
Departament d’Arquitectura de Computadors
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Programming Models for
Mobile Environments

By

FRANCESC-JOSEP LORDAN GOMIS

Advisor: Rosa M. Badia

A dissertation submitted to the Universitat Politècnica de
Catalunya in accordance with the requirements of the degree of

DOCTOR OF PHILOSOPHY in Computer Architecture.

ABSTRACT

For the last decade, mobile devices have grown in popularity and became the best-selling comput-

ing devices. Despite their high capabilities for user interactions and network connectivity, the

computing power of mobile devices is low and the lifetime of the application running on them

limited by the battery. Mobile Cloud Computing (MCC) is a technology that tackles the limitations

of mobile devices by bringing together their mobility with the vast computing power of the Cloud.

Users can run the application on their smartphone or tablet and interact with it through its

graphical interface or any of the sensors embedded on the device. Then, the application offloads

the execution of the computing-intensive parts of the application onto the Cloud. Thus, the

application exploits resource-richer nodes to reduce the execution time of the application. Besides,

since the embedded computing elements do not compute, the energy consumption of the mobile

device shrinks and its battery lasts longer.

Programming applications for Mobile Cloud Computing (MCC) environments is not as

straightforward as coding monolithic applications. On the one hand, developers have to deal

with the issues related to parallel programming for distributed infrastructures: application parti-

tioning, data dependencies monitoring, scheduling the computation on the available resources

and implementing an offloading mechanism to submit the execution and transfer data values.

Besides, the high mobility of the devices adds two new concerns to the cost/benefit analysis: the

battery lifetime and the variability of the network. The battery is a limited source of energy;

therefore, the amount of energy that an application consumes is important, and developers have

to be aware of it when deciding where each execution unit runs. The network variability can

rapidly change the costs of transferring the data to and from the remote nodes. Handing over

to a mobile data connection from a Wi-Fi network increases significantly the time to transfer a

data value and the energy consumed and the price to pay per each byte of data. In extreme cases,

the mobile device can become isolated from the rest of the infrastructure. Developers have to

control these situations and provide the application with the necessary mechanisms to continue

its execution even if the isolation becomes persistent.

As with any other distributed environment, developers turn to programming models to

improve their productivity by avoiding the complexity of manually dealing with these issues

and delegate on the corresponding model all the management of these concerns. This thesis

contributes to the current state of the art with an adaptation of the COMPSs programming

model for MCC environments. COMPSs allows MCC application programmers to code their

i

applications in a sequential, infrastructure-agnostic fashion without calls to any COMPSs-specific

API. Developers write their applications using the native language for the target platform as if

they were to run on the mobile device. When the programming environment builds the distribution

package for an application, it bundles a modified version along with the runtime system that

supports its execution. At execution time, this runtime system automatically partitions the

application written by the developer into tasks and orchestrates their execution on top of the

available resources: the CPU of the device, GPUs or other accelerators embedded in it and

computing resource in remote nodes. Given that the native language of the device cannot run on

the GPU of the mobile, this thesis proposes an extension of the programming model to provide

developers with method polymorphism: programmers can implement one method in different

ways so that the runtime decides dynamically which of the available version run for each task.

Regarding the runtime system, this thesis contributes with a new architecture redesigned

with the characteristics of MCC in mind. For managing the available resources holistically, the

runtime runs as a service which all the applications running simultaneously on the mobile device

contact for submitting the execution of their tasks. The runtime clusters the computational

devices into Computing Platforms according to the mechanisms required to provide the pro-

cessing elements with the necessary input values, launch the task execution avoiding resource

oversubscription and fetching the results back from them. The most simple platform is the CPU

Platform which has a static pool of threads to run tasks on the cores of the CPU. The GPU

Platform leverages on OpenCL to run tasks as kernels on GPUs or other accelerators embedded

in the mobile device. Finally, the Cloud Platform offloads the execution of tasks onto remote

resources.

Hosting part of the computation on the local computing devices and offloading part of it onto

remote resources forces the runtime to implement a mechanism to share data values among

the nodes of the infrastructure. The shared information is potentially privacy-sensitive, and the

runtime exposes it to possible attackers when transferring the data values through the network.

To protect the application user from data leaks, it is necessary that the runtime authenticates

both ends of network connections and encrypts and signs the content of the messages to provide

communications with secrecy, integrity and authenticity.

For collaboratively exploiting both, local and remote resources, the runtime has to implement

a mechanism that decides whether is worth running a task on embedded or on remote resources.

For that purpose, the runtime picks one of the Computing Platforms according to the costs –

time, energy and money – of running the computation on each of the platforms. Besides, in the

case of the Cloud Platform, the system has to determine also which of all the nodes composing

the underlying infrastructure should host the execution and when. In the case of a network

breakdown that isolates the mobile device from the remote nodes, the runtime has to ensure

that both parts continue with the execution. The mobile device has to respond using only the

resources embedded in it, what could incur in the re-execution of computations already ran on

ii

the remote resources to re-compute some unaccessible values. Remote workers have to continue

with the execution so that in case of reconnection, both parts synchronize its progress to reduce

the impact of the disconnection on the application performance.

iii

ACKNOWLEDGMENTS

W ith few words, I would like to show my gratitude to all the people who helped me

during this project for their support.

To begin with, I want to thank all the current and former members of the Workflows and

Distributed Computing team of the Barcelona Supercomputing Center for their assistance. Rosa

Ma Badia, for mentoring my academic formation from the final project of the Computer Engineer-

ing degree until the presentation of this thesis. Without her careful direction and her guidance

to highlight the major problems and relevant results, this dissertation would have never been

possible. Javier Conejero, Jorge Ejarque, Roger Rafanell, Cristián Ramón-Cortés, Raul Sirvent

and Enric Tejedor, for their technical perspective on the main problems presented in this docu-

ment. Adrià Aguilà, Javier Álvarez, Pol Álvarez, Ramon Amela, Víctor Antón, Pedro Benedicte,

Arnau Canyadell, Sandra Corella, Carlos Díaz, Marc Domínguez, Fredy Juares, Daniele Lezzi,

Jordi Montes, Sergio Rodríguez, Carlos Segarra, Salvi Solà and Albert Serven, for all those long

discussions that helped me facing concrete problems from a different point of view or making

some design decisions.

I also want to dedicate some words of gratitude to Jens Jensen and Wen-Mei Hwu, who

allowed me to visit the Science and Technology Facilities Council (STFC) and the Coordinated

Science Laboratory (CSL) of the University of Illinois at Urbana-Champaign (UIUC). Besides

the technical education, both stays in the United Kingdom and the United States were once-in-a-

lifetime experiences that I will always remember fondly together with all the life lessons learned

abroad.

I am also grateful for all those people who showed interest for the thesis, but also, that made

me keep a distance from the project and enjoy this period in my life beyond the academical and

technical aspect. It would make a too long list to include all their names, but I would like to give

a special acknowledgment and express my deepest and sincere gratitude to my family: parents,

grandparents, siblings – brothers and sisters-in-law –, uncles, aunts and all the cousins; and

closest friends: Lluís, Marc, Ivan and all the members of the volleyball team. Thanks for always

v

standing there, especially on the hard times.

At last but not least, I would like to express my gratitude to the European, Spanish and

Catalan societies for funding my research through their institutions. First, to the Ministry of

Economy, Industry and Competitiveness (MINECO) from the Spanish Government for the sup-

port received through the projects TIN2012-34557 and TIN2015-65316-P, the grant of Severo

Ochoa Program (SEV-2011-00067) and the grants of the Research Training Program received for

the predoctoral training (BES-2013-067167) and mobility (EEBB-I-15-09808, EEBB-2016-11272).

Also, the Generalitat of Catalunya partly supported this work through contracts 2014-SGR-1051

and 2014-SGR-1272; and the European Commission through the ASCETiC (FP7-ICT-2013.1.2

contract 610874) and mF2C (Horizon 2020 contract 730929) projects.

Wholeheartedly, thank you all.

Francesc-Josep Lordan Gomis

vi

TABLE OF CONTENTS

Page

List of Tables xi

List of Figures xiii

I Context 1

1 Introduction 3
1.1 Motivation . 5

1.2 Objectives . 6

1.3 Thesis Contributions . 8

1.3.1 Publications Related to the Thesis . 10

1.4 Thesis Organization . 13

2 Background: Android 15
2.1 Software Architecture . 15

2.2 Applications . 17

2.3 Application Package Building . 20

2.4 Process and Thread Management . 21

3 State of the Art 23
3.1 Sources of Parallelism . 24

3.2 Parallel Systems . 25

3.3 Parallel Programming . 26

3.3.1 Handling the Parallelism . 28

3.3.2 Handling the Heterogenity of the System . 30

3.4 COMPSs . 31

3.5 Mobile Cloud Computing . 35

3.6 Mobile Cloud Computing Frameworks . 38

3.7 Summary . 40

vii

TABLE OF CONTENTS

II General Proposal 43

4 System Overview 45
4.1 Programming Model Extension: Polymorphism . 47

4.2 Runtime Toolkit Architecture . 47

4.3 Instrumentation . 50

4.4 Summary . 52

IIIExploitation of Local Computing Resources 55

5 CPU Exploitation 57
5.1 CPU Platform . 58

5.2 Proxied Execution . 62

5.3 Evaluation . 64

5.3.1 Automatic Parallelization . 65

5.3.2 Impact of Proxied Executions . 70

5.4 Summary . 74

6 GPU Exploitation 77
6.1 Related Work . 78

6.2 Background: OpenCL . 79

6.3 Programming Model Extension . 80

6.4 OpenCL Platform . 82

6.5 Evaluation . 86

6.5.1 OpenCL Platform Performance . 86

6.5.2 Load Balancing Decisions . 89

6.6 Summary . 96

IV Exploitation of Remote Computing Resources 99

7 Remote Resources Exploitation 101
7.1 Cloud Platform . 102

7.2 Data Manager Implementation . 104

7.3 Cost Forecasting . 108

7.4 Fault tolerance . 110

7.5 Evaluation . 113

7.5.1 Exchanged Message Evaluation . 115

7.5.2 Overall Performance Evaluation . 117

7.6 Summary . 121

viii

TABLE OF CONTENTS

8 Secure communications 125
8.1 Backgroung: GSSAPI . 126

8.2 GSSAPI Integration . 128

8.3 Performance Evaluation . 131

8.3.1 Security Overheads . 131

8.3.2 Security Impact on Applications . 134

8.4 Summary . 136

9 Offloaded Scheduling System 139
9.1 General Aspects of the Scheduling System . 140

9.2 Initial Scheduling . 142

9.3 Scheduling Optimization . 146

9.4 Dynamic Resource Provisioning . 153

9.5 Evaluation . 158

9.6 Summary . 161

V Conclusions 165

10 Conclusion 167
10.1 Future Work . 173

Bibliography 177

ix

LIST OF TABLES

TABLE Page

3.1 Comparison of MCC frameworks. 39

5.1 Power consumption and computing capacity according to the state of the screen of the

mobile device (screen off, the screen on at 0% brightness and 100%) and its activity

(idle and computing). 65

7.1 Relation between each computing configuration (Mobile with screen off, mobile with

the screen on at 0% brightness, laptop or cloud VM) with the analysis of each core

element execution. 114

7.2 Network benchmark results. 115

7.3 Direction of each type of message according to the placement of the data directory:

centralized on the mobile device (mobile), hosted by the worker nodes (Workers)

or shared among all the nodes composing the infrastructure included the mobile

(Mobile+Workers). 116

7.4 Number of messages and number of bytes received/transmitted by the mobile during

a low-resolution execution according to the size of the underlying infrastructure and

the nodes hosting the data directory (the mobile device, the worker nodes or shared

across the whole infrastructure. 116

7.5 Number of messages and number of bytes received/transmitted by the mobile during

a high-resolution execution according to the size of the underlying infrastructure and

the nodes hosting the data directory (the mobile device, the worker nodes or shared

across the whole infrastructure. 117

8.1 Actual size of transferring 250, 2,500, 10,000, 100,000, 1,000,000 and 10,000,000 bytes

according to the token size in bytes (256, 512, 1,024, 2,048, 4,096, 8,192, 16,384). . . . 133

8.2 Timespan (ms) to transfer 250, 2,500, 10,000, 100,000, 1,000,000 and 10,000,000 bytes

according to the token size in bytes (256, 512, 1,024, 2,048, 4,096, 8,192, 16,384). . . . 133

9.1 Scheduling system preferences according to the user profiles detected by Green Prefab.158

9.2 Idle VM price breakdown. 159

xi

LIST OF TABLES

9.3 Average measures for each version of the simulate Core Element running an Energy-

Plus execution. 160

9.4 Results obtained after executing the application configuring the system according to

the three profiles: Urgent, Academic and Green. 161

xii

LIST OF FIGURES

FIGURE Page

2.1 Android software stack. (Source: https://developer.android.com) 18

3.1 Parallel execution of 7 instructions in a basic five-stage (Instruction Fetch, Instruction

Decode, Execution, Memory Access, Register Write Back) pipeline. In the fifth cycle, 5

instructions are running in parallel, the fist has already completed its execution and

the last has not entered the pipeline. 24

3.2 Architectures of computing systems. 26

3.3 Sample application code written in Java. 33

3.4 Core Element Interface for the sequential application in Figure 3.3. It defines three

CEs: prepareParameters, that creates an object with the simulation parameters out of

a string; simulate, which runs the simulation and creates a report of the execution;

and aggregate, which merges a report into another. 34

3.5 Directed acyclic graph representing the task workflow automatically detected by

COMPSs for the application presented in Figures 3.3 and Figures 3.4. 35

4.1 Layout of the components of the distributed infrastructure that could be used by

applications developed with the proposed framework. 46

4.2 Sort method CE declaration with two possible versions implemented in RadixSort and

BubbleSort classes respectively. 47

4.3 Definition of the interface to the Runtime toolkit. 48

4.4 Runtime system architecture with three available Computing Platforms: one for the

cores of CPU, on to offload tasks to the GPU and one gathering all the remote resources. 49

4.5 AndroidManifest file extended by the COMPSs Instrumenter. The additional elements

are highlighted over the gray code which corresponds the original Android Manifest. 52

5.1 Architecture of the CPU platform illustrating the flow involving a task execution. . . 59

5.2 Models to forecast the end time, energy consumption and monetary cost of running a

task t with implementation i on the local CPU cores. 61

5.3 Architecture of the CPU platform with proxied execution illustrating the flow involving

a task execution. 63

xiii

LIST OF FIGURES

5.4 Workflow representation for the three applications used during the tests: Digits

Recognition, Bézier Surface and Canny Edge Detection (left to right). 64

5.5 Execution time (left) and energy consumption (right) obtained when running DR with

the CPU platform. 67

5.6 Execution time (left) and energy consumption (right) obtained when running BS with

the CPU platform. 68

5.7 Execution time (left) and energy consumption (right) obtained when running CED

with the CPU platform. 69

5.8 Execution time (left) and energy consumption (right) obtained when running DR with

the CPU platform comparing executions on the Orchestrator process (Normal) or on

the application process (Proxied). 71

5.9 Execution time (left) and energy consumption (right) obtained when running BS with

the CPU platform comparing executions on the Orchestrator process (Normal) or on

the application process (Proxied). 73

5.10 Execution time (left) and energy consumption (right) obtained when running CED

with the CPU platform comparing executions on the Orchestrator process (Normal) or

on the application process (Proxied). 74

5.11 Diagram of the runtime architecture with a single CPU platform with proxied executions. 75

6.1 Example of a matrix multiplication with two implementations: one in OpenCL and

one as a regular method. The code of the kernel is in the matmul.cl resource, and it

has to be executed by as many threads as the number of rows in matrix a times the

number of columns of matrix b. The result of the method is a bi-dimensional matrix

with as many rows as matrix a and as many columns as matrix b. 82

6.2 Dependency graph of commands submitted to the OpenCL device to run the matmul

task from application introduced in Figure 6.1. 85

6.3 Execution time (left) and energy consumption (right) obtained when running DR with

512 images using both devices, the CPU and the GPU. 87

6.4 Execution time (left) and energy consumption (right) obtained when running BS with

blocks of 256x256 using both devices, the CPU and the GPU. 88

6.5 Execution time (left) and energy consumption (right) obtained when running CED

using both devices, the CPU and the GPU. 89

6.6 Execution time (left) and energy consumption (right) obtained when DR processes 128,

256 and 512 images (top to bottom) using the CPU and OpenCL platforms. 90

6.7 Execution time (left) and energy consumption (right) obtained when BS computes a

1024x1024 points surface splitted into chunks of 1024x1024, 512x512, 256x256 and

128x128 (top to bottom) using the CPU and OpenCL platforms. 93

6.8 Execution time (left) and energy consumption (right) obtained when CED processes

runs using the CPU and OpenCL platforms. 94

xiv

LIST OF FIGURES

6.9 Detail of Figure 6.9 comparing the execution time (left) and energy consumption(right)

obtained with different schedulers on heterogeneous cases. 95

6.10 Diagram of the runtime architecture with a single CPU platform with proxied executions. 96

7.1 Architecture of the Cloud Platform illustrating the flow involving a task execution. . 104

7.2 Data creation notification and transfer request. 105

7.3 Example of a data directory query in a five-node peer-to-peer network sharing a [0-31]

hashcode range and the route followed by a query access to hashcode 29 from Worker A.108

7.4 Models to forecast the end time, energy consumption and monetary cost of running a

task t with implementation i on the local CPU cores. 111

7.5 HeatSweeper task dependency graph for a three sources optimization on four possible

locations resulting in 14 simulations and 13 getBest executions. Dark blue nodes

represent simulate tasks and cyan nodes depict getBest executions. 113

7.6 Execution time (left) and energy consumption (right) obtained for a low-resolution

execution with a centralized data directory. 118

7.7 Execution time (left) and energy consumption (right) obtained for a high-resolution

execution with a centralized data directory. 120

7.8 Execution time (left) and energy consumption (right) obtained for a low-resolution

execution with a data directory distributed among all the nodes. 120

7.9 Diagram of the runtime architecture with a CPU platform, an OpenCL platform and

a Cloud platform. 122

8.1 Runtime architecture diagram with secured communications. The red dashed arrow

shows the flow followed by a task submission command send by the mobile device to

one of the workers. 130

8.2 Timeline of the TCP Connection Establishment and GSSAPI Negotiation. 132

8.3 Comparison of the execution times for the low-resolution (left) and high-resolution

(right) obtained when using non-secure and secure communications. 135

9.1 Four possible dependency graphs among eight actions. The top graph corresponds to a

scenario with resources able to host all the actions at a time, and the others are three

different schedulings on resources able to host up to two actions at a time. 142

9.2 Evolution of the gap list within the Node Scheduler and the resource dependencies

when scheduling three actions (Action1 and Action2 require one CPU core and Action3

requires two CPU cores) on a node with two CPU cores. Each gap is described as a

4-tuple indicating the resources contained, the start time, the end time and the origin

action, respectively. 145

9.3 Execution plan generated only with the initial scheduling policy of twelve actions on

one node before performing the local-scope optimization (left) and the group classifica-

tion at the end of the Scan phase (right). 147

xv

LIST OF FIGURES

9.4 Simulation state at the beginning of the reschedule process in the example already

scanned in Figure 9.3. The leftmost part of the figure shows the list of events expected

to happen (<timestamp, type of event: Start Action (SA) or Static Dependencies

Release (SDR), Action>), the center, the list of available resources as gaps, and the

rightmost part, the content of the updated groups. 149

9.5 Flowchart of the iterative process leading the Reschedule stage of the local optimization.151

9.6 Execution plan after the local-scope optimization processes the execution plan on the

left part of Figure 9.3. 152

9.7 Models to estimate the end time, energy consumption and monetary cost of running a

set of actions A on a set of nodes N. 155

xvi

Part I

Context

1

C
H

A
P

T
E

R

1
INTRODUCTION

The evolution of IT technologies cannot be understood if it is not related to the computation

needs of the society. The first digital electronic computers appeared in the context of

World War II and were designed to speed up military processes such as computing artillery firing

tables or breaking message encryption [22]. They were sophisticated, user-unfriendly machines

that required several engineers to operate them to generate useful results. Governments, research

centers, universities and big corporations quickly saw the potential of those systems and invested

lots of money to adopt them to process more generic information: statistics on the census, bank

accounts, engineering problems, ... Computers quickly evolved to the point that, at the late 1950s,

one single computer was giving support to hundreds of trained users that from their terminals,

simpler computers, were offloading the heavy-computing or data sensitive processes to a central

unit with higher memory and computing capacity (the mainframe).

As the computational complexity of the problems faced by scientist and corporations grew,

also did the demand for computational power to the IT industry. Although computer architects

enhanced the capabilities of a single computer, the only affordable way to obtain such computing

power was to coordinate many computers to give a quicker response. The Cluster [20] and

Supercomputer technologies were the result of the research to provide IT users with platforms

with a higher computing capacity.

The main issue with these high-performance systems is their economic cost of acquisition

and maintenance. For this purpose, at the early 90s, the IT community developed the Grid [43],

a set of technologies that allowed IT communities from all over the world to share their data,

data storage space, computing power and applications while dividing the costs related to such

infrastructure. Mostly adopted by scientific organizations, grids allowed the cooperation to tackle

3

CHAPTER 1. INTRODUCTION

larger, more complex problems and accomplish scientific goals unapproachable without them.

The advent of the Cloud [16, 98] meant one step further in that direction. IT companies with

massive computing infrastructures (Amazon, Microsoft, Google, ...) realized that a significant

part of their data centers, designed to support peak demand, was unused most of the time, and

decided to commercialize computing as a utility. Cloud providers offer access to isolated computing

resources running on top of their large IT infrastructures as VM instances. Consequently, the

Cloud converted the purchase, maintenance and operation expenses into a pay-as-you-go bill;

and emerged as the solution to the computation needs of nowadays’ society.

Parallelly to this computing power growth process, there has been a miniaturization of the

systems. The discovery of transistors and the development of integrated circuits and micropro-

cessors allowed not only to reduce the size of the devices and increase their capabilities but

also fostered the birth of new kinds of devices. During the 1980s, all the power of a mainframe

could fit into a single desk-sized device: the personal computer (PC). PCs opened the gates of

the universality of IT technologies; slowly, computers put out the head in every house. Due to

the high capabilities of these devices and the low requirements of applications targeted to them,

developers wrote sequential codes running on their CPUs, which were growing more powerful

year after year by increasing their clock frequency.

The continued miniaturization and the technical advancements in batteries made possible the

appearance of portable devices, such as laptops, which grew in popularity during the 2000s. Today,

their evolution, the mobile devices, dominate the market of computing devices. Smartphones

and tablets have a little computing capability compared to laptops and servers. However, they

stand out for their high mobility and the wide range of possibilities to interact with the user:

multiple microphones, multitouch screens, cameras, positioning, and a large set of sensors such

as proximity, light, compass, gyroscope, accelerometers, etc. People always bring a mobile device

that connects them to the Internet and provides immediate access to computing services that

support them in their work or daily life. For instance, a doctor visiting interned patients in their

rooms can read on a tablet the medical history of a patient, look up the results of previous tests,

check the patient evolution within the last hours, and then, decide the most suitable treatment.

Mobile Cloud Computing (MCC) [38] deprecates the centralized paradigm used in personal

devices and picks up the mainframes model, where people use a simple device to interact with

the application, and remote, high-performing resources host the heavy-weighted computations.

It brings together the interaction capabilities and immediate network access of mobile devices

with the infinite computing capacity of the Cloud. Thus, mobile users can increase the computing

capacity of their devices and solve more complex computational problems. Instead of consulting

the evolution of patients, doctors could simulate the impact of several treatments on them and

pick the most suitable one.

4

1.1. MOTIVATION

1.1 Motivation

Developing parallel applications targeted to distributed environments is not as straightforward as

writing sequential applications. To achieve good performance on complex applications, developers

must face the technical concerns related to the parallelization and distribution of the application.

Since the appearance of multicore processors at early 2000s, programmers had to shift their

mentality when developing applications: it was no longer sufficient to fit the algorithm in the

computer capabilities and make it run as efficiently as possible; the workload of the application

was to be distributed among several processors working at the same time. Thus, before coding the

application, developers have to study the algorithm to find the parallelism inherent in it, split

it into several execution units – known as jobs, tasks or threads – and determine the required

data communications among them. The new code has to orchestrate the execution of these units

aiming to run the maximum number of them at the same time while guaranteeing the result of

the application.

Running parallel applications atop distributed infrastructures adds an extra dimension to the

complexity of programming: the job scheduling [47]; i.e., assigning each execution unit to a node

where to run at a particular time while trying to minimize the overall makespan. Execution units

may use data values computed by other units assigned to a different node; therefore, the involved

nodes need to communicate to transfer such data values from the producer node to the consumer

before it reads them. Data transfers threaten the performance of the application since they add

overhead to the actual computation. The heterogeneity of the system also plays a major role in

job scheduling: the difference on the hardware features of each node affects the execution of each

block. Job scheduling is an optimization problem in which the programmers try to maximize the

number of execution units assigned to the most performing resource and minimize the additional

overhead caused by data transfers.

Besides their hardware, infrastructures can also be heterogeneous on their software: different

operating systems may manage the nodes composing it and require different protocols and

middleware to interact with them. Heterogeneity not only affects the job scheduling but also on

how nodes communicate one with each other. Programmers must be aware of which middleware

is required to interact with each node and know the programming and running details of each

to code the data transfers between nodes and the computation submissions using the proper

software for each case.

In addition to the traditional concerns of distributed, parallel computing, mobile computing

brings two new concerns to programmers. First, mobile devices are bound to a battery whose

lifetime limits the execution time of the applications running on them. Hence, energy consumption

becomes one of the heaviest arguments to select one implementation over many others.

The second important aspect is the high-mobility of these devices, which entails a rapid

variability of the network conditions: switching mobile data protocols modify the network speed

drastically and network breakdowns are likely to happen and isolate the mobile for long periods.

5

CHAPTER 1. INTRODUCTION

Applications should dynamically adapt their execution according to the current conditions to

avoid harming their performance and energy-efficiency. And, in the case of network breakdown,

an application should be able to keep its progress by implementing fault-tolerance mechanisms

that allow it to run already offloaded computation on the computing devices embedded in the

device.

Facing all the issues discussed above and taking into account all the variables requires a high

level of expertise. For people coming from areas of knowledge other than parallel and distributed

computing, it means to turn to experts to achieve their goals; for experts, it means spending

precious time. This difficulty incurs a crucial need for parallel languages and programming models

that improve the programming productivity [17, 73] by easing the writing of parallel applications

for MCC environments while still achieving a performance comparable to applications written by

MCC experts.

Programming model designers decide which of these issues are transparently handled by

the model and which ones are exposed to the programmer depending on their objectives. On the

one hand, explicit programming models offer a specific language, syntax or API through which

programmers specify how to deal with the issue; thus allowing the developer to tune up the

application to obtain better performance. On the other hand, implicit programming models hide

as many details as possible to their users offering a more comfortable programming experience.

Later, the compiler or a toolkit executed along with the application analyzes the application to

manage the parallelization/distribution in the best way possible. Ideally, programming models

should offer the programmability of the implicit programming models, while applications should

get a similar performance as if an experienced developer coded them using an explicit model.

In the end, programmers should be aware of the parallel, distributed nature of their code, but

agnostic to the details of their management.

1.2 Objectives

Given the difficulties to develop MCC applications and being aware of the approach followed to

ease the programming of parallel and distributed applications, the following research question

arises:

Could a programming model allow developers to create an application to run on a mobile device

and transparently exploit an MCC infrastructure to enhance its performance?

With the purpose of answering this question, this thesis pursues providing developers with

an implicit programming model that abstracts away from the programmer the management of

the parallelism inherent to the application and the exploitation of the underlying infrastructure

as much as possible.

Regarding the programmability of the model, the objective is to smooth its adoption and

steepen its learning curve so that developers improve their productivity directly. For that purpose,

6

1.2. OBJECTIVES

the model should offer a programming already natural to the user by building on the native lan-

guage of the target platform and trying to avoid model-specific APIs to construct the application.

While coding, developers should focus only on the interface with the user and the logic of their

solution as if applications were to run only on the mobile device. Therefore, there is no reason for

them to add any reference to the underlying MCC infrastructure on the code of the application.

Applications should be infrastructure-agnostic.

Although logical algorithms are inherently parallel, the human mind conceives them more

easily as an ordered sequence of operations. However, even when applications are to run on

one single device, to get the most out of its computing resources, developers need to exploit

this parallelism. To release developers from the additional mental and technical exercise that

parallel computing requires, the model should allow programming the applications in a sequential

fashion. Thus, they can concentrate on the logic of the solution to the problem of their specific area

of knowledge. Generally, mobile applications already separate their logic from the interaction

with the user in different threads to improve the responsiveness of the GUI. Therefore, the

programming model should also allow developers to code applications using multiple execution

threads and exploit the inherent parallelism on each of them.

Regarding the mechanism that converts the code written by the developers into how the

application actually runs, the lack of information about the infrastructure on the code and the

variability of the network conditions make a compiler unviable. A runtime toolkit has to run

along with the application to transform it. This runtime analyzes the code of the application to

partition it into several units of execution and detect the dependencies that exist among them.

Guaranteeing the sequential consistency of the application, it should orchestrate the execution of

these units on the multiple computing devices that compose the infrastructure. The runtime can

always count on the computing elements embedded on the mobile: the cores of its CPU, the stream

processors of its GPU or any other accelerator integrated on it; to process these execution units.

Besides, the runtime can offload the computation onto remote resources reachable through the

network: physical or virtual machines connected to the same local network or accessible through

the Internet. To decide which resources assigns to each task, the runtime should implement a

scheduling policy that considers: the execution time, so that the user gets a better application

performance; the energy consumption, so that the battery lasts longer; and the economic cost.

Despite the benefits of using remote resources, using the network incurs new concerns to

handle by the runtime. Developers code applications that eventually produce a result using the

computing resources embedded on the mobile. Their code does not contemplate any network

interactions; the programming model runtime automatically decides to make use of the resources

available through the network. Therefore, the runtime has to handle all the details and problems

with the network connection transparently and implement fault-tolerance and recovery methods

that allow the application execution to progress even in those cases where the mobile becomes

isolated from the rest of the infrastructure.

7

CHAPTER 1. INTRODUCTION

Besides, the information used and generated by mobile applications is likely to contain

privacy-sensitive details about the user. The programming model should add no vulnerabilities

to the applications that may expose the data on which applications work. For that purpose, all

the communication across untrustworthy networks have to be secured by authenticating both

ends of the connection and encrypting and signing the content of the transferred messages. If the

runtime ensures the authenticity, integrity and secrecy of the network messages, in-transit data

is protected from attackers.

1.3 Thesis Contributions

The main contribution of this thesis is answering the research question set out in the objectives

section. Yes; a programming model can allow developers to create an application to run on a

mobile device and transparently exploit an MCC infrastructure to enhance its performance. For

demonstrating so, the following chapters describe a programming model along with its runtime

system that achieves the objectives described afore.

Contribution 1:
Extensions to the programming model to support MCC environments

The presented model builds on COMPSs [91]: a task-based programming model with which

developers can write sequential, infrastructure-agnostic applications that run in parallel on top

of distributed infrastructures. Regarding the programmability of the model, this dissertation

contributes in two significant points. First, the extension of the model to support task polymor-

phism. Thus, a task can have different versions to achieve the same purpose, not only versions

implementing different algorithms but also versions targetting different architectures such as

CPUs, GPUs or remote web services.

The second contribution to the programmability of the model lies in the integration of the

model into the application building and packaging process of Android. To publish and distribute

an application, Android bundles the application along with an application description into an

Android package (apk) file. The proposal described in this dissertation extends the regular process

with an additional step that performs all the necessary modifications to the content of the package

so that the runtime can detect the parallelism and exploit the underlying infrastructure.

Contribution 2:
Redesigned architecture for the runtime system

Regarding the runtime of the model, this dissertation proposes a new architecture specially

designed with the characteristics of MCC in mind. Despite using the same mechanism to detect

the tasks composing one application, the new architecture allows the runtime to holistically

orchestrate the parallelism of several applications to achieve a better exploitation of the available

8

1.3. THESIS CONTRIBUTIONS

resources. Computing platforms group together computing resources and handle the execution of

tasks on them; the runtime balances the workload among computing platforms according to the

will of the application user. Thus, when the user is in a hurry and needs the result as soon as

possible, the runtime fosters those scheduling decisions that pursue reducing the execution time.

When the battery is low, the end user can set up the runtime to prioritize those decisions that

reduce the energy consumption. In other situations, the runtime could opt for options with a good

balance between the temporal, energetic and monetary costs.

Contribution 3:
Design and implementation of computing platforms

This thesis contributes with three different computing platforms. The first, and most simple

one, orchestrates the execution of tasks on the cores of the CPU. By just using this platform, the

application can already exploit the parallelism of the application transparently by running tasks

on several cores at a time. The second platform leverages on OpenCL to offload the execution of

tasks onto GPUs or other accelerators embedded on the mobile. Computing platforms have to

conduct all the necessary operations to run a task on the managed resources transparently to the

runtime. Thus, the OpenCL platform deals with all the memory management to ensure that all

the input values are on the device so that the kernel produces the proper results, and collect the

results of the kernel execution.

Finally, the third platform allows the runtime to offload task execution onto remote resources.

For that purpose, it proposes a mechanisms to submit task executions and sharing data val-

ues based on a distributed hash table. The platform completes its basic functionality with a

mechanism to tolerate network breakdowns. Mobile devices are likely to experience glitches

on the service due to network handovers or long-lasting periods of isolation for entering in

out-of-range areas. The described solution allows both, the mobile device and the remote nodes,

to keep progressing on the computation autonomously. Thus, in the case of reconnection, both

sides synchronize their progress with low impact on the application performance; otherwise, if

the device never reconnects to the network, its autonomicity allows the device to provide the

application user with the expected result.

Contribution 4:
Security on network communications

Communications due to the offloading and data sharing mechanisms may expose sensitive

data by transferring it through untrustworthy networks as discussed afore. To protect the data

and avoid that attackers fetch information from nodes impersonating other components of the

infrastructure, the platform authenticates the ends of the connection and encrypts and signs the

content of the messages. For doing so, the runtime builds on the Generic Security Services API, an

interface shared by several security frameworks that allows applications to use interchangeably

9

CHAPTER 1. INTRODUCTION

any of the implementing frameworks, to forward the security management to a security-specific

framework. With this, an organization can publicly offer its resources and control that only

its members access it and ensure that in-transit data remains protected. Besides, if several

organizations federate their identity management, the members of any organization within the

federation could benefit from the resources belonging to any federation partner using one single

identity (Single Sign-On).

Contribution 5:
Configurable multi-objective scheduling system

All the contributions previously described focus on improving the user experience from an

application point of view. The last contribution of this thesis aims to benefit the owner of the

infrastructure onto which the mobile device offloads the computation. Unlike when the runtime

submits part of the computation to a single laptop, on larger infrastructures, like the ones

offered to the members of an organization, the scheduling of tasks may have a significant impact

on the operational expences of the infrastructure. To provide infrastructure owners with some

mechanism to control the resource usage and its costs, this dissertation describes a multi-objective

scheduling system. With it, the platform owner can influence on the scheduling decisions to foster

a shorter execution time, a higher energy-efficiency or trying to reduce the monetary cost of

hosting the computation.

1.3.1 Publications Related to the Thesis

The following list contains the publications related to the thesis along with a brief summary of

their content that highlights the contributions included on them.

Journals

• Title: ServiceSs: An Interoperable Programming Framework for the Cloud [67]

Authors: F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo, D. Lezzi, R.

Sirvent, D. Talia, and R. M. Badia

Journal: Journal of Grid Computing, vol. 12, no. 1, pp. 67-91

Publisher: Springer Netherlands

Date of publication: March, 2014

DOI: 10.1007/s10723-013-9272-5

This article extends COMPSs to use it in web service environments. Regarding the program-

ming, it allows to define and use web services as the implementation for tasks. Although

it introduces the possibility of implementing tasks with mechanisms other than methods

written within the application, it only allows one single implementation for each. The

second relevant contribution presented in this article refers to the runtime: it adapts the

runtime architecture to enable the holistic orchestration of several applications (web service

10

1.3. THESIS CONTRIBUTIONS

invocations) by splitting it into two parts. The first one detects the tasks on the application

and monitors the data dependencies among them. The second part of the runtime orches-

trates the execution of tasks on the available resources and dynamically adapts the amount

of resources to the current workload.

• Title: COMPSs-Mobile: Parallel Programming for Mobile Cloud Computing [66]

Authors: F. Lordan and R. M. Badia

Journal: Journal of Grid Computing, vol. 15, no. 3, pp. 357-378

Publisher: Springer Netherlands

Date of publication: September, 2017

DOI: 10.1007/s10723-017-9409-z

This article presents an initial version of the prototype described in this dissertation.

The programming model does not support task polymorphism yet; however, the paper

describes all the necessary tools to use the model to develop Android applications. The

described runtime already executes on the mobile device, but tasks always run on the

CPU or offloaded them onto the Cloud. Although the architecture of the runtime is not the

definitive one, it already implements the offloading, data sharing – through a distributed

data directory – and network disruption-tolerance mechanisms.

• Title: Towards Mobile Cloud Computing with Single Sign-On Access [69]

Authors: F. Lordan, J. Jensen, R. M. Badia

Journal: Journal of Grid Computing, pp. 1-20

Publisher: Springer Netherlands

Date of publication: September, 2017

DOI: 10.1007/s10723-017-9413-3

This article describes the extension of the runtime to secure with authenticity, secrecy and

integrity the network communications through which the runtime offloads the tasks and

transfers the data. The publication details all the adaptations done to the programming

model, basically on the runtime, to integrate GSSAPI on it.

International Conferences

• Title: COMPSs-Mobile: Parallel Programming for Mobile-Cloud Computing [65]

Authors: F. Lordan and R. M. Badia

Proceedings: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), pp. 497-500

Publisher: IEEE

Date of publication: May, 2016

Conference location: Cartagena de Indias, Colombia

DOI: 10.1109/CCGrid.2016.16

11

CHAPTER 1. INTRODUCTION

This article is an early version of the homonymous paper published in Journal of Grid

Computing. This paper already describes the initial runtime architecture and the offloading,

data sharing – with the data directory centralized on the mobile device – and a fault

tolerance mechanism that only ensures the autonomy of the mobile.

• Title: Energy-Aware Programming Model for Distributed Infrastructures [68]

Authors: F. Lordan, J. Ejarque, R. Sirvent and R. M. Badia

Proceedings: 2016 24th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP), pp. 413-417

Publisher: IEEE

Date of publication: February, 2016

Conference location: Heraklion, Crete, Greece

DOI: 10.1109/PDP.2016.39

This article introduces task polymorphism as a mean to allow scheduling policies to control

the energy consumed by the infrastructure while running an application. In this case, task

polymorphism only considers implementing different algorithms running on the cores of

the CPU; however, a task implementation can use more than one core of the CPU.

Workshops

• Title: An architecture for programming distributed applications on Fog to Cloud sys-

tems [71]

Authors: F. Lordan, D. Lezzi, J. Ejarque, and R. M. Badia

Workshop: 1st Workshop on Fog-to-Cloud Distributed Processing (F2C-DP)

Workshop date: September, 2017

Workshop location: Santiago de Compostela, Spain

Proceedings: Euro-Par 2017: Parallel Processing Workshops. Lecture Notes in Computer

Science, vol. 10659, pp. 325-337

Editors: D. Heras and L.Bougé

Publisher: Springer International Publishing

Date of publication: February, 2018

DOI: 10.1007/978-3-319-75178-8_27

This article introduces the whole solution and discusses its suitability of the programming

model for mobile Fog to Cloud environments. The proposal considers one mobile device

as the cornerstone of the whole infrastructure. Applications running on it discover the

nearby sensors and collect data from them. However, the programming model does not

assist programmers with such interactions; they have to handle all the issues related

to them programmatically. The mobile processes all the gathered information using the

local computing devices, usually the CPU and the GPU, but it can delegate part of the

computation and offload it onto the Cloud. The current implementation of the data-sharing

12

1.4. THESIS ORGANIZATION

and fault-tolerance mechanisms do not support offloading computation onto other peers

in the Fog since they do not consider the possibility of losing data values because of the

unavailability of one peer.

• Title: Enabling GPU support for the COMPSs-Mobile framework [70]

Authors: F. Lordan, R. M. Badia and W. Hwu

Workshop: 4th Workshop on Accelerator Programming Using Directives (WACCPD)

Workshop date: November, 2017

Workshop location: Denver, Colorado, United States of America

Proceedings: Accelerator Programming Using Directives. WACCPD 2017. Lecture Notes

in Computer Science, vol. 10732, pp. 83-102

Editors: S. Chandrasekaranand G. Juckeland

Publisher: Springer International Publishing

Date of publication: January, 2018

DOI: 10.1007/978-3-319-74896-2_5

This article proposes an extension of the programming model that allows applications to

benefit from GPUs and other accelerators embedded on the mobile device to improve their

performance. For that purpose, developers have to implement the task as an OpenCL kernel

and use a new annotation to let the runtime know of the implementation existence. The

article describes all the necessary mechanisms so that the runtime manages the content of

the device memory and submits the kernel executions transparently to the developer.

Pending for submission

• Title: Multi-objective Self-adaptation of Task-based Application Execution in Elastic Dis-

tributed Computing Infrastructures

Authors: F. Lordan, P. Álvarez, J. Ejarque, R. Sirvent and R. M. Badia

This article will describe the system designed and implemented for scheduling task exe-

cutions on the available resources and provisioning the necessary resources dynamically.

The policies defined in the article take into account application-level information to achieve

multiple objectives related to the timespan of the execution, its energy consumption and

its economic cost. In practice, the policies try to minimize one of the three parameters

while meeting boundaries for the other two parameters. For instance, the policies could

try to minimize the energy consumption of the application while guaranteeing that the

application ends in less than one hour and spends less than 3 e .

1.4 Thesis Organization

After introducing the topic of the thesis and exposing the motivation behind it and its contribu-

tions, this first part of the dissertation continues contextualizing the work and provides some

13

CHAPTER 1. INTRODUCTION

background information about Android in Chapter 2. Chapter 3 analyses the state of the art on

programming models for parallel computing and, more specifically, for mobile cloud computing.

The rest of the dissertation is divided into four parts. Part II, entitled General Proposal,

explains the solution proposed to ease the development of applications through one single chapter

(Chapter 4) describing the programming model and giving an overview of the runtime system

that supports it.

In Parts III (“Exploitation of Local Computing Resources”, Chapters 5- 6) and IV (“Exploita-

tion of Remote Computing Resources”, Chapters 7- 9) the dissertation delves into the exploitation

of the available resources. On the one hand, the former details the mechanisms used for running

tasks on the computational resources embedded on the mobile device. Chapter 5 describes how

the runtime uses the cores of the CPU of the mobile device, while Chapter 6 discusses how the

prototype benefits from the computing devices embedded on the mobile other than the CPU, such

as GPUs, through OpenCL.

On the other hand, Part IV describes how the runtime exploits remote resources. Chapter 7

details the mechanisms to offload task, share data and tolerate network disruptions. Chapter 8

explains the securing of the network communications with mutual authentication and message

integrity and secrecy by means of GSSAPI. Chapter 9 describes the system for scheduling tasks

on the remote workers to allow the owner of the infrastructure to control the operational expenses

of running tasks there.

Finally, the fifth and last part of the dissertation, entitled Conclusion, wraps up the disserta-

tion with one single chapter that lays out the conclusions extracted from the presented work and

introduces possible directions to continue the research.

14

C
H

A
P

T
E

R

2
BACKGROUND: ANDROID

Android is an open-source platform designed primarily for touchscreen mobile devices that

offers support at all levels of the software stack, from operating system functionalities

to sample applications. Android was initially developed by Android, Inc., a company founded by

Andy Rubin, Rich Miner, Nick Sears and Chris White to develop "smarter mobile devices that are

more aware of its owner location and preferences". In July 2005, Google acquired Android, Inc.

planning to enter the mobile phone market, and in November 2007 founded the Open Handset

Alliance, a consortium along with other technology companies, with the goal to create open

standards for mobile devices. Since then, the Open Handset Alliance has been the developer of

the Android platform.

2.1 Software Architecture

A user of an Android device sees the whole platform as a set of software application (apps)

that enacts some functionalities through the mobile hardware device. Despite Android already

provides some built-in applications implementing basic features like a phone dialer, an SMS

client, a contacts manager, an email reader or a web browser; most of the applications are

developed by third-party organizations that publish them on on-line Application stores, such as

Google Play.

To ease the development of these applications, the platform offers the Application framework:

a set of pre-installed blocks of software that are likely to be reused by various applications

that manage the basic functions of the mobile. Thus, it reduces not only the complexity of the

application code, but also their size by eliminating repetitive code. Some of the most important

15

CHAPTER 2. BACKGROUND: ANDROID

blocks contained in this layer are:

• Package Manager: a database that keeps track of all the applications currently installed

on the device and allows them to interact with each other

• Window Manager: manages the many windows that comprise an application: notification

bar, main application window or any sub-window defined in it

• View System: contains common UI-related elements such as tabs, buttons, icons, text-

boxes, labels, ...

• Resource Manager: manages all the non-source code entities that compose the applica-

tion: text strings, images, media content, interface layouts, ...

• Package Manager: a database that keeps track of all the applications currently installed

on the device and allows them to interact with each other

• Activity Manager: coordinates and supports the navigation across different screens of

applications

• Content Providers: set of databases that allow applications to store and share structured

data across applications

• Location Manager: provides applications with location and movement information ob-

tained through GPS, sorrounding Wi-Fi networks or cell tower information

• Notification Manager: manages the information placed on the notification bar

• Telephony Manager: manages all voice phone calls

Developers often use operations that are hardware-specific or performance-sensitive: calls

to the operating system, surface management, media reproduction, rendering of web (webkit)

and graphics (OpenGL), database operations (SQLite), security (SSL), etc. For that purpose

the Application framework leverages on a set of system libraries, usually written in C or C++,

optimized for the harware capabilities of the device. These libraries, also known as native

libraries, comprise the library layer of the software stack. The implementation/tuning of these

high-performing libraries is responsibility of the mobile vendor and may not be included on all

devices.

In addition to these system libraries, the layer also includes the Android Runtime (ART) [2],

which supports the writting and execution of Android applications. Android applications are

written in the Java programming language. This component of the framework contains a set of

reusable Java building blocks that include the basic software implementations of data structures,

concurrency mechanisms, file and network IO, applications lifecycle management, webservices

interaction and testing. Although programmers code in Java, Android applications do not run

16

2.2. APPLICATIONS

on a Java Virtual Machine since it is not designed to run on resource-constrained environments.

Originally, Android developed the Dalvik VM [24] particularly tailored for that purpose: a register-

based VM optimized for low memory requirements that relied on the underlying OS to isolate

processes, manage memory and support threads while allowing multiple VM instances to run

at once. Since Android 5.0 "Lollipop", the Dalvik VM is discontinued. Android incorporated

Ahead-of-time (AOT) compilation which translates the Dalvik bytecode of the application to

device-specific instructions at install-time. This allowed to improve applications performance on

the phone without sacrificing their portability. Subsection 2.3 elaborates on how the Java code

written by the programmer is transformed to run on the device.

To keep Android agnostic about low-level driver implementations, it defines a standard

interface for vendors to implement, the hardware abstraction layer (HAL). Thus, vendors can

implement funcionalities without affecting software of higher-levels.

The Linux Kernel layer is the bottom of the Architecture and the heart of the whole system

by gathering all the core services that any Android device relies on. It provides generic operating

system services such as management of memory and processes, storage and network I/O, security

settings to grant/deny access to hardware devices or data. It also offers an interface that allows

to plugin hardware device drivers so Android can communicate with a wide range of low-level

components that are often coupled to the mobile. The layer also includes some Android-specific

components that target to mobile-related issues such as the power management, memory sharing

or its own interprocess communication mechanism known as binder.

Figure 2.1 illustrates the different layers of the Android Software stack described above.

2.2 Applications

As explained in the previous section, applications are how users access to the device functionalities.

A user interacts with an application through the graphical interface developed by its programmer

along with all the logic that supports the feature. To help on that job, the Android Framework

provides four building blocks: activities, services, content providers and broadcast receivers.

Activities are designed to contain the visual interface through which users give and receive

information from and to the application. By convention, an activity should support a single and

individually-focused action that user can do and string together to other activities to achieve a

common purpose. Tasks gather all the activities related to the same goal, not necessarily from

the same application, and organizes them as a stack where the top activity is shown to the user.

When the user launches an application, a new task is started along with a new activity which is

pushed onto the top of the stack.

