CHAPTER 4

ANALYSIS OF THE INTERFACE BEHAVIOR IN BEAMS
SUBJECTED TO TRANSVERSE LOADS

4.1. Introduction

In this section, the formulation previously found for a pure shear loaded element
applying Non-Linear Fracture Mechanics (NLFM) will be extended to a general case of
a beam under shear forces and bending moments.

First, in §4.2, the governing equations of interfacial shear stresses and laminate tensile
stresses are derived by assuming a bilinear bond-slip relationship between the support
and the external reinforcement, and taking into account the strain distribution in the
concrete support.

Then, two cases are studied. Section 4.3 deals with the distribution of stresses in an
element between two cracks subjected to pure flexure or flexure and shear. Section 4.4
studies the laminate end case, that is, an element between the end of the external
reinforcement and the nearest crack in proximity (a case very similar to a pure shear
loaded specimen due to its contour conditions).

Finally, this formulation is applied to a general case of a beam under transverse loads to
find the stress and strain distribution along the laminate and the interface.

The conclusions drawn from these analyses are the basis for the design proposal that
will be presented in Chapter 5.
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Chapter 4

4.2. Governing equations

Applying equilibrium and compatibility relations to a differential element (Figure 4.1),
dx, it is possible to derive the differential equations for the interfacial shear stresses in a
joint where a laminate has been glued to the soffit of a beam under a certain load
configuration.
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Figure 4.1. Forces acting on a differential section of a strengthened beam, dx.

The following assumptions are considered to derive the governing equations:

1) The thickness and width of the adherents are assumed to be constant along the
bonded length.

2) No shear deformation is considered. Therefore, the shear stress and normal
peeling stress problems are uncoupled, simplifying the mathematical resolution
to a great extent.

3) The laminate bending stiffness is neglected since the following equations are
derived for FRP externally bonded laminates which are of low thickness.

4) The relationship between the shear stress and the relative displacement of both
adherents can be approached by a bilinear function (see Chapter 3).

As mentioned in Chapter 3, when the interface is governed by a bilinear bond-slip
relationship, two states can be distinguished depending on the value of the slip in each
point.

In the first state (Zone I), being in the upward branch of 7 - s curve, the behavior of the
interface is linear elastic. By following the same procedure of Chapter 3 which
consisted of imposing both horizontal equilibrium and the bond-slip relationship of
Zone I, the governing differential equation is derived as equation (4.1). Note that
equation (4.1) is expressed in terms of laminate tensile stress to facilitate the application
of contour conditions.
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Analysis of the interface behavior in beams subjected to transverse loads

where:
o.»5(x): concrete tensile stress in the bottom fiber of the section
Q);: constant given by equation (4.2) which is equal to equation (3.15) for
a pure shear specimen and is equivalent to equation (2.13) from
Chapter 2
1 2
lez I 7, _ 1 2(2?F _ 1 TLMI (4.2)
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The solution of the differential equation (4.1) gives a general expression of the laminate
tensile stress in Zone 1.

Once the maximum shear stress 7,/ is reached, a second state starts out. The formation
of a crack is initiated with the appearance of microcracks, and the interface is behaving
according to the descending branch of the bond-slip relationship (Zone II).

By following the same procedure as in Zone I, the differential equation governing the
laminate stresses can be stated as (4.3).
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where:

(),: constant given by equation (4.4) which is equal to equation (3.18) for
a pure shear specimen
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The solution of the differential equation (4.3) gives the laminate tensile stress along
Zone II of the bond-slip relationship.

A set of comments to equations (4.1) to (4.4) is presented below:

1))

2)

3)

In equations (4.1) and (4.3), the term on the right hand side depends on the stress
on the bottom concrete fiber of the unstrengthened section. The meaning of this
term is related to the slip reduction resulting from the strains on the support.

If the bending stiffness of the beam is very high (or the concrete stress is very
low), both equations (4.1) and (4.3) yield to equation (3.14) and (3.17)
respectively, which were derived for a pure shear case.

The solution for equation (4.1) associated to Zone I will be similar to the
solution of the governing equation describing the behavior of the laminate in a
linear elastic case as presented in Chapter 2.
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To find the general expressions for the tensile stresses in the laminate, the stress
distribution in the bottom concrete fiber must be defined.

Assuming Bernouilli’s law, the cross-section, originally plane, will remain plane and
perpendicular to the deformed longitudinal axis of the beam, and the concrete stress
distribution will be found by applying the strength of materials theory, as shown in
Figure 4.2. Equation (4.7) gives the expression of concrete tensile stress in the bottom
fiber of the cross-section as a function of the laminate tensile stress and the applied
bending moment.
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Figure 4.2. Forces acting in a section of an element between two existing cracks.
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where:

N.: axial force acting on the concrete section

M_: bending moment acting on the concrete section

v+ distance from the bottom concrete fiber to the gravity center of the
strengthened section

A,r,c*: area of the strengthened section transformed into concrete

Imc*: moment of inertia of the strengthened section transformed into
concrete

In general, the thicknesses of the laminate and the adhesive are much lower compared to
the distance between the gravity center of the strengthened section transformed to
concrete and the bottom fiber, yg+. Therefore, a simplification of equation (4.7) can be
done.
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Analysis of the interface behavior in beams subjected to transverse loads
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Incorporating expression (4.8) into (4.1), the governing differential equation of Zone I
can be transformed into equation (4.9). By solving it, the tensile stress distribution in the
laminate in Zone I is found as equation (4.11) except for the integration constants C|
and C,, which are both obtained by applying the appropriate boundary conditions.
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By repeating the same procedure in Zone II, the differential equation (4.3) becomes
(4.13). Again, by solving this equation, the general expression for the tensile stresses is
found as (4.15) where C; and C,4 are integration constants and y coincides with the
constant defined by equation (4.12).

d*c) E

o Wrelol ()=0] sy M(x) (4.13)
where:

E A E A

201+ LL*+ LL* 2* 4.14

§2 2( ECAIV,C ECIH',C yG J ( )
. 1d
o’ (x) = C,cos(&,x)+ C, sin(&,x) + V/(M(x)— fzdz(x)J (4.15)
2

Since the axial stiffness of the laminate is usually much lower than the axial stiffness of
the concrete section, a good approximation of equations (4.10) and (4.14) will be
equations (4.16) and (4.17) respectively. According to this simplification, the
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differential equations (4.9) and (4.13) can be approximated by (4.18) and (4.19)
respectively.
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The shear stress along the bonded length can be obtained by differentiating the laminate
tensile stress expressions (4.11) and (4.15) and afterwards multiplying the result by the
thickness of the external reinforcement (see equation (3.9) of Chapter 3). In addition,
the relative displacement between the laminate and the support is obtained from the
shear stress distribution by applying the bilinear bond-slip relationship given by
equation (3.12) of Chapter 3.

To obtain the integration constants Cj, C,, C3 and C4, some contour conditions which
depend on each particular case must be applied.

Equations from (4.9) to (4.19) will only be valid if the concrete’s tensile stress is
calculated according to the linear elastic strength of materials. Since in a normal
reinforced concrete beam, the concrete will be cracked at some sections, the direct
application of equations (4.11) and (4.15) is of little interest. In the following section,
equations (4.1) and (4.3) will be modified to take into account the situation between two
cracks.

4.3. Stress and strain distribution in an element between two
cracks

4.3.1. Conceptual analysis

In the previous section, the governing equation of laminate stresses in the upward and
downward branch of the bond-slip relationship has been determined. In distinguishing a
specific case of an element between two cracks (crack I and crack J) (Figure 4.3), the
stress and strain distribution of each element cannot be found by applying contour
conditions to the general solution (4.11) and (4.15) because, obviously, in a cracked
section, equations (4.11) and (4.15) are no longer valid. As a consequence, the concrete
tensile stress in the bottom fiber should be defined in a different way, and equations
(4.1) and (4.3) should be solved after assuming a concrete tensile stress distribution
between the two cracks. The definition of this distribution will be dealt in §4.3.2. Prior
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Analysis of the interface behavior in beams subjected to transverse loads

to this definition, a conceptual description of the crack propagation process as the
applied load increases will be given in this section to understand the behavior of the
interface between two cracks. Equations associated to this description will be presented
in §4.3.2.

In the following discussion, the bending moment will be higher in crack J than in crack
I. As a consequence, crack J will always be the crack with the highest tensile stress.
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Figure 4.3. Forces acting in an element between two existing cracks.

As shown in Figure 4.3, there is an increase of laminate tensile stresses due to the
bending moment increment between two existing cracks that is caused by the shear
force. To achieve equilibrium in the laminate, some shear stresses appear and balance
the increment on the laminate tensile force. In addition, the concrete between the two
cracks contributes to the transfer of tensile stresses between the external reinforcement
and the concrete itself. This concrete stress contribution, known as tension stiffening, is
only possible if shear stresses are induced between concrete and laminate. In short, the
shear stresses that appear between two cracks are on one hand required for equilibrium
and are on the other hand induced by a tension stiffening effect. When no shear force is
acting between both cracks, the shear stresses only appear due to the tension stiffening
effect.

In this case, similar to the pure shear specimens studied in Chapter 3, different stages
can be distinguished depending on the tensile force of the external reinforcement in
each crack.

Stage 1

In Stage 1, the complete interface between both cracks is under a linear elastic state. To
reach equilibrium, the shear stresses should be opposite to the tensile stress surrounding
each crack. The shear stresses follow an exponential distribution which has a maximum
value for both cracks I and J. The interfacial shear stress in each crack is always lower
than the maximum shear value, 77, During this Stage 1, there is always a zero shear
stress location (xx) which corresponds to a minimum value on the tensile stress
distribution. As Stage 1 develops, the zero shear stress location moves towards crack I.
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According to equation (3.9) of Chapter 3, the laminate tensile stresses are obtained by
integrating the shear stresses. By knowing the shape of the shear stress distribution, it
can be inferred that the tensile stresses diminish from each crack location to the point of
zero shear stress which is always located much closer to crack I, whenever the tensile
stress in crack J is higher than in crack 1.

In addition, as the applied load increases, the laminate slides in relation to the concrete
support, from the zero shear stress point towards each crack location. The relative

displacement between concrete and laminate is always lower than s;,.

A schematic profile of the interfacial shear and laminate tensile stresses in Stage 1 is
shown in Figure 4.4.
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Figure 4.4. Interfacial shear and laminate tensile stress distribution between two cracks in Stage 1.

Stage 2

Stage 2 is characterized by having part of the bonded connection in Zone II of the
bilinear bond-slip relationship. At the end of Stage 1, Stage 2a.l initiates. The
development of Stage 2a.1 leads to Stage 2a.2. Depending on the distance between
cracks I and J, Stage 2a.1 or Stage 2a.2 may result in Stage 2b. The descriptions of
Stages 2a.1, 2a.2 and 2b are given below.

Stage 2a.1

Stage 2a.1 is initiated after reaching the maximum shear stress 77, in crack J. Here, a
part of the connection between this crack and a certain point associated to the maximum
shear stress (xzy) is situated in the descending branch of the 7 - s curve (Zone II).
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Analysis of the interface behavior in beams subjected to transverse loads

Microcracks appear along the bonded length between crack J and the coordinate x;,. In
this area, the interface is still able to transfer forces by aggregate interlock and there is
still no real macrocrack. In addition, the behavior of the interface between x;,, and crack
I which passes through the point of zero shear stress (xx), remains linear elastic (Zone
I). As Stage 2a.1 evolves, the maximum shear stress location approaches the zero shear
stress location which simultaneously moves towards the less loaded crack.

As in the previous stage, the tensile stress distribution in the laminate reaches its
maximum value under each crack and has a minimum value under the zero shear stress
location. The slope of the tensile stress distribution is steeper in Zone II than in Zone I.

In addition, the relative sliding between laminate and concrete is zero at the zero shear
stress point and increases towards both crack tips. In crack J, the relative sliding is
always higher than sz, However, the s, value has still not been reached in the other
crack tip. The slope of the slip distribution is steeper in Zone II than in Zone 1.

A graphic illustration of the interfacial shear and laminate tensile stress distribution in
Stage 2a.1 is shown in Figure 4.5.
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Figure 4.5. Interfacial shear and laminate tensile stresses between two cracks in Stage 2a.1.

Stage 2a.2

Stage 2a.2 starts once the maximum shear stress is reached not only in crack J but in
crack I as well. Then, between cracks I and J, the laminate can be divided into four parts
as shown in Figure 4.6. This division depends on the location of each point in the bond-
slip curve.
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The regions between each crack tip and the points where the maximum shear stress is
reached, xzyp and Xxzagrign, are located in the descending branch of the bond-slip
relationship (Zone II). Consequently, along these regions, microcracks initiate in the
concrete but it is still possible to transfer the tensile force from the laminate to the
support. Between the maximum shear stress locations, X7z and Xzazrign, the interface
behaves like a linear elastic material, in the ascending branch of the bond-slip
relationship (Zone I).

At increasing deformations, the points of maximum shear stress move towards the zero
shear stress point, xg. Therefore, the length of the two areas of Zone II increases as long
as the length of Zone I decreases. At the same time, in a general case, when the load
increases, the position of the zero shear stress point, xx, situated between xzu . and
XM righ, moves towards crack 1. In addition, xzazp and Xz igne move together with the
zero shear stress point xx as it moves towards the less-loaded crack (crack I). It should
be mentioned that in a pure flexure case, as the applied load increases, the zero shear
stress point xx is fixed at the midpoint of the crack distance.

The tensile stress profile is very similar to that of Stages 1 and 2a.1, with a minimum
value at the zero shear stress location. The higher the applied load, the greater the
laminate tensile stress and strain under each crack tip and in between them.

In addition, the slip distribution is similar to the previous stages. The slip has a zero
value at xxg, and increases in both directions towards crack I and J. The slope in Zone 11
is steeper than in Zone 1.

Figure 4.6 shows a scheme of the interfacial shear and laminate tensile stress
distribution between both cracks I and J.
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Figure 4.6. Interfacial shear and laminate tensile stress distribution between two cracks in Stage
2a.2.
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Stage 2b

In a typical range of crack distances and at high load levels (during Stage 2a.1 or 2a.2),
the maximum shear stress which is moving away from crack J (xzign) may reach the
less-loaded crack (Figure 4.7). When the maximum shear stress 77, arrives at crack I,
the following observations can be drawn:

1)
2)

3)
4)

5)

The transferred force between crack I and J reaches its maximum value.

The complete bonded length is in Zone II of the bond-slip relationship.
Therefore, microcracks have initiated along the entire crack distance.

There is no zero shear stress point and the shear stresses have the same algebraic
sign.

The laminate tensile stress is at maximum in crack J and is at minimum in crack
L.

The complete bonded length is sliding in relation to the support from crack I
towards crack J.

From this point on, Stage 2a.l or 2a.2 turn into what will be called Stage 2b. The
behavior of the interface during Stage 2b is described as follows:

1
2)

3)

4)

5)

The shear stresses in betweeen both cracks I and J are progressively reduced as
Stage 2b evolves, because of the slip increase.

As a consequence, the transferred force between both crack tips, which is given
by the area under the shear stress distribution, decreases progressively as well.
The decreasing trend on the transferred force indicates that in a usual load
control situation, the laminate suddenly debonds in the limit between Stage 2a.1
or 2a.2 and Stage 2b.

Therefore, from this point on, the description of the phenomena is only of
academic interest.

If the internal steel remains unyielded in both cracks, Stage 2b will finish after
reaching the maximum sliding along the complete bonded length. At this point,
the laminate will be completely detached. In case the internal steel has yielded in
crack J during the current or the previous stages, the end of Stage 2b will occur
when the maximum sliding is reached in crack J. Under these circumstances, the
laminate will still be bonded along the crack distance, and Stage 3b (and not
Stage 3a) will initiate.

Stage 2b occurs as a result of the existence of a shear force acting on the flexural crack
tips. It will never occur if the segment between two subsequent cracks is loaded in pure
flexure.

In addition, if the bonded length between two cracks is long enough, Stage 3a will be
initiated before the maximum shear stress location xzs g arrives at crack L.
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Figure 4.7. Shear stress distribution once the maximum shear stress is reached in crack 1.

Stage 3

In every form of Stage 3, a horizontal macrocrack opens in crack J and propagates
towards crack I. Part of the laminate is detached from the concrete surface and the
remaining bonded length is in Zone I or II of the bond-slip relationship. Stage 3a starts
at the end of Stage 2a.2, if Stage 2b has not appeared. Stage 3b can appear at the end of
Stage 3a or alternatively, in some particular cases after Stage 2b. The evolution of the
debonding process during both Stages 3a and 3b is described below.

Stage 3a

Looking back to Figure 4.6, an increase in the applied load causes an increase in the slip
in crack J (and a decrease on the shear stress). Alternatively to Stage 2b, if the distance
between the cracks is long enough, the slip in crack J can eventually reach the
maximum value szo. At this point Stage 3a initiates. A real macrocrack between the
concrete and the laminate opens. As the applied load on the beam increases, the
extension of the macrocrack between the maximum slip location x;o and crack J
propagates from crack J to crack I. Therefore, the bonded length between the maximum
slip location and crack I decreases.

In Figure 4.8, a scheme of the shear stress distribution during Stage 3a is shown. It can
be noticed that along the interfacial macrocrack the shear stresses are zero because the
laminate is detached. Thus no transfer of force is possible in this area. In relation to the
laminate tensile stresses, it should be pointed out that they remain constant along the
macrocrack length.
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Figure 4.8. Interfacial shear and laminate tensile stress distribution between two cracks in Stage 3a.

As in

the previous stages, the sliding is calculated from the shear stresses through the

bond-slip relationship. However, along the debonded length, it is calculated as the
maximum sliding szo plus the elastic elongation of the laminate over the real
macrocrack.

Stage

Stage

3b

3b appears in two different situations that are described below. The main

difference between them is the shear stress in crack I at the beginning of the stage. In
the first situation, the shear stress will be at maximum, while in the second situation, it
will be lower than the maximum value 7.

1))

2)

In case the laminate is long enough for the non-appearance of Stage 2b, during
Stage 3a (in a similar manner than for a short bonded length during Stages 2a.1
or 2a.2), the maximum shear stress location, Xzazign, may reach crack I. Then,
the transferred force between both cracks will attain its maximum value. From
this point on, Stage 3b starts and the same observations described in Stage 2b for
the complete bonded length can be applied here for the remaining bonded
interface.

