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Abstract 
 
 
Intensive irrigated agriculture is usually developed in arid and semi-arid regions due to the 

favourable weather conditions, in spite of the scarcity of water resources (e.g. Mediterranean 

Basin, California). Surface water resources are generally reduced and highly unreliable in these 

zones, as a consequence, groundwater is the primary source of water. Therefore, accurate 

estimation of aquifer recharge under the above mentioned conditions appears to be essential for 

sustainable water resource management and assessing aquifer vulnerability to contaminants.  

 

In the past decades a large body of literature has focused on the assessment of the natural 

recharge and parameters of control (including climate, vegetation, soils, and topography). On the 

contrary, only few papers focused on aquifer recharge from intensively irrigated farmland. 

Although findings have improved the understanding of recharge phenomena, they still fail to 

characterize many features of aquifer recharge from the mentioned land use. In this context, the 

aims of this thesis are: (i) to improve the understanding of aquifer recharge from intensively 

irrigated farmland, and (ii) to provide new tools for its characterization. Also, this thesis provides a 

framework that can be easily used by practitioners to infer quantitative information. 

 

 Field tests, including different crop types (vegetables and fruit trees) and agricultural 

management (water requirements, crop rotation, drip irrigation, plastic cover), were carried out in 

the Campo de Cartagena area of southeast Spain, a semi-arid region where intensive irrigated 

agriculture is prevalent. The development of methodologies, with field observations in both 

saturated and unsaturated media, along with the application of numerical modelling were used to 

understand the processes governing the recharge from irrigated farmland. The developed 

approaches can be summarized as follows: 



 ii 

A field experiment with annual row crops (rotation lettuce and melon) and drip irrigation was 

carried out. Soil moisture dynamics through the root zone and below were simulated from 

unsaturated flow approach. Soil moisture and pressure head data at different depths were recorded 

along six hundred days for model calibration and prediction.   

    

A tracer test (tritium) in the field was performed along four hundred thirty days. The test was 

carried out in an experimental plot with drip irrigation and annual row crops (rotation lettuce and 

melon). The tracer transport in soil was simulated considering a multiphase approach. Tracer 

concentration profiles, from a limited and sparse number of destructive samples, were used to 

calibrate and validate the modelling approach.  

  

A long-term field experiment (based on nine hydrologic years) for different crop types, annual row 

crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus), was performed. 

The recharge produced from each crop type was estimated from a water balance approach, 

including soil, vadose zone and aquifer. Water table fluctuations, recorded along the mentioned 

period, were used for model calibration and predictions. This long-term approach permits to 

evaluate recharge estimates reliability of the two previous methodologies (short-term) for the type 

of crop overlapped (annual row crops).  

 

For the three approaches, ground cover and root depth are assumed as upper boundary 

conditions. Evapotranspiration is allocated to evaporation and transpiration as a function of leaf-

area-index and is limited by soil moisture content; transpiration is distributed through the soil 

profile as a function of soil moisture and root depth. 

 

Similar recharge values have been obtained from the three techniques, although the 

unsaturated flow approach slightly overestimates values. Actual evapotranspiration was always 

lower than potential evapotranspiration, because soil moisture was insufficient to sustain the 

potential uptake, despite high irrigation frequency. Although the agricultural practices from 

farmers are sound, high irrigation efficiency, high recharge values are achieved. Rainfall is 

unevenly distributed into a few intensive events, likewise very common in semi-arid regions, and 

it meaningfully contributes to deep percolation, due to consistently high soil water content and the 

potentially preferential flow contribution. 
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Resumen 
 
 
La agricultura intensiva es habitualmente llevada a cabo en regiones áridas y semi-áridas debido a 

las favorables condiciones meteorológicas, a pesar de la escasez de recursos hídricos (Cuenca 

Mediterránea, California). En estas zonas los recursos hídricos superficiales son generalmente  

escasos, por lo que las aguas subterráneas se convierten en la principal fuente de agua. Por ello, 

una estimación precisa de la recarga, bajo las condiciones anteriormente mencionadas, resulta 

esencial para la gestión sostenible de los escasos recursos hídricos, así como para evaluar la 

vulnerabilidad de los acuíferos a la contaminación por agroquímicos. 

 

 En las últimas décadas la literatura se ha centrado en la estimación de la recarga natural  y 

los parámetros que la controlan, incluyendo clima, vegetación, suelo, y topografía. Por el 

contrario, pocos son los trabajos centrados en la recarga de acuíferos a partir de zonas cultivadas 

intensamente regadas. Aunque estos han mejorado la compresión sobre el proceso de recarga, 

todavía resultan incompletos a la hora de estimarla a partir del mencionado uso de suelo. En este 

contexto, los objetivos de esta tesis son: (i) mejorar la compresión de la recarga a partir de zonas 

intensamente regadas, y (ii) proporcionar nuevas herramientas para su caracterización. Algunas de 

las metodologías proporcionadas pueden ser fácilmente reproducidas por profesionales para inferir 

información cuantitativa. 

 

 Ensayos en campo, incluyendo diferentes tipos de cultivo (hortícolas y árboles frutales) y 

prácticas agrícolas (necesidades hídricas, rotación de cultivos, riego por goteo, cubierta de 

plástico), son llevados a cabo en al área del Campo de Cartagena, sureste de España, una región 

semi-árida donde la agricultura intensiva es el principal uso de suelo. El desarrollo de 

metodologías con observaciones en el medio saturado y no saturado, junto con la modelación 
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numérica, fueron usados para mejorar la compresión de los procesos que controlan la recarga a 

partir de zonas intensamente regadas. Las aproximaciones desarrolladas pueden ser resumidas 

como sigue: 

 

Se ha llevado a cabo un ensayo de campo a lo largo de seiscientos días bajo cultivos hortícolas 

anuales (rotación de lechuga y melón) y riego por goteo. La distribución del contenido de agua en 

la zona de raíces y bajo esta fue simulada considerando un modelo de flujo no saturado. El 

contenido de agua y la succión fueron medidos a diferentes profundidades y empleados para la 

calibración y validación del modelo. 