From the forefront activity, the user might need to navigate to a new activity. In this case,

Android suspends the current activity, captures its current state, creates the new activity and

pushes onto the top of the stack. When the activity is no longer useful, it is destroyed and popped

17

CHAPTER 2. BACKGROUND: ANDROID

Figure 2.1: Android software stack. (Source: https://developer.android.com)

out of the stack; the new peek activity resumes its execution and is shown to the user. Developers

only need to focus on the graphical elements shown to the user in each activity and the actions

that need to be taken when interacting with them; the base Activity class encapsulates all the

management of the task stack and the lifecycle of that particular activity.

When the application requires two components to interact, e.g. the current activity creates a

new activity or opens a web page in the browser, developers turn to Intents. Intents are a class of

the Android framework that represents an action to be done: create a new activity or a service,

notify an event, etc. The component that the action targets can be explicitly indicated by the

developer, for instance, creating a new activity of the same application; or developers may leave it

implicit in the code indicating only the action to perform and Android determine which component

18

2.2. APPLICATIONS

of which application receives the action through a process known as Intent Resolution. Intent

Resolution relies on a manifest (AndroidManifest.xml) attached to each application describing its

components and which actions they support. At runtime, when an Intent is created and to be

delivered, the system matches the action with some known component (action Id, data type and

category). Multiple components can accept the same kind of intent, in that case, Android needs to

choose a single one, usually asking the user.

Services are the application component designed to support long running operations with-

out providing any user interface. Mainly they are used for two purposes: performing work in

background outlasting the calling application and interaction among different processes. They

can take two forms: started and bounded. Started services are started by another aplication

component and run in background indefinetely even if the component that started is destroyed.

Usually, a service is started to perform a single operation that does not return a result to the

caller and it stops by itself when the operation completes. Other application components can bind

to a service whether it was created by the same application or by another one. A bound service

offers a client-server interface to interact with this service (known as IBinder), send requests and

get results. Once the client component gets bound to the service it receives a stub implementation

of the IBinder. Multiple components can bind to the service at once; the service is alive as long as

other components are bound to it. To allow clients from different applications to access a service

it is necessary to define the service interface using the Android Interface definition Language

(AIDL).

The purpose of BroadcastReceiver is to enable application to react to system-wide events.

Developers specify on the AndroidManifest which events the application receives and which

individual BroadcastReceiver handles them. When an event needs to be broadcasted, the source

application/hardware creates an event representing it with some additional information about it;

Android notifies to any application component registered in the system through the Intent Re-

solver invoking the onReceive method on the corresponding BroadcastReceiver implementations

passing the intent as a parameter.

The last building block of Android applications are ContentProviders which their main pur-

pose is to allow data sharing across different applications. ContentProviders represent centralized

repositories of structured data with data access control (specify and enforce permissions). Ap-

plications that want to access a particular ContentProvider do so through the ContentResolver

class which presents a database-style interface that lets read and write data from and to a

ContentProvider and supports methods such as query, insert, update and delete. To use a Con-

tentResolver, applications identify the data they want and the content provider that hosts the

data through a URI composed by a scheme (content://), an authority which indicates the specific

ContentProvider, a path containing 0 or more segments indicating the specific dataset, and the

ID indicating the specific record.

Android comes with a number of standard ContentProviders. For instance, the BROWSER

19

CHAPTER 2. BACKGROUND: ANDROID

ContentProvider stores information such as bookmarks and browsing history; CALL LOG keeps

track of the telephone calls; CONTACTS manages contact information; MEDIA keeps track of

the pictures, songs and videos; and many more.

Sometimes applications need to squeeze extra performance from the device. In these cases,

Android allows to build part of the application as a native library and write it in C or C++ and

directly interact with the embedded devices of the mobile platform such as network interface,

GPUs, accelerators or sensors. Developers dynamically load these libraries at any point of the

code and they access to their functions through the Java Native Interface (JNI).

In addition to the code implementing the logic, applications are also include non-source code

entities called resources; things like images, sound and video media, the layout of a screen

or strings of characters. Managing them separately from the application code and using them

properly has a significant impact on the portability of the application since they allow to alter the

content shown to the user without need of changing the application or recompiling it. Choosing

among different set of strings to be used allows applications to translate to any language.

Providing a different layout for each device size or orientation (landscape or portrait) allows

applications to adjust to the user interface to the current configuration. For applications to

automatically adapt to the current configuration, Android requires the developer to classify the

resources in a specific folder hierarchy according to their kind and the device configuration when

they sould be used.

2.3 Application Package Building

Android applications are written in Java language and bundled in Android package (.apk) files

for distribution that users can obtain from application stores such as Android Store. The Android

Software Development Toolkit (SDK) assists the programmer on the building of the apk file from

the Java code following a four steps process.

The first step, known as Android Resource Manager, scans the resources of the application

and creates a Java class, named R, to ease the access resources. This class classifies all the

resource of the applications in other classes according to the file hierarchy and assigns to each

resource a unique identifier which is published as a constant of the R class. For instance, the

identifier 0x7f020000 could correspond to an image stored in the folder res/drawable/image1.jpg

and using the constant R.drawable.image1 they fetch the picture from the ResourceManager

framework component. Since this R class is necessary to code the application, IDEs supporting

Android programming run this step everytime that a new resource is added to the application.

During the second stage, the Android Pre Compiler, the Android SDK scans all the project

looking for AIDL (Android Interface Definition Language) files to generate all the proxy-stub

classes required for interprocess communications. At this point, the application has all the Java

classes the compose it and they are compiled by the Java compiler to generate Java bytecode on a

20

2.4. PROCESS AND THREAD MANAGEMENT

third stage known as Java Builder.

Finally, the Android Package Builder is the fourth and last stage of the apk building process.

Since originally Android applications were running on the Dalvik VM the Java bytecode of all

the classes is translated into Dalvik bytecode and stores as a classes.dex file. This file is bundled

together along with the AndroidManifest.xml and all the resources into the apk file.

If the application uses native libraries that are not already provided in the device, they

are also included in the application package. Libraries to be compiled for the specific device

architecture and added into the bundle as dynamic libraries (.so files). To compile the C and

C++ codes, Android offers a set of tools named Android Native Development Kit (NDK) that

allow to cross-compile the given libraries targeting mobile platforms from any computer. So the

application can be portable across multiple architectures, a different versions of the library for

each compatible platform needs to be included in the distributable; what increments its size.

Originally, to install the application, the Android Package Manager uncompressed the apk

file to copy the .dex file, the resources and any native library that should be included into the

file system, and register the application along with all its components, supported intents and

required permissions. When the user launched an application from the home screen, a new

process was created in the Dalvik VM running the main component of the application. Since

Android 5.0 "Lollipop", this procedure changed and incorporated ahead-of-time (AOT) compilation.

At installation time, upon package decompression, a tool named dex2aoc compiles the Dalvik

code (classes.dex file) optimizing the code for the specific device. Hence, the Dalvik VM is no

longer necessary since applications are already composed of instructions supported by the specific

processor; thus, removing the overhead of virtualization and improving the performance of the

application.

2.4 Process and Thread Management

Processes are self-contained execution environments that have some assigned resources: memory,

open files, network connection. Within a process, there can be multiple sequentially executing

streams of instructions with its own program counter and call stack, known as threads. Since

all of them belong to a single process they share its resources such as the heap and the static

memory areas.

When an application is launched, the system creates for the application a new process with

a single thread, known as the main thread or UI thread, which creates the main component

of the application (usually an activity). By default, this thread hosts the execution of all the

components within the application; Android does not create a different thread for each instance of

an application component. Consequently, methods that handle user actions, respond to external

events and manage the lifecycle of the components run in the UI thread. When an application

performs compute-intensive work in response to an event, whether coming from the UI or from

21

CHAPTER 2. BACKGROUND: ANDROID

an external origin, having a single thread yields low responsiveness and poor performance.

To avoid blocking the UI thread, developers offload the heavy computation to separated

threads. On the one hand, they can manually create and manage these new threads as they

would do in any regular Java application: instantiating and starting a subclass of the Thread class

or creating a new Thread from an implementation of the runnable interface. Since the Android

framework is not thread-safe, it only allows the UI thread to directly modify any element visible

in the GUI. As a workaround to publish the results of the computations done by worker threads,

the Activity class contains methods that enforce the main thread to execute some methods.

On the other hand, the Android framework provides classes that keep developers agnostic

to thread management while running operations on background threads and publishing their

results on the GUI. One example is the AsyncTask class which allows to define one operation

and submit multiple executions of the operation. A background worker thread retrieves these

operations from a queue and executes them sequentially. Eventually, the worker publishes the

progress of the running operation, and the operation result upon its end. The programmer defines

the reaction of the UI thread to both events.

Android also offers to developers the possibility to run different components of an application

in isolated processes by specifying that as an attribute in the application manifest. Although, the

new process has its own main thread, components no longer share resources and communications

among components require IPC mechanisms to interact (through AIDL). This approach is widely

adopted to host services that are shared across applications. When the call to a bounded service

originates in the same process where the service runs, the method is executed by the calling

thread as a regular method. However, if the call is from a remote process the method executes

in a thread chosen from a pool that the system maintains in the process of the service. Since

multiple calls can be dispatched at the same time, the implementation of an AIDL interface must

be completely thread-safe.

At some point of the execution, Android may shut down a process due to a lack of resources.

To determine which process to keep and which to kill, the system defines an importance hier-

archy based on the components running in the process and their state. It defines five levels of

importance:

1. Foreground process: the interacting activity and services bound to it, services in foreground

or executing a lyfecycle management callback, and BroadcastReceiver handling an event.

2. Visible process: Activity visible and services bound to it.

3. Service process: Any service-related process not included in any previous categories.

4. Background process: process holding an activity that is not currently visible to the user.

They are removed following a least recently used policy.

5. Empty process: process that does not hold any active application components.

22

C
H

A
P

T
E

R

3
STATE OF THE ART

The real world is inherently parallel; multiple events often happen at the same time

independently one from each other: planets and asteroids orbit around stars, chemical

reactions take place within living organisms, atomic particles move, trading in stock markets, ...

Thus, models describing these phenomena are inherently parallel.

Conversely, whether the natural form of human cognitive processing is serial or parallel is

still a controvert topic among experts [40, 77, 83]. Speech is a sequence of phonemes one after the

other; what forces us to transmit ideas and steps within a process one after the other. Monologue

interior is non-vocalized speech; hence, it is also serial. And even the stream of consciousness is

serial [19] for events are sequenced in time. Consequently, programmers often implement such

models as sequential logico-mathematical processes.

Fundamental physical limits on the technologies used for implementing the computing units

cap the performance of sequential computing. The way for current processors to work around

these limits and speed up the calculation is to exploit the parallelism of the models and process

their operations concurrently. However, the parallelism inherent in a process is finite; often,

operations depend on the results computed by another operation enforcing their serial execution.

These sequences of operations set a theoretical limit on the speedup that an execution can achieve

with parallelization; computer scientists predict the expected execution time of a parallelized

application by means of Amdahl’s [15] or Gustafson’s [50] laws.

Although parallelism is a concept easy to comprehend – much of the human perceptions

happen in parallel –, conceiving parallel algorithms is a hard job for the brain. This chapter

delves into the sources of parallelism and discusses around the architecture and programming of

systems capable of exploiting it.

23

CHAPTER 3. STATE OF THE ART

3.1 Sources of Parallelism

Almasi and Gottlieb define parallel computing in [14] as a type of computation in which many

calculations or the execution of processes are carried out simultaneously. According to the grain

of these calculations, there are three different levels of parallelism.

The finest possible grain of parallelism (bit-level parallelism) lies on the implementation of a

single operation, within the bits that represent the operands. For instance, an 8-bits addition

can be represented as a single operation or as a sequence of the addition of the four least

significant bits and the addition of the most significant bits plus the carry of the previous addition.

Historically, exploiting bit-level parallelism was the technique used to increase the performance of

processors in the early days of computer architecture. The most common word-size for nowadays

processors is 64 bits.

A coarser grain of parallelism originates in the stringing of several operations; more specifi-

cally, the stream of processor instructions that compose a sequential program (execution thread).

The potential overlap among these instructions is called instruction-level parallelism (ILP) since

the instructions can be executed in parallel [51]. To increase the operation throughput of the

processors, the cycle that each instruction had to go through was segmented in several stages

(instruction pipelining). That allowed, on the one hand, to shorten the cycle time to the length

of its longest stage, and therefore, to increase the clock frequency; and, on the other hand, to

reuse the resources dedicated to a previous already performed stage to process a posterior in-

struction prior the completion of the instruction. The more stages compose the pipeline, the

more instructions potentially execute in parallel as depicted in Figure 3.1. Another technique

used in processors design to exploit ILP consists in increasing the resources on a stage with the

purpose of hosting several instructions at a time (Superscalar Processors). A simple example of

a superscalar processor doubling the capacity of every stage in the pipeline achieves a higher

performance; doubling the number of instructions across the pipeline could potentially double

the instruction throughput of the processor.

Clock Cycle
1 2 3 4 5 6 7 8 9 10 11

Instruction 1 IF ID E M WB
Instruction 2 IF ID E M WB
Instruction 3 IF ID E M WB
Instruction 4 IF ID E M WB
Instruction 5 IF ID E M WB
Instruction 6 IF ID E M WB
Instruction 7 IF ID E M WB

Figure 3.1: Parallel execution of 7 instructions in a basic five-stage (Instruction Fetch, Instruction
Decode, Execution, Memory Access, Register Write Back) pipeline. In the fifth cycle, 5 instructions
are running in parallel, the fist has already completed its execution and the last has not entered
the pipeline.

24

3.2. PARALLEL SYSTEMS

Programs running on pipelined processors cannot achieve its ideal performance because there

are situations, called hazards, that prevent the next execution in the stream from executing during

its designated clock cycle and stall the execution. The processor is said to be in a structural hazard

when resources dedicated to that stage cannot accommodate all the concurrent instructions. For

instance, when a load instruction takes several cycles to fetch the value from memory, the whole

processor needs to stop since the following instruction will not be able to get into the MEM stage.

Instructions in a program are likely to refer to data used in previous instructions of the code; this

relation between two instructions is known as data dependency. Bernstein [23] distinguished

three situations where two instructions could not be executed in parallel: flow or read after write

(RaW) dependencies, an instruction stores a value on a memory location read by a succeeding one;

anti-dependence or write after read (WaR) dependencies, an instruction reads from a memory

location that a succeeding one writes on; and output or write after write (WaW) dependencies,

both instructions write a value to the same memory location. To ensure the sequential consistency

of the program, the processor stalls until the proper value is set into the memory location in what

is known as data hazard. Finally, when a branch instruction is executed, the processor has no

way to ensure which will be the following instruction to run until the new program counter is

computed.

Performance penalties due to hazards can be fought both at software and hardware level to

improve the exploitation of the ILP. Compilers can emulate the processor behavior and reorder

the instruction sequence to delay an instruction until the hazard has been resolved. At hardware

level, out-of-order processors allowed to avoid processor stall by delaying the execution of an

instruction while executing a succeeding one in its place. However, introduced the possibility of

WaW and WaR hazards, that could not happen in the pipeline processors. The most well-known

algorithms for dynamic instruction scheduling are Scoreboard [93] and Tomasulo [94].

Finally, the coarsest grain of parallelism, known as thread-level parallelism, arise from the

multiplicity of independent streams of processor instructions that can run at a time. Applications

are likely to consist of several threads either because of the different instruction sequences

composing it (task parallelism) or because of multiple instances of the same sequence each

processes a different element of a data set (data parallelism). The exploitation of this kind of

parallelism started back to 1970’s with vector processors, predecessors of nowadays GPUs, and

was the main reason behind the development of multithreaded and multicore processors.

3.2 Parallel Systems

John von Newmann described an automatic digital computing system as a device to carry out

instructions to perform all-purpose calculations of a considerable order of complexity. In his design,

known as von Newmann or Princetown architecture, the system has two main components: the

central processing unit (CPU or processor) and the memory. The memory is a device that stores

25

CHAPTER 3. STATE OF THE ART

M

P

(a) Von Newmann

M M M M

P P P P

(b) Shared-memory

M

P

M

P

M

P

M

P

(c) Distributed-memory

Figure 3.2: Architectures of computing systems.

information. The CPU contains all the necessary organs to perform arithmetic operations (Central

Arithmetic) on values read from and stored in the memory and control the proper sequencing of

the instructions – also stored in the memory – (Central Control).

Foster defines parallel computers as “a set of processors that are able to work cooperatively

to solve a computational problem” [42]; a third component joins the computer architecture: a

network to interconnect the processors and the memory modules. The organization and nature of

this interconnection network define the major types of parallel computers.

In shared-memory systems, all the processors access to the memory as one single common

device composed of multiple memory modules as depicted in the center of Figure 3.2. The

organization of the memory modules and the latency for processors to access them creates a whole

taxonomy of architectures within shared-memory processors including uniform memory access

(UMA), non-uniform memory access (NUMA) and cache-only memory architecture (COMA).

An alternative model, depicted in the right-most part of Figure 3.2, is distributed-memory

systems, where each processor has its own (local) memory module which it interacts with to

read and write values. For reading and writing values on remote (related to another processor)

memories, the processor may send and receive messages through the network. In these systems,

accessing to remote values is more expensive than accessing the local memory. The magnitude of

this difference lies in the scope of the interconnecting network. It can be few nanoseconds when

the network covers few centimeters as happens in heterogeneous systems composed of a CPU and

a GPU. In clusters, where the scope of the network is a few meters, latencies grow to milliseconds;

and on more loosely-coupled infrastructures where the interconnection network is the Internet,

such as environments using Grid or Cloud resources, latencies can grow to tenths of a second.

3.3 Parallel Programming

As noted at the beginning of this chapter, conceiving parallel algorithms for resolving compu-

tational problems requires a significant effort. Besides the intellectual part of developing an

application, there are the technical concerns related to the actual implementation of the software.

Developers need to map the different operations of the application to sequences of instructions

understandable for the hardware that computes it.

26

3.3. PARALLEL PROGRAMMING

Programming models are abstract machines that aim to separate the developer’s natural

model of an application from the concerns of its parallel execution. For that purpose, they provide

application developers with an interface with high-level operations, while implementing them on

the underlying infrastructure. Abstraction simplifies the structure of the software and releases

programmers from learning the intricate details of the architecture and allows the increase their

productivity by focusing on specific domains of knowledge.

The second benefit of abstraction is portability. If the software builds on a standard interface

to an abstract machine, it can run on any hardware system able to emulate the behavior of the

abstract machine described by the model.

Skillicorn and Talia identify four aspects of parallel computing that programming models

should conceal: [90]

• Decomposition of the application into pieces (tasks) to run on the processing elements.

• Mapping of each task to the processor that hosts its execution. The capabilities of each

specific processor, the size of the data and the speed of the interconnecting networks are

factors likely to influence the placement decision. This is a well-known problem widely

studied in the bibliography known as Job or Task Scheduling.

• Communication among these tasks to transfer data values.

• Synchronization among tasks so that they all know that they have jointly reached a common

state.

If a programming model can successfully abstract these four aspects, that would mean that code

could need no references about parallelism; hence, making it implicit in the program.

Another element to consider when implementing the high-level operations on the infrastruc-

ture is the interconnecting network. In embedded systems, network controllers are hardwired to

achieve high performing networks. To reduce the space of the chip dedicated to the implementa-

tion of the protocols, the interacting mechanisms are very rigid: a single well-defined low-level

communication protocol is implemented. On the contrary, more loosely-coupled systems, such as

grids, the networks are more flexible. The processing elements may be available through different

protocols such as SSH or web-services. The interoperability of different processing elements is

an additional issue orthogonal to the application parallelism; the translation mechanism from

the high-level operations to the infrastructure should also hide away from the programmer the

heterogeneity of the system.

The endeavor for programming model developers is to raise the level of abstraction while

delivering performance. [17] An abstract model is not of practical interest if the execution of

programs written in it is not efficient. Lower levels of abstraction may achieve performance but

at the cost of worsening the productivity; industry would dismiss its usage as well.

27

CHAPTER 3. STATE OF THE ART

The following subsections discuss how different programming models (targeting distributed

systems) deal with the parallel programming problem and with the heterogeneity of the system.

3.3.1 Handling the Parallelism

When creating new programming models, designers decide for each of the four aspects mentioned

above whether it is visible for the programmer to fine control it through explicit API calls or

annotations in the code, or it is implicit in the definition of the model which handles it opaquely.

Although the individual decision for each aspect is independent of the other three, generally,

there is one order in which programming models tackle them as the abstraction level raises.

Historically, the first programming models were developed by hardware manufacturers and

aimed to maximize the efficiency of their hardware (hardware-centric). These models gave little

importance to programming productivity, and developers have to specify the management of the

four issues. Two examples of explicit programming models popular nowadays are OpenCL [81]

and CUDA [79], both targeting heterogeneous platforms composed of CPUs, GPUs and other

types of accelerators. On both models, the application runs on the CPU and certain parts of the

application (kernels) are offloaded to one of the accelerators. To submit a kernel execution, the

developer needs to explicitly interact with the target device to copy the necessary input values to

the memory from the CPU memory to the device one, command the execution of the code and get

back the results to the CPU memory. Sequentializing these operations is also a responsibility of

the programmer.

The first aspect that programming model usually abstract away from the user is the mapping

of the pieces of the application to the processors of the infrastructure. The developer is making

almost all the implementation decisions but where to run each piece of the code. Message Passing

Interface (MPI) [36, 92] is a standard that defines a protocol for point-to-point and collective

communications. The software developer partitions the applications into several threads, each

of which has an exclusive memory space; the runtime library assigns each thread to one of the

processors available in the architecture. All the threads run in parallel (concurrently, if the

number of threads is greater than the number of processors) and the developer calls the MPI

to send to or receive from other processors data value. Threads can synchronize using either

communications or calling specific operations like barriers.

The following level of abstraction consists in releasing the developer from making fine-scale

timing decisions. Probably the most well-known type of programming models in this abstraction

level are the ones that allow the developer to define process networks. A process network consists

of a set of entities that react to the arrival of data and potentially sending new data to other

entities. In this case, the developer still needs to partition the application into pieces (the entities)

and indicate when an entity sends a message to other entities. Synchronization among entities is

implicit within the semantics of the communication; the reception of a message is what triggers

the computation of an entity.

28

3.3. PARALLEL PROGRAMMING

A successful model to implement process networks is the actors model [12, 52]. Actors are

entities with a state that react to the reception of a message. The response given to the message

depends on its behavior: a function that determines the actions – changing the current state,

sending messages to already existing actors, creating new actors or even destroying other actors

that they created – the actor takes according to its current state. An actor processes messages

sequentially; messages received during the processing of a preceding message are left in an

exclusive mailbox for its later processing. An easy way to understand what actor systems are

is to compare them with organizations composed by many people who perform tasks efficiently:

actors. When an actor receives a big task, it might divide it into multiple pieces and hire some

more actors to compute them. Since the employer is responsible for the execution of the bigger

task, it supervises the job of all its employees. While tasks are big enough to be divided, these

employees, in turn, can divide their tasks and hire new actors creating a hierarchical structure.

When an actor realizes that employed actors are no longer necessary to perform the task assigned

to it, the employer can fire its employees destroying the corresponding actors. Two successful

implementations of this model are Akka [49] and Erlang [100].

One further step towards full abstraction consists in hiding communications to the developer.

A simple approach to achieve this goal is to restrict the communications between tasks. For

instance, a model where all the tasks can run in parallel independently of each other. Since

tasks cannot communicate, the model does not need to provide any mechanism to command

a communication between tasks explicitly. This model, known as bag of tasks, suits well for

embarrassingly parallel applications; however, the model does not fit for applications presenting

different schemas. Aneka [99] is a framework implementing this programming model.

Another possibility consists in considering tasks as units of work that require and produce

data values. For producing their results, tasks often require data values that are results of other

tasks. Once developers have identified all the tasks composing the application, they have to

describe the flow that task have to follow – known as workflow – so that the system produces the

expected result. If developers specify the values that a task requires and produces; the model can

automatically infer and manage the required communications. Dryad [55] and Pegasus [33, 34]

are two programming models that define a language to construct the workflow; JOLIE [76],

Taverna [74] and WS-BPEL [10] allow the developer to construct the workflow via a graphical

interface.

A different approach is using shared spaces of memory where tasks can publish values and

fetch them from there. One example is the platform offered as a cloud service by Microsoft:

Azure [5]. The Azure model spins around two data structures: blobs (binary large objects) and

queues; all the instances of these structures are publicly available from all the processing

elements. In this case, developers split the application into several functions; each encapsulated

within a process (compute) that constantly polls a queue to obtain the parameters to run the

function. Computes fetch the input values for that task – identified by a unique name – from

29

CHAPTER 3. STATE OF THE ART

the shared memory as blobs; and at the end of the function execution, it stores the results as

blobs on the shared space to close the cycle. Although software developers do not need to specify

communications among tasks directly, they still need to add all the tasks composing the software

into the queue corresponding to the function to execute.

To conclude the classification of programming models according to the level of abstraction,

there are those models that hide away from programmers all four problems. Despite this achieving

full opacity, some programming models still require the software developer to make explicit the

parallelism. For instance, that is the case of programming models, like OpenMP [31], that exploit

parallel regions in a fork-join execution model. For instance, parallel loops in OpenMP, developers

specify that the iterations of a loop can run in parallel and the number of used threads to compute

them. The actual decomposition of the loop in tasks is made by the runtime since the number of

iterations executed on each processor may change to balance the computational load.

Conversely, many other programming models achieve full opacity and the software developer

does not even need to be aware of the fact that the application runs in parallel.

As for communications, one solution goes through restricting the workflow that developers

can define. Algorithmic skeletons implement standard algorithms that can resolve multiple

problems. The intellectual difficulty of this approach lies in translating the problem to resolve

by the software to the problem resolved by the algorithm. Once this reduction is done, the

programmer only defines the behavior of the different methods composing the skeleton algorithm.

MapReduce [32] is a well-known programming model following this approach used for processing

large sets of key-value pairs. Software developers only need to define two methods Map and

Reduce. Map takes a partition of the input set and processes all the contained pairs to produce

an intermediate set of key-value pairs containing a partial result of the computations. Reduce is

a function that defines how to merge all the partial results for a given key into a single value.

Some computations may be hard or even impossible to fit in an algorithmic skeleton. A

more generic approach consists in automatically construct the workflow out of a sequential code.

Completely automatic application decomposition is hard, these programming models provide

software developers with a mechanism to determine which logical regions of the code create a

new task when invoked. As for the models building the workflow, these models can automatically

detect the dependencies among tasks by considering the input and output values of each task.

In this cases, the usual execution model consists in running the main code of the application

on one processor and offload the computation of the tasks to other processors composing the

infrastructure. Two examples of programming model within this category are the scripting

language Swift [101] and COMPSs [91], described in more detail in Section 3.4.

3.3.2 Handling the Heterogenity of the System

The variety of protocols to interact with the processing elements is an issue that each implemen-

tation of the programming model has to tackle if they are not to be exposed to the application

30

3.4. COMPSS

developer. On the one hand, there is the solution taken by large IT providers who offer a whole

platform (PaaS) to develop services that run on top of their clusters. In this case, the underlying

infrastructure is uniform, and the platform only provides an implementation of its API that

directly interacts with the storage and computing resources. The developers of the platform only

need to focus on how to obtain the most performance of the system without worrying about the

interoperability. Some outstanding examples of PaaS are Microsoft Azure [5] Cloud and Google

AppEngine [4].

The alternative for not binding the usage of a programming model implementation to a

concrete infrastructure without dealing directly with the concerns of interoperability is to leverage

on some software solution that abstracts the details of the infrastructure. Within this solution,

there are two different approaches.

The first one consists in using software that homogenizes the system and implements the

programming model highly-coupled to the features of the software. This solution forces system

administrators to bind the infrastructure to a specific software. For example, the Apache Founda-

tion implementation for the MapReduce model, Hadoop [8], builds on the Hadoop Distributed

File System (HDFS) taking advantage of its data fragmentation, distribution and replication to

obtain a higher performance on the execution of its applications.

The second option, less restrictive for system administrators, is to leverage on middlewares

that offer a set of low-level methods and implements their functionalities in several protocols.

Thus, the administrator of each component of the infrastructure can manage it with the desired

software stack and applications can make use of them regardless the access protocol. This

approach was analyzed and solved by the computer scientist who developed the Grid. They

defined an abstract API, the Grid Application Toolkit [13], to command remote data transfers

and submit jobs (task executions) to remote resources; two implementations of this API are

JavaGAT [97] and SAGA [46].

3.4 COMPSs

COMP Superscalar (COMPSs) is a programming model which aims to ease the development of

applications for distributed infrastructures, such as Clusters, Grids and Clouds. For the sake of

programming productivity, the COMPSs model builds on three pillars:

• Infrastructure unawareness. COMPSs programs do not include any detail that could tie

them to a particular platform. Thus, the model releases developers from dealing with the

heterogeneity of the system or struggling with the mapping of the tasks to the processing

elements of the infrastructure. By keeping applications agnostic to the infrastructure, they

achieve portability across different platforms.

• Sequential programming. To hide away parallelism details from developers, COMPSs

analyzes the sequential code of the application to build the workflow of the application.

31

CHAPTER 3. STATE OF THE ART

The model automatically detects the tasks composing it and the data dependencies among

them. Using this information, the implementation of the model orchestrates the execution

of these tasks on the underlying infrastructure taking care of the required communications

and synchronizations to guarantee the sequential consistency of the program.

• Standard programming languages and no APIs. To facilitate the learning of the model,

COMPSs does not define any specific language nor provides a specific API or construct to

build the application. Instead, developers code the sequential application using standard

programming languages (Java, Python or C/C++).

The idea behind COMPSs is to apply the mechanisms implemented in out-of-order superscalar

processors to exploit the Instruction Level Parallelism but at a coarser grain: method invocations.

As the execution progresses, the code invokes methods of the application. Instead of computing

the body of these methods in the same processor, the execution is replaced by the creation of an

asynchronous task to run the same method code on a node of the underlying infrastructure. The

more method invocations the main code does, the more asynchronous tasks coexist and run in

parallel on the infrastructure.

As one instruction can use the value stored in a registry by another one, one method can use

as an input parameter a value created by another invocation. Therefore, there are data hazards to

control by detecting the data dependencies among tasks. Often, the main code of the application

needs a value created within the body of one method invocation. These accesses constitute a

control hazard since the main code needs to wait until the corresponding task completes and

creates the value (synchronization) to go on with the execution.

To allow fine-tuning the grain of these tasks, developers must select the subset of methods

whose invocations create new tasks. The selected methods are known as Core Elements (CE) and

the main code of the application, Orchestration Element (OE). This selection is done by means of

an interface, known as Core Element Interface (CEI), where the developer declares the methods

to consider as a CE. Since interfaces allow to define methods but not the class to which they

belong, the application developer needs to explicitly point out the class that contains the method

implementation. For that purpose, they must annotate the method definition with the @Method

directive and indicate the class with the attribute declaringClass.

An important difference between instructions and user-defined methods is the action per-

formed on the parameters. An ISA has a limited number of instructions, and all of them have

clearly defined its parameters and behavior; hence, the processor can detect data dependencies

among instructions. Conversely, there are countless user-defined functions; each one has a differ-

ent set of parameters and operates differently on their values. For determining data dependencies

among tasks automatically, developers have to clarify the behavior of the operation by stipulating

the action (read, update or create) performed on each parameter. For that purpose, COMPSs

provides the @Parameter directive to annotate each parameter of the method declaration and

describe the action performed on it. There, developers indicate the directionality of the parameter

32

3.4. COMPSS

(IN for value reads, INOUT for value updates or OUT for value creations) and its type (BOOLEAN,

CHAR, SHORT, INT, LONG, FLOAT, DOUBLE, STRING, OBJECT or FILE). The model can

automatically infer the type looking at the class of the parameter except for file passed as a

String.

Besides the arguments, a method can operate on two more values: the callee object of the

method and its return. COMPSs considers the former as an additional parameter of type OBJECT

with INOUT directionality. Likewise, the return value is a new parameter with type OBJECT,

but the direction of the parameter is OUT since the initial value does not exist.

The code snippet in Figure 3.3 contains a simple COMPSs application example. Subfig-

ure 3.3(a) shows the main code of the application which runs one simulation for each argument

of the application. The application aggregates the results of all of them in a single report object

and prints it at the end of the execution.

Figure 3.4 contains an example of a CEI for the application that selects three methods as

CEs. PrepareParameters is a static method implemented in the Simulation class. It takes one

string describing the parameters to run a simulation as input and returns a SimParameters

object containing the same configuration. Simulate is an instance method also implemented in

the Simulation class. The method takes as the only parameter a SimParameters object which it

reads to run the simulation. At the end of the execution, simulate returns a Report object with

the result of running the simulation. The third CE corresponds to the static method aggregate

implemented in the Report class. It takes two Report objects and updates the content of the first

of them to include the values of the second.

When running, the application creates three asynchronous tasks on each iteration, one for

each CE. The first detected task – corresponding to the prepareParameters CE invocation in line

9 of the Main class code – reads a string coming from the arguments of the application. Since

they do not depend on any other task, every prepareParameters tasks can directly run upon its

detection. When the application reaches line 11 of the code, it creates a simulate task. In this case,

the simulate CE reads the SimParameters object created by the first task of the iteration; hence,

there will always be a data dependency among the prepareParameters and simulate tasks of the

same iteration. The third CE invocation on the iteration, aggregate on line 12, creates a task

that reads the return value of the simulate task of the same iteration to merge it into the result

of the aggregate task corresponding to the previous execution. Finally, once the execution has

gone through all the iteration of the loop, the application reaches the System.out.println method

invocation on line 14 to print the final result. At this point, the execution needs the actual value

of the globalReport variable forcing a synchronization with the last aggregate task to fetch the

proper value.

The directed acyclic graph in Figure 3.5 depicts the described workflow for an execution of the

application with four arguments. Each node in the graph represents a task; red tasks correspond

to prepareParameters tasks; blue tasks are simulate tasks; and yellow tasks, aggregate. Arches in

33

CHAPTER 3. STATE OF THE ART

01 package es.bsc.compss.sample;
02
03 public class Main {
04
05 public static void main (String[] args) {
06 int numSims = args.length;
07 Report globalReport = new Report();
08 for (int simId = 0; simId < numSims; simId++){
09 SimParameters sp = Simulation.prepareParameters(args[simId]);
10 Simulation sim = new Simulation();
11 Report sreport = sim.simulate(sp);
12 Report.aggregate(globalReport, sreport);
13 }
14 System.out.println(globalReport);
15 }
16 }

(a) Content of Main class

01 package es.bsc.compss.sample;
02
03 public class Simulation {
04
05 public static SimParameters prepareParameters (String paramsDescription){
06 SimParameters sp = new SimParameters();
07 //Update content of sp according to paramsDescription
08 ...
09 return sp;
10 }
11
12 public Report simulate (SimParameters sp){
13 Report r;
14 //Runs the simulation according to the parameters in sp and generates a report
15 ...
16 return r;
17 }
18 }

(b) Content of Simulation class

01 package es.bsc.compss.sample;
02
03 public class Report {
04
05 public static void aggregate (Report accum, Report diff){
06 // Merges the results in report diff into accum
07 ...
08 }
09 }

(c) Content of Report class

Figure 3.3: Sample application code written in Java.

the graph represent data dependencies among tasks: the task portrayed by the target node of the

arch depends on the task corresponding to its source. The red octagon at the bottom of the figure

represents the synchronization between the main code and the execution of the last aggregate

task.

3.5 Mobile Cloud Computing

Mobile or handheld devices are computers small enough to be held in hand and easily carried

by users wherever they go. Smartphones and tablets are the most typical examples of this kind

of devices. In the recent years, their popularity has increased [63], and applications for them

are abundant. Although these devices have high capabilities for user interaction and network

34

3.5. MOBILE CLOUD COMPUTING

01 package es.bsc.compss.sample;
02
03 public interface SampleCEI {
04
05 @Method(declaringClass="es.bsc.compss.sample.Simulation")
06 SimParameters prepareParameters (
07 @Parameter(direction = IN)
08 String paramsDescription
09);
10
11 @Method(declaringClass="es.bsc.compss.sample.Simulation")
12 public Report simulate (
13 @Parameter(direction = IN)
14 SimParameters sp
15);
16
17 @Method(declaringClass="es.bsc.compss.sample.Report")
18 public static void aggregate (
19 @Parameter(direction = INOUT)
20 Report accum,
21 @Parameter(direction = IN)
22 Report diff
23);
24 }

Figure 3.4: Core Element Interface for the sequential application in Figure 3.3. It defines three
CEs: prepareParameters, that creates an object with the simulation parameters out of a string;
simulate, which runs the simulation and creates a report of the execution; and aggregate, which
merges a report into another.

1

2

3

6

4

5

9

7

8

12

10

11

Figure 3.5: Directed acyclic graph representing the task workflow automatically detected by
COMPSs for the application presented in Figures 3.3 and Figures 3.4.

connectivity regardless of the movement, their computing power is low and limited by the battery

lifetime. Mobile Cloud Computing (MCC) [38] is a technology that tackles this limitation by

bringing together the mobility of mobile devices with the vast computing power of the Cloud [16].

In other words, it allows the usage of smartphones and tablets to access/offer computing resources

or software as a service. User interfaces of applications, – graphical, microphones and other

sensors that might be used to interact with the system – run on the mobile device, and when

they reach a compute-intensive point, the execution is offloaded to better-performing resources

on the Cloud. An example of applications following this architecture is an app on the phone

35

CHAPTER 3. STATE OF THE ART

recording the sound of the heartbeat of a patient and submitting the audio to an external service

for detecting cardiovascular diseases such as arrhythmia or tachycardia. Eventually, the service

returns the result of the audio processing to the mobile device, and the application displays it.

Applications implemented like this require a fast connection to the Internet to run. Within

cities, network protocols that allow these conditions are easily met and applications behave

properly. However, they are not likely on rural environments where networks are slower or even

unavailable in some areas. Consequently, applications might perform poorly or, in the worst-case

scenario, not work since the resources of the mobile are too scarce to host the computation. For

these situations, MCC allows offloading parts of the computation onto local cloudlets [88] – nearby

resource-rich nodes – or onto peer-to-peer networks made up of several mobile devices [72].

Offloading part of the computation to remote nodes (surrogates) with a higher computing

capacity is a technique that appeared with mainframes, where users accessed a central node

from simple terminals. Since then, there has been a lot of research on support remote execution;

however, due to the short existence of smartphones and tablets, research on Mobile Cloud

Computing has only been done in the recent years. A key aspect in MCC is the high mobility of

the device. At any point of the execution, the device can undergo changes in the strength and

speed of the network, network technology shifts (Wi-Fi to 3G), or experience temporary, or even

permanent, network breakdowns. For applications to keep behaving properly, developers must

consider these situations and enable intelligent mechanisms on the application to handle them

and provide a seamless service.

Revisiting the health application example, the application could keep invoking the same ser-

vice when using the Wi-Fi interface. When using mobile networks, it could apply a preprocessing

of the audio signal to reduce the number of bytes transferred and, consequently, its energetic

and monetary costs. And, in the case of being isolated, the application should compute the result

using the computing devices embedded in the mobile. Moreover, developers should provide the

application with the logic to adapt its behavior to the dynamically changing conditions; and, in the

case of a network breakdown while waiting for the result of the service, launch the computation

on the local devices.

Programming applications that exploit MCC properly is complex. Fernando et al. perform

a conscientious analysis of the issues related to MCC [38] considering not only the operational

concerns of this kind of infrastructures but also other important aspects such as data privacy

and security, legal restrictions or service-level agreements, among many others. Leaving out all

the concerns beyond the implementation of the application, developers have to decide:

• What parts – tasks – compose the application (Application decomposition)

• When is it worth offloading the execution of one task onto surrogates (Cost/benefit analysis)

• Where and when should the offloaded computation run (Task Scheduling)

• How to perform the offloading (Offloading mechanism)

36

3.5. MOBILE CLOUD COMPUTING

As for any other distributed system, MCC programmers can turn to programming models

to ease the development of applications. As explained along Section 3.3, programming models

allow developers to code their applications without dealing with these decisions. Automatically

decomposing the application into parts is a shared problem for any parallel program regardless

the underlying infrastructure. Mapping the tasks to the resources according to a cost/benefit

analysis and manage the necessary data transfers and synchronizations to orchestrate the

execution according to a Task Scheduling policy is a problem widely studied in the literature.

For embedded systems, clusters and grids, these policies pursue maximizing the resource usage

to reduce the execution time. Cloud environments evolved them to multi-target policies trying

to reduce both, the execution time and the monetary cost of the execution; and for private

clouds, they also consider the energy consumption of the whole infrastructure. The required

communications between the mobile device and the surrogate to submit job executions is a

problem that programming models can abstract away from the developer. Communities built

around Cloud Computing have created and implemented several offloading mechanisms and

fostered the standardization and homogenization of APIs to achieve interoperability.

The main differences between already existing technologies (Cloud Computing is the more

similar one) and MCC lie on two aspects related to the high mobility of the device. First, mobile

devices are tied to a battery, a limited source of energy; therefore their lifetime depends on the

battery capacity and the usage of the available energy. Reducing the energy consumption of the

master node extends the life of the device and applications can last longer. On the other hand,

as aforementioned, mobility has an impact on the network: different protocols and interfaces

(bandwidth, latency, and energy consumption), instability (performance fluctuation and reliability)

and monetary cost (data access fees).

Consequently, the decision of which parts of the code should run on the mobile device and

which ones should be offloaded is of great importance. Running a long-lasting, compute-intensive

code on the mobile may consume most of the battery, offloading that part could save all that energy.

On the other hand, offloading a task may require shipping a big amount of data out from the

phone to a cloud node; while sending it through a Wi-Fi connection could speed-up the execution

and reduce the energy consumption, transferring it through mobile networks may produce the

opposite effect at a higher cost. Therefore, the decision has to be carefully made considering the

available resources and their computing features, the locality of the data, the current capabilities

of the network and the energy consumption and monetary cost arising from their usage. To tackle

the problem, researchers have taken several approaches basing the models of the costs of the

execution on the monitoring and profiling of the resources [21, 41], on a parametrical analysis

[60], on stochastic methods [53] or even on machine learning algorithms [78].

The differences between MCC and other existing technologies have led to the emergence of

frameworks specialized for MCC. The following section gives a glimpse of the ones standing out

and compares them.

37

CHAPTER 3. STATE OF THE ART

3.6 Mobile Cloud Computing Frameworks

We have identified a set of three distinguishing features that allow generating a taxonomy of

the MCC models. The first factor, the migration granularity, is determined by the size of the

application pieces that are offloaded to the remote resources. The coarser the grain is, the more

data needs to be transferred to the resource. Transferring the whole state of a VM (or keeping

the state of two VMs synchronized) requires more data than transferring only the state of one

single thread and the data values it accesses; in turn, offloading a single method execution avoids

shipping all the state of the thread.

The second classifying factor lies on how the model decides whether a part of the application

runs on the local device or it is offloaded. It could be statically defined in the application code or

decided dynamically at runtime depending on the environmental conditions.

Finally, every computation has blocks that can be executed concurrently on different resources

to reduce the execution time. Depending on the model, the management of the parallelism is left

to the programmer, or the runtime exploits it automatically.

Satyanarayanan et al. define in [88] a coarse-grain model where a whole VM is shipped to a

nearby resource-rich computer, the cloudlet, taking advantage of hardware VM technology. They

propose two approaches: migrate the whole VM or synthesize a small VM overlay to be applied

on a base VM already present in the cloudlet (dynamic VM synthesis). Evidently, offloading a

whole VM implies that any parallelism must be explicitly stated in the application. About the

offloading decision, they do not specify whether if the programmers specify when to offload or if

the runtime toolkit decides it at execution time.

CloneCloud [28, 29] offers the developer a finer level of granularity: threads. The strong point

of CloneCloud is its partitioning mechanism that combines a static analysis of the code with

a dynamic profiling of the application to pick the optimal migration and re-integration points.

When a thread reaches a migration point, it suspends, and its state (including virtual state,

program counter, registers, and stack) is shipped to a synchronized clone. When the migrated

thread reaches a re-integration point, it is similarly suspended and shipped back to the mobile

device. Finally, the returned packaged thread is merged into the state of the original process.

Although thread level is finer than VM, it still requires the developer to create new threads and

manage the application parallelism.

The partition granularity can still be reduced. Many models operate at method-level granular-

ity. Cuckoo [56] takes benefit of the architecture of Android applications and hides the partitioning

problem by exploiting the service component of Android. During the build process, the stubs

generated to access service components are replaced by invocations to the Cuckoo framework that

decides, at runtime, whether to run the service on the local device or a remote implementation.

Since the framework only replaces calls, all the parallelism must be managed by the programmer

on the service invocations.

Other models force the programmer to identify the methods to offload (or to consider their

38

3.6. MOBILE CLOUD COMPUTING FRAMEWORKS

offloading). MAUI [30] offloads the execution of .NET methods to a remote clone of the application

deployed in the cloud. Developers annotate the remotable methods, and the framework decides

whether to offload the method invocation taking into account the application and network charac-

teristics. To submit the method the system computes an incremental delta of the application state

(method inputs and some static data) and ships them with the task description. The weakness of

this model is the application parallelism. It is completely managed by the programmer, and it

only exploits the computing resources of a single clone.

ThinkAir [58, 59] follows the same partitioning method than MAUI, but it works around its

parallelism shortcoming by allowing the use of multiple surrogates. ThinkAir already provides

a mechanism to automatically parallelize the execution of an offloaded method considering

intervals of input variables. The main drawback of ThinkAir is that the offloading mechanism

works synchronously: the executing thread is suspended until the method invocation is performed

and its result collected. Thus, any subsequent method invocation is not executed until previous

ones are executed even when they could run concurrently.

Also the processing network approach has been explored on MCC. There exist tailored

applications such as the recommender system introduced by Nawrocki in [78]. The system is built

on learning agents and determines the place where to run software operations choosing between

several service providers as well as performing them locally on the phone. As a more general

solution, AlfredO [44, 85] is a framework that deploys applications built in a modular fashion

(OSGI components). Initially, the system extracts a description of the modules composing the

application as well as CPU and communication statistics. With that information, the optimizer

component –running on the cloud side– identifies an initial partition of the application and

offloads on the mobile device the minimum functionality to start the application. At runtime, a

profiler component monitors the CPU utilization and network usage and reports them to the

optimizer so the latter can adapt the partitioning on the fly.

Migration # Execution Automatic Partitioning
Grain Surrogates Model Parallelization decision

Cloudlets VM 1 Synchronous No
Not

detailed

CloneCloud Thread
Not

detailed
Synchronous No

all methods
dynamic profile

MAUI Method 1 Synchronous No
candidate methods

dynamic profile

Cuckoo Method N Synchronous No
service calls

dynamic profile

ThinkAir Method N Synchronous Intervals
candidate methods

dynamic profile

AlfredO Component N Concurrent No
all components
dynamic profile

Table 3.1: Comparison of MCC frameworks.

39

CHAPTER 3. STATE OF THE ART

Table 3.1 summarizes the features of the MCC frameworks exposed along the section and

highlights the characteristic features that distinguish them. It stands out that none of the

presented frameworks automatically parallelizes the execution of the application. Using all the

frameworks, the application developer deals with all the concerns of the exploiting the application

parallelism and manages it manually. ThinkAir is the only framework that automatically deals

with it, although it only does so exploiting the parallelism within loops. This dissertation aims to

fill this gap by offering a programming framework that allows developers to build applications

that exploit their inherent parallelism being totally unaware of it when coding. The key difference

between the presented work and all the other frameworks is the execution model followed by the

main application. While the other frameworks offload the computation following a synchronous

model – once it reaches a migration point, the process waits for the result –, this dissertation

describes a solution that leverages on the COMPSs programming model to offer an asynchronous

execution of the application. Thus, when the application offloads the computation, it keeps

progressing until it reaches a point that requires a value generated by an offloaded part.

3.7 Summary

Although the human mind conceives algorithms as a sequence of instructions performed one

after the other, algorithms are likely to have inherent parallelism that allows computing multiple

parts of the algorithm simultaneously to reduce the time to run the algorithm. The parallelism

can appear due to the implementation of one instruction (bit-level parallelism), to independent

operations within a sequence (instruction-level parallelism) or to independent sequences that

can run at a time (thread-level parallelism). Amdahl’s’ and Gustafson’s’ laws model the perfor-

mance that an application can achieve by running in parallel and set a theoretical limit to such

improvement.

