creation.Stream, while it remains constant in Creation.Context. Acceler-

ator context creation time is almost constant in Creation.Context because a

new CUDA context is allocated and initialized at the GPU on each call. Cre-

ation.Stream, on the contrary, presents decreasing average accelerator context

creation times as the number of accelerator contexts grows. In this case, one

CUDA context is created, and this cost is only paid on the first accelerator

context creation, which requires initializing the accelerator.

Accelerator context switch cost is barely noticeable when the number of

contexts is one because no switch is done. However, for two or more accelerator

contexts, the switch in Switch.Context is much larger (200 µsecs in C870 and

460 µsecs in GTX285) than in Switch.Stream (10 µsec in C870 and GTX285).

93



Accelerator context switches in Switch.Context requires setting-up the GPU

control information, because a new CUDA context becomes active. This is

in contrast with Switch.Stream where the same CUDA context is used by all

accelerator contexts and the GPU configuration is not modified.

These experimental results show that applications that create more threads

than the number of accelerators to increase accelerator utilization can greatly

benefit from the Stream implementation.

7.4.3 Context Copy and Delegation

Context delegation and copy operations provide a means for inter-thread com-

munication and accelerator sharing. A ping-pong benchmark is designed to

measure the round-trip cost of context delegation. This benchmark consists of

two execution threads interchanging a single context; initially, the main thread

delegates its context to the secondary thread and waits for the secondary thread

to delegate a context to it. Analogously, the secondary thread first waits for

the main thread to delegate its context and, as soon as it gets the context, the

secondary thread delegates it to the main thread. This pattern repeats in an

infinite loop. The time spent by both operations, context delegation and re-

ceive, on each loop iteration is measured. The round trip cost, in average, is 28

µseconds on the GTX285 system and 15 µseconds on the C870 system. A null

ping-pong benchmark, where two threads wait/post on two shared semaphores

is executed to measure the cost of inter-thread synchronization when no GMAC

code is involved. The round-trip cost in this case is 18 µseconds on the GTX285

system and 11 µseconds on the C870 system. As expected, these results show

that context delegation mainly depends on the performance of CPU mutual

exclusion locks since no GPU operation is involved in context delegation.

Context copy allows several execution threads to share the same visibility of

the virtual address space when running in accelerator mode. This functionality

has little applicability currently due to the lack of concurrent stream execution

in the current GPU generation. However, upcoming GPUs (and other kinds of

accelerators) will allow several streams to run concurrently on the same phys-

ical accelerator [HS09]. The context copy time is measured using a synthetic

benchmark formed by two execution threads. The main thread executes a loop

where its context is copied to the secondary thread on each loop iteration. The

secondary thread executes a loop, where a context is received on each iteration.

The measured context copy times are 4 µseconds on the GTX285 system and 3

µseconds on the C870 system.

7.4.4 Context Migration

The cost of context migration between accelerators is a key factor in developing

load-balancing policies in multi-threaded applications and multi-programmed

systems. This section measures the cost of context migration and sets the base

94



 0.1

 1

 10

 100

 1000

4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

32678

65536

T
im

e
 (

m
ili

s
e
c
o
n
d
s
)

Migration size (KiB)

C870
GTX285

Figure 7.7: Context Migration

for future accelerator scheduling research. A synthetic benchmark is used to

evaluate the cost of context migration. This benchmark forces an accelerator

context migration changing the thread’s accelerator affinity through a GMAC

call. Before setting the accelerator affinity, the benchmark allocates shared data

structures of a configurable size.

Figure 7.7 shows the context migration time for different application dataset

sizes. Context migration is an expensive operation, taking about 4 milliseconds

in GTX285 for very small dataset values and up to 1 second for datasets of

1GB. The context migration time is mainly formed by two components: context

creation and data transfers. The context creation time, which does not depend

on the dataset size, is about 4 milliseconds in GTX285 (see Figure 7.6) if no

previous context exists in the target accelerator. However, the context creation

time becomes negligible when compared with the data transfer time if the target

accelerator already has active contexts. These experimental results show that

the target accelerator state (i.e., initialized vs. idle) must be considered for

context migration policies.

Context migration time becomes dominated by data transfer cost as the

context dataset grows. Figure 7.7 shows that the context migration cost follows

a linear dependency with the data transfer size for dataset sizes larger then 2MB.

Such a simple dependency might be easily integrated in the context migration

policy to estimate the cost of migrating different contexts. This migration time

might be used together history-based algorithms [JVG+09] to trigger context

migrations.

Profiling information from the Parboil benchmark suite in Table 7.2 shows

95



that context migration might be only triggered on situations of high load un-

balance. For instance, the cost of migrating PNS is two orders of magnitude

higher than the accelerator execution time. In Parboil benchmarks, context mi-

gration would represent little overhead for the case of TPACF. This benchmark

has a dataset of 4.77MB (i.e., a migration time of about 20ms in GTX285)

and an average accelerator execution time of 940ms per accelerator invocation.

Unfortunately history-based algorithms are of little help in this case because

TPACF performs a single accelerator call. These experimental results highlight

the importance of algorithms to select the accelerator assignment on context

initialization time.

7.5 Summary

This chapter has introduced the HPE model for heterogeneous parallel systems.

HPE integrates accelerators into the execution thread abstraction, provided by

most operating systems. In HPE, execution threads are extended with execu-

tion modes, which defines the hardware resources accessible by the execution

thread. All execution threads belonging to the same user process share a com-

mon CPU execution mode, which is active when the application is running at

the CPU. Moreover, execution threads also own one execution mode per kind

of accelerator present in the system. In HPE, applications call accelerators by

switching its active execution mode from the CPU to the accelerator being in-

voked. The HPE model is fully compatible with existent applications, keeping

the sequential programming model that programmers are used to. Furthermore,

the HPE model provides backwards compatibility by allowing the emulation of

accelerators in software whenever they are not present, such in legacy systems.

Execution modes provide application programmers with a programming

model with synchronous accelerator calls. In this programming model, the

application execution flow can be only running in one processor (i.e., CPU

or accelerator) at the time. HPE allows parallel CPU – accelerator execu-

tion by spawning new user threads, in the same way that parallel execution

on multi-core CPUs is accomplished in current operating systems. Using sepa-

rate execution threads to allow concurrent CPU – accelerator execution enables

fine-grained synchronization between the code executed in the CPU and the

code executed in the accelerator, which is not possible in existent programming

models where accelerators are called asynchronously.

Two implementation approaches for the HPE model in GMAC has been pre-

sented. There is trade-off between system performance and memory isolation in

these implementations due to the current lack of memory protection in acceler-

ators. This chapter has outlined the modifications on the accelerator hardware

and the accelerator virtual memory structures required to support memory pro-

tection while being compatible with the existent hardware. Experimental results

have shown that the HPE model produces little overhead.

96



7.6 Significance

The HPE model integrates accelerators in the execution model implemented by

most contemporary operating systems, providing full backwards compatibility

with existent applications and systems. The HPE mode, by providing appli-

cation programmers with an execution model they are familiar with, improves

the programmability of heterogeneous parallel systems and eases the adoption

of accelerator in general purpose applications.

The HPE model introduces the concept of execution mode to define the

different processors (i.e., CPUs and accelerators) where execution threads might

be executed. Execution modes allow the implementation of an execution model

where accelerators are called by requesting an execution mode switch to the OS.

Execution mode switches are analogous to privilege-level switches, currently

used to perform system calls. Execution modes also allow a simple mechanism

for the operating system to allow executing applications on systems without

accelerator: on an execution mode switch, the OS emulates in software the

accelerator being invoked.

The HPE model implementation in GMAC has illustrated the need for mem-

ory protection mechanisms to be implemented by accelerators. The necessary

hardware support outlined in this chapter would allow an efficient implementa-

tion of the HPE model while being fully compatible with current applications.

97



98



Chapter 8

Conclusions and Future
Work

8.1 Conclusions

Heterogeneous systems formed by general purpose processors and accelerators

allow efficient execution of a wide range of applications formed by sequential

control-intensive and data-parallel phases. These kind of systems are becom-

ing widely adopted in the high-performance computing field in supercomputing

centers, industry and academia.

Millions of heterogeneous desktop systems that include CPUs and GPUs are

sold every year. However, general purpose applications, such as word proces-

sors, spreadsheets and multimedia applications, are not exploiting the additional

computational power present in current desktop systems. The major drawbacks

for the adoption of the heterogeneous computing paradigm in general purpose

applications are the complex programming model and lack of backwards com-

patibility.

This dissertation has used a comprehensive approach to improve programma-

bility and backwards compatibility of heterogeneous systems. An analysis of the

existent data transfer models for heterogeneous systems have reveled the lack

of by-reference parameter passing to accelerators and the usage of separate vir-

tual address spaces for system and accelerator memories. Current data models

require parameters to be passed by-value to accelerators and, therefore, extra

code to perform memory copies between system and accelerator memories is

needed. These memory copies harm the application performance, which might

be hidden using double-buffering techniques that further increases the task of

programming heterogeneous systems. Separate system and accelerator virtual

address spaces produce the double-pointer problem: a single data structure is

referenced by different pointer in the CPU and accelerator code. Keeping these

two pointers consistent also increases the complexity of programming heteroge-

neous systems.

