Con todos estos datos se ha procedido a caracterizar y clasificar los distintos semicomponentes, con objeto de utilizar estos resultados, entre otros, en la determinación de las condiciones óptimas de conformación. Se han obtenido los datos que aparecen en la Tabla 6.4. Este estudio ha resultado complejo porque las muestras eran muy heterogéneas.

Muestra	Tamaño relativo del eutéctico	Tamaño relativo de la fase α	Si primario	Intermetálico más abundante	Poros
SIM1	3	2	Poco y pequeño	1 - 2	Pocos
SIM2	3 - 2	3	Poco y pequeño	2	No detectables
SIM3	2 - 1	1	Poco y pequeño	2	No detectables
SIM4	2	2	Abundante y Grande	2	Abundantes y grandes
SIM5	2 - 3	2	Poco y pequeño	2	Nada
SIM6	2	2	Poco y Grande	2	Pocos y pequeños
SIM7	1	2	Poco y pequeño	1 - 2	Pocos y pequeños
SIM8	1 - 2	2	Poco y pequeño	1 - 2	Pocos y pequeños
SIM9	3	1	Abundante y pequeño	1 - 2	Abundantes y grandes
SIM10	2 - 1	2	Poco y pequeño	1	Abundantes y grandes
SIM11	2 - 1	2	Poco y pequeño	1 - 2	Abundantes y grandes
SIM12	3	1	Poco y pequeño	2	No detectables
SIM13	2 - 1	2	Abundante y Grande	1	No detectables
SIM14	1	3	Abundante y grande	Alguno	No detectables
SIM15	1 - 3	2	Alguno	Alguno	No detectables
SIM16	1 - 3	3	Abundante y pequeño	1	Pocos
SIM17	1 - 3	2	Alguno	Alguno	Abundantes y grandes
SIM18	2	2	Alguno	Alguno	Abundantes y grandes

Tabla 6.4Clasificación microestructural.

6.6 **PROPIEDADES MECÁNICAS**

Se han determinado las propiedades mecánicas de los semicomponentes mediante ensayos de tracción. Para ello se han mecanizado probetas planas (ver Figs. 4.12 y 4.13) de distintas partes del semicomponente, tal y como se indica en la Fig. 6.19. La posición de las probetas está definida por las letras (A, B, C y D) y el número correspondiente.

Fig. 6.19 Zonas del semicomponente de donde se han obtenido probetas de tracción.

Para la realización de este ensayo se seleccionaron los semicomponentes que mostraban menos defectos de acuerdo con los ensayos con líquidos penetrantes y rayos X.

Los resultados obtenidos con las probetas correspondientes a todas las partes del semicomponente, se indican en las Tablas 6.5 a 6.8.

Los resultados son consistentes con los ensayos radiográficos y de líquidos penetrantes: los peores resultados se han obtenido con aquellas piezas en las que se detectaron más defectos (véanse marcas rojas y verdes de la Fig. 6.4).

Vemos que los resultados muestran una gran dispersión. Dentro de una pieza en la que se han ensayado todas las partes, la desviación en la resistencia a la tracción alcanza el 21% y en el alargamiento, el 4,5%

Se puede considerar el alargamiento a fractura como la mejor característica para interpretar los ensayos de tracción. De hecho el límite elástico no cambia realmente de un ensayo al otro, y los resultados en términos de resistencia a la tracción son consistentes con los resultados de la elongación.

De todos los resultados puede extraerse:

- En más de la mitad de las probetas de cada cara, la diferencia entre la menor alargamiento y la mayor es muy grande.
- No está claro cual es la mejor temperatura de molde ni la energía óptima de inyección. La presión final sí parece tener un efecto en la interpretación del ensayo: en general un incremento en la presión final resulta en una mejora en términos de alargamiento a fractura. De todas formas, en algunos casos este incremento de presión no proporciona mejora sustancial y en algunos otros provoca una disminución del alargamiento.

Muestra	E /GPa	Rp _{0.2} /MPa	Rm /MPa	Α %
1-D1	86	134	233	5,1
1-D2	90	130	199	2,9
2-D1	78	141	250	8,5
2-D2	71	139	221	4,0
3-D1	95	129	161	1,3
3-D2	70	134	247	7,7
5-D1	76	132	219	4,1
5-D2	81	130	212	3,3
6-D1	67	137	185	2,1
6-D2	67	138	185	1,8
7-D1	81	130	209	3,9
7-D2	64	129	165	1,5
8-D1	72	137	247	12,7
8-D2	68	140	248	11,1
10-D1	97	126	211	3,6
10-D2	59	133	243	7,3
11-D1	74	122	211	4,3
11-D2	69	123	213	4,7
13-D1	77	131	238	10,7
13-D2	77	131	192	2,5
14-D1	67	140	236	5,6
14-D2	72	137	245	8,2
15-D1	66	125	223	5,8
15-D2	86	128	239	8,9
16-D1	86	124	237	7,8
16-D2	83	126	254	15,7
17-D1	73	120	236	8,6
17-D2	67	122	185	2,4

Tabla 6.5.Ensayos de tracción - partes D.