Computers are machines composed of processing devices that operate on a set of data values

stored in memory modules. For a computing system to exploit the parallelism of an application,

it needs several processing devices and memory modules. Depending on the network intercon-

necting the modules, there exist different types of parallel system mostly classified into two

categories: shared memory, all the processing elements see the memory as a unique data space,

and distributed systems, where each processor has its own memory module.

Writing applications for distributed systems is not straightforward. Programmers have to

partition the application into computation units and re-code the application so that the execution

runs in parallel as many of them as possible. These computation units have dependencies among

them; programmers have to analyze the application and add the necessary synchronizations to

ensure its sequential consistency. Besides the parallelism inherent in the application, a second

limitation on the performance is the infrastructure. The computing capability and the number

of the devices composing the system is limited; hence, the programmer has to orchestrate the

40

3.7. SUMMARY

execution of these computing units avoiding resource oversubscription ordering the consequent

data transfers among the nodes to ensure that the computing units operate on the proper values.

Besides, distributed infrastructures can be heterogeneous not only on the features of the hardware

composing its nodes but also on the software required to interact with it. Thus, the programmer

has to struggle also with the details of the interoperability of the nodes.

For easing the development of applications, programmers turn to programming models that

provide an interface with high-level operations that abstract them from the technical concerns of

distributed computing. Abstraction simplifies the structure of the software leveraging on it and

releases the developer from dealing with the technical intricacies; however, as the abstraction

level raises, the programmer loses control over the actual execution making harder to apply

tweaks to achieve high-performing solutions. A programming model designer endeavors to raise

the abstraction level while automatically delivering the same performance as if the developer

had tweaked the application.

COMPSs is a programming model targetting distributed systems that provides developers

with a sequential, infrastructure-agnostic fashion programming. Developers code their applica-

tions using the native language of the target device with no need to call any COMPSs-specific API.

The model only demands from the developer to select a set of methods whose invocations become

the computation units in which it partitions the application by declaring them on an interface.

At runtime, a system running along with the application intercepts these methods invocations,

detects the data dependencies that it may have with other invocations and orchestrates its

execution top of the underlying infrastructure.

Mobile Cloud Computing is an example of a technology for implementing distributed com-

puting systems. Mobile devices are handheld computers that users can carry wherever they

go providing them with access to the Internet. Despite the high capacities for mobility and

user interaction that these devices offer, their computing capabilities are very limited because

of their scarce computing power and the lifetime of their battery. To overcome this limitation,

Mobile Cloud Computing proposes to complement the mobile devices with the infinite computing

power of the Cloud. Users could run their applications on their mobile devices and offload the

execution of its compute-intensive parts onto resource-richer remote resources that will increase

the performance while saving the battery consumed by such computation.

Mobile Cloud Computing adds two new concerns to the difficulties of distributed programming

mentioned above. First, the battery consumption is an important parameter to take into consider-

ation while assigning resources to the computation units. When running long computations on

the mobile device, the processor can drain the whole battery of the mobile device and achieve a

low performance. Data transfers can have the same effect when offloading short computations

requiring big amounts of data. The network interface spends more energy and more time to

transfer the values than the processor running the computation locally. The second concern is

the instability of the network; due to the mobility of the device, it is likely to experience network

41

CHAPTER 3. STATE OF THE ART

disruptions due to handovers or the entrance in areas out of signal. Applications have to tolerate

these changes and adapt to the new conditions to provide users with the expected response while

reducing as much as possible any harm on their performance.

As with other distributed computing infrastructures, developers turn to programming models

that struggle with these problems automatically. Despite there exist several programming models

targetting MCC, none of them deals with the parallelization of the code. Most of them follow a

synchronous execution model that offloads the execution onto the Cloud while the mobile waits

for the result. Thus, it is the responsibility of the programmer to parallelize the application

to improve the performance of the application. This thesis aims to fill this gap and provide

developers with a programming model that abstracts them away from all the concerns. For that

purpose, it builds on the COMPSs programming model to offer a clean and easy-to-adopt way

of programming while a new runtime system automatically manages the parallelization and

distribution of the computation considering the differentiating features of MCC.

42

Part II

General Proposal

43

C
H

A
P

T
E

R

4
SYSTEM OVERVIEW

This thesis proposes a framework for building mobile applications that leverage on

distributed platforms to process their computational load. The cornerstone of such

infrastructures is the mobile device. Users launch the application from the mobile and interact

with the application via the multiple input devices embedded in it (multitouch screen, microphone,

camera, gyroscope, light and proximity sensors, ...). Besides them, applications can also react to

information collected from external sources such as wearables or IoT sensors sending the data

through the network (usually, personal area networks like Bluetooth).

To overcome the limited computing power of mobile devices, applications offload part of

the computation to cloud resources. These resources could be either virtual instances deployed

on some datacenter of a commercial cloud provider or a small private cloud owned by some

organization; a nearby desktop or laptop; or even other mobile devices or single board computer

available on the same network.

The described platform, depicted in Figure 4.1, resembles an infrastructure that could also

fit for Fog Computing and Internet of Things; however, both terms consent flexibility on the

availability of the remote nodes that Cloud Computing does not. Two of the most characteristic

features of the Cloud are the high availability of its services and the reliability of the infrastruc-

ture supporting them; conversely, fog nodes can join the infrastructure for a short time and then

abandon it. MCC considers disruptions on the network connecting the mobile device to the cloud

resources, but it does not contemplate the disconnection of the remote resources.

As explained in Section 3, developing high-performing applications for MCC environments is

complex. To ease the work of application developers, the proposed solution raises the possibility

of programming the logic of the application without explicitly stating its inherent parallelism

45

CHAPTER 4. SYSTEM OVERVIEW

PAN

LAN

WAN

Collects
data
from

sensors

Offloads
computation

to Cloud

Figure 4.1: Layout of the components of the distributed infrastructure that could be used by
applications developed with the proposed framework.

and being agnostic to the computing platform where it will run.

For that purpose, developers have to use a general-purpose programming model able to

generate out of the sequential code a set of tasks to distribute across the available nodes while

guaranteeing the sequential consistency of the program logic. The proposed solution builds on the

COMPSs programming model, already described in Section 3.4, and extends it to allow multiple

implementations for a CE. Section 4.1 describes this extension.

To translate from the sequential code written by the developer to a parallel, distributed

computation generating the same results, applications run along with a runtime toolkit. This

runtime detects the tasks that compose the applications and the data dependencies among these

tasks to orchestrate their execution on the underlying infrastructure. It decides which tasks have

to run locally on the mobile and which ones run on a remote node. To select the best resource to

run a task, the task scheduling policy considers the characteristics of each task, the available

resources and its features, the load assigned to each computing device, the conditions of the

network and the data values hosted in each node. Although the policy tries to maximize the

data locality when assigning each task a resource where to run, data transfers are unavoidable.

Remote nodes might need values created by the mobile device; the runtime must provide the

workers with the proper value to compute the proper result of the task. Likewise, when the main

code of the application accesses a value generated by a remote resource, the runtime has to stall

the application execution to synchronize the accessed value. The runtime toolkit manages all the

operational issues of MCC transparently to the developer.

Sections 4.2 and 4.3 respectively describe the architecture of this runtime toolkit and how

the developer-written code with no calls to any API is linked to it.

46

4.1. PROGRAMMING MODEL EXTENSION: POLYMORPHISM

4.1 Programming Model Extension: Polymorphism

Often, several existing algorithms achieve the same functionality with different requirements

and complexity. Depending on the characteristics of the device running the task, implementations

may differ in their behavior; some might show a poorer performance or even not being able to run.

For instance, the BubbleSort and RadixSort algorithms sort a set of elements. While RadixSort is

faster than BubbleSort, the former requires less memory to run. Computing devices with a high

computing power but low memory capacity may rather run BubbleSort to sort a set of elements;

while RadixSort would be a better option to run on slower devices with high memory capacity.

The described COMPSs programming model enforces one single implementation for each

CE; hence, developers have to select one algorithm to run on all the devices or implement an

automatic selection of the algorithm within the CE implementation. The proposed extension to

the COMPSs programming model aims to allow the developer to declare several implementations

so that the runtime automatically decides which implementation has to run on each processing

element. To declare multiple versions for a CE, the programmer adds as many @Method directives

as different versions and in each one indicates the implementing class as shown in the code

snippet in Figure 4.2. Thus, all the versions of the same CE need to be homonymous – sort –

and share parameters and access patterns. Regardless the specific class invoked, calling any

of the methods implementing a CE creates a new asynchronous task of such CE; the runtime

determines the implementation that actually runs according to the computing device hosting the

computation.

@Method (declaringClass = "containing.package.RadixSort")
@Method (declaringClass = "containing.package.BubbleSort")
void sort (

@Parameter(direction = INOUT)
int[] values

);

Figure 4.2: Sort method CE declaration with two possible versions implemented in RadixSort
and BubbleSort classes respectively.

4.2 Runtime Toolkit Architecture

The main purpose of the toolkit is to orchestrate the execution of CE invocations (tasks) to fully

exploit the available computing resources (local devices or remote nodes) while guaranteeing

sequential consistency. To fulfill it, the runtime offers an API (Figure 4.3) with two different

functions: executeTask and accessValue.

ExecuteTask requests to the runtime the execution of an asynchronous task. The method

requires four parameters: the names of the method invoked and the class containing it; a boolean

indicating whether invocation of the method is on an instance of the class – true – or static –

false –; and the set of values corresponding to the invocation arguments. Besides the regular

47

CHAPTER 4. SYSTEM OVERVIEW

/**

* Generates a new task whose execution will be managed by the runtime.

*

* @param methodClass name of the class containing the method that has been invoked

* @param methodName name of the invoked method

* @param hasTarget the method has been invoked on a callee object

* @param parameters parameter values

*

*/

void executeTask(String methodClass, String methodName,boolean hasTarget, Object... parameters);

/**

* Registers an object access from the main code of the application.

*

* Should be invoked when any object is accessed.

*

* @param <T> Type of the object to be registered

* @param o Accessed representative object

* @param isWritter true if the access modifies the content of the object

* @return The current object value

*/

<T> T accessValue(T o, boolean isWritter);

Figure 4.3: Definition of the interface to the Runtime toolkit.

arguments of the method, these parameters may contain two more objects corresponding to the

callee object, if it is an instance invocation, and a future object corresponding to the result of the

invoked method.

To synchronize the value of the future object with the result of the task execution, the runtime

system provides the second method, accessValue, that takes two input parameters. The first is

an object – a File instance for files – which a preceding task may have accessed and the second

a boolean indicating whether that access modifies the content of the object or not. The method

checks if any task has previously accessed that object. If no task has accessed that object, it

returns the same instance. Otherwise, the runtime fetches the value from the node that computed

its generator task and registers the access.

As done for registers in out-of-order processors, the runtime assigns to each datum version a

unique ID and applies a renaming technique on each access to the datum with the purpose of

preventing false dependencies (WaW and WaR accesses) from reducing the potential parallelism

of the application. The first time a task accesses a datum, the runtime designates the ID to the

value; for instance, data1version1. When one task or the main code of the application accesses

the datum to update its content, the runtime assigns a new ID for the new version –for instance,

data1version2 – and preserves the value assigned to the previous ID. Thus, pending tasks reading

the old version of the datum can fetch it by using the old ID, and tasks coming after the access

48

4.2. RUNTIME TOOLKIT ARCHITECTURE

will refer to the new ID to obtain the new value.

Since several applications can share computing resources and data values, the runtime library

consists of two parts as the layout of the runtime architecture in Figure 4.4 depicts. On the

one hand, the application-private part of the runtime controls those aspects of the execution

related to the application. In other words, it is the entry point to the runtime; it creates new

asynchronous tasks and monitors the private values they access (objects). On the other hand, the

Orchestrator is in charge of handling all those aspects of the execution that might affect several

applications; namely, accesses to shared data (files) and managing the usage of the available

computing devices. While each COMPSs-Mobile application instantiates the application-private

part of the runtime, there is only one single instance of the former component on the mobile

device which runs in a separate process and is publicly available as an Android service.

App Process

App

Code

Mobile Device

Runtime Process

Task ExecutorAccess Analyzer

Private Data

Register

Data Manager

Data Store

Public Data

Register

Data Manager

Data Store
GPU

Platform

CPU

Platform

Cloud

Platform

Offload

Decision

Engine

Figure 4.4: Runtime system architecture with three available Computing Platforms: one for the
cores of CPU, on to offload tasks to the GPU and one gathering all the remote resources.

For achieving its purpose, the runtime toolkit leverages on two components: the Access

Analyzer and the Task Executor. The Access Analyzer is a component partly hosted on the

application-private part of the runtime and partly on orchestrator service. As its name suggests,

its goal is to monitor all the accesses to the data values to detect data dependencies on task

creations and necessary data synchronizations when accessing a concrete datum. The private

data register, hosted in the application-private part of the runtime, is in charge of applying the

renaming technique to all the private data values such as objects; while the public data registry,

hosted in the orchestration service, does the same for the shared data values like files.

The Access Analyzer wholly implements the functionality of the accessValue method of the

runtime API. For executeTask invocations, it only pre-processes the task to detect possible data

dependencies. At the end of this pre-processing, the executeTask implementation creates a Task

object containing which CE has to be executed and the list of arguments to pass to the method.

Following the example introduced in Section 3.4, when the execution reaches line 12 of

the Main class on the second iteration of the runtime – calling the aggregation method –,

the API of the runtime receives an invocation to the executeTask method with parameters

“es.bsc.compss.sample.Report” ,“aggregate” , false and an object array with the current instance of

globalReport and sreport. After the Access Analyzer pre-processing, a Task object represents the

invocation with an attribute ceID with the internal ID representing the CE for the aggregate

49

CHAPTER 4. SYSTEM OVERVIEW

method in the es.bsc.compss.sample.Report class and two parameters representing an updating

access to the value known as d3v2 that at the end of the task will become d3v3 and a read access

to the value known as d5v2.

Once the Access Analyzer has processed the API invocation, the task object moves forward

to the second component of the runtime, the Task Executor, for its execution. To decide which

resources should host the computation, the runtime relies on the concept of Computing Platform:

a logical grouping of computing resources capable of running tasks. The resources represented by

a platform can vary from one single core from the processor to a set of virtual instances deployed

in a multi-cloud platform. The implementation of the platform is responsible for monitoring the

data dependencies of the task and scheduling both the execution of the task on its resources –

picking one of the available implementations for the corresponding CE – and the obtaining and

preparation of any necessary value. To achieve these duties, each platform can turn to different

strategies: centralizing the management on the Orchestrator process, centralizing it in a remote

resource or distributed across multiple resources.

The Offload Decision Engine (ODE), subcomponent of the Task Executor, makes the decision

of which platform runs the task being unaware of the actual computing devices supporting the

platform nor the details of their interaction. The ODE polls each of the available platforms –

configured by the user beforehand – for a forecast of the expected end time, energy consumption

and economic cost of running the task. According to a configurable heuristic, the ODE picks the

best platform to run the task and requests its execution.

Each part of the runtime has access to the Data Manager (DM) component. The DM is a

distributed key-value store that manages the value assigned to each datum ID. The DM is

asynchronous; either Computing Platforms or the Access Analyzer, on behalf of the application

code, can subscribe to the existence or value of a specific datum. Upon the computation of

a new datum version either on the main code of the application or any resource part of a

Computing Platform, the generating element publishes its value into the DM which notifies all

the subscribers. The local instance of the DM is responsible for handling the fetching of requested

values if they are located in a different process.

4.3 Instrumentation

Section 3.4 defines COMPSs as a programming model with no APIs, while the runtime described

in the previous section provides an API with two functions. To close the gap between the applica-

tion programming and the runtime interface, the proposed framework provides a mechanism

that instruments the code written by the developer during the building and packaging of the

application.

This mechanism consists in adding a step to the four-step Android building process (described

in Section 3.4) after the Java Builder and before the bundling of the application: the COMPSs

50

4.3. INSTRUMENTATION

Instrumenter. During the first two steps, the building process completes the application code

with all the necessary auxiliary classes, and the third step, the Java Builder, compiles it to Java

bytecode. Using Javassist, a library for Java bytecode editing, the framework can modify the

application classes as done for the regular COMPSs version – leaving aside the differences in the

APIs of both runtimes. The framework scans all the classes of the application – not the classes

within libraries on which the application depends – mainly looking for four code patterns that

require instrumentation:

• Calls to CE methods. The instrumentation has to replace them by executeTask invocations

passing as parameters the name of the invoked method, the class to which the method

belongs, whether the call is on an instance or not, and the list of parameters. If the method

is not statically called, the instrumented code includes the callee object as a parameter.

If the method returns any value, the instrumented code creates an empty instance of the

same class to use as a future object and also adds it to the list of parameters.

• Calls to non-CE methods on an object instance. Prior the execution of the method, the

runtime needs to check if the object is not the result of a task and, if that is the case,

it synchronizes its value. Before executing the method, the instrumented code calls the

accessValue method of the runtime API. It always assumes that the body of the method

modifies the content of the object.

• Constructors of Java utility classes to interact with files. Through these classes, the applica-

tion reads/updates the content of a file that might be accessed by a task; thus, they require

the same treatment as calls to non-CE methods on an object instance. Before the execution,

the runtime needs to synchronize the content of the file through the accessValue method.

Depending on the actions that the class allows to do on the file content, the instrumentation

indicates whether the access modifies the value or not.

• Calls to non-CE methods whose code has not been instrumented (black-box methods).

Besides the callee object, also the values passed as parameters require a synchronization.

On instrumented methods, synchronization of parameters values are instrumented in

the body of the method; for non-instrumented methods, the runtime cannot delay this

verification beyond the invocation method. For each parameter, the code adds an invocation

to the accessValue method to synchronize the accessed values. Again, the instrumentation

assumes that the body of the method modifies the content of the object.

The instrumented code replace the original classes of the application, and the building process

continues as usual for a regular Android application: the code is converted into Dalvik bytecode

and bundled into the apk file.

Besides the code instrumentation, COMPSs Instrumenter needs to modify the Android-

Manifest that is bundled along with the application logic to include the runtime service as

51

CHAPTER 4. SYSTEM OVERVIEW

an application component and request the permissions that it requires to operate. Namely, it

requests the Internet access permission, for interacting and exchanging data with the surrogate

nodes; and write access to external storage permission, for using the mobile sdcard to store

intermediate values and release the memory from that burden. As discussed in Chapter 8, this

thesis considers securing the submission of these intermediate data values over the network;

however, it dismisses applying any encryption mechanism automatically to protect data at rest.

Figure 4.5 illustrates the differences between the original manifest and the extended manifest.

<manifest xmlns:android="http://schemas.android.com/apk/res/android" android:versionCode="1"

android:versionName="1.0" package="es.bsc.mobile.apps.bs" >

<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="21" />

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<application android:allowBackup="true" android:debuggable="false" android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<activity android:label="@string/app_name" android:name="es.bsc.mobile.apps.bs.MainActivity" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service android:name="es.bsc.mobile.runtime.service.RuntimeService" android:process=":newprocess" />

</application>

</manifest>

Figure 4.5: AndroidManifest file extended by the COMPSs Instrumenter. The additional elements
are highlighted over the gray code which corresponds the original Android Manifest.

4.4 Summary

This chapter gives a glimpse of the solution proposed in this dissertation to build mobile applica-

tions that offload computation onto remote resources to improve their performance. Developers

write the application leveraging on an extended version of COMPSs programming model. The

extension allows developers to declare multiple implementations for one Core Element; thus,

when the application invokes any of the implementations, the programming model creates a new

task, and the designated device executes the most suitable implementation given the features of

its hardware and the characteristics of the task.

As with the original COMPSs programming model, a runtime system runs along with the

application to orchestrate the execution on the underlying infrastructure. This runtime has an

API with two methods: one for submitting tasks, executeTask; and a second one for register data

accesses from the application code, accessValue. For holistically managing the available resources

for all the applications running on the mobile device, the runtime is twofold. Running on the same

52

4.4. SUMMARY

process of the application, one part of the runtime handles the invocations to the API, creates

asynchronous tasks and detects the dependencies caused by accesses to the private data values

of the application like objects. The second part of the runtime, named Orchestrator, manages

the aspects of the execution shared among applications; for instance, detecting the dependencies

among tasks due to access to files or running the tasks on the computing devices. This second

part of the runtime runs as a service in an independent process; all the COMPSs applications

running on the mobile device contact the same instance of the service. For managing the available

resources, the Orchestrator groups the computational devices into Computing Platforms according

to the mechanisms required to provide the processing elements with the necessary input values,

launch the task execution avoiding resource oversubscription and fetching the results back from

them. The Offload Decision Engine evaluates the temporal, energetic and economic costs of

running a task on each Computing Platform, and decides which of them executes it. Then, each

Computing Platform manages internally on which resources, on which moment and using which

implementation runs to execute that task. For the different processes and Computing Platforms

to share data values, each process has deployed an instance of a distributed key-value store that

asynchronously replies queries about data values: the Data Manager.

For the code provided by the developer to invoke the runtime system, the programming

environment has to instrument the application monitoring data accesses and replacing the calls

to the methods selected as a Core Element by calls to the runtime. This instrumentation happens

during the building of the distribution package of the application. The framework extends the

default Android process with an additional step that replaces the original code of the application

with the instrumented one, attaches the runtime system to the bundle and updates all the

necessary configuration files.

53

Part III

Exploitation of Local Computing
Resources

55

C
H

A
P

T
E

R

5
CPU EXPLOITATION

The first step towards fully exploiting a Mobile Cloud environment is to make a proper use

of the computing elements within the mobile. Of all the devices embedded in a mobile,

CPU cores are the most natural approach for standard developers to host the computation.

Current mobiles are equipped with multi-core CPU; to benefit from their computing capacity,

programmers have to deal manually with the management of multiple Java threads or learning

the details about the classes provided by the Android framework to offer concurrent execution.

In addition to this management, developers need to face the concerns related to the logic of the

application already discussed in Chapter 3: partitioning the application and orchestrating the

execution of such parts on the cores of the CPU.

COMPSs releases application developers from these concerns and passes the responsibility

to the runtime system. Upon a task detection, the Offloading Decision Engine picks one of the

available platforms to host the computation according to the execution forecasts provided by

such platforms and requests the execution of the task to the selected one. At this point, the task

may still have some pending data dependencies with previous tasks that need to complete before

running it. Computing platforms must hold the execution of tasks with pending dependencies

until they are addressed. For that purpose, they monitor the state of the global execution to

detect the creation of such data values and notice when a blocked task becomes dependency-free.

The number of processing elements assigned to a Computing Platform is limited, and the

number of tasks to run in parallel on the platform is likely to be larger than that. To avoid

overloading the devices and harming their performance, platforms need to plan the execution of

all the tasks on the available resources over time guaranteeing that all the necessary data will

be in place before they start running. Arrived the time scheduled for a task to run, the platform

57

CHAPTER 5. CPU EXPLOITATION

triggers its execution on the processing element and monitors it. At the end of the execution,

the platform retrieves from the processing element any relevant value generated or updated

during the task execution – i.e., the values for INOUT and OUT parameters – and publishes

their existence. Thus, other tasks can fetch from the Data Manager their value to run on the

same processing element, on another processing element within the same platform, or on another

platform.

In a few words, a platform is responsible for providing a forecast of the end time, energy

consumption and cost of running a task. Once the Offload Decision Engine assigns a task to

the platform, it monitors the existence and obtains the data values that tasks require to run,

schedules task executions on the available processing elements, submits the executions to the

actual resources, and collects their results to make them available to other tasks.

5.1 CPU Platform

For the runtime to support task executions on the CPU, it requires a computing platform able

to orchestrate the execution of tasks on its cores: the CPU Platform. Upon the reception of a

new task from the Offload Decision Engine, the CPU Platform submits the task to an internal

Scheduler which orchestrates the execution of the tasks assigned to the platform on the available

resources. The Scheduler plans not only the execution of the tasks but also all the necessary

transfers to obtain the proper value of the accessed data values from other processes or nodes.

The first thing that the Scheduler does with a just submitted task is checking if there are

any pending dependencies. For that purpose, it contacts the local Data Manager for querying

the existence of every datum used as input for the task. If the value exists, the Data Manager

directly replies the query; otherwise, it registers the query and delays the existence notification

until the value creation.

From the reception of the notification on, the Scheduler can decide to trigger the obtention of

the actual values to run the task. Arrived that time, the platform contacts again the local Data

Manager requesting the value associated with the corresponding version of the datum. If the

Data Manager already contains the value, it instantly notifies the value presence so that the task

execution uses it; otherwise, it registers the query and fetches the value from a remote source.

Once the Data Manager receives the value, it stores it and notifies its presence to the platform.

Often, the body of a task modifies the value of a datum passed as a parameter; however,

the Data Manager needs to preserve the original value so that tasks running later on the same

process can read it. When the platform requests a value for an INOUT parameter, the Data

Manager clones the value stored for the initial version of the datum, and the task uses the copy

as a parameter; thus, the task modifies the clone and leaves the stored value untouched. The

Data Manager delays the value presence notification of INOUT parameters until the respective

copy operation finishes.

58

5.1. CPU PLATFORM

Eventually, the Scheduler notices that the local Data Manager can provide the values to run

the task on the cores. From that point on, the Scheduler can decide to launch the execution of any

of the implementations of the CE at any moment. The platform has a pool of independent Java

threads, whose size is configurable, continually polling the Scheduler for a task to run. When a

thread gets a task from the scheduler, it gathers all the input values of the task and invokes the

method corresponding to the selected implementation using reflection. At the end of the method

execution, the thread collects the result of the method and the values of all the parameters –

possibly modified – and notifies the platform of the end of the execution so that it stores values for

the new data values on the Data Manager. At this point, the Data Manager notifies the existence

of the just-stored values so that the Scheduler processes the new dependency-free tasks.

Figure 5.1 depicts the 8-step process involving the execution of a task on the CPU Platform.

Steps 1 and 2 represent the existence queries and notifications done for each parameter, and

steps 3 and 4 are the presence queries/transfer requests for the values and their corresponding

notifications. Step 5 illustrates the submission of the task to one of the executing threads; 6, the

actual execution of the task on the CPU core; and step 7, the notification of the task completion

to the Scheduler. Upon the reception of the notification, the platform stores all the updated/new

values on the Data Manager represented by step 8.

Mobile Device

Runtime Process

Task Executor

Data Manager

CPU PlatformO oad

Decision

Engine
Scheduler

Thread

Pool

1

2

3

4

5
6

7

8

Figure 5.1: Architecture of the CPU platform illustrating the flow involving a task execution.

The current policy for scheduling the transfers consists in requesting all the data values of a

task at the same time as soon as the Scheduler realizes that the task is dependency-free. For task

executions, the Scheduler follows a FIFO policy considering the moment when all the parameters

of the task are present on the local Data Manager as the moment when the task gets in the

Scheduler.

Last, but not least, the platform needs to provide the forecasts for the execution. To make these

predictions the platform takes into account information related to the available resources, like the

number of cores and their power consumption; to the underlying infrastructure, such as the speed

59

CHAPTER 5. CPU EXPLOITATION

of the network or data transfer fees; to the task to run, such as the CE, the implementations able

to run on the platform or the size of the parameters; and to the pending workload of the platform.

Android directly provides some of these values such as the power consumption of the mobile

components (cores, screen, network interfaces, ...). The runtime can infer other values from the

current state and standards; for instance, the used network protocol and the strength of the

signal can lead to the speed of the network. Values like data fees or the number of available

cores require the user to set them up. However, information, like the timespan to run a concrete

task implementation on the CPU, requires application-specific knowledge that developers do not

provide.

For the runtime to obtain this information, the CPU Platform profiles the execution of each

task to collect data about the duration of the execution and the sizes of the input and output para-

meters. At the end of the task, the runtime adds the measured values into a statistical analysis

of the historical values obtained throughout all the executions of the application. Currently, this

analysis consists in keeping track of the highest, lowest and average value, but it could include

other measures such as the standard deviation. Unlike the execution time that depends on the

selected implementation and resources, the input and output data sizes are a feature shared by

all the implementations of the CE regardless the platform and resources running it. For this

reason, the runtime keeps record of the measures common for all the platforms, Core Profiles,

and each platform owns a data structure to register the execution time of the implementation on

its resources, Implementation Profiles. The CPU Platform assumes that all the cores of the CPU

have the same characteristics; an implementation has the same behavior regardless the CPU core

running it. Therefore, the data structure groups the profiles only by the implementation executed.

To support executions on systems with a heterogeneous computing architecture coupling different

types of processor cores, such as ARM big.LITTLE [6], the application user should set up the

runtime to use a different platform to manage the cores of each type of processor and use thread

affinity mechanism to bind the execution threads of each platform to the cores of the specific

processor.

Considering the average execution time observed, the CPU Platform can find out which is

the fastest implementation for each task. Expecting that all the tasks submitted to the platform

waiting for execution require the average execution time to run, the platform can estimate when

a core could start a task execution. Another factor important to contemplate when assessing the

start time of a task execution is the moment when the input data becomes available. To determine

such moment, the platform uses the expected time for the value generation – forecasted end time

of the task computing it –, and the expected size of the value – extracted from the Core Profiles –

and the speed of the network to predict the time to fetch it, if a different process computes the

value.

Regarding the energy forecast, the platform takes into account the energy spent for fetching

the input values from other nodes and the execution of the task. To predict the energy incurred by

60

5.1. CPU PLATFORM

transfers, the platform uses the size of the values to transfer them back and the power consumed

by the used network interface according to the current network conditions. For the task execution

footprint, it uses the expected length of the execution and the power consumption of a CPU

core provided by the Android platform. Given that the usage of the cores of the CPU incurs no

additional expenses to the execution, the economic cost prediction only considers the costs caused

by transferring data into the mobile device. For that purpose, it multiplies the size of data to be

transferred back from remote nodes by the data fees – configured by the user – applied to the

network interface currently in use.

Figure 5.2 notates the three models described. When the platform receives a new task,

it applies the three models to all the possible implementations and selects the best solution

according to the same heuristic used to pick the best platform.

End time:

RA =

∑
c∈CEs

TCc ∗ XBTc

NC
DAd = DCd +DSd/BNR

DAt = max
d∈IDt

DAd

STt =max{RA,DAt}

ETt = STt + X Ti

Energy consumption:

RSd = DSd ∗1MD(d)

E t = PC∗ X Ti +ENR ∗ ∑
d∈IDt

RSd

Monetary cost:

RSd = DSd ∗1MD(d)

Ct = CNR ∗ ∑
d∈IDt

RSd

Variable Description
RA Time when resources become available
CEs Application Core Elements
TCc Number of pending tasks of core c
XBTc Execution time for the best

implementation for core c
NC Number of available CPU cores
DAd Time when value d is available

on the node
IDt Input data values for task t
DCd Time when value d is generated
DSd Data size for value d
BNR Network sensor reception bandwidth
DAt Time when all ID values for t

are available on the node
STt Start time for task t
ETt End time for task t
X Ti Execution time for implementation i
E t Energy consumption for task t
PC Power consumption of a CPU core
ENR Energy consumption of the network

sensor when receiveing one byte
RSd Reception size for value d
DSd Data size for value d
MD Set of values not on the remote nodes
Ct Cost for task t
CNR Price for receiving one byte

Figure 5.2: Models to forecast the end time, energy consumption and monetary cost of running a
task t with implementation i on the local CPU cores.

61

CHAPTER 5. CPU EXPLOITATION

5.2 Proxied Execution

A superficial analysis of the behavior presented by the described platform reveals a deficiency that

unnecessarily harms the performance of the runtime. Just take the example of one application

with one single task taking as the only input parameter the content of a text box of the GUI

to generate a string to show it to the user. When the application reaches the CE invocation,

the runtime registers the content of the text box as d1v1 in the Data Manager instance hosted

on the application-private part of the runtime. After that, it submits the asynchronous task to

the Orchestrator and continues the execution of the main code until it reaches the instruction

that sets the result string into the label where the runtime halts the execution due to a value

synchronization.

Simultaneously, the Orchestrator receives the task, and the Offload Decision Engine forwards

it to the CPU Platform. The Scheduler of the platform queries the Data Manager of the runtime

process for the existence of d1v1 and receives the corresponding notification. At this point, the

Scheduler tries to obtain the value for d1v1; however, the local Data Manager does not contain it

and needs to fetch them from the Data Manager hosted in the application process. Transfer the

value from one Data Manager to the other requires interprocess communication (IPC); hence,

the source must serialize the value, pass the value, and the destination deserializes it. At the

end of the transfer, the Data Manager in the Orchestrator notifies the presence of the value so

that the Scheduler forwards the task to the threads. When the task completes, the Scheduler

stores the result value, d2v2, in the local Data Manager. At this point, the main code of the

application notices the existence of the value and requests the value to the Data Manager in

the application-private part of the runtime which fetches it from the Orchestrator process via

interprocess communications. For small objects of a few bytes, the overhead induced by IPC is

negligible; however, for large objects, this mechanism may incur a significant overhead of several

seconds.

One solution to dodge these value transfers consists in separating the management of the

platform from the executing threads. The frontend of the platform, which computes the forecasts

and the schedules task executions on the cores, remains on the Orchestrator, while the actual

execution of the task happens in the backend of the platform hosted in the application process.

In the end, the management of the cores is something concerning all the applications, but the

CE methods are a private part of the application. By doing so, both, the application and the

execution threads, request the same instance of the Data Manager for the values of the accessed

data values; hence, transfers of data values are no longer necessary. Coordinating both parts

of the platform still requires interprocess communications; however, commands follow a clear

schema, are quickly serialized/deserialized and take up few bytes.

This division of the CPU Platform incurs changes on the flow followed by a task. Although,

for the Scheduler, the stages of the process are the same – existence check, value obtaining,

task execution and storing the values – the location of the components with which it interacts is

62

5.2. PROXIED EXECUTION

different. After receiving the task from the Offloading Decision Engine, the Scheduler queries

the Data Manager hosted in the Orchestrator for the existence of all the input values; steps 1

and 2 remain intact. It is from step 3 on that the process changes since the data values no longer

need to be on the local Data Manager but on the Data Manager in the application process. At this

point, the Scheduler contacts the backend of the platform which forwards the value request to

the corresponding Data Manager. The application Data Manager acts exactly as the instance in

the Orchestrator for the original procedure, and it checks whether the value is available in the

process or whether it has to fetch the value from another process. Once the Data Manager has

the value, it notifies the value presence to the Scheduler through the backend component alike

the original step 4 does. When the Scheduler notices the presence of all the input values of the

task and decides to launch the task execution, again, it contacts (step 5) the CPU Backend so

that the execution threads contained in it run the task (step 6). At the end of the execution, the

executing thread notifies the task completion so that the backend forwards the notification to the

Scheduler (step 7) which eventually contacts to the backend to store the output values on the

Data Manager instance in the application process (step 8).

Figure 5.3 updates the diagram of Figure 5.1 with the architecture and the flow of the task

when the platform has proxied executions. Given the higher performance of the Proxied Execution

compared to the flow described in Section 5.1, this is the default mechanism included in the final

prototype to exploit the CPU of the mobile. However, the user can configure the runtime toolkit

to run the tasks within the Orchestrator process.

Mobile Device

Runtime Process

Task Executor

Data Manager

CPU Platform

O oad

Decision

Engine

Scheduler

1

2

Application Process

Data Manager

Thread

Pool

CPU Backend 3

4

6
5

7

8

Figure 5.3: Architecture of the CPU platform with proxied execution illustrating the flow involving
a task execution.

63

CHAPTER 5. CPU EXPLOITATION

5.3 Evaluation

This section presents the results of the tests conducted to validate the proper running of the

runtime and evaluate the impact of the proposed solution on three applications: Digits Recognition

(DR), Bézier Surface (BS) and Canny Edge Detection (CED).

DR is an application based on the well-known method proposed by LeCun et al. [61] to

recognize digits out of an image containing handwritten characters using a Convolutional Neural

Network. Concretely, the application processes a set of images (a subset of the MNIST database

of handwritten digits [62]) and returns an array that contains the recognized values. For doing so,

the application goes through eight stages (eight invocations to six different methods) where each

processes the whole set of images. To port the application to COMPSs, the six methods become

CEs; thus, the application generates a sequence of eight tasks.

BS is a mathematical spline that generates a surface given a set of control points. Unlike

interpolation, the resulting surface does not necessarily pass through the control points; they

act as attractive forces to the surface. The application splits the output surface, and a method

computes the result values within a chunk independently of the others. When porting the

applications to COMPSs, this method becomes the only CE, and the application generates a set

of parallel tasks.

Finally, CED [27] is an image-processing algorithm for edge detection where each frame

goes through a four-stage process (Gaussian filter, Sobel filter, non-maximum suppression and

hysteresis) each one encapsulated within a CE. The application runs the algorithm with 30

frames of 354x626 pixels producing a workload composed of 30 parallel chains of four tasks. This

selection of applications and implementations is interesting for testing purposes because the

diversity of workload patterns as shown in Figure 5.4.

(a) Digits Recognition (DR) (b) Bézier Surface (BS) (c) Canny Edge Detection (CED)

Figure 5.4: Workflow representation for the three applications used during the tests: Digits
Recognition, Bézier Surface and Canny Edge Detection (left to right).

The results presented below correspond to the execution of the three applications when

running on a OnePlus One smartphone equipped with a Qualcomm SnapDragon 801 processor

composed by a Krait 400 quad-core CPU at 2.5 GHz and an Adreno 330 GPU. Up to this point,

the dissertation has only described the CPU platform; thus, the conducted experiments only use

the Krait 400 quad-core managed by the interactive governor included in the Cyanogen OS 13.1.2

64

5.3. EVALUATION

implementation of Android 6.0.1. The energy policies implemented in mobile devices, reduce

the processor frequency when the screen is off since that fosters the energy savings when the

user does not require responsiveness. Table 5.1 shows the normalized performance and power

consumption of the OnePlus One. All the measures correspond to executions with the screen on

at a 0% brightness and enabling the airplane mode to avoid the frequency reduction of switching

off the display while reducing to the minimum the consumption of other devices.

Idle Computing
Power (W) Normalized IPC Power (W)

Screen off 0.08 0.042 0.20
Screen on brightness 0% 0.37 1 1.87

Screen on brightness 100% 1.07 0.998 2.55

Table 5.1: Power consumption and computing capacity according to the state of the screen of the
mobile device (screen off, the screen on at 0% brightness and 100%) and its activity (idle and
computing).

5.3.1 Automatic Parallelization

The first conducted test aims to measure the potential improvement in the performance of the

applications, from temporary and energetic points of view, when using the proposed framework.

Since all the computations run on the mobile phone, the economic aspect of the execution is not

considered because data transfer fees do not apply. The tests consist in running the applications

considering two different scenarios: running the sequential version of the application without

instrumentation and running the COMPSs version of the application varying the number of CPU

cores set up on the CPU Platform.

5.3.1.1 Digit Recognition

DR is an application with no task-level parallelism; thus, the application user cannot get any

benefit from COMPSs since it cannot parallelize the execution of the task and, up to this point

of the dissertation, the only available computing resources are the CPU cores. Conversely, the

application is useful for standing out the overhead induced by the runtime. Charts in Figure 5.5

compare the execution time and energy consumption obtained when recognizing a set of 128, 256

and 512 handwritten digits when running the Android native version of the application (ACPU)

and the COMPSs version with one available CPU core (1CPU). Since the application has no

parallelism, it makes no sense to include scenarios using more cores. Charts break down the

execution time in the number of milliseconds where the runtime is actively computing the result

of the application and the number of milliseconds (Computation) where the computation is halted

because of the overheads of the runtime (Overhead) such as IPC and the decision-making process.

Regarding the energy, they distinguish the consumption incurred by the processing elements

65

CHAPTER 5. CPU EXPLOITATION

when computing the result of the application code Application from the overheads produced by

the runtime and the other devices such as the screen System.

The time spent computing the methods – whether they run as regular methods or tasks – in

both scenarios is very similar; the runtime may add a millisecond because of the overhead of

calling the methods through reflection. This overhead is negligible and invariable regardless the

amount of the processed data. The difference in the total execution time of the application lies

only in the time dedicated to interprocess communications required to submit commands and

transfer data among processes. As depicted in the charts, the growth of this overhead relates

to the size of the data. For the DR application, it represents approximately a 2% of the total

execution time: 95 ms, 188 ms and 355 ms respectively when the application processes 128,

256 and 512 images. Regarding the impact on the energy consumption of the runtime, the IPC

overhead is negligible since it represents an increase of less than a 0.4% of the energy consumed

by the Android native version of the application.

5.3.1.2 Bézier Surface

The second analyzed application is BS. The test considers four possible ways to split the surface:

one single chunk of 1024x1024, four chunks of 512x512, 16 chunks of 256x256 and 64 chunks

of 128x128. Splitting the surface into more than one chunk allows a parallel execution of the

computation. While in the ACPU scenario, the native application runs on one single CPU core,

the other scenarios, running the COMPSs version, vary the number of used cores; 1CPU, 2CPU,

3CPU and 4CPU respectively use one, two, three and four cores to execute the tasks. Charts in

Figure 5.6 depict the execution time and energy consumption broken down as with DR.

When comparing the ACPU scenario with 1CPU in all four partitionings, the time dedicated to

processing the application code shows no significant difference. As with DR, the most significant

difference in execution time lies solely on the overhead due to the interprocess communication.

When the application operates on a single chunk, at the end of its processing the runtime spends

2,639 ms (25% of the whole execution time) on transferring back the surface from the runtime

process. The smaller the size of the chunk is, the lower this overhead becomes since the transfer

of the results of the earlier-to-run tasks overlap with the execution of other tasks. Besides, the

smaller the chunks are, the shorter the time-to-transfer the result of one chunk is because fewer

bytes need to be transferred. When the application splits the surface into four chunks, it requires

around 730 ms (8%) to transfer a block; 241 ms (3%), for 256x256 blocks; and 56 ms (0.7%), for

chunks of 128x128. Regarding the energy consumption, the values for the Application part are

alike; however, the impact of the IPC overhead raises the consumption but to a lesser extent:

from 0.98 J (6%) for the single chunk case to 0.02 J (0.1%) for the case with 128x128 chunks.

The execution time charts also show that the runtime is automatically exploiting the par-

allelism. Within each execution time chart, the multiple columns corresponding to the cases

running the COMPSs version of the application show how the runtime can help to reduce the time

66

5.3. EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

Tasks

Overhead

T
im

e
 (

 m
s
)

 1CPU ACPU

 0

 2

 4

 6

 8

 10

Tasks

System

E
n
e
rg

y
 (

 J
)

 1CPU ACPU

(a) 128 images.

 0

 2000

 4000

 6000

 8000

 10000

Tasks

Overhead

T
im

e
 (

 m
s
)

 1CPU ACPU

 0

 5

 10

 15

 20

Tasks

System

E
n
e
rg

y
 (

 J
)

 1CPU ACPU

(b) 256 images.

 0

 5000

 10000

 15000

 20000

Tasks

Overhead

T
im

e
 (

 m
s
)

 1CPU ACPU

 0

 5

 10

 15

 20

 25

 30

 35

 40

Tasks

System

E
n
e
rg

y
 (

 J
)

 1CPU ACPU

(c) 512 images.

Figure 5.5: Execution time (left) and energy consumption (right) obtained when running DR with
the CPU platform.

to compute the result of the application by using multiple cores of the CPU. Approximately, the

runtime speeds up the processing of all the chunks by a 1.75x when using two cores. Using three

cores allows the runtime to speed up the execution by 2.1x; except for the 512x512 case which

for load balancing reasons the runtime requires a similar amount of time to compute the whole

surface. When using four cores, the runtime achieves a 2.75x speedup. Although the obtained

values show that the runtime system reduces the time to compute the result of the application,

the reached speedup is far from the ideal – 2x, 3x and 4x, respectively when using two, three and

four cores. The performance loss is caused by the reduction of the processor frequency to avoid

overheating. The more cores processing at a time, the lower the frequency needs to be.

Although the runtime can speed up the processing of the application, its total execution

67

CHAPTER 5. CPU EXPLOITATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

Tasks

Overhead

T
im

e
 (

 m
s
)

 1CPU ACPU

 0

 5

 10

 15

 20

 25

Tasks

System

E
n
e
rg

y
 (

 J
)

 1CPU ACPU

(a) 1024x1024 surface as a single 1024x1024 chunk.

 0

 2000

 4000

 6000

 8000

 10000

 12000

Tasks

Overhead

T
im

e
 (

 m
s
)

4CPU 3CPU 2CPU 1CPU ACPU

 0

 5

 10

 15

 20

 25

Tasks

System

E
n
e
rg

y
 (

 J
)

4CPU 3CPU 2CPU 1CPU ACPU

(b) 1024x1024 surface divided into four 512x512 chunks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

Tasks

Overhead

T
im

e
 (

 m
s
)

4CPU 3CPU 2CPU 1CPU ACPU

 0

 5

 10

 15

 20

 25

Tasks

System

E
n
e
rg

y
 (

 J
)

4CPU 3CPU 2CPU 1CPU ACPU

(c) 1024x1024 surface divided into 16 256x256 chunks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

Tasks

Overhead

T
im

e
 (

 m
s
)

4CPU 3CPU 2CPU 1CPU ACPU

 0

 5

 10

 15

 20

 25

Tasks

System

E
n
e
rg

y
 (

 J
)

4CPU 3CPU 2CPU 1CPU ACPU

(d) 1024x1024 surface divided into 64 128x128 chunks.

Figure 5.6: Execution time (left) and energy consumption (right) obtained when running BS with
the CPU platform.

time cannot be reduced to the same extent since the interprocess communications mechanism

is sequential and it transfers the computed values serially. All the executions using four cores

68

5.3. EVALUATION

show this problem. For the 512x512 case, the CPU processes the whole surface in parallel and

the four chunks are ready at the same time; hence, the IPC transfers cannot overlap with any

computation and delay the end of the application 2,648 ms (similar to the 1CPU scenario of the

1024x1024 case). The 256x256 and 128x128 cases have the same problem, but the execution of

the first round of tasks is shorter, and transfers begin earlier.

Both, processor frequency reduction and IPC mechanisms, add an important overhead in

terms of time; however, the impact on the energy consumption is not that significant. At the end

of the execution, the energy consumption only grows a 5% when two cores are available; an 18%,

for three cores; and a 30%, for four cores. The energy consumed to execute the tasks is what

produces this growth. Despite the frequency reduction lowers the power consumption of each

core, it extends the length of the execution of the task and increases the total amount of energy

consumed by each task. On the other hand, the earlier the application finishes, the less energy

spent by other components within the mobile such as the display.

5.3.1.3 Canny Edge Detection

The third and last application used in this first experiment is CED, an application with similar

characteristics to BS. The application generates 30 sequences of four tasks independent from

each other; hence, the application has inherent parallelism to exploit by the runtime. Again, the

test considers several scenarios: ACPU, running the Android native version of the application;

and four possible scenarios where the runtime uses a different number of CPU cores – 1CPU,

2CPU, 3CPU and 4CPU respectively increasing the cores from one to four. Charts in Figure 5.7

show the decomposition of the execution time and the energy consumption of the application as

done above for the DR and BS applications.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Tasks

Overhead

T
im

e
 (

 m
s
)

4CPU 3CPU 2CPU 1CPU ACPU

 0

 2

 4

 6

 8

 10

 12

 14 Tasks

System

E
n
e
rg

y
 (

 J
)

4CPU 3CPU 2CPU 1CPU ACPU

Figure 5.7: Execution time (left) and energy consumption (right) obtained when running CED
with the CPU platform.

The obtained results are similar to those of the executions of the BS application with a

high degree of parallelism. However, the amount of data to exchange among the application

and runtime processes is smaller than in the previous application; hence, the weight of the

overhead incurred by the IPC is significantly smaller. Comparing the ACPU scenario to 1CPU,

69

CHAPTER 5. CPU EXPLOITATION

the differences are negligible; IPC increases the execution time by 51 ms (1%), and its impact

on the energy is less than 0.02 J (0.2%). Regarding the cases where the runtime exploits the

parallelism, the Application computation is faster when increasing the number of available cores

– 1.9x, 2.41x and 2.43x respectively for 2CPU, 3CPU, 4CPU. CED achieve a performance closer to

the ideal than BS on the 2CPU and 3CPU scenarios, but this progression worsens on the 4CPU

scenario which roughly improves the execution time of 3CPU. These behavior differences lie in

the characteristics of the tasks and the effects of their concurrent execution; a processor frequency

reduction would have a similar impact on the 2CPU and 3CPU scenarios. The final execution

time is also affected by the IPC bottleneck, the sequential IPC mechanism is overwhelmed when

several cores produce a result at a time; the 51 ms overhead on the 1CPU case becomes 238 ms

when using four cores (11.51% of the total exeuction time). Regarding the energy consumption,

the conclusions are similar: increasing the number of cores increases the total amount of energy

dedicated to the computation of the application. However, the reduction of the execution time

leads to a reduction in the energy consumed by the other elements of the system besides the

CPU. It is important to notice that for the 2CPU case, COMPSs achieves an energy consumption

slightly smaller than the native version of the application. The high performance of the processors

when running the task shortens the processing time of the application by 1,365 ms at the expense

of 0.43 additional joules. However, the time saving allows a reduction of the energy consumed

by the rest of the system of 0.86 J; hence the application runs 1.87 times faster than the native

version consuming only the 96% of the energy.

