

ESCOLA TÈCNICA SUPERIOR D'ENGINYERS DE CAMINS, CANALS I PORTS DE BARCELONA. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Barcelona

DEPARTAMENT D'ENGINYERIA DE LA CONSTRUCCIÓ DEPARTAMENTO DE INGENIERÍA DE LA CONSTRUCCIÓN

TESIS DOCTORAL "ESTUDIO EXPERIMENTAL DEL COMPORTAMIENTO DE PAREDES DE OBRA DE FÁBRICA DE LADRILLO ANTE LA ACCIÓN DE CARGAS LATERALES"

REALIZADO POR

JAVIER ALBERTO CHARRY ABLANQUE

DIRIGIDA POR

PERE ROCA I FABREGAT

BARCELONA, ESPAÑA

FEBRERO, 2010

A mis padres y hermanas,

ΑΝΕΧΟ

ESTUDIO PRODUCCIÓN Y NORMALIZACIÓN DE LADRILLOS A ESCALA 1:4

A.1 ESTUDIO Y ELECCIÓN DEL LADRILLO ESCALA 1:4 A UTILIZAR

La elección de los ladrillos a escala reducida (1:4) genero una serie de estudios durante varios meses; inicialmente se opto por utilizar ladrillos obtenidos del corte con disco de diamante de los ladrillos a escala real, los mismos ladrillos de los utilizados en las paredes a escala real; Investigaciones previas como es el caso de Page (1983), construyeron paredes usando piezas obtenidas mediante corte en sección transversal de ladrillos prensados para pavimento.

Los ladrillos fueron cortados uno a uno con disco de diamante, la ventaja primordial resultaba que se trabajaba con el mismo material empleado en ensayos previos a escala 1:1 y por consiguiente se conseguían las mismas características. Esta ventaja esencial no llenó por completo las expectativas debido a la dificultad de obtención de cada pieza. Los ladrillos empleados no eran ladrillos prensados, por lo tanto presentaban irregularidades en sus caras, diferencias que oscilan entre los 3 y los 5 milímetros, variaciones que para escala 1:1 no son apreciables, pero que en escala 1:4 son enormemente significativas, lo cual requería que se retirará una pequeña a capa todas las caras de la pieza (1 cm de espesor) a fin de tornarlas paralelas y horizontales, esto sumado a que por cada corte elaborado se pierde entre 5 y 7 mm, la utilidad de cada ladrillo solo llegaba a menos de un 30 %, por lo tanto, de las 64 unidades posibles solo se obtenían 18. La Tabla A. 1 muestra el esquema empleado en el corte de los ladrillos.

Buscando un mejor rendimiento en número de piezas se cortaron algunos ladrillos en forma de que la testa del ladrillo a escala real sea la tabla para el de escala reducida obteniendo de esta forma casi el doble de los ladrillos que de la otra manera, pero resultaron diferencias hasta de en un 10% menor en la resistencia a compresión. Esto lógicamente se debe a anisotropía de la pieza.

Otro factor que influyo negativamente en la elección de corte de los ladrillos era la irregularidad en los espesores de la testa, esta al ser la dimensión mas pequeña (12,5 mm) resultaba muy difícil mantener dicho espesor con precisión, debido al grueso que se pierde por el espesor del disco. La Figura A. 1 se aprecia claramente las irregularidades en espesor en la testa y algunas anomalías en los bordes a consecuencia de la velocidad de corte.

La alternativa de cambiar de pieza por un ladrillo prensado, la cual no presentaría problemas de horizontalidad, pero muy posiblemente modificaría las propiedades mecánicas se puso en consideración, pero el posible cambio de las propiedades mecánicas sumado a otro factor que no recae directamente en la investigación pero si sobre el grupo de pesquisa, son los riesgos en el manejo de la maquina de corte los cuales llevó a descartar esta alternativa.

3 cortes sobre el canto (2ud)	8 cortes sobre la tabla (6ud)				
24 cortes sobre la tabla (18 ud)	Producto final obtenido 18 ladrillos				
La zona achurada son los corte o parte sobrante de ladrillo					

 Tabla A. 1 [Esquema de cortes elaborados a ladrillos escala real]

Debido a estos inconvenientes, sumado a la necesidad de obtener una gran cantidad de piezas (tan solo para la investigación presente se utilizaron cerca de 8000 ud entre muros, probetas, etc. y miles mas serán utilizadas en otras investigaciones en curso) se opto por buscar otra alternativa la cual consistió en la fabricación en coordinación con una empresa de productos cerámicos.

Figura A. 1 [Ladrillos cortados – irregularidad en la testa]

Para el proceso de fabricación, conjuntamente con la empresa de productos cerámicos se elaboro un protocolo de producción de las piezas de ladrillo en sus instalaciones.

A.2 PROTOCOLO PARA PRODUCCIÓN DE LADRILLO A ESCALA 1:4

OBJETIVOS

- Producir en el ámbito de la empresa de productos cerámico y evaluar sus propiedades.
- Aplicar los pasos de producción de un ladrillo cerámico.
- Conocer las características y propiedades que deben tener los ladrillos.
- Analizar el comportamiento de los ladrillos ante posibles eventos que serán emulados mediante ensayos de laboratorio.
- Conocer las propiedades que deben tener la arcilla con la cual se fabrican los ladrillos.

MARCO TEÓRICO

El procedimiento que se debe seguir para la producción de un ladrillo cerámico es el siguiente:

SELECCIÓN DE LA MATERIA PRIMA

La materia prima de un ladrillo es la arcilla, la cual debe tener la siguiente composición química para ser apta para un ladrillo:

- Contenido de Álcalis y Ácidos: menor del 0.2%. Puede causar eflorescencia con un porcentaje mayor.
- Sustancias solubles (sales: sulfato sódico, sulfato de magnesio): menor al 0.04%. Igual al anterior produce eflorescencias con un porcentaje mayor Piritas (Sulfuros de Hierro). Su exceso puede producir una deposición sulfúrica, en el momento de la cocción, ocasionando coloraciones indeseables y agrietamiento sobre el material.
- Contenido de Alúmina: 20% 30%. Imparte plasticidad a la arcilla, y un exceso provoca contracciones altas en el secado.

- Contenido de Sílice: 50% 60%: Da baja contracción, previene el agrietamiento, imparte formas uniformes al ladrillo. Asociada con la durabilidad. Su exceso disminuye la cohesión entre partículas.
- Oxido de Hierro: Imparte coloración rojiza a la cerámica, previene que la cal produzca la función de la arena. Su exceso produce una coloración azul oscura (generalmente no ocasiona otra molestia).
- Cal: Debe estar dispersa (diámetro 0.2 mm) o sea cal viva más agua. Es un fundente que permite bajar la temperatura de fusión de la sílice. Si hay un exceso puede fundir demasiado provocando agrietamiento y deformación de la pieza.
- Oxido de magnesio (MgO): Imparte coloración amarilla a la cerámica. Ayuda a decrecer la deformación. Su exceso produce deterioro por expansión de la superficie.

Además la arcilla debe tener un bajo contenido de material orgánico para que en el proceso de la cocción no queden espacios vacíos por el consumo de este material.

ADECUACIÓN DE LA MATERIA PRIMA

- Ajuste granulométrico: Dependiendo de la finura de la arcilla esta tendrá mayor o menor grado de plasticidad. El ajuste se hace por medios mecánicos.
- Ajuste por contracción: consiste en agregar arena o arcillas no plásticas.
- Ajustes por humedad: Se realiza teniendo en cuenta las especificaciones dadas por los límites de Atterberg o limite de consistencia.

 Mezcla homogénea: se debe lograr una misma composición en toda la matriz ya sea con batidora, o por otros procesos mecánicos.

MOLDEO

Depende del proceso de producción, ya sea con equipo de extrusión, en donde se utiliza una boquilla para impartir la forma del ladrillo, o por moldeo manual, en donde se utiliza un molde para dar la forma a la arcilla.

<u>SECADO</u>

Tiene por objeto eliminar la humedad libre y parte de la combinada por exposición al ambiente, lo cual se hace así por velocidad de contracción, lo que nos da una mejor calidad.

<u>COCCIÓN</u>

Proceso mediante el cual se somete al horno la arcilla moldeada y seca, para producir una sinterización intensa de la arcilla, y una vitrificación adecuada.

Estos procesos de cocción se deben llevar a cabo manejando una curva de temperaturas de la cual dependerán varias de las características del ladrillo, ya que si es mal manejada esta curva, puede haber problemas con el ladrillo, por ejemplo la generación de esfuerzos residuales en el ladrillo, produciendo agrietamientos.

PROPIEDADES DE LOS LADRILLOS Y SU NORMALIZACIÓN

Para la normalización emplearemos las normas europeas para normalizar nuestros ladrillos, los ensayos que se realizan son los cobijados bajo la norma EN 772-1:2000 (2000) para determinación de la resistencia a compresión, la norma UNE 67027:1984 (1984) para determinar la absorción de las piezas y la norma UNE 67030:1985 (1985) para la determinación de la dimensiones; esta ultima con algunas variaciones debido a que las tolerancias para los ladrillos a escala reducida 1:4 deben ser mucho más exigentes.

La normalización de los ladrillos consiste en producir unos datos estándares a fin de compararlos con el ladrillo patrón que es el de escala 1:1.

A.3 PRODUCCIÓN DE LADRILLO A ESCALA 1:4

Teniendo en cuenta el proceso de producción dado en nuestro protocolo en comparación con el llevado acabo en la ladrillera que suministro los ladrillos para los ensayos a escala real, podemos afirmar que nuestro protocolo es algo más empírico, sin embargo se encuentra muy cerca a la realidad de las ladrillera, en donde el ladrillo es cocido en hornos túneles, y es difícil manejar una curva de temperaturas. A continuación se hará una descripción del proceso que se siguió del protocolo inicialmente planteado:

<u>SELECCIÓN DE LA MATERIA PRIMA</u>

En el momento de escoger la arcilla no se dudo en utilizar la arcilla de la misma fuente que la utilizada por la empresa ladrillera, de esta manera emplearíamos la misma materia prima, base fundamental para mantener las características mecánicas muy próximas. Además al ser la misma arcilla, la composición química es la adecuada y nos evitó de alguna manera iniciar una serie de pruebas sobre diferentes tipos de arcilla a fin de encontrar la adecuada.

ADECUACIÓN DE LA MATERIA PRIMA

La muestra de arcilla no requirió ningún tipo de ajuste por granulometría, esta ya había sido pasada por algún tipo de triturador cuando fue suministrada; tampoco

requirió ajuste por contracción, solo se ajusto la humedad teniendo en cuenta las especificaciones dadas por los límites de Atterberg.

La mezcla homogénea se consiguió mediante un proceso mecánico muy similar a una mezcladora.

MOLDEO

Ya con una arcilla de granulometría adecuada, se procedió a agregarle agua hasta que alcanzara su estado plástico. Esto se pude conocer mediante una prueba que consiste en moldear una muestra de la matriz, dándole forma esférica. Cuando al aplastar esta muestra no se presentan fisuras en su contorno, la mezcla estará lista para continuar el proceso. Simultáneamente se aceitaban las caras internas de los moldes para lograr una mínima adhesión entre la arcilla y el molde.

La arcilla se introdujo al molde aplicándole presión de forma tal que ocupara cada uno de los espacios vacíos del molde para que no quedara en capas dentro del molde. Esta presión se hizo con los dedos y unas espátulas.

<u>SECADO</u>

Ya con la arcilla dentro del molde, esta se expuso al medio ambiente (zona cubierta) durante un máximo de dos (2) días, durante los cuales se elimina un gran porcentaje de la humedad inicial, perdiendo hasta un 90%, este cambio abrupto se debe al pequeño espesor de los ladrillos.

En esta etapa fue donde se tuvo mayor problema de contracción en las piezas ya que no solo el tiempo de secado (horas) era el único inconveniente, también lo era el clima en las horas expuestas.

Por lo tanto se realizaron varias muestras variando tiempo secado hasta encontrar las piezas con las dimensiones casi exactas, con diferencias que no llegan al medio milímetro (0,5 mm).

Después de realizar varias pruebas se llego a las siguientes conclusiones.

- Realizar el moldeo durante mañana entre las 8:00 12:00 horas únicamente.
- Dejar expuesto al medio ambiente alrededor de 45 horas, lo cual indica que se llevarán a cocción dos días después a primeras horas de la mañana (8:00 horas).

Una vez aprobado el procedimiento que nos garantizaba unas dimensiones muy aproximadas, realizamos ensayos de compresión a estos ladrillos obteniendo buenos resultados.

<u>COCCIÓN</u>

La cocción se lleva a cabo en un horno eléctrico especial para material cerámico, su peculiaridad consiste en que tanto incremento como disminución de la

A6

temperatura se realiza de forma lenta y controlada. La cocción se realizó durante 6 horas llegando a una temperatura máxima de 1000° C.

NORMALIZACIÓN

Se le hicieron varias pruebas a los ladrillos definitivos bajo las normas expuestas en el protocolo obteniendo los resultados que expondremos a continuación:

 Ensayo de medida de dimensiones y comprobación de forma, norma UNE-67030-(1985) y UNE-67030-(1986): La comprobación de las medidas de la pieza de ladrillo se realizo con 10 unidades que se reflejaran en la Tabla A.
 2, pero antes deseo aclarar que ocurre contracción de las piezas a escala reducida y son de alrededor de 1.0 mm para la dimensión de soga, holgura que usamos en los moldes para obtener el tamaño deseado.

Las medidas de los moldes son de 12,5 mm de grueso, 35,5 mm de tizón y 73,5 mm de soga, luego del secado y cocción tenemos (medida con exactitud 0,05 mm):

Ladrillo	Grueso (mm)	Tizón (mm)	Soga (mm)				
1	12,45	35,40	72,70				
2	12,50	35,25	72,45				
3	12,50	34,95	72,65				
4	12,50	35,05	72,55				
5	12,45	35,00	72,50				
6	12,45	34,90	72,85				
7	12,50	35,30	72,65				
8	12,50	35,25	72,65				
9	12,45	35,15	72,90				
10	12,40	35,10	72,80				
Promedio	12,47	35,135	72,67				
Tabla	Tabla A. 2 [Dimensiones de los ladrillos a escala reducida 1:4]						

De los resultados promedio (Tabla A.2) podemos señalar que las dimensiones estan entre las esperadas, no sobrepasa las dos décimas de milímetro (0,2 mm) y el cambio volumétrico (contracción) entre el molde y la pieza obtenida es solo de un 2.38%.

Ensayo a compresión, norma EN-772-1(2002): Se efectuaron veinte (20) pruebas; diez (10) ladrillos de la primera producción y diez (10) de la segunda. Para la adecuación de dichas piezas se siguió las recomendaciones de la normativa.

CARGA ULTIMA	RESISTENCIA	A COMPRESIÓN	Desviación
KN	KN/mm ²	N/mm ²	%
188,76	0,0744	74,39	1,01
179,84	0,0709	70,87	5,69
204,68	0,0807	80,66	7,34
174,27	0,0687	68,68	8,61
177,77	0,0701	70,06	6,77
213,50	0,0841	84,14	11,96
199,65	0,0787	78,68	4,70
178,33	0,0703	70,28	6,48
198,08	0,0781	78,06	3,88
193,16	0,0761	76,12	1,30
197,18	0,0777	77,71	3,40
166,31	0,0655	65,54	12,78
205,78	0,0811	81,10	7,91
200,81	0,0791	79,14	5,31
196,60	0,0775	77,48	3,10
184,03	0,0725	72,52	3,49
185,17	0,0730	72,97	2,89
175,18	0,0690	69,04	8,13
203,50	0,0802	80,20	6,72
191,16	0,0753	75,33	0,25
190,69	0,07515	75,15	5,59%

La carga obtenida de la resistencia a compresión promedio de los ladrillos a escala reducida 1:4 es de 75,15 N/mm², un 50 % mayor que la obtenida sobre ladrillos a escala real (50,06 N/mm²); esta diferencia tan dilatada no era lógica ya que se había empleando la misma materia prima, lo que nos llevó a pensar que debería existir algún factor de forma o de tamaño para dicha diferencia; se procedió a realizar ensayos a compresión sobre ladrillos a escala real cortados al tamaño de los de escala 1:4. De estos resultados que se presentan en la Tabla A. 4 se distingue de manera categórica que la diferencia inicialmente obtenida al comparar los dos tipos de ladrillos en los ensayos a compresión estaban afectados por un factor de forma o tamaño.

CARGA ULTIMA	RESISTENCIA A	COMPRESIÓN	Desviación			
KN	KN/mm ²	N/mm ²	%			
207,43	0,0817	81,75	0,26			
210,86	0,0831	83,10	1,39			
199,22	0,0785	78,51	4,21			
217,51	0,0857	85,72	4,59			
221,45	0,0873	87,27	6,48			
201,47	0,0794	79,40	3,12			
220,99	0,0871	87,09	6,26			
223,51	0,0881	88,08	7,47			
201,45	0,0794	79,39	3,13			
197,07	0,0777	77,66	5,24			
190,36	0,0750	75,02	8,47			
217,54	0,0857	85,73	4,60			
194,05	0,0765	76,47	6,69			
218,23	0,0860	86,00	4,93			
214,23	0,0844	84,43	3,01			
218,5	0,0861	86,11	5,06			
212,73	0,0838	83,83	2,29			
211,31	0,0833	83,27	1,61			
197,8	0,0780	77,95	4,89			
183,66	0,0724	72,38	11,69			
207,97	0,08196	81,96	4,77%			
Tabla A. 4 [Ensayo a compresión ladrillos a escala real cortados al tamaño de los de escala reducida 1:4]						

Los resultados de la media aritmética de los diferentes ensayos a compresión detallados en las tablas anteriores (Tabla A. 3 y Tabla A. 4) se aprecia que los dos resultados son muy similares habiendo una diferencia solo del 8% entre las piezas cortadas (81,96 N/mm²) y las elaboradas mediante el protocolo anterior (75,15 N/mm²). Lo anterior nos lleva a formular un factor de forma que lo presentamos en la siguiente tabla resumen (Tabla A. 5):

	f _b (N/mm²)	Desviación de los resultados obtenidos en los ensayos de compresión sobre 20 piezas	Factor de escala δ			
Ladrillo Escala 1:1 290x140x50 (mm) Fabrica Ladrillos	50,06	13,45 %	1,00			
Ladrillo Escala 1:1 72,5x35x12,5 (mm) Obtenido por corte	81,96	4,77 %	0,60			
Ladrillo Escala 1:4 72,5x35x12,5 (mm) protocolo	75,15	5,59 %	,			
Tabla A. 5 [Factor de forma δ que permitirá tener en cuenta las dimensiones de las probetas						

sometidas a ensayos a compresión al trabajar a escala reducida 1:4]

Debido a que solo se efectuó ensayos sobre los ladrillos cortados cuatro veces mas pequeños (1:4) no podemos afirmar una interpolación lineal

entre los valores, por lo anterior, si se trabaja con otra escala es necesario realizar el mismo procedimiento desarrollado anteriormente.

 Ensayo para determinar la absorción de agua, norma UNE-67027:1984 (1984): Este último ensayo tiene por objeto determinar la absorción de agua en los ladrillos que se emplearan en nuestra investigación.

LADRILLO	Gs	Ge	$A = \frac{G_e - G_s}{G_s} \cdot 100$		
1	52,5	61,0	16,19		
2	54,0	62,5	15,74		
3	55,5	64,5	16,22		
			16.05		
Tabla A. 6 [Ensayo determinación del agua - ladrillos a escala reducida 1:4]					

La absorción obtenida en los ladrillos a escala reducida es del 16%, un 2% mayor que los obtenidos en los ladrillos de escala real (14%); aparentemente no es una diferencia notable y es un valor tolerable de absorción de la fabrica, pero en la practica se tuvieron mayores dificultades con los ladrillos a escala reducida que con los de escala real.

Una de las observaciones importantes que pudimos notar durante estos ensayos es que las dimensiones de nuestros ladrillos no se alteraron durante el proceso de saturación, lo que nos indica el tiempo y la temperatura seleccionada para la cocción es adecuada y las propiedades mecánicas de la arcilla cambiaron favorablemente con el proceso de la sinterización.

DISCUSIÓN DE RESULTADOS

Los resultados indican que la elección de la arcilla fue la acertada, ya que se empleó el mismo material que se utiliza en los ladrillos a escala real, caso contrario se hubiese realizado una enorme campaña de ensayos que van desde ensayos químicos, adecuación de la arcilla y normalización de las propiedades mecánicas.

Como se expreso anteriormente si se trabaja con otra escala es necesario valorar nuevamente el factor de escala, nuestro factor multiplicador de escala de 0.60 se ajusta bastante bien a la resistencia a compresión de los ladrillos fabricados bajo nuestro protocolo, lo que garantizamos de alguna manera trabajar con ladrillos de las mismas propiedades mecánicas que las de escala real.

Para disminuir la absorción del ladrillo se puede hacer una vitrificación adicionándole cloruro de sodio disuelto en agua, derramándolo como fundente cuando el horno este caliente, proceso que el fabricante no quiso realizar en sus hornos por motivos que no fundamento y a la postre no afectaban las características mecánicas de la pieza, pero inicialmente trajo problemas en la construcción de muros y probetas (aunque la diferencia en la absorción es solo del 2% entre las escalas) ya que le quitaba de manera muy rápida agua al mortero; este inconveniente se resolvió humedeciendo los ladrillos, mediante la inmersión en agua durante dos horas y a continuación el secado al aire durante no mas de 30 minutos, proceso en el cual el contenido de humedad variaba entre un 6 a un 10%.

ΑΝΕΧΟ

GRANULOMETRÍA DEL MORTERO PARA MODELOS A ESCALA REDUCIDA

B.1 ENSAYOS SOBRE MORTERO M-80

La línea de investigación a la cual pertenece esta tesis doctoral requería con suma necesidad hallar una dosificación que mantuviese una desviación de sus propiedades mecánicas ínfima a fin de utilizarla en todas las campañas experimentales de esta tesis doctoral y de las futuras campañas que la línea de investigación (ETSCCPB/Edificaciones) tiene previsto realizar.

El laboratorio técnico de estructuras (LTE) de la UPC tiene una larga trayectoria con morteros y hormigón, ya que se realizan desde hace más de una década un enorme numero de pruebas para trabajos de investigación, tesis doctorales, proyectos de fin de carrera, etc., pero desafortunadamente no existe un documento que reúna todos los resultados que se han obtenidos para los diferentes tipos de morteros y hormigón, ni dosificación empleada, resistencia a compresión o a flexión, etc., básicamente solo se cuenta con algunas vagos documentos y la experiencia de los técnicos del laboratorio, que han participados en muchos de estos trabajos y pueden comentar algunas de sus experiencias. Basándonos en estas experiencias seguimos las recomendaciones de emplear un mortero M-80 de una marca especifica, la cual si se seguía las instrucciones de la cantidad de agua de amasado, la resistencia a compresión no tendría mayores diferencias entre sacos. Esta recomendación nos llevo a realizar una serie de ensavos en probetas a flexión y compresión sobre morteros de diferentes sacos. todos de la misma fábrica e igual características. Se escogieron 10 sacos de mortero y a cada uno se le realizó varias probetas de mortero, tres (3) probetas para ensayo a flexión y seis (6) probetas para ensayos a compresión. La Tabla B. 1 y Tabla B. 2 resume los valores obtenidos en los ensavos de las muestras a compresión y a flexión sometidos bajo la norma EN 1015-11 (2000).

					Desviación (%)		
Probeta	Carga máx	ima (N)	Flexión (N/mm ²)	$f_{xm} = 1.5 \frac{FL}{bd^2}$	$\left 100-\frac{x\cdot100}{\overline{x}}\right $		
1-A	1258		2,95		9,08		
1-B	1401	1368	3,28	3,21	1,26		
1-C	1444		3,38		4,37		
2-A	1417		3,32		2,41		
2-B	1484	1425	3,48	3,34	7,26		
2-C	1373		3,22		0,77		
3-A	1421		3,33		2,70		
3-B	1363	1381	3,19	3,24	1,49		
<u> </u>	1360		3,19		1,71		
4-A	1280	1000	3,00	0.00	7,49		
4-B	1590	1399	3,73	3,28	14,92		
4-C	1328		3,11		4,02		
5-A	1417	4004	3.32	0.07	2.41		
5-B	1420	1394	3,33	3,27	2,63		
5-0	1345		3,15		2,79		
6-A	1362	1296	3.19	2.05	1.56		
6-В	1427	1300	3,34	3,25	3,14		
<u> </u>	1308		3,21		1,13		
7-A	1272	1210	2,98	2 00	8.07		
7-D 7-C	1200	1310	3,01	3,09	7,05		
7-0	1397		3,27		0,97		
8-A	1623	1407	3.80	3 51	17.30		
0-D	1410	1497	3,3Z 2,40	5,51	2,34		
	1401		<u> </u>		4,07		
9-A 9-B	1320	1379	3,11 3,24	3 23	4,02		
9-C	1425	10/0	3 34	0,20	2 99		
<u> </u>	1273		2 08		7 00		
1 0-A	1394	1289	3 27	3 02	0.75		
1 0-C	1201	.200	2 81	0,02	13 20		
Pror	nedio	1384	2,0 .	3,24	4,69		
		Do	eviación ostándar	0 6608	-		
Tabla B. 1 [Ensavos a flexión para mortero M-80 de planta]							

Figura B. 1 [Fotos de los ensayos]

				E	Desviación (%)
Probeta	Carga máxim	a (N)	Compresión (N/mm ²)	$f_m = \frac{r}{bd}$	$100 - \frac{x \cdot 100}{-}$
1 \ 1	14600		0.18		7 25
1-A1	14695		9,18		7.23
1-B1	14619	14660	9,14	0.17	7,70
1-B2	14536	14009	9,09	3,17	8,22
1-C1	14775		9,23		6,71
2_A1	14097		9,19		12.03
2-A1	13810		8,63		12,81
2-B1	13948	13878	8,72	8 67	11,94
2-B2	14020	10070	8,76	0,07	11,48
2-C1	13881		8,68		12,36
3_A1	1650/		0,04		12,70
3-A2	16650		10,41		5,12
3-B1	16488	16552	10,31	10 34	4,10
3-B2	16369	10552	10,23	10,34	3,35
3-C1	16664		10,42		5,21
3-02	10040		0.04		4,40
4-A1	14422		9,01		8,94
4-B1	14503	14458	9,06	9 04	8,43
4-B2	14481	14400	9,05	5,04	8,57
4-C1	14418		9,01		8,97
<u> </u>	17372		<u> </u>		<u> </u>
5-A2	17504		10,94		10,52
5-B1	17199	17380	10,75	10.86	8,59
5-B2	17228	17000	10,77	10,00	8,77
5-C1	1/488		10,93		10,42
<u>6-A1</u>	17632		11.02		11.32
6-A2	17705		11,07		11,79
6-B1	17724	17679	11,08	11.05	11,91
6-B2	17862		11,16	,	12,78
6-C2	17621		11 01		11 26
	15017		9.39		5.19
7-A2	14935		9,33		5,70
7-B1	14863	14928	9,29	9.33	6,16
7-B2	14843		9,28	-,	6,28
7-01	14950		9,34 9,35		5,01
8-A1	15036		9.40		5.07
8-A2	14971		9,36		5,48
8-B1	15222	15093	9,51	9,43	3,89
8-B2	151/2		9,48	-, -	4,21
8-C2	15078		9, 4 2 9,42		4,79
9-A1	15511		9,69		2,07
9-A2	15496		9,69		2,16
9-B1	15263	15445	9,54	9,65	3,63
9-B2	15405		9,63	,	2,74
9-C2	15501		9,69		2,13
10-A1	18219		11.39		15.03
10-A2	18225		11,39		15,07
10-B1	18457	18302	11,54 11,55	11,44	16,53
то-в2 10-С1	18474 18217		11,00		10,04
10-C2	18219		11,39		15,03
	Promedio	15838		9,90	8,28
		r	Desviación estándar	1 014	
	Tabla R 2 (En	avos a Cor	nnresión nara mortor		ntal
		sayos a 001	inpresion para monten	2 millov uc pla	nuuj

Los resultados obtenidos confirma la recomendación del LTE de utilizar dicha marca de mortero la cual su presentación viene en sacos de 25 Kg; la resistencia a compresión es un poco mayor que la informada por el productor (8 Mpa) lo cual era de esperar que esta resistencia sobrepasara este limite, alcanzando una

resistencia a compresión de 9.9 Mpa, un 24 % mayor y su desviación estándar solo alcanza a 1.014.

