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Chapter 2 
 
State of the art 
 
This chapter tries to contribute to our understanding of the mechanism of shear strength 

in reinforced concrete beams with or without shear reinforcement. Conceptual models 

showing the internal forces in a beam are presented, and a historical introduction of 

different approaches for shear design of reinforced concrete beams is made. Some 

current code proposals are reviewed both for members with and for those without web 

reinforcement. The main characteristics of High-Strength Concrete and how they affect 

the shear response are also discussed. 

 
Main attention is focused on the design of B-regions, as defined by Schlaich et al. 

(1987). Figure 2.1 shows the distribution of D and B regions, where D stands for 

‘discontinuity’ or ‘disturbed’, and B stands for ‘beam’ or ‘Bernoulli’. In D regions, the 

distribution of strains is significantly nonlinear along the depth and strut-and-tie models 

are particularly relevant. However, in B regions the strain distribution is linear and the 

response of the concrete member will be principally due to beam action which implies 

that the lever arm (z) is constant. The other extreme occurs if the tension in the 

longitudinal reinforcement remains constant and the lever arm varies (Figure 2.2). This 

occurs if the shear flow cannot be transmitted because the steel is unbounded, or if the 

transfer of shear flow is prevented by an inclined crack extending from the load to the 

reactions. In such a case the shear is transferred by arch action. 
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Figure 2.1: B-regions and D-regions (Schlaich et al. ,1987) 

 

 

 

 

 

 

 

 

 

Figure 2.2: Arch action in a beam 

 
 
 
2.1 Introduction to High-Strength Concrete (HSC) 
 
 
In the past decade there has been a rapid growth in interest in high-strength concrete 

whose compressive strength, f’c, is higher than 50 MPa. Concretes of strengths up to 

100 MPa can be produced not only in precast plants but also in the field, with carefully 

selected but commonly available cement, sand, and stone, using a very low water-

cement ratio and careful quality control during production. The necessary workability is 

achieved by high-range water-reducing admixtures, the so-called superplasticisers. 

 

The main applications for high-strength in situ concrete appear to be in offshore 

structures, columns for tall buildings, long-span bridges and other highway structures. 

In precast concrete, applications are mainly in prestressed elements. For instance, the 

specified concrete strength for the in situ columns of the 58-storey Two Union Square 

Centre in Seattle (1989) was 120 MPa (Figure 2.3). Two pedestrian bridges constructed 

in Barcelona for the 1992 Olympic Games, shown in Figure 2.4, were the first 

constructions to be designed and built using HSC in Spain. 
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Fig. 2.3: Two Union Square       Figure 2.4: Montjuïc pedestrian bridge, Barcelona. 

Centre, Seattle                                  
 

Extensive experimentation has greatly improved our understanding of the fundamental 

behaviour and basic engineering properties of the material. While most of concrete’s 

properties improve as its compressive strength increases, some of its characteristics 

require special attention. To ensure the safety and serviceability of structural concrete, 

certain essentially empirical design procedures and equations, based on the 

characteristics of concretes of much lower strengths, must be re-examined. 

 

The shear capacity of reinforced high-strength concrete beams is an important issue. 

Provisions for shear design are based mainly on experimentally derived equations. Tests 

providing the basic data for these equations were conducted on members whose 

concrete strengths were mainly below 40 MPa. These current approaches will be 

analysed in this thesis. Section 2.4 introduces the main characteristics of the shear 

strength of high-strength concrete beams. 

 

The stress-strain behaviour of HSC in uniaxial compression has been reported by many 

research centres. Figure 2.5 plots the main differences between the stress-strain curves 

of normal and high-strength concrete, which are: 

 
- a more linear stress-strain relationship up to a higher % of the maximum 

stress 

- a slightly higher strain at the maximum stress 

- a steeper shape in the descending part of the curve 
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Figure 2.5: Typical stress-strain relationships for high-strength concrete (from FIP/CEB Working Group 
on HSC, 1990) 

 

As illustrated in Figure 2.6, both cement paste and natural rock aggregates are brittle 

materials. The concrete made up of these materials has an obvious ductile behaviour. 

This apparently paradoxical property can be explained as a result of the difference in 

rigidity that normally exists between the cement paste and the aggregates. This 

difference will result in stress concentrations in the contact zones. Consequently, at a 

certain overall stress level, a distributed microcrack pattern will begin to form. As the 

overall stress increases, an increasing part of the applied energy will be consumed as the 

crack pattern develops. At this stage, the stress-strain curve will tend to deviate from the 

linear-elastic course, as shown in the figure. After the ultimate stress level has been 

reached, the microcrack pattern will provide an efficient internal redistribution of the 

stress, and hence a tough failure. 

 

 

 
 

 

 

 

 

 

 

 

                     a) Normal strength concrete                      b) High-strength concrete 

Figure 2.6: Principal stress-strain curves for cement paste, aggregates and concrete in compression 
(from FIP/CEB Working Group on HSC, 1990) 
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The difference in rigidity between cement paste and aggregates is far less in HSC than 

in normal strength concrete, as illustrated in Figure 2.6. Consequently, the internal 

stress-distribution is more homogeneous. As the tendency toward early microcracking is 

reduced, the stress-strain curve becomes more linear. A less developed microcrack 

pattern also results in a more sudden failure, because the ability to redistribute stress is 

reduced. 

 

Although the tensile strength of concrete is neglected in calculating the strength of 

reinforced and prestressed concrete structures, it is generally an important aspect during 

the development of cracking, and therefore, for the prediction of deformations and the 

durability of concrete. Other characteristics such as bond and development length of 

reinforcement and the concrete contribution to the shear and torsion capacities are 

closely related to the tensile strength of concrete. The tensile strength generally 

increases along with the compressive strength. However, this increase is not directly 

proportional to the compressive strength.  

 
 
 
2.2 Shear strength in reinforced concrete beams without web 
reinforcement 
 
 
2.2.1 Mechanisms of shear transfer 
 
The 1973 ASCE-ACI Committee 426 Report identified the following four mechanisms 

of shear transfer: shear stresses in uncracked concrete; interface shear transfer, often 

called “aggregate interlock” or “crack friction”; the dowel action of the longitudinal 

reinforcing bars; and arch action. The 1998 ASCE-ACI Committee 445 Report 

highlights a new mechanism, residual tensile stresses, which are transmitted directly 

across cracks. Opinions vary about the relative importance of each mechanism in the 

total shear resistance, resulting in different models for members without transverse 

reinforcement. The forces transferring shear across an inclined crack in a beam without 

stirrups are illustrated in Figure 2.7. 
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Figure 2.7: Internal forces in a cracked beam without stirrups (adapted from MacGregor and Bartlett 
2000) 

 

The shear stresses in uncracked concrete are not a very important mechanism for 

slender members without axial compression because the depth of the compression zone 

is relatively small. On the other hand, at locations of maximum moment for less slender 

beams, much of the shear is resisted in the compression zones, particularly after 

significant yielding of the longitudinal reinforcement. 

 

 

 

 

 

 
 
Figure 2.8: Walraven’s model of crack friction 

 

Shear transfer in the interface was due primarily to ‘aggregate interlock’, and hence 

caused by those aggregates that protruded from the crack surface and provided 

resistance against slip. However, as cracks go through the aggregate in lightweight and 

high-strength concrete yet still have the ability to transfer shear, the term ‘friction’ is 

more appropriate. The four basic parameters involved are the crack interface shear 

stress, normal stress, crack width, and crack slip. Walraven (1981) made numerous tests 

and developed a model that considered the probability that aggregate particles, idealised 

as spheres, would project from the crack interface (Figure 2.8). As slips develop, the 

matrix phase deforms plastically, coming into contact with projecting aggregates. The 

stresses in the contact zones are comprised of a constant pressure, σp, and a constant 

shear, µσp. The geometry of the crack surface is described statistically in terms of the 
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aggregate content of the mix and the probabilities of particles projecting out at different 

degrees. 