5.3.2 Impact of Proxied Executions

The second test aims to evaluate the impact of splitting the CPU platform to host the execution

of the tasks in the same process that runs the applications instead of in the runtime process. For

that purpose, the test compares the results presented in the previous section with the execution

time and energy consumption obtained when running the same applications but using the proxied

execution version of the platform.

5.3.2.1 Digit Recognition

The DR application running the tasks on the Orchestrator part of the runtime did not show any

problem related to IPC. The amount of data exchanged among processors is small; the weight

on the total execution time around, 2%; and the effect on the energy consumption is almost

negligible (0.03% of the total consumption). Hence, the impact of the improvement that proxying

the executions may achieve is relatively small as depicted by the charts in Figure 5.8.

Hosting the execution of the tasks in the application process reduces the time dedicated

exclusively to IPC – 95 ms, 188 ms and 341 ms, respectively for processing 128, 256 and 512

images – to a constant 30 ms. In the 512 images case, this reduction reaches a 90% of the IPC

time; however, it only represents a 1.6% reduction in the overall execution time. Regarding

70

5.3. EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

Overhead

T
im

e
 (

 m
s
)

 1CPU ACPU

 0

 2

 4

 6

 8

 10

A
C
P
U

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

System

E
n
e
rg

y
 (

 J
)

 1CPU ACPU

(a) 128 images.

 0

 2000

 4000

 6000

 8000

 10000

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

Overhead

T
im

e
 (

 m
s
)

 1CPU ACPU

 0

 5

 10

 15

 20
A
C
P
U

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

System

E
n
e
rg

y
 (

 J
)

 1CPU ACPU

(b) 256 images.

 0

 5000

 10000

 15000

 20000

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

Overhead

T
im

e
 (

 m
s
)

 1CPU ACPU

 0

 5

 10

 15

 20

 25

 30

 35

 40

A
C
P
U

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

System

E
n
e
rg

y
 (

 J
)

 1CPU ACPU

(c) 512 images.

Figure 5.8: Execution time (left) and energy consumption (right) obtained when running DR
with the CPU platform comparing executions on the Orchestrator process (Normal) or on the
application process (Proxied).

the energy consumption, proxied execution allows DR to save 0.0246 J, 0.058 J and 0.115 J

respectively when processing 128, 256 and 512 images. The reduction is negligible since the

overall consumption is 9,368 J for the case processing 128 images, 18,546 J for 256 images, and

36,608 J for 512 images.

5.3.2.2 Bézier Surface

BS is an application where IPC overhead is a major issue. In those cases where the grain of

the surface partitioning is coarse, the transfer of the last blocks is expensive in temporal terms

71

CHAPTER 5. CPU EXPLOITATION

(2,639 ms when a single chunk covers the whole surface). In the fine-grained cases where the

runtime has multiple cores of the CPU available, the IPC mechanism is not fast enough to absorb

the throughput of computed results and the amount of data to transfer accumulates. In the case

where the application uses four cores to process the surface divided into chunks of 128x128, the

IPC adds an overhead of 1,350 ms that unnecessarily raises the energy consumption 0.499 J as

shown in Figure 5.9.

As with DR, splitting the CPU platform to host the execution in the application process

reduces the IPC overhead drastically and converts it into a constant. When the application

divides the surface into 128x128 chunks, the overhead means adding 30 milliseconds to the

computation time. The impact of the measure grows along with the number of cores used: for

one core, it only saves 26 ms; for two cores, the saving is already 101 ms; for three cores, 665 ms;

and 1,320 ms for four cores. Naturally, shortening the execution time also reduces the energy

consumption; however, it does so to a minor extent. Although for four cores the saving in energy

reaches 0.488 J, the saving is almost negligible in the one core scenario: 0.010 J.

For the case where the whole surface remains as an only chunk of 1024x1024, the impact

of proxying the execution reaches the limit for this application since it converts the 2,639 ms

required to transfer the whole surface at a time into 30 ms dedicated to the exchange of the

internal commands of the runtime. Although the time needed to compute the surface is the same

– 8,035 ms –, reducing the IPC overhead allows a 1.33x speedup for the overall execution time.

Shortening 2,603 ms the execution leads to a reduction of the energy consumed by other devices

embedded in the mobile, such as the screen. In the 1024x1024 case, the time saving shrinks the

consumption from 16.805 J to 15.84 J (6% of the overall energy consumption).

In the scenario using four cores of the CPU processing simultaneously four chunks of 512x512,

the application behaves alike. The 2,648 ms of overhead become 30 ms; thus, the application

achieves a 1.88x speedup. Although the temporal saving in absolute terms is the same than in the

1024x1024 case, the smaller time needed to process the surface increases the impact in relative

terms. Conversely, on the energy aspect, the higher cost of parallel computing reduces the impact

of the saving – 0.96 J – from the 6% to a 4%. On scenarios using a smaller number of processors

for the same partitioning, proxying the execution reduces 701 ms and 0.26 J for one core, 1,321

ms and 0.49 J for two cores; and for three cores, 753 ms and 0.28 J. The 256x256 case presents

the same behavior with a smaller impact.

5.3.2.3 Canny Edge Detection

In the last application for this second test, CED, the IPC is also a bottleneck when multiple cores

detect in parallel the edges in the frames. As with DR and BS, moving the computation from the

Orchestrator process to the application process converts the variable IPC overhead – 51 ms when

the runtime uses one CPU core, 61 ms for the two cores scenario, 132 ms when having three

available cores and 238 ms when using all the cores of the CPU – into a constant overhead of 30

72

5.3. EVALUATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

Overhead

T
im

e
 (

 m
s
)

 1CPU ACPU

 0

 5

 10

 15

 20

 25

A
C
P
U

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

System

E
n
e
rg

y
 (

 J
)

 1CPU ACPU

(a) 1024x1024 surface as a single 1024x1024 chunk.

 0

 2000

 4000

 6000

 8000

 10000

 12000

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

Overhead

T
im

e
 (

 m
s
)

4CPU 3CPU 2CPU 1CPU ACPU

 0

 5

 10

 15

 20

 25
A
C
P
U

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

System

E
n
e
rg

y
 (

 J
)

4CPU 3CPU 2CPU 1CPU ACPU

(b) 1024x1024 surface divided into four 512x512 chunks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

Overhead

T
im

e
 (

 m
s
)

4CPU 3CPU 2CPU 1CPU ACPU

 0

 5

 10

 15

 20

 25

A
C
P
U

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

System

E
n
e
rg

y
 (

 J
)

4CPU 3CPU 2CPU 1CPU ACPU

(c) 1024x1024 surface divided into 16 256x256 chunks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

Overhead

T
im

e
 (

 m
s
)

4CPU 3CPU 2CPU 1CPU ACPU

 0

 5

 10

 15

 20

 25

A
C
P
U

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

System

E
n
e
rg

y
 (

 J
)

4CPU 3CPU 2CPU 1CPU ACPU

(d) 1024x1024 surface divided into 64 128x128 chunks.

Figure 5.9: Execution time (left) and energy consumption (right) obtained when running BS
with the CPU platform comparing executions on the Orchestrator process (Normal) or on the
application process (Proxied).

73

CHAPTER 5. CPU EXPLOITATION

ms as shown in Figure 5.10. Thus, the reduction of the overall execution time goes from the 0.4%

on the one core scenario to the 9.02% on the four core scenario. The energy impact of the measure

is almost negligible in all the scenarios; in 4CPU, the application saves 0.08 J, only a 0.006% of

the overall consumption.

 0

 1000

 2000

 3000

 4000

 5000

 6000

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

Overhead

T
im

e
 (

 m
s
)

4CPU 3CPU 2CPU 1CPU ACPU

 0

 2

 4

 6

 8

 10

 12

 14

A
C
P
U

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

N
o
r
m
a
l

P
r
o
x
i
e
d

Tasks

System

E
n
e
rg

y
 (

 J
)

4CPU 3CPU 2CPU 1CPU ACPU

Figure 5.10: Execution time (left) and energy consumption (right) obtained when running CED
with the CPU platform comparing executions on the Orchestrator process (Normal) or on the
application process (Proxied).

5.4 Summary

Up to this point of the dissertation, the presented solution allows mobile developers to code

applications in a totally sequential fashion without referring to the parallelism through the

COMPSs programming model. During the building and packaging process, the framework

instruments the code written by the programmer to call a runtime toolkit that partitions the

application into tasks and monitors data dependencies among them and with the main code.

The goal of this toolkit is to orchestrate the execution of such tasks on the available resources,

grouped in computing platforms.

This chapter introduces one of such platforms, the CPU Platform, which allows the runtime

to exploit the CPU cores of the mobile device. Using more than one core allows the runtime to

benefit from the inherent parallelism of the application to reduce the time needed to run the

application. Figure 5.11 depicts an overview of the runtime architecture including the components

corresponding to the CPU platform. The cores of the processor are resources shared among all

the applications; hence, the Orchestrator process must manage their usage. Nevertheless, hosting

the execution of the tasks on the Orchestrator process requires transferring values generated

by the main code of the application, executed on the application process, to the Orchestrator.

This interprocess communication imposes an unnecessary overhead to the execution. For small

values, it might be negligible; but, if the application works with large objects, it might become a

significant part of the execution time. For instance, the Bézier Surface application requires 2,950

ms to process the four 512x512 chunks composing the surface using four cores and 2,648 ms to

74

5.4. SUMMARY

transfer the whole surface of 1024 x 1024 elements. In this case, the IPC overhead means the

47% of the execution time. Keeping the management of the tasks on the Orchestrator process

and moving their execution away from there to a CPU Backend hosted in the application process

works around the problem for tasks can access the same object. Although exchanging commands

to launch the execution requires interprocess communication, the smaller size of the data to

transfer shortens any delay to 30 ms approximately.

App Process

Mobile Device

Runtime Process

Task Executor

App

Code

Access Analyzer

Private Data

Register

Public Data

Register

Data Manager

Data Store

CPU

Platform
CPU Backend

Offload

Decision

Engine

Figure 5.11: Diagram of the runtime architecture with a single CPU platform with proxied
executions.

The tests presented show that the solution described up to this point of the dissertation can

speed up applications up to 2.74x when using the four cores of the CPU – observed for BS splitting

the surface into 64 chunks of 128x128 –, far from the ideal 4x speedup. The more cores compute

at a time, the higher the temperature of the processor gets. For controlling the temperature

of the processor and avoid malfunctions, mobile systems reduce the clock rate of the processor

worsening the performance of the cores. Despite frequency cutbacks lower the power consumption

of the processor, longer execution times incur higher energy consumptions for processing the

same operation. Generally, the energy consumed by the application to compute the result of the

application grows proportionately to the number of cores used. However, the mobile embeds other

devices besides the CPU, such as the screen, sensors or the network interface, that also consume

energy. If the execution time reduction is significant enough, it is possible that the energy saved

on these devices makes up for the additional consumption of the processor as happens in the

CED application when using only two cores.

75

C
H

A
P

T
E

R

6
GPU EXPLOITATION

G raphical Processing Units (GPUs) employ SIMD architecture to achieve higher instruc-

tion execution rates compared to multi-core CPUs while saving energy through simpler

control logic. During the last decade, heterogeneous systems combining multi-core CPU, GPU

and other accelerators have become ubiquitous thanks to the general-purpose computing on GPU

(GPGPU) frameworks. Even some system-on-chips (SoCs) already have integrated them on the

same die; for instance, the Qualcomm Snapdragon and the NIVIDA Tegra. Both target mobile

devices where energy efficiency is a major issue and CPU computing power, highly constrained.

To get the most out of the mobile device, applications have to use all the computing devices

within it collaboratively. The most widely used programming models for developing applications

for GPGPU are OpenCL [81] and CUDA [79]. Both present the hardware as a parallel platform

allowing programmers to be agnostic to the actual parallel capabilities of the underlying hardware.

On the one hand, these frameworks offer a multi-platform programming language to describe

the computation to perform on the computing device; and, on the other hand, they provide an

API to handle the parallel platform (launching computations, managing memory, and querying

actual hardware details for high-performance purposes). Developers have to decide which parts

of the computation run on the CPU and which on an accelerator, code the functionality of the

parts not running on the CPU using the multi-platform language accepted by the accelerator and

include in the application the code to programmatically manage the parallel platform (memory

management and computation submission).

Integrating the use of such programming models natively into the COMPSs programming

model and implementing all the necessary mechanisms in its runtime toolkit to support them

would allow applications to exploit the internal parallelism within a task and take benefit from

77

CHAPTER 6. GPU EXPLOITATION

all the computing devices embedded on the mobile. Besides, that would release developers from

dealing with the concerns of finding the optimal distribution for load balancing and the details of

the platform management.

Given that CUDA is a proprietary platform exclusive for devices equipped with the Tegra SoC;

the prototype builds on OpenCL: an open standard widely adopted by processor manufacturers,

and thus, by a wide range of users. However, the proposed architecture does not lose any generality,

and CUDA support could be easily added.

6.1 Related Work

Regarding adaptative heterogeneous computing on mobile devices, Android already provides a

natively integrated framework for running computationally intensive tasks at high performance:

RenderScript [48]. Programming with a C99-derived language, developers write code portable

across the computing devices available on the SoC. At execution time, the RenderScript toolkit

parallelizes the work considering the availability of the resources (load balancing) and manages

the memory. Although RenderScript achieves performances similar to OpenCL or CUDA, it

cannot exploit remote resources.

GPU usage is strongly associated with the implementation of high-performing operation; in

this cases, programmers prefer to have an accurate control over the behavior of the platform

regardless its cost on their programming productivity. Given the already existence on Renderscript

and the low interest of the mobile industry to adopt this kind of frameworks, most of the research

on adaptative heterogeneous computing on mobile devices focuses on the implementation of

certain algorithms or libraries (especially, game engines) directly on CUDA or OpenCL.

Fortunately, that is not the case beyond mobile computing. There exist other general-purpose

programming models/languages aiming to ease the development of task-based applications with

GPU support. OmpSs [37] and StarPU [18] are two programming models that leverage on

OpenMP pragmas to declare either CPU or GPU task implementations. Conversely, PaRSEC [25]

allows programmers to describe the application as a DAG compactly represented in a format

called JDF. For each task, JDF indicates the execution space, the parallel partitioning of the data,

how the method operates on the parameters and the method to call to execute the task (allowing

one CPU implementation and one for the GPU).

Another interesting research field relating GPUs and mobile devices studies how to enable

the usage of GPGPU on devices without a GPU by offloading the computation on remote nodes

with GPUs. Ratering et al. [84] propose using virtual OpenCL devices as the interface to compute

clouds. For CUDA-enabled applications, rCUDA [89] takes a driver-split approach where the

driver manages all the necessary details to execute the kernels on the local or remote GPU. A

complete framework for computation offloading is the result of the RAPID [75] EU project, which

allows CPU and GPU code offloading; however, none of the proposed frameworks automatically

78

6.2. BACKGROUND: OPENCL

deals with load balancing.

6.2 Background: OpenCL

OpenCL (Open Computing Language) is a standard for general purpose parallel programming

for heterogeneous devices. In a program using OpenCL, the main code of the application, which

controls the execution, runs in a computing device known as host in OpenCL terminology –

generally, the CPU of the node running the applications. One host has access to one or more

OpenCL platforms; a platform consists of the host and one or more OpenCL devices. OpenCL

devices are groups of one or more Compute Units (CUs) which are further divided into one or

more processing elements (PEs). PEs process the computations offloaded to that device. Each

OpenCL device, including the host, has an exclusive memory space – usually, devices do not share

access to the memory modules.

For example, in a mobile device equipped with a Qualcomm Snapdragon 801 – one Quad-core

2.5 GHz Krait 400 and an Adreno 330 GPU – the host running the application is the CPU. This

CPU has one OpenCL platform available named Qualcomm Snapdragon 801 with one OpenCL

device, the Adreno 330. In turn, the Adreno 330 has four stream processors (CUs) each equipped

with 32 stream processors (PEs).

OpenCL programs consist of a set of kernels, C99-based void functions to execute on the PEs,

and the host program which controls the execution of the kernels from the host device. Since

kernels are portable across platforms, the host program compiles them at runtime once it has

decided which resource will run it. Thus, the host program can generate or modify the code of the

kernels as the application execution progresses.

For managing the available platforms from the host program, OpenCL offers an API based on

the submission of commands to manage the content of the device memory, execute kernels on its

PEs and synchronize with other commands. To coordinate the execution of such commands on

each device, the host program creates a command queue. The program pushes the commands

into the queue and the device runs them either in in-order or out-of-order mode depending on the

preference of the host program. For out-of-order executions to handle a command depending on

a preceding command execution, commands produce events that indicate different states of its

execution. The OpenCL API allows the host program to specify on which events the command

being pushed into the queue depends so that the OpenCL library implementation schedules the

execution of the commands preserving the dependency.

The core of the OpenCL model lies in the execution model of the kernels. Unlike with CPU-

oriented languages, where one method invocation leads to one sequential execution of the function

operating on the parameters, in OpenCL a kernel invocation incurs the execution of several

instances of the function operating concurrently on the same parameters. OpenCL terminology

calls each of such instances work-items.

79

CHAPTER 6. GPU EXPLOITATION

For work-items to operate on a specific subset of the input/output data, each work-item has a

unique N-tuple ID – usually, up to three dimensions – called global ID. To assign them, the library

organizes the work-items in an N-dimensional grid and identifies each with the coordinates of its

position in the grid plus the offsets in each dimension indicated by an N-dimension array.

To provide a coarser-grain decomposition of the grid, the standard groups work-items into

work-groups. All the work-items within a group run concurrently on the same Computing Unit;

and thus, they can benefit from hardware memory hierarchies to improve the performance of

syncrhonizations and accesses to shared data values. Each work-group has a unique ID, work-

group ID, and each work-item an ID, local ID, corresponding to its relative coordinates in the

partition of the N-dimensional grid.

For running a kernel on the PEs of the device, the host program needs to create and set up a

Kernel Object: an encapsulation of the kernel to invoke and the argument values used during the

execution. If any of these values corresponds to a memory object, its content needs to be previously

located on the device memory. After that, the host program enqueues a the kernel execution on the

queue of the device indicating the Kernel Object to execute, the number of work-items running the

kernel through the dimensions of the N-dimensional grid (global_work_size), the N-dimensional

offset array used for computing the global ID of each work-item (global_work_offset) and the

dimensions of the work-groups partitioning the grid (local_work_size). If the kernel depends on

other commands and the queue schedules in an out-of-order manner, the host program also needs

to specify the predecessor. If the host program does not specify any local_work_size, the OpenCL

implementation determines how to break the global work-items into appropriate work-groups; by

default, OpenCL considers that there is no offset to compute the global id.

6.3 Programming Model Extension

As different algorithms can implement the same functionality, different implementations of an

algorithm can target different computing architectures. Programmers can implement one CE to

run on a core of the CPU or a GPU thread.

Integrating OpenCL as a possible way to implement CEs arises two issues: the actual

implementation of the CE as an OpenCL kernel and the abstraction of the OpenCL platform

management. Some state-of-the-art projects, like Aparapi [3] and Sumatra [80], try to hide both

issues away from the programmer by automatically generating the code of the kernel out of

sequential Java code; mainly they try to automatically parallelize the outmost loop of the code

and invoke the kernel with as many work-items as iterations of the loop. The solution proposed

in this dissertation does not go as far as these projects, and programmers still provide the code of

the kernels. Since OpenCL kernels use a C99-based language which is not compilable by Java,

programmers attach their code as resources of the Java application.

To indicate the existence of OpenCL implementations of a CE, programmers annotate the

80

6.3. PROGRAMMING MODEL EXTENSION

method declaration in the CEI with the @OpenCL directive. In this case, instead of pointing

out the class implementing the method, programmers indicate the name of the resource con-

taining the OpenCL code of the kernel. To automatically determine the number of work-items

running a kernel, the developer has to specify, as an attribute of the @OpenCL annotation, the

global_work_size to use on the submission of the command to execute the kernel. However, the

actual value of these variables may depend on the input values or its size. For that purpose,

COMPSs allows simple algebraic expressions using the values and length of the parameters as

variables. For referring to a parameter the developer uses the reserved word par followed by the

index of the parameter. For instance, the developer points to the first parameter of the call using

par0; for the third one, par2. If the parameter is a number, it allows to use its value; if the param-

eter is an array, it can use the value of one of its positions or its length. For multi-dimensional

arrays, developers can refer to the length of any of its dimensions. For doing so, the developer

uses the reserved names x, y and z to indentify respectively the first, second and third dimensions

of the array. For instance, to refer to the length of the first dimension of the first parameter of

the call, the developer uses the term par0.x; for referring to the second dimension of the third

parameter, par2.y.

Besides the global_work_size, developers can also define values for global_work_offset and

local_work_size. Both attributes are optional; in the case that the programmer does not specify

any value for them, COMPSs forwards the decision to OpenCL. For global_work_offset, it does

not apply any offset and sets the value to (0, 0,... 0); and for local_work_size, it delegates the

decomposition into work-groups to the library by passing a NULL value.

Another important characteristic of OpenCL is that kernels do not return values. To avoid

constraining the usage of OpenCL to CEs returning nothing, COMPSs assumes that the return

value, if any, is the last parameter of the kernel; therefore, kernels implementing a CE with a

return value have an additional parameter compared to its Java method version. As opposed to

regular methods, where the return value is created within the method code, the memory space

for the return value of OpenCL implementations needs to be allocated prior the invocation of the

kernel. The runtime has to manage the allocation of result values automatically when it decides

to run an OpenCL kernel. Again, the amount of memory to allocate depends on each CE and,

likely, on the input values; therefore, programmers need to specify the number of elements within

each dimension of the return value with an algebraic expression as the resultSize attribute of the

annotation. The actual number of bytes is inferred according to the return type of the declaration.

Figure 6.1 depicts an example of a COMPSs application performing a matrix multiplication.

The actual computation of the operation is encapsulated within a CE, multiply, implemented as

a regular method and as an OpenCL kernel. As aforementioned, kernels have no return value;

therefore, the OpenCL implementation of the CE has a third parameter corresponding to the

return value of the Java implementation.

81

CHAPTER 6. GPU EXPLOITATION

package es.bsc.compss.matmul;

public class Matmul {
public static void main(String[] args) {

int[][] A;
int[][] B;
int[][] C;
...
C = multiply(A, B);
...

}

public static int[][] multiply(int[][] A, int[][] B) {
// Matrix multiplication code
// C = AB
...
return C;

}
}

(a) Application Java code

__kernel void multiply (
__global const int *a,
__global const int *b,
__global int *c)

{
//Matrix multiplication code
// C = AB
...

}
(b) OpenCL code in matmul.cl

public interface CEI {
@OpenCL(kernel="matmul.cl", globalWorkSize="par0.x,par1.y", resultSize="par0.x,par1.y")
@Method(declaringClass="es.bsc.compss.matmul.Matmul")
int[][] multiply (

@Parameter(direction = IN)
int[][] a,
@Parameter(direction = IN)
int[][] b

);
}

(c) Core Element Interface

Figure 6.1: Example of a matrix multiplication with two implementations: one in OpenCL and
one as a regular method. The code of the kernel is in the matmul.cl resource, and it has to be
executed by as many threads as the number of rows in matrix a times the number of columns of
matrix b. The result of the method is a bi-dimensional matrix with as many rows as matrix a and
as many columns as matrix b.

6.4 OpenCL Platform

For the runtime system to run tasks on the GPU, or any other accelerator accessible through

OpenCL, it requires a Computing Platform that orchestrates the execution of such tasks on the

computing device and provides the time, energy and cost forecasts of hosting them. The OpenCL

platform represents and manages one single computing device accessible through OpenCL.

As with the CPU Platform, hosting the execution of the tasks within the Orchestrator process

would incur an overhead caused by the communications to transfer values among the processes

that make up the runtime. To tackle this problem, the platform is twofold: the Orchestrator keeps

managing the execution of the tasks on the device while a platform backend in the application

82

6.4. OPENCL PLATFORM

process hosts the execution.

At boot time, the application launches the Orchestrator service – if no other application

already started it – and waits until it instantiates, sets up and registers the configured platforms

so that the Offload Decision Engine considers them to run tasks. Once the service is up and

running, the application part of the runtime creates all necessary OpenCL Backends, setting up

an OpenCL context for each with an out-of-order queue to submit commands to the corresponding

computing device – identified by the application user through the names of the device and the

OpenCL platform containing it. At this point, the platform gets all the CEs with an OpenCL

implementation from the CEI of the application and compiles the corresponding kernels stored in

the resource indicated in the kernel attribute of the @OpenCL annotation. After all the OpenCL

backends have compiled all the kernels, the instrumented code runs and submits asynchronous

tasks for execution.

The three models used to provide the Offload Decision Engine with the temporal, energetic

and economic forecasts are very similar to those of the CPU Platform. The monetary cost of

running the task only considers the data fees applied to bringing the input values from remote

locations; thus, it is the same whether it runs on the CPU or in another device embedded in the

mobile. Regarding the energy consumption, the only difference lies in the cost of running the task.

Although the length of the execution should be shorter and the power consumed by the device

higher, neither the theoretical model nor the implementation need changes since the values

stored in the Implementation Profiles will differ from those obtained from the CPU cores. Finally,

the end time prediction takes into account the same parameters: the average execution time

on the device, the expected moment when the task becomes dependency-free and the moment

when the device can host the execution; the only difference lies in the estimation of the moment

when the device is available. As for the CPU Platform, the equation assumes that the platform

manages several cores to run the pending workload; for the OpenCL Platform, it only considers

the device as a single computing element. Thus, the resource availability instant corresponds to

the summation of the expected – average – execution time for all the tasks pending to run on the

device.

If the Offload Decision Engine picks an OpenCL Platform to host a task execution, the

platform forwards the task to an internal Scheduler component that, as with the CPU Platform,

contacts the Data Manager in the Orchestrator to monitor the existence of the data values on

which the task depends. Once the Scheduler notices that all the input values exist, it interacts

with the Data Manager on the application process to ensure that such values are available; if

they are not there yet, the Data Manager fetches them from any location containing them.

Eventually, the OpenCL Platform Backend notifies the presence of the values on the Data

Manager in the application process, and, from that point on, the Scheduler can decide to trigger

the execution of the task on the OpenCL device. For doing so, it submits the task description to

the OpenCL Platform Backend which needs to allocate space on the device memory to host all the

83

CHAPTER 6. GPU EXPLOITATION

values on which the kernel operates, including the output ones, and copy all the input value from

the host memory before the kernel runs. Likewise, at the end of the kernel execution, it needs to

retrieve the modified values from the device memory to store them into the Data Manager so that

other tasks can fetch them. To properly manage the lifecycle of a task execution, the OpenCL

Platform Backend leverages on the out-of-order mode of the OpenCL library.

Upon the reception of a task execution request, the Backend creates an OpenCL memory

buffer – calling the clCreateBuffer method of the OpenCL API – for each parameter. The size

in bytes of these buffers is automatically calculated considering the size of the input value

corresponding to the parameter. If the buffer corresponds to an output parameter – i.e., the return

value of the CE –, the Backend evaluates the expression provided in the resultSize attribute of the

@OpenCL annotation. To set in the reserved buffers the corresponding input values, the Backend

transfers the values, obtained from the Data Manager, to the device memory by enqueueing one

buffer copy – clEnqueueWriteBuffer – for each IN or INOUT parameter.

Immediately after that, the Backend enqueues the kernel invocation – clEnqueueNDRangeK-

ernel – indicating dependencies with the ordered copies to enforce their completion before the

kernel runs. To submit the kernel invocation with the proper arguments, the Backend needs to

evaluate the global_work_offset, global_work_size and local_work_size expressions provided by

the application developer for the implementation to execute. For detecting the end of the kernel

execution, the Backend registers a listener on the corresponding event. Upon the completion of

the kernel, the Backend obtains from the library profiling information from the execution.

As with the copies for the input values of the kernel, the Backend collects the results of the

execution submitting one copy from the device memory to the host memory – clEnqueueRead-

Buffer – for each potentially updated value, i.e., INOUT or OUT parameters. To ensure that these

copies obtain the value once the kernel has processed them, the Backend submits the commands

with a dependency with the kernel execution. Finally, the Backend must wait until the copies

complete to store the values on the Data Manager. To detect the end of each operation, it registers

one listener on each event generated for a value collection. Upon the completion of a copy, the

Backend immediately stores the corresponding value.

For instance, for an invocation to the multiply CE introduced in the previous section (Fig-

ure 6.1), the Backend allocates three memory buffers: two to host matrices A and B, and a third

buffer to host the result of the multiplication. Since A and B are IN parameters, the Backend

enqueues two write commands to transfer the values of A and B into the device memory. After

that, it enqueues the kernel execution depending on the two copies and registers the listener to

become aware of the end of the task execution. Finally, since there is only one OUT parameter,

the Backend enqueues a read command to collect the result of the value and registers the cor-

responding listener to detect when the final C value is in the host memory so that the Backend

stores it on the Data Manager. The directed acyclic graph in Figure 6.2 depicts the dependencies

among the commands enqueued on the device queue. Blue nodes illustrate the transfers of A

84

6.4. OPENCL PLATFORM

A

kernel

B

listener

C

listener

Figure 6.2: Dependency graph of commands submitted to the OpenCL device to run the matmul
task from application introduced in Figure 6.1.

and B to the device memory; the yellow rectangle, the kernel execution; and the red circle, the

memory transfer to collect C.

The current policy for data transfers is the same as with the CPU Platform: as soon as one

task becomes dependency-free, the Scheduler contacts the Backend so that the Data Manager on

the application process fetches any missing value. For the task executions, the Scheduler also

applies a FIFO policy considering the moment when all the parameters of the task are in the

application process. However, unlike the CPU Platform, instead of submitting one task for each

core, the Scheduler submits up to four simultaneous tasks to the Backend. Thus, the out-of-order

policy implemented by the OpenCL library manages commands related to multiple tasks at a

time; thus, data copies related to a task can overlap with the execution of another one. The limit

on the number of tasks simultaneously treated by the Backend is arbitrarily set to four; users

can change it on the OpenCL Platform configuration. However, it is recommended to keep a low

number since managing the events related to thousands of tasks could overwhelm the library.

To better exploit locality, the Backend monitors the content of the device memory. By keeping

track of the buffer containing each data value and the writing event, it can discover an already

existing buffer with the value. The Scheduler avoids the overhead of creating and filling a new

buffer by using the existing buffer as a parameter of the kernel and enforcing its execution to

wait upon the corresponding writing event. The renaming mechanism avoids any RaW hazards

on data accesses. Before the task operates on the value, the runtime assigns a new ID to the

value and creates a copy of the value for the task to modify it. Since the Backend looks for the

copy instead of the original datum, there is no risk that tasks edit the content of an already

existing buffer before another task reads it. Using this registry, the OpenCL Platform knows

which data values are in the device memory and can predict which values will be created by the

tasks assigned to it. Thus, the platform can bypass the query for the existence of those values

and use the event produced by the kernel invocation to hand over the proper scheduling of the

kernel execution to the OpenCL library.

85

CHAPTER 6. GPU EXPLOITATION

6.5 Evaluation

This section presents the results of the tests conducted to validate the proper running of the

OpenCL Platform and evaluate the impact of using the GPU embedded in the mobile on the

three applications used in the CPU Platform evaluation (Section 5.3): Digits Recognition (DR),

Bézier Surface (BS) and Canny Edge Detection (CED). As with the CPU Platform, the conducted

tests run on a OnePlus One smartphone equipped with a Qualcomm SnapDragon 801 processor

composed by a Krait 400 quad-core CPU at 2.5 GHz and an Adreno 330 GPU. The operating

system of the mobile device is the Cyanogen 13.1.2 implementation of Android 6.0.1, and it uses

the interactive governor to control the CPU frequency. Unlike the previous section, this time the

tests use both computing devices.

6.5.1 OpenCL Platform Performance

The first test aims to check the proper behavior of the OpenCL platform and evaluate the

impact of the implemented optimizations. For that purpose, we executed the three applications

considering six possible scenarios: ACPU, AGPU, R1CPU, R4CPU, RGPU, RGPUO. On ACPU, the

application runs an Android-native, sequential version on the processor of the mobile. The AGPU

version of the application replaces the CPU code of the functions performing the computation

by the necessary OpenCL commands to offload the execution of an equivalent high-performing

kernel onto the GPU and transfer all the involved data values in and back from the device

memory. To simulate the performance obtained with an application developed by an average

programmer, the application uses an in-order queue to submit the commands to the OpenCL

platform. On the remaining four scenarios, the developer codes the application following the

COMPSs programming model and the final user sets up the runtime to force the runtime to

execute on a specific computing platform. On R1CPU and R4CPU, the runtime uses only the CPU

platform exploiting one and four cores respectively. On RGPU and RGPUO, the runtime offloads

all the tasks to the GPU through the OpenCL platform. The former disables all the optimizations

obtaining a behavior similar to the GPU scenario, while the latter enables all the optimizations

(reusing memory buffers and overlapping transfers with other kernel executions).

For each scenario, the application measures the execution time and its energy consumption.

Within the execution time, it distinguishes the amount of time spent on the execution of tasks

(Computation) from the overhead surrounding the computation (Overhead). This experiment

focuses on isolating the part of this overhead corresponding to transfers between main and devices

memories (Ov. Mem.) to evaluate the benefits of the optimizations implemented on the GPU

Backend. Regarding the energy consumption, it only separates the energy used for computing

the methods (Application) from the energy consumed by the whole system including the screen

(System).

86

6.5. EVALUATION

6.5.1.1 Digit Recognition

Charts in Figure 6.3 depict the results obtained from processing 512 images with the Digits

Recognition application. It is plain to see that GPU allows a significant improvement on both,

time and energy, regardless of using COMPSs. Comparing ACPU and AGPU scenarios, the

execution time shrinks from 18,516 ms to 4,358 ms (23.53%) – 1,531 ms of which correspond to

memory transfers –; and the energy consumption, from 36.48 J to 8.68 J (27.8%). R1CPU are the

results already presented and commented in Section 5.3.2 for the CPU Platform with Proxied

Execution. The R4CPU scenario is dismissed since the application has no task parallelism and it

never uses more than a CPU core at a time. Using COMPSs incurs an overhead of 31 ms and 0.02

J due to the interprocess communication to exchange the commands. Obviously, this overhead

appears on both scenarios where the runtime uses the GPU since the exchanged commands are

the same. Besides this overhead, the application performs as on the AGPU scenario when the

platform optimizations are disabled and adds an overhead of 1,531 ms due to the transfers of

values between the host and device memories. When enabled, the runtime reuses the memory

values generated in the device memory by one task as the input of the succeeding one; thus allows

to reduce the overhead of data copies from and to the device memory to 5 ms. The optimizations

implemented for the management of the device memory speed up the execution of the application

on GPUs even when the application has no task level parallelism. Despite the improvement on

the execution time, these optimizations have a low impact on the energy consumption (0.56 J)

since the cause of the most significant part of it is the actual computation of the kernels.

 0

 5000

 10000

 15000

 20000

Tasks

Ov. Mem.

Overhead

T
im

e
 (

 m
s
)

RGPUO RGPU R4CPU R1CPU AGPU ACPU

 0

 5

 10

 15

 20

 25

 30

 35

 40

Tasks

System

E
n
e
rg

y
 (

 J
)

RGPUO RGPU R4CPU R1CPU AGPU ACPU

Figure 6.3: Execution time (left) and energy consumption (right) obtained when running DR with
512 images using both devices, the CPU and the GPU.

6.5.1.2 Bézier Surface

Figure 6.4 shows the observed measurements of calculating a surface of 1024 x 1024 points using

256 x 256 blocks with the Bézier Surface application. Tasks in BS have no dependencies; thus, the

runtime can exploit the parallelism and use the four cores of the CPU at a time speeding up the

execution of the kernels up to 2.72x (2,930 ms) at the cost of increasing the energy consumption

87

CHAPTER 6. GPU EXPLOITATION

up to 19.64 J (124.9%). As with DR, the runtime incurs a little overhead (30 ms and 0.02 J)

observed when comparing ACPU to R1CPU and AGPU to RGPU.

 0

 2000

 4000

 6000

 8000

 10000

 12000

Tasks

Ov. Mem.

Overhead

T
im

e
 (

 m
s
)

RGPUO RGPU R4CPU R1CPU AGPU ACPU

 0

 5

 10

 15

 20

 25

Tasks

System

E
n
e
rg

y
 (

 J
)

RGPUO RGPU R4CPU R1CPU AGPU ACPU

Figure 6.4: Execution time (left) and energy consumption (right) obtained when running BS with
blocks of 256x256 using both devices, the CPU and the GPU.

Processing the tasks using the GPU device is 2.99 times faster than using a single core of

the CPU as shown by the Computation time of the AGPU and ACPU (2,672 ms vs. 7,984 ms).

However, the memory transfers overhead (337 ms) slows down the application; it only achieves

a 2.65x lower execution time (3,009 ms): an execution time slightly higher than the one for the

R4CPU scenario. Since BS tasks have no dependencies, they never read values generated by

other tasks; therefore, the runtime cannot reuse values already transferred for preceding tasks.

However, the computation of one task can overlap with the transfers of output/input values of the

preceding and succeeding ones. This optimization allows the runtime to reduce the time spent on

memory transfers from 337 ms to 3 ms on the RGPUO scenario. On the RGPUO scenario, BS

lasts 2,705 ms and consumes 7.68 J.

6.5.1.3 Canny Edge Detection

As seen in Figure 6.5, the GPU device processes the 30 frames in 420 ms, 11.95x faster than a

CPU core; and again, the data transfers worsen the application performance adding a 324 ms

overhead. In overall, the application takes 5,020 ms to run in the ACPU scenario and consumes

9.89 J; while for the AGPU case, it needs 744 ms and 1.33 J. The runtime adds an overhead of

30 ms and 0.02 J slightly noticeable when comparing ACPU and AGPU to R1CPU and RGPU,

respectively.

This application presents task-level parallelism and dependencies among tasks; thus, the

GPU can apply both optimizations. The GPU reuses the output of some tasks as the input of its

successors; thus, the runtime reduces the number of transfers. Besides, the remaining transfers

can overlap with the computation of other dependency-free tasks. Enabling these optimizations

allows the runtime to reduce the 324 ms overhead caused by memory transfers to 1 ms. On the

RGPUO scenario, the application lowers the execution time to 451 ms and its energy consumption

to 1.22 J.

88

6.5. EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

Tasks

Ov. Mem.

Overhead

T
im

e
 (

 m
s
)

RGPUO RGPU R4CPU R1CPU AGPU ACPU

 0

 2

 4

 6

 8

 10

 12

 14 Tasks

System

E
n
e
rg

y
 (

 J
)

RGPUO RGPU R4CPU R1CPU AGPU ACPU

Figure 6.5: Execution time (left) and energy consumption (right) obtained when running CED
using both devices, the CPU and the GPU.

6.5.2 Load Balancing Decisions

The second experiment studies the impact of the platform selection policies on the execution time

and energy consumption of the application. For that purpose, the test runs the COMPSs version

of each application with different task granularity using every possible combination of resources.

For the heterogeneous scenarios – i.e., using both computing platforms –, the test compare

the results of three different policies: Static, DynPerf and DynEn. Static is a predetermined

load distribution that mimics what application developers could easily devise to minimize the

execution time. The load arrangement employed on each execution depends on the application

workflow, the number of tasks and the time they require to run on each device; the subsection

corresponding to each application provides further details on the applied division. With the same

purpose, the DynPerf policy automatically decides which computing platform executes the task

according to the earliest end time forecasted by the platforms. Conversely, DynEn aims to find a

balance between reducing the execution time and the additional energy that it incurs. For that

purpose, DynEn takes into account not only the end time of the task but also the energy spent on

its processing; it would pick a later task end time if for each sacrificed ms the application can

save 5 mJ.

6.5.2.1 Digit Recognition

DR is an application where a set of images go through a 7-stage process. Each stage is encap-

sulated in a task; thus, their granularity depends on the number of images to process. This

experiment uses three different input sets composed of 128, 256 and 512 images. Since DR has

no task-level parallelism, it dismisses all those resource configurations using more than one core

of the CPU. All the CEs that compose the application take less time and energy to run on the

GPU device than on the CPU; therefore, the Static policy for DR consists of submitting all the

tasks to the GPU.

Charts in Figure 6.6 show the execution time (left) and energy consumption (right) obtained

when processing 128, 256 and 512 images (from top to bottom). Despite the difference in the

89

CHAPTER 6. GPU EXPLOITATION

 0

 1000

 2000

 3000

 4000

 5000

1

c
o
r
e

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

1 CPU
+ GPU

only
GPU

only
CPU

 0

 2

 4

 6

 8

 10

1

c
o
r
e

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

(a) 128 images.

 0

 2000

 4000

 6000

 8000

 10000

1

c
o
r
e

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

1 CPU
+ GPU

only
GPU

only
CPU

 0

 5

 10

 15

 20

1

c
o
r
e

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

(b) 256 images.

 0

 5000

 10000

 15000

 20000

1

c
o
r
e

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

1 CPU
+ GPU

only
GPU

only
CPU

 0

 5

 10

 15

 20

 25

 30

 35

 40

1

c
o
r
e

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

(c) 512 images.

Figure 6.6: Execution time (left) and energy consumption (right) obtained when DR processes
128, 256 and 512 images (top to bottom) using the CPU and OpenCL platforms.

magnitude of the values, the application behaves alike regardless the input size. As the number

of images doubles, almost does so the execution time and the energy consumption whether if

the application runs on the CPU – 4,768 ms and 9.344 J for 128 images; 9,380 ms and 18.490

J for 256 images, and 18,550 ms and 36.493 J for 512 images – or on the GPU – 730 ms and

2.015 J, 1,445 ms and 4.065 J, and 2,863 ms and 8.127 J respectively for processing 128, 256

and 512 images. Given that the GPU is faster and less energy-consuming than the CPU and

that the application presents no task-level parallelism, submitting all the executions to the GPU

is the optimal solution either from the performance or the energy point of view. Hence, both

dynamic policies schedule all the executions to the GPU as expected. Although all the employed

configurations use the runtime which incurs an overhead already measured and analyzed, it is

90

6.5. EVALUATION

important to notice that dynamically deciding where to run a task adds no significant overhead

compared to those cases where the runtime handles a homogeneous system or the decision is

statically set beforehand.

6.5.2.2 Bézier Surface

BS is an application whose task-granularity and parallelism depends on the partitioning of the

output. For this experiment, the application computes a fixed-size surface of 1024x1024 points

varying the size of the chunk computed within a task from a 1024x1024 block – 1 task –, through

256x256 – 4 tasks – and 512x512 blocks – 16 tasks –, right up to blocks of 128x128 points – 64

tasks. Figure 6.7 depicts the execution time (left) and energy consumption (right) of running the

application with the four granularities (top to bottom).

It is easy for the application developers to find the optimal number of tasks to assign to each

computing device to minimalize the execution time if they consider the number of tasks, the

number of available CPU cores and the speedup obtained when executing a task on the GPU

compared to the CPU. The more CPUs are used at a time, the higher this speedup is. When one

single core computes tasks, the GPU is about three times faster than the CPU core; when two

cores compute tasks simultaneously, this ratio raises up to ∼3.4x; ∼3.9x, for three cores; and

∼4.3x, when the four cores of the CPU compute at a time. For instance, in the case of running BS

splitting the surface into 128x128-sized blocks and computing the result using a single core of

the CPU, the speedup provided by the GPU is 3.03x. The optimal load balancing from a temporal

point of view is to run 48 tasks on the GPU while the CPU core processes 16. The experiment

assumes that the application developer is fully aware of all these details when planning the

execution of tasks and codes the application; therefore, the Static policy emulates that behavior

and adapts each execution to this knowledge.

From a temporal point of view, the Static policy balances the load in such a way that the

execution time is minimal. As with DR, DynPerf behaves like Static in all executions (as expected)

achieving the optimal performance with no significant overhead due to taking the decision

dynamically. Regarding energy consumption, running all the tasks on the GPU is the optimal

solution in all four cases (7.813 J, 7.736 J, 7.681 J and 7.536 J respectively for 1024, 512, 256 and

128). The cause of this reduction is the better performance of the GPU when processing smaller

chunks – 2,893 ms to compute the surface in one single block vs. 2,622 ms to compute 64 blocks,

40.97 ms each –; the CPU behaves alike – 8,035 ms vs. 7, 934 ms.

For those cases with a coarse granularity – 1024x1024 and 512x512 –, the low number of tasks

and the big difference in the energy consumption of the computing devices lead the DynEn policy

to schedule the execution of all tasks on the GPU. On finer-grained scenarios, the heterogeneous

systems and the GPU present a different behavior. In the case of 256x256, one task is computed

on the CPU; thus allows the application to reduce 167 ms despite an increase of 501 mJ when

comparing the execution with running all the tasks on the GPU. Using two CPU cores instead of

91

CHAPTER 6. GPU EXPLOITATION

only one increases both the execution time and the energy consumption of each task run on the

CPU by 72 ms and 116 mJ; DynEn dismisses executing more tasks on the CPU to avoid their

growth. Using smaller blocks reduces the difference in time and energy; thus gives more freedom

to the Offload Decision Engine and allows more diverse schedulings as shown by the four

92

6.5. EVALUATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

1

c
o
r
e

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

1 CPU
+ GPU

only
GPU

only
CPU

 0

 5

 10

 15

 20

1

c
o
r
e

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

1 CPU
+ GPU

only
GPU

only
CPU

(a) 1024x1024-sized chunks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1

c
o
r
e

2

c
o
r
e
s

3

c
o
r
e
s

4

c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

 0

 5

 10

 15

 20

1

c
o
r
e

2

c
o
r
e
s

3

c
o
r
e
s

4

c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

(b) 512x512-sized chunks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1

c
o
r
e

2

c
o
r
e
s

3

c
o
r
e
s

4

c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

 0

 5

 10

 15

 20

1

c
o
r
e

2

c
o
r
e
s

3

c
o
r
e
s

4

c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

(c) 256x256-sized chunks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1

c
o
r
e

2

c
o
r
e
s

3

c
o
r
e
s

4

c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

 0

 5

 10

 15

 20

1

c
o
r
e

2

c
o
r
e
s

3

c
o
r
e
s

4

c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

(d) 128x128-sized chunks.

Figure 6.7: Execution time (left) and energy consumption (right) obtained when BS computes a
1024x1024 points surface splitted into chunks of 1024x1024, 512x512, 256x256 and 128x128 (top
to bottom) using the CPU and OpenCL platforms.

93

CHAPTER 6. GPU EXPLOITATION

heterogeneous cases using 128x128 blocks. With the GPU and one core of the CPU at its disposal,

DynEn assigns 12 tasks to the CPU (requiring 2,122 ms and 8.586 mJ to run), while DynPerf

assigns 16 tasks to the CPU (2,016 ms and 8.835 mJ). For the heterogeneous case using 2 CPU

cores, DynEn assigns 18 tasks to the CPU vs. the 23 assigned by DynPerf. Again the growth on

the execution time and energy consumption due to the concurrent exploitation of multiple cores

cuts the number of tasks assigned to the CPU; DynEn and DynPerf assign 18 and 27 tasks to the

CPU with three available CPU cores. For the same reason, when using all the computing devices

of the phone, DynEn reduces the number of tasks assigned to the CPU to 16 while DynPerf

assigns 30 to it. Thus, DynEn shrinks the energy consumption from 12.619 J to 10.247 J while

the execution lasts 569 ms with DynPerf.

6.5.2.3 Canny Edge Detection

Instead of using different input sizes, the third application always processes a 30-frames video.

However, the test considers two different static workload divisions that the developer could easily

implement: Task Partitioning, where the GPU runs the first two tasks of each frame and the CPU

hosts the execution of the last two; and Data Partitioning, where one device processes the whole

frame. Figure 6.9 and Figure 6.9, which focuses on the heterogeneous cases, show the execution

time (left) and energy consumption (right) obtained when running the application and compares

them to the ones obtained with DynPerf and DynEn.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1

c
o
r
e

2

c
o
r
e
s

3

c
o
r
e
s

4

c
o
r
e
s

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

 0

 2

 4

 6

 8

 10

 12

 14

1

c
o
r
e

2

c
o
r
e
s

3

c
o
r
e
s

4

c
o
r
e
s

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

only
GPU

only
CPU

Figure 6.8: Execution time (left) and energy consumption (right) obtained when CED processes
runs using the CPU and OpenCL platforms.