Muestra	E /GPa	Rp _{0.2} /МРа	Rm /MPa	Α%
1-B1	81	119	211	4,3
1-B2	72	-	-	-
2-B1	48	126	249	12,6
2-B2	73	123	230	6,3
3-B1	69	122	197	3,2
3-B2	71	121	246	11,8
4-B1	74	118	198	3,4
4-B2	67	121	212	4,6
5-B1	56	117	246	16,0
5-B2	50	-	-	-
6-B1	50	121	254	15,2
6-B2	66	127	188	2,3
7-B1	64	120	237	9,9
7-B2	56	123	184	2,6
8-B1	55	121	243	12,7
8-B2	50	125	239	11,2
9-B1	83	115	226	6,6
9-B2	45	124	142	0,7
10-B1	55	124	202	3,3
10-B2	53	119	167	1,6
11-B1	-	109	114	-
11-B2	47	115	188	3,4
12-B1	94	110	177	2,4
12-B2	56	115	166	1,8
13-B1	53	121	237	12,6
13-B2	45	121	215	5,9
14-B1	59	123	250	13,5
14-B2	56	128	204	3,3
15-B1	45	120	242	14,0
15-B2	56	119	209	4,6
16-B1	95	112	238	11,6
16-B2	62	121	237	10,2
17-B1	51	114	230	11,1
17-B2	-	109	189	3,8
18-B1	55	117	232	11,2
18-B2	55	118	166	1,8

 Tabla 6.6.
 Ensayos de tracción - partes B

Muestra	E /GPa	Rp _{0.2} /МРа	Rm /MPa	Α%
1-A1	68	104	131	0,6
1-A2	70	152	236	7,8
2-A1	71	122	246	11,4
2-A2	71	124	251	12,0
3-A1	67	121	216	4,1
3-A2	66	119	241	7,8
4-A1	65	113	139	1,5
4-A2	68	114	159	2,0
5-A1	61	113	148	1,2
5-A2	62	117	139	0,6
6-A1	66	120	248	13,8
6-A2	60	118	186	2,6
7-A1	59	117	205	4,5
7-A2	63	114	153	1,3
8-A1	68	121	235	9,6
8-A2	70	121	243	12,3
9-A1	67	117	214	5,3
9-A2	48	88	90	1,1
10-A1	67	119	239	8,8
10-A2	73	116	184	2,9
11-A1	70	110	169	2,5
11-A2	74	110	170	2,4
12-A1	58	114	181	2,9
12-A2	53	92	93	0,8
13-A1	75	115	216	6,3
13-A2	68	111	221	8,7
14-A1	66	117	187	3,3
14-A2	65	117	241	10,8
15-A1	68	117	236	11,2
15-A2	65	115	231	9,3
16-A1	66	113	234	11,9
16-A2	71	115	237	12,6
17-A1	69	107	201	4,6
17-A2	64	112	229	10,5
18-A1	66	116	182	2,5
18-A2	58	107	136	1,3

 Tabla 6.7.
 Ensayos de tracción - partes A.

.

Muestra	E /GPa	Rp _{0.2} /MPa	Rm/MPa	A %
1-C1	84	-	99	0,2
1-C3	82	123	187	2,4
1-C5	76	119	220	6,6
1-C2	59	89	94	0,5
1-C4	73	116	237	11,7
2-C1	71	131	228	4,8
2-C3	73	125	198	3,1
2-C5	62	119	221	8,2
2-C6	64	134	219	5,1
3-C1	70	129	197	2,9
3-C3	70	126	241	8,7
3-C5	61	117	160	1,9
5-C1	69	129	206	3,1
5-C3	65	126	243	8,6
5-C5	66	117	156	1,5
6-C1	70	134	220	4,1
6-C3	77	125	149	1,4
6-C5	64	118	237	13,1
7-C5	66	122	164	1,9
7-C6	84	120	212	4,8
8-C1	79	125	204	4,1
8-C3	69	121	149	1,0
8-C5	67	121	220	7,5
10-C1	65	125	195	2,9
10-C3	69	124	219	5,3
10-C5	69	121	160	1,5
11-C2	63	116	170	2,5
11-C5	62	117	176	2,6
13-C5	66	120	200	4,6
13-C6	62	118	193	3,6
14-C1	62	133	205	2,8
14-C3	69	126	179	2,0
14-C5	70	118	232	10,3
15-C2	61	115	140	1,1
15-C5	61	108	121	1,1
16-C1	64	120	218	7,0
16-C3	65	113	177	2,9
16-C5	70	119	196	4,8
17-C1	64	117	134	0,7
17-C3	63	119	224	8,7
17-C5	64	119	218	7,9

Tabla 6.8.Ensayos de tracción - partes C.

6.7 ANÁLISIS FRACTOGRÁFICO

En las Figs. 6.20 a 6.30 se muestran algunas de las fractografías utilizadas para determinar el comportamiento a fractura estática de estos semicomponentes conformados por Thixocasting, indicando si han dado un buen o mal comportamiento a fractura.

En la Fig. 6.20 se aprecian las cúpulas originadas en la fractura dúctil, que tiene lugar por el eutéctico.

En las Figs. 6.21, 6.22, 6.25 y 6.26 se observan claramente los micro-rechupes, y hay regiones donde la grieta se inicia en esta porosidad de contracción (Figs. 6.26b y 6.29).

Los poros de las Figs. 6.25 y 6.26 pueden tener hasta 1 mm de diámetro y son debidos a la falta de líquido en el proceso de inyección semisólida, a rechupes.

Finalmente, en las Figs. 6.24 y 6.29 puede verse la fractura dúctil con una buena deformación plástica.

En las micrografías de las Figs. 6.28 a 6.30 se presentan secciones transversales a la superficie de fractura. Esta superficie es irregular, con la ruptura visible de algunos glóbulos. Se puede observar cómo la fractura se inicia y propaga a través del eutéctico alrededor de los glóbulos de fase α .