 

Dowel action is not very significant in members without transverse reinforcement, as 

the maximum shear in a dowel is limited by the tensile strength of the concrete cover 

supporting the dowel. Nevertheless, it may be significant in members with large 

amounts of longitudinal reinforcement, particularly when the longitudinal reinforcement 

is distributed in more than one layer. 

 

The relative importance of the arch action is direct related to the shear span-to-depth 

ratio, a/d (i.e. the distance from the support to the load over the effective depth). Beams 

without stirrups, with an a/d ratio of less than 2.5 develop inclined cracks and, after a 

redistribution of internal forces, are able to carry an additional load due in part to arch 

action. Figure 2.9 shows how the failure shear strength of a simply-supported reinforced 

concrete beam loaded with two-point loads changes as the shear span changes. For these 

series of beams, tested by Kani (1979), the ultimate shear strength was reduced by a 

factor of about 6 as the a/d ratio increased from 1 to 7. As the beams contained a large 

amount of longitudinal reinforcement, flexural failures at midspan did not become 

critical until a shear span-to-depth ratio of about 7. This doctoral dissertation focuses on 

members whose a/d ratio is over 2.5. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure2.9: Predicted and observed strengths of a series of reinforced concrete beams tested by Kani 
(adapted from Collins and Mitchell 1997) 
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The basic explanation of residual tensile stresses is that when concrete first cracks, 

small pieces of concrete bridge the crack and continue to transmit  tensile force as long 

as cracks do not exceed 0.05-0.15 mm in width. The application of Fracture Mechanics 

to shear design is based on the premise that residual tensile stress is the primary 

mechanism of shear transfer.  

 
 
2.2.2 Historical development 
 
Prior to cracking, the maximum shear stress at the web can be calculated by using the 

traditional theory for homogeneous, elastic and uncracked beams, developed by the 35-

year-old Russian railway engineer D.J. Jourawski in 1856 (Collins, 2001): 

 

 
bI
QV

=τ  (2.1) 

 
where I is the moment of inertia of the cross section, Q the first moment about the 

centroidal axis of the part of the cross-sectional area lying farther from the centroidal 

axis than the point where the shear stresses are being calculated, and b the width of the 

member where the stresses are being calculated. 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 2.10:Principal compressive stress trajectories in an uncracked beam and photograph of a cracked 

reinforced concrete beam. 
 

Figure 2.10 shows the principal compressive stress trajectories in an uncracked beam 

and a photograph of a cracked reinforced concrete beam. Although there is a similarity 

between the planes of maximum principal tensile stress and the cracking pattern, they 
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are by no means exactly alike. The flexural cracking, which precedes the inclined 

cracking, disrupts the elastic stress field to such an extent that inclined cracking occurs 

at a principal tensile stress, based on the uncracked section, of roughly a third of the 

tensile strength of the concrete (MacGregor and Bartlett 2000). 

 

In 1902 Mörsch derived the shear stress distribution for a reinforced concrete beam 

containing flexural cracks. Mörsch predicted that shear stress would reach its maximum 

value at the neutral axis and would then remain constant from the neutral axis down to 

the flexural steel (Figure 2.11). The value of this maximum shear stress would be 

 

 
zb

V

w

=τ  (2.2) 

 
where bw is the web width and z the flexural lever arm. 

 

 

 

 

 

 

 

 

 

 
Figure 2.11:  Shear stress distribution in a reinforced concrete beam with flexural cracks (adapted from 

Collins and Mitchell, 1997). 
 

Mörsch recognised that this was a simplification, as some of the transverse force could 

be resisted by an inclination in the main compression, which would cause the ribs of the 

concrete between flexural cracks to bend, producing dowel forces in the main steel. 

 
 
 

 

 

 
Figure 2.12: Kani’s comb model for cracked beams subjected to shear 
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In 1964, Kani attempted a more realistic approach by addressing the problem of the 

bending of the ‘teeth’ of the concrete between flexural cracks. The concrete between 

two adjacent flexural cracks was considered to be analogous to a tooth in a comb 

(Figure 2.12). The concrete teeth were assumed to be free cantilevers fixed in the 

compression zone of the beams and loaded by the horizontal shear from bonded 

reinforcement. Although this theory did not cover most of the shear transfer 

mechanisms, it was probably the start of more rational approaches. 

 

Fenwick and Paulay (1968), working with ‘tooth’ models, pointed out the significance 

of the forces transferred across cracks in normal beams by crack friction. Taylor (1974), 

also evaluating Kani’s model, found that for normal test beams the components of shear 

resistance were: compression zone shear (20-40%), crack friction (35-50%) and dowel 

action (15-25%). 

 

Hamadi and Regan (1980), based on extensive experimental work on interface shear, 

published an analysis of a tooth model. It was assumed that the cracks were vertical and 

that their spacing was equal to half the effective depth of a particular beam. Reineck 

(1991) further developed the tooth model, taking all the shear transfer mechanisms into 

account, carrying out a full nonlinear calculation including compatibility. Reineck 

(1991), based on his mechanical model, derived an explicit formula for the ultimate 

shear force, which matched with the results of the test as well as with those of many 

empirical formulas. 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2.13: Influence of member depth and maximum aggregate size on shear stress at failure (tests by 
Shioya et al.1989) 
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Kani raised the size effect subject in 1967, when he demonstrated that as the depth of 

the beam increases the shear stress at failure decreases. As the depth of the beam 

increases, the crack widths at points above the main reinforcement tends to increase. 

Some authors think that this leads to a reduction in the aggregate interlock across the 

crack, resulting in earlier inclined cracking. Collins and Kuchma (1999) demonstrated 

that the size effect disappears when beams without stirrups contain well-distributed 

longitudinal reinforcement. Other authors (Bazant and Kim, 1984) believe that the most 

important consequence of wider cracks is the reduction in residual tensile stresses. 

Figure 2.13 shows the results of the tests performed by Shioya et al. (1989). The 

influence of the concrete compressive strength on the size effect will be discussed in 

§2.4.3. 

 

The application of simple strut-and-tie models, which have their theoretical basis in the 

lower-bound theorem of plasticity, requires a minimum amount of distributed 

reinforcement in all directions to ensure sufficient ductility in order for internal stresses 

to be redistributed after cracking. However, it is possible to extend this simple strut-and-

tie model to members without web reinforcement by using a clearly different approach. 

Marti (1980) extended the plasticity approach by using a Coulomb-Mohr yield criterion 

for concrete that includes tensile stresses. In 1987, Schlaich suggested a refined strut-

and-tie approach that includes concrete tension ties. Reineck showed that such truss 

models comply with the tooth model he had proposed. 

 

Empirically derived equations have been very important in the development of 

procedures used for designing members without transverse reinforcement. The simplest 

lower-bound average shear stress at diagonal cracking is given by the equation 

 

 
6
f

db
V cc ==τ  (2.3) 

 
This well-known ACI equation, basis for the Spanish EH-91 shear provisions, is a 

reasonable lower bound for smaller slender beams that are not subjected to axial load 

and have at least 1% longitudinal reinforcement (ACI-ASCE Committee 445, 1998). 
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However, it may be unconservative for lowly-reinforced members and high-strength 

concrete members.  

 

The CEB-FIP Model Code (1990) suggests a more sophisticated empirical formula 

based on Zsutty’s (1968, 1971) equation and adding an extra term to account for the 

size effect (equation 2.4). It should be noted that the formula implicitly includes the 

concrete safety factor. To disregard this factor, we should use 0.15 as the constant rather 

than 0.12. 