Task Partitioning achieves lower energy consumptions while Data Partitioning offers better

performance. The behavior of Task Partitioning remains exactly the same when the runtime

has two or more cores at its disposal. The time to process the first two tasks of a frame on the

GPU – 12 ms – is higher than what it takes to execute the last two – 9 ms and 5 ms respectively.

Thus, the throughput of the GPU is one frame per 12 ms; when only one core is available, the

CPU requires 14 ms to process each frame and becomes the bottleneck. When two or more cores

are available the execution of the hysteresis of one frame can overlap with the non-maximum

suppression of the following frame; thus, despite the CPU still needs 14 ms to process one frame,

94

6.5. EVALUATION

 0

 100

 200

 300

 400

 500

 600

 700

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

T
a
s
k

D
a
t
a

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n
e
rg

y
 (

 J
)

4 CPU
+ GPU

3 CPU
+ GPU

2 CPU
+ GPU

1 CPU
+ GPU

Figure 6.9: Detail of Figure 6.9 comparing the execution time (left) and energy consumption(right)
obtained with different schedulers on heterogeneous cases.

its throughput rises to one frame every 9 ms. With one CPU core available, the application takes

447 ms and consumes 1.71 J, vs. 408 ms and 1.87 J when using two or more CPU cores.

Data Partitioning assigns the whole processing of a frame to the same computing unit. The

problem with this approach is that the number of frames assigned to the CPU does not progress

according to the number of available cores – 2, 4, 4, 4 frames, respectively for one to four cores–

due to the performance loss when using multiple cores simultaneously. Using one core, the

application takes 423 ms and 1.67 J. When using more than two cores, the execution time shows

no improvement – 395 ms with two and four cores available; indeed, using three cores worsens

the execution time to 407 ms –; however, the energy consumption reflects the usage of more cores

and increases according to the number of used cores – 2.18 J, 2.40 J and 2.79 J.

DynPerf avoids this effect and schedules the executions similarly to Task Partitioning but

adjusting the load imbalances. When only one core is available, DynPerf assigns four non-

maximum suppressions and one hysteresis to the GPU to balance the accumulation of load due

to the additional 2 ms required by the CPU to process one frame. Thus, the execution time is

reduced to 407 ms consuming only 1.65 J. Conversely, when using more cores, the runtime fills

their idle time with Gaussian filter tasks. With two cores at its disposal, the Offloading Decision

Engine decides to run two of them on the CPU reducing the execution time to 395 ms with an

energy consumption of 1.84 J. With more cores available, it assigns six Gaussian filter tasks to

the CPU achieving a 375 ms execution time (80 FPS) with an energy consumption of 2.11 J.

DynEn tends to schedule more tasks on the GPU to avoid the higher consumption of the CPU.

Hence, with one available core, the Offloading Decision Engine submits only 14 non-maximum

suppressions and 27 hystereses to the GPU; thus obtaining an execution time of 418 ms and

an energy consumption of 1.51 J – the GPU alone achieves 451 ms and 1.22 J. From two cores

on, the number of non-maximum suppressions assigned to the CPU raises to 24 to shrink the

execution time to 405 ms (71 FPS) with an energy consumption of 1.61 J.

95

CHAPTER 6. GPU EXPLOITATION

6.6 Summary

Up to the beginning of Chapter 6, the presented solution allowed developers to code mobile

applications in a sequential fashion that run parallelly on the multiple cores of the CPU. This

chapter makes one step further towards the achievement of the goals of this thesis and introduces

a new Computing Platform, the OpenCL Platform, which allows the runtime to exploit not only

the cores of the CPU but also to execute part of the code on other computing devices embedded on

the mobile such as the GPU. Figure 6.10 updates the component diagram of Figure 5.11 to depict

a typical scenario for a smartphone where the runtime exploits cooperatively both computing

devices, the CPU and the GPU, to execute the application.

App Process

Mobile Device

Runtime Process

Task Executor

App

Code

Access Analyzer

Private Data

Register

Public Data

Register

Data Manager

Data Store

CPU

Platform
CPU Backend

O oad

Decision

Engine

GPU

Platform
GPU Backend

Figure 6.10: Diagram of the runtime architecture with a single CPU platform with proxied
executions.

The results of the tests conducted to evaluate the prototype demonstrate the potential benefits

of including the usage of accelerators embedded on the mobile device. Offloading a task execution

to the GPU instead of running it on a CPU core improves the execution either from the temporal

or the energetic point of view. For the CED application, GPU processes a frame ∼12x faster and

consumes an 87% less energy than the CPU; for BS, GPU computes a surface chunk ∼3x faster

and spending 54% less energy; and for DR, GPU recognizes the digits ∼6.5x faster consuming

only a 25% of the energy.

The new computing platform leverages on OpenCL, a standard for general purpose parallel

programming for heterogeneous devices, so that the runtime offloads tasks to computing device

other than the CPU, such as the GPUs, FPGAs or any other accelerator embedded on the device.

Although projects like Aparapi [3] and Sumatra [80] consider automatically generating the

kernels – C99-based functions – out of the Java code, the proposed solution does not go that far,

and the developer still needs to write them. However, it hides away from the programmer all the

details of the interaction between the host code and the OpenCL device and the implementation of

96

6.6. SUMMARY

a load balancing policy. For the runtime to be aware of the existence of an OpenCL implementation,

developers simply need to indicate its existence by adding an @OpenCL directive to the CEI

describing some parameters required by the OpenCL interface such as the number of work-items

running the kernel.

The optimal load division might not be evident as shown in the CED test application. Dynamic

load balancing policies can achieve the desired behavior with no strain for the application

developer. Besides, they allow the application user to decide whether the application should aim

for the lowest execution time, the lowest energy consumption or finding a balanced solution that

considers both of them with no additional effort for the developer. Flexibility aside, delegating

the load balancing to the runtime system also improves the portability of applications. The time

to run a task and the energy consumption of the execution depend on the characteristics of

the hardware running the task; therefore, the task scheduling has to be different for different

computing infrastructures. Implementing dynamic load balancing policies on the runtime adapts

the application to the specific infrastructure with no need of changing its code nor forcing the

programmer to write complicated code that manages it.

97

Part IV

Exploitation of Remote Computing
Resources

99

C
H

A
P

T
E

R

7
REMOTE RESOURCES EXPLOITATION

Besides the processing elements embedded on the mobile device, which have a very

low computing power, applications can turn to the infinity of computing resources

available through the network. These resources can be both nearby resources connected to

the same wireless network, such as laptops, desktops, servers, single board computers or even

other mobiles; and computational services available through the Internet like clusters, grids

or virtualized environments deployed on the Cloud. Applications may use remote resources

mainly for three reasons. First, to overcome the hardware limitations of the mobile device,

applications seek remote, resource-rich nodes able to host processes that require larger amounts

of computational resources than the local ones; for instance, memory-bound functions in need of

additional memory space.

The second reason to offload computation to remote resources is speeding up the execution.

On the one hand, processors on remote nodes are likely to be faster than the ones embedded on

the mobile device; hence, running the long-lasting computations on them shortens the overall

execution time of the application. On the other hand, the number of task running in parallel –

not concurrently – on the local computing devices is small. At its best, within a mobile device, it

can run one task on each core (nowadays, high-end devices have octa-core processors) and one

on each computing unit of the GPU (typically, up to four). Conversely, the degree of task-level

parallelism of an application may be much higher reaching to hundreds of independent tasks.

To fully exploit such parallelism, the application may use several remote resources to run of all

these tasks at a time; thus, the application shortens its execution time.

Finally, the third reason to use remote resources to host the computation of part of the

application is reducing its footprint on the battery of the mobile device. Running tasks on the

101

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

computational devices embedded on the mobile induces an energy consumption as shown in the

previous chapters; offloading the execution of such tasks to remote resources releases the mobile

battery from this burden and allows the device to stay up and running for longer.

In contrast, moving the computation away from the mobile device implies bringing all the

necessary data to run that part of the application into the remote node. Transferring data values

may incur overheads from the temporal, energetic and monetary points of view. The time to place

the data on the target node depends on the bandwidth of the network; the network interface

and the quality of the network signal set the energetic expense, and fees for mobile data from

the network operators and bandwidth from cloud providers influence on the price. Applications

need to evaluate the additional costs and benefits of offloading each task versus a monolithic

execution to find a proper balance of these three factors. Section 7.1 describes the extensions of

the runtime toolkit for handling the task submission and the data management.

Unlike Fog or Edge computing, where remote resources are also devices with high mobility

likely to abandon the infrastructure, the Cloud stands out for its stability and the high availability

of its resources – usually five nines. Hence, network interruptions disturbing communications

among cloud nodes are very exceptional and not considered in this dissertation. However, as

a consequence of the high mobility of the mobile devices, network breakdowns disconnecting

the main device from the remote nodes are likely to happen. Disruptions can go from glitches

caused by network handovers or protocol switches to permanent isolation related to out of

range situations. Applications have to adapt dynamically to these changes and recover from

them. In the case of having a long-lasting network disruption while running an application

whose requirements match the features of the computing resources embedded on the device,

the computation should complete and produce the expected result even if the connection never

reestablishes. Section 7.4 describes the fault-tolerance mechanisms implemented on the runtime

to automatically handle these situations hiding them away from the programmer.

7.1 Cloud Platform

For the runtime to use external resources, it requires a new Computing Platform: the Cloud

Platform. As with the CPU and the GPU, this platform has to implement the mechanism that

enables the execution of tasks on the resources – other nodes of the infrastructure – and provide

the runtime toolkit with the forecasts for the temporal, energetic and monetary costs for the

mobile device of running a task remotely.

Unlike the previously described platforms, the Cloud Platform potentially controls a big

amount of resources separated across several nodes. If not appropriately addressed, the com-

plexity of managing a large infrastructure may lead to a significant computational overhead. To

release the mobile device from this load, the platform consists of two parts. A single, centralized

frontend deployed on the mobile device computes the forecasts for the runtime to determine

102

7.1. CLOUD PLATFORM

whether offloading the task to remote resources or running it locally. The backend of the plat-

form is a distributed system organized as a hierarchical peer-to-peer network. Each node of

the infrastructure hosts an agent that persistently listens to the network waiting for new task

submissions.

Once the Offload Decision Engine picks the Cloud Platform to host an execution, it forwards

the corresponding task description to the frontend of the platform where a Scheduler picks one of

the nodes to submit the task. For the initial version of this component, the Scheduler implements

a basic scheduling policy that estimates the end time of the task on each node and picks the one

finishing the execution earlier. For that purpose, the Scheduler keeps track of the number of

tasks waiting to execute on each node and performance-related information of the nodes when

running similar tasks, obtained through the profiling of previous tasks. The tiebreaker criteria

for those cases where multiple nodes can finish the execution at the same time is the size of

input parameters missing on the node. The more bytes of input values are missing on the node,

the lower priority it has to host the task execution. Again, two nodes with the same estimated

end time can have the same amount of input data missing – this situation is very likely for the

first tasks of the application –; for definitely setting a preference on these cases, the Scheduler

prioritizes those nodes without receiving a task submission in a longer time. Chapter 9 describes

an evolved system implementing a more sophisticated policy and releasing the mobile device

from the burden of its computation.

Figure 7.1 depicts the architecture of the Cloud Platform and the described flow to execute a

task on the remote CPU cores. Upon the selection of one node, the frontend sends through the

network an internal command to the backend instance on the corresponding node to offload the

execution of the task (step 1). All the communications through the network among components

of the runtime toolkit transfer the information using TCP sockets. To enable non-blocking

communications that allow sending messages to other nodes without stalling the processing, the

asynchronous management of the threads to read from and write to these sockets is enclosed

within a Communication component that is replicated on every process of the infrastructure. This

component leverages on the non-blocking I/O library, a set of APIs offered by the Java language to

perform intensive I/O operations. The Scheduler in the frontend of platform submits the execution

command by asking the local Communication component to transfer the command to the remote

Communication component instance of the corresponding backend so that the latter delivers it to

another Scheduler component on the backend of the platform.

Unlike the Scheduler component on the frontend, which only selects a resource to host the

execution, the Scheduler on the backend is the responsible for the proper execution of the task

on the resource. As with the Scheduler components for the CPU and OpenCL Platforms, the

Scheduler on the backend not only plans the execution of the task but also ensures that all the

data values required to produce the proper result are available to the executing resources. To

control the data dependencies the Scheduler leverages on an instance of the Data Manager as

103

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

2

Data ManagerData Manager

Mobile Device

Runtime Process

Data Manager

Task Executor

Cloud Platform

Frontend

Scheduler

O oad

Decision

Engine

C
o
m

m
u
n

ic
a
ti

o
n

C
o
m

m
u
n

ic
a
ti

o
n

1

Remote Node

Worker Agent

Thread

Pool
6

2

3

4

5

Cloud Platform Backend

Scheduler
6

8
9

7

10

Figure 7.1: Architecture of the Cloud Platform illustrating the flow involving a task execution.

previously described platforms do. First, the Scheduler queries the Data Manager about the

existence of every datum used as an input for the just received task; when the latter notices that

the data values are available on some node of the whole infrastructure, it contacts the former

back to notify the existence (steps 2 and 3). At this point, the Scheduler plans the preparation of

all the missing input values and the execution of the task on the remote resources. Currently, the

Scheduler prepares all the input values as soon as it receives the existence notification for every

input datum. Task executions start as soon as there are free resources following a first-come,

first-served policy based on the moment when all the input values are ready for being processed.

Given that the only processing devices exploited on the remote node are its CPU cores,

ensuring that a data value is on the node is enough to consider it prepared for use. For that

purpose, the Scheduler contacts again the Data Manager to request each of the input values

(step 4). If one value is not currently on the remote node, the Data Manager fetches it from

another location. Once the value is on the node, the Data Manager notifies the presence of the

value to the Scheduler (step 5), which enqueues the task (step 6) so that one of the threads of the

Execution Pool polls it from there and runs it (step 7). At the end of the execution, the thread

informs the Scheduler about the task completion (step 8), and the latter publishes the results of

the task on the Data Manager (step 9). Finally, the backend of the platform reports the execution

of the task to the frontend through the Communication component (step 10). Along with the

task completion command, the backend sends the profiling information of the task execution

indicating the execution time and the size of every input and output datum. Thus, the Offload

Decision Engine and the Scheduler of the frontend of the platform can use this information to

assess the models for forecasting the costs of future executions.

7.2 Data Manager Implementation

The way how remote workers obtain the data values has a strong impact on the time, energy

and money dedicated to any execution. Executing an application with the mobile device shipping

to the corresponding remote node all the necessary data values before running the task and

104

7.2. DATA MANAGER IMPLEMENTATION

collecting all the results at its end leads to very high costs. The limited incoming and outgoing

bandwidths of the network interfaces may convert the transfer of data values in a bottleneck

for the execution. Besides, the transmission and reception of data through the network incur an

additional energy consumption and potentially some monetary costs if the network is subject to

fees.

The design of a system that enables sharing data among all the nodes of the infrastructure

is of vital importance to avoid raising the costs of the execution unnecessarily passing through

the mobile device. For that purpose, the implemented mechanism builds on a data directory that

maintains the correspondence between the Id associated to a datum with the locations where to

find its value. Upon the obtaining of a specific value – computed by a task or transferred from

another node –, the Data Manager instance storing it registers on the directory the presence of

the datum on that process. To obtain a missing input value, Data Managers look up the nodes

containing the desired datum on the data directory and select one of the multiple sources to

request the transfer of the value directly to the source process. Data Managers also turn to this

data directory to check the existence of the value. If the datum is registered, the value already

exists and the directory notifies the querying Data Manager. Otherwise, the directory registers

the query and notifies the existence upon the registration of its first location.

DataID Locations

d2v1

d10v1

worker B

worker A

worker A

master

d1v1

1 Request data existence

d1v1 exists?

2 Notify data creation

d1v1 created

worker B

worker A

3 Notify data existence

d1v1 exists

4 Request data locations

5 Data locations

d1v1 sources?

worker B

6 Request data

7 Transfer data

d1v1?

d1v1

8 Notify data creation

d1v1 copied

9 Notify data creation

d2v1 created

Figure 7.2: Data creation notification and transfer request.

Figure 7.2 illustrates all the interactions that enable Worker A to obtain the value d1v1,

created by another task that runs on Worker B. When Worker A receives the task, it checks out

the existence of all the input values – among them d1v1 – by querying the data directory (1). If

the data value is not available yet, the directory registers the requests and waits for the value

creation notification (2); conversely, if the value-existence is already registered, the directory

immediately confirms the data availability to Worker A (3).

105

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

When the worker notices that all the input values already exist, its scheduler processes the

task and checks the local availability of the input data. In the case of missing input values – for

instance, d1v1 –, the scheduler decides when to trigger the obtention of that piece of data. To

obtain a value, the worker retrieves all the available locations from the data directory (4 and

5). It picks one of the sources trying to avoid the mobile node and opens a connection to the

corresponding node – Worker B – through which the worker asks for the actual value (6) and the

hosting node sends it (7). Once copied, Worker A registers a new location for data d1v1 in the

data directory (8)

Once all the input data has been obtained, the worker node can execute the task according

to the plan established by the scheduler. Once the task ends, the node publishes the creation of

the output values into the directory (9) and the notification is forwarded to every worker that is

waiting for that value; thus, enabling the execution of successor tasks, as happened with step 3.

The data directory is a very critical data structure accessed by all the processes of the

infrastructure for querying and updating its content. The main application updates it when it

creates new values to use during task executions and queries it to retrieve the results of such

executions. Worker nodes request the locations of the input values of a task before executing it

and update the locations of each execution results at completion. In the same way, the runtime

system does so when it decides to run a task on the mobile device itself.

A first simplistic approach consists in centralizing the management of the content of the data

directory on the runtime service process since it hosts information about data created by all the

applications. This strategy has two strong points. First, implementing such approach is easy and

quick; simply, the workers contact the mobile device on every access to the structure. The second

advantage is the immediacy of access for the computing platforms using the computing devices

embedded on the mobile.

The main drawback of this approach is the overheads caused by hosting this structure.

Processing the accesses to the data directory implies an additional computational load that

could turn the host into a bottleneck. Besides, the network conditions on the mobile also have

a significant impact on the whole system performance. Using a network with a high latency

would slow down every query to the directory from the remote nodes. The energy consumption

of the mobile also increases with the reception, processing and replying of each access to the

data directory, and transferring data in and out from the phone or the cloud may also incur some

economic expenses.

Implementing the data directory as a hash table distributed among nodes of the infrastructure

mitigates these problems. The computational cost of hosting the data structure scatters across

all the nodes containing the information, and the computational bottleneck disappears. Besides,

the workers composing the remote infrastructure are usually nodes on the same cluster or VMs

deployed on the same Cloud. The interconnection between this nodes is usually a high-speed and

low-latency network; thus, also the latency problem disappears when the workers interact with

106

7.2. DATA MANAGER IMPLEMENTATION

the directory. The mobile network latency only affects to interactions between the mobile device

and the directory. However, the mobile device usually only runs tasks whose input data is already

on the phone. Transferring the data back from the remote resources and processing the task on

the local computing devices, which are likely to be slower, is seldom worthy; the Offload Decision

Engine tends to opt for offloading the computation onto the remote resources. To mitigate the

network latency problem on the queries from the mobile device, Data Managers check if the

requested values are already in the local process before querying the data directory. Checking

the local content before querying the data directory not only lightens the impact of the latency on

most of the requests to the Data Manager, but also reduces the number of commands incoming

and outgoing from the mobile device and, hence, the energetic and monetary costs associated to

them.

To implement the distributed hash table, the nodes of the infrastructure build a peer-to-peer

network organized as a ring. The results of evaluating the hash function for a random number in

every peer determines its respective position on the ring. The neighbors of one peer are those with

the closest larger and smaller values. Each peer is responsible for a range of the hash function

image corresponding to the hash value of a set of datum identifiers. The first value of the range

corresponding to one peer is the hash value that determined its position on the ring; the end of

such range meets the beginning of the range controlled by its successor, – i.e., the neighbor with

a larger hash value.

On strict ring topologies, one peer only knows its predecessor and successor. Therefore, to

query/update the value associated with a hashcode out of its range, the peer contacts one of

its neighbors. If the value is out of the range of this immediate neighbor, the latter forwards

the message to its other neighbor until it reaches the peer responsible for that hashcode. If

the responsible peer needs to reply the message, it submits a notification that retraces the

path followed by the query. To reduce the number of hops needed to reach the responsible for

a hashcode, each peer knows not only its successor in the ring, but it also has a lookup table

that indicates the responsible peer for a set of hashcodes: the first hashcode of its range plus an

offset (powers of 2). When the peer needs to interact with the data directory for a given datum, it

computes the hashcode of the identifier of the datum, looks for the closest smaller hashcode on

this table and sends the message to the corresponding peer. In the case that the receiving peer is

not responsible for that hashcode, the latter forwards the message according to the values in its

table. Every message registers its original source; therefore, the peers can directly contact that

source to reply the message.

Figure 7.3 depicts an example of a five-peer network and 32 possible hashcodes. Worker A

responds for the interval starting at hashcode 8 and ending at 13; Worker B, 14 to 19; C, 20 to

25; D, 26 to 1; and E, 2 to 7. The figure also shows the lookup table in Worker A and the route

followed by an interaction between Worker A and the data directory for the datum d1v1. In this

example, Worker A queries the locations of the datum, whose hashcode is 29. First, it checks if the

107

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

hashcode is within its responsibilities; it is not, so it looks for the peer responsible for hashcode

29. Since that entry does not exist, it looks for the closest lower hashcode in the table, 8+24 –

i.e., 24 –; and sends the request to the corresponding peer. Upon the query reception, Worker C

follows the same process: it checks if hashcode is within its range, no; looks for the next possible

responsible: Worker D; and forwards the request. Worker D is the actual responsible for hashcode

29; therefore, it gets the registered locations for the value and ships them to Worker A.

Hash

8

8+1

8+2

8+4

8+8

8+16

worker E

hash 2

worker A

hash 8

worker B

hash 14

worker D

hash 26

worker C

hash 20

Resp

A

A

A

A

B

C

Figure 7.3: Example of a data directory query in a five-node peer-to-peer network sharing a [0-31]
hashcode range and the route followed by a query access to hashcode 29 from Worker A.

The described lookup procedure ensures reaching the responsible node in min(N,O (log2 H))

hops, where N is the number of nodes in the network and H the size of the hash function image.

For small networks, this system does not show any inconvenience; for large networks, the request

should do several hops before reaching its target. To reduce the number of hops, only a subset

of peers are part of the ring and store the data of the distributed hash table. The rest of peers

are represented in the ring by one of these selected peers: the one with the closest lower hash

to its initial hash value. Represented peers are unaware of the content of the data directory;

however, they contain a replica of the lookup table of their representative peer. Thus, they can

access the data directory without the need for using their representative as a gateway and avoid

an additional hop on their route.

7.3 Cost Forecasting

Besides managing the resources in the platform and ensuring the proper execution of the tasks on

them, Computing Platforms have to provide the forecast of the temporal, energetic and monetary

cost for the mobile device of running the task on its resources.

The three models for the Cloud Platform are very similar to the models used for the CPU

and the OpenCL Platforms; however, two important considerations differentiate them from the

ones described in sections 5.1 and 6.5. First, workers can directly fetch data values from other

workers; therefore, the mobile device only needs to transfer those values that are not on the

remote nodes. The second factor to consider is the heterogeneity of the resources managed by the

platform. While the CPU and the OpenCL platforms considered all the processing elements of

108

7.3. COST FORECASTING

the platform to have the same features, the remote resources are likely to be different, especially

when using nearby resources such as multiple laptops or servers.

The actual computation of the task does not incur any energetic expenditure for the mobile

device since the energy dedicated to it is part of the remote resource consumption; hence, it has no

impact on the battery lifetime. Regarding the price, computing services usually do not charge for

the time that the user is actually computing on the resources, but instead, they charge according

to the time that a user reserves them. For instance, Cloud providers charge the same amount

for a VM instance whether it is actively computing or idle. Neither the energy nor the economic

model considers the costs of executing the task; they only take into account the cost of the data

transfers related to the task. Since workers prioritize obtaining the data from another worker,

the mobile device has to send only those input values without remote locations. Applications

can access any of the values created or updated by the task and transfer it back to the mobile;

however, it is impossible to determine, at the moment of computing the forecasts, whether the

mobile will fetch the value or not. Assuming a worst-case scenario, both models presume the

mobile to bring back all the output of the task. Both models compute the total sizes of the amount

of data to emit to and receive from the remote workers and respectively multiply them by the

price and energy consumption for emitting and receiving one byte.

To estimate an end time for the task, the platform first needs to determine on which node the

task will run. Given that the criteria to pick a resource is the earliest end time, the platform only

needs to estimate the end time on each resource to find out on which one runs the task and return

the corresponding forecast. As with the CPU and the OpenCL Platform, to compute the end

time, the platform considers two aspects: the expected start time and the length of the execution.

The heterogeneity of the resources managed by the platform complicates the forecasting of

the temporal cost for the task since the platform has to consider a different behavior of each

implementation on each node. For that purpose, the platform maintains the performance stats of

each node in separated Implementation Profiles and uses the shortest average execution time of

all the possible implementations of the task as the time required to compute the task on the node.

For estimating the start time of the task, the platform takes into account when the node has

free resources to host the execution and when all the data is available on the node to launch it.

For the resource availability, the platform just divides an estimation of the timespan to compute

the workload assigned to the node sequentially by the number of CPU cores on it. Estimating

a time for the obtention of the input data of the task requires knowing the creation moment of

each datum and the timespan of the possible transfers from their producing node. To determine a

datum availability on a node, the Cloud Platform not only stores the expected end time of the

task producing the datum but also for each datum its expected obtention time on each node

managed by the platform. Thus, while computing the time forecast, if a datum has a registered

obtention time for the node, the platform uses that one; otherwise, it is necessary to estimate the

obtention time. If that datum is expected to be on any other node part of the platform, the node

109

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

should fetch it from there immediately or upon its creation through the high-speed connecting

the workers. The platform determines the transfer time using the size of the datum – obtained

from the Core Profiles – and the network bandwidth – deduced from the profiles of previous

executions. Otherwise, if the register has no node of the platform expecting to have the datum,

the platform considers that the master node generates it; the node will fetch the value using the

mobile network and the transfer time computed by the platform should reflect the lower network

bandwidth. When the platform offloads the task, it registers for each output datum the expected

end time for the task as the expected obtention time for the value on the node. For those input

data values whose obtention time on the node is not registered yet, it registers the computed

estimation. Figure 7.4 notates the described models.

7.4 Fault tolerance

As aforementioned, the high mobility of mobile devices leads to temporary or persistent network

disruptions; applications have to be prepared to monitor the environmental conditions and react

to changes in them.

Typical causes of network disruptions are Wi-Fi network handovers and switches on mobile

network protocol which produce a temporary isolation of the mobile and may change the network

address of the device. To tolerate these situations and avoid losing the master-workers connection

persistently the mobile sends a message to every worker node upon the reconnection describing

the new network context – mainly containing the new IP address. Worker nodes update every

reference to the master and re-establish any interrupted connections.

For long-lasting disruptions, both, mobile and worker nodes, should keep progressing despite

their isolation. Workers autonomy ensures that the network interruption has the smallest impact

possible on the performance of the application in the case of reconnection; autonomy on the mobile

device allows applications to give the expected result to the user despite the poor performance.

When the network disruption bisects the infrastructure, it is of capital importance that

both parts maintain the ability to know which reachable nodes can provide the values required

to run a task. Being able to fetch values from other nodes enables the execution of pending

dependency-free tasks that produce new values; publishing the existence of such results releases

other tasks from pending data dependencies allowing their execution and the whole application

progress. Therefore, the data directory plays an essential role on the autonomy of the sections.

On the mobile side, the device becomes totally isolated from the rest of the infrastructure;

thus, it can check which values remain available merely by looking at its local data store. Storing

the data directory distributed only among the remote nodes protects its content from any problem

with the mobile network and guarantees worker nodes access at any time. Therefore, all the

offloaded tasks can run except for those involving input values only located in the mobile. In the

case of an eventual reconnection, the mobile device behaves as if it were recovering from a glitch,

110

7.4. FAULT TOLERANCE

End time:

RAn =

∑
c∈CEs

TCcn ∗ XBTcn

NCn

BRdn =1MD(d)∗BNe + (1−1MD(d))∗BRN

TTdn = DSd/BRdn

DAdn = DCd + (1−1NDn (d))∗TTdn

DAtn = max
d∈IDt

DAdn

STtn =max{RAn,DAtn}

X Ttn = min
i∈Impl t

X Tin

ETtn = STtn + X Ttn

ETt =min
n∈N

ETtn

Energy consumption:

ESd = DSd ∗1MD(d)

EE t = ENE ∗ ∑
d∈IDt

ESd

ERt = ENR ∗ ∑
d∈ODt

DSd

E t = EE t +ERt

Monetary cost:

ESd = DSd ∗1MD(d)

CE t = CNE ∗ ∑
d∈IDt

ESd

CRt = CNR ∗ ∑
d∈ODt

DSd

Ct = CE t +CRt

Variable Description
RAn Expected time when resources become

available on node n
CEs Application Core Elements
TCcn Number of tasks of core c pending to

run on node n
XBTcn Execution time for the best implementation

for core c on node n
NCn Number of CPU cores available on node n
BRdn Bandwidth to receive data d on node n
MD Set of values only contained on the mobile
BNe Network sensor emission bandwidth
BRNe Bandwidth of the network among

remote nodes
TTdn Time to transfer value d to the

node n
DSd Data size for value d
DAdn Time when value d is available

on the node n
DCd Time when value d is generated
NDn Set of values only contained on node n
DAtn Time when all ID values for t

are available on the node n
IDt Input data values for task t
STtn Expected start time for task t on

node n
X Ttn Execution time for task t on node n
Impl t Set of implementation for task t
X Tin Execution time for implementation i

on node n
ETtn End time for task t on node n
ETt End time for task t
N Set of nodes managed by the platform
ESd Emission size for value d
EE t Energy to emit input data for task t
ENE Energy to emit one byte
ERt Energy to receive results of task t
ENR Energy to receive one byte
ODt Output data values for task t
E t Energy consumption for task t
CE t Cost to emit input data for task t
CNE Price for emitting one byte
CRt Cost to receive the results of task t
CNR Price for receiving one byte
Ct Cost for task t

Figure 7.4: Models to forecast the end time, energy consumption and monetary cost of running a
task t with implementation i on the local CPU cores.

and submits the message describing the new network context. To update the content of the data

directory and include all the values created during the network disruption, it is enough that

the mobile device publishes all the values computed during the isolation period since the rest of

the nodes already registered the new values as usual. Once the data directory synchronizes its

111

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

content with the mobile device reality, the execution goes on as if the network never dropped.

Otherwise, if the connection never re-establishes, the mobile device must be able to provide a

result by running all the missing tasks on the local computing resources. Initially, the mobile

device runs the tasks assigned to the platforms managing the embedded computational resources:

the CPU and OpenCL platform. Both platforms prioritize the execution of those tasks whose

input values are already on the node over those with pending data dependencies or missing input

values; hence, those tasks with all the input values on the mobile at the moment of the disruption

can run. Such executions create new values that potentially release from data dependencies other

tasks scheduled to run on the local computing devices. These just dependency-free tasks, whose

input values are on the mobile, have priority over older tasks with some input value missing, so

they can execute and keep on the progress of the execution as if the network never went down.

If the connection is not re-established, the application can reach a point where some computing

resources stall because all the scheduled tasks require values created by tasks offloaded onto

the Cloud. For being able to go on with the execution, these values need to be computed again

by re-running the producing task on the master. When the Offload Decision Engine realizes

that the mobile is working off-line and that the devices are awaiting for tasks blocked due to

external dependencies, it picks one of the blocked tasks and iteratively checks the state of the

input parameters. Upon the detection of a missing input parameter, the Offload Decision Engine

looks for the task producing such datum and checks the viability of its execution. If all its input

parameters are on the mobile, it submits the execution of the task to one of the computing

platforms handling embedded computing resources. Otherwise, it tries to run the task producing

the missing value. This recursive procedure ends up becoming a backtracking mechanism that

allows the runtime to generate any missing value to execute a task.

If the disruption persists for longer, the embedded computing resources will execute all the

tasks scheduled to run on them, and they will stall not because of the missing input values but for

the lack of tasks scheduled to run on them. If the Offload Decision Engine notices that some local

resources are unemployed and all the tasks assigned to the corresponding platform are already

running, it reassigns pending tasks previously offloaded to the Cloud Platform and submits their

execution to the platform with available resources.

To prevent this backtracking process from running all the offloaded tasks locally to generate

the values, the runtime fetches output values of offloaded tasks to establish checkpoints to avoids

the re-execution of the whole sequence of tasks preceding the data value generation. Collecting

all the results at the end of the producing task guarantees that no task is re-executed on the

mobile device; however, it increases the energetic and monetary costs of the execution due to the

amount of additional data transferred through the network. To reduce the amount of information

brought back to the mobile for checkpointing purposes, the runtime picks some strategic values.

For that, it splits the graph – currently, fixed-size partitions according to the chronological order

of task generation – and analyzes each partition to determine which of the values generated

112

7.5. EVALUATION

within the block might be used on other partitions; i.e., it only saves the outcoming version of

each datum and dismisses all the intermediate ones. The selected values are transferred back

to the mobile device as soon as the producing worker notifies their creation. Once the runtime

fetches all the output values from a block, the tasks of the block are removed from the runtime.

7.5 Evaluation

This section presents the results of the test conducted to evaluate the impact of enabling the use

of remote resources on applications. In this case, the tests run a compute-intensive application:

HeatSweeper, an excerpt of the workflow of several engineering solutions. The goal of the

application is to find the optimal placement of 1-to-N heat sources on the surface of a solid body

to reduce the time to heat it up. For that purpose, it performs an intensive search algorithm

looking for the best combination of 1-to-N location for the heat sources. To simulate the heat

diffusion, the application relies on two different solvers based on the Jacobi (used on the tests)

and Gauss-Seidel equations.

The COMPSs version of the application encapsulates each simulation within a task – the

simulate Core Element – that receives the simulation parameters containing the position of the

heat sources along with a surface description and some algorithm-constant parameters. At the

end of the simulation, the task generates a report describing the results of the simulation. The

application compares pairs of these reports using the getBest method, also encapsulated as a

Core Element, creating a binary tree of comparisons to select the best combination. Figure 7.5

depicts the task dependency graph of a HeatSweeper execution that optimizes the placement of

up to three heat sources with four possible locations.

Figure 7.5: HeatSweeper task dependency graph for a three sources optimization on four possible
locations resulting in 14 simulations and 13 getBest executions. Dark blue nodes represent
simulate tasks and cyan nodes depict getBest executions.

The tests consider two different configurations that aim to optimize the placement of up to

two heat sources. The low-resolution configuration, with only nine possible locations and short

simulations of up to 50 time-steps each, which creates only 45 simulate tasks and 44 getBest.

The purpose of this configuration is to verify the behavior of the runtime when dealing with

113

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

applications with a low number of short-lasting tasks. To emulate large computations, such as

the execution of scientific workflows, the tests consider the high-resolution configuration where

the sources have 25 possible spots on the surface and simulations take up to 10,000 time-steps.

This configuration generates 325 simulate tasks and 323 getBest task.

As with the tests conducted for the CPU and OpenCL Platforms, the application runs on a

OnePlus One smartphone with the the Cyanogen OS 13.1.2 implementation of Android 6.0.1

using the default processor governor (interactive). However, neither the CPU nor the OpenCL

platforms are enabled to run tasks. The runtime only has one single Computing Platform, the

Cloud Platform, which offloads tasks to remote resources. Regarding the resource managed by

the platform, the test sets out two different environments: one where the runtime offloads the

tasks to a laptop connected to the same local network, and a second one where the resources are

in a geographically remote location, and the mobile requires Internet to reach them. For the Local

Area Network, the laptop has an Intel i7-2760QM quad-core processor at 2.40GhZ and 8 GB of

RAM. In particular, the network connecting both devices is an 802.11g wireless network. On

the Wide Area Network scenario, the mobile can use a virtual cluster on a private OpenNebula

cloud. The cluster has eight quad-core VMs deployed on nodes with one hexa-core Intel Xeon

X5650 processors with hyperthreading at 2.67 GHz and 24 GB of memory interconnected by

a Gigabit Ethernet network. In this case, the mobile also connects to the Internet through an

802.11g network; the RTT among the mobile and the remote nodes is 133 ms. Table 7.1 contains

the energy and time-related measurements obtained when benchmarking the computing devices

that compose the testbed while running the Core Elements of the application.

50 iters. sim. 10k iters. sim. Merge
Time (ms) Energy (J) Time (ms) Energy (J) Time (ms) Energy (J)

Mobile - screen off 35,549 6.72 6,794,135 1,350 negl. negl.
Mobile - screen on 0% 1,483 2.85 288,667 561.61 negl. negl.

Laptop 38 - 6,072 - negl. -
Cloud 57 - 27,979 - negl. -

Table 7.1: Relation between each computing configuration (Mobile with screen off, mobile with the
screen on at 0% brightness, laptop or cloud VM) with the analysis of each core element execution.

Table 7.2 shows the results obtained through a network benchmarking to measure the

effective bandwidth of the connection and the energy consumption related to its usage under

different environmental conditions. Unlike the computing capacity, where the operating system

reduces the processor frequency when the screen is off to save energy, the network performance

is not affected by any battery-saving policy since the power difference matches the display

consumption. Enabling the Wi-Fi interface of the mobile sets a base consumption of 0.04-0.12 W

depending on the strength of the network signal. The power difference due to the signal strength

is constant regardless the action performed on the network and the latency of the network.

However, it has a significant impact on the effective bandwidth of the network connection what

increases the cost per sent/received byte. To evaluate the runtime, the tests consider that the

114

7.5. EVALUATION

strength of the signal remains above an 80%.

Sensor Sensor Phone ↔ Laptop Phone ↔ Cloud
Off Idle Phone → Laptop Laptop → Phone Phone → Cloud Cloud → Phone

Power
(W)

Power
(W)

Bandwidth
(MB/s)

Power
(W)

Bandwidth
(MB/s)

Power
(W)

Bandwidth
(MB/s)

Power
(W)

Bandwidth
(MB/s)

Power
(W)

Screen off
100% signal 0.05 0.08 2.31 0.63 2.68 0.42 0.34 0.45 0.50 0.35

Screen 0%
100% signal 0.31 0.37 2.38 0.94 2.61 0.70 0.34 0.73 0.50 0.61

Screen 0%
50% signal 0.31 0.43 0.77 1.00 1.13 0.77 0.32 0.78 0.36 0.69

Table 7.2: Network benchmark results.

7.5.1 Exchanged Message Evaluation

The first conducted test aims to measure the amount of traffic incoming to and outgoing from

the mobile phone when using different numbers of worker nodes - one to eight - and different

distributions of the data directory - centralized on the mobile, distributed across all the nodes

of the infrastructure and distributed only across the worker nodes. The placement of the data

directory has a significant impact on the kind and number of messages transferred from and to

the mobile. Table 7.3 shows which types of message are sent from and received by the mobile

device depending on the deployment of the data directory. Regardless of the locations of the data

directory, every time that the mobile device fetches a data value located at a remote node, it sends

a data value request to the remote node and receives the value; and vice versa when a remote

node needs a value hosted by the mobile. In case of a centralized data directory on the mobile,

the device receives the creation notifications of every value remotely computed and receives

and replies all the existence or sources queries required by the workers. Conversely, when the

directory is located only on the worker nodes, the mobile publishes the creation of data values –

locally computed or received from a remote node –, subscribes for the existence and sources of

values and receives their corresponding notifications. In the case where the phone has a share

of the data directory and the other parts are distributed among the workers, the interactions

with the directory depend on the specific hashcode of the value and the responsibilities of the

mobile device. If the mobile node is responsible for the hashcode of one data value, it receives any

remote data creation notification; otherwise, it sends creation notifications for those values locally

computed. Similarly, the subscriptions to existence/sources and their corresponding notifications

also depend on specific data hashcode.

Table 7.4 presents the number of messages and the number of bytes transferred in to and out

from the mobile device during a low-resolution execution according to the number of workers used

and the same data directory placements as in the previous table – only in the phone node (Mobile),

shared among the workers (Workers) or across the whole infrastructure (Mobile + Workers).

Although the scheduler in the frontend of the Cloud Platform is aware of the data locality, tasks

115

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

Mobile Mobile+Workers Workers
Creation notification Received Received/Sent Sent
Existence request Received Received/Sent Sent
Existence response Sent Received/Sent Received
Sources request Received Received/Sent Sent
Sources response Sent Received/Sent Received
Value request Received/Sent Received/Sent Received/Sent
Value transmission Received/Sent Received/Sent Received/Sent

Table 7.3: Direction of each type of message according to the placement of the data directory:
centralized on the mobile device (mobile), hosted by the worker nodes (Workers) or shared among
all the nodes composing the infrastructure included the mobile (Mobile+Workers).

running on one node of the infrastructure may have dependencies with values generated on other

nodes. The more nodes being part of the infrastructure, the less likely one node is to host all

the values that a task requires; thus, nodes fetch values from other peers more often. Besides,

as the infrastructure grows, the smaller the local share of the directory gets; and hence, the

more queries to the data directory require information stored on other nodes. When the mobile

device hosts the data directory – either the whole of it or just a share –, the number of messages

processed by it increases as the size of the infrastructure does.

Mobile Mobile + Workers Workers
number of
messages

input
bytes

output
bytes

number of
messages

input
bytes

output
bytes

number of
messages

input
bytes

output
bytes

1 worker 856 124,275 137,387 799 94,753 162,626 765 83,073 168,123
2 workers 961 136,051 148,213 886 97,854 179,228 765 83,984 168,123
4 workers 1,008 140,384 153,054 971 111,861 185,599 765 84,575 168,123
8 workers 1,016 140,525 154,587 1,098 136,211 199,820 765 84,906 168,123

Table 7.4: Number of messages and number of bytes received/transmitted by the mobile during
a low-resolution execution according to the size of the underlying infrastructure and the nodes
hosting the data directory (the mobile device, the worker nodes or shared across the whole
infrastructure.

Distributing the data directory among all the nodes, including the mobile device, may enforce

the master to interact with remote nodes to notify every locally created/accessed value and,

besides, to reply queries from other nodes fetching values. If the mobile manages the hashes

corresponding to all the values locally accessed, it only needs to reply the existence and sources

requests from other nodes. Otherwise, if it manages none of the values it accesses, it needs

to submit a creation notification for every value creation, request existence/sources requests

corresponding to the values it fetches and to reply to queries from remote nodes to the controlled

values. Besides, it assumes part of the traffic to forward to other nodes of the ring. Compared

with the centralized approach, the option of distributing the data directory among all the nodes

can either reduce or increase the number of messages.

Conversely, when only worker nodes host the directory, the mobile interacts with the data

116

7.5. EVALUATION

directory just to fetch remote data and to notify the local creation of data values. In this case, the

number of messages depends on the application itself rather than on the infrastructure. The size

of the output data – queries and notifications – remains constant, but the input size may change

depending on the number of sources for the accessed values. The more nodes being part of the

infrastructure, the more likely they are to grow. When the directory is deployed only atop worker

nodes, the number of messages and the size of the input communications is always smaller than

in the other deployments; the more nodes the infrastructure has, the more significative this

reduction is.

Table 7.5 shows the same information included in Table 7.4 but for a high-resolution execution.

Despite the bigger number of messages and the larger number of bytes transferred in to and

out from the mobile device, the conclusions extracted from it are the same as with the low-

resolution test case. When the mobile device hosts the data directory, either partially or totally,

the number of messages and the number of transferred bytes grows along with the infrastructure;

while they remain almost constant when the data directory is placed on the workers. Sharing

the data directory across the whole infrastructure may increase or decrease the number of

exchanged messages depending on the hashcode set associated to each node when compared to

the centralized approach.

Mobile Mobile + Workers Workers
number of
messages

input
bytes

output
bytes

number of
messages

input
bytes

output
bytes

number of
messages

input
bytes

output
bytes

1 worker 6,238 912,052 1,007,647 5,712 678,521 1,174,913 5,525 604,123 1,222,494
2 workers 7,817 1,108,741 1,225,531 6,635 737,570 1,330,608 5,525 612,284 1,222,494
4 workers 7,254 1,017,989 1,114,466 8,244 956,214 1,552,528 5,525 614,921 1,222,494
8 workers 7,437 1,037,932 1,135,8892 8,963 1,044,699 1,632,062 5,525 616,648 1,222,494

Table 7.5: Number of messages and number of bytes received/transmitted by the mobile during a
high-resolution execution according to the size of the underlying infrastructure and the nodes
hosting the data directory (the mobile device, the worker nodes or shared across the whole
infrastructure.

7.5.2 Overall Performance Evaluation

The goal of the second test is to evaluate the impact of the Cloud Platform on the overall

system performance. For that purpose, the test measures the execution time and the energy

consumption of running both, the low and high resolution, using the available resources with

different configurations.

7.5.2.1 Data Directory centralized on the mobile device

Running the low-resolution test case as a regular Android application takes 71 s and has an

energy consumption of 135.52 J when the screen is on, and, when it is off, 1,631 s and 251.72

117

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

J. Given that the former is both, better performing and less consuming, it is the baseline for

comparisons.

Figure 7.6 contains two charts that illustrate the relation between the number of surrogate

nodes and the application timespan (left) and energy consumption (right) when the data directory

is placed wholly on the mobile device. The two isolated points represent the obtained values for

the mobile submitting tasks to the laptop, and the continuous lines illustrate the evolution of

the runtime while offloading to one, two, four and eight cloud instances (4 to 32 cores). The cross

and the dotted line show the ideal values that the runtime is expected to obtain in each platform

according to the execution times and energy consumptions displayed in Table 5.1 with a perfect

load balancing and without exchanging messages nor data across the nodes of the platform.

 0

 2

 4

 6

 8

 10

 1 4 8 16 32

ideal cloud

ideal laptop

screen off + cloud

screen off + laptop

screen on + cloud

screen on + laptop

T
im

e
 (

s
)

Cores

 0

 2

 4

 6

 8

 1 4 8 16 32

ideal cloud ideal laptop

screen off + cloud screen off + laptop

screen on + cloud screen on + laptop

E
n
e
rg

y
 (

J
)

Cores

Figure 7.6: Execution time (left) and energy consumption (right) obtained for a low-resolution
execution with a centralized data directory.

The best performing testbed for the low-resolution scenario is using the laptop as a surrogate.

If the screen is kept on during the execution, the application achieves a speed up 46 times

faster than the isolated phone case (1,532 ms) and reduces the energy consumption to a 0.5%

of the original (0.74 J). Turning the screen off slows down the execution of the main code of the

application – hence, detection of new tasks is also slower – and the runtime processing of the

task prior its submission. With the screen off, the application takes 5,945 ms to execute (11.94x)

and consumes 0.92 J (0.68%).

Any Cloud scenario behaves better than using only the phone, but the execution time does

not shrink when the number of surrogate nodes increases. The high latency on the network slows

down the offloading mechanism performance, and the exchange of messages to run a task takes

longer than its computation. Indeed, the more nodes the application uses, the longer it takes

to execute. When the display is on, the timespan grows from 6,074 ms using one single node

to 9,000 ms when the eight VMs are available. The cause of such growth lies on the delay of

the propagation of data creation notifications among workers. When a data value is generated,

all the tasks within the creating node can already access it while other surrogates need the

data directory to notify them the existence and sources of that piece of data. Therefore, the best

performing case is the one with a single surrogate since the high network latency only affects the

118

7.5. EVALUATION

task submission messages and the data sharing protocol messages for the initial data transfers.

In those cases with a larger number of nodes, data is less likely to be on the node consuming

the value. Since the data directory is only on the master, the producer has to contact the mobile

to publish the existence of the value, and the latter forwards the creation notification to the

consuming worker. The more workers compose the infrastructure, the more messages the nodes

exchange; thus, the latency of the network has a bigger impact.

When using Cloud resources, the impact of turning the display off on the execution time is

not as significant as for the laptop case. Since the network latency is high, the overhead caused

by it partially overlaps with the slower creation of the tasks; the execution time grows around a

5%. Given that most of the computation runs remotely, the energy consumed by the display is a

significant part of the application footprint. By switching off the display, the application reduces

its consumption (around 1.3 J) to a third of its consumptions when offloading tasks onto the

Cloud with the screen on (around 3.9 J).