This dissertation has presented the accelerator-hosted data transfer model,

where data structures used by accelerators are only hosted by the accelerator

memory. Such a model allows parameters to be passed by-reference to accelera-

tors and, therefore, removes the need of explicit memory copy operations. This

model has been also extended to build an unified virtual address space, shared

99



by CPUs and accelerators. This unified virtual address space solves the dou-

ble-pointer problem by allowing data structures to be referenced by the same

virtual memory address in both, the CPU and accelerator code. The accelera-

tor-hosted data transfer model and the unified virtual address space for CPUs

and accelerators are the two first contributions of the this dissertation.

The Non-Uniform Accelerator Memory Access (NUAMA) architecture has

been also introduced in this dissertation. The NUAMA architecture allows

CPUs to access the accelerator memory using regular load/store instructions.

Data structures hosted by the accelerator memory are identified using one ex-

tra bit in the page table entries. An Accelerator Memory Collector (AMC) is

integrated within the system memory controller to identify memory accesses to

accelerator-hosted data. The AMC buffers and coalesces memory requests for

the accelerator to improve the throughput of data transfers to the accelerator

memory. The NUAMA architecture also uses a write-through/write-non-allo-

cate policy in the L2 cache for accelerator-hosted data, while keeping the write-

back/write-allocate policy for the data hosted in system memory. This hybrid

L2 cache policy is the key to eagerly update the contents of the accelerator

memory, so on an accelerator call few data needs to be transferred. Moreover,

by allowing accelerator-hosted data to be cached in the CPU, repeated accesses

and accesses to contiguous memory locations are not penalized. The NUAMA

architecture is the third main contribution of this dissertation.

This dissertation has introduced the Asymmetric Distributed Shared Mem-

ory (ADSM) system. ADSM allows the implementation of the accelerator-

hosted model and the unified virtual address space on top of existent systems.

The key insight of ADSM is the double asymmetry of distribution:

• Accelerators can only access data hosted on their own memory, while

CPUs can access any location of the virtual address space.

• All coherence actions are performed by CPUs.

This asymmetry allows the usage of simple accelerators without any additional

hardware support. The design and implementation of Global Memory for Ac-

celerators (GMAC), an ADSM system as a user-level library, has been also

discussed in this dissertation. The description of ADSM and the GMAC run-

time, which is publicly available, are the forth and fifth contributions of this

dissertation, respectively.

Finally, Heterogeneous Parallel Execution (HPE) model for ADSM systems

has been presented in this dissertation. The HPE model accomplishes full back-

wards compatibility with existent sequential execution models based on execu-

tion threads, which provides the following benefits:

• Existent applications can run unmodified on top of the ADSM systems.

• Applications requiring accelerators can execute on top of legacy systems,

being accelerators emulated in software.

100



The design and implementation in GMAC of such execution model has been

presented, and is the sixth contribution of this dissertation.

8.2 Future Work

The work presented in this dissertation has opened new research lines for CPU –

accelerator systems in the fields of memory management, accelerator scheduling,

and programming models. This new research lines are translated in potential

future work, which is outlined in this section.

8.2.1 Accelerator Memory System

On an accelerator call, NUAMA and ADSM requires invalidating accelerator

hosted data in the cache hierarchy and system memory respectively. This inval-

idation ensures that after an accelerator call, the CPU access the updated copy

of the data hosted in the accelerator memory. This approach has a potential per-

formance overhead because accelerator-hosted data structures are invalidated

even if the accelerator does not actually modified them (i.e., read-only input

parameters). Hence, after an accelerator call, CPU accesses to these read-only

data structures have to reach the accelerator memory.

To avoid the invalidation of accelerator-hosted on an accelerator calls, accel-

erators should provide a means for the CPU to identify those data that has been

modified during the accelerator execution. The necessary hardware support and

control structures to be implemented by accelerators to avoid accelerator-hosted

data invalidation is a potential future work.

8.2.2 Accelerator Memory Manager

The experimental work in NUAMA and ADSM showed that large data trans-

fer sizes are the key to accomplish an efficient utilization of the PCIe band-

width. Currently, most applications for CPU – accelerator systems come from

the high-performance computing and use large datasets. This data layout al-

lows for medium and large size transfers between system and accelerator mem-

ories. However, many existent applications use dynamic data structures, such

as linked-lists or binary trees, which are formed by large number of small mem-

ory chunks. The dynamic nature of these data structures results in a memory

layout, where data from different structures is interleaved in memory. Such a

memory layout prevents large data transfers between system and accelerator

memory to happen.

An accelerator memory allocation that dynamically packs data structures

into contiguous accelerator memory regions would allow to large data transfers

between CPUs and accelerators. Such an allocator has to be able to dynamically

identify data structures for each accelerator memory allocation, so a object cache

per data structure can be used.

101



8.2.3 Accelerator Virtual Memory

The accelerator-hosted data transfer model increases the accelerator memory

capacity requirements. Currently, accelerator memory capacity is increasing

(i.e., 6GB on NVIDIA Fermi). However, some applications might use data

structures larger than the available physical accelerator memory. There are

software and hardware mechanisms to support such applications. For instance,

host-mapped memory in NVIDIA GPUs might be used to increase the amount of

accelerator memory at the cost of lower accelerator performance. The research

of efficient accelerator virtual memory is a potential future work of this thesis.

8.2.4 Accelerator Scheduling and Operating System

Integration

The ADSM execution model integrates accelerators into the execution thread

abstraction. This integration allows operating system schedulers to consider

the accelerator execution time into scheduling policies to improve scheduling

fairness. Current operating system schedulers favor applications that are mostly

executed by accelerators due to their short CPU execution time.

A potential future work is to integrate the ADSM execution model inside

the operating system kernel code. This integration will allow to further inves-

tigate the necessary operating system support for heterogeneous systems. This

potential future work presents the following challenges:

• Definition of an accelerator interface. Due to the variety of existent accel-

erators (e.g., NVIDIA, AMD and Intel GPUs), a generic interface for all

accelerators is needed to keep a hardware-independent operating system

kernel code.

• Scheduling metrics. Current operating system scheduler typically use the

execution time as main metric to take scheduling decisions because all pro-

cesses can be executed by all processors in the system. In the ADSM exe-

cution model, this assumption does not remain valid; some processes might

be only executed by an accelerator depending on the execution mode. Ac-

complishing load-balancing between CPUs and accelerators might require

using different metrics.

• Accelerator emulation. Applications using accelerator can be executed

on systems without accelerators using a fall-back emulation mode. The

trade-offs between operating system kernel-level and user-level accelerator

need to be analyzed to develop reliable and efficient accelerator emulation.

8.2.5 Multi-Accelerator Programming

The ADSM execution model supports multi-accelerator systems by spawning

new execution threads. This approach allows building higher-level abstractions

102



in the run-time to hide thread creation to application programmers. The analy-

sis of the problems posed by accelerator memory distribution and the research of

mechanisms to hide the complexity of using several accelerators is also potential

future work.

103



104



Appendix A

Application Partitioning for
Heterogeneous Systems

A.1 Introduction

This appendix presents a methodology for guided application partitioning for

CPU – accelerator systems. This methodology is demonstrated using a proto-

type of the Non-Uniform Accelerator Memory Access (NUAMA) architecture.

The key feature of NUAMA is that accelerator-accessible data structures are

hosted by the accelerator memory, but are still accessible by the CPU. To-

gether, the techniques described in this appendix enable a software developer to

take a piece of software and map it to a heterogeneous multi-core system. More-

over, this methodology lays the groundwork necessary to enable a methodical

and automated approach to application partitioning for NUAMA and ADSM

CPU – accelerator systems. In the remaining of this chapter, a base NUAMA

systems is assumed, but the concepts here developed are equally applicable to

ADSM systems.

The first contribution of this work is a methodology which leverages both

developer knowledge of an application and dynamic application profiling tech-

niques to partition data applications for NUAMA systems. The second contri-

bution is an emulation platform for rapid prototyping of NUAMA applications.

The emulation platform provides enhanced visibility, control, and speed to the

software developer, with the added capability of emulating NUAMA systems.

A.1.1 Related Work

A variety of approaches have been proposed to extract greater performance from

the increasing number of transistors available to microprocessor designers. One

example is homogeneous multi-core designs integrating multiple, identical cores

on a single die [KAO05, Sea05]. These designs are adept at exploiting thread-

level parallelism, but are not the most power-efficient computational substrate

for data-parallel codes. Several efforts have explored heterogeneous systems as

a means to gain better performance with greater power and area efficiency. The

Cell processor integrates groups of smaller, in-order vector units with a high-

performance super-scalar core [GHF+06]. To avoid the need for a heterogeneous

programming model, other work has investigated the use cores of varying capa-

bilities from the same Instruction Set Architecture (ISA) on a die [KTR+04].

105



Furthermore, heterogeneous multi-core processors are shown to provide favor-

able power/performance benefits to a wide array of applications [KFJ+03], but

may still be limiting for irregular, data-parallel codes.