 

 ( ) cd
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+=  (2.4) 

 
where σ’cd equals Nd/Ac, Nd being the factored axial force that includes the prestress 

(tensile positive) force and Ac, the cross sectional area of the concrete 

 
Zsutty’s equation took into account the influence of the compression strength of the 

concrete and the longitudinal reinforcement ratio. When the steel ratio is small, flexural 

cracks extend higher into the beam and open wider than would be the case with large 

values of ρw. 

 

The MC-90 equation takes the influence of compression force as a factor. However, 

members without shear reinforcement subjected to large axial compression and shear 

may fail in a very brittle manner at the first instance of diagonal cracking (Gupta and 

Collins, 1993). As a result, a conservative approach should be used for those members. 

 

Gastebled and May (2001) recently developed a fracture mechanic model for the 

flexural-shear failure of reinforced concrete beams without stirrups. They assumed that 

that the ultimate shear load is reached when a splitting crack at the level of the 

longitudinal reinforcement starts to propagate. If we adopt the format of the CEB-FIP 

formula, their equation becomes 
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It is worthy a mention that the analytical and the empirical formulas compare very well 

(Gastebled et al. 2001). However, Gastebled’s equation gives more importance to the 

size effect than the CEB-FIP formula does. 

 

Other different fracture mechanic models have been proposed to account for the fact 

that a peak tensile stress is near the tip of a crack and a reduced tensile stress (softening) 

is located in the crack zone. This approach offers a possible explanation for the size 

effect in shear. Two well known models are the fictitious crack model (Hillerborg et al. 

1976), and the crack band model (Bazant and Oh,1983). 

 

The Modified Compression Field Theory (MCFT, Vecchio and Collins 1986) is a 

general model for the load-deformation behaviour of two-dimensional cracked 

reinforced concrete subjected to shear. The MCFT, as it will be referred to later in this 

chapter, is formulated in terms of average stresses and requires an additional check to 

ensure that the loads resisted by the average stresses can be transmitted across the crack. 

For members without transverse reinforcement, the local stresses at a crack always 

control the capacity of the member, and the average stress calculation is used only for 

estimating the inclination of the critical diagonal crack.  

 

ASCE-ACI Committee 445 (1998) emphasised that, although the refined tooth models 

and the modified compression field theory take different approaches to the problem, the 

end result of these two methods is very similar for members without transverse 

reinforcement. Both methods consider that the ability of diagonal cracks to transfer 

interface shear stress plays an important role in the determination of the shear strength 

of members without transverse reinforcement. 

 
 
2.2.3 Code review 
 
The Spanish EHE-99 Code 
 
The EHE code of practice adopted the CM-90 formula with a minor variation:  

 
 ( )[ ] db'15.0f10012.0V 0cd

3/1
cksc σρξ −=  (2.6) 

 
where, fck  is in MPa and fck ≤ 60 MPa, 
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 ξ = 
d

2001+   where d is in mm, 

ρl  = 02.0
db

A

w

sl ≤ , 

Asl is the area of the anchored tensile reinforcement, 

b0  is the width of the cross-section (in mm), 

σ’cd  = Nd/Ac, Nd being the factored axial force, including the prestress (tensile 

positive) force and Ac, the cross sectional area of concrete, 

VRd is in Newtons. 

 

The concrete safety factor is also factored into equation 2.6. The constant in that 

equation (0.12) should be changed to 0.15 to eliminate the safety factor from the 

equation.  

 
 
Eurocode 2: April 2002 Final Draft 
 
The final version of the new draft of Eurocode 2 presents a different shear procedure 

than its predecessor. It is based, with some variations, on the MC-90 equation. The 

design value for the shear resistance in non-prestressed members not requiring design 

shear reinforcement is given by: 
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 fck  is in MPa and fck ≤ 100 MPa, 
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Asl is the area of the anchored tensile reinforcement, 
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bw  is the smallest width of the cross-section in the tensile area (in mm), 

σcp = NEd/Ac < 0.2 fcd (MPa). NEd is the axial force in the cross-section due 

to loading or presstressing in Newtons (NEd > 0 for compression). The 

influence of imposed deformations on NE can be ignored. Ac is the area 

of the concrete cross section (mm2). 

VRd is in Newtons. 

 
 
AASHTO LRFD 2000 
 
The AASHTO-LRFD shear design procedure is based on the modified compression 

field theory. The nominal shear resistance for a non-prestressed member without shear 

reinforcement is given by: 

 
 vvcc db'fV β=  (2.9) 
 
the values of β and θ, depend on the equivalent crack spacing parameter, sxe, where 

 

 xxe s
16a

35s
+

=  (2.10) 

 
where a is the maximum aggregate size, and sx is the crack spacing parameter as defined 

in Figure 2.14. 

 

The longitudinal strain in the web, εx, can be derived from the longitudinal strain in the 

flexural tension flange, εt, where 
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ε  (2.11) 

 
and fp0 can be taken to be 0.7fpu at typical levels of prestress. For members without 

stirrups εx can be taken to be εt (see Figure 2.14). 
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Figure 2.14: Values of β and θ  for sections without shear reinforcement. 

 
 
ACI Code 318-99 
 

The ACI code of practice presents two different procedures for calculating the failure 

shear strength for concrete beams without shear reinforcement. The simplified method, 

equation 11-3, is as follows: 
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The second procedure, equation 11-5, applies for those members whose a/d ≥ 1.4: 
 

 db'f3.0
7
db

a
d120'fV wc

w
wcc ≤






 += ρ  (2.13) 

 
where f’c < 70 MPa, and all the other variables are as defined previously. 
 
 
 
2.3 Members with web reinforcement 
 
 
2.3.1 Forces in members with web reinforcement 
 
Ideally, the purpose of web reinforcement is to ensure that shear failure does not occur 

and that the full flexural capacity can be used. Prior to inclined cracking, the strain in 

the stirrups is equal to the corresponding strain in the concrete and, therefore, the stress 

in the stirrups prior to inclined cracking will be relatively small. Stirrups do not prevent 

inclined cracks from forming as they come into play only after cracks have formed. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.15: Internal forces in a cracked beam with stirrups (adapted from MacGregor et al. 2000). 
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disappear when the crack opens, to verify equilibrium there will always be a 

compression force, C’1, and a shear force, V’cz, acting on the part of the beam below the 

crack. Thus, T2 will be less than T1 and the difference will depend on the amount of web 

reinforcement. However, the force T2 will be larger than T = M/z based on the moment 

at A-A’. 

 
 
2.3.2 Historical development 
 

In the early 20th century, truss models were used as conceptual tools in the analysis and 

design of reinforced concrete beams. Ritter (1899) and Mörsch (1902) postulated 

independently that after a reinforced concrete beam cracks due to diagonal tensions 

stresses, it can ideally be thought of as a parallel chord truss with compression diagonals 

inclined at 45° with respect to the longitudinal axis of the beam. Several years later, 

Mörsch (1920,1922) introduced the use of truss models for torsion. In these truss 

models, in which the contribution of the concrete in tension is neglected, the diagonal 

compressive concrete stresses push apart the top and bottom faces of the beam, while 

the tensile stresses in the stirrups pull them together (Figures 2.16 and 2.17). 

Equilibrium requires these two effects to be equal. According to the 45° truss model, the 

shear capacity is reached when the stirrups yield and will correspond to a shear stress of 

 

 yv
w

yv f
sb
fA

ρτ ==  (2.14) 

 

where Av is the area of the transverse reinforcement, s the spacing of the transverse 

reinforcement, fy the steel yielding stress and bw the web width.  