Solving the high-resolution problem takes 99,641 seconds (more than 27 hours) on the

phone with the screen on, and the phone needs to keep plugged into an energy source. It is an

example of the large set of applications whose executions are not viable in current mobile devices;

however, offloading computational tasks to remote resources provides the mobile device with the

additional computing power necessary to enable the execution of such applications by reducing

their execution time and energy consumption.

Figure 7.7 depicts the execution time (left) and the energy consumption measured on a high-

resolution execution of the application under the same conditions. Since the execution time of

the simulate CE and the network latencies are lower when the runtime offloads the computation

onto a laptop than when it uses cloud resources, the first behaves much better when the runtime

only has four cores available. When offloading tasks onto the laptop, the application lasts 1,368

seconds to solve the problem, achieving a 72.83x speedup compared to running it on the phone.

This severe reduction on the timespan has a significant impact on the energy consumption of the

application that enables its execution on a mobile device: 621.63 J when the display is on at 0%

brightness. Switching the screen off has a little impact on the execution time – 1,401 seconds,

2.4% overhead – and the energy consumption falls to 216 J (34.75%).

On the cloud scenario, when using only four cores, the execution time is significantly higher;

and, therefore, the energy consumption too. In the respective best cases, the application lasts

2,318 s (42.99x), and the consumption is 363 J. However, the strong point of the cloud is the

amount of resource available for the runtime to offload tasks. When the resource pool has up to

32 cores and the display is on, the application execution time is reduced to 320 seconds, and it

consumes 146 J. This is 310 times faster than the isolated phone scenario and 4.26 times faster

than offloading tasks to a laptop. Switching off the screen allows the runtime to obtain a lower

energy consumption 54.61 J.

119

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 16 32

ideal cloud

ideal laptop

screen off + cloud

screen off + laptop

screen on + cloud

screen on + laptop

T
im

e
 (

s
)

Cores

 0

 250

 500

 750

 1000

 1250

 1500

 1 4 8 16 32

ideal cloud

ideal laptop

screen off + cloud

screen off + laptop

screen on + cloud

screen on + laptop

E
n
e
rg

y
 (

J
)

Cores

Figure 7.7: Execution time (left) and energy consumption (right) obtained for a high-resolution
execution with a centralized data directory.

7.5.2.2 Data directory distribution

Figure 7.8 compares the execution time (left) and energy consumption (right) of a low-resolution

execution when the application runs on top of the same infrastructure than in the previous test

but changing the nodes containing the data directory. This test only considers the execution of

the application when the display of the mobile device is on at 0% brightness and the strength

of the Wi-Fi signal is 100%. In the laptop-mobile and cloud-mobile cases, the data directory is

wholly on the mobile device and the runtime offloads tasks onto the laptop and 1-to-8 Cloud VMs,

respectively. Their values correspond to the ones depicted in Figure 7.6. The laptop-1w points

illustrate the measurements obtained when the runtime offloads tasks to the laptop and the

latter hosts the whole data directory. The cloud-1w lines show the evolution of the measurements

when the runtime offloads tasks onto one to eight VMs when only one of the workers contains the

data directory. Cloud-2w depicts the same evolution when the data directory scatters among two

workers; therefore the runtime at least has two nodes – eight cores – at its disposal; cloud-4w

and cloud-8w, respectively distribute the data directory among four and eight workers.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 8 16 32

ideal laptop

laptop-mobile

laptop-1w

ideal cloud

cloud-mobile

cloud-1w

cloud-2w

cloud-4w

cloud-8w

T
im

e
 (

s
)

Cores

 0

 2

 4

 6

 8

 1 4 8 16 32

ideal laptop

laptop-mobile

laptop-1w

ideal cloud

cloud-mobile

cloud-1w

cloud-2w

cloud-4w

cloud-8w

E
n
e
rg

y
 (

J
)

Cores

Figure 7.8: Execution time (left) and energy consumption (right) obtained for a low-resolution
execution with a data directory distributed among all the nodes.

Both charts demonstrate the performance benefits of moving the directory away from the

mobile device. With one single worker (four cores), storing the directory on the surrogates side

120

7.6. SUMMARY

speeds up the obtention by the workers of the input values created on the phone; thus, tasks start

earlier. When using the laptop as the surrogate platform, the execution time shrinks from 1.632 s

to 1.156 s. The latency to the cloud nodes is much higher than in a local area network; therefore,

the impact when using geographically distributed resources is more significative. For the one

cloud worker node (4 cores) scenario, the execution time is reduced up to a 55% (from 6.074 s to

3.372 s). For the 32 cores case, it needs 8.717 s to run when the directory is on the phone and

only 4.035 s when it is located in a single worker node (46%). Given the small reduction in the

amount of data transferred in and out of the phone, the energy consumption due to the network

becomes negligible compared to the energy spent on the display and the processor.

On the other hand, the test also studies the impact of the directory distribution among the

workers. All the cases where the worker nodes host the data directory have a similar behavior

with slight differences in the execution time. However, the best-performing one when the ring

grows is using a single node to host the whole table. The size of the application and the number

of exchanged messages are small enough not to saturate the node; conversely, enlarging the data

directory ring, increases the number of hops of some queries.

Given the long execution time of the simulations of the high-resolution case, the impact

of distributing the data directory on the execution time and energy consumption is negligible

since the time required to exchange the commands and transfer the data is several magnitudes

smaller.

7.6 Summary

Chapters 4, 5 and 6 describe a solution that allows a programmer to easily write an application

that runs automatically in parallel on the computational resources embedded on the mobile

device, i.e., the CPU cores and other accelerators such as the GPU. This chapter introduces a new

computing platform that enables the offloading of task computations onto remote resources: the

Cloud Platform. Through this platform, applications can benefit from the infinity of computing

resources accessible through the network and speed up their execution reducing their timespan

from days to few seconds. Besides, offloading the computation releases the mobile device from

the energy actually consumed by the processing elements; thus, applications that would drain

the whole battery of the mobile can run now spending very little amounts of energy. Figure 7.9

updates the architecture diagram in Figure 6.10 to depict the new platform and a single, symbolic

remote worker.

Leaving aside its benefits, using remote resources draws attention to the usage of the network.

For a remote node to compute a task, its corresponding input values must be on such node;

therefore, the runtime must implement a mechanism to share data. An approach where the

mobile device transfers all the values to the node when it submits the task and collects the results

at the end would unnecessarily increase the costs – temporary, monetary and energetic – of the

121

CHAPTER 7. REMOTE RESOURCES EXPLOITATION

App Process

Mobile Device

Runtime Process

Task Executor

App

Code

Access Analyzer

Private Data

Register

Public Data

Register

CPU

Platform
CPU Backend

GPU

Platform
GPU Backend

Worker Agent

Remote Node

Data Manager

Data Store

Cloud

Platform

Backend

Cloud

Platform
Frontend

Offload

Decision

Engine

CommunicationCommunication Communication

Data Manager

Data Store

Data Manager

Data Store

Figure 7.9: Diagram of the runtime architecture with a CPU platform, an OpenCL platform and
a Cloud platform.

execution. For that purpose, the runtime implements a mechanism that allows any node of the

infrastructure to fetch the necessary values directly from another node without passing through

the mobile. This mechanism consists of a data directory that stores the relation between a datum

id and all the nodes of the infrastructure that contain it. Thus, when a node produces a new value

or obtains a copy of it, it registers into the directory the presence of the value. The consumers of

such datum query the data directory which nodes of the infrastructure know the value for the

datum and directly contacts one of the sources to fetch it. The current implementation of the

data directory is a distributed hash table. The platform organizes the nodes of the infrastructure,

including the mobile, as a two-level hierarchical peer-to-peer network. Each of the top-level nodes

is directly responsible for a range of hashcodes, and it monitors the sources of all the fata values

from which the hash of its identifier is within this range. The lower-level nodes simply contact

the corresponding top-level node to get the sources of a datum when needed.

One of the problems associated with devices with high mobility is the stability of the network;

devices are likely to go through network handovers or long periods of isolation. It is important

that both ends, the mobile device and the remote workers, are autonomous and go on with

the execution without contacting the other part. In the case of an eventual re-establishment

of the connection, both ends synchronize their progress; workers autonomy ensures, no matter

how long the disruption lasts, that the loss of performance is as little as possible since workers

nodes execute all the tasks as expected and the mobile device would get the result upon the

reconnection. Distributing the data directory only across worker nodes is enough to provide

workers with autonomy since workers would keep the ability to monitor the data dependencies of

the tasks and fetch data values from other workers nodes.

On the other side, an autonomous mobile device ensures that application users obtain a

result even if the mobile never connects back to the network. Assuming that the connection

will eventually be re-established, the mobile runs, as usual, all those tasks assigned to the

embedded resources and whose input data is already on the phone. If the disruption lasts for

122

7.6. SUMMARY

long, it is possible that all the tasks assigned to local resources finish except for those depending

on values generated by task offloaded to the remote resources. If the runtime detects that there

are idle resources and tasks blocked because of missing data dependencies, it looks for the

offloaded task generating the missing value and runs it locally. In turn, this task can depend on

other offloaded tasks; the runtime tries to run the predecessor also on the mobile what starts a

backtracking process that could bring the execution to the very first task of the application. To

prevent this mechanism from re-executing the whole application, the master establishes some

checkpoints before the network disconnects by fetching some significant values upon their remote

generation; thus, the backtracking mechanism never needs to go beyond the task generating

these values. Finally, to run all the tasks of the application, the runtime launches the execution

on the embedded resources of all the offloaded tasks still pending for execution; eventually, all

the tasks run, and the application generates the result by the application user, although slower

than expected.

123

C
H

A
P

T
E

R

8
SECURE COMMUNICATIONS

A paradigmatic example of Mobile Cloud Computing is an organization offering its IT

resources to its members so that they accelerate applications running on their mobile

devices. To avoid unauthorized users and to reliably account for resource usage, the organization

needs users to authenticate with the credentials given by the organization through its Identity

Provider (IdP) [82]. In addition to its affiliates, this organization could also offer the IT resources

to members of other organizations – with their own IdPs. So the service offered by the first

organization recognizes the members of others, organizations need to define a set of common

policies and protocols to manage and trust the identity of the users and establish a Federated

Identity Management (FIM). In this case, using Single Sign-On (SSO) techniques would benefit

organizations and users. Resource providers would be released from user account management

(managing password strength, keeping account details up to date, resetting passwords,...) since

they delegate it to the home organization of the user. It is also more comfortable for users since

they no longer have to remember a large number of passwords or reuse a single password for

multiple services. Instead, they have a single password – or some other means of authenticating,

like a smart card – with which they authenticate to their IdP. Because they typically use this

method more frequently, they are also less likely to forget the password. Besides, they do not

expose their passwords to remote systems, only to their (trusted) IdP.

On the user end, the data contained on the phone or collected through applications running

on it (pictures, videos, lists of contacts, geolocation, movement, etc.) can be privacy-sensitive and

should not be accessed without permission of the user. Given the sensitivity of the data, data

breaches are a major concern in MCC environments [57]. Clouds often run on resources owned

by private companies that offer them as a utility [26]. Other cloud users (multi-tenancy) are

125

CHAPTER 8. SECURE COMMUNICATIONS

a potential threat; however, virtualization should isolate the resources assigned to each user

and protect them from the attacks from its neighbors. Malicious insiders are another potential

hazard since providers could snoop on the hardware resources and obtain information stored or

processed on it. The strong laws enforcing data protection and the strict personnel background

checks of commercial providers make malicious insiders not likely to happen, and they can

be blissfully ignored. To protect themselves from these attacks, users can apply data-at-rest

encryption techniques such as ciphering/deciphering data when interacting with the file system

or operate directly on encrypted data using fully homomorphic encryption (FHE) [87].

The biggest concern regarding data breaches is attacks from unaffiliated people to in-transit

data. Usually, the network interconnecting the mobile device with the remote nodes is untrust-

worthy. For instance, when the mobile device connects to the remote workers through Wi-Fi and

Internet, attackers could eavesdrop on the interconnecting channel (e.g., the Wi-Fi network).

Communication has to provide message secrecy for not exposing user or application information.

Another possible attack consists in a disguised attacker impersonating either a remote node, to

intercept data transmitted from the mobile, or the mobile device, to fetch data stored in a remote

worker. Hence, communications require mutual authentication and message integrity to ensure

that both ends are part of the trusted infrastructure and that the content of the messages is the

original one and not a malicious command introduced by the attacker.

This chapter describes a solution to secure communications among the components of the

runtime with authenticated encryption to protect the integrity, confidentiality and authenticity

of the messages in the system. Most organizations already have a deployed authentication

infrastructure; adopting a generic approach that avoids a security vendor lock-in is an important

design consideration. For this reason, the solution leverages on the Generic Security Services

API (GSSAPI) [64], an interface implemented by most of the security services vendors. Thus,

applications following the COMPSs model can replace the security framework without modifying

their code. For validating the viability of the solution, the runtime builds on Kerberos [1] as the

security provider.

8.1 Backgroung: GSSAPI

A secure system consists of a set of interacting participants which authenticate themselves using

the credentials issued by an authority. These participants are end users (persons), uniquely

identified by their real name, e-mail address or a username; and compute nodes identified either

by hostname, IP address or sometimes as individual services or endpoints. Authorities usually

are centralized: a single entity manages the credentials for all the participants within the domain

(e.g., the members of an organization accessing to its services).

When end users access services offered by different organizations, they often require services

to interact with a service provided by a second organization on their behalf. For instance, when

126

8.1. BACKGROUNG: GSSAPI

the end user runs some program on a computing service provided by Organization A that needs

to fetch some data from a storage service on Organization B that requires the credential of the

end user. This kind of situations was very common in Grid systems. The Globus Toolkit [11], a

software solution for building Grids, expanded on the original authentication model by introducing

delegation [95]. A definition for delegation can be a temporary reassignment of rights; however,

in many practical applications, it means forwarding a credential to the server. Through those

credentials, servers “impersonate” the user or, at least, perform actions on their behalf. Globus

attached X.509 certificates [54] to the communication protocol, whether it was secured HTTP [86],

GSS, SOAP, etc.

Federated Identity Management is another approach to allow users to access services from

multiple organizations. Multiple domains can share identities and their associated attributes,

and organizations can define a common set of policies and protocols to manage the access to their

services in a federated way. Thus, members of an organization – Organization A – can access

services provided by a second one – Organization B – using directly the credential obtained from

their home organization – Organization A.

Several different security technologies implement the described architecture. The Generic

Security Services Application Programming Interface (GSSAPI) is an abstraction of the security

negotiation that happens when a participant –GSS initiator – authenticates to another one – GSS

responder – and both exchange messages securely. The applications at either end call the API

and are instructed by the implementation whether authentication is successful, unsuccessful, or

needs more calls – some protocols require several back-and-forth communications. A wide range

of mechanisms can implement the underlying authentication: username/password, Kerberos,

Moonshot, X.509 certificates; clients can be anonymous or named, and they can pass authoriza-

tion attributes [102]. Initially, the preferences of the initiator determined the authentication

protocol; however, GSSAPI was extended to support a common protocol for negotiation [103]. This

negotiation protocol builds on mutually accepted trust anchors, and that might not be sufficient;

a further proposed extension ("extended negotiation") supports more sophisticated negotiation

protocols.

For message-level security, GSSAPI supports not only origin authentication – i.e., sender

signs the message – but also message encryption, integrity, replay detection, or detection of

receipt out of sequence. Blocks of data, also known as tokens, will have the selected security

features applied to it before submission (wrapping), and checked upon reception (unwrapping).

Compared to just implementing one security protocol, using GSSAPI correctly is more compli-

cated for the application programmer; it is also harder to debug because GSSAPI is implemented

using ASN.1 as a layer around the actual protocol. However, the generic service, if coded correctly,

can then support a range of mechanisms – including future ones – and delegates on GSSAPI many

security tasks that may not be obvious to the programmer, such as preventing replay attacks,

checking the server identity correctly (preventing man-in-the-middle attacks), and negotiating

127

CHAPTER 8. SECURE COMMUNICATIONS

shared protocols for message security, etc.

8.2 GSSAPI Integration

Extending the runtime to secure its communications brings two challenges to the current archi-

tecture. First, the roles comprised in a secure architecture and the roles assumed by the parts

of each GSSAPI interaction need to map to the components of the infrastructure running the

application. And second, the runtime has to secure all the communications among the nodes of

the underlying platform; therefore, the architecture of the system needs to be adapted to include

GSSAPI and the security framework.

A secure system consists of several interacting participants authenticated by a trusted

third party that acts as an authority. For the computing platform proposed in this dissertation,

participants correspond to all the nodes, either the master or the worker nodes. The actual

infrastructure acting as the authority and the protocols to interact with it are specific to the

choosen security framework. The runtime leverages on GSSAPI to provide an interoperable

solution that works with several security frameworks and avoids a security vendor lock-in.

GSSAPI abstracts away from the runtime the authentication infrastructure and the protocols

to interact with it and establishes a client-server pattern where the client – GSS initiator –

contacts a service – GSS responder – to start a secure connection and exchange messages. This

model maps easily with the master-worker approach of the runtime where the application running

on the mobile device, the master node, offloads task executions onto remote nodes running a

service. Therefore, the master, assuming the role of GSS initiator, authenticates on behalf of the

application user to worker services playing the GSS responder role.

However, the model clashes against the peer-to-peer organization used for sharing data.

Whenever a node of the infrastructure needs some value located on a remote node, it opens a new

TCP connection to a server deployed on the remote node, regardless of whether it is a worker

or the master. In TCP terms, any node can act as a TCP client, so every node must listen for

incoming connections, including the master. To avoid that anyone fetches a value from a node

of the infrastructure, both ends authenticate to each other following the protocol established by

the specific security framework. Therefore, the TCP and GSS roles may mismatch. When the

mobile opens a connection to a worker, the TCP client acts as the GSS initiator, and the TCP

server takes responder role of the GSS. Conversely, when it is the worker the one contacting

the mobile, the TCP client is the GSS responder, and the TCP server is the GSS initiator.

Regardless which end starts the TCP communication, it is always the node playing the role of

GSS initiator the one triggering the GSS negotiation upon the TCP connection establishment.

Since establishing a secure context when both ends act as GSS responder is not possible, in

worker-worker communications the TCP client assumes the role of GSS initiator.

Traditionally, worker processes are co-located on resources interconnected by trustworthy

128

8.2. GSSAPI INTEGRATION

networks, such as clusters or private clouds. In this case, using secure connections gives no added

value but adds unnecessary overhead; for this purpose, the communication component allows

to set up a whitelist to indicate which nodes do not require establishing a security context to

transfer the data.

The second problem to tackle is the integration of GSSAPI and the security framework within

the component architecture of the runtime system. GSSAPI only indicates the format of the

messages exchanged among both ends of a connection but does not define their content, which

depends on the information to transfer and the selected security framework, nor decides the

transport-layer protocols used for delivering such messages through the network. The security

framework processes all the applications messages – and is likely to modify their content – before

sending them using the same network protocol that the application would use with non-secure

communications. Similarly, upon the arrival of new data from the network, the security framework

has to process the received bytes to extract the actual application message before forwarding it to

the application. The runtime architecture described in the previous chapters already encapsulates

all the network interactions within a Communication component – concretely, introduced in

Section 7.1. Whenever a node of the infrastructure, either master or worker, wants to send a

message to another node, it asks the Communication component to open a new connection to the

target node and delegates on it the transmission of the message. Therefore, the Communication

component is the only part of the runtime involved in the extension to secure communications

among the runtime components; the security framework remains as an internal part of the

Communication component. Figure 8.1 depicts an overview of the architecture of a deployment

of the runtime with one master node (leftmost part of the figure) and two worker nodes (right).

As depicted by the red dashed arrow, the security framework processes the messages exchanged

between the runtime components before their transmission and upon their reception on the

remote node. When another component requests the opening of a connection, the Communication

component establishes a TCP connection as usual and triggers the GSSAPI negotiation procedure

to establish a security context with authenticated ends, an accorded protocol and a keypair

to encrypt and sign the messages. Everytime that a component submits a message using a

secured connection, the Communication component handles the ciphering and the deciphering

transparently to the requestor.

As explained in Section 7.1, the Communication component leverages on the Non-Blocking

IO library provided by Java, which encapsulates point-to-point, ordered network connections

in stream-oriented channels. This approach guarantees the reception of all the sent bytes in

the same order, but it does not necessarily maintain the groupings; the sender could submit a

128-bytes packet, and the receiver could get two packets of 96 and 32 bytes, respectively. For

abstracting this away from the application, the Communication component adds 4 bytes to the

message header indicating the message size. Upon the reception of the whole message, the

Communication component delivers the messages to the application/runtime level.

129

CHAPTER 8. SECURE COMMUNICATIONS

Runtime Process

Data

Manager

App

Code

GSSAPI

C
o
m

m
u
n

ic
a
ti

o
n

Runtime Process

Data

Manager

Task

Executor

GSSAPI

C
o
m

m
u
n

ic
a
ti

o
n

Access

Processor

Mobile Device

Security Provider

Worker Agent

Data

Manager

Cloud

Platform

Backend

GSSAPI

C
o
m

m
u
n

ic
a
ti

o
n

Remote Worker 1

Security Provider

Worker Agent

Data

Manager

Cloud

Platform

Backend

GSSAPI

C
o
m

m
u
n

ic
a
ti

o
n

Remote Worker 2

Security Provider

Authentication

Infrastructure

Figure 8.1: Runtime architecture diagram with secured communications. The red dashed arrow
shows the flow followed by a task submission command send by the mobile device to one of the
workers.

To achieve complete secrecy, both, the message content and its header, need to be encrypted.

Hence, the receiver of the message is totally unaware of the length of the message until it decrypts

the header. To decrypt ciphertext, some algorithms require the whole text to start processing

it; block ciphers require only a complete block; and, on some stream ciphers, the basic unit

for deciphering is a single byte. Given that the Communication component cannot rely on any

specific encryption mechanism, it assumes the most restrictive approach: the whole ciphertext is

necessary to decrypt the message. To decrypt the header, GSSAPI needs the entire ciphertext

and NIO requires the decrypted length of the message to determine the arrival of the whole

ciphertext. Therefore, the Communication component reaches a deadlock since both, GSSAPI

and NIO, require the other to take the first step to continue the processing. The solution for

overcoming this situation consists on fixing the length of the ciphertext; the Communication

component pads the plaintext of the messages so that their ciphertexts reach a specific size.

Non-secure communications are not to decrypt the tokens received; therefore, the Communi-

cation component can figure out the length of the message without receiving a whole fixed-size

token. To avoid transferring unnecessary bytes while maintaining the same logic for secure and

non-secure communications, the Communication component adds four bytes as a header of the

token indicating its length.

Picking a single size for all messages can lead to issues since the messages transferred by the

Communication component can have from few bytes, like the commands of the runtime, to several

megabytes, if the message ships the content of a file. A token size large enough to fit any message

would incur several gigabytes of data dedicated exclusively to the padding of the commands

130

8.3. PERFORMANCE EVALUATION

of the runtime; that would kill the performance. A token size too small to fit the content of a

file used by the application would impede the execution of the application. To work around the

problem, the Communication component splits the plaintext of the message to produce several

cyphertexts that fit into fixed-size tokens. The first token contains the ciphertext of the header of

the message and the first part of the message content. When the receiver gets this first token

entirely, it decrypts the header and obtains the length of the message. If the whole message fits in

a single token, the Communication component forwards the message to the runtime; otherwise,

it waits for the following tokens and incorporates them into the message upon their decryption.

The chosen token size has a significant impact on the total amount of bytes transferred through

the network, and therefore on the time and cost of data transfers. Larger token sizes may add

more padding and take more time to transfer; smaller token sizes have more overhead in being

processed individually and may be more likely to split important structures.

The security framework used for the validation of the described architecture is Kerberos. The

user of the mobile phone obtains the Ticket Granting Ticket – an encrypted identification file valid

for a limited period – from the Kerberos key distribution center before running the application.

Worker nodes authenticate themselves through a Kerberos keytab, and they are authorized to

accept connections either from the master or other worker services. For porting the Kerberos

library to Android, it was necessary to cross-compile the official release of the MIT Kerberos for

Android to create a native library (libkerberos.so). The runtime dynamically loads this library

upon the completion of the TCP handshake corresponding to the first connection that requires

securing the messages. Despite being Java the native language to develop Android applications,

not all the classes and libraries typical from Java are available on Android. GSSAPI is one

example of these libraries; although it is part of the Java SE, there is no GSSAPI implementation

within the Android software stack. Besides the security framework, the MIT release for Kerberos

also contains a JNI wrapper of the library in fulfillment of the RFC5653 [96], which defines the

Java binding for GSSAPI.

8.3 Performance Evaluation

Securing the communications adds some overhead to the application execution which has various

causes. On the one hand, the fixed-size token mechanism to transfer messages with an encrypted

header through NIO incurs additional costs for each transfer due to the extra bytes attached to

pad the messages. On the other hand, GSSAPI processes every token to encrypt, sign, verify and

decrypt its content adding a computational overhead. The following tests aim to compare the

transmission of data through plain and secured sockets and evaluate the impact of securing the

communications on the performance of the application. The tests run on the same infrastructure

that hosted the evaluation of the Cloud Platform (see Section 7.5).

131

CHAPTER 8. SECURE COMMUNICATIONS

8.3.1 Security Overheads

The goal of this first test is to evaluate the overheads introduced by securing the communications

on the information transferred through one socket. Thus, it analyzes first the establishment of

the secure connection and then it studies how the token size affects the submission of messages.

For that purpose, the mobile device opens a new TCP connection to one of the worker nodes

deployed on the cloud and, after the secure context negotiation, it uses the connection to send a

single message. The test repeats this procedure for different token and message sizes.

After the 3-way handshake to establish the TCP connection, both ends of the connection

exchange messages (plain text) to establish the security context (Negotiation). In the timeline

depicted in Figure 8.2, the TCP client also acts as the GSS initiator. Upon the connection

establishment, it instantiates a new GSSAPI context (average 16 ms) and constructs a message

of 612 bytes to authenticate itself and describe the available mechanisms to establish the secure

context (average 18 ms). If the Communication component is set up to use very short tokens

(256 or 512 bytes), it splits the message into several tokens increasing the total amount of sent

bytes (620 bytes in three 256-bytes tokens; and 616 bytes in two 512-bytes tokens). The GSSAPI

responder receives the message, verifies the identity of the client and picks the mechanisms and

algorithms to establish a secure context (55 ms). After that, it creates a response message of 166

bytes, 142 dedicated to the identification and the agreed terms of the security context. Upon the

reception of this response, the GSS initiator verifies the identity of the service (2 ms) and end ups

the negotiation. In overall, this process takes around 355 ms (depends on the network conditions).

The client emits 632-640 bytes, and the server, 166 bytes.

350 70 105 175140 210 245 315280 350 385 455420 490

TCP Client

GSSAPI Initiator

TCP Service

GSSAPI Responder

SYN
SYN,

ACK
ACK

Client Id + Mechs

 (612 b) ACK

 Service Id + Mechs

(133 b)

ACK

Figure 8.2: Timeline of the TCP Connection Establishment and GSSAPI Negotiation.

Once the negotiation ends, the actual data transfer begins, and secure tokens – “wrapped” in

the GSSAPI terminology – are transferred through the network. It is in this second stage where

the token size may have a stronger impact depending on the performance. Tables 8.1 and 8.2

compare, respectively, the actual transfer size and the timespan to submit internal commands of

the runtime (typically, 250 bytes), small objects (2500 bytes) and files of different sizes (10,000,

100,000, 1,000,000 and 10,000,000 bytes) when using different token sizes for non-secured and

secured transmissions.

The Communication component adds a header of 16 bytes to every message that indicates its

type – raw data or command–, the preferred destination – file or memory – and the length of its

content. The larger the message is, the less significant is the overhead of the header (6.4% for

132

8.3. PERFORMANCE EVALUATION

Comm. Token # Bytes
Type Size 250 2,500 10,000 100,000 1,000,000 10,000,000

256 274 2,556 10,176 101,604 1,015,892 10,158,748
512 270 2,536 10,096 100,804 1,007,892 10,078,760

1,024 270 2,528 10,056 100,412 1,003,940 10,039,232
non-secure 2,048 270 2,524 10,036 100,212 1,001,976 10,019,588

4,096 270 2,520 10,028 100,116 1,000,996 10,009,792
8,192 270 2,520 10,024 100,068 1,000,508 10,004,904

16,384 270 2,520 10,020 100,044 1,000,264 10,002,460

256 512 3,584 13,568 133,376 1,333,504 13,333,504
512 512 3,072 11,776 114,688 1,143,296 11,428,864

1,024 1,024 3,072 11,264 107,520 1,067,008 10,667,008
secure 2,048 2,048 4,096 12,288 104,448 1,034,240 10,323,968

4,096 4,096 4,096 12,288 102,400 1,019,904 10,162,176
8,192 8,192 8,192 16,384 106,496 1,025,808 10,084,352

16,384 16,384 16,384 16,384 114,688 1,015,808 10,043,392

Table 8.1: Actual size of transferring 250, 2,500, 10,000, 100,000, 1,000,000 and 10,000,000 bytes
according to the token size in bytes (256, 512, 1,024, 2,048, 4,096, 8,192, 16,384).

Comm. Token Message size (bytes)
Type Size 250 2,500 10,000 100,000 1,000,000 10,000,000

256 74 75 107 193 745 6,734
512 74 74 85 127 508 3,806

non-secure 1,024 73 73 78 127 367 2,146
2,048 73 73 72 123 327 1,918
4,096 73 73 75 123 323 1,512
8,192 73 73 75 121 307 1,446

16,384 73 73 74 107 278 1,384

256 84 90 128 314 1,808 16,265
512 84 88 96 251 1,068 9,384

1,024 84 86 93 186 780 6,530
secure 2,048 83 83 92 179 604 5,001

4,096 86 86 95 158 574 4,668
8,192 87 94 99 152 540 4,376

16,384 96 103 107 162 500 4,074

Table 8.2: Timespan (ms) to transfer 250, 2,500, 10,000, 100,000, 1,000,000 and 10,000,000 bytes
according to the token size in bytes (256, 512, 1,024, 2,048, 4,096, 8,192, 16,384).

a 250-bytes message, 0.0000016% for the largest case). In addition to the message header, the

component adds a token header of four bytes. The bigger the token size is, the fewer tokens the

connection needs and, hence, the fewer bytes the Communication component adds.

GSSAPI enables, if wanted, multiple mechanisms to secure the communications using differ-

ent algorithms. With the used configuration, securing communications implies encrypting and

133

CHAPTER 8. SECURE COMMUNICATIONS

signing the content of each message; thus, the actual payload of each token changes according to

the encryption and signing algorithms – in the tests, these algorithms add 60 bytes. This overhead

has a significant weight on the message/payload ratio for really small tokens – 25% for 256-bytes

tokens – and increases the number of tokens required to send a message. For a 10,000,000-bytes

transfer, the overhead reaches up to a 33.35% when using 256-bytes tokens. Conversely, using

large tokens reduces the number of tokens to send large messages and, therefore, the additional

bytes – 0.43% when transmitting 10,000,000 bytes in 16,384-bytes tokens. On the other hand,

the Communication component has to pad messages to match the token size. When using very

large token sizes to send small messages, the pad has a significant weight on the length of the

transmitted message – 6,452.60% increase for a 250-bytes message in a 16,384-bytes token.

Regarding the time to transfer the information, Table 8.2 shows that the latency of the

network – 67 ms – is the most important parameter for very short messages since most of

the tokens sizes take around 85 ms to transfer the data. It practically shows no difference for

tokens shorter than 2,048 bytes; indeed, the lower the number of tokens used is, the lower the

time required to transfer the data. Larger token sizes take longer to submit a short message

not only because of the time to transfer more data but also because of the time to encrypt and

decrypt larger ciphertexts. For this reason, the case using 16KBs-tokens takes 96 ms to transfer

a 250-bytes plain message instead of the 83 ms required for the case of using 2KB-tokens.

When transferring larger pieces of data, the delay of the network becomes negligible compared

to the time to process the messages – 0.4% of the total transfer time when transferring 10MB

using 16KB-tokens. While the non-secure communication using 16KB-tokens transfers the

message in 1,384 ms, the secured version needs 4,074 ms, three times more. The additional bytes

added by the security algorithms do not explain this difference since they only represent a 0.43%

of the total transfer size. Therefore, the time to encrypt, decrypt, sign and verify the content of

the message is the most important factor for large data transfers. Although the size of the data to

process is the most important factor contributing to the computational overhead, it is important

to notice that the number of tokens is also a significant part of it. For instance transferring a

10MB message using 16KB-tokens requires 10,043,392 bytes split among 613 tokens – and 4,074

ms while transferring the same message using 8KB-tokens needs 10,084,352 bytes – 40,960 bytes,

0.4% – divided into 1,231 tokens and 4,376 – 302 ms, 7.4%.

8.3.2 Security Impact on Applications

In the second test, the goal is to measure the impact of using secure communications on ap-

plications. For that purpose, the test runs the same application used for evaluating the Cloud

Platform, HeatSweeper, and considers the same two scenarios: a low-resolution run, representing

applications with a low number of short-lasting tasks, and a high-resolution execution, repre-

senting large computations. The test runs the application on the OnePlus One phone equipped

with a Snapdragon 801 processor managed by the default governor provided with its operating

134

8.3. PERFORMANCE EVALUATION

system, the Cyanogen OS 13.1.2 implementation of Android 6.0.1. The mobile device offloads the

tasks onto up to 8 VMs deployed the OpenNebula Cloud described in Section 7.5. The runtime is

configured to distribute the data directory to support sharing data only among the worker nodes;

and the token size, set to 2,048 bytes since the reports generated by simulate tasks are smaller

than 10,000 bytes.

In both scenarios, executions using secure and non-secure communication behave alike as

shown by the charts in Figure 8.3. However, security adds a delay of 15 seconds – 500-200%

overhead depending on the number of cores – for the low-resolution scenario and 50 seconds

– 2-10% overhead depending on the number of cores – for the high-resolution. The first cause

of this delay is the application-level protocol followed by the runtime to execute one task. On

a first stage, the master requests to the network the execution of one task. Then a worker

subscribes to the data directory for being notified when other nodes generate the input data

values – these commands do not require security since the data directory is deployed across the

worker nodes co-located in the same cluster. Upon the creation of all the input data, the task

becomes dependency-free, and the worker requests the transmission of the data value to one

of the sources – if the source is the master, it secures the connection. For the simulate tasks,

this protocol enforces the submission of three secured messages: the submission of the task, the

request of the datum containing the simulation parameters and the transfer of the value of such

datum as an object – request and value transfer happen on the same connection. This message

exchange explains 770 ms of this delay according to the results presented before.

 0

 5

 10

 15

 20

 25

 1 4 8 16 32

clear

secure

T
im

e
 (

s
)

Cores

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 16 32

clear

secure

T
im

e
 (

s
)

Cores

Figure 8.3: Comparison of the execution times for the low-resolution (left) and high-resolution
(right) obtained when using non-secure and secure communications.

The second cause for the delay is the number of threads employed by the Communication

component. All nodes have one single thread dedicated to the reception and submission of

TCP packets, a second thread for the application-level management – i.e., token handling and

responding to the received commands– and several additional threads to fulfill with its specific

duties of its role in the infrastructure. A single thread for handling all the communications

allows a concurrent establishment of several connections and message transmission; however, it

serializes the computations related to the application-level message, the GSSAPI negotiations

135

CHAPTER 8. SECURE COMMUNICATIONS

and the wrapping/unwrapping of the received tokens. The low-resolution scenario submits up to

89 tasks in parallel; the high-resolution, 649. This increase in the number of parallel incurs a

growth on the delay in command submissions.

8.4 Summary

The data contained on the phone or collected through running applications (pictures, videos, lists

of contacts, geolocation, movement, etc.) can be privacy-sensitive; therefore, data breaches are

a major concern on MCC systems. Assuming that at-rest data is already secure, this chapter

explains the mechanisms implemented to secure in-transit data by providing with secrecy and

integrity the messages exchanged through a channel where both ends of the communication have

mutually authenticated.

Designing and implementing security solutions is complex; it is very easy to add other

vulnerabilities to the system because of implementation details like, for instance, a non-uniform

response time. To avoid an inadequate implementation of the protocols with security leaks, the

runtime leverages on already existing security solutions. Most of the organizations already have

a deployed authentication infrastructure; adopting a generic approach that avoids a security

vendor lock-in is an important design consideration. For this reason, the solution uses the Generic

Security Services API (GSSAPI), an interface implemented by most of the security services

vendors. Thus, applications following the COMPSs model can replace the security framework

without modifying the code of the application.

The Communication component encases the integration of GSSAPI with the runtime; the rest

of the runtime transparently benefits from the advantages of security with no modification of

their code. The Communication component builds on Java Non-Blocking I/O (NIO) to transfer

data through the network using TCP. NIO notifies the arrival of information upon the reception

of the corresponding bytes; although it respects the order of the bytes, it does not guarantee

the groupings. For the Communication component to halt the forwarding of the message to the

runtime until the reception of its whole content, it adds the length of the message to its header.

To achieve complete message secrecy, the component encrypts the header of the message; thus,

it needs to decrypt the received information. Some algorithms require the whole ciphertext to

decrypt it, and NIO does not allow to know when the whole message has arrived. To overcome

the problem, the Communication component fixes a token size – configurable parameter. The

padding of the messages to match the token size, the negotiation of the security context – strongly

influenced by the network latency – and the processing of the messages to encrypt, sign, verify

and decrypt them – a single thread processes the messages of all the parallel connections – add a

significant overhead to the execution.

To validate the viability of the solution, the prototype uses the Kerberos framework as the

security service provider. To authenticate themselves, application users use Kerberos credentials,

136

8.4. SUMMARY

while worker nodes use Kerberos keytabs as host credentials. Although GSSAPI provides the

runtime system with the ability to authenticate and encrypt communication using federated

credentials – if supported by the used implementation, and Kerberos does –, it does not provide a

generic mechanism for obtaining the credential. The described extension of the runtime requires

the device to have the credential already. It can obtain the credential through another application

that stores it on the file system, or the same application can provide the required mechanism.

While the former option keeps the application agnostic to the authentication mechanism, the

latter gathers all the functionality within a single application despite binding it to a particular

authentication mechanism. Either way, the content of this chapter is a first, but important, step

towards achieving a secure MCC platform with SSO.

137

C
H

A
P

T
E

R

9
OFFLOADED SCHEDULING SYSTEM

The overhead caused by selecting which resource runs each task is negligible when the number

of resources is small. However, when the infrastructure and the number of tasks grow, this

overhead may become significant. Besides, assigning each task a node upon its detection may

end up causing load imbalance if the estimations are not precise. To avoid performance issues,

it is necessary to monitor the pending workload assigned to each resource and modify some

already-taken decisions to adapt the remaining execution plan to the reality at that time.

Maintaining all this computation on the mobile device not only employs resources that could

execute other tasks but also incurs an energy consumption that unnecessarily drains the battery

of the device. The solution to avoid this overhead consists in offloading onto the remote resources

not only the computation of the tasks but also the scheduling of their execution. Thus, the mobile

device considers all the remote resources as a single platform with a global computing capacity;

all it needs is an entry point to that platform where to submit task executions.

Delegating the task scheduling not only benefits the mobile device, but it also improves the

control that the owner has over its infrastructure. Although the Cloud has allowed reducing

the cost of having access to large computing infrastructures from the user point of view, it

has rocketed the ownership expenses. On very large datacenters, the energy consumed by the

computing nodes and the cooling systems influences on their cost to the extent that energy fees

and the average outside temperature condition their placement [45]. For this reason, several

research initiatives, like the european projects OPTIMIS [39] and ASCETIC [35], focus on the

reduction of the energy consumption of applications across all the stages of their lifecycle: design,

construction, deployment and operation.

This chapter describes an extensible scheduling system that runs on one of the remote

nodes of the infrastructure. When the Offloading Decision Engine submits the task to the Cloud

139

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

Platform, the latter forwards the task to the node in charge of the scheduling. Upon its reception,

the scheduling assigns a resource to the task, that might change during the time, according

to the policies chosen by the infrastructure owner. Currently, the set of policies governing the

system consider the application-level knowledge – i.e., pending offloaded workflow, profiles of the

implementations on each resource, ... – and aim fot minimizing one of the parameters (timespan,

energy consumption and monetary cost) while setting global limits for the other two. For instance,

minimizing the energy consumed – Wh – by the application without exceeding a threshold of

3,600 s nor 5 e .

Often, achieving the defined boundaries is not possible with the available resources; in these

cases, the scheduling system has to adapt automatically the amount of resources exploiting the

horizontal elasticity of the Cloud. When the expected execution exceeds the timespan boundary,

the system considers scaling-out; conversely, it considers scaling-in to reduce the energy con-

sumption and cost of the application. The system periodically checks whether doing a change in

the pool of resource is worth or not.

9.1 General Aspects of the Scheduling System

From an abstract point of view, a scheduling system is a manager that orchestrates the execution

of a collection of actions on a set of resources over the time. In the context of this dissertation, these

resources are the hardware and software capabilities of the nodes composing the infrastructure,

and the actions correspond to activities such as turning on the node (Poweron Action),booting the

worker process (Start Worker Action), running a task (Execution Action), stopping the worker

process (Stop Worker Action) or even shutting down the node (Shutdown Action).

An action can carry out its duty in different ways; each implementation of the action requires

some resources to host its execution. The scheduling system has to find one node whose capabili-

ties meet the requirements of any of its implementations and reserve the corresponding resources

for as long as the execution lasts. Sometimes, actions are bound to a specific node; for instance,

an action to start the worker process on the node. In such cases, the scheduling system does not

need to look for a compatible node; it only reserves the required resources.

Not only actions per se constrain the scheduling decisions; interactions between actions

also can add new restrictions to the system. For instance, data dependencies among actions

corresponding to task executions: an action consuming a data value cannot run until the producer

action is complete. Furthermore, if some effect of a preceding action used by the succeeding action

is pinned to a specific node, the successor has to run on the same node. This kind of dependencies

are static: they only change upon the arrival of a new action, when the system analyzes the

dependencies with already existing actions, or upon the completion of a preceding action, what

releases the dependency.

An action is ready to run when it has no dependencies with other actions. The only reason

140

9.1. GENERAL ASPECTS OF THE SCHEDULING SYSTEM

for delaying the execution of a ready-to-run action is the lack of available resources because

all of them are busy running actions with higher priority – in general, actions that entered

the scheduling system earlier. The scheduling system holds the action execution until running

actions release enough resources to host the action. For controlling the execution flow, it defines

a second type of dependency among actions: resource dependencies. A resource dependency

among two actions appears when one of them uses the resources that a second action releases

at its completion. By properly adding resource dependencies among the actions assigned to the

same node, the scheduling system ensures that the requirements of the dependency-free actions

assigned to a node never overpass the capabilities of such node.

Static dependencies affect pairs of actions potentially assigned to different nodes, but resource

dependencies are only among actions assigned to the same node. For this reason, the scheduling

system monitors the static dependencies at a global level in the Action Scheduler, and each node

has a Node Scheduler to manage the resource dependencies within such node.

Unlike static dependencies, originated by the activity performed by both actions, resource

dependencies arise from arbitrary decisions made by the Node Scheduler; therefore, they can

change whenever the system decides when and where the actions run or when it modifies this

decision. Despite the flexibility of resource dependencies, it is extremely important that the Node

Scheduler avoids creating cycles of actions depending on each other; dependency cycles cause a

deadlock on the node because all the involved actions are waiting for the completion of another

action to start its execution.

Figure 9.1 depicts an example of four dependency graphs for a set of eight actions. Solid

edges depict the static dependencies, which are common in all four examples. The dashed edges

represent the resource dependencies among the actions. The graph at the top of the figure

corresponds to an example with enough resources to host all the executions at a time. The others

illustrate three different solutions that the scheduling system could pick to run the same actions

on a set of resources able to host up to two actions at a time.

Besides controlling that the execution does not overload the available resources, the schedul-

ing system optimizes the execution according to a user-driven, multi-objective policy. This policy

allows the user to minimize one of the following parameters: execution timespan, economic cost

and energy consumption; while limiting the overall value for the other two. To perform this

optimization, the scheduling system cannot rely on solutions that require complete knowledge of

the applications beforehand since the programming model detects the tasks composing the appli-

cation as it runs. To provide a reasonably good-quality solution in a short time, the scheduling

strategy followed takes action in two steps. First, upon the action arrival, the scheduling system

applies an initial scheduling policy that greedily assigns the action a node where to run according

to the optimization parameter. Later on, the system can revisit the decision taken by this initial

policy. A second process of the system, the Scheduling Optimizer, checks the whole execution

plan and tries to optimize it by re-ordering the actions within a node – changing the resources

141

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

1

2

3

4

5

6

7

8

1

2 5

3 4

7

6

8

1
2

5

6

3

4

7

8

1

2

5

4

3

 8

6

7

Figure 9.1: Four possible dependency graphs among eight actions. The top graph corresponds to
a scenario with resources able to host all the actions at a time, and the others are three different
schedulings on resources able to host up to two actions at a time.

dependencies – or re-assigning actions to other nodes. Continually monitoring the state of the

execution allows the system to adapt the execution plan to workload variations produced by new

incoming actions and correct erroneous decisions caused by workload mispredictions. By hosting

the monitoring in an independent process, the system avoids blocking the processing of new

incoming actions and the completion of the already scheduled ones throughout the optimization

process. While the Scheduler Optimizer analyzes the current situation, the main process of the

system can provide incoming actions with an initial resource reservation and release the depen-

dencies of the finished ones to keep the execution progress by launching the dependency-free

actions.

Finally, a third process, the Resource Optimizer complements the scheduling system with

dynamic resource provisioning. The Resource Optimizer periodically checks the pending workload

and the computing capacity at the moment and evaluates whether it is worth expanding or

shrinking the infrastructure to better-fit the user restrictions.

9.2 Initial Scheduling

The initial allocation of resources to host one action execution starts on the Action Scheduler,

where the scheduling system determines the most suitable node-implementation pair to perform

the action. To make this initial decision, the Action Scheduler lies on Scores: a comparable object

gathering all the information that any scheduling policy may need to compare two different

action-node-implementation options. This information can relate to the action per se, to the fact

of hosting of the action on the node, or to the execution of one of specific implementation on the

node.

Upon the reception of a new action, the Action Scheduler computes the Score for every

possible node-implementation pair. Initially, it determines the priority of the action and estimates

142

9.2. INITIAL SCHEDULING

time when the action will become free of dependencies by checking the expected end time of

all the static predecessors of the action. After that, the Action Scheduler computes for each

node the expected delay for transferring those input values missing in the specific node and

determines the expected start time for any implementation assuming that the node has enough

free resources to host it. Therefore, the last step is to compute the earliest possible start time

for each implementation on the node. To contextualize an implementation execution on a node,

the Action Scheduler requires knowledge about the availability of the resources of such node,

information known by the corresponding Node Scheduler. For this reason, the former asks

the latter to complete the Score with an estimation of the end time, energy consumption and

economic cost of running such implementation on the node based on historical data from previous

executions.

Finally, the Action Scheduler only needs to compare all the obtained Scores to select the best

node-implementation pair. By merely changing a one-to-one comparison function, the owner of

the infrastructure can define different policies to select the initial node-implementation selection

without any need of looking at the code of the scheduling system. For instance, comparing the

expected end time of the options minimizes the execution time of the application; changing

the behavior of the comparison function to consider only the energy footprint of each option

modifies the system so that it minimizes the energy consumption of the execution. Upon taking

the decision, the Action Scheduler submits the action to the Node Scheduler corresponding to

the selected node indicating the selected implementation so that it adds the necessary resource

dependencies.

Determining the earliest time when an implementation can start running on a node is not

straightforward. It requires keeping track of all the already scheduled executions and finding

out when there will be enough resources to host it and check that they will remain available

throughout the whole execution. To ease the seeking, the Node Scheduler keeps a register of those

moments when some resources are idle. For each of these moments, known as gaps, it records a

description of the available resources, the time when they become available, the action that used

them immediately before – the origin of the gap – and the earliest time when another action use

them again. Initially, the Node Scheduler has one single gap registered with an unknown origin

that contains all the resources of the node – for instance, two CPU cores – from timestamp 0 to

the end of the execution.