B.2 ENSAYOS DE GRANULOMETRÍA Y RESISTENCIA SOBRE MORTERO EMPLEADO PARA PAREDES A ESCALA REDUCIDA 1:4

El mortero utilizado para los ensayos a escala reducida fue el mismo M-80 producido en fabrica pero para las campañas a escala 1:4 se retiró mediante tamizado todo el porcentaje retenido en el tamiz de 1,19 mm, ya que el tamaño de las juntas es de 2,50 mm y el uso de tamaños mayores a 1,19 mm hacia complejo mantener las juntas a este espesor; este limite de tamaño máximo se obtuvo de manera experimental mediante la elaboración de pequeños muros con el porcentaje de mortero M-80 que pasa por el tamiz de 2,00mm, 1,58mm, 1,19mm y 1,00mm, con estos cuatro morteros se experimentó la manejabilidad necesaria para mantener un espesor de 2,50mm, de esta manera se seleccionó el mortero que pasaba por el tamiz de 1.19 mm ya que con este tamaño se pudo construir muros con juntas de 2,50mm de manera correcta.

El proceso de la selección del mortero no termina aquí, no consiste simplemente en retirar el porcentaje de arena que queda retenido en el tamiz de 1.19 mm, sino que el porcentaje de arena de tamaño mayor al retenido se remplaza en porcentajes iguales a los del mortero de planta, por lo tanto para conocer la granulometría del mortero M-80 se realizo sobre un total de diez (10) muestras de 1000 g de diferentes sacos. A continuación se presentan los resultados obtenidos para cada muestra y la granulometría promedio obtenida de estas muestras; además una curva con la granulometría de los dos morteros.

El porcentaje medio que pasa por el tamiz 1,19mm es de 81,26%, lo que equivale a decir un 18,74% es el porcentaje retirado del mortero original (saco de fabrica M-80), porcentaje que le adicionamos por partes respecto al porcentaje retenido a fin de mantener la misma tendencia de la curva granulométrica (ver curva granulométrica promedio de las muestras de mortero M-80). Al mortero adecuado para los modelos a escala reducida 1:4 se le realizaron pruebas de resistencia a flexión obteniendo excelentes resultados de semejanza en las Tabla B. 4 y Tabla B. 5 se observa los resultados obtenidos.

0,08

0.063

71,12

72.28

28,88

27.72

722,80

MUESTRA 2 M80 02-02-M2 TAMICES (mm) Peso total de la muestra 1000 gr 0,100 0,200 1,190 1,580 2,000 2,380 3,150 0,080 0,125 0,149 0,250 0,790 1,000 0,063 0,297 0,390 0,490 0,590 4,000 Peso TAMIZ % retenido % pasa retenido 100 acumulado acumulado acumulado mn 4,76 4 0.00 100 00 90 0,00 0,15 0,11 99,85 0,15 3,15 2,38 2 1,58 99.89 80 0,26 99,74 ACUMULADO QUE PASA 0.38 99.62 0.38 70 9,47 18,85 90,53 81,15 1,19 1 0,79 60 73,21 67,07 26,79 267,90 32.93 50 0,59 0,49 0,39 0,297 60,22 54,27 48,80 45,36 39,78 45,73 45,73 40 51,20 54,64 30 0,25 0,2 59,45 62,41 40,55 37,59 594.50 20 0,149 0,125 65,00 67,74 35,00 32,26 % 677,40 10 70.70 29.30 0.1

POR CADA TAMIZ

⊥ ₀

MUESTRA 7 M80 02-02-M7

MUESTRA 8 M80 02-02-M8

MUESTRA 9 M80 02-02-M9

MUESTRA 10 M80 02-02-M10

Las anteriores tablas y graficas pertenecen a las muestras de los diferentes sacos de mortero M-80 y en la siguiente tabla y grafica agrupa todos estos los resultados y el promedio de estas muestra.

	% Acumulado que pasa por cada tamiz										
TAMIZ	Muestra	Muestra	Muestra	Muestra	Muestra	Muestra	Muestra	Muestra	Muestra	Muestra	Promedio
mm	1	2	3	4	5	6	7	8	9	10	
4,76	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
4.00	100,00	99,85	100,00	100,00	100,00	99,93	100,00	100,00	100,00	100,00	99,98
3,15	99,68	99,89	99,94	99,79	100,00	99,87	99,92	99,79	99,89	99,72	99,85
2,38	99,48	99,74	99,39	99,76	99,91	99,76	99,85	99,65	99,73	99,69	99,70
2.00	99.37	99.62	99.15	99.68	99.64	99.47	98.38	99.59	99.58	99.56	99.40
1.58	90.75	90.53	90.87	90.75	90.40	90.15	89.84	90.45	89.77	90.68	90.42
1,19	81,54	81,15	81,85	81,52	80,92	81,14	81,05	81,25	80,95	81,26	81,26
1.00	74.50	73.21	76.88	69.03	74.83	69.73	69.42	70.81	69.77	72.67	72.09
0.79	68.25	67.07	70.43	63.24	68.16	63.88	60.91	64.49	63.76	66.41	65.66
0.59	61.28	60.22	63.24	56.78	61.48	57.36	56.68	58.17	57.36	59.75	59.23
0.49	55.24	54.27	56.04	52.11	54.80	52.64	48.25	51.85	51,99	53.16	53.04
0.39	49.66	48.80	48.37	46.67	50.37	48.60	46.96	47.66	47.91	49.91	48,49
0.297	46.16	45.36	47.63	43.38	45.94	45.17	38.01	43.47	44.19	43.27	44.26
0.25	41.27	40.55	42.59	38.78	41.52	40.39	37.06	39.28	39.68	38.85	40.00
0,20	38,26	37 59	39.48	35.95	38 78	37 44	36.34	36 70	36,90	36 13	37.36
0.149	35.62	35.00	36.75	33.47	36.05	34.86	33.52	34.11	34.33	33.62	34.73
0.125	32.82	32.26	33.87	30.85	33.32	32.12	31.53	31.52	31.68	31.02	32.10
0.10	29.82	29.30	30.77	28.03	31 73	29 18	30.23	29.14	29.36	28 75	29.63
0.08	29.39	28.88	30.33	27.62	30.13	28.76	27.15	28.51	28.49	27.89	28.72
0.063	28.21	27.72	29.12	26.52	28.54	27.61	26.33	27.01	27.19	26.63	27.49
2,500	,		,	,0_	,0 .	,0.	,00	,01	,	,00	
٦	Fabla B.	3 [Tabl	la resun	nen de la	a granul	ometría	de las r	nuestra	s de mo	rtero M-	80]

PROMEDIO DE CURVA GRANULOMÉTRICA DEL MORTERO M80

CURVAS GRANULOMÉTRICA DE LAS MUESTRAS DE MORTERO M80

La grafica siguiente muestra las curvas granulométricas obtenidas tanto para modelos a escala real (1:1) y los modelos a escala reducida (1:4), la cual se obtuvo mediante el proceso anteriormente descrito. Podemos observar que mediante esta adecuación del mortero M-80 las dos curvas tienen la misma tendencia por lo tanto no se encuentra alterada la distribución granulométrica y

con los resultados de resistencia a compresión y flexión de este mortero podremos corroborar que las propiedades mecánicas tampoco se ven afectadas, lo cual para nuestra relaciones entre las escalas es muy provechoso.

Para determinar estas propiedades se elaboraron cinco (5) moldes de probetas, para un total de 15 probetas a flexión y 30 a compresión; en las tablas siguientes encontramos los resultados obtenidos.

				El	Desviación (%)		
Probeta	Carga máx	ima (N)	Flexión (N/mm ²)	$f_{xm} = 1.5 \frac{7L}{bd^2}$	$100 - \frac{x \cdot 100}{x}$		
					X		
1-A	1482	1363	3.47	3,19	12.59		
1-B	1250		2,93	,	5,04		
1-C	1356		3,18		3,01		
2-A	1189	1181	2,79	2 77	9.67		
2-B	1244	1101	2,92	_,	5,50		
2-C	1109		2,60		15,75		
3-A	1477	1371	3,46	3 21	12,21		
3-B	1219	1071	2,86	0,21	7,39		
3-C	1416		3,32		7,57		
4-A	1373	1344	3,22	3 15	4,30		
4-B	1368	1044	3,21	5,15	3,93		
4-C	1292		3,03		1,85		
5-A	1284	1222	3.01	3 10	2.46		
5-B	1274	1525	2,99	5,10	3,22		
5-C	1412		3,31		7,27		
Pror	nedio	1316		3,09	6.78		
		De	sviación estándar	0,2518			
Tabla B. 4 [Ensayos a flexión para mortero M-80 adecuado para modelos a escala 1:4]							

Probeta	Carga máxin	na (N)	Compresión (N/mm ²)	$f_m = \frac{F}{bd}$	Desviación (%) $\left 100 - \frac{x \cdot 100}{\overline{x}}\right $			
1-A1	16859		10,54		2,46			
1-A2	17403		10,88		0,69			
1-B1	15386	17083	9,62	10,68	10,98			
1-B2	17116		10,70		0,97			
1-C1	17965		11,23		3,94			
1-C2	17770		11,11		2,81			
2-A1	17646		11,03		2,09			
2-A2	17228		10,77		0,32			
2-B1	18052	18231	11,28	11,39	4,44			
2-B2	17750		11,09		2,70			
2-C1	19821		12,39		14,68			
2-C2	18888		11,81		9,28			
3-A1	17898		11,19		3,55			
3-A2	19309		12,07		11,72			
3-B1	14133	16763	8,83	10,48	18,23			
3-B2	16543		10,34		4,29			
3-C1	16332		10,21		5,51			
3-C2	16364		10,23		5,32			
4-A1	17460		10,91		1,02			
4-A2	17795		11,12		2,96			
4-B1	17616	16829	11,01	10,52	1,92			
4-B2	15409		9,63		10,85			
4-C1	17986		11,24		4,06			
4-C2	14706		9,19		14,92			
5-A1	18027		11.27		4.30			
5-A2	17220		10,76		0,37			
5-B1	19638	17515	12,27	10,95	13,62			
5-B2	14939		9,34		13,57			
5-C1	17831		11,14		3,16			
5-C2	17434		10,90		0,87			
Pror	nedio	17284		10,80	5,85			
	Desviación estándar 0,8541							
Tabla B. 5 [Ensayos a Compresión para mortero M-80 de planta]								

Los resultados obtenidos son excelentes, al comparar los valores medios de resistencia a flexión como a compresión del mortero M-80 usado para modelos escala 1:1 y el mortero M-80 adecuado para los modelos a escala 1:4 las diferencias son mínimas, prácticamente se puede hablar que es el mismo mortero ya que sus características mecánicas son las mismas.

ΑΝΕΧΟ

MORTEROS RESISTENCIAS A FLEXIÓN Y A COMPRESIÓN

C.1 RESISTENCIA A FLEXIÓN DE MORTERO ENDURECIDO

Los ensayos de resistencia a flexión se determinaron bajo la normativa EN 1015-11(2000). Para las ocho campañas se realizaron los respectivos ensayos. A continuación se presentan el dispositivo usado para estos ensayos (Figura C.1), y los resultados obtenidos para cada campaña experimental.

Figura C. 1 [Dispositivos de ensayo de resistencia a flexión de mortero]

CAMPAÑA Muros Someti Escal Giro Su		F		
Velocidad de aplicación	n de la carga	20 N/seg	0	
Edad de las probetas		28 días	•	-
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _{xm} [Mpa]	f _{xm} promedio [Mpa]
Molde I	1 2 3	1166 1207 1379	2,73 2,83 3,23	2,93
Molde II	4 5 6	976 1084 1057	2,29 2,54 2,48	2,44
Molde III	7 8 9	1126 1165 1331	2,64 2,73 3,12	2,83
Molde IV	10 11 12	1123 1095	2,37 2,63 2,57	2,52
				2.68

CAMPAÑA E Muros Someti Escala F Giro Sup	EXPERIMENT dos a Carga I Reducida (1:4 erior Impedid	AL II Biaxial) lo		F
Velocidad de aplicació	n de la carga	20 N/seg		0
Edad de las probetas		31 días	Ŭ	Ŭ
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _{xm} [Mpa]	f _{xm} promedio [Mpa]
Molde I	1 2 3	1327 1310 1401	3,11 3,07 3,28	3,15
Molde II	4 5 6	1401 1147 1292	3,28 2,69 3,03	3,00
Molde III	7 8 9	1333 1303 1273	3,12 3,05 2,98	3,05
Molde IV	10 11 12	1343 1357 1269	3,15 3,18 2,97	3,10
				3,08

CAMPAÑA E Muros Someti Escala F Giro So	EXPERIMENT dos a Carga l Reducida (1:4 uperior Libre	AL III Biaxial)		F
Velocidad de aplicació	n de la carga	20 N/seg		<u>0</u>
Edad de las probetas		29 días	-	
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _{xm} [Mpa]	f _{xm} promedio [Mpa]
Molde I	1 2 3	1345 1393 1275	3,15 3,26 2,99	3,14
Molde II	4 5 6	1264 1343 1408	2,96 3,15 3,30	3,14
Molde III	7 8 9	1190 1071 1442	2,79 2,51 3,38	2,89
Molde IV	10 11 12	1308 1323	2,08 3,07 3,10	2,95
				3.03

CAMPAÑA E Muros Someti Escala F Distintas Giro Su	XPERIMENT/ dos a Carga I Reducida (1:4) s Dimensione uperior Libre	AL IV Biaxial) s		F
Velocidad de aplicación	n de la carga	20 N/seg	0	
Edad de las probetas		28 días		
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _{xm} [Mpa]	f _{xm} promedio [Mpa]
Molde I	1 2 3	1379 1301 1537	3,232 3,05 3,60	3,29
Molde II	4 5 6	1331 1416 1329	3,12 3,32 3,11	3,18
Molde III	7 8 9	1322 1448 1378	3,10 3,39 3,23	3,24
Molde IV	10 11 12	1677 1346 1451	3,93 3,15 3,40	3,50
				3,30

CAMPAÑA E Muros Someti Escala F Sin Mor Giro Si	EXPERIMENT dos a Carga l Reducida (1:4 tero en llagas uperior Libre	AL V Biaxial) ;		F
Velocidad de aplicació	n de la carga	20 N/seg	0	0
Edad de las probetas		28 días		
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _{xm} [Mpa]	f _{xm} promedio [Mpa]
Molde I	1 2 3	1324 1535 1478	3,10 3,60 3,46	3,39
Molde II	4 5 6	1299 1326 1322	3,04 3,11 3,10	3,08
Molde III	7 8 9	1347 1425 1369	3,16 3,34 3,21	3,24
Molde IV	10 11 12	1520 1433 1236	3,56 3,36 2,90	3.27
				3,24

CAMPAÑA E Mode Escala R Paredes	XPERIMENTA lo Edificio leducida (1:4) s de Mortero	AL VI		F
Velocidad de aplicaciór	n de la carga	20 N/seg		
Edad de las probetas	97 días *		-	
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _{xm} [Mpa]	f _{xm} promedio [Mpa]
	1	3462	8,11	
Molde I	2	3009	7,05	7,60
	3	3261	7,64	
	4	2736	6,41	
Molde II	5	2762	6,47	6,67
	6	3040	7,13	
* el día de el ensayo del edificio				7,14

CAMPAÑA EXF Mode Escala I Paredes de Obra	CAMPANA EXPERIMENTAL VII y VIII Modelo Edificio Escala Reducida (1:4) Paredes de Obra de Fabrica de Ladrillo			↓F •
Velocidad de aplicació	n de la carga	20 N/seg	0	
Edad de las probetas		30 días	-	-
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _{xm} [Mpa]	f _{xm} promedio [Mpa]
Molde I	1 2 3	1364 1377 1414	3,20 3,23 3,31	3,24
Molde II	4 5 6	1624 1384 1274	3,81 3,24 2,99	3,34
Molde III	7 8 9	1412 1356 1351	3,31 3,18 3,17	3,22
Molde IV	10 11 12	1507 1435 1518	3,53 3,36 3,56	3,48
			·	3,32

C.2 RESISTENCIA A COMPRESIÓN DE MORTERO ENDURECIDO

Los ensayos de resistencia a compresión se determinaron bajo la normativa EN 1015-11(2000). Al igual que los ensayo a flexión se realizaron ensayos para cada una de las campañas.

Figura C. 2 [DISPOSITIVOS DE ENSAYO DE RESISTENCIA A COMPRESIÓN DE MORTERO ENDURECIDO

CAMPANA I Muros Someti Escal Giro Su	EXPERIMENT dos a Carga a Real (1:1) uperior Libre	'AL I Biaxial		
Velocidad de aplicaciór	n de la carga	200 N/seg		2
Edad de las probetas		28 días		
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _m [Mpa]	f _m promedio [Mpa]
Molde I	1A 1B	13635 13095	8,52 8,18	
	2A 2B	14595 14224 12264	9,12 8,89 8,20	8,61
	3B 4A	13204 13824 14347	8,29 8,64 8,97	
Molde II	4B 5A	14062 12067	8,79 7,54	8,43
	5B 6A 6B	13904 13792 12784	8,69 8,62 7,99	
Molde III	7A 7B 8A 8B 9A	13718 13561 12468 13232 13744	8,57 8,48 7,79 8,27 8,59	8,28
Molde IV	9B 10A 10B 11A 11B 12A	12736 12496 12368 12816 13040	7,96 7,81 7,73 8,01 8,15 7,00	8,03
	12A 12B	13584	8,49	8,34

Velocidad de aplicació	n de la carga	200 N/seg		
Edad de las probetas		31 días		
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _m [Mpa]	f _m promedio [Mpa]
Molde I	1A 1B 2A 2B 3A 3B	13168 13440 11968 12176 14416 14064	8,23 8,40 7,48 7,61 9,01 8 79	8,25
Molde II	4A 4B 5A 5B 6A 6B	15360 14912 13792 13920 11649 13264	9,60 9,32 8,62 8,70 7,28 8,29	8,64

	7A	14736	9,21	
	7B	14976	9,36	
Moldo III	8A	14208	8,88	0 00
	8B	14623	9,14	0,00
	9A	13248	8,28	
	9B	13472	8,42	
	10A	14544	9,09	
	10B	14096	8,81	
Moldo IV	11A	13872	8,67	0 75
woulde iv	11B	13744	8,59	0,75
	12A	13824	8,64	
	12B	13920	8,70	
				8,63

CAMPAÑA EXPERIMENTAL III Muros Sometidos a Carga Biaxial Escala Reducida (1:4) Giro Superior Libre			F	
Velocidad de aplicaciór	n de la carga	200 N/seg		2
Edad de las probetas		29 días		
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _m [Mpa]	f _m promedio [Mpa]
Molde I	1A 1B 2A 2B 3A 3B	16278 16363 14856 16459 14315 16621	10,17 10,23 9,29 10,29 8,95 10,39	9,88
Molde II	4A 4B 5A 5B 6A 6B	16231 16611 15884 16983 14897 14193	10,14 10,38 9,93 10,61 9,31 8,87	9.87
Molde III	7A 7B 8A 8B 9A 9B	16712 15197 15505 14386 15862 16197	10,45 9,50 9,69 8,99 9,91 10,12	9,78
Molde IV	10A 10B 11A 11B 12A 12B	14773 16813 16293 14104 16581 15329	9,23 10,51 10,18 8,82 10,36 9,58	9,78
				9,83

CAMPAÑA EXPERIMENTAL IV Muros Sometidos a Carga Biaxial Escala Reducida (1:4) Giro Superior Libre			↓F ▼	
elocidad de aplicaciór	de la carga	200 N/seg		
dad de las probetas		28 días		
dad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _m [Mpa]	f _m promedio [Mpa]
Molde I	1A 1B 2A 2B 3A 3B	13558 17502 18288 15693 15595 16707	8,47 10,94 11,43 9,81 9,75 10,44	10,14
Molde II	4A 4B 5A 5B 6A 6B	14371 14846 18515 14378 14795 17776	8,98 9,28 11,57 8,99 9,25 11,11	9,86
Molde III	7A 7B 8A 8B 9A 9B	16731 17277 13527 13718 17567 17567	10,46 10,80 8,45 8,57 10,98 10,98	10,04
Molde IV	10A 10B 11A 11B 12A 12B	16740 15304 13874 17551 13491 17802	10,46 9,57 8,67 10,97 8,43 11,13	9,87
				9.98

CAMPAÑA EXPERIMENTAL V Muros Sometidos a Carga Biaxial Escala Reducida (1:4) Distintas Dimensiones Giro Superior Libre			F	
Velocidad de aplicación	n de la carga	200 N/seg		2
Edad de las probetas		28 días	_	<u> </u>
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _m [Mpa]	f _m promedio [Mpa]
	1A	14069	8,79	
	1B	14105	8,82	
Molde I	2A	17463	10,91	0.76
	2B	14263	8,91	9,70
	3A	16767	10,48	
	3B	17037	10,65	

Molde II	4A	16999	10,62		
	4B	17844	11,15		
	5A	17571	10,98	10,18	
	5B	14130	8,83		
	6A	14164	8,85		
	6B	17032	10,65		
	7A	13019	8,14		
	7B	14286	8,93		
Moldo III	8A	16024	10,02	0.43	
	8B	15212	9,51	9,43	
	9A	14594	9,12		
	9B	17325	10,83		
Molde IV	10A	14821	9,26		
	10B	17399	10,87		
	11A	13667	8,54	10 12	
	11B	15351	9,59	10,12	
	12A	17011	10,63		
	12B	18874	11,80		
				9,87	

CAMPAÑA EXPERIMENTAL VI Modelo Edificio Escala Reducida (1:4) Paredes de Mortero				F
Velocidad de aplicación	i de la carga	200 N/seg		2
Edad de las probetas		97 días *		
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _m [Mpa]	f _m promedio [Mpa]
Molde I	1A 1B 2A 2B 3A 3B	64230 63860 66940 63660 64350 63660	40,14 39,91 41,84 39,79 40,22 39,79	40,28
Molde II	4A 4B 5A 5B 6A 6B	67070 65130 67350 68410 65510 65430	41,92 40,71 42,09 42,76 40,94 40,89	41,55
* el día de el ensayo del edificio				40,92

CAMPAÑA EXPERIMENTAL VII y VIII Modelo Edificio Escala Reducida (1:4) Paredes de Obra de Fabrica de Ladrillo				↓F ↓
Velocidad de aplicació	n de la carga	200 N/seg		5
Edad de las probetas		30 días		<u> </u>
Edad de desmolde		2 días		
Molde Metálico	Probeta	Carga Max. [N]	f _m [Mpa]	f _m promedio [Mpa]
	1A	14680	9,18	
	1B	13890	8,68	
Molde I	2A	16530	10,33	9.86
	2B	14470	9,04	-,
	3A	17360	10,85	
	3B	17700	11,06	
	4A 4D	17710	11,07	
	4D 5A	16070	11,29	10,24
Molde II	5A 5B	13300	8 37	
	5D 6A	14010	0,37	
	6B	17280	10.80	
	7A	13480	8.43	
	7B	13660	8.54	
	8A	18160	11,35	0.05
Moide III	8B	15630	9,77	9,65
	9A	15110	9,44	
	9B	16570	10,36	
Molde IV	10A	14340	8,96	9.86
	10B	17390	10,87	
	11A	14765	9,23	
	11B	17453	10,91	9,00
	12A	13686	8,55	
	12B	17064	10,67	
				9,90
				,

ΑΝΕΧΟ

LADRILLOS RESISTENCIAS A TRACCIÓN Y A COMPRESIÓN

• RESISTENCIA A FLEXIÓN TRACCIÓN DE LADRILLOS

La resistencia a tracción de las piezas tiene un gran interés no porque esta solicitación se presente de forma pura a nivel estructural, su atractivo radica en que las roturas a compresión están asociadas a esta realidad debido a que el mortero se deforma creando tensiones que generan tracciones en las piezas.

Ladrillos cerámicos 1:1		Ladrillos cerámicos 1:4		
290x140x50 mm	Cant: 10	72.5x35x12,5 mm	Cant: 20	
		Resistencia a tracción f _{bt} 3	,93 - 7,57 MPa (Nov 01)	
Resistencia a tracción f _{bt}	3,40 – 3,54 MPa	Resistencia a tracción f _{bt} 3	,95 – 7,61MPa (Jun 03)	
		Tels.: 93. 63 Fax: 93. 665 78 62 • CAS	16 02,70 TELIDEFELS (Barcelona)	

200 mm entre ejes	de los rodillos de apoyo	50 mm entre ejes de los rodillos de apoyo			
Vel. Carga	1 KN/Seg	Vel. Carga 0,05 KN/			0,05 KN/Seg
Carga Máxima	Resistencia a flexión	Carga	Resistencia	Carga	Resistencia a
	f _{xb}	Máxima	a flexión f _{xb}	Máxima	flexión f _{xb}
KN	N/mm ²	KN	N/mm ²	KN	N/mm ²
7412	6,35	1243	17,05	1005	13,78
7645	6,55	1380	18,93	958	13,14
8415	7,21	995	13,65	1004	13,77
7717	6,61	1109	15,21	1018	13,96
7846	6,73	1132	15,52	1100	15,09
9086	7,79	1221	16,75	1139	15,62
8202	7,03	1072	14,70	1210	16,59
9075	7,78	921	12,63	1250	17,14
8492	7,28	955	13,10	1188	16,29
8803	7,55	1019	13,97	1227	16,83
	7,09		15,15		15,22
Tabla D.1 [Resultados resistencia a flexotracción]					

La resistencia a flexión (f_{xb}) se obtiene mediante la siguiente ecuación.

$$f_{xb} = \frac{\frac{F*L}{4}}{\frac{b*d^3}{12}} * \frac{d}{2} = \frac{1.5 * F * L}{b*d^2}$$
 Ecuación D.1

Donde *F* es la carga máxima de rotura a flexión, b y d sección de la pieza de ladrillo y *L* es la distancia de apoyo entre los ejes de los rodillos.

La resistencia a tracción (f_{tb}) se relaciona con la resistencia a flexión (f_{xb}) y con las dimensiones de la probeta de ensayo. La norma española EHE usa la siguiente expresión para hormigón.

$$f_{tb} = f_{xb} \frac{1,5(\frac{d}{100})^{0,7}}{1+1,5(\frac{d}{100})^{0,7}}$$

Ecuación D.2

También existe otra relación que es la que aplica el eurocódigo 2, pero los resultados son muy diferentes a los obtenidos mediante la EHE debido a que no tienen en cuenta las dimensiones, y se calcula mediante la siguiente ecuación:

$$f_{tb} = 0.5 * f_{xb}$$
 Ecuación D.3

A pesar de no existir una norma estricta para este tipo de ensayos se siguió algunas partes de las normas europeas; en referencia a las especificaciones del aparato y aplicación de la carga se emplea la norma EN 1015-11(1999) en los apartados 8.1 y 8.2.2 respectivamente; para la preparación de las superficies y acondicionamiento de las probetas antes del ensayo se empleo la norma EN 772-1(2000) apartados 7.2 y 7.3.2 respectivamente.
• RESISTENCIA A COMPRESIÓN DE LADRILLOS

Los ensayos de resistencia a compresión se determinaron bajo la normativa EN 772-1 (2002).