It should be mentioned that a particular case of Stage 3b will initiate at the end
of Stage 2b in case the internal steel has yielded only in crack J. The macrocrack
just opens and starts propagating at the beginning of Stage 3b. At this point, the
complete interface is in Zone II of the bond-slip relationship, and the shear
stresses in crack I are lower than the maximum shear stress 7z, because Xz rign
has reached crack I in the previous Stage 2b.
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Stage 3b is described in Figure 4.9. The entire laminate is in Zone II or III of the bond-
slip curve. The same observations of Stage 2b in terms of laminate tensile stress and
transferred force can be applied here for the remaining bonded length.

In case the crack distance is long enough that Stage 2b does not develop, a macrocrack
opens when the maximum sliding is reached in crack J. During the macrocrack growth,
the maximum shear stress can reach crack I. From this point on, in a normal load
control situation, an attempt to increase the applied load will lead into a sudden laminate
debonding. In the event that displacement control is possible, the macrocrack
propagation process will be observed. Therefore, Stage 3b will develop. In a similar
manner, and as previously mentioned, for short crack distances, Stage 2b and Stage 3b
will only appear under displacement control.
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Figure 4.9. Shear stress and laminate tensile stress distribution in Stage 3b once the maximum
shear stress reaches crack I.

Stage 3c

If the laminate is long enough, the macrocrack may initiate under both cracks tips: first
in crack J at the beginning of Stage 3a, and later on in crack I, after the maximum slip
szo 1s attained at this location (Figure 4.10). No force transfer will be possible along
both macrocracks. In the remaining bonded length, the same general behavior as Stage
2a.2 will be observed. As the applied load increases, both macrocracks grow and the
remaining bonded length decreases. At the same time, the zero shear stress location
moves towards crack I and, both maximum shear stress locations move closer to the
zero shear stress location, xx. This situation will be infrequent, as the typical range of
crack distances is classified as a short enough for the non-development of this stage.

In addition, in a pure flexure case, Stage 3a will never exist, and a macrocrack will be
initiated simultaneously under both cracks I and J. For a typical crack distance, Stage 3c
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will be initiated when both maximum shear stresses have almost reached the zero shear
stress location.

Stage 3c F——F—MACROCRACK
Lmgrack,left

I II \III

XLOleft XLMleft

: I 3 X
| | XK XLMrght XLOright J ”
111 IIiI , ,
|
! F———F MACROGRACK
| Lmcrack,right
T, s
MACROCRACK MACROCRACK
= — = OLx)
oLl | ] oLJ A
Scr GLYJ -__T _______________________ |
s(x=x)>sw0  s(Xx=xs)>sw0 oL ' |
I I
I I
|
Imr, 1m 1 7 1 II (I,
| | | | | | )X
|| XLoet XiMlet XK XiMright XLorght J

Figure 4.10. Shear stress and laminate tensile stress distribution between two cracks in Stage 3c.

Influence of steel yielding

In a beam under transverse loads, the yielding of the internal steel constitutes an
important factor of the debonding process. By choosing those well-known tests without
external anchorages that failed due to the peeling effect from the bending test database,
the laminate debonded after internal steel yielding in 85.8 percent of the total number of
assembled tests.

As shown in Figure 4.11, once the steel yields, the internal reinforcement is not able to
increase its tensile stress. The subsequent load increments will be assumed alone by the
external reinforcement. As a consequence, the tensile force of the laminate will increase
more rapidly, and the debonding process will accelerate.

Depending on the steel yielding, three cases can be distinguished between two cracks.
Figure 4.12 summarizes them. In the first case, the steel rebars behave in a linear elastic
manner. In the second case, the steel has only yielded in the crack with the highest
tensile stress. Finally, in the last case, the steel has yielded in both cracks. The transfer
of the tensile force from the concrete to both the internal steel and the laminate is
different in each case. Special attention should be drawn in the case where the internal
steel has yielded in both cracks because the total tensile force increment between the
two cracks is transferred through shear stresses from the concrete support to the
laminate.
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The yielding of the internal steel usually occurs during the Stages 2, or 3 of the
debonding process where part of the interface is behaving in Zone II of the bond-slip
relationship and the debonding process is in an advanced situation.
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Figure 4.11. Comparison of the tensile stresses in the internal reinforcement and the laminate
before and after steel yielding.
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Figure 4.12. Cases between two cracks depending on the steel tensile stress.

4.3.2. General equations for the stress distribution between two cracks

Once the propagation process is known, the governing equations (4.1) and (4.3) must be
solved to find the stresses on the interface and on the laminate in the different stages
described in the previous paragraphs.

Firstly, to solve the differential equations (4.1) and (4.3) it is necessary to define the
concrete stress in the fiber in contact with the laminate along the bonded length. In a
cracked section, the tensile stress is entirely absorbed by the internal and the external
reinforcement. However, in the vicinity of the cracks there is a tensile stress transfer
between the reinforcement and the concrete due to the existence of shear stresses. This
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concrete contribution between cracks (usually known as tension stiffening) reduces the
value of tensile stresses in the laminate.

It is difficult to deal with the definition of the concrete’s stress distribution because of
the complexity of the concrete cracking problem. As a first approximation, knowing
that the concrete stress in the crack tips is equal to zero, and assuming a value for the
concrete stress in half of the crack distance, a parabolic concrete stress distribution can
be assumed between two cracks.

As a maximum, the concrete stress in half of the crack distance can be assumed as the
concrete tensile strength f.,,. If the stress in the concrete exceeds this value, another
crack will form in between the two existing cracks. Therefore, the concrete stress in half
of the crack distance can be defined as a fraction £ of the concrete tensile strength.

s
O-c,b(x = 5” j = ﬂfctm (420)
It is very difficult to give a value for the £ fraction, which is affected moreover by the
presence of steel reinforcement. However, as will be shown later on in this chapter, the
results do not dependent heavily on this f parameter.

Assuming a parabolic tensile stress distribution in the concrete, as a function of the
concrete tensile strength (equation (4.21)), the differential equations (4.1) and (4.3) will
turn into (4.22) and (4.24) respectively.

4
Uc,b(x):_STIBf;‘tm ((x_xl )2 _Scr(x_xl )) (421)
2 __1
? % (w)-Qol () =-tul(x -, -5, (-x,) (422)
X
where:
Q,: constant given by equation (4.2)
A constant given by equation (4.23)
4 E
ﬂ:_TIchtm — (4'23)
SC’” EC
2 I
dd:zL (x)+ Qo (x) = Qi,u((x - X, )2 -, (x - X, )) (4.24)
where:

(),: constant given by equation (4.4)

The general solution to the governing equations (4.22) and (4.24) is given by equations
(4.25) and (4.26) respectively, as a function of the integration constants C;, C, C; and
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C, which will be derived by applying the appropriate boundary conditions detailed in
Appendix D.

o’ (x)=C, cosh(Q,x) + C, sinh(Q,x) + f{; + ,u((x —x, Y =5, (x—x )) (4.25)

1
I _ . 27,11 2
o/ (x)=C,cos(Q,x) + C,sin(Q,x) - o A (x—x,) -s,(x-x,) (4.26)
2

Theoretically, in defining the concrete tensile stress contribution, it should be assumed
that there is a slip, not only between the concrete and the external reinforcement, but
also between the concrete and the internal rebars. In this case, a more accurate way to
describe the interfacial crack propagation process can be found. After establishing a
bond-slip relationship for the steel rebars, two problems should be solved, one for each
interface. However, this accurate solution for both interface problems is rejected due to
its complexity. The approach developed in this section will be applied from this point
onwards.

4.3.3. Stress distribution between two cracks prior to the initiation of the
debonding process

In the following, the tensile stresses in the laminate are given for the different stages
studied. To obtain the interfacial shear stresses, this expression must be differentiated
by x and multiplied by the thickness of the laminate, as shown in equation (3.9) of
Chapter 3. Once the shear stress is known, the relative displacement between concrete
and the laminate is easily found using the bond-slip relationship (equation (3.12) of
Chapter 3).

Stage 1: s(x =x)) < spy
For x, <x<x, (ZoneI)

o' (x)- smh(lQ){(a _;ﬂ] sinh(@, (x, - x))+ (a —gjjsinh(ﬂl(x o))

1 1

+§;2l+/1((x_x1)2 —Scr(x_xl))

1

(4.27)
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Stage 2a.1: s(x = x;) > sy and s(x = x7) < sy

For x, <x<x, (ZoneI)

()= 1 o-—z—ﬂcos x—x—ﬁx—x—s
GL(X)_COSh(Ql(xK_XI)){[ LI lej h(Q1( K )) Q, (2( K 1) cr)(4.28)

sinh(0, (x — x, ))}+§§+ =P =5, (x-x)

For x, <x<x,,, (Zonel)

T(.\_ TLM _ _ _
O ooy o)) o) -
o, - ) eosh(@ (50— 2+ (e, s e ,)
Q, O
For x,,, <x<x, (Zone II)
()= 1 2u O.(x—x _(TLM_
g, ( ) COS(QZ(XJ _x,, )) {(UL,J + Q;JCOS( 2( M )) 10, 430,

- b)) 0~ ) 2l s, o)

2

The location of the points of zero and of maximum stress, xx and x.,s respectively, can
be found by solving a system of equations formed by (4.31) and (4.32).

I - {(0 _2u J—”(z(xK ;) s, Binh(@, (xe —x, ))}=

cosh(Q, (x, Q,

1 Ty M U
] _ _ N
sinh(Ql(xLM_xK)){tLQI Ql( (00 =) S”)+Ql

cosh(€, (x,,, —x,))}

(e -x,)-s,) (43D

L {( i —’u(2(xLM—xl)—sc,,)jcosh(Ql(xLM—xK))
M(z(x,{_x,)_scr)}ﬂﬂz L )){%Jﬂ}_ (432)
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Stage 2a.2: s(x = x;) > sy and s(x = x;) > spp

For x;, <x<x,, ,,; (Zone II)

1(y) = ! 2u C )| Fe
o (x)— cos(Qz (XLM,;eﬁ —X1 )){0“ + ngcos(gz(xm,leﬁ x)) LL?;Z +

+ Qﬁ(2(xLMJeﬂ — xl)— sc,,)}sin(Qz(x - X, ))} - ?;21 + ,u((x - x, )2 _ sc,,(x - X, ))

2 2

(4.33)

For X, s S x < x¢ (Zone )

SR — { e 2 Ll ). oot ) -

L sinh(Q, (xK —xLM»,eﬁ)) 1,8, (4.34)
2
- Qi(z(x,( - x,)— scr)cosh(Q1 (x = Xt e ))} + Q—ﬁl + ,u((x - X, )2 - Scr(x - X, ))
1 1
For xp <x <X, . (Zonel)
I(x)= ! TLM_“z___}hQ—+
GL (X) Sinh(Ql(xLM,right — Xk ))H: tLQl Q1 ( (XLM’”ght XI) SC’) . ( l(x B )) (435)
2
+ Qﬁ(Z(xK - 'xl)_ Scr)COSh(Ql ('xLM,righr - x))} + Qilzl + ,u((x X )2 ~Ser (x X ))
1 1
For X, i < x < x,; (Zone II)
GH(X)= ! o +2—’u cos(Q (x—x . ))— Lo _
’ COS(Qz (xJ = XM right )) = Q; ! Erett 1,Q, (4.36)

- Qi(z(xLM,righf — X )_ Ser )} Sin(Qz (xJ - x))} - f{j + /u((x —X; )2 - Scr(x —X; ))

2 2

All these formulae depend on the location of three points: two of them, x7u; and
XM rights are the ones where the shear stress between cracks I and J is at maximum (7z)
and the third one is the point between xzu 0 and xzas-ign: Where the shear stress is zero
(xx). All of them are obtained by solving a set of three equations given by (4.37), (4.38)
and (4.39).
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! 2;” | T H B B
cos(Qz(xLMW,eﬁ —xl)){m,, + Q;] |:ZLQZ + 0, (2(xLM,;€f, x,) sﬂ)}

| ) _27/12 1 T, 4.37
Sm(Q2(xLMJ‘?ﬁ xl))} Q2 Sinh(Ql(xK_xLM,leﬁ)){|:tLQI+ ( |

+ Qﬁ (2(xLM,1efz —X; )_ Ser )} COSh(Ql (xK = X1 jofi ))_ Qﬁ (Z(XK —X; )_ Ser )} + 21
! 1

I 2 (o w0 L
COS(QQ (xJ = XL right )) {(GLJ ’ Qi] |:tLL§A242 Qz (2(XLMJ‘ight x]) Ser ):|

: _ 2 _ 1 T 438
sm(§22 (XJ xLM,right ))} Q; sinh(Ql (XLM,r,-gh, “x, )) {|: tL?;l ( )

- Qﬂ (2(XLM,right —X; )_ Ser )} COSh(Ql (XLM,right —Xg ))"‘ Qi (2(x1< —X; )_ Ser )} + 2u

1

1 T " Y 3 Y
Sinh(Ql(xK —xLM’leﬁ)){tLgl + Q, (Z(xLMJeff x,) Scr) Q, (2(x1< xl) Scr)
1
COSh(Ql (XK R ))}: sinh(Ql (XLM”‘ight iy )){;gl + g/;l(z(xLM,right —X; )_ Scr)+ (4'39)

+ Qﬁ(Z(xK —X; ) — Ser )COSh(Ql (xLM,right —Xx ))}

1

If the concrete’s contribution is not taken into account in Stage 2a.2 (u# = 0), both
lengths of Zone I, which are defined as the distance between the maximum shear stress
locations and the zero shear stress point, (xx - Xzamin) and (Xzagrign - Xk), will be
identical. Therefore, as the debonding process develops, the length of Zone II near crack
J increases at the same amount as the length of Zone II near crack I. Under these
circumstances, only the location of the zero shear stress point and one of the maximum
shear stress points will be required. Both will be obtained by solving only equations
(4.37) and (4.38).

Stage 2b: s(x = x;) > sy and s(x = x7) > sy

As explained in §4.3.1, during Stage 2a.1 or 2a.2, the maximum shear stress location,
Xrmrighe Which 1s moving from crack J, may reach crack I. This is only possible if the
crack distance is shorter than a certain limit which will be obtained at the end of this
section.

From this point on, the solution from equations (4.37) to (4.39) for the maximum and
zero shear stress location will give negative values, indicating that the derived equations
are no longer valid. During Stage 2b, the laminate tensile stresses are derived from
equation (4.40).
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For x, <x<x, (Zone II)
()= — o+ 22 sin(@,(x—x, )+ | oy, + 24 |sin(@, (x, - x))
L Sin(QZSU,) L,J Q; 2 I LI Q; 2 J

_gzg+ﬂ((x_x1)2 _Scr(x_xl))

(4.40)

Since the complete interface is in Zone II of the bond-slip relationship, the shear stress
distribution will decrease during Stage 2b (see Figure 4.7). Consequently, for the
development of Stage 2b, the shear stress in crack I should be lower than the maximum
value 77, as shown in equation (4.41).

taL{O-LJ 2”] _(O-L,I +§§]cos(§22scr)} — s, ST, (4.41)

Sin(QZScr) ' Qﬁ% 2

The tensile stresses oy, and oy, ; can be related through a function v that depends on the
bending moment acting on each crack, which is equivalent to saying that v depends on
the bending moment and shear force acting on crack J.

Lm0 (4.42)
where:
M = .
M((;C:;:g if M(szl,)SMy andM(xle)gMy
A
M(x=x,)(1—](}MSZSJ
y if M(x=x,)>M, and M(x=x,)<M, (4.43)

M('x = xJ )_ A’Aszs

M(x=x,)-f,4,z,
M(X = xJ)_fyAsZs

if M(xzxj)>My and M(x=x,)>M

y

This relationship is plotted in Figure 4.13 for a general example in a three or four-point
bending configuration. Under this load configuration, the shear force is constant along
the shear span. As observed, the tensile stress in crack I is proportional to the tensile
stress in crack J (v is constant) while the steel is still linear elastic. Once the internal
steel yields in crack J, the laminate should by itself absorb the tensile increments at this
location. Since the internal steel is still linear elastic in crack I, the tensile stress in crack
J increases by an amount much higher than in crack I, resulting in a decreasing v value.
However, after the internal steel yields along the crack distance, the laminate in crack I
should increase its tensile stress substantially, leading into an increasing value of v.
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After incorporating equation (4.42) into (4.41), a limit value for the laminate tensile
stress in crack J during Stage 2b can be obtained as a function of the relationship
between the tensile force on crack I and crack J.

IS 1 7,,5i0(Q,s,,) 27/21 [1-cos(Q,s, )]+ £ sin(Q,s, )| (4.44)
T 1-vcos(Q,s,,) Q,t, Q] Q,
0.95 ] l l l
T ¢ ¢ — 1 I /\
| Steel yielding in crack J
0.90 |
0.85 1
- 1
0.80 1 \
0.75 1
i Steel yielding in crack |
070 -H—o—bpo-"v-—"=4H-—+—""9—+——F+—+——+—
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M (kNm)

Figure 4.13. Relationship between the laminate tensile stress in crack I and in crack J in a three or
four-point bending load configuration.

Equation (4.45) gives the maximum transferred force derived for a pure specimen in
Chapter 3 (equation 3.76), but particularised for a laminate length equal to the distance
between cracks I and J. Note that the crack distance is assumed to be shorter than or
equal to the limit between a short and a long laminate given in Chapter 3 as 1/2Q,.

P

max, L=scr

=b, g—MSin(stC,) (4.45)

2

After incorporating equation (4.45) into equation (4.44), the condition for the
development of Stage 2b in terms of laminate tensile stress in crack J is expressed as
(4.46).

1 Pmax L=scr 2/1 ,US .
< ’ - (1- Q e sin(Q 4.46
Oy (1 v COS(QZSH )) { 4, Q; ( COS( 25cr )) + Q, Sm( 25 )} ( )

If the concrete’s contribution in tension is not considered, equation (4.46) is simplified
as (4.47).