An alternative approach is to use accelerators that are specifically designed

to exploit data parallelism with a high level of power and area efficiency. Speci-

fications are already underway to incorporate fine-grained examples of such ac-

celerators into commodity microprocessors [Ram06]. The goal of such systems

is to complement high-performance processor cores by incorporating domain-

specific functionality that is implemented as fast, closely-coupled logic (e.g.,

[SBB+05]). For a study of data parallelism and its effect on microarchitecture,

see [SKMB03]. The end result is a heterogeneous mix of general-purpose and

accelerator cores that can exploit the various forms of parallelism present in

applications [Aea06].

The design of interconnect between the CPU and the accelerators is critical

to the performance achievable by the system. Commercial examples of acceler-

ator interconnects include system buses (e.g., HyperTransport and PCIe) and

instructions provided by the ISA (e.g., MIPS Coprocessor Interface). System

bus interfaces provide high-bandwidth, high-latency connections between sys-

tem memory, CPU, and accelerators without imposing upon the ISA. On the

other hand, commercially-available ISA extensions provide a low-latency access

mechanism for accelerators, but with register granularity that requires entan-

gling accelerator interfaces with the processor pipeline. Both models provide

pass-by-value semantics whereby the data is explicitly delivered to the accel-

erator and the CPU does not keep a reference to the data. The NUAMA

architecture avoids modifying the ISA of the general-purpose CPU and utilizes

a pass-by-reference model where persistent data is shared between the CPU and

accelerator.

A commercial example of a data-parallel accelerator and development en-

vironment is the NVIDIA G80 and its corresponding CUDA [NVI09] software

development environment. CUDA is an environment for developing software

that will run on the accelerator; However, it currently does not provide a means

to determine an appropriate partitioning of applications across the CPU and

accelerator as the proposed methodology achieves. The key difference between

the CUDA model and NUAMA is that the CUDA provides only a pass-by-value

model for the CPU to access its local memory, while NUAMA provides both

pass-by-value and, as extensively used in this study, pass-by-reference semantics.

In order to effectively use the data hosting feature, the application and its

data must be properly partitioned between the CPU and accelerators. Applica-

tion partitioning has been widely studied in the field of design automation. The

FLAT tool set [SNV+03] uses source code profiling and simulation to identify

the compute-intensive loops of applications. In the field of application-spe-

cific instruction set processors (ASIP), the µP tool set [KAFK+05] uses fine-

grained assembly-level profiling and simulation to identify instruction extensions

106



for general purpose cores. The development environment for Stretch [Gon06]

is an example of using simulation and native execution to rapidly prototype

and debug reconfigurable designs. While the Stretch tool flow allows for di-

rect performance measurements, it requires possibly time-consuming synthesis

and place-and-route steps to be performed before evaluating a design. Their

model does not use a prototyping mechanism to reduce the time spent debug-

ging large-scale accelerator designs as the proposed methodology aims to do via

emulation.

A.1.2 Motivation

For heterogeneous NUAMA systems to become prevalent, there is a need of

methodologies such as the one presented in this appendix that allow software

designers, with as little added effort as possible, to take common applications

and partition them across CPUs and accelerators. Such tools should not deviate

from accepted development and debugging practices while also allowing the

developed applications to remain portable. Partitioning techniques that require

programmer intervention are explored, but time consuming tasks are deferred

as much as possible to converge on a correct design more rapidly.

The NUAMA architecture and this methodology are designed to help soft-

ware developers achieve three important objectives when utilizing data-parallel

accelerators. First, data sharing should consume the least possible amount of

interconnect bandwidth and incur shortest possible latencies. Second, the small-

est possible number of changes should be made to the programming environment

and processor architecture so that software can be easily ported between sys-

tems with and without accelerators. Third, the software developed using the

tools should be easy to debug. The latter two objectives are achieved partly by

providing an emulation platform that eases debugging the communication be-

tween the part of the application running on the general purpose core and that

executed by the accelerator. It should be noted that the proposed methodology

is not meant to evaluate the performance of a partitioned design, but instead

has the orthogonal goal of developing a correct design.

The partitioning flow starts with a software application that runs on the

general purpose processor. The application developer then uses this method-

ology to identify the parts of the application that are amenable to accelerator

execution and select the data structures that are accessed frequently by those

software components. The developer can then use our emulation platform to

test, debug, and verify both software and hardware-instrumented versions of the

application there by doing code generation. The emulation platform allows for

the flow to be completed, after the hosted data mappings and synchronization

mechanisms are in place and debugged.

Case studies are presented to demonstrate the use of this methodology

and NUAMA to enable the efficient use of data-parallel accelerators. Three

107



SPEC2006 integer benchmarks are mapped to the emulation platform using

analysis and profiling infrastructure: one to guide the development of this

methodology and two others to verify its capabilities. This appendix illustrates

that a software designer can take a software application and quickly prototype

designs that incorporate possibly non-existent accelerators with high visibility

for debugging purposes.

A.1.3 Contributions

The contributions of this appendix are as follows:

• A profiling methodology that assists software developers in mapping soft-

ware applications and data objects into NUAMA architectures.

• A rapid prototyping environment that allows for the debug and test of

NUAMA designs.

• An emulation technique that uses softcore processors to avoid the time

consuming process of hand implementation, or high-level synthesis, of ac-

celerators during partitioning.

• A design flow that starts with a purely software application and results in

that application debugged, tested, and partitioned to run on a NUAMA

architecture.

A.2 Design Flow

Here a design flow, which aids developers in partitioning applications on to

NUAMA architectures is presented. Then a prototype emulation platform that

supports rapid prototyping and debugging of alternative partitioning strategies

is described. The prototyping platform supports a novel emulation technique

that allows substantial testing and validation of partitioning prior to the avail-

ability of accelerator hardware implementations. The prototyping platform is

used to emulate the NUMA architecture.

A.2.1 Analysis and profiling tools

The methodology presented here enables a software developer to identify the

subroutines and data structures amenable to accelerator implementation and

data structure hosting, respectively. This methodology approach arose from ex-

periences partitioning a SPEC application, 462.libquantum. To demonstrate the

developed methodology, this methodology is applied to two other benchmarks.

A high-level diagram of the design process appears in Figure A.1. The ap-

plication (upper left corner) is first fed into a suite of profiling and analysis

tools. The developer uses the analysis as a guide to selecting both functions

108



Profiling/Analysis Tools

"Port" to Coprocessor Compile to Softcore CPU

Insert Coprocessor StubSoftware Application General−Purpose CPU

Compile to

Softcore Processor

Emulated
Coprocessors

Processor

General−Purpose

Memory

Local

Partitioning

Data Structure Mapping

Rapid Prototyping and
Emulation Platform

Figure A.1: Design Flow Overview

and data objects, which are then executed and hosted by the accelerator, re-

spectively. The developer’s choices are then used to partition the program,

producing three results: stub code for controlling the interaction between the

general-purpose processor and the accelerator; a data structure mapping that

controls placement of objects into the accelerator memory as well as the associ-

ated allocation management; and an implementation of the accelerator functions

suitable for emulation by a softcore processor. The tool flow (the block marked

“Profiling/Analysis Tools” in Figure A.1) works as follows:

First, subroutine candidates are found by profiling the application and de-

termining the data parallelism present. Data to be hosted by the accelerator

memory is discovered by correlating the load/store intensity of dynamically al-

located data structures with the execution periods of high computation time

subroutines. The resolution of the tools can be modified to enable quicker anal-

ysis while searching for interesting regions of execution and slower, in-depth

analysis of those regions found with coarser resolution. The visualizations pro-

duced provide a guide that enables developers to determine what subroutines

are candidates for acceleration and what objects those subroutines will access

for a given input set.

At a more detailed level, this methodology consists of the following steps:

1. Preprocessing to add annotations into the code at compile time to sim-

plify and accelerate profile analysis stage.

2. Profiling isolates compute-intensive areas of the application (candidate

subroutines). The gprof profiling tool is used for the experiments.

3. Data-Level Parallelism (DLP) Discovery evaluates the amenability

to accelerator implementation of the candidate subroutine based on the

amount of DLP present.

4. Access Intensity determines which program objects are heavily accessed

by the candidate subroutines.

109



5. Liveness Analysis measures the persistence of the data structures and

to see whether it is possible for multiple objects to time-multiplex the

accelerator memory without large data transfers.

6. Data Synchronization Granularity maps the access pattern of the

hosted data structures to one of the access models in Figure A.2.

Performance profiling of the application is a well-understood filter for se-

lecting candidate subroutines for accelerator implementation. Due to Amdahl’s

Law, speedup will be limited by the time spent executing any sequential code.

As such, those subroutines that dominate execution time are chosen with pro-

filing. A threshold of 10% execution time is set before considering a subroutine

for accelerator implementation. The developer may choose to evaluate all sub-

routines; however, setting such a limit reduces the number of subroutines that

must be tracked, reducing the time required for analysis.

The amount of data-level parallelism available in candidate subroutines is

how the appropriateness of implementing a candidate subroutine as a accelerator

is evaluated. DLP is evaluated by counting the total number of arithmetic

instructions and dividing it by the height of the dependence tree for the loop

body code. Greater degrees of DLP can be exposed by exploiting cross-iteration

parallelism for all of benchmarks.