Ladrillos	Ladrillos cerámicos 1:4				
290x140x5	72.5x35x1.25 mm Cant: 20				
		Resistencia a la compresión f_b 78,118 MPa			
		(Nov 01)			
Resistencia a la co	mpresion f_b 50,068 MPa	Resister	ncia a la comp	resión f _b 7	75,95δ MPa
			(Jur	า 03)	
			0		
Vel. Carga	30 KN/Seg		Vel. Carga		3 KN/Seg
a	Resistencia compresión	Carga	Resistencia	Carga	Resistencia
Carga Máxima	Prom.	Máxima	compresión	Máxima	compresión
	N1/2		PIOIII.		PIOIII.
KIN	IN/ffiffi	KIN	N/mm	KIN	IN/mm
2504,1	61,7	183,22	72,20	175,45	69,14
1730,2	42,6	205,64	81,04	197,38	77,79
2100,9	53,0 45 7	200,40	02,10	202,71	79,09
1855,0	45,7	202,03	79,62	193,39	76,21
2478,4	61,0	190,61	75,12	188,00	74,09
1544,5	38,0	206,11	81,23	205,28	80,90
1786,8	44,0	182,24	71,82	176,65	69,62
2195,2	54,0	204,96	80,77	199,80	78,74
1879,3	46,3	193,43	76,23	188,07	74,12
2166,5	53,4	205,31	80,91	200,55	79,03
Tab	la D.2 [Resultados de los	ensavos	de resistencia	a a compre	esión]

Para la resistencia a compresión normalizada f_{b} la resistencia de las piezas secadas al aire se multiplica por un factor de forma que δ que se da en la tabla A.1 de la norma utilizada EN 772-1 (2002). En el caso nuestro, al usar ladrillos fabricados a escala reducida no existe este factor por lo tanto se debió estudiar este problema, el cual en el Anexo A *"Estudio, producción y normalización de ladrillos a escala 1:4"* ya se había tratado obteniendo un valor para nuestro ladrillos de 0,6 por lo tanto:

Ladrillos cerámicos 1:1	Ladrillos cerámicos 1:4			
290x140x50 mm Cant: 10	72.5x35x1.25 mm Cant: 20			
	Resistencia a la compresión f _b 46,87 MPa			
Posistoncia a la comprosión f. 50.06 MPa	(Nov 01)			
Resistencia a la compresión 16 30,00 MPa	Resistencia a la compresión <i>f_b</i> 45,57 MPa			
	(Jun 03)			
Tabla D.2 [Resistencia normalizada de las piezas a compresión]				

ENSAYO SOBRE PEQUEÑOS ENSAMBLAJES CORTE Y COMPRESIÓN

• RESISTENCIA A CORTE UNIAXIAL f_v

CAMPAÑ			
Modelo edific	rio 1.4		
Paredes de o	obra de fabrica de	e ladrillo	$A = 2 (35 \times 35) \text{ mm}^2$
Probetas	a corte - Esca	ala reducida (1:4)	
Velocidad de	aplicación de la	carga 10 N/seg	
Edad de las	probetas	28 días	2.5 mm
Proheta	Carga Max.	Resistencia a corte	
Tiobeta	[N]	f_v [N/mm ²]	
f _v 1:4 – 1	0,554	0,226	
f _v 1:4 − 2	0,529	0,216	
$f_v 1:4 - 3$	0,512	0,209	A 10
f_{v} 1:4 – 4	0,468	0,191	72.5 mm
$f_v 1:4 - 5$	0,550	0,224	
$f_v 1:4 - 6$	0,452	0,184	100 B
f_{v} 1:4 – 7	0,452	0,184	and the second second
f_{V} 1:4 – 8	0,565	0,231	
$f_v 1:4 - 9$	0,460	0,188	
$f_v 1:4 - 10$	0,493	0,201	ALC: NO
		0.21	12.5 mm

• RESISTENCIA A COMPRESIÓN DE LA FABRICA f_{cm}

CAMPAÑA EXPERIMENTAL I Muros a carga biaxial 1:1 Giro Superior Libre Probetas a compresión - Escala real (1:1) Velocidad de aplicación de la carga 8 KN/seg Edad de las probetas 28 días					
Probeta	Carga Max. ^[KN]	Resistencia a compresión f_{cm} [N/mm²]	lmagen de la probeta	Esquema de Rotura	
C 1:1 – 1	685,8	16,89	C-1:1 1		
C 1:1 – 2	652,7	16,08			

C 1:1 – 3	710,4	17,50	C1:1 3	
C 1:1 – 4	816,1	20,10	C-111 4	
C 1:1 – 5	681,9	16,80	C-1:1 5	
C 1:1 – 6	664,9	16,38	C-1:1 6	
C 1:1 – 7	626,8	15,44	C-1:1 7	
C 1:1 – 8	599,9	14,78	C-1:1 8	

CAMPAÑA EXPERIMENTAL II

Muros a carga biaxial 1:4 Giro Superior impedido

Probetas a compresión - Escala reducida (1:4)

velocidad de	aplicación de la	carga 500 N/seg
Edad de las j	orobetas	36 días
Probeta	Carga Max.	Resistencia a compresión
TTODOLA	[N]	f_{cm} [N/mm ²]
C 1:4 – 1	62,8	24,75
C 1:4 – 2	74,2	29,24
C 1:4 – 3	50,8	20,02
C 1:4 – 4	43,8	17,26
C 1:4 – 5	45,2	17,81
C 1:4 – 6	61,4	24,20
C 1:4 – 7	70,4	27,74
C 1:4 – 8	51,8	20,41
C 1:4 – 9	55,6	21,91
C 1:4 – 10	63,0	24,83
		22,82

CAMPAÑA EXPERIMENTAL III Muros a carga biaxial 1:4

Giro Superior libre

Probetas a compresión - Escala reducida (1:4)

Velocidad de	aplicación de la	carga 500 N/seg
Edad de las p	orobetas	30 días
Proheta	Carga Max.	Resistencia a compresión
TTODEla	[N]	f_{cm} [N/mm ²]
C 1:4 – 1	63,48	25,02
C 1:4 – 2	64,84	25,55
C 1:4 – 3	56,28	22,18
C 1:4 – 4	54,24	21,38
C 1:4 – 5	65,52	25,82
C 1:4 – 6	66,58	26,24
C 1:4 – 7	67,06	26,43
C 1:4 – 8	59,28	23,36
C 1:4 – 9	64,68	25,49
C 1:4 – 10	63,84	25,16
	•	24,66

CAMPAÑA EXPERIMENTAL IV Muros a carga biaxial 1:4 Giro Superior Libre / distintas dimensiones Probetas a compresión - Escala reducida (1:4) Velocidad de aplicación de la carga 500 N/seg Edad de las probetas 28 días Resistencia a compresión Carga Max. Probeta *f_{cm}* [N/mm²] 24,82 [N] C 1:4 – 1 62,98 C 1:4 – 2 70,58 27,81 C 1:4 – 3 71,41 28,14 C 1:4 – 4 70,87 27,93 C 1:4 – 5 62,69 24,71 C 1:4 – 6 57,27 22,57 C 1:4 – 7 28,90 73,34 C 1:4 – 8 62,68 24,70 C 1:4 – 9 62,98 24,82 C 1:4 – 10 70,58 27,81

CAMPAÑA EXPERIMENTAL V

Muros a carga biaxial 1:4

Giro Superior Libre / sin mortero en llagas

Probetas a compresión - Escala reducida (1:4)

26,20

Velocidad de Edad de las r	aplicación de la probetas	carga 500 N/seg 30 días
Probeta Carga Max.		Resistencia a compresión
C 1:4 – 1	65,12	25,66
C 1:4 – 2	57,44	22,64
C 1:4 – 3	52,66	20,75
C 1:4 – 4	67,24	26,50
C 1:4 – 5	57,27	22,57
C 1:4 – 6	57,38	22,61
C 1:4 – 7	64,88	25,57
C 1:4 – 8	64,86	25,56
C 1:4 – 9	65,12	25,66
C 1:4 – 10	57,44	22,64
		23,98

Modelo edificio 1:4 Paredes de obra de fabrica de ladrillo

Probetas a compresión - Escala reducida (1:4)

Velocidad de	aplicación de la ca	irga 500 N/seg
Edad de las p	orobetas	29 días
Probata	Carga Max.	Resistencia a compresión
ribbela	[N]	f_{cm} [N/mm ²]
C 1:4 – 1	64,45	25,40
C 1:4 – 2	58,24	22,95
C 1:4 – 3	57,91	22,82
C 1:4 – 4	58,3	22,98
C 1:4 – 5	53,62	21,13
C 1:4 – 6	57,98	22,85
C 1:4 – 7	63,92	25,19
C 1:4 – 8	64,75	25,52
C 1:4 – 9	53,61	21,13
C 1:4 – 10	62,53	24,64
	·	23.46

También se realizaron ensayos a compresión sobre probetas cúbicas de cuatro hiladas de alto; aunque estos resultados no se encuentran en el capitulo 3, ya que no es un ensayo común, pero si empleamos este resultado en el capitulo 4 para sustentar el método propuesto de ensayo para determinar la resistencia a compresión de la fabrica (f_{cm}).

CAMPAÑA EXPERIMENTAL I Muros a carga biaxial 1:1 Giro Superior Libre			1	
Probetas	a compresió	n cúbica - Escala (1:1)		The Automotion Association of the
Velocidad de	e aplicación de la	carga 20 KN/seg	1. 1. 1. 1.	A successful and the successful and the
Edad	de las probetas	28 días	100	New State of the second se
Proheta	Carga Max.	Resistencia a compresión		A REAL PROPERTY OF THE REAL PR
Tiobela	[kN]	f_{cm} [N/mm 2]	7000	I manufacture all in succession in the
C 1:1b – 1	1808,15	21,50	Constant of the	
C 1:1b - 2	2098,34	24,95	/ f	
C 1:1b - 3	1613,96	19,19		
C 1:1b -4	2179,91	25,92		
C 1:1b -5	1757,18	20,89	1	
		22,49		

ENSAYO SOBRE PEQUEÑOS ENSAMBLAJES CORTE Y COMPRESIÓN

• RESISTENCIA A CORTE UNIAXIAL f_v

CAMPAÑ			
Modelo edific	rio 1.4		
Paredes de o	obra de fabrica de	e ladrillo	$A = 2 (35 \times 35) \text{ mm}^2$
Probetas	a corte - Esca	ala reducida (1:4)	
Velocidad de	aplicación de la	carga 10 N/seg	
Edad de las	probetas	28 días	2.5 mm
Proheta	Carga Max.	Resistencia a corte	
Tiobela	[N]	f_v [N/mm ²]	
f _v 1:4 – 1	0,554	0,226	
<i>f</i> _v 1:4 − 2	0,529	0,216	
$f_v 1:4 - 3$	0,512	0,209	A 10
f_{v} 1:4 – 4	0,468	0,191	72.5 mm
$f_v 1:4 - 5$	0,550	0,224	
$f_v 1:4 - 6$	0,452	0,184	100 B
f_{v} 1:4 – 7	0,452	0,184	and the second second
f_{V} 1:4 – 8	0,565	0,231	
$f_v 1:4 - 9$	0,460	0,188	
$f_v 1:4 - 10$	0,493	0,201	ALC: NO
		0.21	12.5 mm

• RESISTENCIA A COMPRESIÓN DE LA FABRICA f_{cm}

CAMPAÑA EXPERIMENTAL I Muros a carga biaxial 1:1 Giro Superior Libre Probetas a compresión - Escala real (1:1) Velocidad de aplicación de la carga 8 KN/seg Edad de las probetas 28 días					
Probeta	Carga Max. ^[KN]	Resistencia a compresión f_{cm} [N/mm²]	lmagen de la probeta	Esquema de Rotura	
C 1:1 – 1	685,8	16,89	C-1:1 1		
C 1:1 – 2	652,7	16,08			

C 1:1 – 3	710,4	17,50	C-1:1 3	
C 1:1 – 4	816,1	20,10	C-111 4	
C 1:1 – 5	681,9	16,80	C-1:1 5	
C 1:1 – 6	664,9	16,38	C-1:1 6	
C 1:1 – 7	626,8	15,44	C-1:1 7	
C 1:1 – 8	599,9	14,78	C-1:1 8	

CAMPAÑA EXPERIMENTAL II

Muros a carga biaxial 1:4 Giro Superior impedido

Probetas a compresión - Escala reducida (1:4)

velocidad de	aplicación de la	carga 500 N/seg
Edad de las j	orobetas	36 días
Probeta	Carga Max.	Resistencia a compresión
TTODOLA	[N]	f_{cm} [N/mm ²]
C 1:4 – 1	62,8	24,75
C 1:4 – 2	74,2	29,24
C 1:4 – 3	50,8	20,02
C 1:4 – 4	43,8	17,26
C 1:4 – 5	45,2	17,81
C 1:4 – 6	61,4	24,20
C 1:4 – 7	70,4	27,74
C 1:4 – 8	51,8	20,41
C 1:4 – 9	55,6	21,91
C 1:4 – 10	63,0	24,83
		22,82

CAMPAÑA EXPERIMENTAL III Muros a carga biaxial 1:4

Giro Superior libre

Probetas a compresión - Escala reducida (1:4)

Velocidad de	aplicación de la	carga 500 N/seg
Edad de las p	orobetas	30 días
Proheta	Carga Max.	Resistencia a compresión
Tiobela	[N]	f_{cm} [N/mm ²]
C 1:4 – 1	63,48	25,02
C 1:4 – 2	64,84	25,55
C 1:4 – 3	56,28	22,18
C 1:4 – 4	54,24	21,38
C 1:4 – 5	65,52	25,82
C 1:4 – 6	66,58	26,24
C 1:4 – 7	67,06	26,43
C 1:4 – 8	59,28	23,36
C 1:4 – 9	64,68	25,49
C 1:4 – 10	63,84	25,16
	·	24,66

CAMPAÑA EXPERIMENTAL IV Muros a carga biaxial 1:4 Giro Superior Libre / distintas dimensiones Probetas a compresión - Escala reducida (1:4) Velocidad de aplicación de la carga 500 N/seg Edad de las probetas 28 días Resistencia a compresión Carga Max. Probeta *f_{cm}* [N/mm²] 24,82 [N] C 1:4 – 1 62,98 C 1:4 – 2 70,58 27,81 C 1:4 – 3 71,41 28,14 C 1:4 – 4 70,87 27,93 C 1:4 – 5 62,69 24,71 C 1:4 – 6 57,27 22,57 C 1:4 – 7 28,90 73,34 C 1:4 – 8 62,68 24,70 C 1:4 – 9 62,98 24,82 C 1:4 – 10 70,58 27,81

CAMPAÑA EXPERIMENTAL V

Muros a carga biaxial 1:4

Giro Superior Libre / sin mortero en llagas

Probetas a compresión - Escala reducida (1:4)

26,20

Velocidad de Edad de las r	aplicación de la probetas	carga 500 N/seg 30 días
Probeta Carga Max.		Resistencia a compresión
C 1:4 – 1	65,12	25,66
C 1:4 – 2	57,44	22,64
C 1:4 – 3	52,66	20,75
C 1:4 – 4	67,24	26,50
C 1:4 – 5	57,27	22,57
C 1:4 – 6	57,38	22,61
C 1:4 – 7	64,88	25,57
C 1:4 – 8	64,86	25,56
C 1:4 – 9	65,12	25,66
C 1:4 – 10	57,44	22,64
		23,98

Modelo edificio 1:4 Paredes de obra de fabrica de ladrillo

Probetas a compresión - Escala reducida (1:4)

		· · · · ·		
Velocidad de	aplicación de la car	rga 500 N/seg		
Edad de las p	orobetas	29 días		
Probata	Carga Max.	Resistencia a compresión		
Tiobela	[N]	f_{cm} [N/mm ²]		
C 1:4 – 1	64,45	25,40		
C 1:4 – 2	58,24	22,95		
C 1:4 – 3	57,91	22,82		
C 1:4 – 4	58,3	22,98		
C 1:4 – 5	53,62	21,13		
C 1:4 – 6	57,98	22,85		
C 1:4 – 7	63,92	25,19		
C 1:4 – 8	64,75	25,52		
C 1:4 – 9	53,61	21,13		
C 1:4 – 10	62,53	24,64		
		23.46		

También se realizaron ensayos a compresión sobre probetas cúbicas de cuatro hiladas de alto; aunque estos resultados no se encuentran en el capitulo 3, ya que no es un ensayo común, pero si empleamos este resultado en el capitulo 4 para sustentar el método propuesto de ensayo para determinar la resistencia a compresión de la fabrica (f_{cm}).

CAMPAÑA EXPERIMENTAL I Muros a carga biaxial 1:1 Giro Superior Libre				
Probetas	a compresió	n cúbica - Escala (1:1)		The Address Strain A second state of the second
Velocidad de	e aplicación de la	carga 20 KN/seg	1.000	Newsmannington and the State
Edad	de las probetas	28 días		
Proheta	Carga Max.	Resistencia a compresión		A second s
Tiobela	[kN]	f_{cm} [N/mm 2]	1000	In the second second second second
C 1:1b – 1	1808,15	21,50		
C 1:1b - 2	2098,34	24,95		and the second s
C 1:1b - 3	1613,96	19,19		
C 1:1b -4	2179,91	25,92		
C 1:1b -5	1757,18	20,89	tent.	I Day
		22,49		

F

ENSAYO BIAXIAL PAREDES SIMPLES A ESCALA REAL Y ESCALA REDUCIDA

La nomenclatura empleada para la identificación de todos los muros simples de las campañas experimentales I, II, III y V es la siguiente.

A continuación se resume de forma detallada por campañas experimentales los resultados obtenidos en cada ensayo.

F.1 CAMPAÑA EXPERIMENTAL I ENSAYOS BIAXIALES SOBRE PAREDES DE OBRA DE FABRICA ESCALA 1:1. GIRO SUPERIOR LIBRE (MS11GSL)

• MURO MS11GSL – 150V80H

Este fue el muro que se ensayó a menor carga vertical (150 kN) y que además marca el límite inferior de carga vertical, ya que de acuerdo con la disposición del ensayo, el panel presenta un posible mecanismo de pérdida de equilibrio mediante un giro alrededor de la esquina opuesta a la de aplicación de la carga horizontal. La relación límite entre V (carga vertical) y H (carga horizontal) para la pérdida de equilibrio es de 0,55 aproximadamente y en este rango es donde se produjo la rotura.

La Figura F. 1 nos describe el comportamiento del muro de fábrica de ladrillo bajo compresión uniaxial; la aplicación de la carga fue de forma constante (1 kN/s) hasta alcanzar los 150 kN. La medida del desplazamiento vertical medio se obtiene de la media aritmética de las medidas de los dos extensiómetros verticales (ver Instrumentación en el Capítulo 3). Se diferencia en la gráfica tres tramos casi lineales, el primero

hasta alcanzar los 25 kN (0,15 MPa), el segundo entre los 25 y 74 kN (0,44 MPa) y un tercero entre los 74 y 150 kN (0,89 MPa).

Como se aprecia en la grafica (Figura F. 1), no existe una zona concreta de linealidad, no es posible la obtención del modulo de deformación longitudinal certero, muy posiblemente al tratarse de niveles de carga baja el muro solo experimenta un acomodamiento entre sus elementos. Si bien, no sea muy confiable o difícil de interpretar el comportamiento de la grafica anterior, la medida del modulo de deformación longitudinal (E) se calculo con la zona lineal que se inicia cerca de los 0,44 MPa. El cálculo para todos los muros se realizo de forma similar mediante la Ecuación F. 1, cerciorándose que se encuentre fuera de la zona de acomodamiento.

La gráfica de la Figura F. 2, nos ilustra el comportamiento del panel bajo una carga vertical constante de 150 kN, durante la aplicación de la carga horizontal hasta su rotura (rampa de carga horizontal 0,205 kN/s). La curva carga-desplazamiento horizontal presenta un aspecto bilineal donde existe un cambio brusco en la rigidez a corte, para una carga horizontal de aproximadamente 45 kN. La carga horizontal pico fue de 80,17 kN. El valor obtenido de la rigidez a corte fue para la primera rama de carga, la más rígida, entre 10 y 50 kN.

El cálculo de la rigidez de corte (G) para todos los muros se realizo en la primera rama de carga, la cual aplicábamos la siguiente formulación (Ecuación F. 2) basando en la elástica de un muro empotrado en su base sujeto a una carga lateral (Figura F. 3).

$$\Delta_{T} = \Delta_{F} + \Delta_{V} \tag{a}$$

$$\Delta_T = \frac{FH^3}{3EI} + \alpha_m \frac{VH}{GA}$$
^(b)

Ecuación F. 2

Donde *F* es la fuerza lateral aplicada; *H* es altura desde la base empotrada, *E* es modulo elasticidad (obtenido en la Ecuación F. 1), *I* la inercia de la sección, *A* el área, y α_m es un coeficiente que depende de la forma de la sección transversal del muro (para secciones rectangulares su valor es 1,2).

Se cuenta para la mayoría de los ensayos con 3 extensiómetros horizontales dispuestos en forma diagonal del muro captando básicamente la apertura de las juntas verticales. Debido a la disposición de los extensiómetros en el muro y al mecanismo de rotura que este muro presento (Figura F. 6) se pudo obtener la medida de la abertura de fisuras en los tres captadores de desplazamiento; La Figura F. 4 ilustra el comportamiento de los tres LVDT.

Se observa claramente que la fisuración se inicia al instante de aplicar la carga horizontal (2,4 kN) a lo largo de todo el muro, siendo mas pronunciada la abertura en el centro del muro. En la parte inferior del panel sobre los 34 kN de carga horizontal (42% de la carga de rotura) la fisuras aumenta mas que la junta central hasta los 44 kN (55% de la rotura) donde

aparentemente se presenta un cierre de la fisura, lo cual no es cierto; este comportamiento se presento en varios muros, la grafica nos muestra que el transductor de desplazamiento presenta un retroceso pero realmente se trata de cierre de fisura en el sentido perpendicular a la carga, en sentido vertical (Y). La Figura F. 5 mediante una serie de ilustraciones nos explica lo sucedido. Las deformaciones en la junta superior del panel aumenta pero de forma muy lenta solo se observa un notable cambio cerca de los 60 kN, en este momento se produce un rápido proceso de micro-fisuración inestable que desemboca en la rotura frágil del panel, el cual ocurre a los 80,17 kN de carga horizontal.

El mecanismo de rotura que presenta este muro es claramente un deslizamiento de las juntas. También se observa como la compresión se traslada hacia la esquina inferior derecha de forma que esta zona sufre un aplastamiento notable con una alta densidad de fisuración (Figura F. 6).

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 1:

E	G	Fv	Hu	H ₁	Wu
MPa	MPa	kN	kN	kN	mm
3760,03	1624,33	150,00	80,17	2,4	0,10683
σ_n	τ	$\tau_{max} = R$	σ ₁	σ_3	θ
MPa	MPa	MPa	MPa	MPa	Rad
0,893	0,477	0,653	1,100	-0,207	0,409
Tabla F. 1 [Parámetros generales obtenidos muro MS11GSL – 150V80H]					

Donde *E* es el modulo de elasticidad; *G* la rigidez a cortante; *F*_v la carga vertical; *H*_u la carga horizontal ultima; *H*₁ la carga horizontal de inicio de la fisuración apreciada en los transductores; *W*_u apertura de fisura ultima; σ_n tensión normal; τ tensión tangencial; τ_{max} tensión tangencial máxima; σ_1 tensión principal; σ_3 tensión principal; θ ángulo entre la junta horizontal y la tensión principal.

La Figura F. 7 nos aclarar los cálculos anteriores.

Figura F. 7 [Calculo de los parámetros de ensayos de muros simples a carga biaxial]

• MURO MS11GSL – 250V110H

Este muro se le aplico carga vertical hasta los 250 kN de forma constante y con velocidad de 1 kN/seg. La curva obtenida de la aplicación de la carga vertical (Figura F. 8) se observa claramente dos tramos lineales, inicialmente un primero hasta los 50 kN (0,30 MPa) y luego uno mas rígido hasta la carga de precompresión, 250 kN (1,48 MPa).

Se aplicó igualmente la carga horizontal a raíz de 0,205 kN/s. Se observa (Figura F. 9) una primera zona de comportamiento lineal, hasta aproximadamente 85 kN para posteriormente pasar a una rama de pérdida de rigidez hasta rotura (ver Figura F. 9). La carga de rotura fue de 110,29 kN. En la zona de descarga vemos como el panel presenta aún una pequeña resistencia residual debida a que seguramente se debe formar un mecanismo resistente después de la rotura principal que permite un pequeño aumento de la carga.

Durante la aplicación de la carga horizontal (Figura F. 10), los tres extensiómetros horizontales internos su comportamiento es cualitativamente similar. Se distingue claramente que las fisuras se inician en el centro del panel, cerca de los 14 kN (12% de la carga de rotura), luego por las juntas inferiores (30 kN el 27% C.R) y luego por las juntas superiores (55 kN el 50 % C.R); sin embargo el deterioro del muro se inicia de orden diferente, de las junta superiores hacia la inferior; Rápidamente las fisuras de la junta superior solo resiste un 18 % mas de carga hasta alcanzar los 75 kN y de allí en adelante como se aprecia en la Figura F. 10 prácticamente la fisura aumenta rápidamente hasta la carga de rotura (110,29 kN). De igual forma sucede para la junta central e inferior alcanzando los 92 kN.

El mecanismo de rotura que se genera en este caso presenta es de una rotura escalonada por las juntas y de algunas piezas; además a medida que nos alejamos del cuadrante de aplicación de la carga se observa una rotura básicamente por las piezas (mayores compresiones) presentándose un aplastamiento de la esquina opuesta (ver Figura F. 11). La fisuración aumenta a medida que nos alejamos del punto de aplicación de la carga horizontal desarrollándose una especie de cono de carga en la diagonal del muro.

E	G	Fv	Hu	H ₁	Wu	
MPa	MPa	kN	kN	kN	mm	
4111,97	1648,32	250,00	110,29	14	2,29	
σn	τ	$\tau_{max} = R$	σ1	σ3	θ	
MPa	MPa	MPa	MPa	MPa	Rad	
1,488 0,656 0,992 1,736 -0,248 0,361						
Tabla F. 2 [Parámetros generales obtenidos muro MS11GSL – 250V110H]						

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 2:

La Figura F. 11 muestra el esquema general de rotura; claramente se aprecia que la rotura se produce tanto en las juntas como por los ladrillos, sobre todo al alejarse de la zona de aplicación de carga; también se aprecia el detalle de rotura en la esquina de aplicación de la carga (Junta superior) y la forma como mide el extensiómetro horizontal la abertura de macro-fisuras.

MURO MS11GSL – 250V114H

Este ensayo fue una repetición del anterior. Como se verá en los posteriores ensayos con la misma carga de precompresión (carga vertical)

la variación de las cargas de rotura no son muy significativas a nuestro juicio dado el gran número de factores que pueden alterar el ensayo. Así pues tan sólo se realizaron ensayos de repetición para comprobar que este hecho se producía.

El comportamiento durante la aplicación de la carga vertical fue muy similar al anterior (MS11GSL – 250V110H). La carga se aplicó a razón de 1 kN/s hasta los 250 kN. Se observa en la curva de la Figura F. 12 una primera zona de acomodamiento hasta los 52 kN (0,30 MPa) y luego la zona elástico-lineal.

El comportamiento durante la aplicación de la carga horizontal (0,205 kN/s), la curva carga-desplazamiento horizontal se percibe que hasta aproximadamente los 28 kN de carga no hay desplazamiento significativo. Hasta los 80 kN el muro se mantiene con una rigidez constante para después ir perdiendo gradualmente la rigidez hasta la rotura la cual alcanza los 114,83 kN (Figura F. 13).

Al igual que el otro muro de carga de precompresión de 250 kN existe una zona de descarga en la cual el panel presenta aún una pequeña resistencia residual debida a que seguramente se debe formar un mecanismo resistente después de la rotura principal que permite un pequeño aumento de la carga.

Los extensiómetros horizontales internos no presentan similitud con el ensayo de la misma carga de precompresión (MS11GSL – 250V110H); la Figura F. 14 nos muestra el comportamiento de los extensiómetros, el cual indica un inicio de fisuración a muy baja carga horizontal (2,8 kN), iniciándose desde la junta inferior, luego por la junta media y finalmente por la junta superior. El extensiómetro colocado en el centro del panel presenta un retroceso el cual su justificación esta explicada en la Figura F. 5.

El mecanismo de rotura presentado es semejante al del ensayo anterior, con la diferencia que aquí existe una mayor tendencia a la rotura por tracción indirecta de los ladrillos (ver Figura F. 15). La fisura principal

discurre aproximadamente por la diagonal del muro aunque con una tendencia a ir por la mitad comprendida entre la diagonal y la esquina superior derecha. Se presenta igualmente una concentración de fisuras en la esquina opuesta a la de aplicación de la carga (ver Figura F. 15 alta densidad de fisuración).

E	G	Fv	Hu	H ₁	Wu
MPa	MPa	kN	kN	kN	mm
4022,21	1737,59	250,00	114,83	2,8	2,849
σ_n	τ	$\tau_{max} = R$	σ_1	σ_3	θ
MPa	MPa	MPa	MPa	MPa	Rad
1,488	0,684	1,010	1,754	-0,266	0,372
Tabla F. 3 [Parámetros generales obtenidos muro MS11GSL – 250V114H]					

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 3 :

MURO MS11GSL - 400V134H

El comportamiento durante la aplicación de la carga vertical (1 kN/s) se observa claramente dos tramos (Figura F. 16); un primer tramo con desplazamiento considerable, que coincide con un acomodamiento inicial; seguido de un tramo lineal – elástico. El comportamiento durante la aplicación de la carga vertical es estable.