 

 

 

 

 
 
Figure 2.16: Ritter’s truss model. 
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Figure 2.17: Mörsch truss analogy. 

 

In the United States an extra term was added to improve correlation with test results, but 

it was never explained in physical terms. It has generally been taken to be the strength 

of a similar beam without stirrups but, in light of the very different ultimate load 

behaviour in each case, this equation is physically misleading (Regan, 1993). From 

1921 to 1951 each new edition provided somewhat less conservative design procedures 

(ASCE-ACI Committee 445), even though Talbot (1909) had pointed out that the value 

of the shear stress at failure varied with the amount of reinforcement, the relative length 

of the beam and the quality and the strength of the concrete in addition to other factors 

that affect the stiffness of the beam. However, ACI 318-51 only specified that web 

reinforcement must be provided for the excess shear if the shear stress at service loads 

exceeded 0.03·f’c.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.18: Wilkins Air Force Depot in Shelby, Ohio. 
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The August 1955 brittle shear failure of beams in a warehouse at Wilkins Air Force 

Depot in Shelby, Ohio, (Elstner et al. 1957, Anderson 1957) brought traditional shear 

design procedures into question. The collapse was caused by the shear failure of 914 

mm deep beams that did not contain stirrups at the location of failure and only had 0.45 

percent of longitudinal reinforcement. The beams failed at a shear stress of less than 0.5 

MPa, a low working stress compared with that obtained using the ACI provisions of that 

days. Experiments (Elstner et al. 1957) conducted at the Portland Cement Association 

on 305 mm deep beams indicated that the beams could resist a shear stress of about 1.0 

MPa prior to failure. However, application of an axial tensile stress of about 1.4 MPa 

reduced the shear capacity by about 50 percent. It was concluded that tensile stresses 

caused by the restraint of shrinkage and thermal movements were the reason for the 

beams’ failure at such low shear stresses. However, as can be seen in Figure 2.13, the 

size effect, which was the real reason for the failure, was not taken into consideration.  

 

Shear/compression theories started to be developed in the 1950s. The idea behind them 

is that beam failure is caused by crushing of the concrete compression zones, the depth 

of which has been reduced by a shear crack. The limiting compressive stresses may also 

be reduced by the effects of shear in the compression zone. In 1958, Walther proposed 

what was probably the best known of these theories. However, the complexity of this 

theory resulted in the impossibility of finding an explicit solution. 

 

The early work by Ritter and Mörsch received new impetus in the period during the 

three decades from 1960 to 1980. In Stuttgart, Leonhardt and Walther (1961) carried out 

an extensive experimental campaign on beams failing in shear and developed a model 

that combined the beam and the arch effects. It was shown that these two resistant 

mechanisms interact and that the relative importance of each one varies depending on 

the slenderness of the beam. 

 

Attention was also focused on truss models with diagonals having a variable angle of 

inclination (§2.3.3) as a viable model for shear and torsion in reinforced and prestressed 

concrete beams (Kupfer, 1964). Kupfer provided a solution for the inclination of the 

diagonal cracks by considering linearly elastic members and ignoring the concrete 

tensile strength. Further development of plasticity theories extended the applicability of 

the model to non-yielding domains (Nielsen and Braestrup, 1975). Schlaich et al. (1987) 
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extended the truss model for beams with uniformly inclined diagonals. This approach is 

particularly relevant in D-regions where the distribution of strains is significantly 

nonlinear along the depth.  

 

Modified truss models are used in more recent design codes. For example, ACI 

Building Code 318-99 still adds a concrete contribution term to the shear reinforcement 

capacity obtained, assuming a 45° truss. Another procedure involves the use of a truss 

with a variable angle of inclination for the diagonals. The inclination of the truss 

diagonals is allowed to deviate from 45° within certain limits baed on the theory of 

plasticity. The CEB-FIP model code for concrete structures (1978), and many codes of 

practice derived from it, adopted a combination of the variable-angle truss and concrete 

contribution. 

 

Mitchell and Collins (1974) developed the diagonal Compression Field Theory for 

members subjected to pure torsion. The Compression Field Theory (Collins 1978) and 

the Modified Compression Field Theory (MCFT, Vecchio and Collins 1986) extended 

the first theory, dating from 1974, to shear. The MCFT (Figure 2.19) is a further 

enhancement of the CFT that accounts for the influence of the tensile stresses in the 

cracked concrete. They take into account the overall load/deformation responses of 

elements in which the reinforcement acts in uniaxial tension and the concrete works in 

biaxial tension/compression. The principal stresses and strains in the concrete are 

assumed to be coincident. The equilibrium equations, the compatibility relationships, 

the reinforcement stress-strain relationships, and the stress-strain relationships for the 

cracked concrete in compression and tension enable one to determine the average 

stresses, the average strains, and the angle θ for any load level up to failure. Failure of 

the reinforced concrete element may not be governed by average stresses, but rather by 

local stresses that occur at a crack. This so-called crack check is a critical part of the 

MCFT and the theories derived from it. The crack check involves limiting the average 

principal tensile stress in the concrete to a maximum allowable value determined by 

considering the steel stress at a crack and the ability of the crack surface to resist shear 

stresses. 
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a) Average stresses 

 

 

 

 

 

 

 

 

 

 

 

 

b) Stresses at a crack 

Figure 2.19: MCFT: average stresses and stresses at a crack 
 

Hsu and his colleagues from the University of Houston (Berlabi and Hsu 1994, 1995) 

presented the Rotating-Angle Softened-Truss Model (RA-STM). Like the MFCT, this 

method assumes that the inclination of the principal stress direction, θ, coincides with 

the principal strain direction. For typical elements, θ will decrease as the shear is 

increased, hence the name ‘rotating angle’. Pang and Hsu (1995) limited the 

applicability of the rotating-angle model to situations in which the rotating angle does 

not deviate from the fixed angle by more than 12°. Outside this range they recommend 

the use of a fixed angle model where it is assumed (Pang and Hsu, 1996) that shear 

cracks are parallel to the principal direction of compressive stress as defined by the 

applied loads. 

 

The Disturbed Stress Field Model (DSFM), developed by Vecchio (Vecchio 2000, 

Vecchio 2001) as an extension of the MCFT, explicitly incorporates rigid slipping along 

crack surfaces into the compatibility relations for the element. This allows for a 

divergence of the angles of inclination of average principal stress and apparent average 

principal strain in the concrete. The model represents cracks as gradually rotating, but 

typically lagging behind the reorientation of the principal strains. Vecchio et al. (2001) 

concludes that ‘the corroboration studies for the DSFM also reaffirmed the strength of 

the MCFT as a simple model providing good accuracy over a wide range of conditions. 

Although the MCFT’s assumption of coaxiality of stresses and strains is shown to have 

some fault [..] its influence on predicted behaviour is minor in most cases’. 
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2.3.3 Truss models 
 
Truss models are provide an excellent conceptual model for showing the forces that 

exist in a cracked concrete beam. The 45° Mörsch model can be made more accurate by 

accounting for the fact that θ is typically less than 45°. Figure 2.19 summarises the 

equilibrium conditions for the variable-angle truss-model. 

 

The required magnitude for the principal compressive stresses, f2, can be derived from 

the free-body diagram shown in Figure 2.20: 

 

 ( )θθ cottan
zb

Vf
w

2 +=  (2.15) 

 
 

 

 

 

 

 

 

 
Figure 2.20: Equilibrium conditions for a variable-angle truss (adapted from Collins and Mitchell, 

1991). 
 