P .
max, L=scr 447
A, (1 - cos(stcr )) ( )

O, <

The development of Stage 2b depends mainly on the yielding of internal steel, which
influences the laminate tensile stress. In the following paragraphs, the limit condition of
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Stage 2b is described according to the steel yielding and the bending moments derived
from the applied force in a three or four-point bending configuration:

1))

2)

3)

In case the internal steel has not yielded once Stage 2b is initiated,
(M(x = x;) < M,, M(x = x;) < M,), v (equation (4.43)) will be a constant value
that depends only on the location of both cracks I and J (see Figure 4.13).
Hence, the limit value for the development of Stage 2b, given as equation (4.46)
or the more simplified equation (4.47), is constant while the applied force
increases and the internal steel remains unyielded in crack J.

If the internal steel has yielded in crack J but not in crack I, (M(x = x)) < M,,
M(x = x;) > M,), the value of v (equation (4.43)) will decrease as the applied
force increases (see Figure 4.13). The tensile stress limit given by equation
(4.46) will decrease with increasing values of the applied force whenever the
internal steel does not yield in crack I.

In case the internal steel has yielded in both crack tips, (M(x = x;)) > M,,
M(x = x;) > M,), v (equation (4.43)) will increase as the applied force increases
(see Figure 4.13). As a consequence, the limit given by equation (4.46) will
increase as well.

Figure 4.14 shows the trends of the limit condition (4.46) in terms of tensile stress in
crack J as the debonding process develops. As mentioned above, the limit condition for
the development of Stage 2b is characterized by a horizontal branch (internal steel has
not yielded in both cracks); a descending branch (steel has yielded in crack J but not in
crack I); and an ascending branch (steel has yielded in both cracks).
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Figure 4.14. Limit condition for the development of Stage 2b.

Depending on the load configuration and the steel state, the laminate tensile stress in
crack J, having a bilinear shape with a smooth slope that increases once the steel yields,
will intersect with one of the branches of the limit line at the beginning of Stage 2b.
Afterwards, if the tensile stress exceeds this limit, equation (4.46) will not be valid
anymore and the laminate will debond. (see Figure 4.15)
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Therefore, for the development of Stage 2b, it can be inferred that the tensile stress in
crack J together with the applied moment on crack J, should decrease regardless of the
internal steel state at first. An increase in the tensile stress in crack J can lead to a
premature debonding of the laminate. Thus, the slip between concrete and laminate
instead of the transferred force should be controlled for the development of Stage 2b. In
a common load control situation, this stage will never occur.

In accordance with this and knowing that the complete interface is in Zone II of the
bilinear relationship, the shear stress should diminish at every location along the
evolution of Stage 2b. The transferred force, which is the sum of the shear stresses, will
decrease as well. In addition, since the laminate tensile stress in crack I is related to
crack J through equation (4.42), the limit condition of Figure 4.15 will also give a
maximum value of the transferred force for those laminate lengths where Stage 2b
develops (see §4.3.6).

900 ? e /’
800 E Steel yielding in crack J /
700 1 s
S 600 - N1
1 / Steel yielding in crack |

o

S 500 1 /
3 400 7
(@) ]

300 A
200; ——Limit tensile stress crack J (4.46)
100 ——Tensile stress in crack J
ot
0 10 20 30 40 50 60 70 80

M (kNm)

Figure 4.15. Limit condition for the development of Stage 2b together with the evolution of the
tensile stress in crack J.

Short and long crack distances

As previously mentioned, during the development of Stage 2a.2, two possible situations
may arise. In the first situation, the maximum sliding, 570, can be reached in crack J
before the maximum shear stress location, xzu.gn arrives at crack I. At this point, a
macrocrack opens and Stage 3a is initiated (see Figure 4.8). Nevertheless this situation
never occurs for short crack distances, where the maximum shear stress location xz righ:
reaches crack I before the macrocrack opening (during Stages 2a.1 or 2a.2). In this case,
Stage 2b starts (see Figure 4.7).

In the limit between both situations, the maximum shear stress location, xzsign, reaches
crack I while the shear stress decreases to a zero value in crack J (see Figure 4.14).
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Figure 4.16. Shear stress distribution for the crack distance limit.

Both conditions can be introduced in the shear stress distribution obtained from the
laminate tensile stress of Stage 2b (4.40). If so, equations (4.48) and (4.50) are obtained.
Equation (4.48) gives the transferred force between crack I and J as a function of the
maximum transferred force in a pure shear specimen whose length is s.,1im (S€€ equation
(3.76) of Chapter 3). The solution for equation (4.50) gives the crack distance limit,
Ser.lim, Under which Stage 2b develops.

P )
Ao_ A — max, L=scr,lim 448
B 1 + COS(QZScr,lim) ( )
where:
Pmax, L=scr,lim = bL zg-giM Sin(QZScr,lim ) (449)

2

0Ly COS(QZScr,lim ) 011 = ?2/1 (1-cos(Q,s,,. 1)) - QLS sin(Q,s,, ) (4.50)

2 cr,lim
2 2

As shown in equation (4.50), the limit length s..1im depends on the laminate tensile
stress acting in both cracks. By incorporating equation (4.42) into (4.50), the limit
length s..1im can be obtained as a function of v. When neglecting the concrete’s
contribution in tension, an explicit expression for the crack distance s..;m can be
obtained as follows:

S = g;arccos(u) (4.51)

2

cr,lim

Note that when the laminate tensile stress in crack I is zero, v = 0, equation (4.51) turns
into the limit length between a short and long bonded length in a pure shear specimen as
given in §3.3.3 of Chapter 3.

s =T (4.52)
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In case the concrete’s contribution in tension is neglected, Figure 4.17 shows the crack
distance limit s..1im for the development of Stage 2b as a function of the bending
moment acting on crack J in a general case of a three or four-point bending
configuration. The length s..im is @ constant value in relation to the applied bending
moment, but only if the steel has not yielded either in crack I or J. s..;im starts to
increase once the steel yields in crack J. The limit length decreases after the internal
steel has yielded in both cracks. As an upper limit, if the crack distance is longer than
the limit obtained when the internal steel has yielded in both cracks, Stage 2b will never
appear.

For the crack distance limit, the transferred force between both cracks I and J, AP,
which is associated to the crack distance limit, s, 1im, can be rewritten as equation (4.53).

AP

ser,lim

P
= Ao d, = - (4.53)

200 ‘

180 Steel yielding in crack | \

T 120

£ 100 - 7/
=1

(72

80 E Steel yielding in crack J

20 | —e-scrlim (4.51)
R e e e e S
0O 10 20 30 40 50 60 70 80

M (kNm)

Figure 4.17. Crack distance limit for the development of Stage 2b for a certain three point bending
load configuration.

The main difference regarding the crack distance limit when considering the concrete
contribution in tension is that the horizontal branch associated to the non-steel-yielding
in both cracks has a slight slope in this case.

From now on, the definition of a short crack distance will comprise those crack
distances whose lengths are shorter than the limit s, jim, While long crack distances are
longer than s,/ jim.

Short crack distance (4.54)
Long crack distance (4.55)

s, <8

cr,lim

S, 28

cr,lim
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4.3.4. Stress distribution between two cracks during the debonding
process

The debonding process initiates when the maximum sliding s, is reached in crack J. At
this point a macrocrack opens and starts its propagation process. As the macrocrack
grows, an increasing part of the laminate debonds from the support.

In the following paragraphs, the laminate tensile stress equations are given for Stage 3
of the debonding process regarding the crack distance.

Long crack distances

Stage 3a: s(x = x;) > spo and s(x = x7) > spm

By defining the location of the interfacial macrocrack tip as x;o (where the sliding is the
maximum value for Zone II, s;9), the laminate bonded length between two cracks, s, is
reduced during Stage 3a by the macrocrack length L 4k (see Figure 4.8) to S¢r - Lincrack

(OI‘ Xr0 - X1).

Stage 3a initiates when the tensile stress in crack J reaches the value given by equation
(4.56), a value associated to a sliding equal to s in crack J:

B | T M )
L= sin(Qz (xj - xLM,right )) IL?;Q Qz (Z(XLM,right xj) SCV) i (456)

N S, _2u
Q, tan(Qz (XJ = X0 right )) Qé

If the concrete’s contribution in tension is not taken into account, equation (4.56) will
turn into (4.57).

_ u ! _ Foanten, o, (4.57)
T tng Sin(Qz (xJ - xLM,right )) AL

Since x;- Xzrigne 1S the length of Zone II, the laminate tensile force in crack J (equation
(4.57) multiplied by the laminate area) is similar to the transferred force for a pure shear
specimen where the shear stress is zero at the loaded laminate end (see equation (3.28)
of Chapter 3 for 73 = 0).

The formulae for Stage 3a which provide the laminate tensile stresses are similar to
Stage 2a.2 when substituting the crack distance s, by the remaining bonded length
Ser = Lmeracks and x; by xzo. Note that the macrocrack length Ly ek 1S X7 - x10. These
modifications affect the constant x as well.

The location of the interfacial crack tip can be obtained by assuming a zero shear stress
at this location, that is, by solving equation (4.58).
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tLQZ _ Zi i - fim —
COS(Qz (‘xLO _xLM!”ght)){ (O-L,J + Q2 Jsm(gz (xLO xLM,r‘ight))+ L0, (458)

&

- (2(xLM,right — X )_ (Scr — L,k ))} + (Scr - merack) =0

2

If the concrete’s contribution in tension is neglected, the location of the macrocrack tip,
X10, can be explicitly written as equation (4.59).

1 . T
Xpo = Xpps iy + ——arcsin) —— (4.59)
L0 LM ,right Qz [QQzO'L,J]

The macrocrack tip xzo moves towards crack I during the development of Stage 3a, as
shown by the decreasing trend of x;o in equation (4.59) which is justified by the
decreasing trend of its terms. As previously mentioned, with the debonding propagation
process, the maximum shear stress location xza.igrny moves towards crack I. In a
coordinate system that increases from crack I to crack J, the movement of X7y ign 1S
mathematically expressed by its decreasing value. In addition, the arc sinus of (4.59)
decreases with increasing values of the laminate tensile stress in crack J.

As in Stage 2a.2, if the concrete’s contribution is not taken into account in Stage 3a
(1= 0), both Zone I will be identical in length.

Stage 3b: s(x = x;) > so and s(x = x7) > spm

As explained in §4.3.1, the maximum shear stress location xzusign can reach crack I
during Stage 3a before Stage 3¢ initiates, that is, before a macrocrack opens near crack
I. This situation occurs when the remaining bonded length along the crack distance s, -
Lncrack 18 below a certain limit, which will be called (s¢, - Lincrack) lim-

s 3 X
1l 7w J ”
/ FH———F———MACROCRACK
/ Lmcrack

Figure 4.18. Maximum shear stress reaches crack I at the beginning of Stage 3b.

For this limit length, the maximum shear stress 77, is reached in crack I while the shear
stresses are zero at the macrocrack tip. In a similar manner as in Stage 2b, the limit for
the remaining bonded crack distance can be obtained as equation (4.60), where no
contribution of concrete in tension has been considered. If the remaining bonded length
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along the crack distance is longer than the limit given by (4.60), Stage 3b will never
occur.

(Scr - merack )lim = g)larCCOS(U) (460)

2

Equation (4.60) is similar to the limit between short and long crack distances, S, 1im (se€
equation (4.51)) and shows the same trends described for s.,jim. The main difference is
the considered length, which was the whole crack distance in Stage 2b and now refers to
the remaining bonded length.

During Stage 3b, the solutions of equations (4.37) to (4.39) for the maximum and zero
shear stress location, after substituting the crack distance s, by the remaining bonded
length s¢, - Lycrack, give negative values, indicating that the derived equations are no
longer valid. So, as Stage 3b develops, the laminate tensile stresses will be derived from
equation (4.61), which is similar to Stage 2b when substituting the crack distance, s,
by the remaining bonded length, s. - Lucack, and the crack J location, x;, by the
macrocrack tip location, xzp.

For x, <x<x,, (Zone II)

R e (I SRS
o+ 28 et —x))} 2 e P Lo N —x,)

2
2 QZ

(4.61)

The location of the interfacial crack tip, x;, or alternatively, the macrocrack length,
Lycrack (see Figure 4.9), can be obtained from equation (4.62).

Qyt, 2u 2u
= Q - L — -
sin(Q, (5,, = Lyt )){(U“ "o JCOS( 250 = L) [0“ "o ]} T @6
+ IUZL (Scr - merack ) = O

When the concrete’s contribution is not taken into account, the remaining bonded length
can be explicitly written as follows:

A
s —L = 1arccos(l - GL’”J = Larccos(u) (4.63)
Q Q

cr ‘merack
2 O 2

Equation (4.63) coincides with the limit length given by equation (4.60). Therefore, as
previously mentioned, the remaining bonded length follows the same trends as the limit
Serlim (see Figure 4.17). As shown in (4.63), the macrocrack length, L,crqcr, may or may
not continue to grow along Stage 3b. It depends on the internal steel state, which also
depends on the v value. In a three or four-point bending configuration, the macrocrack
length evolves as follows:
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1) In case the internal steel has not yielded either in crack I or crack J at the
beginning or during Stage 3b, the macrocrack length will remain constant as
Stage 3b develops.

2) If the internal steel has yielded in crack J but not in crack I, the macrocrack
length should decrease with increasing values of the bending moment. This fact
is not physically possible, so the laminate will suddenly debond. On the
contrary, the macrocrack length will increase if the bending moment decreases.

3) Finally, when the internal steel has yielded in both cracks at the beginning of
Stage 3b, according to equation (4.63), the macrocrack will continue to grow
with increasing values of the applied moment. Conversely, the laminate will
debond in a brittle manner if the applied moment decreases.

For the development of Stage 3b, another condition for the macrocrack length should be
verified in addition to equation (4.63): the shear stress in crack I should be lower than
the maximum shear stress 77,,. In other words, equation (4.64) should be fulfilled.

Qyt, 2u 2u _
s 5, ~ Ly ) {“ 0 e LR )’} (4.64)
- lLl tL (Scr - memck ) S z—LM

By incorporating equation (4.42) into equation (4.64), the following condition (4.65) is
obtained for the development of Stage 3b in terms of laminate tensile stress in crack J.
Note that Puax r=scr-Lmerack 18 the maximum transferred force calculated from equation
(3.76) of Chapter 3 for a bonded length equal to the remaining bonded crack distance.

1 P max, L=scr—Lmcrack 2#
UL,J S { : - 72 [1 - COS(QZ (Scr - memck ))] +
1 —U COS(QZ (Scr - merack )) AL Qz (4.65)

+ % Sin(Q2 (Sw' - merack ))}

2

When the concrete’s contribution is not considered, equation (4.65) is simplified as
equation (4.66).

P

P
max, L=scr—Lmcrack max, L=scr—Lmcrack
0y, < - (4.66)

< =
AL (1 —U COS(QZ (Scr - memck ))) AL (1 - Uz)

For a certain macrocrack length and in a three or four-point bending configuration, the
limit condition given by equation (4.65) follows the same trends given by equation
(4.46) in Stage 2b, with a horizontal branch before steel yields in both crack tips, a
descending branch when steel has yielded in crack J, and an ascending branch when
steel has yielded in both crack tips (see Figure 4.14).

This limit condition is only attained at the beginning of Stage 3b. If the limit is
exceeded afterwards, the laminate will suddenly debond.

Since the remaining bonded length is in Zone II of the bond-slip relationship, the shear
stresses decrease as the sliding between the support and laminate increases. By knowing
that the transferred force diminishes as Stage 3b develops, and by applying equation
(4.42), it can be concluded that the tensile stress in crack J should decrease with the
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evolution of Stage 3b. Then, since the tensile stress in crack J is proportional to the
bending moment at this point, the external load should decrease to accomplish condition
(4.65). Similar to Stage 2b, Stage 3b will develop when the slip and not the applied load
on the beam is controlled. An increase in the tensile stress in crack J can result in a
premature laminate debonding.

In addition, since the macrocrack length, shown in equation (4.63), is a function of v,
the development of Stage 3b will only be possible when the bending moment is lower
than a value that causes steel yielding in both cracks I and J. Before steel yields in crack
J, the macrocrack length will remain constant and equal to the value obtained at the end
of Stage 3a (see Figure 4.21). Once the steel yields in crack J, the macrocrack will start
to grow with decreasing values of the tensile stress in crack J (see Figure 4.21). Finally,
after the steel yields in both cracks, the macrocrack should decrease as the tensile stress
in crack J decreases, which is not physically possible. As a consequence, the laminate
debonds.

T/(X) T}:‘) MJ,1>MJ,2 > My
T TLm MJ 1 MJ,3 <My
Ti<Tim
111
3
>y X 3y X
| xo J ~ | xo J ~
#———F———MACROCRACK F#——F———MACROCRACK
Lmcrack Lmcrack
4|, scr 4|, !, ser 4L
M(x=x)<My  M(x=xJ)<My M(x=x)<My M(x=xs)>My
Steel unyielded in Steel yielded in crack J
both cracks | and J but not in crack |

Figure 4.19. Evolution of shear stresses along Stage 3b depending on the internal steel yielding.

Stage 3c: s(x = x;) > sr0 and s(x = x;) > sz

To find the laminate tensile stress and interfacial shear stress distribution of Stage 3c
both interfacial macrocrack tips locations x10,en (Which appeared in Stage 3a), and
xroe should be obtained (see Figure 4.10). Both coordinates can be calculated by
solving equations (4.67) and (4.68) respectively. The macrocrack lengths near both
cracks I and J can be derived from the crack tip locations as Licrack right = X = X10,righe and
Lincrackiefi = X10,1ei - X1. Thus, as in Stage 3a, the formulae of Stage 3¢ will be similar to
Stage 2a.2, when substituting: the crack distance s., by the remaining bonded length s, -
memck,leﬁ - merack,right; XJ by xLO,right; and X7 by XL, left-
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£,Q B 24 ) L
COS(§22 (xLoiigh;_ X0t )){ (O-LJ + Q? Jsm(Qz (xL(),right X LM right )) + tng
- Qi (2 (xLM Jight X )_ (S er merack,/eft - merack,right ))} + (467)
2

+ IUtL (Scr - merack,right - merack Jeft ): 0

Q 2 .