El comportamiento durante la aplicación de la carga horizontal (Figura F. 17) fue similar a los anteriores. El sistema se comportó linealmente hasta los 120 kN de carga y a partir de aquí se desarrolló la rotura. Cabe destacar que aquí no hay un comportamiento de tipo bilineal como en otros ensayos y la rigidez se mantiene prácticamente constante hasta la rotura.

Los extensiómetros horizontales internos (ver Figura F. 18) nos muestran un comportamiento muy diferente a los anteriores muros; Las fisuras se inician por la junta superior, seguido de la junta inferior y por ultimo la junta central; a pesar de que durante la aplicación de la carga vertical notamos algunas fisuras en el centro del panel, como se explica en los párrafos anteriores la junta central fue la última en registrar la apertura de fisuras durante este proceso y además se inicio a partir de los 20,5 kN; proceso contrario se presento en los otros extensiómetros, ya que estos detectaron movimiento a muy baja carga (2,1 kN).

E	G	Fv	Hu	H ₁	Wu
MPa	MPa	kN	kN	kN	mm
6019,91	2600,60	400,00	135,75	2,1	1,06
σ _n	τ	$\tau_{max} = R$	σ ₁	σ_3	θ
MPa	MPa	MPa	MPa	MPa	Rad
2,381	0,808	1,439	2,629	-0,248	0,298
Tabla F. 4 [Parámetros generales obtenidos muro MS11GSL - 400V134H]					

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 4 :

El mecanismo de rotura presentado es algo distinto a los anteriores muros (cargas de compresión inferiores). Aunque en el esquema general de rotura (Figura F. 19) no se observa una grieta principal, esta si se presento con una tendencia a ir por la mitad comprendida entre la diagonal y la esquina superior derecha; además se puede apreciar un conjunto de micro-fisuras o de fisuras creadas que no han llegado a liberar la energía total de fractura.

• MURO MS11GSL – 400V143H

El comportamiento durante la aplicación de la carga vertical (1 kN/s) se aprecian claramente (Figura F. 20) dos tramos lineales; uno inicial desde muy baja carga horizontal (1,4 kN) hasta los 170 kN (1,01 MPa) donde la deformación alcanzada la mitad de la deformación máxima. A partir de dicha carga el comportamiento es de forma elástico-lineal hasta los 400 kN (2,38 MPa).

El comportamiento durante la aplicación de la carga horizontal (0,205 kN/s) fue en general muy rígido (Figura F. 21). El muro se comportó de forma bilineal casi hasta la rotura donde súbitamente de forma muy frágil se produjo la rotura; Inicialmente a partir de 2,8 kN de carga horizontal se

inicia una primera rama rígida hasta los 106 kN; a partir de aquí disminuye la rigidez hasta los 137 kN, donde rápidamente desemboca en el fallo del muro al llegar a los 143,07 kN.

Los extensiómetros horizontales internos no presentan similitud con el ensayo de la misma carga de precompresión (MS11GSL - 400V134H), pero si con la mayoría de los muros anteriores; la Figura F. 22 nos muestra dicho comportamiento, en el cual la fisuras se inician por la junta superior a partir de los 12 kN (8% de la carga de rotura) de manera rígida hasta de los 137 kN momento en que la abertura se desboca de manera súbita hasta la rotura; seguido por la junta inferior la cual a partir de 30 kN se detecta movimiento en las fisuras con deformaciones considerables hasta los 100 kN, momento en que la abertura disminuye muy lentamente y la carga aumenta hasta los 137 kN; el extensiómetro del centro del panel se comporta de manera muy similar al de la juntas superior con la diferencia que es el ultimo en registrar la fisuración, llegando a detectarlas a partir de los 75 kN.

El mecanismo de rotura (Figura F. 23) se forma básicamente por la combinación entre deslizamiento de juntas y por tracción indirecta en los ladrillos aumentando la fisuración en la zona de la esquina opuesta a la de aplicación de la carga; se aprecia una diagonal de completa de fallo pero a diferencia de los muros anteriores de menor carga de precompresión existe una gran intensidad de micro-fisuras sobre las piezas (tracción indirecta).

Figura F. 23 [Mecanismo de rotura – Diagrama de rotura muro MS11GSL - 400V143H]

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 5:

E	G	Fv	Hu	H ₁	Wu	
MPa	MPa	kN	kN	kN	mm	
6136,27	2650,86	400,00	143,07	12	0,51	
σ_n	τ	$\tau_{max} = R$	σ ₁	σ_3	θ	
MPa	MPa	MPa	MPa	MPa	Rad	
2,381	0,852	1,464	2,654	0,273	0,310	
Tabla	Tabla F. 5 [Parámetros generales obtenidos muro MS11GSL - 400V143H]					

MURO MS11GSL – 500V185H

El comportamiento durante la aplicación de la carga vertical (Figura F. 24) con dificultad se aprecia los tres tramos lineales que se compone; uno

inicial desde muy baja carga horizontal (1,87 kN) hasta los 86 kN (0,51 MPa); un segundo tramo hasta los 236 kN (1,40 MPa) y un tercero hasta la carga total de precompresión, 500 kN (2,97 MPa). Aunque no se percibieron a simple vista fisuras durante la aplicación de la carga vertical, suceso que si se percibió en los muros de carga de precompresión de 400 kN y en otro muro con la misma carga de precompresión a este, por lo tanto podemos creer que en este muro también existió micro-fisuración durante este proceso.

El comportamiento durante la aplicación de la carga horizontal (Figura F. 25) fue muy parecido al de los ensayos de 400 kN. El muro se comportó de forma bilineal casi hasta la rotura (165 kN) donde súbitamente y de forma muy frágil se produjo la rotura; de esta manera se observa como hay una pérdida de rigidez a corte en las cercanías de la carga de rotura.

El comportamiento de las juntas internas durante la aplicación de la carga horizontal (Figura F. 26) se detecta apertura de fisuras en el centro del panel a cargas bajas (6 kN), aumentando de forma lineal hasta los 50 kN, donde se observa que la resultante de la fisura disminuye muy lentamente (la explicación Figura F. 5) seguida de un aumento de la carga hasta los 165 kN instante que la fisura aumenta súbitamente hasta el fallo del panel; paralelamente la junta inferior y superior reaccionan muy lentamente, la junta superior detecta un ínfimo movimiento a cerca de los 50 kN pero no llega a desembocar la apertura hasta cargas muy cercanas a la de la rotura (175 kN el 95% de la carga de rotura); la junta inferior si llega a desarrollar la apertura de la fisura en cargas un poco mas bajas una entre los 134 kN y los 165 kN otra a partir de los 165 kN hasta 182 kN donde se desborda el fallo del muro.

El mecanismo de rotura presentado, al igual que en otros casos, se trata de una rotura por la diagonal (biela cargada) siguiendo juntas y ladrillos pero con una marcada tendencia a la rotura por tracción indirecta de los ladrillos. Se observa en la Figura F. 27 como existe una mayor fisuración en este muro debido a que su estado de carga es mayor.

E	G	Fv	Hu	H ₁	Wu
MPa	MPa	kN	kN	kN	mm
6970,78	3011,38	500,00	185,4	6	1,56
σ_n	τ	$\tau_{max} = R$	σ_1	σ_3	θ
MPa	MPa	MPa	MPa	MPa	Rad
2,976	1,104	1,853	3,341	0,365	0,319
Tabla F. 6 [Parámetros generales obtenidos muro MS11GSL - 501V185H]					

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 6:

• MURO MS11GSL - 500V191H

El comportamiento durante la aplicación de la carga vertical (Figura F. 28) al igual que el muro anterior bajo la misma carga de precompresión se compone de tres tramos lineales muy similares; uno inicial desde muy baja carga horizontal hasta los 50 kN (0,30 MPa); un segundo tramo hasta los 230 kN (1,37 MPa) y un tercero hasta la carga total de precompresión, 500 kN. A diferencia del muro anterior si se percibieron a simple vista fisuras durante la aplicación de la carga vertical en piezas, varias de las cuales hacen parte de la diagonal que se formo durante el fallo. Se observa también que en el inicio de la aplicación de la tensión hay una deformación con una escasa carga aplicada, es posiblemente debido a un movimiento del extensiómetro.

El comportamiento durante la aplicación de la carga horizontal (Figura F. 29) fue muy parecido al de los de los muros anteriores. El muro se comportó de forma bilineal casi hasta la rotura (hasta los 168 kN) donde súbitamente de forma muy frágil se produjo la rotura; de esta manera se observa como hay una pérdida de rigidez a corte en las cercanías a la carga de rotura.

El comportamiento de los extensiómetros internos durante la aplicación de la carga horizontal (Figura F. 30) sigue el mismo patrón del muro anterior (MS11GSL - 500V185H) con diferencias cuantitativas, pero el orden de apertura y el comportamiento de estas es el mismo.

El mecanismo de rotura presentado, se trata de una rotura por la diagonal siguiendo juntas y ladrillos pero con tendencia a la rotura por tracción de las piezas (Figura F. 31). Se observa en la Figura F. 31 como la instrumentación dispuesta es efectiva en su totalidad en este caso, donde todos los extensiómetros horizontales captan la macro-fisura. Aparentemente no se aprecia en el esquema general de rotura (Figura F. 31), pero este muro quedo bastante inestable, motivo por el cual se registro esta figura sin retirar la instrumentación y no se tiene mas registros ya al retirar la instrumentación el muro se desplomó.

E	G	Fv	Hu	H ₁	Wu
MPa	MPa	kN	kN	kN	mm
7204,76	3112,46	500,00	191,63	1,8	2,04
σ _n	τ	$\tau_{max} = R$	σ_1	σ_3	θ
MPa	MPa	MPa	MPa	MPa	Rad
2,976	1,141	1,875	3,363	-0,387	0,327
Tabla	a E 7 [Parámetr	os generales ob	tenidos muro M	S11GSL - 501V1	Q1H1

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 7:

MURO MS11GSL – 650V207H

Este ensayo no presenta registro de extensiómetros horizontales internos debido a un fallo en la conexión que detectamos una vez había iniciado el ensayo y no era conveniente retroceder, por lo tanto, sólo se registro los extensiómetros verticales y el horizontal de medición del desplazamiento en cabeza. La práctica muestra como para un rango de valores de la carga vertical de entre 650 kN y los 1000 kN de carga máxima que proporciona el equipo MTS existen serios problemas para controlar la rotura de los paneles, quedando destruidos en muchos casos. Así, por la seguridad tanto de los que realizamos los ensayos como de la instrumentación se decidió eliminar estos extensiómetros para la carga máxima aplicada (997 kN).

El comportamiento durante la aplicación de la carga vertical (Figura F. 32) es similar a los muros anteriores, una rama clara de acomodamiento hasta los 50 kN (0,3 MPa), otra rama muy rígida hasta cerca de los 400 kN (2,38 MPa) y una tercera rama menos rígida hasta llegar a la carga de precompresión, 650 kN).

El comportamiento durante la aplicación de la carga horizontal (Figura F. 33). El muro no registra movimiento hasta que no sobrepasa los 50 kN, a partir de allí se genera una rama lineal hasta los 150 kN y otra menos rígida hasta los 200 kN donde rápidamente y de forma muy frágil se produjo la rotura.

El mecanismo de rotura presentado, se trata de una rotura por la diagonal inclinada hacia el cuadrante superior y con tendencia a la verticalidad; el desarrollo de la rotura fue la fractura de los ladrillos, una transición entre tracción indirecta y compresión pura (Figura F. 34). A diferencia con los anteriores muros, la rotura sucede casi en su totalidad en los ladrillos como nos muestra la Figura F. 34-rotura de piezas.

E	G	Fv	Hu	H ₁	Wu
MPa	MPa	kN	kN	kN	mm
9177,33	3964,60	650,00	207,18	-	-
σ _n	τ	$\tau_{max} = R$	σ ₁	σ_3	θ
MPa	MPa	MPa	MPa	MPa	Rad
3,869	1,233	2,294	4,229	-0,360	0,284
Tabla F. 8 [Parámetros generales obtenidos muro MS11GSL - 650V207H]					

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 8:

MURO MS11GSL – 800V243H

El comportamiento durante la aplicación de la carga vertical (Figura F. 35) se aprecian dos tramos lineales, el primero se inicial desde muy baja carga (2,25 kN) hasta los 430 kN (2,55 MPa) y un segundo tramo menos rígido hasta la carga total de precompresión, 800 kN. Durante el proceso de aplicación de carga, especialmente durante el segundo tramo se logró apreciar micro-fisuras en algunas piezas.

El comportamiento durante la aplicación de la carga horizontal se distingue cuatro tramos donde se ve claramente que el muro va perdiendo rigidez (Figura F. 36). Los cuatro tramos van entre 8 kN (0,05 MPa), momento en que se detecta movimiento, a los 95 kN (0,56 MPa), 165 kN (0,98 MPa) y 220 kN (1,31 MPa) carga en la cual rápidamente y de forma muy frágil se produce la rotura.

El comportamiento de las juntas internas durante la aplicación de la carga horizontal (Figura F. 37) presenta un comportamiento como la mayoría de los anteriores muros, es decir, el mecanismo de fisuras se inicia por el centro del panel, seguido por la junta inferior y finalmente por la junta superior cerca de cargas cercanas a la rotura. Al iniciar la carga horizontal, a cargas muy bajas, se detecta movimiento en el centro del panel aumentando de forma lineal hasta los 70 kN, donde se observa que la resultante de la fisura disminuye muy lentamente (explicación Figura F. 5) seguida de un aumento de la carga hasta cerca de los 180 kN instante que la fisura aumenta súbitamente hasta el fallo del panel; paralelamente la junta inferior y superior reaccionan muy lentamente, la junta superior detecta un ínfimo movimiento cerca de los 60 kN pero no llega a desembocar la apertura hasta cargas muy cercanas a la de la rotura (225 kN el 92% de la carga de rotura); la junta inferior si llega a desarrollar la apertura de la fisura a partir de 40 kN, y se distingue cuatro ramas que van entre 40 a 119 kN, 119 a 170 kN, 170 a 225 kN y a partir de esta ultima desemboca rápidamente en rotura (243,02 kN).

E	G	Fv	Hu	H ₁	Wu		
MPa	MPa	kN	kN	kN	mm		
6497,35	2806,85	800,00	243,02	3,10	1,38		
σ_n	τ	$\tau_{max} = R$	σ_1	σ_3	θ		
MPa	MPa	MPa	MPa	MPa	Rad		
4,762	1,447	2,786	5,167	-0,405	0,273		
Tabla	Tabla F. 9 [Parámetros generales obtenidos muro MS11GSL - 800V243H]						

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 10 :

El mecanismo de rotura presentado empieza a ser distinto al de los ensayos anteriores. Aunque se forman fisuras por tracción en los ladrillos (Figura F. 38), no se forma una sola fisura sino varias y además su dirección se verticaliza notablemente, lo que nos da a entender que el comportamiento empieza a acercarse al de rotura por compresión de la fábrica. El grado de daño en este caso es mucho mayor, con una densidad de fisuras muy elevada.

• MURO MS11GSL - 997V186H

Este muro sólo se instrumentó con el extensiómetro horizontal, no se utilizo la otra instrumentación debido al peligro de que el muro colapsará, cosa que ocurrió y no fue posible realizar registro fotográfico. Los niveles de tensiones fueron muy elevados y el ensayo nos muestra como varía la tendencia de la envolvente de rotura para estos valores (ver capitulo 3).

El comportamiento durante la aplicación de la carga horizontal es similar al muro anterior (MS11GSL - 801V243H). Se diferencian cuatro tramos donde se ve claramente que el muro va perdiendo rigidez (Figura F. 39). Los cuatro tramos van entre 3,2 kN (0,02 MPa) momento en que se detecta movimiento, a 60 kN (0,36 MPa), 137 kN (0,82 MPa) y 174 kN (1,03 MPa) carga en la cual rápidamente y de forma muy frágil se produce la rotura.

El mecanismo de rotura presentado es similar al muro anterior (MS11GSL - 800V243H) pero presenta mayor número de fisuras completas como muestra la Figura F. 40, y con la peculiaridad de ser casi verticales, lo que lo enmarca en rotura por compresión pura.

Figura F. 40 [Mecanismo de rotura – Diagrama de rotura muro MS11GSL - 997V186H]

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 10 :

E	G	Fv	Hu	H ₁	Wu	
MPa	MPa	kN	kN	kN	mm	
-	-	997,20	186,65	-	-	
σn	τ	$\tau_{max} = R$	σ1	σ3	θ	
MPa	MPa	MPa	MPa	MPa	Rad	
5,936	1,111	3,169	6,137	0,201	0,179	
Tabla	Tabla F. 10 [Parámetros generales obtenidos muro MS11GSL - 997V186H]					

F.2 CAMPAÑA EXPERIMENTAL II ENSAYOS BIAXIALES SOBRE PAREDES DE OBRA DE FABRICA ESCALA 1:4. GIRO SUPERIOR IMPEDIDO (MS14GSI)

• MURO MS14GSI – 3V2H

El comportamiento durante la aplicación de la carga vertical, Figura F. 41, nos describe el comportamiento del muro de fabrica de ladrillo bajo compresión uniaxial; la aplicación de la carga fue de forma constante (Vel. 1 kN/s) hasta alcanzar los 3 kN (0,286 MPa). La medida del desplazamiento vertical medio se obtiene de la media aritmética de las medidas de los dos extensiómetros verticales. Se observa un muy pequeño acomodamiento y luego comportamiento lineal.

La gráfica de la Figura F. 42 nos ilustra el comportamiento del panel bajo una carga vertical constante de 3 kN, durante la aplicación de la carga horizontal hasta su rotura (rampa de carga horizontal 0,01 kN/s). La curva carga-desplazamiento horizontal presenta un aspecto bilineal, inicialmente no hay movimiento hasta los 1,26 kN, carga donde se inicia la primera rama lineal hasta aproximadamente los 2 kN donde existe un cambio en la rigidez a corte. La carga horizontal máxima fue de 2,64 kN.

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 11, la medida del modulo de deformación longitudinal (E) se calculo con ayuda de la Ecuación F. 1 y la rigidez de corte (G) con la Ecuación F. 2.

generales muro MS14GSI - 3V2H]

	Е	G	Fv
	MPa	MPa	kN
	4076.64	1799,20	3,00
	Hu	H_2	δ_{u}
THE DESCRIPTION DESCRIPTION OF THE PARTY OF	kN	kN	mm
	2,64	1,26	0,0026
	σ_n	τ	$\tau_{max} = R$
the second se	MPa	MPa	MPa
	0,286	0,251	0,289
	σ_1	σ_3	θ
	MPa	MPa	Rad
	0,432	-0,146	0,527
	Tabla	F. 11 [Parán	netros

El mecanismo de rotura que presenta este muro es claramente un deslizamiento de las juntas (Figura F. 43).

Figura F. 43 [Mecanismo de rotura MS14GSI – 3V2H]

MURO MS14GSI – 6V5H •

El comportamiento durante la aplicación de la carga vertical (Figura F. 44) se observa al igual que el muro anterior un comportamiento totalmente lineal.

Figura F. 44 [Curvas carga - desplazamiento vertical y tensión - deformación muro MS14GSI - 6V5H]

El comportamiento durante la aplicación de la carga horizontal bajo una carga vertical constante de 6 kN (0,57 MPa), presenta un aspecto bilineal claro, inicialmente no hay movimiento hasta los 1,86 kN, a partir de aquí se inicia la primera rama lineal hasta los 4,39 kN donde se ve claramente un cambio en la rigidez a corte y súbitamente desborda a la rotura (4,48 kN).

El mecanismo de rotura que presenta este muro es claramente un deslizamiento de las juntas (Figura F. 46), el cual se inicio de forma muy similar al muro anterior, por una junta escalonada en el cuadrante inferior, pero como se puede corroborar en la figura de aplicación de la carga horizontal (Figura F. 45) luego de llegar a la rotura donde aparece un

	E	G	Fv
	MPa	MPa	kN
	4579,50	2207,85	6,00
And the second s	Hu	H ₂	δ_{u}
	kN	kN	mm
	4,48	1,86	0,0082
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	0,571	0,427	0,513
	σ1	σ3	θ
NSNG	MPa	MPa	Rad
	0,799	-0,228	0,490
Figura F. 46 [Mecanismo de rotura MS14GSI - 6V5H]	Tabla generales	F. 12 [Parán muro MS140	netros SSI – 6V5H1

pequeño salto, la carga se mantiene con unos desplazamientos considerables, este es el motivo por el cual en la Figura F. 46 se observan varios trayectos de deslizamiento de juntas. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 12.

• MURO MS14GSI - 9V5H

Figura F. 47 [Curvas carga – desplazamiento vertical y tensión – deformación muro MS14GSI – 9V5H]

El comportamiento durante la aplicación de la carga vertical se ve reflejado en la Figura F. 47; se diferencia en la gráfica dos tramos lineales, el primero hasta alcanzar los 5,75 kN (0,54 MPa) y el segundo a partir de allí hasta obtener la carga dispuesta para este ensayo, 9,40 kN (0,89 MPa).

El comportamiento durante la aplicación de la carga horizontal bajo una carga de precompresión de 9,4 kN (0,89 MPa) se presenta en la Figura F. 48. Se aprecia que hasta los 2,24 kN no hay desplazamiento significativo. A partir de de los 2,47 hasta los 4,10 kN el muro se mantiene con una rigidez constante, para posteriormente pasar a una rama de pérdida de rigidez hasta la rotura en 5,44 kN. El mecanismo de rotura que presenta es deslizamiento de las juntas (Figura F. 49); los parámetros medidos durante el ensayo se resumen en la Tabla F. 13.

	E	G	Fv
Mistada Mistada	MPa	MPa	kN
	4854,32	2395,92	9,40
	Hu	H ₂	δ_{u}
	kN	kN	mm
	5,44	2,24	0,0601
	σ_n	τ	$\tau_{max} = R$
	σ _n MPa	τ MPa	τ _{max} = R MPa
	σ _n MPa 0,895	τ MPa 0,518	τ _{max} = R MPa 0,685
	σ _n MPa 0,895 σ ₁	τ MPa 0,518 σ ₃	τ _{max} = R MPa 0,685 θ
	σn MPa 0,895 σ1 MPa	τ MPa 0,518 σ ₃ MPa	$\frac{\tau_{max} = R}{MPa}$ 0,685 $\frac{\theta}{Rad}$

Figura F. 49 [Mecanismo de MS14GSI – 9V5H]

Tabla F. 13 [Parámetros generales muro MS14GSI – 9V5H]

• MURO MS14GSI – 15V9H

El comportamiento durante la aplicación de la carga vertical (Figura F. 50) se aprecian tres tramos lineales, el primero se inicia desde muy baja carga 0,72 kN (0,07 MPa) hasta los 2,20 kN (0,20 MPa); un segundo tramo hasta los 10,06 kN (0,96 MPa) y un tercero hasta la carga total de precompresión, 15,60 kN (1,49 MPa).

El comportamiento durante la aplicación de la carga horizontal si se aprecia con detenimiento se distingue dos ramas lineales (Figura F. 51). El muro no evidencia desplazamiento horizontal hasta los 1,76 kN, a partir de allí se inicia la primera rama lineal hasta valores cercanos a los 9,00 kN, para luego ir perdiendo rigidez hasta la rotura 9,88 kN.

	Е	G	F_{v}
the second descent of the second descent of the second descent of the second descent descent descent descent de	MPa	MPa	kN
	3890,94	2673,82	15,60
	Hu	H ₂	δ_{u}
the second se	kN	kN	mm
	9,88	1,76	0,3524
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	1,486	0,941	1,199
	σ1	σ_3	θ
PS1468	MPa	MPa	Rad
	1,942	-0,456	0,451
Figura F. 52 [Mecanismo de rotura MS14GSI – 15V9H]	Tabla general	F. 14 [Parán es muro MS 15V9H]	netros 14GSI –

El mecanismo de rotura que presenta es por deslizamiento de las juntas, aunque se puede apreciar algunas piezas rotas en el extremo donde se aplica la carga (Figura F. 52), pero se debe a la continuidad de carga por unos instantes después de la rotura. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 14.

MURO MS14GSI – 25V16H

El comportamiento del panel durante la aplicación de la carga vertical (Figura F. 53) se aprecia una rama clara de acomodamiento hasta los 2,10 kN (0,2 MPa), otra rama rígida hasta cerca de los 9,05 kN (0,86 MPa) y una tercera mas rígida hasta la carga de precompresión, 25 kN (2,38 MPa).

El comportamiento durante la aplicación de la carga horizontal a diferencia de los anteriores muros se aprecian tres ramas (Figura F. 54); hasta los 2,96 kN no se aprecia movimiento alguno, a partir de este valor comienza la primera rama hasta los 10,2 kN, a continuación una rama menos rígida hasta los 14,7 kN y a partir de allí hasta la rotura (16,21 kN) de forma brusca baja notablemente su rigidez.

	Е	G	F_v
🗰 изися 23/16/	MPa	MPa	kN
	8758,96	4493,21	25,00
	Hu	H ₂	δ_{u}
	kN	kN	mm
	16,21	2,96	0,2801
a second and a second a second	σ_{n}	τ	$\tau_{max} = \mathbf{R}$
	MPa	MPa	MPa
	2,381	1,544	1,950
	σ_1	σ_3	θ
	MPa	MPa	Rad
	3,140	-0,759	0,457
Figura F. 55 [Mecanismo de MS14GSI – 25V16H]	Tabla general	F. 15 [Parán es muro MS 25V16H]	netros 14GSI –

El mecanismo de rotura (Figura F. 55) se forma básicamente por la combinación entre deslizamiento de juntas y por rotura de piezas en especial en la esquina opuesta a la de aplicación de la carga; se aprecia una diagonal completa de fallo. Si se compara esta figura con los muros (muros de carga de precompresión 31,30 kN) este muro se observa mucho mas fisurado, esto es debido a que los actuadores hidráulicos se detuvieron algunas milésimas de segundo después de la rotura lo cual causo mayores daños. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 15.

MURO MS14GSI – 31V17H

El comportamiento durante la aplicación de la carga vertical (Figura F. 56) al igual que varios de los muros anteriores se observan dos ramas lineales; una de acomodamiento hasta los 10 kN (0,95 MPa) y una un poco mas rígida hasta la carga de precompresión (31,30 kN – 2,98 MPa).

El comportamiento durante la aplicación de la carga horizontal es el característico, comportamiento bilineal (Figura F. 57); el muro detecta movimiento a partir de los 1,96 kN hasta los 11,05 kN, donde cambia notablemente su rigidez hasta alcanzar la carga de rotura (17,73 kN).

El mecanismo de rotura se forma básicamente por la combinación entre deslizamiento de juntas y por tracción indirecta. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 16.

	Е	G	Fv
	MPa	MPa	kN
	9800,70	4930,11	31,30
	Hu	H ₂	δ_{u}
	kN	kN	mm
	17,73	1,96	0,3509
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
a second and a second and a second and a second	2,981	1,689	2,252
	σ_1	σ_3	θ
NYIN SALAR	MPa	MPa	Rad
	3,743	-0,762	0,424
Figura F. 58 [Mecanismo de rotura MS14GSI – 31V17H]	Tabla general	F. 16 [Parár es muro MS 31V17H]	netros 14GSI –

• MURO MS14GSI – 31V18H

El comportamiento durante la aplicación de la carga vertical (Figura F. 59) se observa un comportamiento bilineal, una primera de rama de acomodamiento hasta cerca de los 10,50 kN (1 MPa) de allí en adelante se da paso a una rama mas rígida hasta la carga de precompresión 31,30 kN (2.98 MPa).

El comportamiento durante la aplicación de la carga horizontal presenta un comportamiento muy similar a los anteriores muros (Figura F. 60); comportamiento bilineal, una rama rígida a partir de 5,44 kN hasta cerca de los 14 kN desde allí baja completamente su rigidez y desemboca rápidamente a la rotura (18,07 kN).

El mecanismo de rotura se forma básicamente por la combinación entre deslizamiento de juntas y por rotura de piezas (tracción indirecta). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 17.

	Е	G	Fv
MSTAGSI 31V78H	MPa	MPa	kN
tt tur	10734,30	4966,14	31,30
	Hu	H_2	δ_{u}
	kN	kN	mm
	18,07	5,44	0,3242
	σn	τ	$\tau_{max} = R$
A state of the sta	MPa	MPa	MPa
	2,981	1,721	2,277
Dent and the second sec	σ1	σ3	θ
the second se	MPa	MPa	Rad
and the second states and the	3,767	-0,786	0,429
Figura F. 61 [Mecanismo de rotura MS14GSI – 31V18H]	Tabla general	F. 17 [Parán es muro MS 31V18H1	netros 14GSI –

MURO MS14GSI – 40V18H

El comportamiento durante la aplicación de la carga vertical se distinguen tres ramas lineales (Figura F. 62), las primeras va hasta los 9,44 kN (0,89 MPa), la segunda hasta los 27,77 kN (2,64 MPa) y la mas rígida hasta la carga de precompresión 40,60 kN.