The tensile force in the longitudinal reinforcement due to shear forces is 

 
 θcotVN v =  (2.16) 
 
The compressive stresses, f2, in the web tend to cause the top and bottom flanges to 

separate. To prevent this from happening, the tensile force of the stirrups must be equal 

to the vertical component of the compression force in the web: 

 

 θtan
z
V

s
fA yv =  (2.17) 

 
The equilibrium equations shown above are insufficient, however, for gauging the 

stresses caused by a given shear in a beam. There are four unknowns (i.e., the principal 

z

M = 0
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compressive stress, the tensile force in the longitudinal reinforcement, the stress in the 

stirrups and the inclination, θ, of the principal compressive stresses). 

 

In the traditional truss model the failure shear strength of a beam is determined using an 

equilibrium equation by assuming that at failure the stirrups yield and that θ = 45°. 

Otherwise, it can be assumed a compressive stress, f2, in the concrete at failure and then 

find V and θ. Alternatively, it could be assumed that, at failure, both the longitudinal 

reinforcement and the stirrups yield, and then determine V and θ from this. These 

approaches, which consider the mechanisms of failure, are referred to as plasticity 

methods. Nielsen (1984) summarised these methods. 

 

The EHE code of practice assumes that a concrete contribution, Vc, can be added to the 

steel contribution. This contribution is taken to be approximately 85% of the cracking 

shear strength of a beam without stirrups. It should be emphasised that taking Vc to be 

equal to the shear at inclined cracking is approximately true if it is assumed that the 

horizontal projection of the inclined crack is d (MacGregor et. al, 2000). If a flatter 

crack is used, so that z·cotθ is greater than d, a smaller value of Vc must be used. For 

values of θ approaching 30°, used in the plastic truss model, Vc approaches zero, as 

represented in the EHE Code by the constant β, by which the concrete contribution, Vc, 

is multiplied: 

 

 cs VVV β+=  (2.18) 

 

For non-prestressed members without axial force β equals 1 if θ is taken to be 45°. If 

cot θ  is assumed to be equal to 2 (thus θ ≈ 26.6°), then β = 0. 

 

From a truss model it is possible to identify the different shear failure modes that may 

cause the failure of a beam: 

 

Failure due to the stirrups yielding. Assuming that all the stirrups crossing a crack 

yield at failure, the shear resisted by the stirrups is 
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s

dfA
V yv

s =  (2.19) 

 
However, stirrups are unable to resist shear unless they are crossed by an inclined crack. 

It is possible for a 45° crack to cross the web without intersecting a stirrup if the stirrup 

spacing exceeds d. Therefore, the maximum stirrup spacing should be d or less. 

 

In a wide beam with stirrups around the perimeter, the diagonal compressive stresses in 

the web tend to be supported by the longitudinal bars in the corners, as shown in Figure 

2.21. The situation is improved if there are more than two stirrup legs. The CEB-FIP 

1990 suggests that the maximum transverse spacing of the stirrup legs should be limited 

to the smaller of 2d/3 or 800 mm. Serna et al. (2000) concluded that for wide beams the 

use of two leg stirrups should be banned and that the maximum distance in the 

transverse direction between legs should be limited to d. 
 

 

 

 

 

 

Figure 2.21: Flow of the diagonal compressive force in cross-sections of wide beams. Adapted from 
MacGregor et al. (2000). 

 

Equation 2.19 is based on the assumption that the stirrups will yield before failure. This 

is true only if the stirrups are well anchored. Because the available development length 

between the inclined crack and the end of the stirrup can be very short, the use of small 

diameter stirrups as well as hoops with the adequate geometry is recommended. 

 

Moreover, wide cracks in beams are unsightly and may allow water to penetrate the 

beam, possibly causing the stirrups to corrode. Crack width is smaller with very closely-

spaced small-diameter stirrups than with widely-spaced large-diameter stirrups. The use 

of horizontal steel distributed near the faces of beam webs is also effective in reducing 

crack width. Some codes, such as the Canada’s CSA-94, attempt to guard against 

excessive crack widths by limiting the maximum shear that can be transmitted by 

stirrups to 

 

 db'f8.0V wccmax,s φ=  (2.20) 
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where φc = 0.60 is the concrete safety factor. 

 

Shear failure due to crushing of the web. As indicated earlier and shown in equation 

2.15, compression stresses exist in the web of a beam. In very thin-walled beams, these 

may lead to crushing of the web. In predicting the shear strength of beams using 

variable-angle truss models, it is necessary to use an ‘effective’ concrete compressive 

strength smaller in value than the cylinder crushing stress. A value of 0.6fc’ is 

frequently recommended.  

 

Shear failure initiated by failure of the tension chord. The longitudinal component of 

the diagonal compressive force must be counteracted by an equal tensile force in the 

longitudinal reinforcement. This tension increase may cause the longitudinal 

reinforcement to yield, producing the failure of the beam. The truss analogy shows that 

the force in the longitudinal tensile reinforcement at a given point in the shear span is a 

function of the moment at a section located approximately dvcotθ closer to the nearest 

section of maximum moment.  

 
 
2.3.4 Modified Compression Field Theory 
 
Mörsch (1922) stated that it was absolutely impossible to mathematically determine the 

slope of the secondary inclined cracks to design the stirrups. The German engineer 

Wagner (1929), however, solved an analogous problem when dealing with the post-

buckling shear resistance of thin-webbed metal girders. Wagner assumed that after the 

thin metal skin buckled, it could continue to carry shear by a field of diagonal tension, 

supposing that it was stiffened by transverse frames and longitudinal stringers. He 

assumed that the angle of inclination of the diagonal tensile stresses in the buckled thin 

metal skin would coincide with the angle of inclination of the principal tensile strain as 

determined from the compatibility of the deformation of the skin, the transverse frames 

and the longitudinal stringers. 

 

The compression field approaches also determine the angle θ by considering the 

compatibility of the deformations of the transverse reinforcement, the longitudinal 
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reinforcement, and the diagonally stressed concrete. Therefore, these methods satisfy 

equilibrium, strain compatibility and stress-strain relationships. 

 

The first method for determining θ that was applicable over the full loading range and 

based on Wagner’s procedure was developed for members in torsion by Mitchell and 

Collins (1974). Further developments led to the Modified Compression Field Theory 

(Vecchio and Collins, 1986). 

 

The MCFT is a general model for the load-deformation behaviour of two-dimensional 

cracked reinforced concrete subjected to shear. As discussed earlier, it models concrete 

considering concrete stresses in the principal directions summed with reinforcing 

stresses assumed to be only axial. The concrete stress-strain behaviour in compression 

and tension was derived originally from tests performed by Vecchio (Vecchio and 

Collins, 1982). 

 

The key assumption the MFCT uses to simplify is that the principal strain directions 

coincide with the principal stress directions. This assumption is confirmed by 

experimental measurements, which show that the principal directions of stress and 

strain are parallel within ±10º. 

 

Concrete struts are also at a shallower angle than cracks, and the compressive stress 

field must be transferred across the cracks, which causes the concrete strength to be 

reduced from its uncracked state and inducing shear stress across the crack faces. This 

produces tensile stresses in the cracked concrete. 

 

Local stresses in both the concrete and the reinforcement are recognised to vary from 

point to point in the cracked concrete, with high reinforcement stresses but low concrete 

tensile stresses taking place at the location of the crack. In the MCFT the compatibility 

conditions relating the strains in the cracked concrete with the strains in the 

reinforcement are expressed in terms of average strains, where the strains are measured 

over base lengths that are greater than the crack spacing. The equilibrium conditions, 

which relate the concrete stresses and the reinforcement stresses to the applied loads, are 

also expressed in terms of average stresses.  
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Similarly, the strains used for the stress-strain relationships are average strains, that is, 

they consider together the combined effects of local strains at cracks, strains between 

cracks, bond-slip, and crack slip. The calculated stresses are also average stresses in that 

they implicitly encompass the stresses between cracks, stresses at cracks, interface shear 

on cracks and dowel action. In this model, the cracked concrete in reinforced concrete is 

treated as a new material with empirically defined stress-strain behaviour. This 

behaviour can differ from the traditional stress-strain curve of a cylinder, for example. 