COS(Qz (XLM,lefi 2 1,9,

+ A (2 (x M ~ X1 )_ (S o merack,leﬁ - merack,right ))}} + (4.68)

2

e

+ /’ltL (Scr - merack,lcffi‘ - meruck,right ) = 0

If the concrete’s contribution in tension is not taken into account, both macrocrack tip
locations can be rewritten as (4.69) and (4.70).

1 T
= : M
XL0.right = XLM right + aarCSIH T (4.69)
2 1$2,0; ;
N - o arosin| TH (4.70)
X10,tefi = XM jefi o arcsin .
2 1,£2,0, ,

The minimum crack distance for the development of Stage 3c, Scrmin Swage 30 if the
contribution of concrete in tension is neglected is given by equation (4.71):

1 : T . T
Ser min Stage3e = arcsin| —*— |+ arcsin| ——£—— 4.71)
QZ tLQZGL,J tLQZUGL,J

Short crack distances
Stage 3b: s(x = x;) > s and s(x = x7) > spm

At the end of Stage 2b, the maximum sliding reaches crack J while the shear stress on
the other crack is lower than the maximum value 77, From this point on, Stage 3b will
develop only in some specific conditions that depend on the internal steel state. Under
these conditions, the laminate tensile stresses expression coincides with (4.61), which is
repeated here for the sake of completeness.

4-33



Chapter 4

For x, <x<x, (Zone II)

GC o G LU
[owrs 2o - Pl b )

2
2 2

(4.72)

Stage 3b will only develop for a short crack distance, if the internal steel has yielded in
crack J and remains unyielded in crack I at the end of Stage 2b (when the maximum
sliding sz reaches crack J). The same trends observed in the evolution of Stage 3b for
long bonded lengths can be applied here for a short bonded length. The only difference
is that the macrocrack length at the beginning of the stage is equal to zero.

Stage 3b will not develop if the internal steel has yielded in both cracks I and J at the
end of Stage 2b. Under these circumstances, according to equation (4.63), the
macrocrack should shrink with decreasing values of the applied moment. Since this fact
is not physically possible, the laminate will debond in a brittle manner. As described for
long bonded lengths, Stage 3b will only develop with decreasing values of the external
load. Due to this reason and since the evolution of Stage 3b is only possible when the
internal steel has yielded in crack J but not in crack I at the end of the previous stage,
the internal steel will never yield in crack I during Stage 3b.

In case the internal steel remains unyielded along the crack distance when the maximum
sliding reaches crack J, the laminate suddenly debonds because the maximum sliding
will have been reached not only in crack J but along the whole crack distance.
Therefore, Stage 3b will not develop in this case. However, during the evolution of
Stage 3b, the bending moment in crack J can decreased below the value related to steel
yielding. In this case, Stage 3b will continue evolving with an almost constant value of
the macrocrack length.

4.3.5. Summary

After the description and development of the formulae related to each Stage, a brief
summary of the evolution of the possible stages that can arise during the debonding
process is presented in Table 4.1. A distinction between long and short laminates has
been made. Each row represents the sequence of the different stages that can appear
depending on the crack distance and the load configuration.
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Table 4.1. Stages that arise between two cracks for long and short laminates.

Progressive stages between cracks

LONG CRACK DISTANCES _
Flexure and shear Stage 1 Stage 2a.1 Stage 2a.2 Stage 3a Stage 3b"/
] ) Stage 3¢
Pure flexure Stage 1 Stage 2a.2 Stage 3c
SHORT CRACK DISTANCES
Stage 2a.2 Stage ZbE*; —
¥ (7
Flexure and shear Stage 1 Stage 2a.1 Sgg: ii(*z) Stage 2b Stage 3b
Stage 2b") | Stage 367"
Pure flexure Stage 1 Stage 2a.2 Stage 3¢

® This stage will arise if displacement control is performed
") This stage will arise if the internal steel has yielded in crack J but remains linear elastic in crack I

4.3.6. Transferred force

Some general comments regarding the transferred force along the complete debonding
process described in the formulae developed in §4.3.3 and §4.3.4 are listed below:

1) The transferred force between two subsequent cracks can be obtained as the
difference between the laminate tensile forces in each crack tip. Since the tensile
stress in crack I can be expressed as a function of the tensile stress in crack J
(equation (4.42)), the transferred force can be written as equation (4.73).
AP, =Ac, 4, =0, ,4, (1 _U)

(4.73)

2) From equation (4.73) and as shown in Figure 4.20, the slope of the transferred
force function with respect to the applied load on the beam depends mainly on
the internal steel yielding.

3) The applied load will increase gradually with a constant slope if the steel has not
yielded in both crack tips. Once the steel yields in crack J, the slope increases
significantly because the laminate will carry the tensile force increment
completely in those sections along the crack distance with the steel yielded.
Finally, when the internal steel in both crack sections I and J has yielded, the
slope of the transferred force will be significantly reduced to a value higher than
the initial slope. In the last situation, the laminate alone assumes the increment
in tensile stress within both crack sections due to the increasing values of
applied force.
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4)

5)

6)

7)

8)

AP (kN)

y

//

M (kNm)
Figure 4.20. Transferred force between two cracks.

In addition, the transferred force can also be calculated by integrating the shear
stresses along the crack distance. The transferred force can be obtained by
subtracting the transferred force (in other words, the shear stress integral)
between the zero shear stress location and crack I from the transferred force
between crack J and the zero shear stress location.

For both short and long crack distances, the transferred force is an increasing
function of the applied load until the maximum shear stress location xzuigh
reaches crack I, that is up to the beginning of Stage 2b or 3b. From this point on,
the development of these stages will only be possible when the transferred force
starts to decrease. The increasing trend of the transferred force for long and short
crack distances is stunted by the limit condition given by equations (4.46) and
(4.65) of Stages 2b and 3b, which is a restraint on the maximum value of the
shear stress within crack 1.

For short crack distances, the maximum transferred force will take place when
Stage 2b starts, that is, when the maximum shear stress location xz. ign reaches
crack I. This maximum transferred force can be obtained after incorporating
equation (4.46) into (4.73), and is written as equation (4.74).

AP, = AO—L,[J AL = (1 _ Uilo_s(lg s )) {Pmax, L=scr 2g/§jL (l - COS(stcr ))+
2% cr 2
(4.74)

When the concrete’s contribution in tension is not considered (# = 0), the
maximum transferred force can be expressed as (4.75).

(1 - U)
AP =Ao, , 4, = P 4.75
max, s, L,IJ“"L (1 —v COS(stcr )) max, L=scr ( )

In the particular case of a pure flexure case, where the bending moment is
constant between cracks I and J (M(x = x;) = M(x = x;)), v is equal to 1, and the
transferred force is reduced to a zero value. In case the tensile stress in crack I is
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9)

zero (at the laminate end), v is equal to 0 and the maximum transferred force is
equal to the maximum transferred force of a pure shear specimen.

v=1—> AP =0 (4.76)

v=0—> AP =P (4.77)

max, scr max, L=scr

For crack distances higher than the limit given by equation (4.51) but not
substantially long for the development of Stage 3c (equation (4.71)), the
maximum transferred force is reached when Stage 3b initiates. At this point, the
shear stress is at maximum in crack I and the maximum sliding is reached at the
macrocrack tip. In other words, the remaining bonded length is equal to the
crack distance limit between a short and long laminate. The maximum force can
be obtained from equation (4.78) when substituting the crack distance by the
limit given by equation (4.51).

_ _ (v -2
AP, . v =AC, A, = (1—ucos(stcr,nm )) P, 1=ser tim Qi (l COS(stcr,lim ))+(4 .

A
+ %sin(ﬂlzscr,um )}

2

10) Equation (4.78) can be simplified to (4.53), when the concrete’s contribution in

tension is neglected, that is, for # = 0, and when equation (4.51) is incorporated
into (4.78). Equation (4.53) is repeated here for the sake of completeness.

Pmax =scr,lim
APmax, ser AO—L,[J 4, = (1:_ l))J (4.79)

11) Figure 4.21 shows the maximum transferred force in two different cases: for a

short laminate which is attained at the beginning of Stage 2b, and for a long
laminate which is reached when Stage 3b starts. Both profiles are similar once
the steel has yielded in one of the cracks (crack J). Before steel yields, the
maximum transferred force increases with the laminate length up to the
maximum potential value that can be attained, and which corresponds to the
limit length between short and long bonded lengths. For laminate lengths longer
than the limit between short and long laminates, the transferred force does not
increase above the value associated to this limit.
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30 1 ——Maximum transferred force short crack distance

—— Maximum transferred force long crack distance
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Figure 4.21. Maximum transferred force in a short and long crack distance.

12) The maximum value of the transferred force is attained when the internal steel
yields in crack I. If this situation occurs just at the beginning of Stage 2b or 3b
(depending on the crack distance), the transferred force will reach the maximum
possible value.

13) The maximum transferred force shows a similar shape for short and long crack
distances (see Figure 4.21). If the bending moment on crack J is lower than the
yield bending moment and the concrete’s contribution in tension is neglected,
the maximum transferred force will be a constant value that does not depend on
the applied force. When the steel has yielded only in crack J, the maximum
transferred force will increase with increasing values of the applied moment.
This increasing trend is because the laminate in crack J is assuming alone the
tensile stress increments while the laminate in crack I is sharing the tensile stress
increment with the internal steel. Finally, once the internal steel yields in both
cracks I and J, the transferred force at the beginning of Stages 2b or 3b decreases
with the applied moment on crack J. At this point, the steel has yielded along the
crack distance, and the laminate tensile stress in crack I will start to increase
significantly, so the difference in tensile stress between crack I and J will be
reduced.

14) The transferred force which is obtained as the difference between the tensile
forces acting in both cracks I and J is plotted in Figure 4.22 together with the
maximum transferred force associated to different values of the bending
moment. The maximum transferred force is attained at the beginning of Stage 2b
for short crack distances and at the beginning of Stage 3b for long crack
distances. The maximum transferred force will be obtained at the intersection of
the maximum attainable transferred force with transferred force. From this point
on, the transferred force cannot increase further. Then, the transferred force that
is shown by the dashed line will not be possible.
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Figure 4.22. Maximum transferred force between two cracks in a three-point bending load
configuration.

4.3.7. Analysis of a beam element between two cracks subjected to pure
flexure

To clarify all the formulae shown in the previous section, an example of a beam
segment between two cracks is studied. The crack distance is fixed at 200 mm. The
geometry dimensions of the section and the material properties are the same as in Beam
2 (see Chapter 2). The model parameters in this example are: 7y, = 2.46 MPa,
sry = 0.008 mm, and s;o = 0.764 mm.

Firstly, the beam segment is analyzed while being subjected only to bending moments
(Figure 4.23). The bending moment applied on both cracks is increased by using
different steps from 2.5 kNm to the bending moment associated to concrete crushing,
79.5 kNm. Note that the bending moment at failure is higher than the bending moment
associated to steel yielding, 65.9 kNm.

One of the requirements to find the stress profiles on the laminate and the interface
applying the formulae of the previous section is to know the value of the laminate
tensile stress in each crack. This value was calculated by means of a moment-curvature
analysis of the Beam 2 section, assuming a o - ¢ relationship for the concrete in
compression according to the Spanish Concrete Code EHE (1999) and neglecting the
concrete’s contribution in tension.
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Figure 4.23. Beam segment in a zero shear force region.

As mentioned before, to solve the differential equations governing the interface, the
concrete tensile stress distribution in the fiber next to the laminate was approached by a
parabolic function depending on a £ parameter.

First of all, a value of = 1.0 is assumed: that is, the concrete tensile stress at the
midpoint crack distance is assumed to be equal to the tensile strength f.,, and an
intermediate crack does not have appeared at this location yet. The different stress
profiles for a pure flexure state are then derived with the following input data:
geometry, material properties and applied load. When calculating the stresses, it is
assumed that the interface behaves under different stages depending on the applied
bending moment on each crack.

Some comments about the derived stresses profiles are presented in the following
discussion.

Figure 4.24 shows the evolution of the shear stress distribution as the applied bending
moment increases. In pure flexure, the shear stresses are not required for equilibrium;
they are exclusively induced by tension-stiffening for strain compatibility. A list of
observations from Figure 4.24 is given below.

1) If the beam segment is subjected to equal bending moments, the shear stress
distribution will be skew-symmetric in relation to the middle of the crack
spacing.

2) The symmetry implies that Stage 2a.1 will never appear. As a consequence,
immediately after finishing Stage 1, when the maximum shear stress is reached
in both crack tips, Stage 2a.2 initiates. In this case, this happens after the
moment acting on both cracks reaches 5.0 kNm.

3) During Stage 2a.2, as the applied moment increases, the transition points
between Zone I and II also known as the maximum shear stress points, Xz, OF
XLM right, MOVe towards the middle of the laminate.

4) Because the bending moments on the crack tips are of equal value, the zero
shear stress point xx is fixed at the midpoint of the crack distance.

5) The maximum transferred force between one crack and the zero shear stress
location xx is reached when the area under the shear stress profile is at
maximum. From this point on, the movement of X7y and xza ign: towards xg
will be much slower.
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6) According to the moment-curvature analysis of the strengthened section, the
steel yields when the acting bending moment is 65.9 kNm. Once the steel yields
in both crack tips, the debonding process speeds up and, consequently, the slope
of the shear stress profile in Zone II increases more rapidly.

7) When the applied bending moment is equal to the value associated to concrete
crushing, the shear stresses under each crack location are almost zero. If the
applied bending moment increases over 79.5 kNm, Stage 2a.2 will finish and
Stage 3c will initiate. An interfacial macrocrack will open under both crack
locations. Therefore, in a similar manner as to Stage 2a.1, Stage 3a will never
occur due to the symmetry.

8) During Stage 3c, the shear stress decreases from its maximum value attained
near the zero shear stress point to the zero value at the macrocrack tip.

9) As previously mentioned, Stage 2b or 3b never appear in a pure flexure case due
to symmetry.

3007 -—M=25kNm

: ——M =5.0 kNm
2.00 A : | = M=10.0 kNm
] i i, : y —-<M =15.0 kNm
] Py —-M =20.0 kNm
1.00 - M = 25.0 kNm
© ] : 1 | =M =30.0 kNm
o M = 35.0 kNm
goooam * s 0 120 140 160 180 200 ~ MZ400KNM
= ‘ T ~—M = 50.0 kNm
-1.00 . M = 60.0 kNm
Sy | M = 65.0 kNm
i M>Myl | —=-M = 65.9 kNm
-2.00 7 Moo %, l ——M =70.0 kNm
mwrm \\\\\\ \ M = 75.0 kKNm
-3.00 ->=M=79.5kNm
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Figure 4.24. Shear stress distribution between two cracks under a pure flexure state.

In the following lines a set of comments regarding the laminate tensile stress
distribution of Figure 4.25 is listed.

1)
2)

3)

The tensile stress distribution is symmetrical at the zero shear stress location.

As shown in Figure 4.25, the laminate stress has a minimum extreme value at
the zero shear stress point due to the tension stiffening effect.

A noticeable increase is observed on the tensile stress values from 60.0 kNm to
79.5 kNm. As previously mentioned, the internal steel yields when the applied
moment is 65.9 kNm. Once the steel yields, the internal reinforcement cannot
increase its stress and the laminate alone should absorb the increment of tensile
stresses due to an increase of the applied moment. Therefore, after steel yielding,
the increase in the laminate tensile stress is more acute. Between 50.0 kNm and
60.0 kNm, a range just before steel yields, the laminate tensile stress in the crack
tip increases by a percentage of 17.5% in relation to the stress at the lowest
moment. However, after steel yielding, when the same 10.0 ANm moment
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increment is used, the laminate tensile stress increases by a percentage of 41.3%.
Moreover, in the last load step to 79.5 kNm, the percentage of increase is 62.9%.

4) As observed in Figure 4.25, the tensile stress slope shows an increasing trend
from the beginning up to an applied moment of 35.0 ANm. From this point on, it
is hardly noticeable that the slope has a decreasing trend, which is more evident
for higher applied moments, especially once the internal steel yields.

- M =25KkNm

E ——M =5.0 kNm

1000 | ——M =10.0 kNm
] ——M =15.0 kNm

1200 4

] M =20.0 kNm
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M =35.0 kKNm
—--M =40.0 kNm
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M =60.0 kKNm

M = 65.0 kNm
-=-M = 65.9 kKNm
——M =70.0 kNm
M = 75.0 kNm
M =79.5 kNm
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CRACKI X (mm) CRACK J

Figure 4.25. Tensile stress in the laminate along the crack spacing.

The force transferred between crack I and crack J is the increment of the tensile force
between sections I and J. It can be obtained it by subtracting the force transferred
between crack I and the zero shear stress point xx from the increment of force
transferred between crack J and the zero shear stress point xk.

In this example, the transferred force is zero due to the symmetry on the shear stresses.
This can be explained because there is no shear force acting on the beam element, so
there is no tensile stress increment between both cracks. As a consequence, the shear
stresses appear only due to the tension stiffening effect.

The force transferred along the bonded length between a flexural crack and the zero
shear stress location xx can be obtained as the area enclosed by the shear stress
distribution. As the location of the zero shear stress point xx is fixed on the middle of
the laminate, the maximum force transferred will be the maximum area under the shear
stress distribution in half of the crack distance.

The increment of force between one crack and the zero shear stress location xx, AP/,
is plotted against the applied moment in Figure 4.26. A set of comments are presented
below.

1) There is a maximum value reached whereby an increase of the moment at the
crack location does not imply an increase of the force transferred between the
laminate and the support. In this case, the maximum force, 21.7 kN, corresponds
to a 35.0 kNm applied moment.
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2)

3)

4)

5)

6)

For higher applied moments, there is a decrease in the transferred force though
with an initial smooth slope. Once the internal steel has yielded, the slope of the
curve decreases significantly.

After reaching its maximum value, the transferred force decreases despite of the
increase in the laminate tensile stress in crack J. This fact can be explained as the
slope of the tensile stress between crack J and xx slightly decreases from this
point.

In addition, in Figure 4.26, the theoretical value of the maximum transferable
force of a pure shear specimen is calculated and plotted according to equation
(3.76) of Chapter 3 for a 100 mm length laminate, which corresponds to half of
the crack distance. In this case, the theoretical maximum force is never reached
in any of the load cases studied. The maximum force is similar to 90% of the
maximum transferred force in a pure shear specimen which is 21.6 kN.