Figura F. 62 [Curvas carga – desplazamiento vertical y tensión – deformación muro MS14GSI - 40V18H]

El comportamiento durante la aplicación de la carga horizontal (Figura F. 63) se observa un claro comportamiento bilineal. Un primer tramo rígido que se inicia cerca de los 7,86 kN (0,75 MPa) hasta los 15,38 kN (1,46 MPa) donde se reduce considerablemente la rigidez hasta alcanzar la rotura (18,63 kN – 1,77 MPa).

Al igual que los anteriores muros el mecanismo de rotura se forma por la combinación entre deslizamiento de juntas y rotura de piezas (tracción indirecta). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 18

	E	G	F_{v}
MS14CS1 40V18H	MPa	MPa	kN
The second second	9198,41	4054,78	40,60
	Hu	H ₂	δ_{u}
the state of the s	kN	kN	mm
	18,63	4,89	0,1149
Contraction and the last spectra in the second	σn	τ	$\tau_{max} = R$
The second second second second	MPa	MPa	MPa
	3,867	1,774	2,624
and the second s	σ_1	σ_3	θ
Carlo and a second and a second se	MPa	MPa	Rad
	4,557	-0,691	0,371
Figura F. 64 [Mecanismo de rotura MS14GSI – 40V18H]	Tabla general	F. 18 [Parán es muro MS 18V24H]	netros 14GSI –

MURO MS14GSI – 50V20H

El comportamiento durante la aplicación de la carga vertical es un comportamiento de tres ramas lineales (Figura F. 65), un primer tramo que llega hasta los 11,04 kN (1,05 MPa), un segundo hasta los 26,01 kN (2,48 MPa) y un ultimo y el mas rígido hasta alcanzar la carga de precompresión establecida, que para este muro son 50 kN (4,76 MPa).

El comportamiento durante la aplicación de la carga horizontal claramente se observa un comportamiento bilineal característico que se inicia a partir de 2,25 kN y llega hasta los 17,48 kN momento en que pierde rigidez y desborda rápidamente en rotura (Figura F. 66).

	E	G	Fv
	MPa	MPa	kN
	4715,47	2384,07	50,00
	Hu	H ₂	δ_{u}
	kN	kN	mm
	20,99	2,25	0,1752
	σ_{n}	τ	$\tau_{max} = R$
The second s	MPa	MPa	MPa
	4,762	1,999	3,109
the second se	σ_1	σ_3	θ
USENGS. SV20H	MPa	MPa	Rad
and got if the second	5,490	0,728	0,349
Figura F. 67 [Mecanismo de rotura MS14GSI – 50V20H]	Tabla general	F. 19 [Parán es muro MS 50V20H]	netros 14GSI –

El mecanismo de rotura presenta igual características que los anteriores, tracción indirecta, pero con una mayor densidad en la rotura de piezas. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 19.

• MURO MS14GSI – 50V21H

Figura F. 68 [Curvas carga – desplazamiento vertical y tensión – deformación muro MS14GSI - 50V21H]

El comportamiento durante la aplicación de la carga vertical (Figura F. 68) presenta un comportamiento similar al muro anterior, el cual su carga de precompresión es la misma (50 kN – 4,76 kN). Presenta tres tramos lineales, el primero hasta los 3,25 kN (0,31 MPa), el segundo hasta los 15,02 kN (1,43 MPa) y el más rígido hasta la carga de precompresión.

El comportamiento durante la aplicación de la carga horizontal es de tipo bilineal, con una rama rígida que va desde los 2,44 kN hasta 18,07 kN y una rama con una rigidez muy inferior que la anterior hasta la rotura (21,66 kN). El mecanismo de rotura es la combinación de deslizamiento de juntas y roturas de piezas (tracción indirecta), pero con una mayor densidad en la rotura de piezas. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 20.

	E	G	Fv
MSHGM MSHGM	MPa	MPa	kN
Contraction of the second second	5269,50	2469,23	50,00
	Hu	H_2	δ_{u}
	kN	kN	Mm
	21,66	2,44	0,1618
and the second se	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	4,762	2,063	3,150
The second s	σ_1	σ_3	θ
the second se	MPa	MPa	Rad
THE REAL PROPERTY AND A DESCRIPTION OF A	5,531	-0,769	0,357
	Tabla	E 20 [Derén	otroo

Figura F. 70 [Mecanismo de rotura MS14GSI - 50V21H]

Tabla F. 20 [Parámetros generales muro MS14GSI – 50V21H]

• MURO MS14GSI – 62V27H

El comportamiento durante la aplicación de la carga vertical presenta tres ramas lineales, de la primera hasta los 9,45 kN (0,90 MPa), el segundo tramo hasta los 29,87 kN (2,84 MPa) y la tercera hasta la carga de precomprensión, 62,50 kN (5,95 kN).

El comportamiento durante la aplicación de la carga horizontal se aprecia en Figura F. 72 dos tramos lineales; se detecta movimiento a partir de los 3,66 kN y a partir de allí un primer tramo rígido hasta los 24,55 kN y el segundo desde la carga anterior hasta llegar a la rotura, 27,13 kN.

El mecanismo de rotura es tracción indirecta. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 21.

	Е	G	Fv
MS14651	MPa	MPa	kN
	3280,85	1504,63	62,50
	Hu	H ₂	δ_{u}
and the second se	kN	kN	mm
	27,13	3,66	0,2443
and a second sec	σ_{n}	τ	$\tau_{max} = R$
And a second second second second	MPa	MPa	MPa
	5,952	2,584	3,941
Service and the service of the servi	σ_1	σ_3	θ
	MPa	MPa	Rad
	6,917	-0,965	0,357
Figura F.73 [Mecanismo de rotura MS14GSI – 62V27H]	Tabla general	F. 21 [Parán es muro MS 62V27H]	netros 14GSI –

MURO MS14GSI – 75V36H

El comportamiento durante la aplicación de la carga vertical (Figura F. 74) es de tipo bilineal, una rama de acomodamiento hasta los 18,08 kN (1,72 MPa) para pasar a la rama rígida hasta la carga de precompresión 75 kN (7,14 MPa).

Figura F. 74 [Curvas carga – desplazamiento vertical y tensión – deformación muro MS14GSI - 75V36H]

El comportamiento durante la aplicación de la carga horizontal, Figura F. 75, se inicia el desplazamiento horizontal a partir de los 3,37 kN desde allí se inicia una rama rígida hasta los 24,55 kN, a partir de esta carga se desarrolla el mecanismo de rotura hasta los 36,56 kN donde falla el muro.

El mecanismo de rotura es por tracción indirecta, además se aprecia una alta fisuración en la esquina opuesta a la aplicación de la carga horizontal. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 22.

	E	G	Fv
HISTIGSI	MPa	MPa	kN
	2836,35	1489,88	75,00
	Hu	H_2	δ_{u}
	kN	kN	mm
	36,56	3,37	0,4283
	σ_{n}	τ	$\tau_{max} = \mathbf{R}$
Channel And	MPa	MPa	MPa
	7,143	3,482	4,988
	σ_1	σ_3	θ
	MPa	MPa	Rad
	8,559	-1,416	0,386
Figura F.76 [Mecanismo de rotura MS14GSI – 75V36H]	Tabla F. 22 [Parámetros generales muro MS14GSI – 75V36H1		

MURO MS14GSI – 90V32H

Figura F. 77 [Curvas carga – desplazamiento vertical y tensión – deformación muro MS14GSI - 90V32H]

El comportamiento durante la aplicación de la carga vertical (Figura F. 77) presenta tres tramos lineales; el primero hasta alcanzar los 7,84 kN (0,75 MPa), el segundo hasta los 32,70 kN (3,11 MPa), y el ultimo hasta la carga de precompresión, los 90 kN (8,57 kN).

El comportamiento durante la aplicación de la carga horizontal es de tipo lineal donde su primer tramo va desde los 1,64 kN a los 16,24 kN, para pasar a una rama mucho menos rígida hasta la rotura (32,27 kN).

El mecanismo de rotura es una combinación entre tracción indirecta y compresión pura, se observa que además de la diagonal existen varias fisuras con una gran tendencia a la verticalidad. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 23.

	Е	G	Fv
	MPa	MPa	kN
SOV32H	2434,19	1123,73	90,00
	Hu	H ₂	δ_{u}
The second s	kN	kN	Mm
	32,61	1,64	0,2121
	σ_n	τ	$\tau_{max} = R$
the second state of the second states	MPa	MPa	MPa
	0 574		
	8,571	3,106	5,293
		3,106 σ ₃	5,293 θ
		3,106 σ ₃ MPa	5,293 θ Rad

Figura F.79 [Mecanismo de rotura MS14GSI – 90V32H] Tabla F. 23 [Parámetros generales muro MS14GSI – 90V32H]

• MURO MS14GSI – 95V30H

Debido a los grandes destrozos en el muro anterior (carga de precompresión 90 kN) y a la posibilidad que el muro colapse afectando la instrumentación se decidió a partir de este estado de carga de precompresión retirar los tres extensiómetros; de esta manera solo se obtiene información referente a la carga máxima aplicada.

	Е	G	Fv
	MPa	MPa	kN
Strand States of the	-	-	95,00
and the second se	Hu	H ₂	δ_{u}
	kN	kN	mm
	30,07	-	-
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	9,048	2,864	5,354
	σ_1	σ_3	θ
	MPa	MPa	Rad
	9,878	-0,830	0,282
Figura F.80 [Mecanismo de rotura MS14GSI – 95V30H]	Tabla general	F. 24 [Parár es muro MS 95V30H]	netros 14GSI –

El mecanismo de rotura es una combinación entre tracción indirecta y compresión pura (Figura F.80), se observa varias fisuras con tendencia a la verticalidad. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 24.

• MURO MS14GSI – 105V24H

Este no presenta registro fotográfico debido a que una vez llegó a la rotura el muro se desestabilizo cayendo hacia un costado. El mecanismo de rotura la podemos enmarcar en compresión pura; lo que logramos percibir durante la rotura se encuentra plasmados en el dibujo de la Figura F.81. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 25.

MURO MS14GSI - 115V7H

El mecanismo de rotura como se observa en la Figura F. 82 es rotura por compresión pura. Se observa claramente la verticalidad de las varias líneas de fisura concentradas en el tercio central del panel. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 26.

Figura E 82 [Mecanismo de rotura MS14GSI - 115//7H]	Tabla	F. 26 [Parár	netros
	10,999	-0,047	0,065
the second and the second and the	MPa	MPa	Rad
Francisco	σ_1	σ_3	θ
	10,952	0,716	5,523
	MPa	MPa	MPa
32 1 1 1	σn	τ	$\tau_{max} = R$
	7,52	-	-
	kN	kN	mm
	Hu	H ₂	δ_{u}
	-	-	115,00
Misiacs 115v/H	MPa	MPa	kN
	E	G	Fv

Figura F. 82 [Mecanismo de rotura MS14GSI – 115V/H]

generales muro MS14 الاز 115V7H]

MURO MS14GSI - 121V0H

Este muro solo se le aplico carga vertical hasta la rotura. No existe registro fotográfico debido a que el muro una vez llego a la carga máxima quedo completamente destruido. Unos instantes antes del colapso presentaba fisuras completamente verticales; se percibió que las fisuras se iniciaban en el tercio medio, pero a medida que nos acercábamos a la carga de rotura aparecieron fisuras en los tercios restantes y de forma casi simétrica.

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 27.

E	G	Fv	H _u	H ₂	δ	
MPa	MPa	kN	kN	kN	mm	
-	-	121,30	00,00	-	-	
σ _n	τ	$\tau_{max} = R$	σ ₁	σ3	θ	
MPa	MPa	MPa	MPa	MPa	Rad	
11,552	0,000	5,776	11,552	0,00000	0,000	
Tabla F. 27 [Parámetros generales muro MS14GSI – 121V0H]						

- F.3 CAMPAÑA EXPERIMENTAL III ENSAYOS BIAXIALES SOBRE PAREDES DE OBRA DE FABRICA ESCALA 1:4. GIRO SUPERIOR LIBRE (MS14GSL)
 - MURO MS14GSL 9V5H

El comportamiento durante la aplicación de la carga vertical (Figura F. 83) presenta un comportamiento bilineal; el primero hasta los 5,55 kN (0,53 MPa) y el segundo más rígido hasta la carga de precompresión 9,40 kN (0,89 MPa).

El comportamiento durante la aplicación de la carga horizontal, se observan tres ramas (Figura F. 84); una rama rígida a partir de 0,24 kN hasta los 3,54 kN, la segunda hasta los 4,38 kN y desde allí baja completamente su rigidez y desemboca rápidamente a la rotura (5,65 kN).

	E	G	F _v
	MPa	MPa	kN
	5246.40	2277,55	9,40
	Hu	H_2	δ_{u}
	kN	kN	mm
	5,65	0,24	0,08033
R. Land	σ_n	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	0,895	0,538	0,700
	σ_1	σ_3	θ
HIGH HIGH AND	MPa	MPa	Rad
	1,148	0,252	0,438
Figura F. 85 [Mecanismo de rotura MS14GSL – 9V5H]	Tabla general	F. 28 [Parán es muro MS 9V5H]	netros 14GSL –

El mecanismo de rotura era la esperada para este nivel de tensión, el de deslizamiento de juntas (Figura F. 85). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 28.

• MURO MS14GSL – 12V6H

El comportamiento durante la aplicación de la carga vertical (Figura F. 86) es bilineal; el primero hasta los 2,21 kN (0,21 MPa) y el segundo más rígido hasta la carga de precompresión 12,50 kN (1,19 MPa).

muro MS14GSL - 12V6H]

El comportamiento durante la aplicación de la carga horizontal es bilineal (Figura F. 87); una rama rígida a partir de 0,22 kN hasta los 5,30 kN, y una

and theme		E	G	Fv
	MIS14GISL 12V/RI	MPa	MPa	kN
		4143,15	2505,99	12,50
	address and	H _u	H ₂	δ_{u}
	100	kN	kN	mm
		6,78	0,22	0,1029
	72.00	σ_{n}	τ	$\tau_{max} = R$
		MPa	MPa	MPa
		1,190	0,646	0,878
	-	σ_1	σ_3	θ
A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNE OWNER OWNE OWNER OWNE OWNER OWNER OWNER OWNER OWNE OWNE OWNE OWNER OWNER OWNE OWNER OWNE OWNE OWNER OWNER OWNER OWNE OWNER OWNE OWNE OWNE OWNE OWNER OWNE OWNE OWNE OWNER OWNER OWNER OWNE OWNE OWNER OWNE OWNER OWNER OWNER OWNE OWNE OWNER OWNE OWNE OWNE OWNE OWNE OWNE OWNER OWNE OWNE OWNE OWNE OWNER OWNE OWNE OWNE OWNE OWNE OWNE OWNE OWNE	7-1	MPa	MPa	Rad
		1,473	0,283	0,413
Figura F. 88 [Mecanismo de rotura MS14GSL –	12V6H]	Tabla generale	F. 29 [Parán es muro MS ⁻ 12V6H]	netros 14GSL –

segunda menos rígida hasta la rotura (6,78 kN).

El mecanismo de rotura es claramente deslizamiento de juntas (Figura F. 88). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 29.

MURO MS14GSL – 15V8H

El comportamiento durante la aplicación de la carga vertical (Figura F. 89) presenta un comportamiento bilineal; el primero hasta los 5,30 kN (0,50 MPa) y el segundo más rígido hasta la carga de precompresión 15,60 kN (1,48 MPa).

El comportamiento durante la aplicación de la carga horizontal, se observan dos ramas (Figura F. 90); una rama rígida a partir de 1,37 kN hasta los 6,90 kN y la segunda hasta la rotura (8,92 kN).

	E	G	Fv
	MPa	MPa	kN
	3666,20	2544,77	15,60
	Hu	H ₂	δ_{u}
	kN	kN	mm
	8,92	1,37	0,1796
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	1,486	0,850	1,129
	σ_1	σ_3	θ
NUT OF A CONTRACTOR	MPa	MPa	Rad
	1,871	0,386	0,426
Figura F. 91 [Mecanismo de rotura MS14GSL – 15V8H]	Tabla generale	F. 30 [Parán es muro MS ⁻ 15V8H]	netros I4GSL –

El mecanismo de rotura es claramente deslizamiento de juntas (Figura F. 91). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 30.
MURO MS14GSL – 20V10H

El comportamiento durante la aplicación de la carga vertical es de tipo bilineal (Figura F. 92); un primer tramo hasta los 8,60 kN (0,82 MPa) y el segundo más rígido hasta la carga de precompresión 20,30 kN (1,93 MPa)

muro MS14GSL - 20V10H]

El comportamiento durante la aplicación de la carga horizontal, presenta un comportamiento extraño, ya que aparentemente aumenta la rigidez en el primer tramo, esto es posiblemente un error en la configuración del ensayo; si obviamos ese aumento de rigidez podemos considerar dos ramas (Figura F. 93); una rama rígida a partir de 0,63 kN hasta los 9,11 kN y una segunda hasta la rotura (10,79 kN).

	E	G	Fv
And the second se	MPa	MPa	kN
	4768,51	2732,30	20,30
	Hu	H_2	δ_{u}
	kN	kN	Mm
	10,79	0,63	0,3475
and the particular sector of the sector of t	σ_n	τ	$\tau_{max} = R$
and the product of the second se	MPa	MPa	MPa
	1,933	1,028	1,411
	σ_1	σ_3	θ
HISTORY IN CALADINA	MPa	MPa	Rad
	2,377	0,444	0,408
Figura F.94 [Mecanismo de rotura MS14GSL- 20V10H]	Tabla general	F. 31 [Parán es muro MS [*] 20V10H]	netros I4GSL –

El mecanismo de rotura es claramente deslizamiento de juntas (Figura F.94). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 31.

MURO MS14GSL – 25V12H

El comportamiento durante la aplicación de la carga vertical es prácticamente lineal (Figura F. 95) hasta la carga de precompresión 25,00 kN (2,38 MPa).

El comportamiento durante la aplicación de la carga horizontal, se observan dos ramas (Figura F. 96); una rama rígida a partir de 2,07 kN hasta los 10,15 kN y la segunda hasta la rotura (12,39 kN).

El mecanismo de rotura es deslizamiento de juntas (Figura F.97). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 32.

	F	G	F
	MPa	MPa	kN
	6514,70	3524,74	25,00
And the second sec	Hu	H ₂	δ_{u}
Statements and a statement of the statem	kN	kN	mm
	12,39	2,08	0,3789
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	2,381	1,180	1,676
	σ_1	σ_3	θ
The second se	MPa	MPa	Rad
	2,867	0,486	0,390
Figura F.97 [Mecanismo de rotura MS14GSL – 25V12H]	Tabla generale	F. 32 [Parán es muro MS ⁻ 25V12H]	netros 14GSL –

• MURO MS14GSL – 28V14H

El comportamiento durante la aplicación de la carga vertical es muy similar a la mayoría de los muros anteriores (Figura F. 98); presenta un solo tramo

lineal hasta la carga de precompresión 28,15 kN (2,68 MPa).

El comportamiento durante la aplicación de la carga horizontal, se observan dos ramas (Figura F. 96); una primera rama a partir de 1,35 kN hasta los 13,60 kN y la segunda rama mas rigida hasta la rotura (14,31 kN).

El mecanismo de rotura es la combinación entre deslizamiento de juntas y rotura de piezas, lo que podemos enmarcarlo en el inicio de una tracción indirecta (Figura F.100). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 33.

	N 400	themport		E	G	F _v
a second	- me to		MS14GSL 28V148	MPa	MPa	kN
	14:			9345,75	4852,09	28,15
		L		Hu	H_2	δ_{u}
		1		kN	kN	Mm
	<u>n</u> ,			14,31	1,359	0,1758
			the second second	σn	τ	$\tau_{max} = R$
	-	- F	Statement of the local division of the local	MPa	MPa	MPa
	- 1		SEL	2,681	1,363	1,912
Stand -		- It	A A A	σ_1	σ_3	θ
	-	and and	TRAS.	MPa	MPa	Rad
	- Alter	Rocia	· ·	3,252	0,571	0,397
				Tabla	E 33 (Parán	notros

Figura F.100 [Mecanismo de rotura MS14GSL – 28V14H]

Tabla F. 33 [Parámetros generales muro MS14GSL – 28V14H]

• MURO MS14GSL – 31V15H

El comportamiento durante la aplicación de la carga vertical presenta dos tramos lineales (Figura F. 101); un primer tramo hasta los 12,93 kN (1,23 MPa) y el segundo casi inapreciable hasta alcanzar la carga de precomprensión 31,30 kN (2,98 MPa).

muro MS14GSL - 31V15H]

El comportamiento durante la aplicación de la carga horizontal, se observan dos ramas (Figura F. 102); inicialmente existe un acomodamiento

del sistema que a mi parecer es debido a un objeto minúsculo pero de gran resistencia debajo del perfil metálico al que va adherido el muro y este hizo de balancín al conjunto en si; desde allí se genera la primera rama desde los 2,50 kN hasta cerca de los 13,75 kN y rápidamente pierde rigidez hasta la rotura (15,34 kN).

El mecanismo de rotura presentado es tracción indirecta (Figura F.103). Se observa gran concentración de esfuerzos en la esquina inferior opuesta al punto de aplicación de la carga. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 34.

the second se	E	G	Fv
0	MPa	MPa	kN
	10238,95	4769,38	31,30
a second and a s	Hu	H ₂	δ_{u}
	kN	kN	Mm
	15,34	1,87	0,15461
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	2,981	1,461	2,087
	σ_1	σ_3	θ
MS14GSL DCATALUITA 31V17H	MPa	MPa	Rad
and the second s	3,578	-0,59660	0,388
Figura F.103 [Mecanismo de rotura MS14GSL – 31V15H]	Tabla general	F. 34 [Parán es muro MS 31V15H]	netros I4GSL –

MURO MS14GSL – 35V15H

El comportamiento durante la aplicación de la carga vertical presenta dos tramos lineales (Figura F. 104); la primera rama hasta alcanzar los 23,85 kN (0,83 MPa) y la segundo hasta la carga de precomprensión 35,00 kN (3,33 MPa).

Figura F. 104 [Curvas carga – desplazamiento vertical y tensión – deformación muro MS14GSL - 35V15H]

El comportamiento durante la aplicación de la carga horizontal, se observan tres ramas (Figura F. 105); una rama rígida a partir de 1,61 kN hasta los 9,00 kN, una segunda hasta los 13,35 kN para pasar a una rama menos rígida donde rápidamente desborda a la rotura (15,27 kN).

	E	G	F_v
	MPa	MPa	kN
	10874,54	5073,13	35,00
	Hu	H ₂	δ_{u}
	kN	kN	mm
	15,27	1,61	0,1243
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	3,333	1,454	2,212
	σ_1	σ_3	θ
	MPa	MPa	Rad
	3,879	0,545	0,359
Figura F.106 [Mecanismo de rotura MS14GSL – 35V15H]	Tabla generale	F. 35 [Parán es muro MS 35V15H]	netros 14GSL –

El mecanismo de rotura presentado es tracción indirecta (Figura F.106). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 35.

• MURO MS14GSL - 40V17H

El comportamiento durante la aplicación de la carga vertical presenta dos ramas lineales (Figura F. 107); la primera rama hasta alcanzar los 20,60 kN (1,96 MPa) y la segundo hasta la carga de precomprensión 40,60 kN (3,86 MPa).

El comportamiento durante la aplicación de la carga horizontal, se observan dos ramas (Figura F. 108); una rama rígida a partir de 2,73 kN hasta los 16,50 kN y una segunda menos rígida y muy corta hasta la rotura (17,17 kN).

El mecanismo de rotura presentado es tracción indirecta (Figura F.109). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 36.

	E	G	F _v
BESTOCEL DE CATALISIYA	MPa	MPa	kN
	8706,96	4917,27	40,60
	Hu	H ₂	δ_{u}
	kN	kN	mm
	17,17	2,73	0,4002
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	3,867	1,635	2,532
	σ_1	σ_3	θ
	MPa	MPa	Rad
	4,465	0,599	0,351
	Tabla	F. 36 (Parán	netros

Figura F.109 [Mecanismo de rotura MS14GSL – 40V17H] generales muro MS14GSL – 40V17H]

• MURO MS14GSL – 45V18H

El comportamiento durante la aplicación de la carga vertical es de tipo bilineal; un primer tramo hasta los 34,5 kN (3,28 MPa) y un segundo menos rígido hasta la carga de precomprensión 45,00 kN (4,29 MPa) (Figura F. 110).

Figura F. 110 [Curvas carga – desplazamiento vertical y tensión – deformación muro MS14GSL - 45V18H]

El comportamiento durante la aplicación de la carga horizontal, se observan dos ramas (Figura F. 111); una rama rígida a partir de 0,87 kN hasta los 9,15 kN y una segunda menos rígida hasta la rotura (18,08 kN).

	E	G	F_v
	MPa	MPa	kN
	5276,74	2620,09	45,00
	Hu	H ₂	δ_{u}
	kN	kN	Mm
	18,08	0,87	0,2131
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	4,286	1,722	2,749
	σ_1	σ_3	θ
	MPa	MPa	Rad
	4,892	0,606	0,338
Figura F.112 [Mecanismo de rotura MS14GSL – 45V18H]	Tabla generale	F. 37 [Parán es muro MS [·] 45V18H]	netros 14GSL –

El mecanismo de rotura presentado es tracción indirecta (Figura F.112). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 37.

• MURO MS14GSL – 50V18H

El comportamiento durante la aplicación de la carga vertical es bilineal; un tramo rígido hasta cerca de los 35 kN (3,4 MPa) y otro hasta alcanzar la carga de precomprensión 50,00 kN (4,76 MPa) (Figura F. 113).

muro MS14GSL - 50V18H]

El comportamiento durante la aplicación de la carga horizontal, se observan tres ramas (Figura F. 114); una rama rígida a partir de 0,67 kN hasta los 14 kN, una segunda menos rígida hasta los 18 kN y una final menos rígida que las anteriores hasta la rotura (18,24 kN).

El mecanismo de rotura presentado es tracción indirecta (Figura F.115). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 38.

	E	G	Fv
	MPa	MPa	kN
	4642,66	2182,40	50,00
	Hu	H_2	δ_u
	kN	kN	mm
	18,24	0,67	0,4416
	σ_{n}	τ	$\tau_{max} = R$
and a second sec	MPa	MPa	MPa
	4,762	1,737	2,947
	σ_1	σ_3	θ
	MPa	MPa	Rad
5948 	5,328	0,566	0,315
Figura F.115 [Mecanismo de rotura MS14GSL – 50V18H]	Tabla generale	F. 38 [Parán es muro MS1	netros I4GSL –

50V18H]

MURO MS14GSL – 56V23H

El comportamiento durante la carga vertical es bilineal (Figura F. 116); un primer tramo hasta los 37 kN (3,5 MPa) seguido de un tramo menos rígido hasta la carga de precomprensión 56,25 kN (5,36 MPa).

Figura F. 116 [Curvas carga – desplazamiento vertical y tensión – deformación muro MS14GSL - 56V23H]

El comportamiento durante la carga horizontal es muy similar a los anteriores; tres tramos lineales donde a medida que aumenta la carga los tramos van perdiendo rigidez. El primer tramo se inicia a los 0,79 kN instante en que los LVDT detectan movimiento, hasta los 18 kN; desde allí comienza el segundo tramo lineal hasta los 22 kN y un ultimo tramo hasta la rotura (23,61 kN).

El mecanismo de rotura presentado es tracción indirecta (Figura F.118). Si se compara con atención los diferentes mecanismos de rotura similares a esta apreciamos que la fisuración tiende a la verticalidad a medida que aumenta la carga. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 39.

	Е	G	Fv
	MPa	MPa	kN
MSS 402L DFC AVALUATY	4538,01	1974,94	56,25
	Hu	H ₂	δ_{u}
	kN	kN	mm
	23,61	0,79	0,34781
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	5,357	2,249	3,497
the second se	σ_1	σ_3	θ
THE REAL PROPERTY AND A DESCRIPTION OF A	MPa	MPa	Rad
	6,176	0,819	0,349
Figura F.118 [Mecanismo de rotura MS14GSL – 56V23H]	Tabla generale	F. 39 [Parán es muro MS [⁄] 56V23H]	netros 14GSL –

MURO MS14GSL – 62V20H

El comportamiento durante la aplicación de la carga vertical presenta dos

tramos; el primero y mas rígido hasta los 44 kN (4,02 MPa), y un segundo hasta la carga de precomprensión 62,50 kN (5,95 MPa) (Figura F. 119).