The ability of NUAMA to provide demonstrable speedups depends heavily

on discovering strong correlations between data structures and code regions

that can be accelerated by accelerators. Dynamic data profilers to show how

much and how often data is accessed from inside candidate subroutines have

been developed. High access intensity is defined as a large number of loads and

stores to a particular object in a time interval. High access intensity for a data

object during a candidate routine marks it as an attractive choice for hosting in

the accelerator memory. Correlating the dynamic data profiler results with the

subroutine execution periods allows the software developer to make informed

decisions about what data structures should be hosted while using different

candidate subroutines.

Accurate selection of data structures for inclusion in the accelerator memory

is necessary for successful accelerator execution. However, the ability to access

hosted data objects with low latency from both the CPU and accelerator is

exploited to allow for overly eager mappings to accelerator memory. The only

guarantee that must be made is that all of the data that the accelerator ac-

cesses be present in its memory prior to its execution. Data locality is enforced

explicitly at the point where the processor hands off control to the accelera-

tor. Otherwise, since the accelerator memory is accessible and cacheable by the

CPU, correct execution will be maintained without performance degradation,

even if objects are unnecessarily hosted by the accelerator memory.

For NUAMA to remain scalable and general-purpose, the architecture re-

quires the capability of mapping large accelerator working sets into smaller

110



accelerator memories (virtualization). Determining how much data is accessed

from candidate subroutines allows the developer to gage the level of accelerator

memory virtualization that must be done. For applications where the amount

of data accessed is small enough, dynamic data profiling will show that the can-

didate objects will fit into the given accelerator memory and no virtualization is

needed. In cases where the objects are larger than available memory, software

management similar to the virtualization of system memory can be employed.

As applications progress through different phases of execution, different ac-

celerator or data structure hosting arrangements may be appropriate. The pro-

posed methodology provides a data object liveness analysis technique to aid

developers in finding opportune periods to make such runtime changes. An ob-

ject is said to be dead during the interval between a load and the first store

that starts a period in which all values in that object are overwritten without

an intervening load. Any dead objects can simply be discarded as soon as the

last load prior to the dead interval, since it will be re-created prior to any future

loads accessing its contents. Liveness is also a measure of an object’s persis-

tence in memory, with long lifetimes indicating possibly good candidates for

data hosting compared to short-lived values.

Liveness analysis is useful for the situation in which a accelerator must iterate

through data structures larger than the available accelerator memory, or when

a single object is equivalent to a sequence of distinct objects. Furthermore,

if the accelerators are reconfigurable (e.g., FPGA-like) or are programmable

(e.g., SPE in the Cell processor), the opportunity exists for various accelerator

functions to be utilized throughout the execution of the program. In either case,

knowing that objects are dead during periods of execution allows for applications

to simply discard the values in the accelerator memory and start using the

accelerator memory to host another object. For objects that will exist later

in the application, but are simply dead for a period of time, the application

must change the address mapping for the object. The key feature of liveness

profiling is its ability to uncover periods where objects need not be preserved,

thus guiding the developer to parts of the code where accelerator reconfiguration

and data structure remapping can take place efficiently.

The last aspect of analysis is the granularity of data flow in a candidate sub-

routine. Figure A.2 shows four possible modes. As part of this flow, a technique

to analyze the data flow granularity and access behavior of our benchmarks has

been developed. Figure A.2(a) shows the situation where all data control is

transferred at the same point. Such a model requires less architecture support,

but unnecessarily limits concurrency. When the computation of the subsequent

block depends on a late write by the preceding block is called stack access pat-

tern. A stack access pattern is limiting for accelerator concurrency and if such

a pattern is found, accelerators may only be able to execute sequentially. Full

streaming, as depicted in Figure A.2(b), is the situation where each element

is transferred independently and in an order that is consistent across control

111



C

A B C
A B C

A B

A[..] B[..] C[..]

A[..] B[..]

A[..] B[..] C[..]

A[..] B[..] C[..]

A[..] B[..] C[..]

A[..] B[..] C[..]

Stacked

stores

stores

stores

loads

loads

loads

loadsloads

Full Streaming

Sequential Access Pattern Concurrent Access Pattern

Block Streaming

Read−Only

Concurrent

(a)

(b)

(c)

(d)

X
A B C

A[..] B[..] C[..] A[..] B[..] C[..]

Flow of Execution

A B C

Figure A.2: Data Movement in Concurrent Data Access Models

paths. In such a model, it may be possible to execute multiple accelerators

concurrently and synchronize with a mechanism similar to the presence bits

used in dataflow machines [Vee86]. Figure A.2(c) shows block streaming where

the access pattern between blocks is exploited, but within blocks applications

may access data in an arbitrary order. Some applications have sequential code

regions that only access objects in a read-only fashion, allowing for the concur-

rent execution shown in Figure A.2(d). Access patterns of applications are also

studied to give direction to the developer about what computations may be able

to stream data or be co-scheduled in order to increase parallelism.

The tools used as part of this methodology are developed using perl and

PIN [LCM+05]. PIN tools perform the dynamic analysis of applications by

instrumenting the binaries, providing high-speed access to dynamic program

behavior. The resolution of the data collection is variable whenever possible to

allow for faster feedback loops for developers. Using these tools, tens of millions

of instructions per minute can be profiled at a fine resolution and, at coarser

resolution, hundreds of millions of instructions per minute.

A.2.2 Emulation platform

A prototype emulation platform for NUAMA-based systems has been developed

to allow software versions of accelerators to be rapidly prototyped and the

corresponding software to be tested and debugged without requiring developers

to adopt entirely new development methods. Greater visibility is provided by

the emulation platform, resulting in reduced debugging times compared to other

accelerators that rely on “black box” approaches, which do not expose their

interfaces directly to the developer. By exposing the accelerator memory to

the user application, the usage of standard compiler (e.g., gcc) and debugging

tools (e.g., gdb) is enabled, reducing the complexity experienced by developers

112



wishing to migrate from conventional platforms.

The emulation platform allows a developer to run applications in any of

four modes: software-only profile, software memory debug, accelerator debug,

and accelerator profiling. Using these four modes of operation, the developer

can take the results of the partition methodology and implement an emulated

partitioning of the application. The emulated accelerator platform can then

be used to evaluate trade offs in the partitioned application’s design space and

to debug applications with concurrent execution on general-purpose cores and

accelerators.

The prototyping platform consists of an FPGA-based development board

with embedded hard and soft processor cores that runs a fully functioning

operating system and development environment. The Xilinx Virtex-II Pro

FPGA [Xil05], which integrates a PowerPC (PPC) processor core on-die, is

used in this work. The software for the platform consists of Linux 2.6.18 with a

full suite of GNU development tools, libraries, and utilities. The software por-

tion of applications to be prototyped are compiled for the PowerPC processor

and linked against standard PPC Linux C libraries. To emulate accelerators,

the Xilinx MicroBlaze softcore processor running a modified form of the original

source code of the region to be accelerated is used. The restrictions on that code

are the same as those required of the accelerators themselves. Furthermore, mul-

tiple accelerators can be emulated by synthesizing multiple softcore processors,

or, if they do not have overlapping lifetimes, on the same softcore processor.

The hosting of application data structures is done by embedded SRAM, ac-

cessible by both the MicroBlaze and PPC processors, that is mapped into the

application’s address space. The embedded PPC processor, softcore MicroBlaze

processors, embedded memories, and system software represent a platform that

allows developers to prototype applications targeting future NUAMA systems.

There are two modes on the emulation platform that do not use acceler-

ators: the software-only mode and the software memory debug mode. The

software-only mode is the original software application running on the emula-

tion platform. Applications can be developed using conventional compilation

and debugging tools under the software-only mode to ensure a stable base prior

to partitioning into accelerator and general-purpose software modules. The

software memory debug mode executes all of the code on the general-purpose

processor, however, the data structures to be hosted by the accelerator memory

are allocated to the embedded memories of the emulation platform. Placing

the selected objects into the accelerator memory allows for initial debugging of

the software/accelerator interface and an initial analysis of the caching and bus

contention behavior of the final design.

The accelerator debug and profiling modes are used post-partitioning to de-

bug and evaluate the partitioned designs, respectively. In the accelerator debug

mode, emulated accelerators are used that are functionally identical to the fi-

nal accelerator design, however, they run as a software module on a softcore

113



processor. The accelerator debug mode allows the developer to remove bugs in

the synchronization and data partitioning between the CPU and accelerator.

For applications that have many objects needing to be hosted and for virtual-

ization of the accelerator memory, ensuring that the accelerator local memory

contains the correct set of values is critical for correct execution. Having the

ability to verify the partitioning scheme using emulation as opposed to simu-

lation can reduce debugging time by two orders of magnitude, as the results

show (see Table A.2). Furthermore, the emulation platform provides a high

degree of visibility and control for the developer to alter and examine the state

of the executing application using symbolic debuggers and external interfaces

via JTAG.

The accelerator profile mode is the final step in the design flow, removing

the emulated accelerator from the hardware interface and inserting the actual

accelerator. Doing so enables the developer to evaluate the performance of the

accelerated and debugged design. Using these two modes, the developer can re-

move bugs and evaluate performance in that order allowing for rapid debugging

of the software/hardware interface followed by performance evaluation.