If the concrete’s contribution is not taken into account (£ = 0), the pure flexure
case along half of the crack distance will be similar to a pure shear specimen
with the boundary condition of zero shear stress at the laminate end. In this case
the expression for the maximum transferred force will be given by equation
(3.72) of Chapter 3. The only difference with the general case is the equation to
find the maximum shear stress location, which is given by equation (4.80)
instead of (3.30).

T =& sin(szLM)
T < tanh(Ql (L ~Xru ))

—cos(Q,x,,,) (4.80)

The transferred force gives an idea of the correct value for the £ fraction that
defines the concrete’s contribution in tension. £ can be obtained as shown in
equation (4.81) by dividing the maximum transferred force by both the integral
of the concrete stress on the bottom fiber along half of the crack distance, as
given by equation (4.21), and the area of influence of the concrete tensile
stresses. By applying equation (4.81) into this example, the £ value is found to
be equal to 0.032, which is almost zero.

3APmaX,K—I
Scr ctmr(bL + 2]")

B= (4.81)
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Figure 4.26. Force increment between one crack and the middle point of the crack spacing.

Finally, in Figure 4.27, the relative displacement between concrete and laminate is
presented.

1))

2)

3)

4)

5)

Because of pure flexure, the sliding is skew-symmetrical at the middle of the
crack spacing.

The slope of the relative displacement profile increases with the applied bending
moment.

If the maximum sliding szo is reached in both flexural cracks, Stage 3c will
initiate. Thus, two symmetrical interfacial macrocracks will open in the vicinity
of the flexural crack tips. From this point in time, the interfacial crack
propagation process will be symmetric as well. The complete debonding of the
laminate will take place when the relative displacement on the zero shear stress
location xx reaches the maximum value of Zone II, s;o. Theoretically, this
extreme situation is not possible due to symmetry, because xx cannot move in
opposite directions. However, the laminate debonds while the maximum sliding
is reached in points infinitely close to the zero shear stress location. At this
point, both macrocracks are connected one to each other.

In this example, as shown in Figure 4.27, the maximum sliding sy, is not reached
for the load cases studied. It should be mentioned that the section fails due to
concrete crushing when the applied moment is 79.5 kNm. When this moment is
acting, the maximum sliding will reach 0.758 mm which is slightly lower than
the maximum value s;o = 0.764 mm. The maximum sliding will be reached
under both flexural crack tips for an applied moment of 79.9 kNm.

Therefore, such a connection, loaded in a pure flexure state, will probably fail
due to concrete crushing just before an interfacial macrocrack appears and the
peeling effect takes place.
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Figure 4.27. Relative displacement between concrete and laminate under a pure flexure state.

In this analysis, the laminate tensile stress under both cracks I and J has been obtained
for the applied bending moments by a moment-curvature analysis. The moment-
curvature analysis assumes that the section remains plane after deformation. This
assumption implies that the laminate elongation at the crack location can be obtained as
shown in equation (4.82). In the analysis performed, the laminate elongation is
approximately equal to the slip (it is exactly the slip for g = 0).

s o,(x=x,)s. Px=x,)s.
uL(xsz)sz(xsz);zL(E J);:(EAJ); (4.82)
L L“7L

In Figure 4.28, the transferred force obtained in the analysis is plotted together with
equation (4.82). By fixing a tensile force value on crack J (P), the slip is very similar in
both cases, being slightly higher according to the moment-curvature analysis. Thus,
using a moment-curvature analysis to obtain the laminate tensile stresses under each
crack tip provides good results.

After the general description of the behavior in a pure flexure state, the influence of the
L parameter on the laminate tensile stress distribution and on the interface shear stress
distribution is studied by fixing different £ values within a range between 0 and 1. The
analyzed cases are: f= 0.0, f= 0.5, = 1.0 and finally a fvalue derived assuming that
the Navier-Bernouilli condition is accomplished in a section placed on half of the crack
distance.

The first case with £ = 0.0 implies that the concrete tensile stress is zero along the crack
distance in the fiber next to the laminate, o, ,(x) = 0. When incorporating o, »(x) = 0 into
the differential equations (4.1) and (4.3), they will turn into homogenous equations.
Therefore, the governing equations will be similar to a pure shear state in an element
between two cracks but the solution will be obtained with different boundary
conditions.
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Figure 4.28. Force transferred vs. slip in the pure flexure case according to the analysis performed
and equation (4.82).

The last case studied was with a fvalue derived by the Navier-Bernouilli assumption on
half of the crack distance. This criteria is not very realistic for high load levels because
1s higher than 1.0. If such a thing happens, the concrete will reach its ultimate tensile
strength and a flexural crack will appear between the two existing cracks. In the case
studied for an applied moment of 9.0 kNm, f was 1.00. From this point to 79.5 kNm
which is the last moment value studied, the £ factor is always higher than 1.0.

Using some of the load cases studied before, Figure 4.29 compares the shear stress
distribution obtained with = 0.0, # = 0.5, and # = 1.0. Some observations are listed
below:

1) The main difference is on the location of the maximum shear stress points xza s
or Xrrigh- As long as the S factor decreases, the location of the maximum shear
stress will be much farther to the zero shear stress point. Therefore, the lower the
p factor, the longer the extension of Zone II.

2) Although the stress distribution in Zone II is very similar for the different S
values, the shear stress profile of Zone I differs a little for low load levels. For
example, when the applied moment on each crack is 10.0 kNm, the shear stresses
at x = 140 mm, which is in Zone I, are: 0.55 MPa for = 0.0, 0.44 MPa for
L =0.5,and 0.35 MPa with = 1.0.

3) It can be observed that once the maximum shear stress points are close to the
zero shear stress point, the shear stress profile of Zone I is almost vertical and
the influence of the £ parameter is imperceptible.
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Figure 4.29. Shear stress distribution between two cracks in a bending state for different S values.

As shown in Figure 4.30, the influence of the f factor on the tensile stresses of the
laminate is negligible when the applied moment is higher than 20.0 ANm. As in the
shear stress profiles, for lower applied moments, there is a noticeable difference in the
tensile stress values within the maximum shear stress locations and the zero shear stress
point (Zone I). This point can be better appreciated in Figure 4.31.

Although the g factor helps to reduce the laminate tensile stress due to the tension
stiffening effect, this parameter has no significant influence in both interfacial shear and
laminate tensile stress distributions at failure load levels, as observed in both Figure
4.29 and Figure 4.30. Therefore, in a general design situation, the influence of the f
value chosen is irrelevant.

In general, the most conservative solution is £ = 0.0. By using this value, the debonding
process is more accelerated than in any other case. This is shown by a longer length for
Zone I, and higher shear stress values for Zone 1. In addition, the governing equations
are highly simplified because of their homogeneity.
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Figure 4.31. Tensile stress distribution between two cracks for low load levels.
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4.3.8. Analysis of a beam element between two cracks subjected to
bending and shear

A similar case is studied but subjected to bending moments and shear forces (Figure
4.32). Some different bending moment values are applied on one of the cracks (crack J)
located at x = 200 mm. The applied moment on the other crack is calculated by using the
shear force-bending moment relationship. In this example, the studied element is placed
near the midspan of a 6.0 m length beam loaded in a three-point bending configuration.
To apply the formulae developed in §4.3.3 and 4.3.4 for the interfacial shear and
laminate tensile stresses, the tensile stress value in the laminate in each crack should be
known. Both values are determined by a moment-curvature analysis.

V(x=x))
‘ ‘ M(x=x,)
Z 5 V(x=x))
CRACK | CRACK J
X X
L Scr \,
1 7

Figure 4.32. Beam segment subjected to bending moments and shear forces.

Similar to the previous example, equations (4.22) and (4.24) are first solved by
assuming £ = 1.0, the limit value of this parameter. In the following, there is a
description of the interface general behavior when bending moments and shear forces
are acting between two cracks by using £ = 1.0.

First, the shear stress distribution is obtained as shown in Figure 4.33 for increasing
moment values at crack J, x = 200 mm. It should be pointed out that: the bending
moment increases with the x location. Crack I is located at x = 0 mm and crack J at
x =200 mm. In addition, the legend indicates the bending moment applied on crack J.
The same shear stress distribution of Figure 4.33 is shown in Figure 4.34, Figure 4.35,
and Figure 4.36. However, in these cases, the stage associated to each applied moment
is distinguishable from each other. Some general observations are summarized below:

1) The influence of the shear force implies a loss of symmetry in the shear stress
distribution.

2) The shape of the shear stresses is similar to those schemes given in Figure 4.4 to
Figure 4.10.

3) When a shear force is acting in addition to the bending moments, the shear
stresses are induced by the tension stiffening effect, such as in a zero shear
region, and are also needed for equilibrium.

4) The complete interface behaves in a linear elastic way up to an applied moment
of 5.0 kNm (see Figure 4.34). By slightly increasing the bending moment of
crack J, Stage 2a.1 will initiate. When this happens, Zone II will appear near the
location of crack J (x =200 mm). This stage is not apparent in Figure 4.33 due to
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the sequence of the applied moment values chosen for the plot. Before the
bending moment arrives at 10.0 kNm on crack J, Zone II has already appeared
near crack I (x = 0 mm). Therefore, in this case, for this applied moment, Stage
2a.2 has already been initiated.

5) As the bending moment increases, the zero shear stress point, xx, moves towards
the less loaded crack.

6) The movement of the maximum shear stress point xzsigh;, previously defined in
§4.3.2, is always towards crack I. The higher the bending moment acting on
crack J, the shorter the distance between x;,ign and the zero shear stress point
XK.

7) As observed in Figure 4.35, the maximum shear stress point on the left xza e
moves towards the zero shear stress location: first towards crack J, and later on
when it is very close to xx, xzu s accompanies the zero shear stress point in its
movement towards crack .

8) When the applied moment on crack J reaches 65.9 kNm, the internal steel begins
to yield at this location. In addition, the applied moment on crack J is 70.6 kNm
when the internal steel yields in crack I. Note that once the steel yields in crack
J, the crack propagation process is more accelerated. The movement of the zero
shear stress location, xg, towards crack I is much faster. The same occurs with
the movement of both maximum shear stress locations which, at present, are
close to the zero shear stress point.

9) The limit length for a short crack distance before steel yields in crack J is 93.2
mm. Since the crack distance 200 mm is longer than this limit, Stage 2b will
never occur before the steel yields. Once the steel yields in crack J but not in
crack I, this limit increases with the applied moment, from 93.2 mm to 189.2
mm. The last value is obtained when steel has yielded in both cracks I and J.
Since the crack distance is not included in the range from 93.2 mm to 189.2 mm,
Stage 2b will not appear whether the steel has yielded or not in one of the
cracks.

10) At an applied moment on crack J of 69.0 kNm, the shear stress in crack J will
have decreased to a zero value and Stage 3a will have initiated. Then, according
to the bilinear bond-slip relationship, the maximum sliding of Zone II sz will be
attained and the debonding of the external reinforcement will have started due to
the formation of a macrocrack.

11) As shown in Figure 4.36, the macrocrack propagates as the applied moment on
crack J increases beyond 69.0 kNm. The macrocrack length can be obtained as
the extension of the zero shear stress points.

12) The maximum shear stress location Xpa.ign: reaches crack 1 for an applied
moment of 69.7 kNm. At this point, the macrocrack length is 32 mm and the
remaining bonded length is lower than the limit given by solving equation
(4.50). Then, Stage 3b initiates. As observed in Figure 4.36, the shear stresses
along the remaining bonded length all run counter to the laminate tensile force
on crack J.

13) An instant after Stage 3b initiates, the laminate completely debonds if the
applied moment on crack J is increased. In this case, the condition for the
development of Stage 3b given by equation (4.65) in terms of laminate tensile
stress in crack J is not fulfilled.

14) To satisfy equation (4.65), the applied moment on crack J must decrease. Hence,
the shear stress profile decreases with the evolution of Stage 3b up to the point
when the remaining bonded length reaches the maximum sliding.
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15) Since the internal steel has yielded only in crack J at the beginning of Stage 3b,
the macrocrack (given by solving equation (4.62)) should increase in length as
the applied moment decreases (see Figure 4.36). If so, the macrocrack enlarges
from 32 mm at the beginning of Stage 3b to 103 mm for an applied moment of
65.9 kNm. Once the applied moment diminishes to the point that causes steel
yielding in crack J (65.9 kNm), the macrocrack length will almost be constant.
The evolution of the macrocrack length as Stage 3a and 3b develops is plotted in
Figure 4.37.

16) From this point on, the shear stresses continue its decreasing trend to zero along
the remaining bonded length without observing a significant macrocrack growth.

17) To conclude, if the external load was applied to this long crack distance by the
use of load control, the laminate debonding would have occurred once the
applied moment on crack J had reached 69.7 kNm; in other words at the end of
Stage 3a. However, in the current example, after this bending moment has been
attained, the debonding process will continue because slip control instead of
load control will have been performed. Therefore, the laminate will debond at
the end of Stage 3b, when the maximum sliding has been reached throughout the
crack distance.
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Figure 4.33. Shear stress distribution at the interface between two cracks subjected to shear forces
and bending moments.
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Figure 4.34. Shear stress distribution at the interface between two cracks subjected to shear and
bending during Stage 1.
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Figure 4.35. Shear stress distribution at the interface between two cracks subjected to shear and
bending during Stage 2a.2.
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Figure 4.36. Shear stress distribution at the interface between two cracks subjected to shear and
bending during Stage 3a and 3b.
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Figure 4.37. Evolution of the macrocrack length along Stages 3a and 3b.
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Figure 4.38. Laminate tensile stress distribution between two cracks subjected to shear and bending
during Stage 1, 2a.2 and 3a.

Figure 4.38 shows the evolution of the laminate tensile stresses as long as the applied
moment on crack J increases during Stages 1, 2a.2 and 3a. Some observations are listed
below.

1) The tensile stress is at maximum on the crack tips and decreases from those
points to a minimum value which corresponds to the zero shear stress location
XK.

2) In Figure 4.38, it is also possible to observe the evolution of xx towards crack I
with the applied load.

3) As in the previous example, once the internal steel reinforcement yields, the
increase in the laminate tensile stresses is more significant.

4) As shown in Figure 4.36, when the maximum relative displacement between
concrete and laminate sy is reached, the shear stresses decrease to zero. As a
consequence, according to equation (3.9) of Chapter 3, the laminate tensile
stress along the macrocrack length is constant and equal to that at the maximum
sliding location. Therefore, there is always a horizontal branch near crack J in
Figure 4.38 after the maximum sliding is reached, that is when the applied
moment is higher than 69.0 kNm.

5) Once the bending moment in crack J has decreased beyond the steel yiending
bending moment, the macrocrack length remains constant.

Figure 4.39 shows the tensile stress distribution during Stage 3b, from which some
observations can be drawn.

1) For an applied moment on crack J of 69.7 kNm, the shear stress location will
reach crack I, and Stage 3b will initiate. From this point on, if the applied
moment on crack J is increased, the laminate will completely debond and no
tensile stresses will be observed. On the contrary, for decreasing values of the
applied moment, equation (4.65) will be satisfied and the data in Figure 4.39
will be obtained.
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2)

During Stage 3b, the tensile stress distribution is monotonically decreasing from
crack J to crack I. The slope of the plotted lines turns smoother as the transferred
force decreases (see Figure 4.39).

3) In addition, there is no minimum value in between both cracks because the shear
stresses are different from zero along the remaining bonded length.

4) As shown in Figure 4.39, and in a similar manner as in Stage 3a, the tensile
stress is constant along the macrocrack which propagates during Stage 3b. This
is because the laminate is detached from the support and there is no shear
transfer along this area.
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Figure 4.39. Laminate tensile stress distribution between two cracks subjected to shear and bending

during Stage 3b.

The transferred force between two points can be calculated as either the difference
between the laminate tensile forces under each crack or as the total shear stress area
enclosed between both crack tips. As in the previous section, the increment of force
between crack I and J and between each of these cracks and the zero shear stress point
Xk, APy, are plotted against the applied moment of crack J (Figure 4.40). Some
observations are listed below.

1)

2)

3)

The force transferred between crack J (higher moment) and the zero shear stress
point is always higher than the force transferred between crack I (lower moment)
and the zero shear stress point due to the non-symmetric form of the shear stress
distribution.

As shown in Figure 4.33, the zero shear stress point is always closer to crack I
than crack J. This point moves from its initial position on the left of the midpoint
crack distance towards crack I. Therefore, the transferred force between crack I
and J will rise with increasing values of the applied moment.

In the plotted line associated to crack I, there is a maximum value from which an
increase of the moment at the crack location does not imply an increase of the
force transferred between the laminate and the support. In this case, the
maximum force transferred between crack I and xx is 20.4 kN and it corresponds
to a 30.0 kNm moment.
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4)

5)

6)

7)

8)

9)

The maximum force transferred between crack J and xx is 23.2 AN and it
corresponds to a 40.0 kNm moment. This value is slightly lower than the
theoretical maximum transferable force of 24.0 kN for a pure shear specimen of
100 mm length laminate (equation (3.76) of Chapter 3).

Beyond an applied moment of 65.9 kNm, there is a slight increase in the
transferred force between crack J and xg, implying a decrease of the force
transferred between crack I and xx. This may be related to the steel yielding in
crack J that causes a fast movement of the zero shear stress point, xg, before
failure occurs. This fast movement is caused by the laminate in crack J,
assuming alone the tensile increments of the section.

As previously mentioned, the force transferred between crack I and J can be
obtained by subtracting the force between crack I and xx from the force between
xx and crack J. This force represents the increment of tensile stresses between
both cracks, an increment resulting from the shear force acting on the beam
element. Due to the shear force there is an increment of the bending moment
which generates a shear stress distribution to achieve equilibrium. The sum of
the shear stresses is the transferred force.

The transferred force between crack I and J gradually inclines with the applied
moment. After the internal steel yields in crack J, the slope increases sharply to
the point where the zero shear stress point xx reaches crack 1. At this instant, the
maximum transferred force between crack I and crack J of 21.5 kN is attained.
The maximum transferred force between crack I and J occurs when Stage 3b
starts. At this point the maximum shear stress location Xz reaches crack I
and the shear stresses follow the same direction. Therefore, the transferred force
is directly equal to the sum of shear stresses along the remaining bonded crack
distance.