El comportamiento durante la aplicación de la carga horizontal, se observan tres ramas (Figura F. 120); una rama rígida muy corta a partir de 1,62 kN hasta los 4,25 kN, una segunda menos rígida hasta los 9 kN y una última la rotura (20,67 kN).

Figura F. 120 [Curva carga - desplazamiento horizontal muro MS14GSL - 62V20H]

El mecanismo de rotura presentado lo podemos definir como una transición entre tracción indirecta y la compresión pura (Figura F.121). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 40.

MS14CSL 67H20V	E	G	F _v
	MPa	MPa	kN
	3019,67	1534,52	62,50
	Hu	H ₂	δ_{u}
	kN	kN	mm
	20,67	1,62	0,3232
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	5,952	1,969	3,568
	σ_1	σ_3	θ
	MPa	MPa	Rad
	6,545	0,592	0,292
Figura F.121 [Mecanismo de rotura MS14GSL – 62V20H]	Tabla generale	F. 40 [Parán es muro MS	netros 14GSL –

∙igura F.121 [M€

62V20H]

• MURO MS14GSL – 95V18H

A partir de esta carga de precompresión se retiraron los extensiómetros verticales. El comportamiento durante la aplicación de la carga horizontal es prácticamente lineal; se detecta movimiento a los 4,05 kN y desde allí hasta la rotura (18,24 kN) es prácticamente un solo comportamiento.

Figura F. 122 [Curva carga - desplazamiento horizontal muro MS14GSL - 95V18H]

La rotura fue aparatosa y no se tiene recuento fotográfico, solo esquemas que se realizaban a medida que trascurría el ensayo. El mecanismo de

Figura F.123 [Mecanismo de rotura MS14GSL – 95V18H] generales muro MS14GSL – 95V18H] rotura presentado lo podemos catalogar como compresión pura (Figura F.123). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 41.

• MURO MS14GSL – 119V0H

Este muro solo se le aplico carga vertical hasta la rotura. Unos instantes antes del colapso presentaba fisuras completamente verticales.

Los parámetros medidos durante el ensayo se resumen en la Tabla F. 42.

E	G	Fv	Hu	H ₂	δ_{u}
MPa	MPa	kN	kN	kN	mm
-	-	119,63	00,00	-	-
σ_n	τ	$\tau_{max} = R$	σ_1	σ_3	θ
MPa	MPa	MPa	MPa	MPa	Rad
11,393	0,000	5,697	11,393	0,000	0,000
Tabla F. 42 [Parámetros generales muro MS14GSL – 119V0H]					

F.4 CAMPAÑA EXPERIMENTAL IV ENSAYOS BIAXIALES SOBRE PAREDES CON DIFERENTES DIMENSIONES DE OBRA DE FABRICA ESCALA 1:4. GIRO SUPERIOR LIBRE (MSDD14GSL)

La nomenclatura empleada para esta campaña experimental difiere de las otras campañas, ya que en esta, las variables son las dimensiones de los muros y la constante es la tensión normal (2,00 MPa), por lo tanto la nomenclatura empleada se modifica de la siguiente manera:

MURO MSDD14GSL – 150x255 (1)

Este muro como se observa en la Figura F.125 es un muro esbelto con una relación largo alto de 0,59. Su comportamiento durante la carga horizontal (Figura F. 124) se aprecian tres ramas lineales en la cual el muro va poco a poco perdiendo rigidez hasta la rotura; la primera y la mas rígida se inicia a muy baja carga 0,15 kN y alcanza los 1,33 kN, seguida de una segunda rama hasta los 2,45 kN y finalmente una tercera hasta la rotura 2,79 kN.

Figura F. 124 [Curva carga - desplazamiento horizontal muro MSDD14GSL - 150x255(1)]

El mecanismo de rotura presentada es claramente deslizamiento de juntas (Figura F.125). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 43.

THE REAL PROPERTY AND A DESCRIPTION OF A	E	G	Fv
AND DESCRIPTION OF THE PARTY OF THE ADDRESS OF	MPa	MPa	kN
	-	-	10,50
	Hu	H ₂	δ_{u}
the second se	kN	kN	mm
	2,79	0,15	0,2854
and the second	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	2,00	0,531	1,132
the second second second	σ_1	σ_3	θ
The second secon	MPa	MPa	Rad
MEDICIAGE HEDICIAGE HEDICIAGE	2,132	-0,132	0,244
Figura F.125 [Mecanismo de rotura MSDD14GSL – 150x255(1)]	Tabla generales	F. 43 [Parán muro MSD 150x255(1)]	netros D14GSL –

• MURO MSDD14GSL - 150x255 (2)

Su comportamiento durante la carga horizontal (Figura F. 126) al igual el muro anterior se aprecian tres ramas lineales; la primera y la mas rígida se inicia a los 0,48 kN y alcanza los 1,65 kN, seguida de una rama hasta los 2,78 kN y desborda en una tercera muy corta que rápidamente alcanza la rotura 2,92 kN.

El mecanismo de rotura presentado es deslizamiento de juntas (Figura F.127), además es prácticamente idéntico al muro anterior. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 44.

and the second	Е	G	F_v
deriver a second providence of the second	MPa	MPa	kN
	-	-	10,50
and the second se	Hu	H_2	δ_{u}
	kN	kN	mm
	2,92	0,48	0,2454
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	2,00	0,556	1,144
the second s	σ_1	σ_3	θ
	MPa	MPa	Rad
MBODHAGEL 150/255(2) LINVERSITAT POLITECNICA DE CATALLINYA	2,144	-0,144	0,254
Figura F.127 [Mecanismo de rotura MSDD14GSL – 150x255(2)]	Tabla generales	F. 44 [Parán s muro MSD 150x255(2)]	netros D14GSL –

• MURO MSDD14GSL - 225x255 (1)

Su comportamiento durante la aplicación de la carga horizontal se distingue tres ramas lineales (Figura F. 128); La primera inicia a los 0,92 kN y toca los 4,11 kN, la segunda alcanza los 5,30 kN y una tercera hasta la rotura 5,68 kN.

Figura F. 128 [Curva carga - desplazamiento horizontal muro MSDD14GSL - 225x255(1)]

El mecanismo de rotura presentado es deslizamiento de juntas (Figura F.129). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 45.

• MURO MSDD14GSL – 225x255 (2)

Su comportamiento durante la aplicación de la carga horizontal se diferencia tres ramas lineales (Figura F. 130); La primera inicia a los 0,56 kN y toca los 3,70 kN, la segunda alcanza los 5,42 kN y una tercera hasta la rotura 5,84 kN.

Figura F. 130 [Curva carga – desplazamiento horizontal muro MSDD14GSL – 225x255(2)]

El mecanismo de rotura presentado es deslizamiento de juntas (Figura F.131). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 46.

the my war have a growing the	- Contraction	E	G	Fv
from the second second	M	Pa N	1Pa ł	κN
	AC.2	-	- 15	5,75
The second se	HE STORE	H _u I	H ₂	δ _u
	k	N I	kN n	nm
	5,	84 0	,56 0,2	2819
and the second sec	- de a de source p	Σn	τ τ _{ma}	_x = R
	M	Pa M	1Pa N	lPa
1	2,	00 0,	742 1,	245
A CONTRACT OF A	-15/4-11 - 10	Σ ₁	σ_3	θ
	M	Pa N	1Pa R	ad
BE AVALUANA 236.0400	2,2	245 -0	,245 0,	319
Figura F.131 [Mecanismo de rotura l	ISDD14GSL -	4GSL – Tabla F. 46 [Parámetros		3

225x255(2)]

generales muro MSDD14GSL 225x255(2)]

• MURO MSDD14GSL - 300x135 (1)

El comportamiento durante la aplicación de la carga horizontal (Figura F. 132) es algo extraño; posiblemente se debe a alguna protuberancia en la cara de contacto del extensiómetro el cual con mínimo movimiento del

muro en alguno de sus otros ejes hizo contacto con el y éste realiza un gran salto; si se descarta de alguna manera este salto se pueden considerar dos tramos lineales; el primero desde los 0,37 kN hasta los 3,30 kN y otro menos rígido la hasta la rotura 5,84 kN.

Figura F. 132 [Curva carga – desplazamiento horizontal muro MSDD14GSL – 300x135(1)]

El mecanismo de rotura presentado es deslizamiento de juntas (Figura F.133). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 47.

	E	G	F _v
	MPa	MPa	kN
	-	-	21,00
	Hu	H ₂	δ_{u}
starty and may have been a stranger	kN	kN	mm
	11,34	0,38	0,3107
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	2,00	1,080	1,472
	σ_1	σ_3	θ
We wanted the second second second	MPa	MPa	Rad
The Part of the second se	2,472	-0,472	0,412
Figura F.133 [Mecanismo de rotura MSDD14GSL – 300x135(1)]	Tabla generales	F. 47 [Parár muro MSD 300x135(1)]	netros D14GSL –

300x135(1)]

• MURO MSDD14GSL - 300x135 (2)

El comportamiento durante la aplicación de la carga horizontal se diferencia tres ramas lineales (Figura F. 134); La primera inicia a los 0,40 kN y alcanza los 7,25 kN, la segunda alcanza los 11,10 kN y una tercera hasta la rotura 11,99 kN.

Figura F. 134 [Curva carga – desplazamiento horizontal muro MSDD14GSL – 300x135(2)]

El mecanismo de rotura presentado es deslizamiento de juntas (Figura F.135). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 48.

	Е	G	F _v
	MPa	MPa	kN
	-	-	21,00
	Hu	H_2	δ_{u}
and a second	kN	kN	mm
	11,99	0,40	0,3773
and the second	σ_{n}	τ	$\tau_{max} = R$
and the second s	MPa	MPa	MPa
	2,00	1,142	1,518
AND	σ_1	σ_3	θ
	MPa	MPa	Rad
	2,518	-0,518	0,426
Figura F.135 [Mecanismo de rotura MSDD14GSL – 300x135(2)]	Tabla generales	F. 48 [Parán s muro MSD 300x135(2)]	netros D14GSL –

• MURO MSDD14GSL - 300x195 (1)

El comportamiento durante la aplicación de la carga horizontal se diferencia cuatro ramas lineales (Figura F. 136) no obstante, se observa un pequeño salto entre los 6 y 8 kN; la explicación a esto es igual que el muro anterior; la primera rama se inicia a los 0,70 kN y alcanza los 5,08 kN, la segunda llega hasta los 9,45 kN, la tercera hasta 11,72 kN y una final y casi horizontal que rápidamente lleva a la rotura 12,04 kN.

	Е	G	F_{v}
	MPa	MPa	kN
A A A A A A A A A A A A A A A A A A A	-	-	21,00
	Hu	H ₂	δ_{u}
	kN	kN	mm
	12,04	0,7078	0,4586
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	2,00	1,147	1,521
	σ_1	σ_3	θ
HOMEN Salary	MPa	MPa	Rad
	2,521	-0,521	0,427
Figura F.137 [Mecanismo de rotura MSDD14GSL – 300x195(1)]	Tabla generales	F. 49 [Parár s muro MSD 300x195(1)]	netros D14GSL –

El mecanismo de rotura presentado es deslizamiento de juntas (Figura F.137), aunque se aprecia en la figura rotura de piezas, esto se debe a que el ensayo se detuvo algunos instantes después de la rotura. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 49.

• MURO MSDD14GSL - 300x195 (2)

El comportamiento durante la aplicación de la carga horizontal se diferencia tres ramas lineales (Figura F. 138); una desde los 2,19 kN hasta los 8,48 kN, la segunda alcanza los 10,82 kN y una tercera hasta la rotura 12,38 kN.

	Е	G	Fv
	MPa	MPa	kN
Canada and C	-	-	21,00
The second se	Hu	H ₂	δ_{u}
	kN	kN	mm
	12,38	0,5814	0,4540
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
TEN U	2,00	1,179	1,546
	σ_1	σ_3	θ
and the second s	MPa	MPa	Rad
	2,546	-0,546	0,434
Figura F.139 [Mecanismo de rotura MSDD14GSL – 300x195(2)]	Tabla F. 50 [Parámetros generales muro MSDD14GSL 300x195(2)l		netros D14GSL –

El mecanismo de rotura presentado es deslizamiento de juntas (Figura F.139). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 50.

MURO MSDD14GSL – 300x255 (1)

El comportamiento durante la aplicación de la carga horizontal se diferencia dos ramas lineales (Figura F. 140); La primera inicia a los 2,10 kN y alcanza los 9,90 kN y a segunda hasta la rotura 11,75 kN.

	E	G	F_v
the second s	MPa	MPa	kN
	-	-	21,00
	Hu	H ₂	δ_{u}
	kN	kN	mm
	11,75	0,65	0,4425
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	2,00	1,119	1,501
	σ_1	σ_3	θ
	MPa	MPa	Rad
MSDD14GSL 300x255(1)	2,501	-0,501	0,421
Figura F.141 [Mecanismo de rotura MSDD14GSL – 300x255(1)]	Tabla generales	F. 51 [Parár s muro MSD 300x255(1)]	netros D14GSL –

El mecanismo de rotura presentado es deslizamiento de juntas (Figura F.141). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 51.

• MURO MSDD14GSL - 300x255 (2)

El comportamiento durante la aplicación de la carga horizontal es muy similar al anterior, se diferencia dos ramas lineales (Figura F. 142); La primera inicia a los 1,33 kN y alcanza los 11,18 kN y a segunda hasta la rotura 12,18 kN.

	1	1	Е	G	Fv
			MPa	MPa	kN
and the second			-	-	21,00
and the second se	The Contract of Contract		Hu	H_2	δ_{u}
And the second	T	1	kN	kN	mm
(and the second s	Participation in the		12,18	1,33	0,4626
			σ_{n}	τ	$\tau_{max} = R$
	1		MPa	MPa	MPa
		1	2,00	1,160	1,532
Manager and Construction	Freedom and the state	Me Contraction	σ_1	σ_3	θ
MSDD14GSL	1 mm	- And	MPa	MPa	Rad
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	and the		2,532	-0,532	0,430
Figura F.143 [Mecanism 300x	o de rotura M 255(2)]	SDD14GSL –	Tabla generales	F. 52 [Parán muro MSD 300x255(2)]	netros D14GSL –

El mecanismo de rotura, como todos los de esta campaña experimental es deslizamiento de juntas (Figura F.143). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 52.

F.5 CAMPAÑA EXPERIMENTAL V ENSAYOS BIAXIALES SOBRE PAREDES DE OBRA DE FABRICA SIN MORTERO EN LLAGAS ESCALA 1:4. GIRO SUPERIOR LIBRE (MSSML14GLS)

MURO MSSML14GSL – 20V11H

El comportamiento durante la aplicación de la carga vertical presenta tres ramas lineales (Figura F. 144); la primera hasta los 4,60 kN (0,43 MPa),una segunda hasta los 12,15 kN (1,15 MPa) y la tercera hasta la carga de precomprensión, 20,30 kN (1,93 kN).

El comportamiento durante la aplicación de la carga horizontal se aprecia en Figura F. 145 tres tramos lineales; se detecta movimiento a partir de los 2,62 kN y a partir de allí un primer tramo rígido hasta los 7,60 kN y un segundo tramo desde la carga anterior hasta los 10,73 kN y un tramo final hasta la rotura 11,58 kN.

El mecanismo de rotura es por deslizamiento de juntas (Figura F.146). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 53.

	E	G	Fv
	MPa	MPa	kN
	4259,10	1839,93	20,30
	Hu	H ₂	δ_{u}
	kN	kN	mm
I I K I I	11,58	0,85	0,2536
	σ_n	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	1,93	1,10	1,467
	σ_1	σ_3	θ
MSSWL40SL DECATALLAYYA 29Y1HH	MPa	MPa	Rad
	2,433	-0,499	0,426
Figura F.146 [Mecanismo de rotura MSSML14GSL – 20V11H]	Tabla generales	F. 53 [Parán muro MSSN 20V11H1	netros IL14GSL –

• MURO MSSML14GSL – 35V17H

El comportamiento durante la aplicación de la carga vertical presenta dos ramas lineales (Figura F. 147), la primera hasta los 14,61 kN (1,39 MPa) y el segundo tramo menos rígida hasta obtener la carga de precomprensión, 35,52 kN (4,06 kN).

El comportamiento durante la aplicación de la carga horizontal se aprecia en tres tramos lineales (Figura F. 148); el primero a partir de los 1,77 kN hasta los 12,85 kN, un segundo tramo desde la carga anterior hasta los 16,35 kN y un tramo final hasta la rotura 17,47 kN.

Figura F. 148 [Curva carga – desplazamiento horizontal muro MSSML14GSL – 35V17H]

El mecanismo de rotura es por tracción indirecta (Figura F.149). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 54.

	E	G	Fv
	MPa	MPa	kN
	8552,96	3694,87	35,52
	Hu	H ₂	δ_{u}
	kN	kN	mm
	17,47	1,77	0,1461
	σn	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	3,38	1,66	2,373
	σ_1	σ_3	θ
PERMIT	MPa	MPa	Rad
	4,064	-0,681	0,389
	Tabla	E 54 (Parán	netros

Figura F.149 [Mecanismo de rotura MSSML14GSL – 35V17H]

Tabla F. 54 [Parámetros generales muro MSSML14GSL – 35V17H]

• MURO MSSML14GSL - 40V16H

El comportamiento durante la aplicación de la carga vertical (Figura F. 150) es prácticamente lineal hasta la carga de precomprensión 40,00 kN (3,81 MPa).

El comportamiento durante la aplicación de la carga horizontal se aprecia en tres tramos lineales (Figura F. 151); el primero a partir de los 3,56 kN hasta los 14,51 kN, un segundo tramo desde la carga anterior hasta los 16,00 kN y un tramo final hasta la rotura 16,69 kN.

Figura F. 151 [Curva carga – desplazamiento horizontal muro MSSML14GSL – 40V16H]

	E	G	Fv
	MPa	MPa	kN
	8217,07	3571,58	40,00
and the second second	Hu	H ₂	δ_{u}
	kN	kN	mm
	16,69	3,56	0,1116
The Part of the Pa	σ_n	τ	$\tau_{max} = R$
and a second second and a second	MPa	MPa	MPa
and the second sec	3,81	1,59	2,481
	σ1	σ_3	θ
DECALUNA USDILAISSI USDILAISSI USDILAISSI	MPa	MPa	Rad
	4,386	-0,576	0,348

El mecanismo de rotura es por tracción indirecta (Figura F.152). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 55.

Figura F.152 [Mecanismo de rotura MSSML14GSL – 40V16H] Tabla F. 55 [Parámetros generales muro MSSML14GSL – 40V16H]

• MURO MSSML14GSL - 45V20H

El comportamiento durante la aplicación de la carga vertical (Figura F. 153) se observan dos ramas lineales; una hasta los 28,5 kN (2,71 MPa) y una un poco menos rígida hasta la carga de precomprensión (45,67 kN – 4,35 MPa).

muro MSSML14GSL - 45V20H]

El comportamiento durante la aplicación de la carga horizontal es muy similar a los anteriores, se aprecia en tres tramos lineales (Figura F. 154); el primero

Figura F. 154 [Curva carga – desplazamiento horizontal muro MSSML14GSL – 45V20H]

a partir de los 1,10 kN hasta los 10,80 kN, un segundo tramo desde la carga anterior hasta los 18,90 kN y un tramo final hasta la rotura 20,48 kN.

El mecanismo de rotura es por tracción indirecta (Figura F.155), aunque con gran tendencia de las fisuras a la verticalidad. Los parámetros medidos durante el ensayo se resumen en la Tabla F. 56.

A CONTRACTOR OF THE OWNER OF THE OWNER OF THE	Е	G	F_v
Contraction of the second second	MPa	MPa	kN
	4662,91	2624,27	45,67
	Hu	H ₂	δ_{u}
	kN	kN	mm
	20,48	1,10	0,2022
and and a second second second	σ_n	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	4,35	1,95	2,921
	σ_1	σ_3	θ
	MPa	MPa	Rad
MISS. LAGS. BIOLENARY BIOL	5,096	-0,746	0,366
	Tabla	F. 56 [Parán	netros

Figura F.155 [Mecanismo de rotura MSSML14GSL – 45V20H]

Tabla F. 56 [Parámetros generales muro MSSML14GSL – 45V20H]

MURO MSSML14GSL – 60V22H

El comportamiento durante la aplicación de la carga vertical (Figura F. 156) es bilineal; una rama inicial rígida hasta cerca de los 35 kN (3,33 Mpa) y una final hasta la carga de precomprensión 60,90 kN (5,80 MPa).

Figura F. 157 [Curva carga – desplazamiento horizontal muro MSSML14GSL – 60V22H]

El comportamiento durante la aplicación de la carga horizontal se aprecia cuatro tramos lineales (Figura F. 157); el primero desde muy baja carga, a partir de los 0,18 kN hasta los 7,27 kN, un segundo tramo desde la carga anterior hasta los 11,30 kN, un tercer tramo hasta los 21,60 kN y un tramo final hasta la rotura 22,38 kN. El mecanismo de rotura es por tracción indirecta (Figura F.158). Los parámetros medidos durante el ensayo se resumen en la Tabla F. 57.

and a second	E	G	Fv
Contraction of the local division of the loc	MPa	MPa	kN
	2862,87	1351,12	60,90
	Hu	H ₂	δ_{u}
	kN	kN	mm
	22,38	0,18	0,2871
	σ_{n}	τ	$\tau_{max} = R$
	MPa	MPa	MPa
	5,80	2,13	3,599
	σ_1	σ_3	θ
	MPa	MPa	Rad
HEIRE (day, de DitaLlava Spool	6,499	-0,699	0,317

Figura F.158 [Mecanismo de rotura MSSML14GSL – 60V22H]

ΑΝΕΧΟ

CALCULO DE LAS CARGAS VERTICALES Y HORIZONTALES PARA LOS EDIFICIOS A ESCALA 1:4

G.1 CARGAS VERTICALES

• CAMPAÑA EXPERIMENTAL VI – EDIFICIO DE TRES PLANTAS CON PAREDES DE MORTERO

Evaluación de carga de la edificación a escala real y a escala reducida.

	Escala 1:1		Escala 1:4		
LOSA	0,28*24	6,72 kN/m ²	0,07*24	1,68 kN/m ²	
Muros Aparejo	4*1,35*0,29*2,05*18	1,926 kN/m ²	4*0,3375*,0725*,5125*18	0,482 kN/m ²	
Flamenco	5,0*6,0		1,25 * 1,5		
Muros	2,80*,14*2.05*18	0,482 kN/m ²	0,6991*,035*,5125*18	0,120 kN/m ²	
simple	5,0*6,0		1,25 *1,5		
	Peso propio edificio escala 1:1	9,13 kN/m ²	Peso propio edificio escala 1:4	2,28 kN/m ²	
W 0 PLANTA	5.0*6*.(1,926+0,482)	72,25 kN	1,5*1,25*(0,482+0,120)	1,13 kN	
W 1 PLANTA	5.0*6*.9,13	273,85 kN	1,5*1,25*.2,28	4,28 kN	
W 2 PLANTA	5.0*6*.9,13	273,85 kN	1,5*1,25*.2,28	4,28 kN	
W CUBIERTA	5.0*6*.6,72	201,60 kN	1,5*1,25*1,68	3,15 kN	
	W TOTAL DEL EDIFICIO 1:1	821,55 kN	W TOTAL DEL EDIFICIO 1:4	12,84 kN	
Tabla G.1 [Evaluación del peso propio del edificio de paredes de mortero a escala real y escala reducida 1:4 CE-VI]					

La relación entre el peso total a escala 1:1 sobre la escala 1:4 es 64; como se aprecia el peso no se reduce de forma lineal como si sucede con la geometría,
por lo tanto para trabajar con similitud simple se debe adicionar peso para igualar las tensiones en las dos escalas. Para el porcentaje de carga que recibe cada muro se ha empleado un sencillo método basado en un reparto isostático; las tablas siguientes (Tabla G.1, Tabla G.2, Tabla G.3 y Tabla G.4) resumen los cálculos para obtener el sobrepeso a adicionar.

 Tabla G.1 [Porcentaje de carga que con respecto al área total del forjado para campaña experimental VI]

N	luros	Losa cubierta kN	Muro 2 piso _{kN}	Losa 2 piso _{kN}	Muro 1 piso kN	Losa 1 Piso _{kN}	CARGA TOTAL (que recibe cada muro) MPa	σ _{n 1:1} kN
	M 1	33,59	-	-	-	-	33,59	0,086
0	M 3	33,59	-	-	-	-	33,59	0,086
Piso	M 4	33,59	-	-	-	-	33,59	0,086
N	M 5	33,59	-	-	-	-	33,59	0,086
	M 2	67,19	-	-	-	-	67,19	0,171
	M 1	33,59	14,446	33,59	-	-	81,62	0,208
0	M 3	33,59	14,446	33,59	-	-	81,62	0,208
piso	M 4	33,59	14,446	33,59	-	-	81,62	0,208
τ-	M 5	33,59	14,446	33,59	-	-	81,62	0,208
	M 2	67,19	14,465	67,19	-	-	148,85	0,380
	M 1	33,59	14,446	33,59	14,446	33,59	129,65	0,331
ción	M 3	33,59	14,446	33,59	14,446	33,59	129,65	0,331
entad	M 4	33,59	14,446	33,59	14,446	33,59	129,65	0,331
Cim	M 5	33,59	14,446	33,59	14,446	33,59	129,65	0,331
	M 2	67,19	14,465	67,19	14,465	67,19	230,51	0,588
	Tabla	G.2 [Calcu	lo de las	tensione	es debidas al	peso propio	o - edifico a esca	ala 1:1 CE-VI]

N	luros	Losa cubierta kN	Muro 2 piso kN	Losa 2 piso _{kN}	Muro 1 piso kN	Losa 1 Piso _{kN}	CARGA TOTAL (que recibe cada muro) MPa	σ _{n 1:4} kN
	M 1	0,52	-	-	-	-	0,52	0,021
0	М 3	0,52	-	-	-	-	0,52	0,021
Piso	M 4	0,52	-	-	-	-	0,52	0,021
N	M 5	0,52	-	-	-	-	0,52	0,021
	M 2	1,05			-	-	1,05	0,043
	M 1	0,52	0,226	0,52	-	-	1,28	0,052
0	М 3	0,52	0,226	0,52	-	-	1,28	0,052
l pisc	M 4	0,52	0,226	0,52	-	-	1,28	0,052
v -	M 5	0,52	0,226	0,52	-	-	1,28	0,052
	M 2	1,05	0,226	1,05	-	-	2,33	0,095
	M 1	0,52	0,226	0,52	0,226	0,52	2,03	0,083
ción	M 3	0,52	0,226	0,52	0,226	0,52	2,03	0,083
entai	M 4	0,52	0,226	0,52	0,226	0,52	2,03	0,083
Cim	M 5	0,52	0,226	0,52	0,226	0,52	2,03	0,083
	M 2	1,05	0,226	1,05	0,226	1,05	3,60	0,147

Tabla G.3 [Calculo de las tensiones debidas al peso propio - edifico a escala 1:4 CE-VI]

M	uros	Carga total materiales (muro + losa)	T n 1:4	G n 1:1	Sobrecarga forjado cubierta	Sobrecarga forjado 2 piso	Sobrecarga forjado 1 piso	CARGA TOTAL (que recibe cada muro) (Muros + losas + sobrecarga)	O n 1:4 (sobrecarga)
		kN	MPa	MPa	kN	kN	kN	kN	MPa
	M 1	0,52	0,021	0,086	1,5744	-	-	2,10	0,086
Q	М З	0,52	0,021	0,086	1,5744	-	-	2,10	0,086
2 Pis	M 4	0,52	0,021	0,086	1,5744	-	-	2,10	0,086
	M 5	0,52	0,021	0,086	1,5744	-	-	2,10	0,086
	M 2	1,05	0,043	0,171	3,1443	-	-	4,19	0,171
	M 1	1,28	0,052	0,208	1,5744	2,2515	-	5,10	0,208
0	М З	1,28	0,052	0,208	1,5744	2,2515	-	5,10	0,208
1 pis	M 4	1,28	0,052	0,208	1,5744	2,2515	-	5,10	0,208
	M 5	1,28	0,052	0,208	1,5744	2,2515	-	5,10	0,208
	M 2	2,33	0,095	0,380	3,1443	3,8215	-	9,29	0,380
	M 1	2,03	0,083	0,331	1,5744	2,2515	2,2515	8,10	0,331
ción	М З	2,03	0,083	0,331	1,5744	2,2515	2,2515	8,10	0,331
ienta	M 4	2,03	0,083	0,331	1,5744	2,2515	2,2515	8,10	0,331
Cirr	M 5	2,03	0,083	0,331	1,5744	2,2515	2,2515	8,10	0,331
	M 2	3,60	0,147	0,588	3,1443	3,8215	3,8215	14,39	0,588
Та	bla G.	4 [Calculo del	sobrepe	eso para	trabajar bajo	las mismas	tensiones en	el modelo a escala f	I:4 CE-VI]

• CAMPAÑA EXPERIMENTAL VII – EDIFICIO DE DOS PLANTAS CON PAREDES DE OBRA DE FABRICA DE LADRILLO

	Escala 1	1:1	Escala 1	:4							
LOSA	0,28*24	6,72 kN/m ²	0,07*24	1,68 kN/m ²							
Muros Aparejo	5,40*0,29*2,05*18	1,926 kN/m ²	1,926 kN/m ² 1,35*,0725*,5125*1,8								
Flamenco	5,0*6,0		1,25 * 1,5								
Muros	2,80*,14*2.05*18	0,482 kN/m ²	0,6991*,035*,5125*1,8	0,120 kN/m ²							
simple	5,0*6,0		1,25 *1,5								
	Peso propio edificio escala 1:1	9,13 kN/m ²	Peso propio edificio escala 1:4	2,28 kN/m ²							
W 0 PLANTA	5.0*6*.(1,926+0,482)	72,25 kN	1,5*1,25*(0,482+0,120)	1,13 kN							
W 1 PLANTA	5.0*6*.9,13	273,85 kN	1,5*1,25*.2,28	4,28 kN							
W CUBIERTA	5.0*6*.6,72	201,60 kN	1,5*1,25*1,68	3,15 kN							
	W TOTAL DEL EDIFICIO 1:1	547,70 kN	W TOTAL DEL EDIFICIO 1:4	8,56 kN							
Tabla G.5 [Evaluación del peso propio del edificio de paredes de mortero a escala real y escala reducida 1:4 CE-VII]											

Evaluación de carga de la edificación a escala real y a escala reducida.