When the Action Scheduler decides to submit an action to the node, the Node Scheduler checks

if there is any combination of gaps that could host its execution. For instance, when the Node

Scheduler from the previous example receives the first action, which uses one CPU core for 100

ms and has no dependencies with other actions, it decides to reserve the resources from the gap

with two CPU cores. For doing so, the Node Scheduler splits the gap into two gaps: one containing

the occupied resources from the gap start time until the scheduled start time of the action and a

second one containing the remaining resources with the same start and end time of the original

143

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

gap. Both gaps maintain the origin of the original gap. In the example, the two-CPU-cores gap

becomes two gaps: one with one CPU core starting a timestamp 0 until the expected start time

of the action execution – timestamp 0 –; and one with one CPU core starting at timestamp 0

until the end of the execution. Since the first gap has the same start and end time, the gap lasts

nothing, and the node Scheduler dismisses it.

Besides reserving the resources for the action execution, the Node Scheduler also needs to

release them at the end of the action. For that purpose, it adds a new gap containing the resources

released by the action from the end of the action execution until the end of the whole execution.

In this case, the action releasing the resources becomes the origin of such gap. Therefore, after

scheduling this first action on the example, the Node Scheduler would have two gaps: the one

with the unused resources and the one containing the resources released by the action starting

the end time of the action – timestamp 100 ms – until the end of the execution.

When the Action Scheduler assigns a second action to the node, the Node Scheduler repeats

the process. For instance, it could receive an action exactly as the first one but with a static

dependency expectedly released on timestamp 20 ms. In this case, the Node Scheduler would

check the available gaps and find that it can fit the action on the unused resources. Therefore, it

takes the gap and splits it into two gaps: a first one starting at 0 until the start of the action –

timestamp 20 – containing the resources used by the action, and a second one with the remaining

resources. However, since the action uses all the resources within the original gap, the Node

Scheduler dismisses the latter. As with the first action, it registers a new gap with the resources

released by the second action from timestamp 120 until the end of the execution. The origin

of such gap is the second action. After scheduling the second action, the Node Scheduler has

a list containing three gaps: the unused initial resources – one CPU core from timestamp 0 to

timestamp 20 –, the resources released by the first action – one CPU core from timestamp 100

until the end of the execution – and the resources released by the second action – one CPU core

from timestamp 120 until the end of the execution.

Actions may not fit in one single gap of the register; in such case, the Node Scheduler should

group several gaps for fulfilling the requirements of the action. For instance, in the same example,

the Action Scheduler could submit a third action to the same Node Scheduler requiring two

CPU cores for 100 ms. In this case, the action should run on the gaps released by the previous

actions. Since the action requires both gaps, its execution will not start until the resources of both

gaps are available; i.e., timestamp 120 ms. Regarding the gap coming from the first action, the

third action requires all its resources; therefore, it only creates on single gap from the gap start,

timestamp 100 ms, to the start of the action execution 120. For the gap with origin the second

action, the third action also requires all the resources; however, since the start times of the gap

and the action execution are the same, the Node Scheduler dismisses any possible gap between

the second and the third actions. Finally, the Node Scheduler registers the gap corresponding to

the resources released by the third action. At the end of this third action scheduling, the register

144

9.2. INITIAL SCHEDULING

contains three gaps: the unused initial resources – one CPU core from timestamp 0 to timestamp

20 –, the resources from the first action idle until the third action runs – one CPU core from

timestamp 100 until timestamp 120 – and the resources released by the third action – two CPU

cores from timestamp 220 until the end of the execution.

To ensure that the execution uses the resources as scheduled, the Node Scheduler has to add

the necessary resource dependencies. When an action employs the resources from a gap to run,

the Node Scheduler adds a resource dependency from the action origin such gap to the action

being scheduled. In the case of this third action, it employs resources from the gaps originated by

the other two actions; therefore, the Node Scheduler adds two resource dependencies to the third

action: one from the first action and one from the second one. Figure 9.2 depicts the evolution

of the gap register and the dependency graph when the Node Scheduler processes these three

actions.

Execution
Plan

Gap
List

Dependency
Graph

Initial
0 50 100 150 200

Time

250

< 2 CPU cores, 0, ∞, - >

First
Action

0 50 100 150 200

Time

1

250

< 1 CPU core, 100, ∞, Action1 >,
< 1 CPU core, 0, ∞, - > 1

Second
Action

0 50 100 150 200

Time

1

2

250

< 1 CPU core, 120, ∞, Action2 >
< 1 CPU core, 100, ∞, Action1 >,

< 1 CPU core, 0, 20, - >
1 2

Third
Action

0 50 100 150 200

Time

1

2

250

3

< 2 CPU cores, 220, ∞, Action3 >
< 1 CPU core, 100, 120, Action1 >,

< 1 CPU core, 0, 20, - >

1

3

2

Figure 9.2: Evolution of the gap list within the Node Scheduler and the resource dependencies
when scheduling three actions (Action1 and Action2 require one CPU core and Action3 requires
two CPU cores) on a node with two CPU cores. Each gap is described as a 4-tuple indicating the
resources contained, the start time, the end time and the origin action, respectively.

The more actions one Node Scheduler processes, the longer its gap list may become since gaps

too short to host an action execution are more likely to appear. To avoid the computational cost of

considering these gaps when finding the earliest moment when the resource can host the action

execution, the initial scheduling policy does not consider backfilling; the Node Scheduler only

maintains on the register those gaps whose end time is not defined.

145

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

9.3 Scheduling Optimization

By not considering backfilling, the initial policy leads to inefficient executions. Static dependencies

can force a late execution of some actions; if it ignores the gaps with resources later-employed

on other actions, the resources dedicated to statically dependent actions will remain idle until

these run. To improve the performance of the execution, the system runs a secondary process

in parallel to the main management of the execution that aims to improve the future execution

plan: the Scheduling Optimizer.

This process iteratively takes the current execution plan and, acting in a local scope for every

node, it tries to reduce the idle time of its resource as much as possible. Once it has shortened

the execution time of all the nodes, the Scheduling Optimizer tries to reassign one action from a

node to another checking if the move improves the solution using the Score comparison function.

When the process reaches a convergence state where no action movement improves the current

solution, it pauses. After a configurable period of time, the process resumes and performs the

optimization taking into consideration any deviation of the execution prediction compared to the

real execution and newly-submitted actions.

For shortening the execution time on one node, the local scope procedure tries to reorder the

execution of the actions assigned to the node while maintaining the implementation selected by

the initial scheduling policy. For doing so, the Scheduling Optimizer operates on two stages. First,

during the Scan stage, it traverses the current plan for the node and classifies all the actions

assigned to it into four ordered groups according to the state of its dependencies.

The first group, the Running actions, contains the actions that the node is running at the

moment – i.e., those actions free of dependencies – and sorts them according to their expected

end time. The Ready actions group is the second set and contains all those actions with no static

dependencies that have not started their execution yet because they have a resource dependency

with some other action. This set sorts the actions according to their priority. Currently, except for

some higher priority type of actions like Start Worker Action or Stop Worker Action, the group

prioritizes the actions within the same category in strict order of arrival into the scheduling

system. However, this policy could change and consider other options such as prioritizing those

actions consuming more resources. Finally, actions with some unresolved static dependency split

into two groups depending on the node assigned to their predecessors. If all the preceding actions

are assigned to other nodes of the infrastructure, the local-scope procedure does not influence on

the estimated dependency release timestamp; the Scheduling Optimizer groups these actions

into the Pending-Remote group and sorts them by their release timestamp. Otherwise, if any

of the static dependencies relates the action to at least one action assigned to the same node,

the Scheduling Optimizer cannot estimate the timestamp until it fixes the execution of all the

predecessor actions. These actions group into the Pending-Local set with an undetermined order.

Once the Scan procedure has classified an action, it unschedules the action execution by

blocking any change in its state and removing all its resource dependencies. For stalling the main

146

9.3. SCHEDULING OPTIMIZATION

management process for the shortest time as possible, the Scan process starts the analysis by

the end of the execution plan. Using the registered gaps, Node Scheduler can quickly determine

the actions at the end of the execution plan. By navigating through the resource dependencies of

the actions, the Scan process traverses the dependency graph analyzing and unscheduling the

actions from the end of the execution plan to the actions at the moment of their analysis, which

are the last to get their execution state locked. Thus, the process doing the main management of

the execution can deal with the completion of the actions running when the scanning started,

and go on with the execution plan while the traversing of the graph does not reach its front.

On the other hand, by starting the graph traversal by its end, the Scan process dismisses

any action submitted later than its start. To include these actions on the optimization, the Node

Scheduler adds them into a fifth group, New Submissions, and blocks their execution in spite of

applying the initial scheduling policy as usual. At the end of the Scan process, the Node Scheduler

classifies all the actions in this fifth group into the other groups using the same criteria except

for the Running group. These actions have no resource dependencies because the Node Scheduler

has not planned their execution yet; usually, they should have a resource dependency with any of

the actions at the end of the execution plan or another action within the New Submissions group.

Therefore, the Node Scheduler moves those actions with no static dependencies into the Ready

group.

Figure 9.3 depicts an example of the execution plan of twelve actions in a Node Scheduler.

The Scan process classifies actions 1 and 2 as Running actions. Actions 4, 5 and 6 have no static

dependencies but have resource dependencies; therefore the Node Scheduler classifies them as

Ready actions. The other seven actions have static dependencies with other actions. Actions 3, 7,

8 and 9 only have dependencies with actions assigned to other nodes of the infrastructure – C, A,

B and C respectively –; hence the Node Scheduler classifies them into the Pending-Remote group.

Given the end time of their predecessors the group sorts them following the next order: 7 – A

finished at timestamp 10 –, 8 – B finishes at timestamp 20 –, 3 and 9 – C finishes at timestamp 90.

Finally, actions 10, 11 and 12 have at least one static dependency with another action assigned to

the same node; then, they belong to the Pending-Local group.

0 50 100 150 200

Time

1

2

3

5

A

6

7 8
9

10

11

12

B
C

4

O
p
ti

m
iz

in
g

 N
o
d
e

O
th

e
r

N
o
d
e
s

Running: 1, 2
Ready: 4, 5, 6
Pending-Remote: 7, 8, 3, 9
Pending-Local: 10, 11, 12

Figure 9.3: Execution plan generated only with the initial scheduling policy of twelve actions on
one node before performing the local-scope optimization (left) and the group classification at the
end of the Scan phase (right).

147

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

After deconstructing the execution plan and assigning all the actions into the groups, the local-

scope optimization gets into the second phase, the Reschedule, where it builds a new execution

plan trying to improve the previous one. For that purpose, the Scheduler Optimizer simulates an

execution where an online scheduler checks if there are enough available resources to host the

highest-priority dependency-free action.

Given that the granularity of the actions can vary from milliseconds to hours, instead of

discretizing the time and evaluating the resource availability on each interval, the simulation

bases its progress on the events changing the amount of available resources or the runnable

actions. The events it considers are the start and end of an action execution on the node and

the resolution of all the static dependencies of actions with actions scheduled on other nodes.

By keeping a register of all the upcoming events and the timestamp when they are expected to

happen, the simulation can directly detect the next change in the available resources by picking

the closest future event. Then, it can check whether the highest-priority dependency-free action

fits in the currently available resources or it must wait for further upcoming events releasing

resources to schedule the action.

Initially, the rescheduling process expects no events and considers all the resources on the

node as available; i.e., the simulation has a single gap with an undefined origin that contains all

the resources of the node from the initial simulation timestamp – corresponding to the moment

when the reschedule started until the end of the execution.

The process cannot preempt the actions already running; therefore, for each action within

the Running group, it registers an action-start event associated to the timestamp when the

rescheduling stage started. The rescheduling process neither influences on the moment when

actions within the Pending-Remote group become dependency-free since it does not control the

execution of actions on other nodes. Hence, the simulation knows beforehand when to expect the

release of all the static dependencies of those actions; consequently, it registers for each action

within the Pending-Remote group an event associated to the expected release time. Figure 9.4

illustrates the initial state of the simulation after processing the actions within both groups in

the example already scanned in Figure 9.3.

After processing all the actions within both groups, the Scheduler Optimizer enters into

an iterative procedure that tries to fit the highest-priority action from the Ready set as soon

as there are enough resources to host its execution. Each iteration of the procedure starts by

polling the earliest expected event and compares its associated timestamp to the simulation

timestamp. If both timestamp are equal, it means that the time for the event to happen has come;

the simulation has to consider from that moment on the effects of such event on the available

resources. Otherwise, if the event timestamp is bigger than the current simulation timestep, it

means that the simulation has not reached the moment to apply the changes of the event yet;

the resources still available at that point of the simulation could host other actions. If there are

enough available resources to host the highest-priority action of the Ready group, it removes the

148

9.3. SCHEDULING OPTIMIZATION

Event List Gap List Groups Content

<0, SA, Action1>
<0, SA, Action2>
<10, SDR, Action7>
<20, SDR, Action8>
<90, SDR, Action3>
<90, SDR, Action9>

< 4 CPU core, 0, ∞, - >
Ready: 4, 5, 6
Pending-Local: 10, 11, 12

Figure 9.4: Simulation state at the beginning of the reschedule process in the example already
scanned in Figure 9.3. The leftmost part of the figure shows the list of events expected to happen
(<timestamp, type of event: Start Action (SA) or Static Dependencies Release (SDR), Action>), the
center, the list of available resources as gaps, and the rightmost part, the content of the updated
groups.

action from the group and registers a new start-action event expected to happen on the current

simulation timestamp to start the execution and puts the polled event back into the register.

Conversely, if the highest-priority action does not fit in the available resources, the resources

have to remain available until the following event; hence, the simulation leaps forward until the

time when the polled event takes place and incorporates the effects of such event.

The consequences of each event are different; therefore, so it is how the Scheduler Optimizer

handles each type. The most simple events to deal with are the ones representing the release of

all the static dependencies of an action on actions scheduled in other nodes. In this case, their

only consequence is that from that moment on the online scheduler can decide to run the released

action; therefore, the Scheduler Optimizer only needs to add the task into the Ready group.

When handling an event representing the end of an action execution, the simulation can

consider the resources employed by the action as available again; therefore, it registers a new gap

originated by the finished action containing the employed resources from the current simulation

timestamp until the end of the execution. Besides the resources, the end of an action also releases

the static successors of the action from that dependency. If at that point of the simulated execution,

all the static dependencies from the successor are resolved, the action can run from that moment

on; hence, the Scheduler Optimizer should move the action from the Pending-Local group to the

Ready one. Conversely, if the action still has some pending static dependencies, the Scheduler

Optimizer has to check if all the pending predecessors of the action run on other nodes. In that

case, the rescheduling process no longer influences on the moment when the action is released of

all its static dependencies; the process can predict when it becomes dependency-free, register the

corresponding static dependencies release event and remove the action from the Pending-Local

group. Otherwise, if the action still statically depends on at least one not-yet-rescheduled action,

it remains in the group until the processing of all the events corresponding to the end of the

predecessors.

The last kind of event to deal with is the start of an action execution. At that point, the

149

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

Scheduling Optimizer has to reserve enough resources to host the execution. For doing so, it

analyzes the list of gaps with the available resources at that time and picks those with the

closest earliest start timestamps. Given that the only way to process an action-start event is

immediately after polling another event associated to a future timestamp and verifying that the

highest-priority Ready action fits on the available resources, the Scheduling Optimizer always

finds a set of gaps containing enough resources to host the action. The start of these gaps might

not be the current simulation timestamp; therefore, each gap gets divided into two parts, as

with the initial scheduling policy: one gap with the unused resources maintaining the original

time-lapse and a second gap with the employed resources finishing at the current simulation

timestamp. While the resources of the former remain available for scheduling future executions

on them; the regular flow of the iterative procedure would dismiss the ones of the latter. To avoid

that these resources remain idle during the real execution, the optimization tries to fill this

second gap executing actions with a lower priority. For that purpose, the Scheduling Optimizer

goes through the Ready group in strict order of priority looking for any action that could run on

the resources within that time.

If no action within the Ready group matches the gap constraints, the resources remain idle

during the lapse of time of the gap. Conversely, if the Scheduling Optimizer finds a fittable action,

it plans its execution as early as its static dependencies allow within the time frame of the

gap. Thus, the original gap makes way for an action execution and up to three new gaps. The

remaining gap represents the availability of the resources unused by the action; therefore, it

has all the characteristics of the original gap but the amount of resources. The preceding gap

represents the time that the resources employed by the action before the execution; therefore,

its start and origin remain the same of the original gap, and its end matches the start of the

execution of the selected action. Finally, the succeeding gap is the time lapse that the used

resources are available between the end of the selected action and the end of the original gap.

The selected action is the last action to use such resources; therefore, it becomes the origin of

the gap. Since any of these gaps, in turn, can host the execution of other actions, the Scheduling

Optimizer recursively tries to fill them with lower-priority.

For the real execution to reflect the simulation, the optimization process has to translate its

scheduling decisions into resource dependencies. When the simulation decides to run an action

on the resources within a gap, the Scheduling Optimizer defines a resource dependency of such

action on the last resources using them, i.e., the origin of such gap. When handling a start action

event, the Scheduling Optimizer tries to fit lower priority actions on each of those gaps before

running the action. If it cannot find any action to run, it assigns the action a dependency on

the origin of such gap. Otherwise, if the Scheduling Optimizer finds an action to run within the

gap, the action depends on all the last actions using the resources within the succeeding and

remaining gaps. In turn, the selected action depends on the last action using the resources within

the preceding gap. If no action fits on it, it would depend on the origin of the preceding gap;

150

9.3. SCHEDULING OPTIMIZATION

otherwise, it would depend on the last actions using the succeeding and remaining gaps of the

recursively selected action.

During the Scan stage, the Scheduling Optimizer locks the status of every action to avoid

any unexpected modification during the optimization process. Once the optimization has already

scheduled an action execution – handled the corresponding end event – and has determined all

its immediate successors – the gap created at its end and all the possible divisions have been

fully assigned as resource dependencies –, no change on the action status can affect the result

of the optimization. Hence, it is no longer necessary to hold the lock on the action status; the

Scheduling Optimizer releases it so that the real execution progresses while it optimizes the

remaining part of the execution.

Finally, every started action finishes at some point; to end up the handling of an action-start

event, the Scheduling Optimizer registers the corresponding action-end event associated the

expected timestamp of its completion: the current simulation timestamp plus its expected length.

poll event

compare

time

does it

t?

check top action

from Ready
update sim.

timestep

remove action

from Ready

add expected

Start-Action

restore polled

event

noyes event

type

add expected

Start-Action

Static

Dependencies

Release

Start

Action

reserve action

resources

ll preceding

gaps

add resource

dependencies

check lock

predecessors

add expected

End-action

add expected

Static-Deps Release

release action

resources

check static

dependencies

of successors

End

Action

still

has local

deps?

noyes

is

dep-free

?

add action

to Ready

yesno

remove action

Pending-Local

missmatch match

more

events?

yes

no update gaps

list on node
schedule

new actions

Figure 9.5: Flowchart of the iterative process leading the Reschedule stage of the local optimiza-
tion.

The whole iterative process, depicted as a flowchart in Figure 9.5, finishes when there are no

more registered events. At that point, the Scheduling Optimizer updates the list of gaps registered

151

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

in the corresponding Node Scheduler according to the new execution plan and schedules any

action submitted to the node during the optimization process using the initial scheduling policy

as if the Action Scheduler had submitted the action upon the optimization completion.

The described procedure allows the initial execution plan in the left part of Figure 9.3 to

reduce its execution time from 180 ms to 130 ms as depicted in Figure 9.6. By reducing the

execution time while maintaining the implementation chosen by the initial scheduling policy, the

optimization also targets a lower energy consumption and price to pay for the optimized node.

With a more time-efficient solution, the application avoids spending the power dedicated to idle

resources and its impact on the overall execution bill.

0 50 100 150 200

Time

O
p
ti

m
iz

in
g

 N
o
d
e 1

2

35

A

6
7

8

10

11 9

12

O
th

e
r

N
o
d
e
s

B
C

4

Figure 9.6: Execution plan after the local-scope optimization processes the execution plan on the
left part of Figure 9.3.

After shortening the execution plan for every node, the Scheduling Optimizer tries to balance

the workload among the nodes by changing the selected node and implementation for one of

the actions. There exist several different ways to estimate the workload assigned to a node: the

number of pending actions, the expected resource usage percentage, the overall energy consumed

by the node, ... Since the goal of the optimization is to reduce the execution timespan, the currently

implementated optimization uses as workload metric the time when the resources of the node

have run all the assigned actions; i.e., the biggest end time of all its actions, which matches the

start time of the latest gap registered in its Node Scheduler.

For the Scheduling Optimizer to decide which action movement to apply, it looks for an

action assigned to the node with the highest workload level that is worth moving to another

node. Given that the Scheduling Optimizer only moves one action of the node per iteration,

it needs to establish a priority among the actions assigned to each node. The current policy

implementing this intra-node priority considers only the end time of the actions: the later an

action finishes, the higher priority it has; thus, actions scheduled at the end of the execution are

more likely to change the node where they run. To decide the new host for the action execution,

the Scheduling Optimizer checks the workload levels of the nodes again. First, it checks if it is

worth to move the action to the node with the lowest workload level. For doing so, it computes

the Score for the current action-node-implementation tuple and for every implementation able

to run on the candidate node. If none of the implementation on the candidate node improves

the current solution, the process tries to move the same action to the next node according to

152

9.4. DYNAMIC RESOURCE PROVISIONING

the ascending order of workload levels. If no node can improve the current scheduling for the

highest priority action on the node, the Scheduling Optimizer looks for another action assigned

to the same node worth moving by iteratively applying the same procedure to the remaining

actions in strict order of intra-node priority. If the Scheduling Optimizer processes all the actions

assigned to the node without finding anyone worth moving, it tries to do the same for the next

node according to the descending order of workload level. If after processing all the nodes of the

infrastructure, no action movement improves the current scheduling, the optimization process

reaches a convergence state and finishes.

Conversely, if while considering any action movement during the process, the Score computed

for one implementation on a different node improves the Score for the current action-node-

implementation combination, the Scheduling Optimizer has to apply the change. For that purpose,

first, it needs to unschedule the action execution; therefore, all the resource dependencies of

the action have to disappear, and the current successors of the action replace any resource

dependency on the unscheduled action by resource dependencies on the predecessors of the

unscheduled action. Once the Scheduling Optimizer completes the unscheduling of the action, it

needs to reschedule its execution on the node. For that purpose, it submits the action to the Node

Scheduler corresponding to the selected node so that this schedules the execution of the selected

implementation on the node and adds the necessary resource as if it was scheduling the action

for the first time.

Taking an action out from the execution plan for a node leaves the resources expected to

host the action idle during the time-lapse when the action was to run. Therefore, if the removed

action was not at the very end of the execution plan, those idle resources could host the execution

another action during that period. Likewise, as discussed at the beginning of this section, the

initial scheduling policy can also lead to an inefficient execution plan with idle resources at some

point of the application. Hence, the execution plan for both nodes, the donor and the receiver,

should be optimized again. Rescheduling the execution of these nodes may change the release

moment of some static dependencies on actions assigned to these nodes; the optimization of

these nodes may affect actions assigned to others. Therefore, if the Scheduling Optimizer decides

to move one action, it triggers the re-execution of the whole optimization procedure. First, it

performs a local-scope optimization on every node of the infrastructure, and then, it looks for

another worthy action movement.

9.4 Dynamic Resource Provisioning

A good planning of the execution on top of the available resources can achieve shorter execu-

tion times and lower costs from the energetic and economic point of view. Complementing the

scheduling system with a mechanism to exploit elasticity of the Cloud providing the resource

pool with dynamicity boosts the effects of the system. By adding new resources into the pool, the

153

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

system can reduce the execution time of the application when they allow a better-exploitation of

its inherent parallelism. Conversely, when the parallelism degree of the execution falls and some

resources remain idle, shutting down some of them allows the system to reduce the energetic

and economic costs of the application. On the one hand, powering them off avoids consuming

the power to feed idle resources; and thus, their energy footprint and corresponding expenses

disappear. On the other hand, if the infrastructure is composed of virtual machines deployed on a

third party, shutting down a VM avoids the charges for the additional time that the VM remains

on.

The Resource Optimizer is a third process part of the scheduling system that runs in parallel

to the Scheduler Optimizer and the main management processes. Its goal is to monitor the

pending workload and provide the scheduler system with the amount of available resources that

fits better with the characteristics of the application and the requirements of the infrastructure

owner. For that purpose, it monitors the amount of time, energy and money already spent by the

application and computes the respective budgets to run the remaining part of the application

without exceeding the boundaries defined by the user. Being aware of the current limits for the

execution, the Resource Optimizer computes the expected costs following the current execution

plan and triggers the best actions to adapt the resource pool in accordance with the necessities.

To estimate the costs of the current execution plan, the Resource Optimizer uses the infor-

mation stored in the Action Scheduler and its Node Schedulers. For forecasting the timespan

of the execution, it only needs to check the end time of the very last action running on the

platform. Practically, it can get that information from the list of gaps registered in every Node

Scheduler, the latest start time of all the gaps of the system is the estimated end time of the

execution. Regarding the energy consumption, the system relies on a model that considers the

base consumption of the platform and the additional consumption caused by application workload.

For computing the base consumption of a node, the model multiplies its power consumption when

all the resources are idle by the time they remain on. Then, to compute the energy consumed by

the node, it has to incorporate to this value the consumption of all the actions assigned to the

node, which depends on the characteristics of the selected implementation for each task. Finally,

the overall energy consumption of the application is the accumulation of the energy spent by all

the nodes of the infrastructure. In terms of total monetary cost, as with the energy, the cost of

an execution is the accumulation of the cost of all the nodes composing the infrastructure. The

pricing model used to estimate the cost of each node combines a fixed expenditure, motivated by

the reservation of the resources throughout the execution, with a variable bill induced by the

utilization of such resources. Usually, the fixed part of the price is a proportional share of the

amortization and maintenance costs of the cluster, and the variable part of the cost corresponds to

the energy bill. When the node is a virtual machine deployed in a commercial cloud provider like

Amazon, the cost is constant; the price of the energy is 0. The total cost of the node corresponds

to the fixed part of the model which depends on the fees charged by the provider for that VM.

154

9.4. DYNAMIC RESOURCE PROVISIONING

Figure 9.7 contains the equations notating the described models.

End time:

ETexe =max
a∈A

ETa

Energy Consumption:

ECexe =
∑

n∈N
ECn

ECn = Pin ∗Tn +
∑

a∈An

ECan

Monetary Cost:

MCexe =
∑

n∈N
MCn

MCn = Pn ∗Tn +ECn ∗PEn

Variable Description
ETexe Expected execution end time
A Set of all actions to perform
ETa Expected execution end time of action a
ECexe Expected execution energy consumption
N Set of nodes composing the infrastructure
ECn Expected energy consumption for node n
Pin Power consumption when node n is idle
Tn Time that node n is on
An Set of actions to perform on node n
ECan Energy consumed by the computation of

action a on node n
MCexe Expected execution monetary cost
PE Price for the energy
MCn Monetary cost of having node n
Pn Price of having node n

Figure 9.7: Models to estimate the end time, energy consumption and monetary cost of running a
set of actions A on a set of nodes N.

Given the current resource configuration, the Resource Optimizer considers two possible

changes: obtaining one additional VM instance to act as a new node of the infrastructure incorpo-

rating new resources into the pool (scale-out) or releasing the resources of one node by destroying

the corresponding VM (scale-in). Although it is possible to create VMs tailored to the necessities

of the client, cloud managers usually offer a set of VM templates with predefined characteristics.

The infrastructure administrator has to configure the scheduling system to indicate to which

cloud providers the Resource Optimizer can request new VMs and the characteristics of the

templates available on each provider.

To decide whether to change the resource pool or not, the Resource Optimizer compares the

costs of running the application on every resource pool reachable through one single change.

For every template defined by the user, the system considers one scenario where it scales-out

and one instance of such template joins the resource pool. Likewise, it makes no distinction

among nodes and considers one scenario for each already available VM where it scales-in and

destroys such VM. To estimate the time, energy and money that it takes to run the application

on the resource pool available on each scenario, the Resource Optimizer runs a coarse-grain

simulation. For carrying out this simulation, the Resource Optimizer groups the pending-to-run

actions performing a similar activity and counts the number of actions in each group. Then, it

155

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

checks how many actions of each group can run in parallel on each VM and how long do these

simultaneous actions take to run. Finally, it balances the load among the nodes. For that purpose,

the Resource Optimizer sorts the available resources by the moment when they end the execution

of the actions currently running on the nodes and gets into an iterative procedure that distributes

the actions of every group among the nodes able run them. For doing this distribution, it picks

a group, gets the compatible node becoming idle earlier, assigns to it as many actions of such

group as it can host at a time, and delays the release timestamp according to the execution time

of those actions on the node. The Resource Optimizer repeats this procedure until it has assigned

all the actions; then, it can determine the end time of the execution of each node and the number

of actions of each group assigned on it.

These simulations are agnostic to the static dependencies among the actions; hence, the

actual execution of the workflow may completely diverge from the simulated plan. In an attempt

to improve the forecasts, the Resource Optimizer applies a correction factor to the end time of

the execution. The value of this factor is the relation between the estimated end time computed

with the current execution plan and the estimated end time obtained from the simulation of the

execution on the current resource pool. Thus, for one application whose execution plan on the

current resources takes 1000 s, and the simulation on the same resources forecasts an execution

of 500 ms; the correction factor is 2. If the simulation for a scenario removing one of the nodes

forecasts an execution of 700 ms, the corrected end time of the execution using the new resource

pool is 1,400 s. By providing the corrected end time and the simulation workload distribution to

the afore-described models, the system forecasts the time, energy and money necessaries to run

the application on the modified pool of resources.

Once it has the cost forecast for all the possible scenarios, the Resource Optimizer compares

them, picks the one achieves the best result according to the preferences of the infrastructure

owner, and performs the corresponding change. The priority of the system when choosing the

solution has to avoid exceeding the consumption boundaries; it dismisses any candidate solution

surpassing them unless that the current resource configuration is already beyond the limits and

the candidate gets the costs closer to them. After the filtering, the Resource Optimizer looks for

the resource pool achieving a lower cost for the parameter to optimize – time, energy or money –.

If multiple solutions achieve the lowest cost for the optimized parameter, the tiebreaker criterion

is trying to reduce of the other two. Often, the cost differences for the other two parameters

are contrary. For instance, in a system minimizing the monetary cost of the execution, two

scenarios can require the same amount of money; however, one scenario can achieve a lower

energy consumption while the other can achieve a shorter execution time. In this cases, the

implemented policy establishes that reducing the execution time has the highest priority and

saving money has the lowest.

If the system has to scale-out, the Resource Optimizer creates a new Node Scheduler managing

no resources and submits to the Action Scheduler one actions bound to this new Node Scheduler.

156

9.4. DYNAMIC RESOURCE PROVISIONING

This action, the Poweron Action, has the highest priority and no resource requirements. Its

purpose is to request the creation of a new instance of the selected template to the corresponding

cloud provider, monitor the booting process of such VM and contextualize it. Usually, cloud

providers give access to VMs with the requested features; however, the amount of computational

resources may mismatch if they are scarce. At the end of the action execution, it has to update

the amount of resources managed by the Node Scheduler with the granted resources.

So that other actions can use these resources to compute tasks on them, it is necessary to

start the worker process of the runtime. For that purpose, the Poweron action submits a second

action to the Action Scheduler bound to the node with the highest priority: the Start Worker

Action. This second action requires all the resources of the node; given its higher priority, other

actions cannot start their execution until the worker process is up and running.

Conversely, if the system has to scale-in, the Resource Optimizer has to retrace the steps done

when scaling-out. For doing so, it submits a high priority action, Stop Worker Action, bound to the

node. This action requires all the resources of the node with the purpose of stopping the worker

process on it. Since the action requires all the resources of the node, its execution does not start

until all the actions running on the node finish; given its higher priority, the Node Scheduler

plans its execution as early as possible, coming ahead of the execution of other actions previously

assigned to the node. From the moment when the worker process stops, the node cannot receive

any more application-level commands; therefore, the other nodes of the infrastructure cannot

retrieve data from it. Before turning down the worker process, it is important to replicate on any

other node of the system every data value only located on the node being switched off. Once all

the data in the node is available through another node of the infrastructure, the system submits

the command to terminate the worker process on the node and notifies the Node Scheduler that

all its resources no longer exist.

To end up its activity, the Stop Worker Action requests the Action Scheduler to run one last

action bound to the node: the Shutdown Action. The goal of this last action is to contact the cloud

provider hosting the VM to destroy it. As with the Poweron Action, the Shutdown Actions does

not require any resources to run; thus, it is the only action that can run on the node after the

Shutdown Action has removed all the resources from the Node Scheduler. At the end of this

action, the VM does no longer exist; therefore, the Action Scheduler dismisses the corresponding

Node Scheduler.

For the application to go on with the execution, the system has to reschedule all the action

assigned to the node before dismissing it. Once the Stop Worker Action has reduced the resources

managed by the Node Scheduler, the Scheduler Optimizer should evict all the actions from the

Node Scheduler moving them to other nodes. The lack of resources makes the start time of such

actions undeterminable; and once the load balancing procedure detects that, it moves the actions

to other nodes. If the Shutdown Action finishes before the Scheduler Optimizer re-assigns all the

actions, the Action Scheduler plans the execution of the ones remaining as if they just arrived

157

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

into the system, using the initial scheduling policy; and then, it deletes the Node Scheduler.

9.5 Evaluation

This section presents the results of the test conducted to validate the self-adaptation capability

of the described system. For that purpose, it uses the jEPlus application [9] developed by the

GREEN PREFAB company, a simulation manager that runs a set of parametrized EnergyPlus [7]

executions. Each of these runs simulations provides architects with an evaluation of the thermal

quality and indoor comfort of a building given certain climate conditions and its architectural

design to assess them on the election of materials or designs.

To port the application to the COMPSs programming model, the application has one single

Core Element, simulate, that contains the execution of one EnergyPlus simulation. Since all the

simulations are independent of each other, all the tasks composing the application can run at a

time if the infrastructure has enough resources to host them. The application has two different

implementations of the simulate Core Element using two different versions of the EnergyPlus

software generated with different compiler flags.

GREEN PREFAB identified three different profiles of jEPlus users whose requirements

become the preferences defined by the user to lead the scheduling system. Urgent computations

require getting the result as soon as possible regardless the monetary cost and the energy

consumption of the execution. The second profile corresponds to academic executions where users

do not care about the performance of the execution while the result of the execution is ready

when they go back to work next morning (execution should end in 16 hours). However, users

classified in the Academic profile do care about the final bill; the monetary cost of the execution is

the parameter to optimize. Finally, the third profile corresponds to users that run the application

trying to achieve an energy-efficiency certificate. These certificates take into account the energy

efficiency at all the stages of the building lifecycle; thus, they also measure the energy spent

during its design. In this case, users within this profile, named green profile, aim to optimize the

energy consumption of the application, but they limit the total bill for the execution to 20 e and

its timespan to one week (604,800 s). Table 9.1 summarizes the description of these three profiles.

The test compares the behavior and costs of executing a project using a medium-sized dataset

that generates up to 4,608 simulations when users configure the scheduling system according to

meet the requirements of each profile.

Profile Name Optimization Parameter Boundaries
Urgent Execution time -

Academic Monetary cost 57,600 s (16 h)
Green Energy consumption 604,800 s (7 d) and 20 e

Table 9.1: Scheduling system preferences according to the user profiles detected by Green Prefab.

158

9.5. EVALUATION

The jEPlus executions run in a private cloud running on a cluster of 32 nodes, each equipped

with one Intel Xeon E3-1230 V2 (quad-core) processors at 3.30GHz, 16 GB of RAM and 1.8 TB

of local disk, interconnected by a Gigabit Ethernet network. The cluster leverages on the KVM

hypervisor to virtualize the nodes, and OpenStack manages the virtual machines. The system is

configured to use one single VM template where each instance has one virtual CPU core at 1.5

GHz, 3 GB of RAM and 4 GB of instance storage. The operating system installed in the VM is a

Debian GNU/Linux 7.8 (wheezy).

The nodes are connected to a PDU (power distribution unit) that physically measures their

power and energy consumptions. When the VMs are idle, each of them consumes 6.1 W. Since the

cluster is located in Berlin, the test determines the economic cost due to the energy consumption

using the price fees provided by the European Commission on Eurostat for Germany: 0.149

e /kWh. The fixed part of the monetary cost of the VMs is 0.03e /h, a value similar to the prices

charged by Amazon for its EC2 instances. The total price of a VM idle for an hour is 0.0309 e as

shown by the breakdown in Table 9.2.

Fixed Price per VM 0.03 e /h
Power Idle VM 6.1 W
Energy Price 0.149 e /kWh

Total Price per Idle VM 0.0309 e /h

Table 9.2: Idle VM price breakdown.

Running different versions of the EnergyPlus binary on the VM has different costs. Regarding

the basic version of the binary, the average execution time is 331 s and its execution incurs an

average power consumption increase of 5 W. Thus, the average energy consumption of a task

using the basic implementation is 1,655 J and the corresponding bill amounts to 0.00007 e .

Conversely, for the binary generated with the optimization flags on, an execution lasts 175 s with

an average power consumption increase of 15.1 W. Thus, the total amount of additional energy

spent on the execution is 2,642.5 J incurring an additional cost of 0.00011 e . Besides the costs

directly related to its computation, tasks reserve some resources to run with a cost; therefore, the

task assumes the corresponding share of the costs of these resources (0.0000083 eper second of

reserved CPU core plus the costs of the 6.1 W consumed by the resources) as part of its own cost.

Table 9.3 summarizes the differences among both implementations of the simulate Core Element

distinguishing the costs observed due to the differential in the measures and the costs including

the infrastrucutre.

The Urgent execution has no limits for the money and energy dedicated to the execution;

therefore, the system requests the necessary resources to exploit all the parallelism of the

application. The execution scaled-out up to 31 VMs, the top capacity of the infrastructure, and

maintained that number of VMs until the end of the execution. The execution lasted for 26,100 s

(7 hours and 15 minutes) spending 5.22 kWh and 8.21 e . All the tasks executed the optimized

159

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

Basic Optimized
Average Execution Time (s) 331 175
Average ∆ Power (W) 5 17.1
Estimated ∆ Energy Consumed (J) 1,655 2,992.5
Estimated ∆ Energy Bill (e) 0.00007 0.00012
Average Total Power (W) 11.1 23.2
Estimated Total Energy Consumed (J) 3,674.1 4,060
Estimated Total Energy Bill (e) 0.000152 0.000168
Estimated Total Bill (e) 0.00276 0.00163

Table 9.3: Average measures for each version of the simulate Core Element running an EnergyPlus
execution.

version of the Core Element since its faster than the basic one.

Both, the Green profile and the Academic profile try to use the lower number of VMs to reduce

the additional energy and money spend by idle resources that appear at the end of the execution

with load imbalances. For the Academic profile, the selected implementation is also the optimized

one because its overall cost is lower than the basic one (0.00163 e vs. 0.00278 e). Using this

implementation, the lowest number of VMs that can achieve an execution time lower than 57,600

s is 15. However, adding one more VM allows to shortens number of hours charged per each VM

from 15 hours to 14, reducing the resources bill from 6.75 e to 6.72 e . When the scheduling

system is configured to fit the requirements of the Academic profile, the application lasts 50,339

s, consumes 5.19 kWh and spends 7.49 e .

For the Green profile, the system picks the basic implementation of the Core Element due to

its lower energy consumption (1,655 J vs. 2,992.5 J). In this case, running the application with

one single VM would last more than 17 days, more than the one-week boundary. To reduce that

difference, the application scales-out up to three VMs that the application uses for the first four

days of the execution and then, it scales-in to two VMs. The overall execution time is 592,102

s (almost 6 days and 21 hours). The overall energy consumption shrinks to 4.72 kWh, but the

money spent raises to 13.47 e .

Table 9.4 summarizes the results obtained for the executions with the three profiles. These

results highlight, on the one hand, the importance of selecting the proper implementation for

achieving the goals of the system. Using the basic implementation of the method slows down the

execution since it requires 1.9x more time than an execution running the optimized implementa-

tion on the same resources. Although the execution time is longer, the power consumption of the

overall system is 2.1x lower; thus, the total amount of energy shrinks. However, the price to pay

for reserving the resources (0.03 e /h per VM) surpasses by far the savings on the energy bill.

On the other hand, the results also highlight the importance of the Resource Optimizer to

fulfill the boundaries. The results obtained for the three profiles demonstrate that the system

scales-out to provide the necessary amount of resources to achieve the desired execution time.

160

9.6. SUMMARY

The Green profile allows to see the necessity of dynamic resource provisioning; the application

initially detects that it needs to scale-out and use the resources of at least three VMs to meet

the one-week deadline. After almost five days running the application on those resources, the

Resource Optimizer notices that it can run the remaining workload using only two nodes and still

meet the deadline. Thus, at that point, it decides to scale-in and reduces the number of VMs to

two for reducing the power consumption of the system.

Profile
Name

Max. VMs
used

Selected
Implementation

Exec. Time
(s)

Energy
(kWh)

Price
(e)

Urgent 31 Optimized 26,400 5.22 8.21
Academic 16 Optimized 50,339 5.19 7.49
Green 3 Basic 592,102 4.72 13.47

Table 9.4: Results obtained after executing the application configuring the system according to
the three profiles: Urgent, Academic and Green.

9.6 Summary

This chapter describes a system that allows the Cloud Platform to offload not only the execution

of the tasks onto the remote resources but also the scheduling of such executions. Once the

Offload Decision Engine decides to execute a task on the resources managed by an instance

of Cloud Platform, this forwards the task execution request directly to the endpoint of such

system so that it manages the execution of the task on the underlying infrastructure. On the

one hand, offloading the task scheduling releases the mobile device from the overhead of the

computation associated with it and allows it to use these resources for the execution of tasks. On

the other hand, the higher computing capacity of the remote node running this system allows the

development of policies with a higher computational load than the ones hosted on the mobile;

policies lead either by the interests of the application user or by the owner of the infrastructure

hosting the computation.

The purpose of this system is to orchestrate the execution of the received tasks on the

computational resources of the nodes managed by the Cloud Platform. From a more general point

of view, this system has to schedule the execution of a set of actions, computing tasks among them,

on the set of resources composing the underlying platform. Therefore, the purpose of the system

is to determine an execution plan that pursues an optimal execution according to the configured

goals. This plan has to be consistent with the dependencies among actions and guarantee that the

resources employed by actions running simultaneously on a node never outnumber its computing

capabilities. To ensure that the execution of the actions follows the decided plan, the system

expresses the order of the actions using the same resources defining a new set of dependencies,

resource dependencies. Considering both, the static and the resource dependencies, the system

can build a dependency graph of the actions to analyze the behavior of the execution plan. It is

161

CHAPTER 9. OFFLOADED SCHEDULING SYSTEM

extremely important that the graph of the decided plan has no cycles for a cycle of dependencies

would lead the execution to a deadlock.

For carrying out its duty, the system is organized in two levels. At a high level, an Action

Scheduler is in charge of determining the where and how the actions run; i.e., which node executes

which implementation of the action. At a low level, every node is represented by a Node Scheduler

that manages the resources that belong to the node and decides when the action runs without

oversubscribing the resources of the node. To take these decisions, the system runs a two-stage

procedure. Every time that a new action reaches the system, the Action Scheduler asks each Node

Scheduler a forecast of the end time, energy consumption and monetary expenses if the node

hosted the action execution. After comparing the costs, the Action Scheduler picks a combination

of implementation and node to run the action according to the optimized parameter and requests

the corresponding Node Scheduler to schedule the execution of the selected implementation on

its resources. At this point, the Node Scheduler greedily plans the execution of the action at the

end of the execution without considering backfilling. Infrastructure manager – the owner or the

user – can create new policies to select the node and implementation to run by merely overriding

a function that compares two different options.

By not considering backfilling, the initial policy leads to inefficient executions. To improve

the performance of the execution, the system runs an iterative process in parallel to the main

management of the execution that aims to improve the future execution plan: the Scheduling

Optimizer. To optimize the execution plan, it acts first on a local scale of each node; every Node

Scheduler reorders the execution of all the remaining actions according to their priority. To

determine the priority of each action, the currently implemented policy is aging; however, the

infrastructure manager can easily modify how the system determines the priority of each action

by overriding the corresponding method. Finally, once the optimization has acted on the local

scope and reordered the actions of all the nodes, it tries to improve the execution at a global level

by re-assigning one action from one node to another. To decide which action to move, the Scheduler

Optimizer sorts the nodes according to their workload level and seeks an action worth moving.

To select which of the actions should be assigned to another node, the Scheduler Optimizer

subsequently checks every action in strict order of donation priority. Using the end time of an

action to determine the donation priority of an action fosters reassigning those actions scheduled

at the end of the execution while consolidating the most immediate decisions. Besides, considering

the end of the last action to run on the node as a good indicator of the workload assigned to such

node allows the runtime to balance the workload among nodes. As with the initial scheduling and

the local-scope optimization, the infrastructure administrator can easily override both methods

to create new policies for the global optimization.

Providing the system with dynamic resource provisioning boosts its effects by adapting the

amount of available resources to the computation needs of the moment. Adding a new node to

the current infrastructure allows the system to exploit higher levels of parallelism, and hence,

162

9.6. SUMMARY

reduce the timespan of the application, at expenses of increasing the power consumption and

the price paid for the infrastructure. Conversely, releasing one node can save this costs when

having this resources available makes no difference in the execution. To take the decision of

scaling-in or scaling-out, the system periodically runs a coarse-grain simulation of the execution

with all the possible scenarios after adding or releasing one of the nodes to forecast its end time,

its energy consumption and the money spent. Comparing the results obtained for each possible

scenario, the system can determine which is the best option and contact the corresponding

resource manager to apply it. Currently, the elasticity policy pursues optimizing one parameter –

execution time, energy consumption or money paid – while limiting the cost for the other two.

As with the scheduling policies, the infrastructure manager can change the elasticity policy by

merely overriding the function that selects an option comparing the costs.

163

Part V

Conclusions

165

C
H

A
P

T
E

R

10
CONCLUSION

To wrap up this dissertation, this last chapter presents the conclusions extracted from this

thesis and suggests possible research lines to continue the work described in this document.

As explained in the Introduction chapter, the frame of the thesis is Mobile Cloud Computing

technologies; specifically, it delves into the complexity of the development of mobile applications

that offload part of the computation onto the Cloud.

As detailed in the State of the Art chapter, writing applications for MCC environments is

not straightforward. To begin with, developers have to deal with the issues related to parallel

programming for distributed infrastructures. First, they need to analyze the code of the appli-

cation to partition it into several units of execution. Then, they need to modify the application

to orchestrate the execution of such units on top of the underlying infrastructure guaranteeing

the dependencies among them to produce the expected result. At that point, developers need to

evaluate which units are worth running on the device and which ones to offload and decide on

which node and when each unit should run. Finally, once they have decided the best resources

and moment to execute each unit, developers have to implement a mechanism that allows them

to submit the execution to the corresponding resources and provide them with all the necessary

values to produce the expected result. Besides, the high mobility of the devices adds two new

concerns to the cost/benefit analysis: the battery lifetime and the variability of the network.

The battery is a limited source of energy; therefore, the amount of energy that an application

consumes is important, and developers have to be aware of it when deciding where each execution

unit runs. The network variability can rapidly change the costs of transferring the data to and

from the remote nodes. Handing over to a mobile data connection from a Wi-Fi network increases

significantly the time to transfer a data value and the energy consumed and the price to pay per

each byte of data. In extreme cases, the mobile device can even get into an area out of signal and

167

CHAPTER 10. CONCLUSION

become isolated from the rest of the infrastructure. Developers have to control these situations

and provide the application with the necessary mechanisms to continue its execution even if

the isolation becomes persistent. All these issues bring into the spotlight the strong necessity

of programming models that ease the creation of MCC and increase the productivity of the

developers by releasing programmers of the management of these issues.

The efforts made throughout the thesis focus on answering the research question set out on

Section 1.2: ”Could a programming model allow developers to create an application to run on a

mobile device and transparently exploit an MCC infrastructure to enhance its performance?”; and

developing a prototype of the model that substantiates the answer. This dissertation proposes a

programming model that successfully tackles the issues of MCC and hides them away from the

application developer; thus, the described prototype already satisfies the requirements for the

solution. Therefore, this thesis concludes that it is possible to create such a programming model.

Building on the COMPSs programming model, the described solution achieves the objectives

of the thesis regarding the programmability of the model. Developers following the model code

their applications being agnostic to the details of managing the parallelism and the underlying

infrastructure. Instead of handling them manually, programmers implement the computational

logic of their software in a sequential fashion with no references to the infrastructure. Besides,

they write the code using the native language of the target platform; therefore, the adoption of

the model is smooth, and developers can improve their productivity with no additional effort. For

detecting the parallelism at runtime and executing the application on the infrastructure, the

programming environment extends the process that builds the application distribution package

(Contribution 1). This extension instruments the application code provided by the developer to

invoke a runtime system that orchestrates the execution and replaces the original code with the

modified version when bundling it into the application package on which also adds the runtime

system.