A.3 Case Studies

The application which drove the methodology development, along with the tools

themselves, is presented followed by two case studies of application partitioning.

Examples are drawn from the SPECint2006 suite in three application domains

characterized by computation amenable to accelerator acceleration: mathemat-

ical libraries and simulation (462.libquantum), scientific computing (456.hm-

mer), and multimedia (464.h264ref). Finally, the utility of a rapid prototyping

platform that allows software developers to target future hybrid NUAMA ar-

chitectures with their applications is demonstrated.

A.3.1 Design driver: 462.libquantum

The driving application used to develop the partitioning infrastructure is the

462.libquantum integer benchmark. The benchmark was chosen for its small

code size and easily discoverable regions with data-level parallelism (DLP), mak-

ing it an easy testbed for the analysis techniques. The benchmark simulates a

quantum computer running Shor’s algorithm for integer factorization relying

heavily upon the libquantum library. On the emulation platform, two library

subroutines are migrated and their associated data into emulated accelerators.

The benchmark spends over 3/4 of the original uniprocessor runtime in these

two functions. Profile tools have enabled to determine the data structures ap-

propriate for accelerator memory hosting. The application is instrumented to

work for the different platform computation modes. A discussion about how

debugging proceeds in the model, resulting in a semantically correct version of

114



Benchmark Total ALU Loop-body Cross-iteration
Instrs. Instrs. DLP Mechanism

libquantum 8 3 3 Loop Unrolling
hmmer 84 22 40 Loop Skewing
h264ref 223 62 90 Streaming

Table A.1: Data-level parallelism present in loop bodies and mechanisms for
exploiting the cross-iteration parallelism

the partitioned application.

After applying the proposed design flow, the developer has a set of subrou-

tines amenable to accelerator implementation, the data objects to be hosted

by those accelerators, knowledge of the persistence and periods of liveness of

those data objects. The current implementation of the tools only provides in-

formation, leaving all code modification and final inspection to the developer.

Greater automation of partitioning is desirable, but due to its inherent com-

plications, leaving automation to future work. The process followed to develop

the partition methodology is present using 462.libquantum as an illustrative

example.

Preprocessing: A set of scripts that add annotations to the source to

simplify and expedite the profiling and analysis process. For example, this step

adds tags indicating to the tools the names of dynamically allocated objects.

Static analysis and correctness checks in this stage could provide feedback and

semantic information for the subsequent steps, but are not investigated here.

Profiling: Application profiling is used to determine candidate subroutines

based on their contribution to the overall computation time. For 462.libquantum

it is found that 52% and 26% of the computation time is spent in the subroutines

quantum toffoli() and quantum sigma x(), respectively, making them good

targets for acceleration.

DLP Discovery: The chosen SPEC benchmarks are tuned for sequential

execution and thus require some code transformations to expose cross-iteration

loop parallelism. Table A.1 shows the DLP the method found within loop

bodies. There is not an explicit technique for choosing a method for exposing

more parallelism, but after inspection of the DLP regions found during DLP

discovery, simple transformations could expose more DLP and are shown in

the table. The DLP present in loops of candidate subroutines is calculated

by comparing the store set of each iteration with the load set of subsequent

iterations. If there is a cross-iteration loop read-after-write dependence, the

loop is marked as not data-parallel and therefore not amenable to accelerator

implementation.

Access Intensity: the proposed flow provides the ability to visualize the

correlation between different data objects and candidate subroutines. Fig-

ure A.3 shows three candidate subroutines for the libquantum benchmark and

two candidate data objects, reg->node and reg. The width of the data struc-

115



Figure A.3: Memory access intensity for 462.libquantum. The top three lines
indicate which function is executing at each point in time.

ture line is proportional to the number of memory accesses performed in a time

interval, or the access intensity. During the interval depicted, as is true for much

of the application, the access intensity of these objects is far greater than of any

other objects, and in fact the three functions shown do not access any other data

objects. The peak access intensity is one in nine instructions being either a load

or a store to the given object. Furthermore, even in the regions between the ex-

ecution of candidate subroutines, where the CPU would be accessing the data,

moderate access intensity for candidate data objects is found. NUAMA exploits

this access pattern by providing unequal sharing of the structures hosted in the

accelerator memory, optimizing for the more frequent accelerator data accesses,

but allowing cacheable CPU access while the accelerator is not executing.

Liveness Analysis: The Access Intensity stage shows there to be a high cor-

relation between accesses to certain data objects and the candidate subroutines.

Being able to measure the lifetime of these objects provides information neces-

sary for the developer to decide whether a pass-by-reference or a pass-by-value

model is appropriate. Our liveness technique, a scriptable combination of profil-

ing and instrumentation, demonstrates that for 462.libquantum, the candidate

objects are persistent, i.e., they stay live for the duration of the application’s

execution, and are therefore amenable to hosting throughout the application’s

execution. Furthermore, since the accelerator memory is limited in size and

hosted data is not backed by system memory, liveness analysis can be used to

identify data that need not be copied back to memory upon remapping of the

accelerator memory.

Data Synchronization Granularity: the required granularity of data

synchronization for 462.libquantum has been investigated. Having coarse-grained

data synchronization allows for a reduced complexity architecture and program-

ming model where the transfer of data object control between processing ele-

ments occurs in whole-object transactions as shown in Figure A.2(a). However

simple, such a coarse-grained model may result in limited concurrency since

one operation must completely relinquish control of an object before the next

operation can access it. A more fine-grained approach would result in added

concurrency when the results of one operation are forwarded to the next (Fig-

116



Figure A.4: Liveness results for 456.hmmer with horizontal bars for data in-
dicating dead regions. (Note: Due to the resolution of the image, function
invocations appear to overlap.)

ure A.2(b)), essentially pipelining multiple operations inside the accelerator.

However, the added synchronization may result in unjustifiable overhead com-

pared to a coarse-grained mechanism.

Visual inspection of 462.libquantum found that accelerator operations could

be overlapped. The analysis using the proposed methodology has shown this to

be the often the case with the data produced by quantum sigma x() available

to quantum toffoli() when the calls are adjacent, allowing for a pipelined im-

plementation. However, due to limitations of the prototype emulation platform,

concurrent emulated accelerators can not be demonstrated.

Using the approach developed in the design driver, case studies of bench-

marks evaluated using the proposed infrastructure are presented.

A.3.2 Case study: 456.hmmer

The 456.hmmer benchmark is a DNA sequencing application that uses Hidden

Markov Models to perform DNA sequence alignments. At the thread level,

the benchmark can be partitioned such that independent threads each process

independent blocks of data from an assigned work pool. Within each thread,

the benchmark’s core contains exploitable DLP. The proposed methodology

and tools are applied to uncover the DLP, map it into NUAMA, and prototype

it in the emulation platform.

Profiling indicates that 456.hmmer spends between 71% and 97% of its

execution time in the P7Viterbi() subroutine. The analysis indicates that

P7Viterbi()’s inner loop accesses four data objects heavily, all of which are

arrays: mx->imx mem, mx->mmx mem, mx->dmx mem, and mx->xmx mem. Liveness

analysis is provided in Figure A.4, demonstrating that these data objects all

become dead early in each invocation of P7Viterbi(), and some of the ob-

jects are occasionally dead between invocations as well. This information led

us to further inspect the code and to notice that data-structure resizing occurs

in ResizePlan7Matrix(), called from P7Viterbi() before executing the com-

pute-intense code portions. We discovered that a call to the C library function

117



realloc() is the source of loads from the objects that extend the liveness in-

tervals beyond P7Viterbi(). Thus, between invocations to P7Viterbi(), the

objects contain no useful state, indicating that there is no need to transfer the

arrays into or out of the accelerator between invocations. Additionally, the

deadness of the arrays indicates that accelerator context switching overhead is

minimal between invocations.

456.hmmer has been implemented on the prototype emulation platform,

hosting the four candidate data objects in the accelerator memory and the

inner loops of the P7Viterbi() emulated on the softcore processor. The pro-

posed infrastructure has allowed to arrive at this partitioning and the emulation

platform has allowed to rapidly prototype the design without having a physical

accelerator implemented.

A.3.3 Case study: 464.h264ref

The 464.h264ref benchmark is a multimedia application that encodes raw video

into a compressed form using the H.264 specification. The benchmark is a

streaming application which applies various transformations to blocks of data

as they are read from the input video and are incorporated into the encoded

output. One stage in the encoding process using the proposed methodology is

isolated and implement it as an emulated accelerator.

Profiling indicates that two subroutines, SetupFastFullPelSearch() and

one of its children SATD(), account for roughly 45% of 464.h264ref’s execution

time. SATD() computes the sum of absolute differences (SAD) over an array

passed to it by SetupFastFullPelSearch(). The input array represents the

current block (SAD block), composed by pulling pointers from an array repre-

senting the current video frame.

The DLP tools were able to discover that SATD() invocations are independent

and that the SAD computation has a high level of instruction-level parallelism.