La relación entre el peso total a escala 1:1 sobre la escala 1:4 es 64; como se aprecia el peso no se reduce de forma lineal como si sucede con la geometría, por lo tanto para trabajar con similitud simple se debe adicionar peso para igualar las tensiones en las dos escalas. Para el porcentaje de carga que recibe cada muro se ha empleado un sencillo método basado en un reparto isostático; las tablas siguientes (Tabla G.6, Tabla G.7, Tabla G.8 y Tabla G.9) resumen los cálculos para obtener el sobrepeso a adicionar.

G4

Μ	luros	Losa cubierta kN	Muro 1 piso kN	Losa 1 Piso kN	CARGA TOTAL (que recibe cada muro) MPa	∩ _{n 1:4} kN				
	M 1	0,52	-	-	0,52	0,021				
0	М 3	0,52	-	-	0,52	0,021				
l pisc	M 4	0,65	-	-	0,65	0,027				
v -	M 5	0,65	-	-	0,65	0,027				
	M 2	0,80	-	-	0,80	0,033				
	M 1	0,52	0,226	0,52	1,28	0,052				
ción	М 3	0,52	0,226	0,52	1,28	0,052				
enta	M 4	0,65	0,226	0,65	1,53	0,062				
Cim	M 5	0,65	0,226	0,65	1,53	0,062				
	M 2	0,80	0,226	0,80	1,82	0,074				
Tab	Tabla G.8 [Calculo de las tensiones debidas al peso propio - edifico a escala 1:4 CE-VII]									

Μ	luros	Losa cubierta kN	Muro 1 piso kN	Losa 1 Piso _{kN}	CARGA TOTAL (que recibe cada muro) MPa	σ _{n 1:1} kN				
1 piso	M 1	33,59	-	-	33,59	0,086				
	M 3	33,59	-	-	33,59	0,086				
	M 4	41,67	-	-	41,67	0,106				
	M 5	41,67	-	-	41,67	0,106				
	M 2	51,09	-	-	51,09	0,130				
	M 1	33,59	14,446	33,59	81,62	0,208				
ción	М З	33,59	14,446	33,59	81,62	0,208				
ienta	M 4	41,67	14,446	41,67	97,79	0,250				
Circ	M 5	41,67	14,446	41,67	97,79	0,250				
	M 2	51,09	14,465	51,09	116,64	0,298				
Та	Tabla G.7 [Calculo de las tensiones debidas al peso propio - edifico a escala 1.1 CF-VIII									

М	uros	Carga total materiales (muro + losa)	O n 1:4	T n 1:1	Sobrecarga forjado cubierta	Sobrecarga forjado 1 piso	CARGA TOTAL (que recibe cada muro) (Muros + losas + sobrecarga)	O n 1:4 (sobrecarga)	
		kN	MPa	MPa	kN	kN	kN	MPa	
	M 1	0,52	0,021	0,086	1,5744	-	2,10	0,086	
•	М З	0,52	0,021	0,086	1,5744	-	2,10	0,086	
pisc	M 4	0,65	0,027	0,106	1,9533	-	2,60	0,106	
~	M 5	0,65	0,027	0,106	1,9533	-	2,60	0,106	
	M 2	0,80	0,033	0,130	2,3905	-	3,19	0,130	
	M 1	1,28	0,052	0,208	1,5744	2,2515	5,10	0,208	
ción	М З	1,28	0,052	0,208	1,5744	2,2515	5,10	0,208	
entad	M 4	1,53	0,062	0,250	1,9533	2,6305	6,11	0,250	
Cim	M 5	1,53	0,062	0,250	1,9533	2,6305	6,11	0,250	
	M 2	1,82	0,074	0,298	2,3905	3,0677	7,28	0,298	
	Tabla G.9 [Calculo del sobrepeso para trabajar bajo las mismas tensiones en el modelo a								

A este edificio, también se le aplico una carga adicional a fin de que los muros trabajasen a tensiones más altas, debido al tamaño de los lingotes que empleamos solo fue posible situarla en la cubierta; la Tabla G.9 resume la carga total adicionada; la aplicada para trabajar a las mismas tensiones reales y un sobre peso adicional.

М	uros	CARGA TOTAL (Muros + losas + sobrecarga) kN	O n 1:4 (sobrecarga) MPa	Sobrecarga 2 forjado cubierta kN	CARGA TOTAL (que recibe cada muro) (Muros + losas + sobrecargas 1 + 2) kN	O n 1:4 (sobrecarga 1+2) MPa
	M 1	2,10	0,086	1,0557	3,1549	0,129
~	М З	2,10	0,086	1,0557	3,1549	0,129
l pisc	M 4	2,60	0,106	1,3098	3,9142	0,160
-	M 5	2,60	0,106	1,3098	3,9142	0,160
	M 2	3,19	0,130	1,6030	4,7917	0,196
	M 1	5,10	0,208	1,0557	6,1569	0,252
ción	М З	5,10	0,208	1,0557	6,1569	0,252
ienta	M 4	6,11	0,250	1,3098	7,4215	0,303
Cim	M 5	6,11	0,250	1,3098	7,4215	0,303
	M 2	7,28	0,298	1,6030	8,8833	0,363
	Tabla	G.10 [Calculo	de tensione	es de trabajo de	cada muro con la s	sobrecarga

adicional CE-VII]

CAMPAÑA EXPERIMENTAL VIII – EDIFICIO DE TRES PLANTAS CON PAREDES DE OBRA DE FABRICA DE LADRILLO

	Escala 1	:1	Escala 1	:4								
LOSA	0,28*24	6,72 kN/m ²	0,07*24	1,68 kN/m ²								
Muros Aparejo	5,40*0,29*2,05*18	1,926 kN/m ²	1,35*,0725*,5125*1,8	0.482 kN/m ²								
Flamenco	5,0*6,0		1,25 * 1,5									
Muros	2,80*,14*2.05*18	0,482 kN/m ²	0,6991*,035*,5125*1,8	0,120 kN/m ²								
simple	5,0*6,0		1,25 *1,5									
	Peso propio edificio escala 1:1	9,13 kN/m ²	Peso propio edificio escala 1:4	2,28 kN/m ²								
W 0 PLANTA	5.0*6*.(1,926+0,482)	72,25 kN	1,5*1,25*(0,482+0,120)	1,13 kN								
W 1 PLANTA	5.0*6*.9,13	273,85 kN	1,5*1,25*.2,28	4,28 kN								
W 2 PLANTA	5.0*6*.9,13	273,85 kN	1,5*1,25*.2,28	4,28 kN								
W CUBIERTA	5.0*6*.6,72	201,60 kN	1,5*1,25*1,68	3,15 kN								
	W TOTAL DEL EDIFICIO 1:1	821,55 kN	W TOTAL DEL EDIFICIO 1:4	12,84 kN								
Tabla G.11 [Tabla G.11 [Evaluación de peso propio del edificio de paredes de mortero a escala real y escala reducida 1:4 CE-VIII]											

Evaluación de carga de la edificación a escala real y a escala reducida.

La relación entre los pesos total a escala 1:1 sobre la escala 1:4 es 64; como en los casos anteriores, el porcentaje de carga que recibe cada muro se ha empleado un sencillo método basado en un reparto isostático; las tablas siguientes (Tabla G.12, Tabla G.13, Tabla G.14 y Tabla G.15) resumen los cálculos para obtener el sobrepeso a adicionar.

N	luros	Losa cubierta kN	Muro 2 piso _{kN}	Losa 2 piso _{kN}	Muro 1 piso kN	Losa 1 Piso _{kN}	CARGA TOTAL (que recibe cada muro) MPa	σ _{n 1:1} kN
	M 1	33,59	-	-	-	-	33,59	0,086
0	M 3	33,59	-	-	-	-	33,59	0,086
Piso	M 4	41,67	-	-	-	-	41,67	0,106
2	M 5	41,67	-	-	-	-	41,67	0,106
	M 2	51,09		-	-	-	51,09	0,130
	M 1	33,59	14,446	33,59	-	-	81,62	0,208
-	M 3	33,59	14,446	33,59	-	-	81,62	0,208
piso	M 4	41,67	14,446	41,67	-	-	97,79	0,250
Ţ	M 5	41,67	14,446	41,67	-	-	97,79	0,250
	M 2	51,09	14,465	51,09	-	-	116,64	0,298
	M 1	33,59	14,446	33,59	14,446	33,59	129,65	0,331
ción	M 3	33,59	14,446	33,59	14,446	33,59	129,65	0,331
entac	M 4	41,67	14,446	41,67	14,446	41,67	153,90	0,393
Ci	M 5	41,67	14,446	41,67	14,446	41,67	153,90	0,393
	M 2	51,09	14,465	51,09	14,465	51,09	182,19	0,465
	Tabla (G.13 [Calcu	lo de las	tensione	es debidas al	peso propio	o - edifico a esca	ala 1:1 CE-VIII]

N	luros	Losa cubierta kN	Muro 2 piso kN	Losa 2 piso _{kN}	Muro 1 piso kN	Losa 1 Piso _{kN}	CARGA TOTAL (que recibe cada muro) MPa	σ _{n 1:4} kN
	M 1	0,52	-	-	-	-	0,52	0,021
0	М З	0,52	-	-	-	-	0,52	0,021
: Piso	M 4	0,65	-	-	-	-	0,65	0,027
N	M 5	0,65	-	-	-	-	0,65	0,027
	M 2	0,80		-	-	-	0,80	0,033
	M 1	0,52	0,226	0,52	-	-	1,28	0,052
~	М 3	0,52	0,226	0,52	-	-	1,28	0,052
piso	M 4	0,65	0,226	0,65	-	-	1,53	0,062
÷	M 5	0,65	0,226	0,65	-	-	1,53	0,062
	M 2	0,80	0,226	0,80	-	-	1,82	0,074
	M 1	0,52	0,226	0,52	0,226	0,52	2,03	0,083
ción	М З	0,52	0,226	0,52	0,226	0,52	2,03	0,083
entad	M 4	0,65	0,226	0,65	0,226	0,65	2,40	0,098
Cim	M 5	0,65	0,226	0,65	0,226	0,65	2,40	0,098
	M 2	0,80	0,226	0,80	0,226	0,80	2,85	0,116
	Tabla (G.14 [Calcul	lo de las	tensione	s debidas al	peso propio	- edifico a esca	ala 1:4 CE-VIII]

М	uros	Carga total materiales (muro + losa)	O n 1:4	σ n 1:1	Sobrecarga forjado cubierta	Sobrecarga forjado 2 piso	Sobrecarga forjado 1 piso	CARGA TOTAL (que recibe cada muro) (Muros + losas + sobrecarga)	O n 1:4 (sobrecarga)		
		kN	MPa	MPa	kN	kN	kN	kN	MPa		
	M 1	0,52	0,021	0,086	1,5744	-	-	2,10	0,086		
0	М 3	0,52	0,021	0,086	1,5744	-	-	2,10	0,086		
2 Piso	M 4	0,65	0,027	0,106	1,9533	-	-	2,60	0,106		
	M 5	0,65	0,027	0,106	1,9533	-	-	2,60	0,106		
	M 2	0,80	0,033	0,130	2,3946	-	-	3,19	0,130		
	M 1	1,28	0,052	0,208	1,5744	2,2515	-	5,10	0,208		
0	М З	1,28	0,052	0,208	1,5744	2,2515	-	5,10	0,208		
l pisc	M 4	1,53	0,062	0,250	1,9533	2,6305	-	6,11	0,250		
v -	M 5	1,53	0,062	0,250	1,9533	2,6305	-	6,11	0,250		
	M 2	1,82	0,074	0,298	2,3946	3,0636	-	7,28	0,298		
	M 1	2,03	0,083	0,331	1,5744	2,2515	2,2515	8,10	0,331		
ción	М З	2,03	0,083	0,331	1,5744	2,2515	2,2515	8,10	0,331		
enta	M 4	2,40	0,098	0,393	1,9533	2,6305	2,6305	9,62	0,393		
Cim	M 5	2,40	0,098	0,393	1,9533	2,6305	2,6305	9,62	0,393		
	M 2	2,85	0,116	0,465	2,3946	3,0636	3,0677	11,37	0,465		
T	Tabla G.15 [Calculo del sobrepeso para trabajar bajo las mismas tensiones en el modelo a escala 1:4 CE- VIII]										

G.2 CARGAS HORIZONTALES

• CAMPAÑA EXPERIMENTAL PARA LOS EDIFICIO DE TRES PLANTAS: CAMPAÑA VI CON PAREDES DE MORTERO Y CAMPAÑA VIII CON PAREDES DE OBRA DE LADRILLO

El reparto de la fuerza horizontal para las campañas VI y VIII a pesar de tener diferentes configuraciones en los muros el peso en cada nivel es el mismo en las dos campañas.

Para el cálculo de la fuerza horizontal se empleó las recomendaciones del Eurocódigo-8(1998): "Cuando la deformada correspondiente al modo fundamental se aproxime mediante desplazamientos horizontales variables linealmente con la altura, las fuerzas horizontales F_i vienen dadas por:

$$F_i = \frac{W_i \cdot z_i}{\displaystyle\sum_{j=1}^n z_j \cdot W_j} \cdot F_b$$

Ecuación G.1

Donde W_i , W_j son los pesos de la masa de cada nivel, z_i , z_j son las alturas de la masa con respecto al nivel de aplicación de la acción horizontal (cimentación) y F_b es el cortante sísmico de la base (cortante basal).

A continuación se presentan las Tabla G.16 y Tabla G.17 con el calculo del reparto de cargas horizontales, tanto para un el edificio de referencia escala 1:1 como para el edificio 1:4 con la sobrecarga adicionada.

PLANTA	Wi	Zi	z _j * W _j	Fi
	kN	m	kN-m	kN
Cubierta	201,60	6,85	1380,96	0,4290 F _b
2 ^{<u>do</u>}	273,85	4,52	1237,80	0,3846 F _b
1 ^{<u>ro</u>}	273,85	2,19	599,73	0,1864 F _b
			3218,49	
Tabla G.16 [Reparto	abla G.16 [Reparto de la carga horizontal del edifico en referencia escala CE-VI]			

La sobrecarga calculada para trabajar a iguales tensiones que se resume en el apartado G.1 son: para la cubierta 9,44 kN, el 2^{do} piso 12,83 kN y el 1^{er} piso 12,83 kN. La Tabla G.16 el peso W_j ya tiene incluido esta sobrecarga en el cálculo.

PLANTA	Wj	Zi	z _j * W _j	Fi
	kN	m	kN-m	kN
Cubierta	12,59	1,71	21,56	0,4290 F _b
2 ^{<u>do</u>}	17,11	1,13	19,33	0,3846 F _b
1 ^{<u>ro</u>}	17,11	0,5475	9,37	0,1864 F _b
		-	50,26	
Tabla G.16 [Reparto de la carga horizontal del edifico de tras plantas paredes de				
mortero 1:4 CE-VI]				

Comparando las tablas anteriores se observa que la fuerza Fi es igual tanto para el edificio a escala reducida como para el edificio referencia a escala 1:1.

CAMPAÑA EXPERIMENTAL VII – EDIFICIO DE DOS PLANTAS CON PAREDES DE OBRA DE FABRICA DE LADRILLO

Este modelo presenta un cambio respecto a los anteriores ya que se le adicionó un sobrepeso (carga muerta) que los otros modelos solo se habían contemplado el peso propio; por temas constructivos esta carga muerta se colocó sobre el nivel cubierta. Al ser dos niveles de forjado, la fuerza horizontal aplicada sobre cada forjado es el mismo, simulando la acción del viento que varían en el tiempo o a acciones inesperadas que actúan directamente sobre las superficies exteriores de las estructuras cerradas o como sucede en varias edificaciones de nuestro entorno un empuje provocado por el edificio colindante.

ΑΝΕΧΟ

Н

CÁLCULOS DEL MÉTODO FORMULADO EN LOS EDIFICIOS A ESCALA 1:4 ENSAYADOS

H.1 APLICACIÓN A LOS MODELOS A LOS EDIFICIOS EXPERIMENTALES Y LA PREDICCIÓN DE LA CAPACIDAD ÚLTIMA

El presente anexo detalla el método y los cálculos a los que hace referencia el capitulo 6. Para cada uno de las diferentes campañas experimentales se realizó la predicción de la capacidad última bajo las hipótesis y modelos propuestos.

H.1.1 CAMPAÑA EXPERIMENTAL VI EDIFICIO DE PAREDES DE MORTERO EN MASA DE TRES PLANTAS

Figura H. 1 [Esquema de distribución de carga vertical por áreas aferentes - campaña VI]

Las figura anterior y siguiente muestran los esquemas de distribución de las cargas empleadas en las diferentes hipótesis de la campaña experimental VI.

• HIPÓTESIS 1: El edificio falla o gira por cinco muros de la planta baja.

Teniendo en cuenta la geometría de este modelo como se muestra en las Figura H. 1 y Figura H. 2 y tomando como peso específico para el hormigón armado y los muros de mortero en masa 24 kN/m³ y 18 kN/m³ respectivamente, se calcula el peso propio de los distintos elementos estructurales y el peso de la sobrecarga como se resume en la Tabla H. 1.

	Carga Total (kN)	
FORJADO	9,45	
MURO DE MORTERO SECCIÓN (0,6991 X 0,0350)	0,45	
MURO DE MORTERO SECCIÓN (0,3375 X 0.0725)	1,81	
SOBRE PESO PISO 3	8,25	
SOBRE PESO PISO 2	12,19	
SOBRE PESO PISO 1	12,41	
PESO TOTAL QUE RECIBEN MUROS DE LA CIMENTACIÓN	44,56	
Tabla H. 1 [Evaluación de carga total que reciben los muros de la cimentación Campaña experimental VI]		

Bajo esta hipótesis la carga vertical total se reparte según los porcentajes presentados en la Figura H. 1, donde la reacción vertical V para cada una de las paredes se presenta en la Tabla H. 2:

	V (kN)	
MUROS SIMPLE - V 1,3,4,5 C/U	44,56* 0,1666 = 7,43	
M. FLAMENCO – V ₂	44,56* 0,3334 = 14,86	
Tabla H. 2 [Reacción vertical V de cada muro campaña VI – hipótesis 1]		

Según el modelo propuesto tenemos los siguientes cálculos:

	1	i.
b	337,5	mm
h	512,5	mm
t	72,5	mm
f _{cm}	40	MPa
Ángulo de rozamiento interno $tan \phi$	0,90	
Cohesión C	0,60	MPa
Tabla H. 3 [Características de los muros M1, M3 M4 y M5 campaña VI]		

Muros M1-M3-M4-M5

Por el modelo propuesto se producirá una plastificación de la zona delimitada por la longitud **d** debido al estado tensional que se encuentran los muros.

$$d_{1,3,4,5} = \frac{V_{1,3,4,5}}{f_{cm} \cdot t}$$
 = 2,56 mm

Para comprobar el modelo a aplicar se ha de realizar la comparación del ángulo β que forma la biela que se obtiene por la geometría del muro y el ángulo máximo.

$$\tan \beta = \frac{b-d}{h} = 0,6535 \qquad \beta_1 = \begin{array}{c} 0,5789 \quad \text{Rad} \\ 33,17 \quad \circ \end{array}$$
$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 2,88 \qquad \beta_2 = \begin{array}{c} 1,2363 \quad \text{Rad} \\ 70,83 \quad \circ \end{array}$$

donde σ se calcula de:

$$\sigma = rac{V_{\scriptscriptstyle 1,3,4,5}}{b \cdot t}$$
 0,3035 MPa

Como $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría, y se calcula la fuerza horizontal de ruptura con la siguiente ecuación que corresponde al modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3,4,5} \qquad \begin{array}{ccc} H_{ruptura M1} = & \mathbf{4,85} & \mathrm{kN} \\ H_{ruptura M3} = & \mathbf{4,85} & \mathrm{kN} \\ H_{ruptura M4} = & \mathbf{4,85} & \mathrm{kN} \\ H_{ruptura M5} = & \mathbf{4,85} & \mathrm{kN} \end{array}$$

b	699,1	mm
h	512,5	mm
t	35	mm
f _{cm}	40,00	MPa
Ángulo de rozamiento interno $tan \phi$	0,90	
Cohesión C	0,60	MPa
Tabla H. 4 [Características de los muros M2 campaña VI]		

Muros M2

Calculo de la zona de plastificación d.

$$d_2 = \frac{V_2}{f_{cm} \cdot t} = 10,61 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 1,3434$$
 $\beta_1 =$
0,9309 Rad
53,34 °

 $\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,89$ $\beta_2 = 62,09^{\circ}$

donde σ se calcula de:

$$\sigma = rac{V_2}{b \cdot t}$$
 0,6072 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_2$$
 $H_{ruptura M2} =$ **19,96** kN

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta2} + H_{ruptuta3} + H_{ruptuta4} + H_{ruptuta5} = 39,37 \text{ kN}$$

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_3 \cdot h_3 + P_2 \cdot h_2 + P_1 \cdot h_1 \qquad = 1.271 \text{ P}$$

Donde P_1 , P_2 y P_3 es la carga horizontal aplicada sobre cada planta y h_1 , h_2 y h_3 es la altura sobre rasante de la planta indicada calculada sobre el punto **A** (ver Figura H. 2).

$$M_{Estabilizador} = 4 \cdot V_{1,3,4,5} \cdot \left(x - \frac{d_{1,3,4,5}}{2}\right) + V_2 \cdot \left(x - \frac{d_2}{2}\right)$$
$$= 27,74$$
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2}\right) + V_2 \left(x_2 - \frac{d_2}{2}\right) + V_3 \left(x_3 - \frac{d_3}{2}\right) + V_4 \left(x_4 - \frac{d_4}{2}\right) + V_5 \left(x_5 - \frac{d_5}{2}\right)$$

Donde x es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **A** y x_i (i = 1,2..n) es la distancia del centro de carga del muro i al punto **A** (ver Figura H. 1 y Figura H. 2).

Como P < H_{total} el edificio no colapsa por la rotura de los muros, sino que el edificio gira.

P (kN)	H _{total} (kN)
21,83	39,37

• HIPÓTESIS 2: El edificio falla o gira por tres muros de la planta baja.

Bajo esta hipótesis la carga vertical total se reparte sólo en los tres muros (M1-M2-M3) según los porcentajes presentados en la Figura H. 1 (valores entre paréntesis), donde la reacción vertical V para cada una de las paredes se presenta en la Tabla H. 5.

	V (kN)	
MUROS SIMPLE - V _{1Y3} c/u	44,56* 0,225 = 10,03	
M. FLAMENCO – V ₂	44,56* 0,55 = 24,51	
Tabla H. 5 [Reacción vertical V de cada muro campaña VI – hipótesis 2]		

Según el modelo propuesto tenemos los siguientes cálculos:

Muros M1 y M3

Calculo de la zona de plastificación d.

$$d_{1,3} = \frac{V_{1,3}}{f_{cm} \cdot t} = 3,46 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6518 \qquad \beta_1 = \begin{array}{c} 0,5776 \text{ Rad} \\ 33,10 \text{ }^{\circ} \end{array}$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 2,36$$
 $\beta_2 =$
1,1706 Rad

67,07 °

donde σ se calcula de:

$$\sigma = rac{V_{\scriptscriptstyle 1,3}}{b \cdot t}$$
 0,4098 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3} \qquad \begin{array}{c} H_{ruptura M1} = & \mathbf{6,54} & \mathrm{kN} \\ H_{ruptura M3} = & \mathbf{6,54} & \mathrm{kN} \end{array}$$

Muros M2

Calculo de la zona de plastificación d.

$$d_2 = \frac{V_2}{f_{cm} \cdot t} = 17,51 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 1,3299 \qquad \beta_1 = 0,9261 \text{ Rad} \\
53,06 \circ 0$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,50$$
 $\beta_2 =$
 $0,9825 \text{ Rad}$
 $\beta_2 =$
 $56,29 \circ$

donde σ se calcula de:

$$\sigma = rac{V_2}{b \cdot t}$$
 1,0017 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_2$$
 $H_{ruptura M2} =$ **32,60** kN

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta2} + H_{ruptuta3} = 45,67$$
 kN

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_3 \cdot h_3 + P_2 \cdot h_2 + P_1 \cdot h_1 = 1.271 \text{ P}$$

Donde P_1 , P_2 y P_3 es la carga horizontal aplicada sobre cada planta y h_1 , h_2 y h_3 es la altura sobre rasante de la planta indicada calculada sobre el punto **A** (ver Figura H. 2).

$$M_{Estabilizador} = 2 \cdot V_{1,3} \cdot \left(x - \frac{d_{1,3}}{2}\right) + V_2 \cdot \left(x - \frac{d_2}{2}\right) = 18,45$$
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2}\right) + V_2 \left(x_2 - \frac{d_2}{2}\right) + V_3 \left(x_3 - \frac{d_3}{2}\right)$$

Donde **x** es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **A** y x_i (i = 1,2..n) es la distancia del centro de carga del muro **i** al punto **A** (ver Figura H. 1 y Figura H. 2).

Igualando los momentos despejamos P, donde P =14,52 kN

Como P < H_{total} el edificio no colapsa por la rotura de los muros, sino que el edificio gira.

P (kN)	H _{total} (kN)
14,52	45,67

HIPÓTESIS 3: El edificio falla o gira por dos muros de la planta baja.

Bajo esta hipótesis la carga vertical total se reparte sólo en los dos muros (M1-M3) según los porcentajes presentados en la Figura H. 1 (valores entre corchetes []), donde la reacción vertical V para cada una de las paredes se presenta en la Tabla H. 6.