 

The equilibrium equations, the compatibility relationships, the reinforcement stress-

strain relationships, and the stress-strain relationships for the cracked concrete in 

compression and tension enable the average stresses, the average strains, and the angle θ 

to be determined for any load level up to failure. 

 

Failure of reinforced concrete element may be governed not by average stresses, but 

rather by the local stresses occurring at a crack. A so-called ‘crack check’ is a critical 

part of the MCFT and the theories derived from it. The crack check involves limiting 

the average principal tensile stress in the concrete to a maximum allowable value 

determined by considering the steel stress at the crack and the ability of the crack 

surface to resist shear stresses.  
 

 

 

 

 

 

 

 

 

Fig. 2.22: Equilibrium in terms of average stresses 

 

 

 

 

 

 

 

 

 

Fig 2.23: Compatibility in terms of average strains 

 

Figure 2.22 is used to establish the equations of equilibrium between cracks. Shear in 

the section is resisted by the diagonal compressive stresses, f2, together with the 

diagonal tensile stresses, f1. The tensile stresses vary from 0 at the cracks to a maximum 

between cracks. As has been mentioned, the average value is used in the equilibrium 

formula. 

 
 1ysyy ftanff −+= θνρ  (2.21) 
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 1xsxx fcotff −+= θνρ  (2.22) 

 ( ) 12 fcottanf −+= θθν  (2.23) 

 
The compatibility equations for the average concrete strains are established using the 

geometrical transformations represented by Mohr’s Circle of Strain as shown in Figure 

2.23.  

 
 ( ) ( )θεθεε 2

2
2

1x tan1/tan ++=  (2.24) 

 ( ) ( )θθεεε 22
21y tan1/tan ++=  (2.25) 

 ( ) θεεγ tan/2 2xxy −=  (2.26) 

 ( ) ( )2y2x
2 /tan εεεεθ −−=  (2.27) 

 

The reinforcement stress-strain relationship is a typical bilinear diagram: 

 

 yieldxxssx fEf ≤= ε  (2.28) 

 yieldyyssy fEf ≤= ε  (2.29) 

 

The concrete web acts not only in compression in direction 2, but also in tension in 

direction 1. Therefore, the following average stress-strain relationships, based on 

Vecchio’s experiments (Vecchio and Collins, 1982), are adopted: 
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where fcr is the cracking strength of concrete. Figures 2.24 and 2.25 represent the above 

equations. 
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Fig. 2.24: Compressive stress-strain relationships for 
cracked concrete 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.25: Average stress-strain relationship 
for concrete in tension 

 

In checking the conditions at a crack, the actual complex crack pattern is idealised as a 

series of parallel cracks, all occurring at an angle θ to the longitudinal reinforcement 

and spaced a distance sθ apart. The reinforcement stresses at a crack, deduced from 

Figure 2.26, can be determined by the equations 

 
 θνθνρ cotcotff cixsxcrx ++=  (2.32) 

 θνθνρ tantanff ciysycry −+=  (2.33) 

 
The ability of the crack interface to transmit the shear stress, νci, depends on the crack 

width, ω. The limiting value of νci proposed by Vecchio and Collins is 
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where a is the maximum aggregate size in mm.  

 

This equation, based on Walraven’s (1981) experiments, was performed on various 

concretes whose  cube strengths were 13, 37, and 59 MPa. Nevertheless, as the 

aggregate may fracture for high f’c, and for low f’c fracture goes around the aggregates, 

this formula will require further investigation (Duthinh et al., 1996),. 

 

The above formula requires an estimation of the crack width, taken to be the crack 

spacing multiplied by the principal tensile strain, ε1: 
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Fig. 2.26: Equilibrium in terms of local stresses at a 

crack 

 

 

 

 

 

 

 
Fig. 2.27: Parameters influencing crack 

spacing (Collins and Mitchell, 1997) 
 
 θεω m1 s=   (2.35) 
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Finally, crack spacing, smx and smv are estimated using the formulas given by the CEB-

FIP Model Code (1990) 
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where db = bar diameter, 

 c = distance to reinforcement, 

 s = bar spacing, 

 ρy = Ay/(bws), 

 ρx = Ax/Ac, and 

 k1 = 0.40 for deformed bars or 0.8 for plain bars.. 

 

At high loads, the average strain of the stirrups, εy, will typically exceed the yield strain 

of the reinforcement. In this situation, both fsy in equation 2.21 and fsycr in 2.33 will 

equal the yield stress in the stirrups. Equating the right-hand sides of these two 

equations and substituting for νci from equation 2.34 gives 
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 (2.38) 

 
Although in this chapter the full analytical model has been described, there are few 

simplified methods based on the MCFT that have been adopted in a number of codes 

(Canada, Norway, and in the AASHTO LRFD). 

 
 
2.3.5 Truss Model vs. Modified Compression Field Theory 
 

The Modified Compression Field Theory can be explained as a truss model in which the 

shear strength is the sum of the steel and concrete contributions. The main difference 

from a classic truss model with concrete contribution is that the concrete contribution in 

the MCFT is the vertical component of the shear stress transferred across the crack, υci 

(Figure 2.28), and not the diagonal cracking strength: 

 

 

 

 

 

 

 

 
Figure 2.28: Average stresses and stresses at a crack. 

 
 sc VVV +=  (2.39) 
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 vwcic dbV υ=  (2.41) 

 
Figure 2.28 shows a section cut halfway between two cracks. The average tensile stress 

transverse to the struts is f1, which gives rise to a vertical force equal to f1·bw·dv·cotgθ. 

As the two sets of stresses shown in Figures 1.b and 1.c must equilibrate the same 

vertical shear in both cases, we see that 
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 θυ gcotdbfdbV vw1vwcic ==  (2.42) 
 
thus, 
 

 θυ tanf ci1 =  (2.43) 
 

Therefore, after the stirrups yield the beam will not collapse if the shear friction 

increases and the angle θ decreases. The failure of the beam is governed by the crushing 

of the compression struts between the cracks, or by the crack slip. The stress, f2, in a 

compression strut is given by 

 
 ( )θθυ cottanff 12 +−=  (2.44) 
 
The concrete is subjected to normal tensile stresses, and as the principal tensile strain, 

ε1, increases, the maximum compressive strength decreases. 

 

Therefor, after the stirrups yield, the shear strength of a concrete beam can be increased. 

Generally, for a normal strength concrete beam, the crushing of the concrete governs the 

beam failure. In a high-strength concrete beam, the struts are able to carry more 

compressive stress, and failure is most likely initiated by the crack slip. 

 

Finally, it is important to highlight the main differences between the truss model and the 

MCFT concrete contributions: 

 
- The truss model concrete contribution is considered equal to the shear 

strength of a similar beam without shear reinforcement. The MCFT takes into 

account a concrete contribution based on the actual collapse mechanism of a 

reinforced concrete beam. 

 
- The truss model concrete contribution does not vary with the amount of 

transverse reinforcement. The MCFT concrete contribution depends on the 

crack width. The more shear reinforcement, the lesser the crack width, and 

the greater the concrete contribution will be. 
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2.3.6 Code review 
 
Spanish Code EHE-99 
 
The EHE code of practice assumes that a concrete contribution, Vc, can be added to the 

steel contribution. Hence 

 cs VVV β+=  (2.45) 

and 

 ( ) db'15.0f100
d

200110.0V 0cd
3/1

cksc 







−








+= σρ  (2.46) 

 

where all the parameters have the same meaning as for members without web 

reinforcement (equation 2.6). The steel contribution is given by the following equation: 

 

 θcotfz
s

AV ywd
sw

s =  (2.47) 

 
where cotθ is compressed between 0.5 and 2. For non-prestressed members without 

axial force β equals 1 if θ is taken to be 45°. If cotθ is assumed to be equal to 2 (thus, θ 

≈ 26.6°), then β = 0. 