By performing displacement control instead of load control, and if the applied
moment is not increased after the initiation of Stage 3b, the laminate will not
debond. The transferred force will follow the same previous pattern of
development, diminishing as Stage 3b develops.

10) At the end of Stage 3b failure occurs, the maximum sliding s; is attained along

the crack distance and the laminate will completely debond from the support.
Thus, no force transfer will be possible.

Figure 4.41 plots the transferred force between crack I and J together with the maximum
theoretical transferred force at the beginning of Stage 3b (as given by equation (4.78) in
§4.3.6). The theoretical maximum transferred force plotted for different applied bending
moments depends on the crack distance limit associated to the bending moment. As
observed, the maximum transferred force, which is reached at the beginning of Stage
3b, is similar to the maximum theoretical value of equation (4.78). After Stage 3b is
initiated, the maximum transferred force starts to decrease, and the transferred force
becomes lower than the maximum value associated to any applied bending moment.
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Figure 4.40. Force increment between each crack and the zero shear stress point. Transferred force
along the crack distance.
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Figure 4.41. Maximum transferred force between cracks I and J.

In Figure 4.42 the relative displacement between concrete and laminate is shown.

1) The sliding is in the same direction as the tensile forces acting under each crack.
Therefore, the relative displacement at the zero shear stress location is zero as
well.

2) There is a plotted line related to the maximum sliding sz9. If the maximum
sliding is reached in crack J, an interfacial macrocrack will be initiated. In this
example, once the applied moment on crack J is higher than 69.0 kNm, the
macrocrack will start its propagation near crack J and will propagate to crack I.

3) The relative displacement between concrete and laminate of the debonded area,
where the sliding is above s, can be calculated as the maximum sliding plus the
elastic elongation of the laminate debonded length.
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4)

5)

6)

7)

8)

s(x):SLO +3L(x)(x—xw) when x2x,, (4.83)
As previously mentioned, a brittle and sudden debonding of the laminate may
occur when Stage 3b initiates, even though the maximum sliding has not been
reached in crack I. However, in a theoretical situation, the premature debonding
can be avoided when the slip and not the applied force is controlled under both
cracks.

Once Stage 3b initiates, the sliding continues to increase along the crack
distance and the macrocrack propagates towards crack 1. The macrocrack tip is
located at the point where the shear stress is equal to zero. The sliding along the
remaining bonded length increases up to the maximum value sy,.

Since the internal steel is yielded in crack J at the beginning of Stage 3b, the
macrocrack length increases with the evolution of this stage. Although the
tensile force in crack J is diminishing, the slip along the macrocrack length is
increasing because of the macrocrack growth.

When the applied moment has decreased to the value which causes steel yielding
in crack J (65.9 kNm), the macrocrack length remains constant. From this point
on, the sliding along the remaining bonded length increases to reach the
maximum value of Zone II, s;9. Meanwhile, the sliding along the macrocrack
length decreases because the tensile force acting in crack J, that causes the
laminate elastic elongation, diminishes as well. This trend is similar to that
observed in Stage 3b of a pure shear specimen.

At the end of Stage 3b, the slip at any location is equal to the maximum value in
Zone 11, 579, and the laminate debonds.
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Figure 4.42. Relative displacement between support and laminate.

A study of the influence of the S parameter has been performed. The comparison in

terms

of shear stress and laminate tensile stress profiles shows the same general trends

as in the pure flexure example. In short, the S factor which helps to reduce the laminate
tensile stress does not have a significant influence in both stress distributions.

There

fore, the simplest solution will be to designate £ as equal to 0.0.

4-58



Analysis of the interface behavior in beams subjected to transverse loads

4.4. Stress and strain distribution at the laminate end

The following case between the end of the laminate and the crack that appears nearest to
it is very similar to that of a beam element between two cracks. The main difference lies
in not having an applied force at the end of the external reinforcement, so there is no
restriction in the laminate to slide at this point, whenever no external anchorage is
applied.

4.4.1. Conceptual analysis

Before giving the expressions for the tensile stress in the laminate, a description of the
crack propagation problem is presented. Assuming a bilinear bond-slip relationship
between the support and the external reinforcement, different stages can be
distinguished depending on the tensile stress acting in crack J.

Stage 1

If the tensile stress in the laminate under the crack causes a sliding lower than the value
associated to the maximum shear stress, s;y, the complete interface between the
laminate end and the nearest crack (crack J) will be under a linear elastic state (Zone 1).
By applying the appropriate contour conditions to the general solution of Zone I, the
distribution of tensile stresses can be obtained. From this expression, the shear stresses
on the interface and its sliding can be derived. Figure 4.43 shows a shear stress
distribution scheme between the laminate end and the nearest crack under Stage 1. The
shear stresses decrease in an exponential manner from the crack tip, where the
maximum value is reached, to the end of the laminate. In Stage 1, the shear stress under
the crack is always lower than the maximum value 7z, In addition, as will be shown in
a later example, there is a concentration of shear stresses at the free laminate end where
the stresses are unequal to zero. Note that the shear stresses are opposite to the tensile
stress in crack J as long as there is no tensile force acting at the laminate end.

Stage 1

T(x)
A
IX%
0 T oy
) sor L o > X
s(x=0)<sim S(X=xJ)<SLM

Figure 4.43. Shear stress distribution at the laminate end in Stage 1.

Throughout all the stages, the laminate tensile stress distribution decreases from its
maximum value at the crack tip to a zero value at the free laminate end.
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Stage 2

Stage 2 is characterized by having part of the bonded connection in Zone II of the bond-
slip relationship. Stage 2 can be divided into Stage 2a and Stage 2b. Stage 2a always
develops, and initiates at the end of Stage 1. Stage 2b appears only under certain
circumstances depending on the distance between the free laminate end and the nearest
crack.

Stage 2a

When the maximum shear stress 77y, is reached on the cracked section, the formation of
microcracks is initiated. From this point on, the interface behaves under Stage 2a. The
bonded length will be divided into two regions (Zones I and II) depending on the slip
value of each point. The nearest region to the loaded end of the laminate (Zone II) will
behave in a non-linear way. The concrete-reinforcement slip at Zone II will be larger
than sz, so it will be positioned on the descending branch of the bond-slip curve. The
rest of the connection (Zone I) will remain in a linear elastic state. As long as the
applied load increases, the shear stress peak will move towards the free laminate end. A
scheme of the distribution of shear stresses is shown in Figure 4.44.

As mentioned, the tensile stress distribution decreases from the crack location to the

laminate end. The slope of the tensile stress profile is steeper along Zone II than in Zone
L.

Stage 2a

T(x)
A
Tm
TIETLM
Ix%
; - To<TLM
0 J OLJ 3y X
L Scr |, 0 7
A A
s(x=0)<sim SIM<s(x=x4)<sL0

Figure 4.44. Shear stress distribution at the end of the laminate in Stage 2a.

Stage 2b

If the distance between crack J and the laminate end is longer than a certain limit, there
will be enough length for the development of the complete shear stress distribution. If
the bonded length is not long enough, the maximum shear stress 77y, may reach the
laminate end before the complete development of Zone II; in other words, before the
maximum sliding is attained on crack J. In this case, Stage 2b will initiate.

During Stage 2b, the complete interface is in the downward branch of the bilinear bond-
slip relationship (Zone II). Therefore, the shear stresses decrease monotonically as the
sliding along the bonded length increases (see Figure 4.45). Microcracks propagate
along the distance between the crack and the laminate end. The development of
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Stage 2b is only possible if the shear stress at the laminate end is decreasing from its
maximum value. The end of Stage 2b is attained once the maximum sliding is reached
in crack J. The maximum sliding is reached simultaneously not only in crack J but along
the complete bonded length. Therefore, laminate debonding occurs at the same instant at
every location.

As a conclusion, the debonding process for a short distance between the laminate end
and the nearest crack finishes at the end of Stage 2b.

Stage 2b )
A
TI<Tm
" ToSTm
=
0 J ]
L sor Lo 5 >X
SIM<S(x= 0/5 <Swo SMSS(X=XJ)<S1o

Figure 4.45. Shear stress distribution at the end of the laminate in Stage 2b.

Stage 3

At the beginning of Stage 3, an interfacial macrocrack opens and starts its propagation
process. Part of the laminate debonds from the surface. For laminates with long enough
lengths, Stage 3a will develop at the end of Stage 2a, and afterwards, Stage 3b will
appear. As previously mentioned, when the laminate is not long enough, Stage 3a will
never occur and the laminate completely debonds at the end of Stage 2b.

Stage 3a

Once the maximum slip s is reached in the cracked section, a horizontal macrocrack
will appear and the laminate will start its debonding process. The shear stresses along
the macrocrack extension are zero, and as a consequence the tensile stresses are constant
along the debonded length. As long as the relative sliding under the flexural or shear
crack increases, the macrocrack propagates to the end of the laminate. Figure 4.46
shows the shear stress distribution between the laminate end and the nearest crack when
the debonding process has started.

The laminate will be completely detached when the maximum slip location reaches the
laminate end.
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Stage 3a
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Figure 4.46. Shear stress distribution at the end of the laminate in Stage 3a.

Stage 3b

As Stage 3a develops, the maximum shear stress will eventually reach the laminate end.
Then, Stage 3b will initiate.

Since the complete bonded length is in Zone II of the bond-slip curve, microcracks will
appear along the remaining bonded length. As shown in Figure 4.47, the shear stress
distribution decreases as long as the sliding increases to the maximum value szo. As will
be explained in §4.4.4, the macrocrack does not grow at all during Stage 3b.

Stage 3b

T(x)
A
To<TL
MACROCRACK
0 J (YL,JV 3 X
4|/ Ser ,.l' 0 XLo J 7
SimM<s(x=0)<sw0 S(X=x4)>SLo A —MACROCRACK
Lmcrack

Figure 4.47. Shear stress distribution at the end of the laminate in Stage 3b.

It is observed that the shear stresses profiles of Stages 1, 2 and 3 are very similar to that
of a pure shear test given in Chapter 3. If no transverse load is applied between the
laminate end and the nearest crack, this element will behave in a similar way than a
single/double shear test.
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4.4.2. General equations for the stress distribution at the laminate end

The stress distribution can be found by solving the governing differential equations
(4.1) and (4.3), derived in §4.2. Again, it is necessary to determine the tensile stress in
the concrete bottom fiber.

In the crack tip, the concrete tensile stress is zero. In most cases, at the end of the
laminate the concrete section is uncracked. In these cases, the Navier-Bernouilli
assumption of plane and normal section remains plane and normal to the deformed axis
after loading is accomplished at the laminate end. Between both sections, the concrete
stress distribution is approached as a parabolic function with its axis of symmetry at the
end of the laminate, as shown in Figure 4.48.

O (x) = _Slzo-c,b (x = O)(x2 - Sczr) (4.84)

cr

where:

o,,(x=0) is obtained according to the strength of materials approach:

0.,(x=0)= M(’CTO)yG* (4.85)

tr,c

To make the stress formulae at the end of the laminate similar to that of the previous
section, the concrete tensile stress is defined as a fraction S of the concrete tensile
strength.

o, (x =0)=M§’“To)y@ = fom (4.86)

tr,c

Therefore, the S parameter for x = 0 can be defined as shown in equation (4.87) as the
ratio between the linear elastic concrete stress due to the applied moment and the tensile
concrete strength. It should be mentioned that the £ factor should be lower than 1.0
because the concrete stresses should be lower than the tensile strength as long as no
crack has appeared at the laminate end section.

ﬂ=;[ﬁ4(xf())yGJ>1.o (4.87)

In the following, the parabolic function that approaches the concrete stress distribution
is given by equation (4.88) which depends on a f parameter.

o, () == B f (=52 (4.88)

N

cr
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Figure 4.48. Assumed concrete tensile stress distribution.

By incorporating equation (4.88) in the governing differential equations for Zone I and
I1, the general solutions for both zones are easily derived depending on four integration
constants C;, C,, C3 and Cy. Equations (4.89) and (4.90) are very similar to equations
(4.25) and (4.26) associated to the case between two cracks.

o!(x)=C, cosh(Q,x)+ C, sinh(Q x)+ 2;;2 + % (x2 — Sf,.) (4.89)
1
o) (x)=C, cos(Q,x)+ C, sin(Q,x) - ,u2 + 2 (x2 - sfr) (4.90)
20, 4
where:

Q;: constant given by equation (4.2)
(),: constant given by equation (4.4)
L. constant given by equation (4.23)

For the different stages previously mentioned, the integration constants are obtained by
applying the appropriate contour conditions which are defined in terms of laminate
tensile stress and shear stress.

4.4.3. Stress distribution at the laminate end prior to the initiation of the
debonding process

In this section, the equations for the tensile stress in the laminate are given for Stages 1
and 2 of the debonding process. As previously mentioned, to obtain the shear stress
distribution, the laminate tensile stress expression must be differentiated by x and
multiplied by the thickness of the laminate, as shown in equation (3.9) of Chapter 3.
The slip between concrete and the laminate is easily found by using the bond-slip
relationship (equation (3.12) of Chapter 3).
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Stage 1: s(x =x)) < Spy

For 0 <x <x;(Zone ])

1 2 . .
)= 1 Z‘[Q - sf,,jsmh(Ql(scr o) [o— - 23) sinh(©,1)} +

1 1
+ 2?212 +%(x2 —sf,,)

(4.91)

The derivative of equation (4.91) gives the shear stress distribution which is a
decreasing function for the distance from crack J until the laminate end. The shear stress
at the laminate end is given by equation (4.92).

'(x=0)= %{’u(2 - sf,,]cosh(lear)nL (GL’J S ]} (4.92)

~sinh(Qs, ) [ 4 Q@ 207

Stage 2
Stage 2a: s(x = x;) > Sty

For 0 <x <xzy (Zone I)

az(x)—1{—’u£2—sf,)cosh(Ql(xLM—x))+(TLM o

"~ cosh(Qx,,) | 4l Qrn 20,

LM) (4.93)

sinh(Q,x)}+ 2;‘% + %(x2 - sf,,)

For xzp < x < x;(Zone II)

1
o (x)= {(O-L,J + 2&] cos(€,(x —xy,, )~ (;L;L B 2gz XLMJ (4.94)
sin(0, (s, — )}t + 4" 2)

The location of the maximum stress point, xzy, is easily found solving the equation
given by (4.95).

1 2 2 Tiu 7 . 7
| s | X;,, |sinh(€2,x + =
cosh(leLM){ 4(912 ] [leL 20,7 (©xi) 207

1 Mo T _ M (O (. — _ M
cos(Qz(x,,—xLM)){G“er;J (ng 20, XLMJSIH( 2y =)} 202

(4.95)
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The shear stress at the free laminate end can be found using equation (4.96). Note that
the shear stress at this location increases as Stage 2a develops. Only when the maximum
shear stress, 77y, reaches the laminate end, will the entire interface be in Zone II.

Ot Ml 2 . T y7,
Me=0)= Dl JH12 o G, )| Do - 4.96
r'(x=0) cosh(leLM){4{Qf SC’}m( i) {QJL 20, xLM}} (4.96)

Stage 2b: s(x = x;) > spy

For short bonded lengths, the maximum shear stress will eventually reach crack I before
the complete development of Zone II. In this case, the whole bonded length is in Zone II
of the bond-slip curve and the equations of Stage 2a are no longer valid. Thus, the
laminate tensile stress can then be expressed as equation (4.97)

For 0 <x <x;(Zone II)

n(y. 1 M M2 o _
o, (x)— sin(sta){(GL’J + 295 ]Sll’l(Qz)C)-i- 4 [Q; +schs1n(Qz(xJ x))}

)

(4.97)

For the development of Stage 2b, the shear stress at the laminate end should be lower
than the maximum value 7). Therefore, after incorporating equation (4.45) into the
derivative of equation (4.97), the following condition is obtained for the laminate tensile
stress in crack J.

PmaX =scr
o, < Tﬁ — 2gg(l —cos(Q,s,, )+ %sfr cos(Q,s,.) (4.98)

If the concrete’s contribution in tension is not considered, equation (4.98) is simplified
as equation (4.99).

P,
GL!J S ma;Lfscr (499)
L

Equation (4.99) is a particular case of equation (4.47) between two cracks when
assuming a zero tensile stress in crack I (v = 0). In addition, equation (4.99) shows that
the tensile force during Stage 2b has an upper limit which is the maximum transferred
force for a pure shear specimen. Hence, the maximum transferred force of Stage 2b
between the laminate end and the nearest crack is obtained when Stage 2b initiates and
is equal to the upper limit given by equation (4.99).

For short bonded lengths, the shear stress distribution decreases as Stage 2b evolves.
Meanwhile, the relative sliding increases until the maximum value sy is attained along
the complete bonded length. This occurs at the same instant at any laminate location.
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Therefore, under these circumstances, the laminate completely debonds at the end of
Stage 2b.

Limit length between a short and long distance in an element between the laminate
end and the nearest crack

As previously mentioned, depending on the laminate length between the laminate end
and the nearest crack, during Stage 2a, the maximum shear stress may reach the
laminate end. The limit length for the non-development of Stage 2b is obtained in this
section.

In a limit situation, the maximum shear stress reaches the laminate end when the shear
stress simultaneously decreases to a zero value at the crack location. By imposing both
conditions into equation (4.97) and by solving equation (4.100), the length that gives the
transition between a short and long distance at the laminate end is obtained. Equation
(4.101) gives the value of the laminate tensile stress in crack J in this limit situation.