Besides extending the application package building process, this thesis also proposes an

extension of the COMPSs programming model to support method polymorphism. With it, de-

velopers can provide several implementations for one method; thus, the system can decide at

runtime which of all the available versions runs according to the circumstances of the moment.

Everything developers have to do is to declare the multiple versions of the method on the Core

Element Interface.

The runtime system has to analyze the code of the application and partition it into execution

units, detect the dependencies among them, and to orchestrate their execution on the available

resources guaranteeing the sequential consistency of the logic programmed by the developer. For

achieving this purpose in MCC environments, it is necessary a new runtime system implementing

an architecture specially designed with the needs of MCC in mind (Contribution 2). Mobile

devices usually host several applications running at the same time; therefore, for orchestrating

their execution on the available resources holistically, all the applications have to contact a

168

shared runtime system deployed as a service. Each application detects the tasks composing it

and the dependencies among them using the mechanism already implemented in the original

COMPSs runtime and then requests its execution to the shared runtime service. The system

groups together the computational resources into several Computing Platforms according to

the mechanisms required to provide the processing elements with the input values of a task,

submit such task execution and collect its results. The runtime system picks which Computing

Platform hosts the execution of each task according to a forecast of the costs – end time, energy

and money – of the execution on each platform. The selected Computing Platform, via an

internal task scheduler, decides the resources and the moment to run the task avoiding resource

oversubscription.

Chapter 4 describes in more detail the overall solution proposed. Sections 4.1 and 4.3 explain

respectively the extensions to the programming model and the building process, and Section

4.2 gives an overview of the runtime architecture. From Chapter 5 until this last chapter, the

dissertation describes the design of different Computing Platforms (Contribution 3) and presents

the results obtained from the tests conducted to evaluate their implementation.

The first platform described by the dissertation is the CPU Platform, which allows the runtime

to run tasks using the cores of the main processor of the mobile device. For doing so, the platform

has a static pool of threads that execute actions sequentially when the scheduler within the CPU

Platform decides; however, once a task execution has started, the scheduler cannot preempt the

thread to run another task. By using this platform, the runtime can already automatically exploit

the inherent parallelism of the application to reduce the execution time. The results presented in

Section 5.3.2 show that, on a mobile equipped with a quad-core processor, applications can achieve

up to a 2.74x speedup. The more cores are running tasks at a time, the higher the temperature

of the device gets and to control it the mobile reduces the frequency of the processor. Despite

lowering the frequency reduces the power consumed by the processor, the energy consumed by

each task grows since they take longer to run.

Chapter 6 describes the second implementation of a Computing Platform: the OpenCL

Platform. This platform enables the execution of tasks on other computational devices embedded

on the mobile such as GPUs, FPGAs or other accelerators. For doing so, the platform leverages

on OpenCL, a standard for general purpose parallel programming for heterogeneous devices;

developers have to code the tasks to run on the platform using a C99-based language and indicate

the existence of the OpenCL implementation with the @OpenCL annotation (Contribution 1). The

programming model hides away from the developers all the details of the interactions between

the host code and the OpenCL devices; the runtime system performs all the necessary data

transfers among the host and the device memories and handles the execution of the tasks as

OpenCL kernels. The runtime system also deals automatically with the balancing of the workload

giving applications flexibility to adapt to the necessities of the user. The conducted tests achieve

up to 13.39x faster executions when the runtime applies policies pursuing the lowest execution

169

CHAPTER 10. CONCLUSION

time, and energy reductions eight times lower than running the application sequentially on one

core of the CPU. Another benefit of delegating the load balancing to the runtime system is the

portability of applications. The time to run a task and the energy consumption of the execution

depend on the characteristics of the hardware; the runtime system can adapt the application to

the specific infrastructure automatically.

Using both, the CPU and the OpenCL platforms, the runtime system can exploit collabo-

ratively all the computing devices embedded on the mobile. The third and last implemented

Computing Platform is the Cloud Platform, which allows the runtime to widen the available

resources for the application with remote computing devices. These remote resources can be from

nearby desktops, laptops or single-board computers to virtual machine instances deployed in

a cloud passing through remotes servers offered an organization to its members. For a remote

device to run tasks, the corresponding node has to host a process persistently listening to the

network for task submissions. When it receives a new task, the worker fetches the necessary

input data values and launches the task execution when there are enough available resources.

For sharing data among nodes, it is necessary a mechanism that allows every node to know from

which locations on other nodes it can fetch such value. This mechanism consists in a distributed

hash table storing all the locations for every data value. When a node needs to fetch a data value,

it looks up the identifier of the value on the table to get its locations of such value. Nodes can

query the locations for yet-to-compute data values; for avoiding that the querier node stalls,

the distributed hash table follows a publish-subscribe execution model. If no other node has

published a location for the data value, the hash table registers the query and, upon the existence

registration of the value, it forwards the notification to the querier node. Thus, this mechanism is

not only useful for sharing data values but also allows the nodes of the infrastructure to become

aware of the release of the data dependencies of the tasks to run.

The results presented in Chapter 7 show the importance of enabling the use of remote

resources. Offloading computation onto one single resource-richer remote node allows applications

to speed-up their execution according to the performance difference of both devices; offloading it

onto multiple remote resources allows the runtime to exploit higher degrees of parallelism and

shorten even more the execution. Besides, since the local resources no longer compute, the energy

consumption of the application falls drastically. In the presented example, the programming

model reduces a one-day execution that drains the whole battery of the mobile device to a

five-minute execution consuming less than 55 J.

Despite the benefits of exploiting remote resources, using the network incurs new concerns

to handle by the runtime system since developers code applications without specifying any

network interaction. Mobile devices are likely to experiment glitches on the network service due

to handovers or long-lasting periods of isolation due to entering in out of signal areas. Hosting

the distributed hash table only on the remote nodes allows them to keep executing tasks even if

the master node is down. In the case of an eventual reconnection, both ends synchronize their

170

progress; workers autonomy ensures, no matter how long the disruption lasts, that the loss of

performance is as little as possible since worker nodes execute all the tasks as expected and the

mobile device would get the result upon the reconnection.

On the other side, the autonomy of the mobile device is also important for returning a result

even if the connection never re-establishes. In this case, the mobile has to run all the tasks

assigned to its computing devices (higher priority) and the offloaded ones still pending to run.

Often, a pending task needs a data value produced by a task offloaded onto the remote resources;

and due to the network breakdown, the mobile device cannot fetch it. The only solution in these

cases is to re-execute the offloaded task on the computing devices embedded on the mobile to

re-generate the data value. In turn, this preceding task can require unaccessible values generated

by other offloaded tasks; thus, the runtime gets into a backtracking procedure that may end up

re-executing the whole application. By automatically ordering the transfer of strategic values,

the Cloud Platform avoids the backtracking from going beyond the tasks generating them, and

thus, it prevents the system from re-executing the whole application workflow.

The second problem that appears due to using the network is data leaks. The information

contained on the mobile and used by the applications is likely to be privacy-sensitive. Transferring

these data through insecure networks exposes it to external attackers eavesdropping the commu-

nication channel or trying to disguise as another node of the computing infrastructure. Given that

the application developer is not in control of the data transfers, the runtime system is responsible

for securing the communication channel. Chapter 8 describes the adaptation of the architecture

of the runtime system to adopt external security solutions that provide communications with

secrecy, integrity and authenticity (Contribution 4). Secrecy avoids that eavesdroppers can read

the information sent through the network. Integrity denies the possibility that attackers modify

messages to harm the execution. Mutual authentication allows both ends to verify the identity

of the counterparty. For instance, in the case where the mobile device offloads the computation

onto remote servers owned by an organization, the application user can make sure that it ships

data to a node belonging to the organization, and worker processes can check that the source of

a task submission or data transfer request is an authorized user of the system. For validating

the viability of the solution, the prototype uses the Kerberos framework as the security service

provider. To authenticate themselves, application users use Kerberos credentials, while worker

nodes use Kerberos keytabs as host credentials. Since Kerberos supports federated identity

management, several federated organizations could offer access to their computing devices to

their members regardless their origin and provide them with a unique identity that grants them

access to the whole infrastructure (Single Sign-on).

Generally, organizations offering resources where to offload the computation already have

a deployed authentication infrastructure to control the access to their services. For avoiding a

security vendor lock-in, the runtime system builds on the Generic Security Services API (GSSAPI).

This interface abstracts the security framework user away from its actual API by providing a

171

CHAPTER 10. CONCLUSION

model where a client – GSS initiator – contacts a secure service – GSS service. At this point, both

ends negotiate the security techniques – message encryption, signing and mutual authentication

– necessary to secure the channel and the algorithms used to apply them. At the end of the

negotiation, both parts can exchange messages securely applying the agreed algorithms to create

the ciphertext to transfer before shipping it – wrapping – and unwrapping it upon its reception

to recover the original message. Since some mechanisms require the whole plain/ciphertext to

encrypt and decrypt it, the system splits the messages into fixed size tokens. The padding of the

messages to match this size, the negotiation – strongly influenced by the network latency – and

the processing of the messages add a significant overhead to the execution.

Although GSSAPI provides the runtime system with the ability to exchange the identities and

messages using federated credentials – if supported by the used implementation, and Kerberos

does –, it does not provide a generic mechanism for obtaining the credential. The described

extension of the runtime requires the device to have the credential already. It can obtain the

credential through another application that stores it on the file system, or the same application

can provide the required mechanism. While the former option keeps the application agnostic to

the authentication mechanism, the latter gathers all the functionality within a single application

but binds it to a particular authentication mechanism.

As the infrastructure and the number of tasks grows, selecting the best resources becomes

more complicated incurring significant overhead. Besides, forecast mispredictions when assigning

the resource to run each task may lead the runtime system to decisions causing load imbalances.

Hence, it is necessary to monitor constantly the workload assigned to each node for detecting and

correcting these situations. Hosting all this processing is a workload not assumable by the mobile

device. For this reason, Chapter 9 proposes offloading not only the computation onto the remote

nodes but also the scheduling of the tasks (Contribution 5). With this solution, the overhead on

the mobile device becomes negligible since it only needs to contact the remote endpoint of the

scheduling system.

The scheduling system works with a two-level hierarchy. On the lower level, each node

is represented by a Node Scheduler that manages the resources of the node and plans the

execution of actions on them; on the higher level, an Action Scheduler coordinates the all the

Node Schedulers to orchestrate the execution. When the mobile device submits a new task to the

system, the Action Scheduler picks one of the nodes to execute the task, and the corresponding

Node Scheduler decides on which resources and moment the task runs. Periodically, each Node

Scheduler tries to optimize the execution plan of the tasks assigned to the corresponding node,

and the Action Scheduler monitors the workload assigned to each resource and tries to balance it.

This solution not only benefits the mobile device but also to the owner of the remote resources

since it can improve the control over the usage of the infrastructure. By configuring the scheduling

system to follow different policies, the system can take scheduling decisions fostering a shorter

execution time, a lower energy consumption or a reduction of the amount of money spent on

172

10.1. FUTURE WORK

the execution. Besides, a third component, the Resource Optimizer monitors the amount of

resources available for the runtime and adapts the resource pool requesting new virtual instances

or destroying the available ones so the application meets the defined temporal, energetic and

monetary boundaries.

10.1 Future Work

Although the solution described in this dissertation tackles all the issues related to the develop-

ment and execution of MCC application, it only establishes the foundations for handling these

problems and further research can delve more deeply into all of the subjects to improve the

results obtained on this thesis. This section suggests possible lines to continue and complement

the already presented work.

Regarding the detection of dependencies, the programming model only detects those depen-

dencies among data values passed as parameters on the invocation of the Core Element. Thus,

if one of the arguments of the method, which no previous CE invocation generates or modifies,

contains a reference to an object previously accessed by another task, the runtime system will

not detect the dependency among both tasks. Improving the detection of nested dependencies

would simplify even more the programmability of the model. Besides, supporting the detection of

dependencies on collections of data values would allow the runtime system to apply techniques

that improve the performance of the applications by reorganizing the execution of several tasks

to follow map or reduce patterns. However, that would require additional annotations to allow

the developer to hint which transformations the runtime should apply.

A second problem regarding the management of the dependencies is that the runtime con-

siders that data values are created at the completion of the task that computes them. However,

a task can compute the data value long before its completion; hence, runtime could release the

dependencies on that value upon its generation so the consumer tasks can start earlier their

execution. Furthermore, the dependency might not be on one single data value but on a collection

of values constantly generated that consumer tasks can individually use as the producer task

computes them. Enabling a stream-like dependency would allow the runtime system to overlap

the execution of both tasks, producer and consumer, instead of running them sequentially.

Focusing on the runtime system, one aspect with room for improvement is the selection of the

computing platform hosting a task execution. Currently, the system assigns the task upon its

detection onto a platform according to the forecasts of three models and only changes this decision

when the mobile device gets isolated from the remote workers. One the one hand, enabling a

mechanism that monitors the pending workload assigned to each platform and reconsiders that

decision would allow the runtime to amend those decisions made taking into account predictions

differing from the real execution. On the other hand, more accurate models would reduce the

decision to correct. The models currently implemented only consider the average of the measured

173

CHAPTER 10. CONCLUSION

time and energy required to run each Core Element on a computing device or remote node.

Although the average gives an idea of the behavior of that task, the real execution can differ a

lot from it. Including in the models other parameters that influence on the execution, such as

the relation between the input size and the execution time or the number of CPU cores running

other tasks when the system expects to run the analyzed task, would produce more realistic

predictions.

Within the computing platforms, the scheduling policies are another research niche. Both

platforms exploiting computing devices embedded in the mobile device requests the transfer of all

the necessary input data as soon as the task becomes dependency-free. Then the CPU platform

executes the tasks in a first come, first served basis according to the moment when all the input

values are on the mobile phone and there are enough resources to host the execution, whereas

the OpenCL platform leverages on the internal kernel scheduler implemented in the OpenCL

library. Applications could better exploit the local computing devices if the runtime implemented

more complex policies. For instance, these policies could order the data transfers giving priority

to those transfers corresponding to values on which the earlier-to-run tasks operate; thus, the

runtime would use the network bandwidth more efficiently and avoid that it becomes a bottleneck.

Another important element to consider is the overheating prevention; these more complex policies

could also decide the number of computing devices executing in parallel according to the impact

of such mechanisms pursuing to maximize the throughput of the processor or reducing its energy

consumption.

The computing platform with a bigger scope for improvement is the Cloud Platform. Regard-

ing the task scheduling, the platform already has a more sophisticated system that allows not

only to correct decisions previously taken but also dynamically adapt the amount of available

resources. However, the policies leading these decisions – score comparison to select the node,

initial scheduling on the Node Scheduler, priority of an action execution during the local opti-

mization, order of donors-receivers and priority of the action to leave the node during the global

optimization) – could also consider more parameters or include new objectives on their boundaries

like limiting the power consumption of each node or the total price per hour of execution.

The policy determining the significant data values to transfer back to the mobile with the

purpose of establishing checkpoints currently consists in partitioning the graph in fixed-size

chunks according to the order of task detection. Other strategies to pick these values could be

bringing back the results of those tasks that would require to re-run N tasks to re-compute it from

the already selected checkpoints, or that require the re-execution of a sequence of N predecessors.

Other approaches could even consider the time or the energy necessary to re-compute the

preceding tasks instead of the number of predecessors.

Concerning the security of the network communications, the described solution splits the

encrypted messages into fixed-size tokens. This size has a significant impact on the amount of

bytes transferred and the timespan of the communication; and, currently, the application user

174

10.1. FUTURE WORK

defines this value statically as a configuration parameter. Enabling a mechanism that dynamically

adapts the size of such tokens would improve the efficiency of the network communication.

This mechanism could directly check the type of data to transfer to determine a token size;

for instance, tokens would be short for internal commands, mid-size for transferring objects

and larger for files. A complementary technique would be using a scaling token-size, start

communications transferring short-size tokens and incrementally extend them. Regarding the

security provider, Kerberos allows federations only through cross-realm authentication while

other frameworks, like Moonshot, support full federation. Porting other security frameworks to

Android and including them to the prototype would enhance the result of the project and foster

its adoption by organizations with already deployed authentication infrastructures other than

Kerberos.

Another limitation of the presented Cloud Platform is that tasks can run only on the cores of

the CPU of the remote nodes. As demonstrated in Chapter 6, GPUs achieve shorter execution

times and lower energy consumptions; thus, enabling the offloading of tasks onto the GPUs

or other accelerators available on the remote nodes would improve the performance of the

application.

To end up, this thesis considers the use of remote resources with a very high availability.

Therefore, it does not acknowledge the possibility of a failure within one of the remote nodes

that isolates the remote node from the infrastructure; if the mobile device remains connected

to the network, it can always contact all the remote resources. For this reason, the name of the

platform leveraging on remote resources is Cloud Platform. However, there exist other devices

that occasionally are nearby the mobile device that could host part of the computation.

Exploiting resources that dynamically appear and disappear through the implementation

of a new computing platform, the Fog Platform, opens a wide range of research possibilities.

This platform should deal with the discovery of new nearby devices onto which the runtime can

offload the computation to include it to the resource pool and detect when one of them is no

longer reachable for not considering offloading task onto it. Another problem to tackle is the data

distribution: when one node becomes unreachable, also do all the data values only contained

in it. Transferring back all the outputs of every task executed on a fog device ensures the

availability of these values; however, it would increase the network traffic of the mobile incurring

a significant energy consumption and probably causing a new bottleneck for the runtime system.

Replicating data values on other fog nodes distributes the overhead among all the nodes of the

infrastructure. The policies deciding the locations where to replicate the data values should

consider the trustfulness of each node. Likewise, the policies leading the scheduling of the tasks

should also take into account the risk of losing the node while computing.

175

BIBLIOGRAPHY

[1] MIT Kerberos Consortium.

URL http://www.kerberos.org/software/index.html.

[2] Art and dalvik - android open source project.

URL https://source.android.com/devices/tech/dalvik/.

[3] Aparapi: Api for data parallel java.

URL http://code.google.com/p/aparapi.

[4] Google App Engine.

URL http://code.google.com/p/appengine-mapreduce/.

[5] Microsoft Azure.

URL http://microsoft.com/azure/.

[6] arm bigLITTLE.

URL https://developer.arm.com/technologies/big-little.

[7] EnergyPlus Web Site.

URL https://energyplus.net/,Dec.2015.

[8] Apache Hadoop.

URL http://hadoop.apache.org/.

[9] jEPlus Web Site.

URL http://www.jeplus.org/,Dec.2015.

[10] OASIS Web Services Business Process Execution Language.

URL http://www.oasis-open.org/committees/wsbpel/.

[11] Globus Toolkit, 2017.

URL http://toolkit.globus.org/toolkit/.

[12] Gul A Agha.

Actors: A model of concurrent computation in distributed systems.

Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTEL-

LIGENCE LAB, 1985.

177

http://www.kerberos.org/software/index.html
https://source.android.com/devices/tech/dalvik/
http://code.google.com/p/aparapi
http://code.google.com/p/appengine-mapreduce/
http://microsoft.com/azure/
https://developer.arm.com/technologies/big-little
https://energyplus.net/, Dec. 2015
http://hadoop.apache.org/
http://www.jeplus.org/, Dec. 2015
http://www.oasis-open.org/committees/wsbpel/
http://toolkit.globus.org/toolkit/

BIBLIOGRAPHY

[13] Gabrielle Allen, Kelly Davis, Tom Goodale, Andrei Hutanu, Hartmut Kaiser, Thilo Kiel-

mann, André Merzky, Rob Van Nieuwpoort, Alexander Reinefeld, Florian Schintke,

Thorsten Schütt, E. D. Seidel, and And Brygg Ullmer.

The Grid application toolkit: Toward generic and easy application programming interfaces

for the Grid.

In Proceedings of the IEEE, volume 93, pages 534–549, 2005.

doi: 10.1109/JPROC.2004.842755.

[14] George S. Almasi and Allan Gottlieb.

Highly Parallel Computing.

Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1989.

ISBN 0-8053-0177-1.

[15] Gene M Amdahl.

Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities.

In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS ’67

(Spring), pages 483–485, New York, NY, USA, 1967. ACM.

doi: 10.1145/1465482.1465560.

URL http://doi.acm.org/10.1145/1465482.1465560.

[16] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H Katz, Andrew

Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica, and Others.

Above the clouds: A berkeley view of cloud computing.

2009.

[17] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry

Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf,

Samuel Webb Williams, and Katherine A Yelick.

The Landscape of Parallel Computing Research: A View from Berkeley.

Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berke-

ley, 2006.

URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

[18] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.

StarPU: a unified platform for task scheduling on heterogeneous multicore architectures.

Concurrency and Computation: Practice and Experience, 23(2):187–198, 2011.

ISSN 15320626.

doi: 10.1002/cpe.1631.

URL http://onlinelibrary.wiley.com/doi/10.1002/cpe.1631/full.

[19] Bernard J Baars.

178

http://doi.acm.org/10.1145/1465482.1465560
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1631/full

BIBLIOGRAPHY

A Cognitive Theory of Consciousness.

1988.

ISBN 0521301335.

URL http://www.loc.gov/catdir/description/cam032/87020923.html.

[20] Mark Bakery and Rajkumar Buyya.

Cluster computing at a glance.

High Performance Cluster Computing: Architectures and Systems, 1:3–47, 1999.

[21] Rajesh Krishna Balan, Mahadev Satyanarayanan, So Young Park, and Tadashi Okoshi.

Tactics-based remote execution for mobile computing.

Proceedings of the 1st international conference on Mobile systems applications and services

(MobiSys ’03), pages 273–286, 2003.

doi: 10.1145/1066116.1066125.

URL http://portal.acm.org/citation.cfm?doid=1066116.1066125.

[22] Miquel Barceló.

Una historia de la informática, volume 125.

Editorial UOC, 2010.

[23] Arthur J. Bernstein.

Analysis of Programs for Parallel Processing.

IEEE Transactions on Electronic Computers, EC-15(5):306–307, 1966.

ISSN 0367-7508.

doi: 10.1109/PGEC.1966.264565.

[24] Dan Bornstein.

Dalvik vm internals.

In Google I/O developer conference, volume 23, pages 17–30, 2008.

[25] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Herault,

and Jack J. Dongarra.

PaRSEC: Exploiting heterogeneity to enhance scalability.

Computing in Science and Engineering, 15(6):36–45, 2013.

ISSN 15219615.

doi: 10.1109/MCSE.2013.98.

[26] Rajkumar Buyya, Rajkumar Buyya, Chee Shin Yeo, Chee Shin Yeo, Srikumar Venu-

gopal, Srikumar Venugopal, James Broberg, James Broberg, Ivona Brandic, and Ivona

Brandic.

Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility.

179

http://www.loc.gov/catdir/description/cam032/87020923.html
http://portal.acm.org/citation.cfm?doid=1066116.1066125

BIBLIOGRAPHY

Future Generation Computer Systems, 25(June 2009):17, 2009.

ISSN 0167-739.

doi: 10.1016/j.future.2008.12.001.

URL http://portal.acm.org/citation.cfm?id=1528937.1529211.

[27] John Canny.

A Computational Approach to Edge Detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698,

1986.

ISSN 01628828.

doi: 10.1109/TPAMI.1986.4767851.

[28] Byung-Gon Chun and Petros Maniatis.

Augmented Smartphone Applications Through Clone Cloud Execution.

In Proceedings of the 12th Conference on Hot Topics in Operating Systems, HotOS’09,

page 8, Berkeley, CA, USA, 2009. USENIX Association.

URL http://dl.acm.org/citation.cfm?id=1855568.1855576.

[29] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.

CloneCloud: Elastic Execution Between Mobile Device and Cloud.

In Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, pages 301–314,

New York, NY, USA, 2011. ACM.

ISBN 978-1-4503-0634-8.

doi: 10.1145/1966445.1966473.

URL http://doi.acm.org/10.1145/1966445.1966473.

[30] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,

Ranveer Chandra, and Paramvir Bahl.

MAUI: Making Smartphones Last Longer with Code Offload.

In Proceedings of the 8th International Conference on Mobile Systems, Applications, and

Services, MobiSys ’10, pages 49–62, New York, NY, USA, 2010. ACM.

ISBN 978-1-60558-985-5.

doi: 10.1145/1814433.1814441.

URL http://doi.acm.org/10.1145/1814433.1814441.

[31] Leonardo Dagum and Ramesh Menon.

OpenMP: An Industry-Standard API for Shared-Memory Programming.

IEEE Computation Science & Engineering, 5(1):46–55, 1998.

ISSN 1070-9924.

doi: 10.1109/99.660313.

URL http://ieeexplore.ieee.org/document/660313/.

180

http://portal.acm.org/citation.cfm?id=1528937.1529211
http://dl.acm.org/citation.cfm?id=1855568.1855576
http://doi.acm.org/10.1145/1966445.1966473
http://doi.acm.org/10.1145/1814433.1814441
http://ieeexplore.ieee.org/document/660313/

BIBLIOGRAPHY

[32] Jeffrey Dean and Sanjay Ghemawat.

MapReduce: Simplified Data Processing on Large Clusters.

In Proceedings of the 6th Conference on Symposium on Opearting Systems Design &

Implementation - Volume 6, OSDI’04, page 10, Berkeley, CA, USA, 2004. USENIX

Association.

URL http://dl.acm.org/citation.cfm?id=1251254.1251264.

[33] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman,

Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, Anastasia Laity, Joseph C

Jacob, and Daniel S Katz.

Pegasus: A Framework for Mapping Complex Scientific Workflows Onto Distributed Sys-

tems.

Sci. Program., 13(3):219–237, 2005.

ISSN 1058-9244.

URL http://dl.acm.org/citation.cfm?id=1239649.1239653.

[34] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J. Maechling,

Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny, and Kent Wenger.

Pegasus, a workflow management system for science automation.

Future Generation Computer Systems, 46:17–35, 2015.

ISSN 0167739X.

doi: 10.1016/j.future.2014.10.008.

[35] Karim Djemame, Richard Kavanagh, Django Armstrong, Francesc Lordan, Jorge Ejarque,

Mario Macias, Raül Sirvent, Jordi Guitart, and Rosa M. Badia.

Energy efficiency support through intra-layer cloud stack adaptation, volume 10382 LNCS.

2017.

ISBN 9783319619194.

doi: 10.1007/978-3-319-61920-0_10.

[36] Jack J Dongarra, Steve W Otto, Marc Snir, and David Walker.

An introduction to the mpi standard.

Communications of the ACM, page 18, 1995.

[37] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier

Martorell, and Judit Planas.

OmpSs: A PROPOSAL FOR PROGRAMMING HETEROGENEOUS MULTI-CORE AR-

CHITECTURES.

Parallel Processing Letters, 21(2):173–193, 2011.

ISSN 0129-6264.

doi: 10.1142/S0129626411000151.

181

http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1239649.1239653

BIBLIOGRAPHY

[38] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu.

Mobile cloud computing: A survey, 2013.

ISSN 0167739X.

[39] Ana Juan Ferrer, Francisco Hernández, Johan Tordsson, Erik Elmroth, Ahmed Ali-Eldin,

Csilla Zsigri, Raül Sirvent, Jordi Guitart, Rosa M. Badia, Karim Djemame, Wolfgang

Ziegler, Theo Dimitrakos, Srijith K. Nair, George Kousiouris, Kleopatra Konstanteli,

Theodora Varvarigou, Benoit Hudzia, Alexander Kipp, Stefan Wesner, Marcelo Corrales,

Nikolaus Forgó, Tabassum Sharif, and Craig Sheridan.

OPTIMIS: A holistic approach to cloud service provisioning.

In Future Generation Computer Systems, volume 28, pages 66–77, 2012.

ISBN 0167-739X.

doi: 10.1016/j.future.2011.05.022.

[40] Rico Fischer and Franziska Plessow.

Efficient multitasking: Parallel versus serial processing of multiple tasks, 2015.

ISSN 16641078.

[41] Jason. Flinn, SoYoung Park, and Mahadev Satyanarayanan.

Balancing performance, energy, and quality in pervasive computing.

Proceedings 22nd International Conference on Distributed Computing Systems, pages

217–226, 2002.

ISSN 1063-6927.

doi: 10.1109/ICDCS.2002.1022259.

[42] Ian Foster.

Designing and Building Parallel Programs: Concepts and Tools for Parallel Software

Engineering, volume 5.

1995.

ISBN 0201575949.

doi: 10.1109/MCC.1997.588301.

URL http://portal.acm.org/citation.cfm?id=527029.

[43] Ian Foster and Others.

The anatomy of the Grid.

Berman et al.[2], pages 171–197, 2003.

[44] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo Alonso.

Calling the Cloud: Enabling Mobile Phones As Interfaces to Cloud Applications.

In Proceedings of the ACM/IFIP/USENIX 10th International Conference on Middleware,

Middleware’09, pages 83–102, Berlin, Heidelberg, 2009. Springer-Verlag.

182

http://portal.acm.org/citation.cfm?id=527029

BIBLIOGRAPHY

ISBN 3-642-10444-4, 978-3-642-10444-2.

URL http://dl.acm.org/citation.cfm?id=1813355.1813362.

[45] Iñigo Goiri, Kien Le, Jordi Guitart, Jordi Torres, and Ricardo Bianchini.

Intelligent placement of datacenters for internet services.

In 2011 31st International Conference on Distributed Computing Systems, pages 131–142,

June 2011.

doi: 10.1109/ICDCS.2011.19.

[46] Tom Goodale, Shantenu Jha, Harmut Kaiser, Thilo Kielmann, Pascal Kleijer, Gregor von

Laszewski, Craig Lee, Andre Merzky, Hrabri Rajic, and John Shalf.

SAGA: A Simple API for Grid applications, High-Level Application Programming on the

Grid.

Computational Methods in Science and Technology, 12(1):7–20, 2006.

[47] Ronald L Graham.

Bounds for certain multiprocessing anomalies.

Bell System Technical Journal, 45(9):1563–1581, 1966.

[48] Hervé Guihot.

RenderScript.

Pro Android Apps Performance Optimization, pages 231–263, 2012.

[49] Munish K Gupta.

Akka Essentials.

Packt Publishing, 2012.

ISBN 978-1849518284.

URL http://books.google.com/books?hl=en&lr=&id=TkycGHohXmEC&oi=fnd&pg=

PT10&dq=Akka+Essentials&ots=7q1R6bcaMT&sig=ueaS98k2pkMrapIKCILQW-IkLYE.

[50] John L. Gustafson.

Reevaluating Amdahl’s law.

Communications of the ACM, 31(5):532–533, 1988.

ISSN 00010782.

doi: 10.1145/42411.42415.

URL http://portal.acm.org/citation.cfm?doid=42411.42415.

[51] J L Hennessy, D A Patterson, and D Goldberg.

Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, 2002.

[52] Carl Hewitt, Peter Bishop, and Richard Steiger.

183

http://dl.acm.org/citation.cfm?id=1813355.1813362
http://books.google.com/books?hl=en&lr=&id=TkycGHohXmEC&oi=fnd&pg=PT10&dq=Akka+Essentials&ots=7q1R6bcaMT&sig=ueaS98k2pkMrapIKCILQW-IkLYE
http://books.google.com/books?hl=en&lr=&id=TkycGHohXmEC&oi=fnd&pg=PT10&dq=Akka+Essentials&ots=7q1R6bcaMT&sig=ueaS98k2pkMrapIKCILQW-IkLYE
http://portal.acm.org/citation.cfm?doid=42411.42415

BIBLIOGRAPHY

A Universal Modular ACTOR Formalism for Artificial Intelligence.

In Proceeding IJCAI’73 Proceedings of the 3rd international joint conference on Artificial

intelligence, pages 235–245, 1973.

ISBN 9781450336697.

doi: 10.1145/359545.359563.

[53] Dijiang Huang, Xinwen Zhang, Myong Kang, and Jim Luo.

MobiCloud: Building Secure Cloud Framework for Mobile Computing and Communication.

In 2010 Fifth IEEE International Symposium on Service Oriented System Engineering,

pages 27–34, 2010.

ISBN 978-1-4244-7327-4.

doi: 10.1109/SOSE.2010.20.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5569935.

[54] Marty Humphrey and Mary Thompson.

Security Implications of Typical Grid Computing Usage Scenarios, 2000.

URL https://www.ogf.org/documents/GFD.12.pdf.

[55] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, and Others.

Dryad: Distributed Data-parallel Programs from Sequential Building Blocks.

In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer

Systems 2007, volume 41 of EuroSys ’07, pages 59–72, New York, NY, USA, 2007. ACM,

ACM.

ISBN 978-1-59593-636-3.

doi: 10.1145/1272996.1273005.

URL http://doi.acm.org/10.1145/1272996.1273005.

[56] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri E Bal.

Cuckoo: A Computation Offloading Framework for Smartphones.

In Martin L Gris and Guang Yang 0001, editors, MobiCASE, volume 76 of Lecture Notes

of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, pages 59–79. Springer, 2010.

ISBN 978-3-642-29335-1.

URL http://dblp.uni-trier.de/db/conf/mobicase/mobicase2010.html#KempPKB10.

[57] Abdul Nasir Khan, M L Mat Kiah, Samee U Khan, and Sajjad a Madani.

Towards secure mobile cloud computing: A survey.

Future Gener. Comput. Syst., 29(5):1278–1299, 2013.

ISSN 0167739X.

doi: 10.1016/j.future.2012.08.003.

URL http://dx.doi.org/10.1016/j.future.2012.08.003.

184

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5569935
https://www.ogf.org/documents/GFD.12.pdf
http://doi.acm.org/10.1145/1272996.1273005
http://dblp.uni-trier.de/db/conf/mobicase/mobicase2010.html#KempPKB10
http://dx.doi.org/10.1016/j.future.2012.08.003

BIBLIOGRAPHY

[58] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.

Unleashing the Power of Mobile Cloud Computing using ThinkAir.

CoRR, abs/1105.3, 2011.

URL http://arxiv.org/abs/1105.3232.

[59] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.

ThinkAir: Dynamic resource allocation and parallel execution in the cloud for mobile code

offloading.

In Albert G Greenberg and Kazem Sohraby, editors, INFOCOM, pages 945–953. IEEE,

2012.

ISBN 978-1-4673-0773-4.

URL http://dblp.uni-trier.de/db/conf/infocom/infocom2012.html#KostaAHMZ12.

[60] Karthik Kumar and Yung Hsiang Lu.

Cloud computing for mobile users: Can offloading computation save energy?

Computer, 43(4):51–56, 2010.

ISSN 00189162.

doi: 10.1109/MC.2010.98.

[61] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2323, 1998.

ISSN 00189219.

doi: 10.1109/5.726791.

[62] Yann LeCun, Corinna Cortes, and Christopher Burges.

THE MNIST DATABASE of handwritten digits.

The Courant Institute of Mathematical Sciences, pages 1–10, 1998.

URL http://yann.lecun.com/exdb/mnist/.

[63] Rob Lineback.

Cellphone IC Sales Will Top Total Personal Computing in 2017.

URL http://www.icinsights.com/data/articles/documents/987.pdf.

[64] John Linn.

Generic Security Service Application Program Interface Version 2, Update 1.

RFC 2743, RFC Editor, 2000.

URL https://tools.ietf.org/html/rfc2743.

[65] Francesc Lordan and Rosa M. Badia.

COMPSs-Mobile: Parallel Programming for Mobile-Cloud Computing.

185

http://arxiv.org/abs/1105.3232
http://dblp.uni-trier.de/db/conf/infocom/infocom2012.html#KostaAHMZ12
http://yann.lecun.com/exdb/mnist/
http://www.icinsights.com/data/articles/documents/987.pdf
https://tools.ietf.org/html/rfc2743

BIBLIOGRAPHY

In 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), pages 497–500, may 2016.

doi: 10.1109/CCGrid.2016.16.

[66] Francesc Lordan and Rosa M Badia.

COMPSs-Mobile: Parallel Programming for Mobile Cloud Computing.

Journal of Grid Computing, 15(3):357–378, sep 2017.

ISSN 1572-9184.

doi: 10.1007/s10723-017-9409-z.

URL https://doi.org/10.1007/s10723-017-9409-z.

[67] Francesc Lordan, Enric Tejedor, Jorge Ejarque, Roger Rafanell, Javier Álvarez, Fabrizio

Marozzo, Daniele Lezzi, Raül Sirvent, Domenico Talia, and Rosa M Badia.

ServiceSs: An Interoperable Programming Framework for the Cloud.

Journal of Grid Computing, 12(1):67–91, 2014.

ISSN 1570-7873.

doi: 10.1007/s10723-013-9272-5.

URL http://dx.doi.org/10.1007/s10723-013-9272-5.

[68] Francesc Lordan, Jorge Ejarque, Raül Sirvent, and Rosa M Badia.

Energy-Aware Programming Model for Distributed Infrastructures.

In 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-

Based Processing (PDP), pages 413–417, feb 2016.

doi: 10.1109/PDP.2016.39.

[69] Francesc Lordan, Jens Jensen, and Rosa M. Badia.

Towards Mobile Cloud Computing with Single Sign-on Access.

Journal of Grid Computing, 2017.

ISSN 15729184.

doi: 10.1007/s10723-017-9413-3.

[70] Francesc Lordan, Rosa M Badia, and Wen-Mei Hwu.

Enabling GPU Support for the COMPSs-Mobile Framework.

In Sunita Chandrasekaran and Guido Juckeland, editors, Accelerator Programming Using

Directives, pages 83–102, Cham, 2018. Springer International Publishing.

ISBN 978-3-319-74896-2.

[71] Francesc Lordan, Daniele Lezzi, Jorge Ejarque, and Rosa M Badia.

An Architecture for Programming Distributed Applications on Fog to Cloud Systems.

In Dora B Heras and Luc Bougé, editors, Euro-Par 2017: Parallel Processing Workshops,

pages 325–337, Cham, 2018. Springer International Publishing.

ISBN 978-3-319-75178-8.

186

https://doi.org/10.1007/s10723-017-9409-z
http://dx.doi.org/10.1007/s10723-013-9272-5

BIBLIOGRAPHY

[72] Eugene E Marinelli.

Hyrax : Cloud Computing on Mobile Devices using MapReduce.

Science, 0389(September):1–123, 2009.

URL http://www.contrib.andrew.cmu.edu/~emarinel/masters_thesis/emarinel_

ms_thesis.pdf.

[73] Paul E McKenney.

Is parallel programming hard, and, if so, what can you do about it?

Linux Technology Center, IBM Beaverton, 2011.

[74] Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Aleksandra Nenadic, Ian

Dunlop, Alan Williams, Thomas Oinn, and Carole Goble.

Taverna, reloaded.

In M Gertz, T Hey, and B Ludaescher, editors, SSDBM 2010, Heidelberg, Germany, 2010.

URL http://www.taverna.org.uk/pages/wp-content/uploads/2010/04/

T2Architecture.pdf.

[75] Raffaele Montella, Sokol Kosta, David Oro, Javier Vera, Carles Fernández, Carlo Palmieri,

Diana Di Luccio, Giulio Giunta, Marco Lapegna, and Giuliano Laccetti.

Accelerating Linux and Android applications on low-power devices through remote GPGPU

offloading.

In Concurrency Computation, volume 29, 2017.

doi: 10.1002/cpe.4286.

[76] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.

Jolie: a Java orchestration language interpreter engine.

Electronic Notes in Theoretical Computer Science, 181:19–33, 2007.

[77] Jonathan J. Nassi and Edward M. Callaway.

Parallel processing strategies of the primate visual system, 2009.

ISSN 1471003X.

[78] Piotr Nawrocki, Bartłomiej Śnieżyński, and Jakub Czyżewski.

Learning Agent for a Service-Oriented Context-Aware Recommender System in Heteroge-

neous Environment.

COMPUTING AND INFORMATICS, 35(5):1005–1026, 2017.

[79] Nvidia.

Compute unified device architecture programming guide.

2007.

[80] JDK Open.

187

http://www.contrib.andrew.cmu.edu/~emarinel/masters_thesis/emarinel_ms_thesis.pdf
http://www.contrib.andrew.cmu.edu/~emarinel/masters_thesis/emarinel_ms_thesis.pdf
http://www.taverna.org.uk/pages/wp-content/uploads/2010/04/T2Architecture.pdf
http://www.taverna.org.uk/pages/wp-content/uploads/2010/04/T2Architecture.pdf

BIBLIOGRAPHY

Project sumatra.

URL http://openjdk.java.net/projects/sumatra/.

[81] Khronos Opencl.

OpenCL Specification.

ReVision, pages 1–385, 2009.

doi: 10.1016/j.actamat.2006.08.044.

URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenCL+

Specification#0.

[82] Andreas Pashalidis and Chris J. Mitchell.

A taxonomy of single sign-on systems.

In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), volume 2727 LNCS, pages 249–264,

2003.

ISBN 9783540405153.

doi: 10.1007/3-540-45067-X_22.

[83] Hillel Pratt, Naomi Bleich, and Nomi Mittelman.

Spatio-temporal distribution of brain activity associated with audio-visually congruent and

incongruent speech and the McGurk Effect.

Brain and Behavior, 5(11), 2015.

ISSN 21623279.

doi: 10.1002/brb3.407.

[84] Ralf Ratering and Hans-Christian Hoppe.

Accelerating opencl applications by utilizing a virtual opencl device as interface to compute

clouds, 2011.

URL https://www.google.ch/patents/US20110161495.

[85] Jan S Rellermeyer, Oriana Riva, and Gustavo Alonso.

AlfredO: An Architecture for Flexible Interaction with Electronic Devices.

In Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware,

Middleware ’08, pages 22–41, New York, NY, USA, 2008. Springer-Verlag New York,

Inc.

ISBN 3-540-89855-7.

URL http://dl.acm.org/citation.cfm?id=1496950.1496953.

[86] Eric Rescorla.

HTTP Over TLS.

Technical Report 2818, Internet Engineering Task Force, may 2000.

URL http://www.ietf.org/rfc/rfc2818.txt.

188

http://openjdk.java.net/projects/sumatra/
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenCL+Specification#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenCL+Specification#0
https://www.google.ch/patents/US20110161495
http://dl.acm.org/citation.cfm?id=1496950.1496953
http://www.ietf.org/rfc/rfc2818.txt

BIBLIOGRAPHY

[87] Ronald L Rivest, Len Adleman, and Michael L Dertouzos.

On data banks and privacy homomorphisms.

Foundations of secure computation, 4(11):169–180, 1978.

[88] Mahadev Satyanarayanan, P Bahl, R Caceres, and N Davies.

The Case for VM-Based Cloudlets in Mobile Computing.

Pervasive Computing, IEEE, 8(4):14–23, oct 2009.

ISSN 1536-1268.

doi: 10.1109/MPRV.2009.82.

[89] Federico Silla, Javier Prades, Sergio Iserte, and Carlos Reano.

Remote GPU Virtualization: Is It Useful?

In High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiP-

INEB), 2016 2nd IEEE International Workshop on, pages 41–48. IEEE, 2016.

[90] David B. Skillicorn and Domenico Talia.

Models and languages for parallel computation.

ACM Computing Surveys, 30(2):123–169, 1998.

ISSN 03600300.

doi: 10.1145/280277.280278.

URL http://doi.acm.org/10.1145/280277.280278.

[91] Enric Tejedor and Rosa M Badia.

COMP Superscalar: Bringing grid superscalar and gcm together.

In Cluster Computing and the Grid, 2008. CCGRID’08. 8th IEEE International Symposium

on, pages 185–193. IEEE, 2008.

[92] The MPI Forum.

MPI: A Message Passing Interface.

In Proceedings of the 1993 ACM/IEEE conference on Supercomputing - Supercomputing

’93, pages 878–883, 1993.

ISBN 0818643404.

doi: 10.1145/169627.169855.

URL http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf%5Cnhttp://portal.

acm.org/citation.cfm?doid=169627.169855.

[93] James Thornton.

Parallel operation in the control data 6600.

AFIPS ’64 (Fall, part II): Proceedings of the October 27-29, 1964, fall joint computer

conference, part II: very high speed computer systems, 1964.

URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&

dopt=AbstractPlus&list_uids=1464039.1464045.

189

http://doi.acm.org/10.1145/280277.280278
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf%5Cnhttp://portal.acm.org/citation.cfm?doid=169627.169855
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf%5Cnhttp://portal.acm.org/citation.cfm?doid=169627.169855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1464039.1464045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1464039.1464045

BIBLIOGRAPHY

[94] Robert M. Tomasulo.

An Efficient Algorithm for Exploiting Multiple Arithmetic Units.

IBM Journal of Research and Development, 11(1):25–33, 1967.

ISSN 0018-8646.

doi: 10.1147/rd.111.0025.

[95] Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman, and Mary Thompson.

Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile.

Technical Report 3820, Internet Engineering Task Force, 2004.

URL http://www.ietf.org/rfc/rfc3820.txt.

[96] Mayank D Upadhyay and Seema Malkani.

Generic security service api version 2: Java bindings update.

RFC 5653, RFC Editor, August 2009.

[97] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal.

User-friendly and reliable grid computing based on imperfect middleware.

In Proceedings of the 2007 ACM/IEEE conference on Supercomputing - SC ’07, page 1,

2007.

ISBN 9781595937643.

doi: 10.1145/1362622.1362668.

URL http://portal.acm.org/citation.cfm?doid=1362622.1362668.

[98] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.

A break in the clouds: towards a cloud definition.

ACM SIGCOMM Computer Communication Review, 39(1):50–55, 2008.

[99] Christian Vecchiola, Xingchen Chu, and Rajkumar Buyya.

Aneka: A Software Platform for .NET-based Cloud Computing.

CoRR, abs/0907.4, 2009.

[100] Robert Virding, Claes Wikström, and Mike Williams.

Concurrent Programming in ERLANG (2Nd Ed.).

Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

ISBN 0-13-508301-X.

[101] Michael Wilde, Mihael Hategan, Justin M Wozniak, Ben Clifford, Daniel S Katz, and Ian

Foster.

Swift: A Language for Distributed Parallel Scripting.

Parallel Comput., 37(9):633–652, 2011.

ISSN 0167-8191.

doi: 10.1016/j.parco.2011.05.005.

190

http://www.ietf.org/rfc/rfc3820.txt
http://portal.acm.org/citation.cfm?doid=1362622.1362668

BIBLIOGRAPHY

URL http://dx.doi.org/10.1016/j.parco.2011.05.005.

[102] Nico Williams, Leif Johansson, Sam Hartman, and Simon Josefsson.

Generic Security Service Application Programming Interface Naming Extensions.

Technical report, 2012.

[103] Larry Zhu, Paul Leach, Karthik Jaganathan, and Wyllys Ingersoll.

The Simple and Protected Generic Security Service Application Program Interface (GSS-

API) Negotiation Mechanism.

RFC 4178, RFC Editor, 2005.

URL https://tools.ietf.org/html/rfc4178.

191

http://dx.doi.org/10.1016/j.parco.2011.05.005
https://tools.ietf.org/html/rfc4178

	List of Tables
	List of Figures
	Context
	Introduction
	Motivation
	Objectives
	Thesis Contributions
	Publications Related to the Thesis

	Thesis Organization

	Background: Android
	Software Architecture
	Applications
	Application Package Building
	Process and Thread Management

	State of the Art
	Sources of Parallelism
	Parallel Systems
	Parallel Programming
	Handling the Parallelism
	Handling the Heterogenity of the System

	COMPSs
	Mobile Cloud Computing
	Mobile Cloud Computing Frameworks
	Summary

	General Proposal
	System Overview
	Programming Model Extension: Polymorphism
	Runtime Toolkit Architecture
	Instrumentation
	Summary

	Exploitation of Local Computing Resources
	CPU Exploitation
	CPU Platform
	Proxied Execution
	Evaluation
	Automatic Parallelization
	Impact of Proxied Executions

	Summary

	GPU Exploitation
	Related Work
	Background: OpenCL
	Programming Model Extension
	OpenCL Platform
	Evaluation
	OpenCL Platform Performance
	Load Balancing Decisions

	Summary

	Exploitation of Remote Computing Resources
	Remote Resources Exploitation
	Cloud Platform
	Data Manager Implementation
	Cost Forecasting
	Fault tolerance
	Evaluation
	Exchanged Message Evaluation
	Overall Performance Evaluation

	Summary

	Secure communications
	Backgroung: GSSAPI
	GSSAPI Integration
	Performance Evaluation
	Security Overheads
	Security Impact on Applications

	Summary

	Offloaded Scheduling System
	General Aspects of the Scheduling System
	Initial Scheduling
	Scheduling Optimization
	Dynamic Resource Provisioning
	Evaluation
	Summary

	Conclusions
	Conclusion
	Future Work

	Bibliography