Thus SATD() is amenable to accelerator acceleration. Our liveness analysis

showed that SAD block is live upon SATD() invocation, but dead when SATD()

returns, indicating that the function returns its computational result only via its

return value. Therefore SATD() does not modify its input, and the accelerator

need not transfer SAD block back to the CPU after execution. Thus, the SAD

kernel is mapped into an emulated accelerator, hosting the current SAD block

in the accelerator memory.

The SATD() subroutine has a simple if-then-else structure that would require

added resources or added complexity if implemented as a accelerator. Profiling

indicated that for the input sets, the branch is highly biased and it is possible to

implement a data-parallel emulated accelerator excluding the uncommon control

path. Accounting for all possible execution paths involves a trade-off between a

more complicated accelerator and the overhead of the exception handling mode.

118



A.3.4 Emulation platform evaluation

The accelerator emulation platform has been developed to enable software de-

velopers to rapidly prototype applications partitioned using the analysis infras-

tructure. As an example of its use, two kernels of code from the 462.libquan-

tum benchmark have been isolated and executed on a softcore processor. The

emulated accelerator runs independently of the CPU, with synchronization per-

formed via memory-mapped registers and explicit cache flushes. Two of the

data structures isolated using the proposed methodology were mapped into the

accelerator of the emulated accelerator, with that memory being accessible to

both the CPU and the accelerator. The only changes that were made to the

application were to allocate the memory used by the mapped objects to the

accelerator memory and to perform synchronization at the call site of the now

accelerated subroutine. Following this same flow, 456.hmmer and 464.h264ref

have been additionally implemented on the emulation platform based on the

partitioning found using the proposed methodology.

A strong motivation for using softcore accelerator emulation is that the plat-

form executes the partitioned application much closer to its original speed than

does a software-only system simulator. Table A.2 demonstrates the time re-

quired to run the SPEC test input sets for the benchmarks. The first row of

Table A.2, labeled ‘Native Execution’, is the time required to run on a 3.2 GHz

Intel Pentium 4, representing a contemporary system. Note that this result does

not include the instrumentation present and represents best case performance

for the machine. The next row compares the execution time of the platform

running the code solely in software on the embedded hard processor of the plat-

form. The next two rows provide the results of using emulated accelerators with

the benchmark mostly running on the embedded hard processor and the accel-

erator running as software on a softcore processor. For each of these, emulated

accelerators with their hosted data structures cached and not cached are shown.

The last row of the table shows the time to simulate the benchmarks using a

cycle-accurate simulator.

The instrumentation occurs on the native platform, providing the partition-

ing information quickly. The emulated accelerator prototype platform provides

a means of developing, debugging, and evaluating a partitioned design. Non-

cached local store access simplifies debugging, since it allows the developer to

stop execution and view a coherent global state, including local memories, sys-

tem memory, the register state of the general-purpose processor, utilizing the

pre-existing software tools for the FPGA platform. Having this degree of visibil-

ity while suffering less than a two order of magnitude slowdown in performance

allows for faster, easier development of partitioned applications. To more realis-

tically evaluate a partitioned design, caching can be enabled. Once a partitioned

design is debugged, performance evaluation of a correct design can be carried

out on a simulator.

119



462.libquantum 456.hmmer 464.h264ref

Native Execution 1x (0.30s) 1x (0.10s) 1x ( 1m13s)
Emulation Platform w/o Accel 40x (12.1s) 43x (4.33s) 26x (32m11s)
Emulation w/Accel+NoCache 60x (18.1s) 71x (7.10) 30x (36m23s)

Emulation w/Accel+Cache 56x (16.7s) 73x (7.33) 30x (36m26s)
Simulation w/o Accel 2437x (12m11s) 1180x (1m58s) 3151x (3833m50s)

Table A.2: Slowdown for alternate execution modes with example applications.

While one to two orders of magnitude slower than native execution, the

emulation platform allows for incremental mapping of applications into a pro-

totype of NUAMA, without suffering the three to four orders of magnitude

slowdown experienced when using cycle-accurate simulation. The speed of the

emulation platform allows developers to partition their applications using the

proposed methodology and to debug them effectively without suffering the high

turnaround time associated with simulation or full-blown accelerator genera-

tion. When the flexibility of a simulation platform is needed, the developer

can move his now-debugged design onto the simulator for evaluation. Future

research could leverage performance characteristics tracked using the cycle-ac-

curate simulator to better model NUAMA on the emulation platform, providing

the developer with both the speed of emulation and the accuracy and flexibility

of the simulator.

A.4 Conclusions

The main contribution of this work is a methodology for mapping applications

into heterogeneous CPU – accelerator architectures such as NUAMA. Exam-

ples of general-purpose applications that were mapped into a NUAMA emula-

tion platform have been provided. The emulation platform allows for software

designers to partition their software applications across accelerators and gen-

eral-purpose processor domains. Using the presented design flow and tools,

developers can rapidly prototype software that targets heterogeneous systems

incorporating general-purpose processors and application-specific accelerators.

120



References

[ABC+95] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. John-
son, David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth
Mackenzie, and Donald Yeung. The MIT Alewife machine: ar-
chitecture and performance. In ISCA ’95, pages 2–13, New York,
NY, USA, 1995. ACM.

[ACG86] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE
Transactions on Computers, 19(8):26–34, Aug. 1986.

[ADADB+03] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Nathan C. Burnett, Timothy E. Denehy, Thomas J. En-
gle, Haryadi S. Gunawi, James A. Nugent, and Florentina I.
Popovici. Transforming policies into mechanisms with infokernel.
SIGOPS Oper. Syst. Rev., 37(5):90–105, 2003.

[Aea06] Krste Asanovic and et al. The landscape of parallel computing
research: A view from berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley,
Dec 2006.

[AJR+03] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith,
Gabriel Tanase, Nathan Thomas, Nancy Amato, and Lawrence
Rauchwerger. STAPL: An adaptive, generic parallel C++ library.
Lecture notes in computer science, pages 193–208, 2003.

[AMD06] AMD Staff. AMD64 Architecture Programmer’s Manual. AMD
Corporation, September 2006.

[ATI06] ATI Staff. ATI CTM Guide, 2006.

[Bal90] Henri E. Bal. Orca: a language for distributed programming.
SIGPLAN Not., 25(5):17–24, 1990.

[BBD+09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian
Schüpbach, and Akhilesh Singhania. The multikernel: a new os
architecture for scalable multicore systems. In SOSP ’09, pages
29–44, New York, NY, USA, 2009. ACM.

[BDH+08] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson,
Mike Lang, Scott Pakin, and Jose C. Sancho. Entering the
petaflop era: the architecture and performance of roadrunner.
In Supercomputing ’08, pages 1–11, Piscataway, NJ, USA, 2008.
IEEE Press.

121



[Ber05] A. Bergmann. The Cell Processor Programming Model. Linux-
Tag, June 2005.

[BF88] R. Bisiani and A. Forin. Multilanguage parallel programming
of heterogeneous machines. IEEE Transactions on Computers,
37(8):930–945, Aug 1988.

[BL85] Amnon Barak and Ami Litman. Mos: a multicomputer dis-
tributed operating system. Softw. Pract. Exper., 15(8):725–737,
1985.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote
procedure calls. ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[BPBL06] Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus
Labarta. Cellss: a programming model for the cell be archi-
tecture. In Supercomputing ’06, page 86, New York, NY, USA,
2006. ACM.

[BR90] Roberto Bisiani and Mosur Ravishankar. Plus: a distributed
shared-memory system. SIGARCH Comput. Archit. News,
18(3a):115–124, 1990.

[Bre96] G. Brebner. A virtual hardware operating system for the Xil-
inx XC6200. Field-Programmable Logic Smart Applications, New
Paradigms and Compilers, pages 327–336, 1996.

[BT88] H.E. Bal and A.S. Tanenbaum. Distributed programming with
shared data. In ICCL ’88, pages 82–91, Oct 1988.

[BZS93] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway
distributed shared memory system. In Compcon Spring ’93, pages
528–537, Feb 1993.

[CBZ91] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Im-
plementation and performance of Munin. In SOSP ’91, pages
152–164, New York, NY, USA, 1991. ACM.

[CH00] Ben-Chung Cheng and Wenmei W. Hwu. Modular interprocedu-
ral pointer analysis using access paths: design, implementation,
and evaluation. In PLDI ’00, pages 57–69, New York, NY, USA,
2000. ACM.

[DFH+93] John Darlington, A. J. Field, Peter G. Harrison, Paul H. J. Kelly,
D. W. N. Sharp, and Q. Wu. Parallel programming using skeleton
functions. In PARLE ’93: Proceedings of the 5th International
PARLE Conference on Parallel Architectures and Languages Eu-
rope, pages 146–160, London, UK, 1993. Springer-Verlag.

[DKK09] Gregory Diamos, Andrew Kerr, and Muil Kesavan. Translating
GPU binaries to tiered SIMD architectures with ocelot. Techni-
cal Report GIT-CERCS-09-01, Georgia Institute of Technilogy,
2009.

[DLAR91] P. Dasgupta, Jr. LeBlanc, R.J., M. Ahamad, and U. Ramachan-
dran. The Clouds distributed operating system. IEEE Transac-
tions on Computers, 24(11):34–44, Nov 1991.