2

u |:1 — COS(QZScr.limend ) stcr,limend +

GL J COS(QZS(W limend )_ -
20,

Q, 2 (4.100)
+ Scr,limend Sin(QZScr,limend ) = 0

05 =

Pmax,L:scr H [stczr,limend Sin(stcr,limend ) ] (4 10 1)
2

AL (1 + COS(QZScr,limend )) B 2Q 2 " Smlimend (1 + COS(QZScr,limend

After incorporating equation (4.101) into equation (4.100), the resulting equation will
be fulfilled if one of the following conditions is verified:

a) co8(Q,5,, mena )= 0 (4.102)

Pmax =scr ,Ll 2 . ILI .
b) Ti + Z [Sczr,nme,,d + g)zj sin® (stcr,limend )— 2§2251n(92scr,1imend ) =0 (4 1 03)

2
Since equation (4.103) is always different from zero, especially for ¢ = 0, equation
(4.102) will give the limit length for the distance at the laminate end, which is expressed
as (4.104). This limit length is in fact the limit between a short and long laminate in a
pure shear specimen (see equation (3.34) of Chapter 3).

T
Scr,limend = 2Q (4104)
2

From now on, the short laminate end distance denominations will comprise those
distances between the laminate end and the nearest crack to it whose lengths are shorter
than the limit s.,jim ens. On the contrary, long laminate end distances are longer than this
limit.

s, <s Short laminate end distance (4.105)

cr limend
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S, 28 Long laminate end distance (4.106)

cr,limend

4.4.4. Stress distribution at the laminate end during the debonding
process

Once the slip at the loaded end of the laminate (x = 0) reaches the maximum sliding s;,,
the microcracks become a macrocrack, and the debonding process initiates. This section
compiles the laminate tensile stress equations during Stages 3a and 3b for a long
distance between the laminate end and the nearest crack. As explained in §4.4.1, for
short bonded lengths, the laminate debonds at the end of Stage 2b.

Long laminate end distance
Stage 3a: s(x = x;) > sro
Stage 3a initiates when the tensile stress in crack J reaches the value given by equation

(4.107). At this point, a macrocrack opens near crack J and starts to grow towards the
laminate end.

o, =— 1 { Ty M X, right:|+ S, _
’ Sm(Qz (xJ = X0 right )) 1,Q, 2Q, ’ 2Q, tan(Qz (xj = XM right )) (4.107)

20

In case the concrete’s contribution in tension is neglected, equation (4.107) will be
simplified to equation (4.57), which agrees with the condition for the development of
Stage 3a in an element between two cracks.

When an interfacial macrocrack appears near crack J, the laminate bonded length is
reduced to S¢ - Licrack- The formulae of Stage 3a are similar to Stage 2a when the origin
of coordinates moves from crack J to the interfacial crack tip. For simplicity, to
continue with the same reference system, the formulae of Stage 3a will be equal to
equations (4.93) to (4.95) but referring all distances to the maximum sliding location
xro. For example, the crack distance s, is substituted by S¢, - Licrack-

In addition, note that if the concrete stress contribution is neglected in equations (4.93)
to (4.95), that is if x =0, the equations for the tensile stress at the laminate end will be

the same as the equations derived for a single or double shear case.

The macrocrack length can be obtained at any load level by assuming a zero shear stress
value at the macrocrack tip location.
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1,2, H . Ty
- A sin(€, (s, — Ly - -
COS(QZ (Scr _ memck _ xLM )){ (UL,J + 295 JSIH( 2 (Scr ‘mcrack xLM )) + tLQZ

- gl;lzxLM } + % (Scr - merack) = O

(4.108)

If the concrete’s contribution in tension is neglected, the macrocrack length, L,,crqcr, can
explicitly be written as (4.109).

merack = Scr - (xLM + S; arCSin£TLMJ\J (4 1 09)

2 1,£2,0,,

As shown by equation (4.109), the macrocrack length increases during Stage 3a since
both x;), and the arc sine decreases as this stage evolves.

Stage 3b: s(x = x;) > s and s(x = 0) > sz

While the macrocrack propagates along Stage 3a, the maximum shear stress 7z, will
eventually reach the laminate end. The remaining bonded length between the laminate
end and the macrocrack tip will be then in Zone II of the bond-slip relationship.

This situation will occur once the remaining bonded length reaches the limit between a
short and long distance at the laminate end, which is expressed as (4.110) in the case
when the concrete tensile stresses are neglected.

T

(5= Lyt o = 20, (4.110)

The formulae of the previous stages are no longer valid since the remaining bonded
interface is in the descending branch of the bond-slip curve. Thus, the laminate tensile
stresses are given by equation (4.111) which is similar to Stage 2b but the crack
distance is replaced by the remaining bonded length.

For 0 <x <x;(Zone II)

i 1 Mo Hl 2
= A sin(Q,x)+ E| S (s, - L
GL (x) Sin(Qz (Scr _ memck )) {(GL,J + 2Q§ jsnl( Zx) + 4 (Q; + (Scr mcrack)

J (4.111)
Sin(QZ (Scr - memck - X))}— 252 + %(xz - (Scr - memck )2)
2

The macrocrack length, or alternatively the macrocrack tip location, can be obtained by
solving equation (4.112) which is derived by imposing a zero shear stress value at this
location.
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1 7
Q -L _
Sil’l(!)2 (S _ merack )) {(O'L,J + 295 JCOS( 2 (Scr ‘merack ))

cr

p( 2 -
N Z (% + (SC" - merack )2 ]} ’ E (Scr - merack ) = 0

If the concrete’s contribution in tension is neglected, the macrocrack length stays
constant and equal to the limit between a short and long end laminate distance distance,
as shown in (4.113).

(4.112)

Scr - merack = 2;[2 (4 1 13)
2

The macrocrack length grows during Stage 3a until the maximum shear stress reaches at
the laminate end and Stage 3b initiates. During the development of Stage 3b, the sliding
in the remaining bonded length increases, but no macrocrack growth exists when
neglecting the concrete’s contribution in tension. Once the shear stress diminishes to a
zero value, the laminate completely debonds from the support. At this point, the
macrocrack grows from the value given by equation (4.110) to the value given by the
distance between the laminate end and the nearest crack. Such a behavior is similar to
that observed in a pure shear specimen as described in Chapter 3. Contrary to the case
between two cracks, the macrocrack growth does not depend on the steel yielding.

For the development of Stage 3b, the shear stress at the laminate end should be lower
than the maximum value 77, Therefore, equation (4.120) should be accomplished.

P max, L=scr—Lmcrac
UL,J S 5 A ; L - 252 (1 - COS(QZ (Scr - merack )))+
L 2 (4.114)

+ %(Scr - merack )2 COS(QZ (Scr - merack ))

From this later equation, it can be inferred that the tensile force in crack J should be
lower than the maximum transferred force of a pure shear specimen whose length is the
remaining bonded length between the laminate end and the macrocrack tip. For ¢ =0,
this condition is exactly the same as for a pure shear specimen (Chapter 3).

Since the remaining bonded length is lower than the limit between a short and long
distance, the transferred force during Stage 3b as derived from equation (4.114) is
always lower than the transferred force in Stage 2a. The decreasing trend of the
transferred force implies a decreasing elastic elongation and then a decreasing sliding
along the debonded length.

4.4.5. Summary

This section presents a brief summary of the sequence of stages that arise during the
debonding process. Table 4.2 summarizes them, distinguishing between short and long
distances between the laminate end and the nearest crack in proximity.
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Table 4.2. Stages that arise at the laminate end for short and long laminates.

At the laminate end

LONG END DISTANCES

Flexure and shear | Stage 1 | Stage 2a | Stage 3a | Stage 3b
SHORT END DISTANCES

Flexure and shear ‘ Stage 1 ‘ Stage 2a | Stage 2b ) ‘

® This stage will arise if displacement control is performed

4.4.6. Transferred force in an element between the laminate end and the
nearest crack

Since the tensile force at the laminate end is zero when no external force or external
anchorage device has been applied at this location, the transferred force in an element
between the laminate end and the nearest crack is equal to the tensile force in crack J to
reach equilibrium.

When the concrete’s contribution is not considered, the transferred force is equal to that
of a pure shear specimen. Therefore, the same trends described in §3.3.4 in relation to
the maximum transferred force are valid in this case.

A brief summary is presented here for the sake of completeness. For long laminates, the
maximum transferred force is obtained during Stage 2a before the zero shear stress
appears in crack J. For short laminates, the maximum transferred force is obtained at the
beginning of Stage 2b when the maximum shear stress reaches the laminate end.
Equation (3.76) of Chapter 3 gives the maximum transferred force for both short and
long bonded lengths as a function of fracture energy.

In a general case where the concrete’s contribution is considered, the maximum
transferred force for long distances between the laminate end and the nearest crack to it
is reached during Stage 2a. From equation (4.95), the transferred force along Stage 2a
can be written as a function of the length of Zone II, x;,, as shown in equation (4.115).

b Q
APscr,end = (Tlgz L— /uI;gZLM J|:§2j tanh(leLM )COS(QZ (xj - xLM ))+

| . 1, B I 4.115
+S1n(QZ(xJ xLM))]+2912 COS(QZ(XJ XLM))(I COSh(leLM)j ( )
oy ~ A, COS(Qz(xJ_xLM))

20 (L—cos(€, (x, —x,, )+ 4 S cosh(Q,x,,, )

The maximum transferred force for long distances between the laminate end and the
nearest crack to it is associated to the length of Zone II, xz5,p, which equals to zero the
derivative of the transferred force given by equation (4.116).
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(TLMbL - IUAL;CLMP] tanh(leLM,P )[tanh(leLM,P )COS(Qz (xj —Xim.p )) +

Q, . Q, . Q 2
+Q?sm(Qz(xJ - xLM’P))} —’U;LQ?sm(Qz(xJ - XLM’P){QT + (Sng - 1) (4.116)

1 2 2

Qr s”
cosh(Qx,,, , - Q;Sgtanh(ﬂleM,P )tan(92 (xj ~Ximp ))] =0

Therefore, by incorporating the value of x;,,p that solves equation (4.116) into equation
(4.115), the maximum transferred force is obtained.

For short distances between the laminate end and the nearest crack to it, the maximum
transferred force is reached just when Stage 2b starts. At this point the maximum
transferred force, as given by equation (4.117), coincides with the limit condition for the
development of Stage 2b (see equation (4.98)). Pmax.r=scr 1S the maximum transferred
force for a pure shear specimen whose length is equal to the laminate end distance.

AP =P _ M4, (1-cos(Q,s,,))+ ’w:L s2 cos(Q,s.,.) (4.117)

max scr,end max, L=scr 2 2
2

In terms of transferred force, the difference between the laminate end element and the
element between two cracks is the non-direct dependence of the first case on the steel
yielding. The maximum transferred force will have the same expression regardless of
the steel stress in either crack J or at the laminate end.

4.4.7. Example of a beam element between the laminate end and the
closest crack in proximity

An example of applying the formulae at the end of the laminate is presented. The beam
segment is analyzed while it is subjected to different bending moments applied on the
crack tip section. As in the previous cases, a required data when calculating the stress
profiles on the laminate and the interface is the value of the laminate tensile stress in the
crack. This value is calculated by means of a moment-curvature analysis.

The distance between the laminate end and the nearest crack is 200 mm. This is shorter
than the limit between a short and long laminate end distance, 401 mm, as given by
equation (4.104). Therefore, as this example is of a short laminate end distance, the
following stages will be observed: Stage 1, 2a and 2b. The section and material
properties are the same as Beam 2 of the Experimental Program described in Chapter 2.
The model parameters in this example are: 7y = 2.46 MPa, s;y = 0.008 mm, and
S0 = 0.764 mm.

In this example, the concrete’s contribution in tension is considered. As mentioned in
§4.4.2, the f parameter is given by equation (4.87) after assuming Navier-Bernouilli
assumption. Note that £ should always be lower than or equal to 1.0.
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Figure 4.49 show the shear stress distribution between the laminate end and the nearest

crack

along Stages 1 and 2a. The shape is very similar to that of the pure shear example

presented in Chapter 3. The only difference in this case is that the concrete’s
contribution in tension is taken into account. A set of comments to Figure 4.49 is
presented below.

)]

2)

3)

4)

5)

6)

Unlike the case between two cracks, the shear stresses along the complete
bonded length at the laminate end are acting in the opposite direction to the
tensile stress in the laminate under the crack. There is no zero shear stress point.
Therefore, the displacement between concrete and laminate is in the same
direction as the tensile force as shown in Figure 4.49.

Stage 1 finishes when the applied moment is slightly higher than 5.0 ANm. At
this point, the maximum shear force 7;,, acts in the cracked section and Stage 2a
starts.

As long as the applied moment increases, the maximum shear stress location xz
moves towards the laminate end.

Since the distance between the laminate end and crack J is classified as a short
distance, the maximum shear stress reaches the laminate end during Stage 2a. In
this example, this situation occurs for an applied moment of 37.5 kNm. At this
point, Stage 2a finishes and Stage 2b starts.

In some experimental programs of externally reinforced beams tested under a
three or four-point bending configuration, a shear stress concentration at the end
of the laminate was observed. This phenomenon can be appreciated also in
Figure 4.49. As long as the applied moment increases, the shear stress at the end
of the laminate increases as well.

By looking at Table 4.3, the following comparisons can be made. First the shear
stress at the laminate end calculated according to §4.4.3 can be compared to the
values derived from the formulae associated to a pure shear case derived in
Chapter 3. Then, the laminate end shear stress can be compared to the values
obtained by performing a linear elastic analysis described in Chapter 2.
Neglecting the concrete’s contribution in tension on the stress transmission,
which is equivalent to apply the formulae derived for a pure shear case, can be
unconservative because the shear stresses obtained at the laminate end are much
lower compared to those calculated by using a certain concrete contribution. The
values derived from the linear elastic analysis are not realistic. Even for low load
levels the shear stress at the end is higher than the concrete tensile strength
which means that a crack has appear at the interface which may be unreal.

Table 4.3. Comparison of the shear stress values at the laminate end x = 0 mm.

ox =0) (MPa)

M (kNm) At the laminate end Pure shear Linear elastic analysis

Chapter 4 Chapter 3 Chapter 2
L (plain section) # 1 or Chapter 4 with =0

2.5 0.24 0.00 0.52

5.0 0.49 0.00 1.04

10.0 0.75 0.01 2.08

15.0 0.76 0.02 3.12

20.0 0.78 0.04 4.16

25.0 0.84 0.11 5.20

30.0 1.01 0.34 6.24

35.0 1.62 1.22 7.28
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7) Neglecting the concrete’s tensile stresses in deriving shear stresses not only
influences the shear stress at the end of the laminate but also the complete shear
stress distribution. As shown in Figure 4.50, the shear stress profile for = 0 is
similar to that given in the example of a short laminate in §3.8.2 of Chapter 3,
because in this case, both formulations are very similar. When comparing both
Figure 4.49 and Figure 4.50, the progress of Zone II is more accelerated for
£ = 0. As a consequence, the maximum shear stress location x;,, is much closer

to the end of the laminate for f = 0 than when considering the concrete’s
contribution in tension.

——M =5.0 kNm
* —--M=10.0 kNm
] <M =15.0kNm
i, —~M =20.0 kNm
M =25.0 kNm
- M = 30.0 kNm
M = 35.0 kNm
—-—M = 37.5 kNm

-=M=25kNm 5
f

Stage 2a

0 20 40 60 8 100 120 140 160 180 200

END CFRP CRACKJ

X (mm)

Figure 4.49. Shear stress distribution at the interface between the end of the laminate and the
nearest crack during Stages 1 and 2a.

3.00

-=M=25kNm |5
*»M=50kNm}§
——M =10.0 kNm
—M = 15.0 kNm
M =20.0 kNm

M = 25.0 kNm
~=~M = 30.0 kNm

M = 35.0 kNm
M = 37.5 kNm

Stage 2a

0 20 40 60 80 100 120 140 160 180 200
END CFRP X (mm) CRACKJ

Figure 4.50. Shear stress distribution at the interface between the end of the laminate and the

nearest crack during Stages 1 and 2a when the concrete’s contribution in tension is not considered.
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Figure 4.51 illustrates the shear stress distribution along Stage 2b between the end of the
laminate and the nearest crack to it. Some observations regarding Figure 4.51 follow:

1) Stage 2b is only possible for decreasing values of the tensile stress in crack J, or
in other words, for decreasing values of the applied moment at this location.

2) During this stage, the shear stress distribution is in Zone II of the bond-slip
relationship. Therefore, as Stage 2b evolves, the shear stress distribution
decreases along the complete bonded length while the relative sliding increases
up to the maximum value, s7.

3) The slope of the shear stress profiles decreases with the evolution of Stage 2b.
This decreasing tendency is more accentuated near the laminate end than in the
vicinity of crack J.

4) Failure due to the appearance of an interfacial macrocrack will start when the
shear stress has already decreased to zero along the complete bonded length. The
laminate will then debond in a sudden and brittle manner. This laminate
debonding occurs simultaneously at any location between the laminate end and
crack J.

5) If only the interfacial shear stresses are considered, the laminate debonding will
occur as explained above. However, special care should be taken at the laminate
end because the shear stresses combined with the interfacial normal stress
concentration (described in Chapter 2) can lead to a premature failure. If the
principal stresses at the laminate end exceed either the concrete tensile strength
or the values given by the different failure criteria described in Chapter 2, a
crack will appear, and then the laminate will start its debonding process, starting
from the laminate end towards the nearest crack.

3.00 1
] —+M = 37.5 kNm
250 1 <M = 35.0 kNm
3 M = 30.0 kNm
200 - o M =25.0kNm| g
= M% =M =20.0 kNm ;$
%1_50 1-+M=150kNm|”
= M = 10.0 kNm
iy 0 M = 5.0 kNm
M = 2.5 kNm
0.50
w0t
0O 20 40 60 80 100 120 140 160 180 200
END CFRP CRACKJ

X (mm)
Figure 4.51. Shear stress distribution at the interface between the end of the laminate and the

nearest crack during Stage 2b

In Figure 4.52, the laminate tensile stress distribution during Stages 1 and 2a is shown.
The following observations can be drawn:
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1) The tensile stress profiles increases with increasing values of the applied
moment on crack J.

2) During Stage 1, the tensile stress distribution is a decreasing function, with a
smooth slope, from crack J to the laminate end.

3) Once the maximum shear stress reaches crack J, part of the interface will be in
Zone II of the bond-slip relationship. The stress decreases gradually with a
pronounced slope from crack J to the laminate end. Along Zone I, the slope of
the tensile stress distribution becomes smoother.