	V (kN)
MUROS SIMPLE - V 1Y3 c/u	44,56* 0,50 = 22,28
Tabla H. 6 [Reacción vertical V de cada muro	campaña VI – hipótesis 3]

Según el modelo propuesto tenemos los siguientes cálculos:

Muros M1 y M3

Calculo de la zona de plastificación d.

$$d_{1,3} = \frac{V_{1,3}}{f_{cm} \cdot t} = 7,68 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6435$$
 $\beta_1 = 0,6435$
 $\beta_2,76 \circ 0,5718$
Rad
 $32,76 \circ 0,5718$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,56$$
 $\beta_2 =$
 $1,0004 \text{ Rad}$
 $\beta_2 =$
 $57,32 \circ$

donde σ se calcula de:

$$\sigma = rac{V_{\scriptscriptstyle 1,3}}{b \cdot t}$$
 0,9106 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3} \qquad \begin{array}{c} H_{ruptura M1} = & \mathbf{14,34} & \mathrm{kN} \\ H_{ruptura M3} = & \mathbf{14,34} & \mathrm{kN} \end{array}$$

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta3} = 28,68 \text{ kN}$$

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_3 \cdot h_3 + P_2 \cdot h_2 + P_1 \cdot h_1 = 1.271 \text{ P}$$

Donde P_1 , P_2 y P_3 es la carga horizontal aplicada sobre cada planta y h_1 , h_2 y h_3 es la altura sobre rasante de la planta indicada calculada sobre el punto **A** (ver Figura H. 2).

$$M_{Estabilizador} = 2 \cdot V_{1,3} \cdot \left(x - \frac{d_{1,3}}{2} \right) = 7,35$$
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2} \right) + V_3 \left(x_3 - \frac{d_3}{2} \right)$$

Donde x es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **A** y x_i (i = 1,2..n) es la distancia del centro de carga del muro i al punto **A** (ver Figura H. 1 y Figura H. 2).

Igualando los momentos despejamos P, donde P = 5,78 kN

Como P < H_{total} el edificio no colapsa por la rotura de los muros, sino que el edificio gira.

P (kN)	H _{total} (kN)
5,78	28,68

H.1.2 CAMPAÑA EXPERIMENTAL VII EDIFICIO DE PAREDES DE OBRA DE FABRICA DE LADRILLO DE DOS PLANTAS

Las figuras a continuación son los esquemas de distribución de las cargas empleadas en las diferentes hipótesis de la campaña experimental VIII a fin de predecir la carga última.

Figura H. 3 [Esquema de distribución de carga vertical por áreas aferentes - campaña VII]

Figura H. 4 [Esquema de distribución de la carga vertical campaña VII]

• HIPÓTESIS 1: El edificio falla o gira por cinco muros de la planta baja.

Teniendo en cuenta la geometría de este modelo como se muestra en las Figura H. 3 y Figura H. 4 y tomando como peso específico para el hormigón armado y los muros de fábrica 24 kN/m³ y 18 kN/m³ respectivamente, se calcula el peso propio de los distintos elementos estructurales y el peso de la sobrecarga como se resume en la Tabla H. 7.

	Carga Total (kN)	
FORJADO	6,30	
MURO APAREJO SIMPLE	0,23	
MURO APAREJO FLAMENCO	0,90	
SOBRE PESO PISO 2	18,53	
SOBRE PESO PISO 1	12,41	
PESO TOTAL QUE RECIBEN MUROS DE LA CIMENTACIÓN	38,36	
Tabla H. 7 [Evaluación de carga total que reciben los muros de la cimentación campaña experimental VII]		

Bajo esta hipótesis la carga vertical total se reparte según los porcentajes presentados en la Figura H. 3, donde la reacción vertical **V** para cada una

as paredes se presenta en la Tabla H. 8:	
<i>V</i> (kN)	
38,36* 0,1666 = 6,39	
38,36* 0,2067 = 7,93	
38,36* 0,2534 = 9,72	

b	337,5	mm
h	512,5	mm
t	72,5	mm
f _{cm}	11,39	MPa
Ángulo de rozamiento interno $tan \phi$	0,82	
Cohesión C	0,46	MPa
Tabla H. 9 [Características de los muros M1, M3 M4 y M5 campaña VII]		

Según el modelo propuesto tenemos los siguientes cálculos:

Por el modelo propuesto se producirá una plastificación de la zona delimitada por la longitud *d* debido al estado tensional que se encuentran los muros.

$$d_{1,3} = \frac{V_{1,3}}{f_{cm} \cdot t} = 7,74 \text{ mm}$$

Muros M1 y M3

Para comprobar el modelo a aplicar se ha de realizar la comparación del ángulo β que forma la biela que se obtiene por la geometría del muro y el ángulo máximo.

$$\tan \beta = \frac{b-d}{h} = 0,6434 \qquad \beta_1 = \begin{array}{c} 0,5717 \quad \text{Rad} \\ 32,76 \quad \circ \end{array}$$
$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 2,58 \qquad \beta_2 = \begin{array}{c} 0,5717 \quad \text{Rad} \\ 32,76 \quad \circ \end{array}$$

donde σ se calcula de:

$$\sigma = rac{V_{\scriptscriptstyle 1,3}}{b \cdot t}$$
 0,2612 MPa

Como $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría, y se calcula la fuerza horizontal de ruptura con la siguiente ecuación que corresponde al modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3} \qquad \begin{array}{c} H_{ruptura M1} = & \textbf{4,11} & \text{kN} \\ H_{ruptura M3} = & \textbf{4,11} & \text{kN} \end{array}$$

Muros M4 y M5

Calculo de la zona de plastificación d.

$$d_{4,5} = \frac{V_{4,5}}{f_{cm} \cdot t} = 9,60 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6398 \qquad \beta_1 = 0,5692 \text{ Rad}$$

$$\beta_1 = 32,61 \circ 0$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 2,04$$
 $\beta_2 =$
1,1508 Rad

65,94 °

donde σ se calcula de:

$$\sigma = rac{V_{4,5}}{b \cdot t}$$
 0,3241 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{4,5} \qquad \begin{array}{c} H_{ruptura M4} = & \mathbf{5,07} & \text{kN} \\ H_{ruptura M5} = & \mathbf{5,07} & \text{kN} \end{array}$$

Muros M2

b	699,1	mm
h	512,5	mm
t	35	mm
f _{cm}	11,39	MPa
Ángulo de rozamiento interno $tan \phi$ 0,82		
Cohesión C 0,46 MPa		
Tabla H. 10 [Características de los muros M2 campaña VII]		

Calculo de la zona de plastificación d.

$$d_2 = \frac{V_2}{f_{cm} \cdot t} = 24,39 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 1,3165$$
 $\beta_1 =$
 $52,78 \circ$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,98$$
 $\beta_2 = 63,18^{\circ}$

donde σ se calcula de:

$$\sigma = rac{V_2}{b \cdot t}$$
 0,3973 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_2$$
 $H_{ruptura M2} =$ **12,80** kN

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta2} + H_{ruptuta3} + H_{ruptuta4} + H_{ruptuta5} = 31,17 \text{ kN}$$

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_2 \cdot h_2 + P_1 \cdot h_1 \qquad = 0,840 \text{ P}$$

Donde P_1 y P_2 es la carga horizontal aplicada sobre cada planta y h_1 y h_2 es la altura sobre rasante de la planta indicada calculada sobre el punto **A** (ver Figura H. 4).

$$M_{Estabilizador} = 2 \cdot V_{1,3} \cdot \left(x - \frac{d_{1,3}}{2}\right) + V_2 \cdot \left(x - \frac{d_2}{2}\right) + 2 \cdot V_{4,5} \cdot \left(x - \frac{d_{4,5}}{2}\right) = 22,46$$
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2}\right) + V_2 \left(x_2 - \frac{d_2}{2}\right) + V_3 \left(x_3 - \frac{d_3}{2}\right) + V_4 \left(x_4 - \frac{d_4}{2}\right) + V_5 \left(x_5 - \frac{d_5}{2}\right)$$

Donde x es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **A** y x_i (i = 1,2..n) es la distancia del centro de carga del muro i al punto **A** (ver Figura H. 3 y Figura H. 4).

Igualando los momentos despejamos P, donde P = 26,74 kN

Como P < H_{total} el edificio no colapsa por la rotura de los muros, sino que el edificio gira.

P (kN)	H _{total} (kN)
26,74	31,17

• HIPÓTESIS 2: El edificio falla por los tres muros de la planta baja.

Bajo esta hipótesis la carga vertical total se reparte solo en los tres muros (M1-M2-M3) según los porcentajes presentados en la Figura H. 3, donde la reacción vertical V para cada una de las paredes se presenta en la Tabla H. 11.

	<i>V</i> (kN)
MUROS SIMPLE - V 1 Y3 C/U	38,36* 0,25 = 9,59
M. FLAMENCO – V ₂	38,36* 0,50 = 19,18
Tabla H. 11 [Reacción vertical V de cada muro campaña VII – hipótesis 2]	

Según el modelo propuesto tenemos los siguientes cálculos:

Muros M1 y M3

Calculo de la zona de plastificación d.

$$d_{1,3} = \frac{V_{1,3}}{f_{cm} \cdot t}$$
 = 11,61 mm

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6359 \qquad \beta_1 = \begin{array}{c} 0,5664 \text{ Rad} \\ 32,45 \end{array}^\circ$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,99$$
 $\beta_2 =$
1,1059 Rad

63,36 °

donde σ se calcula de:

$$\sigma = rac{V_{\mathrm{l},3}}{b \cdot t}$$
 0,3920 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3} \qquad \begin{array}{l} H_{ruptura M1} = & \mathbf{6,10} & \mathrm{kN} \\ H_{ruptura M3} = & \mathbf{6,10} & \mathrm{kN} \end{array}$$

Muros M2

Calculo de la zona de plastificación d.

$$d_2 = \frac{V_2}{f_{cm} \cdot t} = 48,12 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 1,2702$$
 $\beta_1 =$
0,9039 Rad
51,79 °

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,41$$
 $\beta_2 =$
0,9528 Rad

54,59 °

donde σ se calcula de:

$$\sigma = rac{V_2}{b \cdot t}$$
 0,7840 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_2$$
 $H_{ruptura M2} =$ 24,37 kN

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta2} + H_{ruptuta3} = 36,56 \text{ kN}$$

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_2 \cdot h_2 + P_1 \cdot h_1 \qquad = 0,840 \text{ P}$$

Donde P_1 y P_2 es la carga horizontal aplicada sobre cada planta y h_1 y h_2 es la altura sobre rasante de la planta indicada calculada sobre el punto **A** (ver Figura H. 4).

$$M_{Estabilizador} = 2 \cdot V_{1,3} \cdot \left(x - \frac{d_{1,3}}{2}\right) + V_2 \cdot \left(x - \frac{d_2}{2}\right)$$

= 9,37
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2}\right) + V_2 \left(x_2 - \frac{d_2}{2}\right) + V_3 \left(x_3 - \frac{d_3}{2}\right)$$

Donde x es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **A** y x_i (i = 1,2..n) es la distancia del centro de carga del muro i al punto **A** (ver Figura H. 3 y Figura H. 4).

Igualando los momentos despejamos P, donde P =11,15 kN

Como P < H_{total} el edificio no colapsa por la rotura de los muros, sino que el edificio gira.

P (kN)	H _{total} (kN)
11,15	36,56

H.1.3 CAMPAÑA EXPERIMENTAL VIII EDIFICIO DE PAREDES DE OBRA DE FABRICA DE LADRILLO DE TRES PLANTAS

Las figuras a continuación son los esquemas de distribución de las cargas empleadas en las diferentes hipótesis de la campaña experimental VIII a fin de predecir la carga última.

Figura H. 5 [Esquema de distribución de carga vertical por áreas aferentes - campaña VIII]

• HIPÓTESIS 1: El edificio falla gira por cinco muros de la planta baja.

Teniendo en cuenta la geometría de este modelo como se muestra en las Figura H. 5 y Figura H. 6 y tomando como peso específico para el hormigón armado y los muros de fábrica 24 kN/m³ y 18 kN/m³ respectivamente, se calcula el peso propio de los distintos elementos estructurales y el peso de la sobrecarga como se resume en la Tabla H. 12.

	Carga Total (kN)
FORJADO	9,45
MURO APAREJO SIMPLE	0,45
MURO APAREJO FLAMENCO	1,81
SOBRE PESO PISO 3	8,25
SOBRE PESO PISO 2	12,19
SOBRE PESO PISO 1	12,41
PESO TOTAL QUE RECIBEN MUROS DE LA CIMENTACIÓN 44,56	
Tabla H. 12 [Evaluación de carga total que reciben los muros de la cimentación]	

Bajo esta hipótesis la carga vertical total se reparte según los porcentajes presentados en la Figura H. 5, donde la reacción vertical V para cada una de las paredes se presenta en la Tabla H. 13 :

	<i>V</i> (kN)
MUROS SIMPLE - V 1 Y 3 C/U	44,56* 0,1666 = 7,42
MUROS SIMPLE - V 4 Y 5 C/U	44,56* 0,2067 = 9,21
M. FLAMENCO – V ₂ 44,56* 0,2534 = 11,29	
Tabla H. 13 [Reacción vertical V de cada muro campaña VIII – hipótesis 1]	

Según el modelo propuesto tenemos los siguientes cálculos:

Muros M1 y M3

b	337,5	mm
h	512,5	mm
t	72,5	mm
f _{cm}	11,39	MPa
Ángulo de rozamiento interno $tan \phi$	0,82	
Cohesión C	0,46	MPa
Tabla H. 14 [Características de los muros M1, M3 M4 y M5 campaña VIII]		

Por el modelo propuesto se producirá una plastificación de la zona delimitada por la longitud d debido al estado tensional que se encuentran los muros.

$$d_{1,3} = \frac{V_{1,3}}{f_{cm} \cdot t} = 8,99 \text{ mm}$$

Para comprobar el modelo a aplicar se ha de realizar la comparación del ángulo β que forma la biela que se obtiene por la geometría del muro y el ángulo máximo.

$$\tan \beta = \frac{b-d}{h} = 0,6410 \qquad \beta_1 = \begin{array}{c} 0,5700 & \text{Rad} \\ 32,66 & \circ \end{array}$$
$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 2,34 \qquad \beta_2 = \begin{array}{c} 0,1663 & \text{Rad} \\ 66,83 & \circ \end{array}$$

donde σ se calcula de:

$$\sigma = rac{V_{\scriptscriptstyle 1,3}}{b \cdot t}$$
 0,3034 MPa

Como $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría, y se calcula la fuerza horizontal de ruptura con la siguiente ecuación que corresponde al modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3} \qquad \begin{array}{c} H_{ruptura M1} = & \mathbf{4,76} & \text{kN} \\ H_{ruptura M3} = & \mathbf{4,76} & \text{kN} \end{array}$$

Muros M4 y M5

Calculo de la zona de plastificación d.

$$d_{_{4,5}} = \frac{V_{_{4,5}}}{f_{_{cm}} \cdot t} = 11,15$$
mm

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6368 \qquad \beta_1 = 32,49^{\circ}$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 2,04$$
 $\beta_2 = \frac{1,1154}{63,91}$ Rad

donde σ se calcula de:

$$\sigma = rac{V_{4,5}}{b \cdot t}$$
 0,3765 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$H = \tan \beta \cdot V$	H _{ruptura M4} =	5,87	kN
ruptura carr p + 4,5	H _{ruptura M5} =	5,87	kN

Muros M2

b	699,1	mm
h	512,5	mm
t	35	mm
f _{cm}	11,39	MPa
Ángulo de rozamiento interno $tan \phi$	0,82	
Cohesión C	0,46	MPa
Tabla H. 15 [Características de los muros M2 campaña VIII]		

Calculo de la zona de plastificación d.

$$d_2 = \frac{V_2}{f_{cm} \cdot t}$$
 = 28,33 mm

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 1,3088 \qquad \beta_1 = 52,62^\circ$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,82$$
 $\beta_2 = 61,17^{\circ}$

donde σ se calcula de:

$$\sigma = rac{V_2}{b \cdot t}$$
 0,4615 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_2$$
 $H_{ruptura M2} =$ **14,78** kN

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta2} + H_{ruptuta3} + H_{ruptuta4} + H_{ruptuta5} = 36,03 \text{ kN}$$

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_3 \cdot h_3 + P_2 \cdot h_2 + P_1 \cdot h_1 \qquad = 1.271 \text{ P}$$

Donde P_1 , P_2 y P_3 es la carga horizontal aplicada sobre cada planta y h_1, h_2 y h_3 es la altura sobre rasante de la planta indicada calculada sobre el punto **A** (ver Figura H. 6).

$$M_{Estabilizador} = 2 \cdot V_{1,3} \cdot \left(x - \frac{d_{1,3}}{2}\right) + V_2 \cdot \left(x - \frac{d_2}{2}\right) + 2 \cdot V_{4,5} \cdot \left(x - \frac{d_{4,5}}{2}\right) = 26,04$$
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2}\right) + V_2 \left(x_2 - \frac{d_2}{2}\right) + V_3 \left(x_3 - \frac{d_3}{2}\right) + V_4 \left(x_4 - \frac{d_4}{2}\right) + V_5 \left(x_5 - \frac{d_5}{2}\right)$$

Donde **x** es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **A** y x_i (i = 1,2..n) es la distancia del centro de carga del muro **i** al punto **A** (ver Figura H. 5 y Figura H. 6).

Igualando los momentos despejamos P, donde P = 20,49 kN

Como P < H_{total} el edificio no colapsa por la rotura de los muros, sino que el edificio gira.

P (kN)	H _{total} (kN)
20,49	36,03

• HIPÓTESIS 2: El edificio falla por tres muros de la planta baja.

Bajo esta hipótesis la carga vertical total se reparte solo en los tres muros (M1-M2-M3) según los porcentajes presentados en la Figura H. 5, donde la reacción vertical V para cada una de las paredes se presenta en la Tabla H. 16.

	<i>V</i> (kN)
MUROS SIMPLE - V 1 Y 3 C/U	44,56* 0,25 = 11,14
M. FLAMENCO – V ₂	44,56* 0,50 = 22,28
Tabla H. 16 [Reacción vertical V de cada muro campaña VIII – hipótesis 2]	

Según el modelo propuesto tenemos los siguientes cálculos:

Muros M1 y M3

Calculo de la zona de plastificación d.

$$d_{1,3} = \frac{V_{1,3}}{f_{cm} \cdot t}$$
 = 13,49 mm

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6322 \qquad \beta_1 = \begin{array}{c} 0,5638 \text{ Rad} \\ 32,30 \text{ °} \end{array}$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,83$$
 $\beta_2 = 61,35^{\circ}$

donde σ se calcula de:

$$\sigma = rac{V_{1,3}}{b \cdot t}$$
 0,4553 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3} \qquad \begin{array}{c} H_{ruptura M1} = & \textbf{7,04} & \text{kN} \\ H_{ruptura M3} = & \textbf{7,04} & \text{kN} \end{array}$$

Muros M2

Calculo de la zona de plastificación d.

$$d_2 = \frac{V_2}{f_{cm} \cdot t} = 55,89 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 1,2550 \qquad \beta_1 = 0,8980 \quad \text{Rad}$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 1,33 \qquad \beta_2 = 52,96^{\circ}$$

donde σ se calcula de:

$$\sigma = rac{V_2}{b \cdot t}$$
 0,9106 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_2$$
 $H_{ruptura M2} =$ 27,69 kN

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta2} + H_{ruptuta3} = 42,05$$
 kN

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_3 \cdot h_3 + P_2 \cdot h_2 + P_1 \cdot h_1 \qquad = 1.271 \text{ P}$$

Donde P_1 , P_2 y P_3 es la carga horizontal aplicada sobre cada planta y h_1 , h_2 y h_3 es la altura sobre rasante de la planta indicada calculada sobre el punto **A** (ver Figura H. 6).

$$M_{Estabilizador} = 2 \cdot V_{1,3} \cdot \left(x - \frac{d_{1,3}}{2}\right) + V_2 \cdot \left(x - \frac{d_2}{2}\right)$$

= 10,78
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2}\right) + V_2 \left(x_2 - \frac{d_2}{2}\right) + V_3 \left(x_3 - \frac{d_3}{2}\right)$$

Donde **x** es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **A** y x_i (i = 1,2..n) es la distancia del centro de carga del muro **i** al punto **A** (ver Figura H. 5 y Figura H. 6).

Igualando los momentos despejamos P, donde P =8,48 kN

Como P < H_{total} el edificio no colapsa por la rotura de los muros, sino que el edificio gira.

P (kN)	H _{total} (kN)
8,48	42,05

• HIPÓTESIS 3: El edificio falla o gira por cinco muros de la última planta (P2).

Las cargas que reciben los muros que fallan se presentan en la Tabla H. 17.

	Carga Total (kN)
FORJADO	3,15
SOBRE PESO PISO 3	8,25
PESO TOTAL QUE RECIBEN MUROS DE LA CIMENTACIÓN	11,40
Tabla H. 17 [Evaluación de carga total que reciben los muros de la planta 2 (P2)]	

Bajo esta hipótesis la carga vertical total se reparte según los porcentajes presentados en la Figura H. 5, donde la reacción vertical V para cada una de las paredes se presenta en la Tabla H. 13 :

	<i>V</i> (kN)
MUROS SIMPLE - V 1 Y 3 C/U	11,40* 0,1666 = 1,90
MUROS SIMPLE - V $_{4Y5}$ c/u	11,40* 0,2067 = 2,89
M. FLAMENCO – V ₂	11,40* 0,2534 = 2,36
Tabla H. 18 [Reacción vertical V de cada muro campaña VIII – hipótesis 3]	

Según el modelo propuesto tenemos los siguientes cálculos:

Muros M1 y M3

Calculo de la zona de plastificación d.

$$d_{1,3} = \frac{V_{1,3}}{f_{cm} \cdot t} = 2,30 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6540 \qquad \beta_1 = 0,5792 \quad \text{Rad}$$

$$33,19 \quad \circ$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 6,74$$
 $\beta_2 =$
81,57 °

donde σ se calcula de:

$$\sigma = rac{V_{ ext{1,3}}}{b \cdot t}$$
 0,0776 MPa

 $\beta_{\text{modelo 1}}$
 $<\beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3} \qquad \begin{array}{c} H_{ruptura M1} = & \mathbf{1,24} & \mathrm{kN} \\ H_{ruptura M3} = & \mathbf{1,24} & \mathrm{kN} \end{array}$$

Muros M4 y M5

Calculo de la zona de plastificación d.

$$d_{4,5} = \frac{V_{4,5}}{f_{cm} \cdot t}$$
 = 2,85 mm

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6530 \qquad \beta_1 = \begin{array}{c} 0,5785 \text{ Rad} \\ 33,14 \text{ }^{\circ} \end{array}$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 5,60$$
 $\beta_2 =$
1,3939 Rad

 $\beta_2 =$
79,87 °

donde σ se calcula de:

$$\sigma = rac{V_{4,5}}{b \cdot t}$$
 0,0963 MPa

 $\beta_{\text{modelo 1}} < \beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{4,5} \qquad \begin{array}{c} H_{ruptura M4} = & \mathbf{1,54} & \mathrm{kN} \\ H_{ruptura M5} = & \mathbf{1,54} & \mathrm{kN} \end{array}$$

Muros M2

Calculo de la zona de plastificación d.

$$d_2 = \frac{V_2}{f_{cm} \cdot t} = 7,25 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 1,3500$$
 $\beta_1 =$
0,9332 Rad

53,47 °

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 4,71$$

 $\beta_2 = 78,03^\circ$

1,3618 Rad

78,03 °
donde σ se calcula de:

$$\sigma = rac{V_2}{b \cdot t}$$
 0,1181 MPa

 $\beta_{\text{modelo 1}}$
 $<\beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_2$$
 $H_{ruptura M2} = 3,90$ kN

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta2} + H_{ruptuta3} + H_{ruptuta4} + H_{ruptuta5} = 9,46 \text{ kN}$$

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_3 \cdot (h_3 - h_2) = 0,236 \text{ P}$$

Donde P_3 es la carga horizontal aplicada sobre cada planta 3 que es la única que actúa en esta hipótesis y ($h_3 - h_2$) es la altura que gira en esta hipótesis calculada sobre el punto **B** (ver Figura H. 6).

$$M_{Estabilizador} = 2 \cdot V_{1,3} \cdot \left(x - \frac{d_{1,3}}{2}\right) + V_2 \cdot \left(x - \frac{d_2}{2}\right) + 2 \cdot V_{4,5} \cdot \left(x - \frac{d_{4,5}}{2}\right) = 7,52$$
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2}\right) + V_2 \left(x_2 - \frac{d_2}{2}\right) + V_3 \left(x_3 - \frac{d_3}{2}\right) + V_4 \left(x_4 - \frac{d_4}{2}\right) + V_5 \left(x_5 - \frac{d_5}{2}\right)$$

Donde **x** es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **B** y x_i (i = 1,2..n) es la distancia del centro de carga del muro **i** al punto **B** (ver Figura H. 1 y Figura H. 2).

Igualando los momentos despejamos P, donde P = 31,88 kN

Como H_{total} < P el edificio colapsa por la rotura de los muros.

P (kN)	H _{total} (kN)
31,88	9,46

• HIPÓTESIS 4: El edificio falla por tres muros de la última planta (P2).

Las cargas que reciben los muros que fallan se presentan en la Tabla H. 17. Bajo esta hipótesis la carga vertical total se reparte solo en los tres muros (M1-M2-M3) según los porcentajes presentados en la Figura H. 5, donde la reacción vertical V para cada una de las paredes se presenta en la Tabla H. 19.

	V (kN)
MUROS SIMPLE - V 1 Y3 C/U	11,40* 0,25 = 2,85
M. FLAMENCO – V ₂	11,40* 0,50 = 5,70
Tabla H. 19 [Reacción vertical V de cada muro campaña VIII – hipótesis 4]	

Según el modelo propuesto tenemos los siguientes cálculos:

Muros M1 y M3

Calculo de la zona de plastificación d.

$$d_{1,3} = \frac{V_{1,3}}{f_{cm} \cdot t}$$
 = 3,45 mm

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 0,6518 \qquad \beta_1 = 0,5776 \quad \text{Rad}$$

$$\beta_1 = 33,10 \quad \circ$$

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 4,77$$
 $\beta_2 =$
1,3641 Rad

78,15 °

donde σ se calcula de:

$$\sigma = rac{V_{\scriptscriptstyle 1,3}}{b \cdot t}$$
 0,1165 MPa

 $\beta_{\text{modelo 1}}$
 $<\beta_{\text{modelo 2}}$ estará condicionada por la geometría -modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_{1,3} \qquad \begin{array}{c} H_{ruptura M1} = & \mathbf{1,85} & \mathrm{kN} \\ H_{ruptura M3} = & \mathbf{1,85} & \mathrm{kN} \end{array}$$

Muros M2

Calculo de la zona de plastificación d.

$$d_2 = \frac{V_2}{f_{cm} \cdot t} = 14,30 \text{ mm}$$

Comprobar modelo a aplicar.

$$\tan \beta = \frac{b-d}{h} = 1,3362$$
 $\beta_1 =$
0,9283 Rad
53,19 °

$$\tan \beta = \tan \phi + \frac{c}{\sigma} = 2,79$$
 $\beta_2 =$
1,2271 Rad

70,31 °

donde σ se calcula de:

$$\sigma = \frac{V_2}{b \cdot t} \qquad \qquad \text{0,2330} \qquad \text{MPa}$$

 β $_{\rm modelo~1}$
 $<\beta$ $_{\rm modelo~2}$ estará condicionada por la geometría -
modelo de rotura tipo 1.

$$H_{ruptura} = \tan \beta \cdot V_2$$
 $H_{ruptura M2} =$ 7,62 kN

De esta manera la carga total de rotura es la suma de la carga horizontal para cada uno de los muros.

$$H_{total} = H_{ruptura1} + H_{ruptuta2} + H_{ruptuta3} = 11,34 \text{ kN}$$

Esta carga horizontal de rotura se compara con los momentos estabilizadores y desestabilizadores de la edificación donde:

$$M_{desestabilizador} = P_3 \cdot (h_3 - h_2) = 0,236 \text{ P}$$

Donde P_3 es la carga horizontal aplicada sobre cada planta 3 que es la única que actúa en esta hipótesis y ($h_3 - h_2$) es la altura que gira en esta hipótesis calculada sobre el punto **B** (ver Figura H. 6).

$$M_{Estabilizador} = 2 \cdot V_{1,3} \cdot \left(x - \frac{d_{1,3}}{2}\right) + V_2 \cdot \left(x - \frac{d_2}{2}\right) = 2,90$$
$$M_{Estabilizador} = V_1 \left(x_1 - \frac{d_1}{2}\right) + V_2 \left(x_2 - \frac{d_2}{2}\right) + V_3 \left(x_3 - \frac{d_3}{2}\right)$$

Donde **x** es la distancia del punto de aplicación de la resultante de las cargas verticales con respecto al punto **B** y x_i (i = 1,2..n) es la distancia del centro de carga del muro *i* al punto **B** (ver Figura H. 1 y Figura H. 2).

Igualando los momentos despejamos P, donde P =12,31 kN

Como H_{total} < P el edificio colapsa por la rotura de los muros.

P (kN)	H _{total} (kN)
12,31	11,34