122



[DO99] Fred Douglis and John Ousterhout. Transparent process migra-
tion: design alternatives and the sprite implementation. pages
56–86, 1999.

[DSF88] G. Delp, A. Sethi, and D. Farber. An analysis of memnet—
an experiment in high-speed shared-memory local networking.
In SIGCOMM ’88, pages 165–174, New York, NY, USA, 1988.
ACM.

[EKO95] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
an operating system architecture for application-level resource
management. In SOSP ’95, pages 251–266, New York, NY, USA,
1995. ACM.

[EPP+01] Rolf Enzler, Marco Platzer, Chistian Plessl, Lothar Thiele, and
Gerhard Troester. Reconfigurable processors for handhelds and
wearables: Application analysis. In Reconfigurable Technology,
pages 135–146, Denver, CO, USA, August 2001.

[FADJ+05] M.R. Fahey, SR Alam, T.H. Dunigan Jr, J.S. Vetter, and P.H.
Worley. Early Evaluation of the Cray XD1. Cray User Group
Conference, 2005.

[FBR93] S. Frank, III Burkhardt, H., and J. Rothnie. The KSR 1: bridging
the gap between shared memory and MPPs. In Compcon Spring
’93, pages 285–294, Feb 1993.

[FP89] B. Fleisch and G. Popek. Mirage: a coherent distributed shared
memory design. In SOSP ’89, pages 211–223, New York, NY,
USA, 1989. ACM.

[GBC+05] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,
M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-
Burow, T. Takken, and P. Vranas. Overview of the blue gene/l
system architecture. IBM J. Res. Dev., 49(2):195–212, 2005.

[GBN04] Z. Guo, B. Buyukkurt, and W. Najjar. Input data reuse in com-
piling window operations onto reconfigurable hardware. ACM
SIGPLAN Notices, 39(7):249–256, 2004.

[GHF+06] Michael Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hop-
kins, Yukio Watanabe, and Takeshi Yamazaki. Synergistic pro-
cessing in Cell’s multicore architecture. IEEE Micro, 26(2):10–24,
2006.

[GNVV04] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A quan-
titative analysis of the speedup factors of FPGAs over proces-
sors. In FPGA, pages 162–170, New York, NY, USA, 2004. ACM
Press.

[Gon06] Ricardo E. Gonzalez. A software-configurable processor architec-
ture. IEEE Micro, 26(5):42–51, 2006.

[Gus92] Davib B. Gustavson. The scalable coherent interface and related
standards projects. IEEE Micro, 12(1):10–22, 1992.

123



[HFHK04] Scott Hauck Hauck, Thomas W. Fry, Matthew M. Hosler, and
Jeffrey P. Kao. The Chimaera reconfigurable functional unit.
IEEE Transactions on VLSI, 12(2):206–217, Feb. 2004.

[HH97] Raymond J. Hookway and Mark A. Herdeg. DIGITAL FX!32:
combining emulation and binary translation. Digital Tech. J.,
9(1):3–12, 1997.

[HKO+94] Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel
Baxter, Jaswider Pal Singh, Richard Simoni, Kourosh Ghara-
chorloo, David Nakahira, Mark Horowitz, Anoop Gupta, Mendel
Rosenblum, and John Hennessy. The performance impact of flex-
ibility in the Stanford FLASH multiprocessor. In ASPLOS ’94,
pages 274–285, New York, NY, USA, 1994. ACM.

[HS09] Wenmei W. Hwu and John Stone. A programmers view of the
new GPU computing capabilities in the Fermi architecture and
cuda 3.0. White paper, University of Illinois, 2009.

[HW97] John R. Hauser and John Wawrzynek. Garp: a MIPS processor
with a reconfigurable coprocessor. In FCCM ’97, pages 12–21,
Apr 1997.

[IBM07] IBM Staff. SPE Runtime Management Library, 2007.

[iee09] Information technology - portable operating system interface
(posix) operating system interface (posix). ISO/IEC/IEEE 9945
(First edition 2009-09-15), pages c1 –3830, 15 2009.

[IMP] IMPACT Group. Parboil benchmark suite.
http://impact.crhc.illinois.edu/parboil.php.

[Int05] Intel Staff. Intel 945G Express Chipset Product Brief, 2005.

[Int07] Intel Staff. Intel 64 and IA-32 Architectures Software Developer’s
Manuals. Intel, May 2007.

[JC99] Jeffrey A. Jacob and Paul Chow. Memory interfacing and in-
struction specification for reconfigurable processors. In FPGA,
pages 145–154, New York, NY, USA, 1999.

[JKW95] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. Crl: high-
performance all-software distributed shared memory. In SOSP
’95, pages 213–226, New York, NY, USA, 1995. ACM.

[JVG+09] Vı́ctor Jiménez, Llúıs Vilanova, Isaac Gelado, Marisa Gil, Grigori
Fursin, and Nacho Navarro. Predictive runtime code scheduling
for heterogeneous architectures. In HiPEAC ’09, pages 19–33,
Berlin, Heidelberg, 2009. Springer-Verlag.

[KAFK+05] K. Karuri, MA Al Faruque, S. Kraemer, R. Leupers, G. Ascheid,
and H. Meyr. Fine-grained application source code profiling for
ASIP design. In DAC 24, pages 329–334, Los Alamitos, CA,
USA, 2005. IEEE Computer Society.

[KAO05] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Oluko-
tun. Niagara: A 32-way multithreaded SPARC processor. IEEE
Micro, 25(2):21–29, 2005.

124



[KCDZ94] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy
Zwaenepoel. TreadMarks: distributed shared memory on stan-
dard workstations and operating systems. In WTEC’94, pages
10–10, Berkeley, CA, USA, 1994. USENIX Association.

[KCPT95] D. A. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas. Data
forwarding in scalable shared-memory multiprocessors. In ICS,
pages 255–264, New York, NY, USA, 1995. ACM Press.

[KDH+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the CELL multipro-
cessor. IBM J. Res. Dev., 49(4/5):589–604, 2005.

[KFJ+03] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi,
Parthasarathy Ranganathan, and Dean M. Tullsen. Single-isa
heterogeneous multi-core architectures: The potential for
processor power reduction. Microarchitecture, IEEE/ACM
International Symposium on, 0:81, 2003.

[KJJ+09] John H. Kelm, Daniel R. Johnson, Matthew R. Johnson, Neal C.
Crago, William Tuohy, Aqeel Mahesri, Steven S. Lumetta,
Matthew I. Frank, and Sanjay Patel. Rigel: an architecture and
scalable programming interface for a 1000-core accelerator. In
ISCA ’09, pages 140–151, New York, NY, USA, 2009. ACM.

[KL08] John H. Kelm and Steven S. Lumetta. Hybridos: runtime support
for reconfigurable accelerators. In FPGA ’08, pages 212–221, New
York, NY, USA, 2008. ACM.

[KMK01] D. Kim, R. Managuli, and Y. Kim. Data cache and direct
memory access in programming mediaprocessors. IEEE Micro,
21(4):33–42, 2001.

[KTR+04] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan,
Normal P. Jouppi, and Keith I. Farkas. Single-isa heteroge-
neous multi-core architectures for multithreaded workload per-
formance. In ISCA ’04, page 64, Washington, DC, USA, 2004.
IEEE Computer Society.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Hanapa Reddi, and
Kim Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI ’05, pages 190–200, New
York, NY, USA, 2005. ACM.

[Lev84] Henry M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual
memory systems. ACM Trans. Comput. Syst., 7(4):321–359,
1989.

[LLG+90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop
Gupta, and John Hennessy. The directory-based cache coherence
protocol for the dash multiprocessor. In ISCA ’90, pages 148–
159, New York, NY, USA, 1990. ACM.

125



[LNOM08] Erik Lindholm, John Nickolls, Stuart Oberman, and John Mon-
trym. Nvidia tesla: A unified graphics and computing architec-
ture. IEEE Micro, 28(2):39–55, March-April 2008.

[MB06] Peter Messmer and Ralph Bodemer. Accelerating scientific ap-
plications using FPGAs. XCell, 2006.

[MDP+00] D.S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and
S. Zhou. Process Migration. ACM Computing Surveys,
32(3):241–299, 2000.

[MGN08] Julio Merino, Isaac Gelado, and Nacho Navarro. Evaluation of
the Cell BE SPU scheduling for multi-programmed systems. In
WIOSCA’08, July 2008.

[MIP01] MIPS Staff. MIPS32 Architecture for Programmers. MIPS Tech-
nologies, March 2001.

[Mun09] Aaftab Munshi. The OpenCL Specification, 2009.

[MW90] C. Maples and L. Wittie. Merlin: A superglue for multicomputer
systems. In Compcon Spring ’90, volume 90, pages 73–81, 1990.

[MZDG93] Dejan S. Milojicic, Wolfgang Zint, Andreas Dangel, and Peter
Giese. Task migration on the top of the mach microkernel. In
USENIX MACH III Symposium, pages 273–290, Berkeley, CA,
USA, 1993. USENIX Association.

[NVI09] NVIDIA Staff. NVIDIA CUDA Programming Guide 2.3, 2009.

[PH08] Sanjay Patel and WenMei W. Hwu. Accelerator architectures.
IEEE Micro, 28(4):4–12, July-Aug. 2008.