4) The maximum tensile stress is always located on the crack tip. In addition, the
tensile stress at the laminate end is zero because no force is applied at this

location.
400 1 )
: =M =25kNm }g’
350 - —M=5.0kNm J®
300 1 M —+ M = 10.0 kNm
5 <M =15.0 kNm
gzsog / —-M =20.0 kNm| g
=200 1 M = 25.0 kNm b
= ] w
© ] —=— =
©150 - M = 30.0 kNm
] M = 35.0 kNm
1994 E —+M = 37.5 kNm
50 | )’
0O 20 40 60 80 100 120 140 160 180 200
END CFRP X (mm) CRACK J

Figure 4.52. Laminate tensile stress distribution at the end of the laminate during Stage 1 and 2a.

Figure 4.53 shows the laminate tensile stress distribution during Stage 2b. The tensile
stress profiles decrease to zero as long as the applied moment on crack J decreases. The
maximum value of the tensile stress reached in crack J during the previous stages is not
exceeded during Stage 2b. In addition, the laminate tensile profiles are concave for
Stages 1 and 2a, and convex for Stage 2b.

Both Figure 4.52 and Figure 4.53 are similar to those obtained for a pure shear
specimen in the example of a short bonded length given in §3.8.2 of Chapter 3.
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400 -
. —-—M =37.5 kNm
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=250 - ww ~=-M = 20.0 kNm

o ] —~—M=15.0 kNm

Stage 2b

200 ]
~E:; 00; M = 10.0 kNm
©150 - = M=50KNm
] 1000000 M = 2.5 kNm
100
50 |
0 20 40 60 80 100 120 140 160 180 200
END CFRP x (mm) CRACK J

Figure 4.53. Laminate tensile stress distribution at the end of the laminate during Stage 2b.

The maximum transferred force between the last crack and the laminate end is equal to
the tensile force of crack J because no tensile stress is acting at the laminate end. The
maximum transferred force, 44.80 kN, is reached at the end of Stage 2a, that is, when
the maximum shear stress reaches the laminate end (at 37.5 kNm). At this point, the
steel has steel not yielded either in crack J or at the laminate end (M, = 65.9 kNm).
Afterwards, during Stage 2b, the tensile stress in crack J decreases as observed in Figure
4.53, so the transferred force decreases as well. If the concrete’s contribution in tension
is not considered, the maximum transferred force will be equal to the theoretical
maximum transferred force of a pure shear specimen given by equation (3.76) of
Chapter 3, which in this case is 44.20 kN. When both maximum values are compared
regardless of whether the concrete’s contribution in tension is considered, it can be
inferred that the influence of the concrete is almost negligible in terms of transferred
force.

Transferred force crack I-J

¢t
0 10 20 30 40 50

M (kNm)

Figure 4.54. Transferred force along the interface at the end of the laminate.
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In relation to the relative displacement between concrete and laminate as shown in
Figure 4.55, the profile is very similar to a pure shear state. The values of sliding along
the bonded length during Stages 1 and 2a (M < 37.5 kNm) are much lower than the
maximum sliding szo. For example, when the applied moment is 37.5 kNm, the relative
displacement in crack J is 0.223 mm, which represents 29.1 percent of the maximum
value s79. During Stage 2b, the relative sliding increases up to szo. A significant increase
in the relative sliding at the laminate end is observed during this stage. Since the sliding
increments are higher at this location compared to the increments in crack J, the slope of
the plotted lines decrease as Stage 2b develops.

=M =25kNm |g
0.80 1 ‘ ‘ ‘ ‘ ‘ , M =5.0kNm [2
1 \ \ \ \ \ | =M =10.0 kNm
0.70 ; M =15.0 kNm
] —-M = 20.0 kNm
0.60 1 M = 25.0 kNm
] -=-M = 30.0 kNm
M = 35.0 kNm
e | o\ = 37.5 kN
=M = 35.0 kNm
M = 30.0 kNm
M = 25.0 kNm
##1 —=— M = 20.0 kNm
I M =15.0 kNm

(%]

Stage 2a

Stage 2b

§ M = 10.0 kNm
—M =5.0 kNm
M =2.5KkNm
e s s —slL0
0 20 40 60 80 100 120 140 160 180 200
END CFRP X (mm) CRACKJ

Figure 4.55. Relative displacement between concrete and laminate at the laminate end.

From this example, it can be concluded that all the stress profiles at the laminate end are
similar to that of a pure shear specimen (see Chapter 3) when the concrete’s
contribution in tension is not considered. In addition, the influence of the concrete’s
contribution is especially significant in the shear profiles at the laminate end.

4.5. Stress and strain profiles on a cracked beam

In the previous sections §4.3 and §4.4, the formulae for an element between two cracks
and for an element at the laminate end were developed. In this section, these formulae
will be applied to the particular case of a beam under transverse loads. For this purpose,
Beam 2/C was chosen from the experimental program described in Chapter 2 where its
geometry and materials properties were fully described.

The beam was precracked before applying the external reinforcement. The crack pattern
under service load of the unstrengthened beam is shown in Figure 4.56.
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Figure 4.56. Crack pattern of Beam 2/C before strengthening.

The position of the cracks on the right side of the beam, with the origin of coordinates at
the end of the laminate, x, and the distance between cracks, Ax, are shown in Table 4.4.
The observed average crack spacing was 125 mm.

Table 4.4. Crack position and distance between cracks in Beam 2/C.

Crack 1 Crack 2 Crack 3 Crack 4 Crack 5 Crack 6 Crack 7
x (mm) 872 770 700 590 470 382 147

Crackl-2 | Crack2-3 | Crack3-4 | Crack4-5 | Crack 5-6 | Crack 6-7 Cr]%il:l’]_
Ax(mm) 102 70 110 120 88 235 147

Once the CFRP laminates were applied, the beam was tested up to load failure using a
three-point bending load configuration. As described in Chapter 2, when the applied
load reached F, = 142.8 kN, one of the laminates suddenly debonded and a sharp
decrease on the applied load was observed. Later on, the applied load recovered and
increased again up to the point when the remaining bonded laminate peeled-off.

As shown in Figure 4.56, two laminates of 50 mm x 1.40 mm with a 190 mm distance
between their edges were applied to strengthen the section. To simplify the problem, the
effect of using separate laminates has not been considered, though the external
reinforcement has been assumed to be acting as one whole laminate.
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The model parameters obtained for Beam 2/C are 7, = 2.46 MPa, s, = 0.008 mm, and
szo = 0.764 mm. The laminate tensile stresses in each crack have been obtained by
means of a moment-curvature analysis of the strengthened section. Using the data
obtained, the equations of the previous sections (§4.3 and §4.4) have then been applied,
and have provided the shear stress distribution at the interface, the laminate tensile
stress, the laminate strain, and the relative displacement between the support and the
external reinforcement profiles (Figure 4.58, Figure 4.59, Figure 4.60, Figure 4.61,
respectively).

Only the right hand side of the laminate bonded length has been studied. The load
increments up to 90% F,, have been ten percent of the failure load, AF = 10% F,. Just
before reaching load failure, some more cases have been studied: 92.5% F,,, 95% F), and
97.5% F,.

As previously discussed, the internal steel yielding helps to interpret the debonding
process. During the test, no strain gauges were affixed to the internal steel
reinforcement. Therefore, the experimental value of the yielding load is an
interpretation of the laminate strain profiles obtained from the strain gauges bonded to
the laminate. According to the moment-curvature analysis, the internal steel
reinforcement yielded when the applied force at midspan was 131.7 kN, which
represents 92 percent of the failure load. The rebars in crack 1 yielded at an applied load
of 135.5 kN. In addition, the internal steel was supposed to yield in crack 2 for an
applied load at midspan of 151.4 kN. So long as the failure load is lower than the last
value, when the laminate peels-off, the internal steel has yielded from a certain point
between crack 1 and 2 (x = 781 mm) to midspan.

According to the conclusions of the examples given in the previous sections, the £ value
which defines the concrete’s contribution in tension does not have a significant
influence at failure loads. It seems reasonable to assume £ = 0 between cracks, since it
leads to a conservative and simple solution. However, as shown in §4.4.7, the concrete’s
contribution in tension especially affects the shear stresses at the laminate end.
Therefore, the S parameter, which was defined in §4.4.2, has been considered between
the laminate end and the nearest crack to it.

According to §4.3.3, the limit length between a short and long crack distance depends
on the internal steel state, in other words, it depends on the bending moment acting on
crack J. As shown in Figure 4.57, the crack distance limit ranges between 93 to 189 mm.
According to this range, the concrete teeth between crack 2 and 3, and between crack 5
and 6 are short crack distances regardless of the internal steel state. On the contrary, the
distance between crack 6 and 7 has been considered long because it is always above the
crack distance limit range. The remaining concrete teeth will be short or long depending
on the bending moment acting on the most loaded crack.

The limit length for a short and long distance between the laminate end and the nearest
crack is 398 mm. Since the actual distance at the laminate end is 147 mm, it has been
assumed as a short laminate end length.

4-80



Analysis of the interface behavior in beams subjected to transverse loads

200 ] ‘

Steel yielding in crack |

E 20

£ 100 -

3 J #
(72]

Steel yielding in crack J

20 11 —sor lim (4.51)

0 10 20 30 40 50 60 70 80
M (kNm)

Figure 4.57. Limit between a short and long crack distance for Beam 2/C.
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Figure 4.58. Shear stress distribution along the interface.
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Figure 4.59. Laminate tensile stress distribution.
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Figure 4.60. Analyitical and experimental strain distribution along the laminate.
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Figure 4.61. Slip between concrete and the CFRP laminate.

In the following lines a set of comments regarding the stress profiles of Figure 4.58 to
Figure 4.61 are presented.

1)

2)

3)

The general observations from the example of a beam element between two
cracks subjected to bending moments and shear forces (see §4.3.8) and from the
example of a beam element at the laminate end (see §4.4.7) can be applied here.

From the shear stress distribution, in Figure 4.58, it can be observed that only at
the beginning of the test, when the applied load is 14.3 kN (10% F,), is the
interface linear elastic from the end of the laminate up to a distance of 865 mm
to the beam midspan. At the vicinity of crack 1 (872 mm), the downward branch
of the bilinear bond-slip relationship has already started. Therefore, at 10% F;
Stage 1 is observed between cracks 2 to 7. When the load increases an additional
ten percent, up to 28.6 kN (20% F),), the descending branch of the bond-slip
relationship starts near cracks 1 to 6. At this load level, Stage 2a.2 has already
started between cracks 1 to 6. In addition, Stage 2a.1 is observed between cracks
6 and 7. By using the actual load increments, the exact transition between stages
cannot be appreciated. The interface near crack 7 remains linear elastic up to an
applied load of 40% F,. From 57.1 kN (40% F,) up to load failure, the complete
interface between cracks behaves in Stage 2a.2 and the laminate end element
behaves in Stage 2a.

The shear stress profile in Figure 4.58 shows that the debonding process of the
laminate will initiate near crack 1 immediately before the applied load reaches
140.0 AN (98% F,). At this moment the shear stress in crack 2 will reach its
maximum value, 77, and Stage 2a.2 will end. Since the slip between laminate
and concrete was not controlled during the test, Stage 2b will not develop. From
this point on, a slight load increase will cause the laminate to debond between
crack 1 and 2. Then, a horizontal macrocrack will appear between those cracks
and propagates towards the laminate end. Therefore, according to this analysis,
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4)

S)

6)

7)

the peeling failure is initiated when the applied load was 98% F,. Afterwards,
the laminate debonding propagated up to load failure, when the laminate was
completely detached.

To predict the initiation of the debonding process in a beam under transverse
loads, it is essential to know when the internal steel yields. Once the steel yields,
the internal reinforcement is not able to increase its tensile stress. As a
consequence, when the internal steel reinforcement yields along part or the
whole crack distance, the laminate should by itself assume the bending moment
increase along the yielded length. This implies a significant increase in the
tensile stress values and a fast propagation of the debonding process. In Beam
2C, and according to the moment-curvature analysis, when the applied load is
135.5 kN, the internal steel yields in crack 1. Therefore, as shown in Figure 4.58,
once the internal steel yields in crack 1 (95% F,), the propagation of Zone II
between cracks 1 and 2 accelerates.

At the end of the laminate where the tensile stress is zero, a shear stress
concentration is observed. The shear stress at the laminate end combined with
the transverse normal peeling stress can result in a local laminate debonding.
The maximum value for the shear stress at the end of the laminate in Beam 2/C
is 0.85 MPa which corresponds to load failure. As shown in Figure 4.58, the
laminate end remains linear elastic up to failure (Zone I). The linear elastic
analysis described in Chapter 2 gives a higher value for the shear stresses at the
end of the laminate 2.33 MPa. Figure 4.58 shows that the shear stress at the end
of the laminate is always lower than both the maximum shear stress 7;), and the
shear stress at the nearest crack, (crack 7 in this case). For example, at failure the
shear stress is 0.85 MPa at the laminate end, 2.32 MPa on crack 7, and the
maximum value is 2.46 MPa.

In Figure 4.59, the tensile stress distribution is presented. The tensile stresses
achieve its maximum at each crack location. Due to the tension stiffening effect,
the profile decreases from the crack tips to a minimum value which corresponds
to the zero shear stress location. In addition to the previous comment, it can be
observed that the distance between 95% F), bar and 97.5% F, plotted line is
higher between crack 1 and 2 than in the rest of the laminate. This fact can be
explained due to the steel yielding in crack 1.

Figure 4.60 shows the analytical strain distribution in the laminate applying the
formulae of the previous section together with the experimental distribution
derived by linear interpolation of the values recorded by instrumentation during
the test. The theoretical value of the FRP strain in crack 1 under failure load
derived from the moment-curvature analysis is 6111 ue. The experimental value
derived by interpolation of the registered values through the use of the strain
gauges near this crack is 5446 we. The actual error made in estimating the
maximum strain is 9.2%. At the theoretical initiation of debonding under a load
of 140.0 kN (98.0% F,), the theoretical strain value on crack 1 is 4445 ue, lower
than the observed during the test. The estimation error made was 18.3%.
However, the error when predicting the strain before debonding occurs is lower.
For example, when observing the strain in a point located between two cracks,
for example x = 668 mm, when the applied load is 114.2 kN (80% Fu) the
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8)

9)

theoretical strain is 2802 e and the experimental value is 2947 ue. To obtain a
similar profile during the test as what can be analytically derived, a huge number
of strain gauges should have been used.

Figure 4.61 shows the relative displacement between the support and the
laminate. As can be observed between cracks 1 and 2, when the maximum shear
stress is attained in the less loaded crack, the complete interface slides in one
direction.

To protect the internal steel from corrosion, crack widths should be limited. For
design purposes, under the service limit state, the calculated crack width should
be compared to the maximum crack width allowed for an exposure class that is
related to the environmental conditions. The FIB Task Group 9.3 FRP (2001)
calculates the characteristic value of the crack width according to Eurocode 2,
but modifies the crack spacing and the reinforcement strain in the fully cracked
state to take into account the external reinforcement. In a specific case, where
the existing cracks are known, the crack width can be estimated as the sum of
the relative sliding values between concrete and laminate on both sides of the
crack. For safety reasons, the crack width was only measured for a few load
levels during the test. When the acting load was 75.5 kN, the measured width of
crack 2 was 0.100 mm. This value is similar to the 0.128 mm obtained
analytically.

10) In this particular case, the service load was estimated to be 70.1 AN (49.1% F,).

The maximum calculated crack width was 0.158 mm which is lower than the
limit value allowed for exposure class II, 0.300 mm, according to the Spanish
Concrete Code EHE (1999).

11) In beam design under service limit state, the FIB Task Group 9.3 FRP (2001)

recommends avoiding the local debonding to guarantee the long-term integrity
of the bond interface. For long crack distances, the local debonding occurs if the
slip is larger than the maximum value s;9.The maximum crack width before
debonding occurs can be calculated as twice the maximum sliding sy,
(Wr = 2s10). In this case, this value is 1.528 mm, much higher than the limit value
allowed by the Spanish Concrete Code. By using the range of s;o values given in
Chapter 3, the maximum crack width is in the range between 0.48 mm and 3.49
mm. Those values will always be higher than the maximum limit value
associated to any exposure class. Therefore, for long bonded crack distances and
according to the FIB Task Group 9.3 FRP, if the characteristic value of the crack
width under service load is limited either to a maximum value of 0.30 mm (FIB
Task Group 9.3 FRP) or to the values given in Table 49.2.4 of the Spanish
Concrete Code, no local debonding will occur in the Service Limit State.

12) The transferred force between each pair of cracks associated to different load

levels (see Figure 4.62), is easily obtained by subtracting the tensile force under
each crack tip derived from the moment curvature analysis of the strengthened
section. This value can also be obtained as the area enclosed by the shear stress
distribution between the pair of cracks under consideration. Since the internal
steel has not yielded from crack 2 to the laminate end, the transferred force
between adjacent pairs of cracks increases in a linear way with the external load.
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The transferred force between cracks 1 and 2 changes its slope once the internal
steel yields in crack 1. In addition, the theoretical maximum transferred force
between these locations, according to §4.3.6, is shown in Figure 4.62. This
maximum value is attained before failure load, when the external applied load is
140.0 kN. At this point in time, Stage 2a.2 finishes and the maximum shear
stress reaches crack 2.

25 ) —&=—Between cracks 1 and 2
—oé—Between cracks 2 and 3
20 A —#—Between cracks 3 and 4
—>—Between cracks 4 and 5
— —*—Between cracks 5 and 6
215
4 —e&—Between cracks 6 and 7
S
g —&—Between cracks 7 and end
< = = Theoretical max transfered
) force between cracks 1 and 2
5
0 .« T S S T S S S S S T OSSR

Figure 4.62. Transferred force to maximum transferred force ratio between crack 1 and 2.

13) During the Beam 2/C test, the formation of some intermediate cracks between
the flexural cracks mentioned above, as observed in Figure 4.63. In any case,
they appeared once the applied load surpassed the service load. These
intermediate cracks reduce the crack distance to half. This fact will be
considered in the design proposal that will be presented in Chapter 5, by
studying the influence of different crack distances, for instance both the whole
and half of the value given by the FIB Task Group 9.3 FRP (2001).
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Figure 4.63. Crack pattern of Beam 2/C at failure load.
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