 
 
Eurocode 2: April 2002 Final Draft 
 
For members requiring design shear reinforcement, their design is based on a truss 

model. For members with vertical shear reinforcement, the shear resistance, VRd,s, 

should be taken to be the lesser, either: 

 θcotfz
s

AV ywd
sw

s,Rd =  (2.48) 

or 
 ( )θθνα tancot/fzbV cdwcmax,Rd +=  (2.49) 

 
The recommended limiting values for cotθ are given by the expression 

 
 5.2cot1 ≤≤ θ  (2.50) 
 
where 

 Asw is the cross-sectional area of the shear reinforcement, 
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 s is the spacing of the stirrups, 

 fywd is the yield strength of the shear reinforcement, 

ν may be taken to be 0.6 for fck ≤ 60 MPa, and 0.9-fck/200 for high-strength 

concrete beams and 

αc = 1, for non-prestressed structures. 

 
 
AASHTO LFRD 2000 
 

The shear strength of a reinforced concrete section is expressed as follows 

 

 θβ cotd
s
fA

db'fV v
yv

vvcn +=  (2.51) 

 
The values of β and θ listed in Figure 2.29 are based on a calculation of the stress that 

can be transmitted across diagonally-cracked concrete containing at least the minimum 

amount of transverse reinforcement required for crack control. 

 
The shear stress in Figure 2.29 can be defined as 

 

 
vv

pn

db
VV −

=ν  (2.52) 

 
For members with stirrups εx can be taken to be 0.5·εt, as is demonstrated in Figure 2.29. 

εt is calculated using equation 2.11. 

 
 
ACI Code 318-99 
 
For members requiring design shear reinforcement, their design is based on a 45º truss 

model plus a concrete contribution. Hence 

 
 sc VVV +=  (2.53) 
and 

 ywd
sw

s,Rd fz
s

AV =  (2.54) 

 
and the concrete contribution is equal to the failure shear strength of an identical beam 

without web reinforcement, given by equation 2.13. 
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Figure 2.29: Values of β and θ  for sections containing at least the minimum amount of shear 
reinforcement. 

 

 
 
2.4 Shear strength in high-strength concrete beams 
 
 
2.4.1 Introduction 
 
As far as shear strength is concerned, Duthinh et al. (1996) asses that high-strength 

concrete presents us four main challenges: 

 

- Current code provisions for shear strength design rely on empirical rules 

whose database is largely below 40 MPa. New design rules would have to 

rely on either rational methods or on tests that cover a higher range of 

strengths. Much progress has been made in the last 25 years on rational 

methods for shear design and there is hope that the rules can be made more 

understandable from first principles of mechanics, such as has been achieved 
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for flexure. Moreover, it is likely that the rules can be made simple enough 

that they will gain adoption by the design community in the not-too-distant 

future. 

 

- Shear failure surfaces in high-strength concrete members are smoother than 

in normal-strength concrete members, with cracks propagating through coarse 

aggregate particles rather than around them (Figure 2.30). Since one of the 

shear transfer mechanisms across cracks is by aggregate interlock, this 

mechanism needs to be re-examined for high-strength concrete. Test results 

to date indicate that shear friction in HSC can be as low as 35% of that in 

NSC (Walraven, 1995). 

 

 
Figure 2.30: Crack in high-strength concrete 

 

- In the cracked web of a beam under shear, the portions of concrete between 

cracks act as compression struts that are also subjected to transverse tension, 

which reduces their compression capacity. Modelling of this softening 

behaviour is based on tests. Softening shows a dependence on concrete 

strength that needs to be extended to HSC. However, test results to date 

indicate no marked difference in biaxial tension-compression behaviour 

between HSC and NSC. 

 

- Minimum shear reinforcement must prevent sudden shear failure on the 

formation of first diagonal tension crack and, in addition, must adequately 

control the diagonal tension cracks at service load levels. To prevent a brittle 
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failure, an adequate reserve of strength must be provided by the shear 

reinforcement after diagonal cracking of reinforced concrete beams. To 

control crack widths at service load levels, not only must a minimum amount 

of shear reinforcement be provided, but the maximum stirrup spacing must 

also be limited. Due to the higher tensile strength of high-strength concrete, a 

higher cracking shear is expected and hence, would require a larger amount 

of minimum shear reinforcement (Yoon et al., 1996). 

 
 
2.4.2 Minimum web reinforcement 
 

Shear failure in a beam without web reinforcement is sudden and brittle. Therefore, it is 

necessary to provide a minimum amount of shear reinforcement, which must prevent 

sudden shear failure on the formation of first diagonal tension cracking and, in addition, 

must adequately control the diagonal tension cracks at service load levels. 

 

Thus, the minimum area of web reinforcement is intended to ensure that the capacity of 

the member after cracking exceeds the load at which inclined cracking occurs. For some 

member types, such as slabs and footings, this requirement may be waived because load 

redistribution can occur across the width of the member. 

 

Johnson and Ramirez (1989) studied the minimum shear reinforcement in beams with 

high-strength concrete. From an evaluation of the results of this experimental 

investigation and previous studies, it was concluded that the overall reserve shear 

strength after diagonal tension cracking diminished with the increase in f’c for beams 

with the same minimum amount of shear reinforcement. 

 

Roller and Russell (1990, based on an experimental investigation of 10 beams, proposed 

a new amount of minimum reinforcement for high-strength concrete beams, as the ACI 

equation was unconservative. 

 

More recently, the Spanish EHE code of practice proposed that the minimum area of 

web reinforcement must confirm that 
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 0cd
d,y bf02.0

sin
fA

≥∑ α
αα  (2.55) 

 
where Aα is the area of web reinforcement per length unit inclined an angle α from the 

longitudinal axis of the beam; fyα,d the factored yield strength of the transverse 

reinforcement, inclined α degrees; and fcd the factored compression strength of the 

concrete. 

 

However, this expression is very conservative when fc increases, as the first diagonal 

tension cracking is not proportional to the compression strength of the concrete. Tests 

suggest that the inclined cracking load of beams increases proportionally with the 

tensile strength of the concrete.  

 

The Concrete Society Technical Report 49 (1998) proposed the next equation in the 

‘Design guidance for high-strength concrete’: 

 

 
yv

vv
3/2

cu
sv f95.0

sb
40
f4.0A 






≥  (2.56) 

 
where Asv is the area of the web reinforcement, sv the stirrup spacing, fyv the yield 

strength of the transverse reinforcement, and fcu the cubic compressive strength of the 

concrete. The ‘Design guidance for high-strength concrete’ defines fcu as the lesser: 

1.25fc or fc + 15 MPa. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31: Comparison of minimum web reinforcement provisions. 
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The AASHTO LFRD Specifications propose a minimum amount of web reinforcement 

given by the following equation 

 

 
y

w
cv f

sb'f083.0A ≥  (2.57) 

 
Yoon, Cook and Mitchell (1996) carried out an experimental campaign on minimum 

shear reinforcement in normal, medium and high-strength concrete. Twelve shear tests 

were conducted. It was shown that the CSA-94 provisions, shown in equation 2.58, give 

enough reserve of resistance. 