[RAA+88] M. Rozier, V. Abrossimov, F. Arm, I. Boule, M. Gien, M. Guille-
mont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, et al.
Overview of the Chorus distributed operating system. Comput-
ing Systems, 1988.

[Ram06] R.M. Ramanathan. Extending the world’s most popular proces-
sor architecture. Whitepaper, Intel, September 2006.

[RFT+10] Jose Renau, Basilio Fragela, James Tuck, Wei Liu, Luis Ceze,
Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos.
SESC simulator. http://sesc.sourceforge.net, May 2010.

[RRB+08] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi,
Sam S. Stone, David B. Kirk, and Wenmei W. Hwu. Optimiza-
tion principles and application performance evaluation of a mul-
tithreaded gpu using cuda. In PPoPP ’08, pages 73–82, New
York, NY, USA, 2008. ACM.

[SBB+05] Valentina Salapura, Randy Bickford, Matthias Blumrich,
Arthur A. Bright, Dong Chen, Paul Coteus, Alan Gara, Mark
Giampapa, Michael Gschwind, Manish Gupta, Shawn Hall,
Rudd A. Haring, Philip Heidelberger, Dirk Hoenicke, Gerard V.
Kopcsay, Martin Ohmacht, Rick A. Rand, Todd Takken, and
Pavlos Vranas. Power and performance optimization at the sys-
tem level. In CF ’05, pages 125–132, New York, NY, USA, 2005.
ACM.

126



[SCS+08] Larray Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth,
Michael Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake,
Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Grochowski,
Toni Juan, and Pat Hanrahan. Larrabee: a many-core x86 archi-
tecture for visual computing. ACM Trans. Graph., 27(3):1–15,
2008.

[Sea00] David Seal. ARM Architecture Reference Manual. Addison-
Wesley Longman Pusblishing Co., Inc., Boston, MA, USA, 2000.

[Sea05] B. Sinharoy and et al. Power5 system microarchitecture. IBM J.
Res. Dev., 49(4/5):505–521, 2005.

[SGI08] SGI Staff. Reconfigurable Application-Specific Computing User’s
Guide, 2008.

[SGT96] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A.
Thekkath. Shasta: a low overhead, software-only approach for
supporting fine-grain shared memory. In ASPLOS-VII, pages
174–185, New York, NY, USA, 1996. ACM.

[SHG09] Nadathur Satish, Mark Harris, and Michael Garland. Designing
efficient sorting algorithms for manycore gpus. pages 1–10, 2009.

[SKMB03] Karthikeyan Sankaralingam, Stephen W. Keckler, William R.
Mark, and Doug Burger. Universal mechanisms for data-parallel
architectures. In MICRO 36, page 303, Washington, DC, USA,
2003. IEEE Computer Society.

[SLL+00] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J. Kur-
dahi, Nader Bagherzadeh, and Eliseu M. Chaves Filho. Mor-
phoSys: an integrated reconfigurable system for data-parallel and
computation-intensive applications. IEEE Transactions on Com-
puters, 49(5):465–481, May 2000.

[SNV+03] Dinesh C. Suresh, Walid A. Najjar, Frank Vahid, Jason R. Villar-
real, and Greg Stitt. Profiling tools for hardware/software parti-
tioning of embedded applications. In LCTES ’03, pages 189–198,
New York, NY, USA, 2003. ACM.

[SZC+09] Bratin Saha, Xiaocheng Zhou, Hu Chen, Ying Gao, Shoumeng
Yan, Mohan Rajagopalan, Jesse Fang, Peinan Zhang, Ronny Ro-
nen, and Avi Mendelson. Programming model for a heteroge-
neous x86 platform. In PLDI ’09, pages 431–440, New York,
NY, USA, 2009. ACM.

[TvRvS+90] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren,
Gregory J. Sharp, and Sape J. Mullender. Experiences with
the amoeba distributed operating system. Commun. ACM,
33(12):46–63, 1990.

[Van02] Marco Vanneschi. The programming model of assist, an environ-
ment for parallel and distributed portable applications. Parallel
Comput., 28(12):1709–1732, 2002.

[Vee86] Arthur H. Veen. Dataflow machine architecture. ACM Comput.
Surv., 18(4):365–396, 1986.

127



[VWG+04] Stamatis Vassiliadis, Stephan Wong, Georgi Gaydadjiev, Koen
Bertels, Georgi Kuzmanov, and Elena Moscu Panainte. The
MOLEN polymorphic processor. IEEE Transactions on Com-
puters, 53(11):1363–1375, 2004.

[WH88] D.H.D. Warren and S. Haridi. Data Diffusion Machine-a scal-
able shared virtual memory multiprocessor. In Fifth Generation
Computer Systems 1988, page 943. Springer-Verlag, 1988.

[WK01] Grant Wigley and David Kearney. The first real operating sys-
tem for reconfigurable computers. Aust. Comput. Sci. Commun.,
23(4):130–137, 2001.

[WLT93] Jr. Wilson, A.W., Jr. LaRowe, R.P., and M.J. Teller. Hardware
assist for distributed shared memory. In DCS ’03, pages 246–255,
May 1993.

[WP03] H. Walder and M. Platzner. Reconfigurable hardware operating
systems: From design concepts to realizations. In ERSA ’03,
pages 284–287. CSREA Press, 2003.

[Xil05] Xilinx. Virtex-II Pro and Virtex-II Pro X Plaform FPGAs: Com-
plete Data Sheet, October 2005.

[Xil09] Xilinx Staff. Virtex-5 Family Overview, Feb 2009.

[ZSM90] S. Zhou, M. Stumm, and T. McInerney. Extending distributed
shared memory to heterogeneous environments. In DCS ’90,
pages 30–37, May 1990.

128


	List of Tables
	List of Figures
	Chapter 1 Introduction
	Heterogeneous Parallel Computing
	Overview
	Contributions
	Accelerator-hosted Data Transfer Model
	Unified Virtual Address Space
	Non-Uniform Accelerator Memory Access
	Asymmetric Distributed Shared Memory Model
	HPE Model


	Chapter 2 Related Work
	CPU – Accelerator Architectures
	Fine-grained Accelerators
	Medium-grained Accelerators
	Coarse-grained Accelerators

	CPU – Accelerator Data Transfers
	Programming Models
	Function Call Based Programming Models
	Stream Based Programming Models
	Task Based Programming Models
	Comparison of Programming Models

	Distributed Shared Memory
	Operating Systems

	Chapter 3 Reference Hardware and Software Environment
	Reference CPU – Accelerator Architecture
	Distributed Memory
	Non-coherent Memory

	Reference Programming Model
	NVIDIA® CUDA™
	Multi-GPU Support
	CUDA Streams

	Evaluation Methodology
	Simulation Environment
	Execution Environment

	The Parboil Benchmark Suite
	Benchmark Description
	Characterization


	Chapter 4 Programmability of Heterogeneous Parallel Systems
	Introduction
	Accelerator Data Transfer Models
	Preliminaries
	Per-Call Data Transfer Model
	Double-Buffered Data Transfer Model
	Accelerator-Hosted Data Transfer Model

	A Unified Shared Address Space
	The Double-Pointer Problem
	Single Pointer Solution

	Summary
	Significance

	Chapter 5 Non-Uniform Accelerator Memory Access
	Introduction
	Non-Uniform Accelerator Memory Access Architecture
	Accelerator Memory Collector
	Benefits and Limitations
	Experimental Evaluation
	Benchmark Porting
	Hardware Requirements
	NUAMA Performance
	Memory Latency
	Link Latency

	Summary
	Significance

	Chapter 6 Asymmetric Distributed Shared Memory
	Introduction
	Asymmetric Distributed Shared Memory
	ADSM Programming Model
	ADSM Run-time Design Rationale
	Application Programming Interface and Consistency Model

	Design and Implementation
	Overall Design
	Shared Address Space
	Memory Coherence Protocols
	I/O and Bulk Memory Operations

	Experimental Results
	Coherence Protocols
	Memory Block Size
	Rolling Size

	Summary
	Significance

	Chapter 7 Heterogeneous Parallel Execution Model
	Introduction
	HPE Model
	Rationale and Guiding Principles
	Existing Heterogeneous Execution Models
	Execution Modes
	Execution Mode Operations
	Benefits and Limitations

	GMAC Design and Implementation
	Accelerator Management
	Delegation, Copy and Migration

	Experimental Evaluation
	Asynchronous Accelerator Calls
	Context Creation and Switching
	Context Copy and Delegation
	Context Migration

	Summary
	Significance

	Chapter 8 Conclusions and Future Work
	Conclusions
	Future Work
	Accelerator Memory System
	Accelerator Memory Manager
	Accelerator Virtual Memory
	Accelerator Scheduling and Operating System Integration
	Multi-Accelerator Programming


	Appendix A Application Partitioning for Heterogeneous Systems
	Introduction
	Related Work
	Motivation
	Contributions

	Design Flow
	Analysis and profiling tools
	Emulation platform

	Case Studies
	Design driver: 462.libquantum
	Case study: 456.hmmer
	Case study: 464.h264ref
	Emulation platform evaluation

	Conclusions

	References