 

 
y

w
cv f

sb
'f06.0A ≥  (2.58) 

 
This equation was revaluated in 1999 by Ozcebe et al. (1999). They concluded, based 

on 13 tested beams, that the amount given in the previous equation could be 20% 

smaller. However, it is necessary to recall the difference in beam depth from one 

experimental campaign to the other. Yoon et al. tested 750 mm deep beams, compared 

with the 360 mm specimens tested by Ozcebe et al. (1999) 

 
The above equations provide very different amounts of web reinforcement, as plotted in 

Figure 2.31, the difference being greater when the concrete compression strength is 

higher. 

 

 
2.4.3 Shear strength in HSC beams without web reinforcement 
 

Most of the research in recent years has intended to evaluate the shear strength of high-

strength concrete beams without web reinforcement.  

 

In 1984, Mphonde and Frantz tested 3 series of reinforced concrete beams with nominal 

concrete compressive strengths ranging from 21 to 103 MPa. Within each series the 

shear span-depth ratio was held constant at either 3.6; 2.5; or 1.0. Test results indicated 

that for slender beams the accuracy of the ACI beam shear strength equations varies 



 ____________________________________________________________ State of the art 

 

45 

greatly with the concrete strength. Furthermore, the effect of the concrete strength on 

the shear capacity becomes more significant as the beams become shorter. 

 

Ahmad, Khaloo and Poveda (1986) tested thirty-six reinforced concrete beams using 65 

MPa concrete. None of the beams had shear reinforcement and half of them had an a/d 

ratio greater than 2.5. They concluded that the current ACI Code could be 

unconservative for high-strength concrete beams with a low percentage of longitudinal 

steel, as will be discussed in Chapter 5. 

 

Also in 1986, Elzanaty, Nilson and Slate (1986) carried out an experimental study of the 

shear strength of reinforced concrete beams made using concrete with compressive 

strengths ranging from 21 to 83 MPa. A total of 18 beams were tested. Their 

conclusions were very similar to those of Ahmad et al. 

 

Some years later, between 1990 and 1995, Ahmad et al. carried out several experimental 

campaigns to evaluate the shear strength of reinforced lightweight concrete beams made 

of normal and high-strength concrete with and without shear reinforcement. The results 

indicated that the predicted ultimate shear capacities, in accordance with the ACI Code 

and the BS 8110 Code, provide an adequate margin of safety when compared with the 

observed values for normal as well as high-strength lightweight concrete beams using 

different types of lightweight aggregates such as stalite, lytag, pellite and pumice. 

 

In Norway, Thorenfeldt and Drangsholt (1990) tested 28 reinforced concrete beams 

without shear reinforcement in shear by two-point loading. For members made of 

concrete with f’c > 80 MPa, the diagonal cracking strength remained largely constant, 

with a minor decrease, in spite of the increasing tensile strength of the concrete. 

Surprisingly, the ultimate shear strength decreased as the concrete compressive strength 

increased above 80 MPa, probably because of the increasing brittleness due to the 

increase in strength (Duthinh et al., 1996).  

 

Kim and Park (1994) carried out a experimental campaign testing 20 beam specimens 

whose concrete compressive strengths were around 54 MPa. They concluded that the 

MC-90 equation predicts the shear strength relatively well and that the ACI equation is 
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unsafe for large beams. They also determined that the effect of size on shear strength 

was the same for normal-strength and high-strength concrete.  

 

However, Collins and Kuchma (1999) published the results of an extensive 

experimental investigation aimed at evaluating the significant parameters which 

influence the size effect in shear. It was found that the reduction in shear stress at failure 

was related more directly to the maximum spacing between the layers of longitudinal 

reinforcement rather than the overall member depth. Moreover, high-strength concrete 

beam specimens showed a more significant size effect in shear than normal-strength 

concrete members. Angelakos, Bentz and Collins (2001) determined that for members 

without stirrups, the shear stress at failure can decrease substantially as the members 

become larger and as the longitudinal reinforcement ratio decreases. 

 

In 2002, Fujita et al. (2002) demonstrated that the size effect on the shear capacity is 

linked to the concrete compressive strength. Experimental tests they carried out showed 

that shear fracture in HSC is characterised by a conspicuous localisation of cracking in 

comparison with ordinary strength concrete, and that the propagation of these cracks 

was rapid, resulting in a more brittle fracture. A study using Fracture Mechanics was 

conducted by Fujita et al. to determine the relationship between size effect and concrete 

compressive strength, leading to the expressions shown in §5.4.3. 

 
 
2.4.4 Shear strength in HSC beams with web reinforcement 
 

Most research on shear strength in HSC beams has dealt with the minimum amount of 

web reinforcement, as has been presented in §2.4.2. The number of experimental 

campaigns with higher amounts of web reinforcement is not as high as the number of 

studies on beams without web reinforcement. 

 
In 1986, Elzanaty et al. (1986) tested three beams with web reinforcement. One of them 

was made of high-strength concrete. According to their tests, the use of HSC tends to 

prevent shear-compression failure and to ensure a diagonal tension failure instead, thus 

increasing the effectiveness of shear reinforcement (Duthinh et al., 1996)  
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In Spain, Aparicio, Calavera and Del Pozo (1997) tested seven full-scale prestressed and 

reinforced precast beams to study the crushing of the web. They also developed a strut 

and tie model with arch effect. The author is unaware of any other research that has 

been carried out in Spain on high-strength concrete beams failing on shear after the 

yielding of the stirrups. 

 

Fourteen HSC beams failing in shear were tested by Sarsam and Al-Musawi (1992), and 

Kong and Rangan (1998) tested 48 reinforced high-performance concrete beams with 

vertical shear reinforcement under combined bending moment and shear with a/d ratios 

ranging from 1.51 to 3.60. They also reported the results of a statistical analysis 

performed on 147 earlier test results. Both Sarsam et al. and Kong et al. concluded that 

a large coefficient of variation was obtained when HSC test beam results were 

compared with the predictions made by various code provisions. 

 
The effect of concrete strength and minimum stirrups on shear strength of large 

members was studied by Angelakos in his doctoral thesis in 1999, which was later 

published by Angelakos, Bentz and Collins (2001). The experiments indicated that even 

members containing 16% more than the minimum amount of stirrups specified by the 

ACI Code will still have inadequate margins of safety.  

 
 
2.5 Conclusions of the state-of-the-art 
 
 
Since the beginning of the 20th century, when Mörsh and Ritter postulated the earliest 

truss models, great progress has been made in the analytical solution of shear problems 

in reinforced concrete. However, most of these highly sophisticated tools require 

considerable simplification to make them suitable for codes of practice. Moreover, as 

Regan (1993) points out, the most imposing analyses have often shown an excellent 

correlation with known results but have failed to predict behaviour under untested 

circumstances. For simpler models the problems is mostly that of the need to neglect 

secondary factors, yet what is secondary in one case may be primary in another, so very 

careful confirmation is always needed. Further progress will no doubt be achieved, 

especially in the simplification of analytical methods and in D-regions, as the exactness 

of the solutions available for B-regions far surpasses those for disturbed regions. 
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It is the author’s opinion that the EHE procedure should be improved in coming years. 

The minimum amount of shear reinforcement provided by the Spanish code of practice 

may be suitably reduced as concrete strength increases.  

 

For members without web reinforcement, the current EHE procedure predicts the test 

results reasonably well, as will be shown in Chapter 5. However, the decrease in shear 

strength for high-strength concrete members without web reinforcement has not been 

solved in any code of practice procedure. 

 

For members with web reinforcement, the lack of physical evidence for taking a 

concrete contribution into account in a beam with stirrups equal to (or 85% of) the same 

beam without transverse reinforcement should be corrected. The AASHTO procedure, 

based on the MCFT, presents a more rational approach than the EHE or Eurocode, 

although it is certainly more complex than traditional procedures. 