 

En segundo lugar, se ha realizado un ensayo de trazador (tritio) en campo en una parcela 

experimental con riego por goteo y cultivos hortícolas anuales (rotación de lechuga y melón) 

durante cuatrocientos treinta días. El movimiento de trazador a lo largo del perfil de suelo fue 

simulado considerando transporte multifásico. Los perfiles de concentración de trazador, a partir 

de un espaciado y limitado número de muestras destructivas, fueron usados para calibrar y validar 

el modelo. 

 

Por último, se ha llevado a cabo un experimento de larga duración (nueve años hidrológicos) para 

diferentes tipos de cultivo: cultivos hortícolas anuales (lechuga y melón), cultivos hortícolas 

perennes (alcachofa) y árboles frutales (cítricos). La recarga producida por cada tipo de cultivo fue 

estimada a partir del balance de agua en suelo, zona no saturada y acuífero. Las fluctuaciones del 

nivel freático registradas a lo largo del mencionado periodo fueron usadas  para calibrar y validar 

el modelo. Esta experiencia permitió evaluar la fiabilidad de las estimaciones de recarga a partir de 

las otras dos metodologías previas (a corto plazo) para el tipo de cultivo coincidente (cultivos 

hortícolas anuales). 

 

 Para las tres aproximaciones, el cubrimiento de suelo por las plantas y el crecimiento de 

raíces han sido incluidos en la condición de contorno superior. La evapotranspiración se ha 

dividido en evaporación y transpiración como una función del índice de área de hoja, y es limitada 

por el contenido de agua en el suelo. La transpiración a su vez ha sido distribuida a través del 

perfil de suelo como una función del contenido de agua y profundidad de raíces. 

 

 Valores similares de recarga han sido obtenidos a partir de las tres técnicas, aunque el 

modelo de flujo no saturado la sobreestima ligeramente. La evapotranspiración real fue siempre 



  v

más baja que la potencial, ya que el contenido de agua en suelo fue insuficiente para mantener la 

extracción de agua por parte de las raíces, a pesar de la alta frecuencia de riego. Aunque las 

prácticas agrícolas por parte de los agricultores son las correctas, con una alta eficiencia de riego, 

se obtuvieron altos valores de recarga. La lluvia es distribuida de manera irregular en unos pocos 

eventos intensivos, algo por otro lado muy común en regiones semi-áridas, lo que contribuye de 

manera significativa a la percolación profunda, debido al constante alto contenido de humedad en 

el suelo y a la contribución potencial del flujo preferencial. 
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Chapter 1 
 
 

Introduction 
 
 
Groundwater is estimated to make up at least 50% of potable water, 40 % of industrial water, and 

20% of irrigation water in the world (Foster and Chilton, 2003). Arid and semi-arid regions are 

expanding and represent 30% of the global terrestrial surface area (Dregne, 1991), in these regions 

surface water resources are generally scarce and highly unreliable with the result that groundwater 

is the primary source of water. Increasing demands on limited water supplies result in a critical 

status of groundwater natural recharge (groundwater storage from naturally-occurring surface 

water supplies such as precipitation and stream flows). Estimating aquifer recharge is very 

important for determining water resource availability and assessing aquifer vulnerability to 

pollutants (Scanlon et al., 2002).  

 

Natural recharge is a critical component of the water cycle for water resources and 

transport of contaminants assessment to the aquifer. Estimation can be difficult, particularly in arid 

and semi-arid regions where water tables are typically deep and recharge is predominately focused 

recharge, which emanates from topological depressions such as streams and lakes. Although 

diffuse recharge refers to areally distributed recharge, it is believed to play a diminishing role with 

aridity. Kearns and Hendrickx (1998) point out that small diffuse recharge rates over large areas 

yield significant volumetric contribution to groundwater. The recharge rate is limited by the 

availability of water at the land surface, which is controlled by temporal and spatial climatic 
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factors such as precipitation and evapotranspiration (Scanlon et al., 2002). In some basins recharge 

estimation is additionally complicated by irrigation, which may simultaneously remove water from 

focused recharge sources while creating new sources of diffuse recharge derived from 

precipitation or irrigation. In irrigated regions under arid or semi-arid conditions, accurate 

knowledge of recharge, evaporation, and transpiration is especially important for the sustainable 

management of scarce water resources (e.g. Garatuza-Payan et al., 1998). 

 

Accurate recharge estimation is not as easy task since there are many interrelated 

processes and factors included in the atmosphere (rainfall amount, evaporation rate), plant (root 

depth, transpiration rate, interception), soil and vadose zone (infiltration capacity), and aquifer 

(water table position). Several methods have been used to estimate natural groundwater recharge 

with varying degrees of success. A detailed review of the methods is beyond the scope of this 

chapter and the reader is referred to the existing published works (Simmers, 1988; Sharma, 1989; 

Lerner et al., 1990; de Vries and Simmers, 2002; Scanlon et al., 2002, can be cited among the 

review works). The current applied methods can be loosely grouped into three categories 

depending on whether the focus of the method is surface water, the vadose zone, or the saturated 

zone. In all of them, physical (e.g. seepage meters, lysimeters, water table fluctuation method) and 

tracer techniques (e.g. heat, environmental tracers) are common, as well as are numerical 

modelling approaches. The best choice for a particular situation depends upon the spatial and 

temporal scales being considered and the intended application of the recharge estimate (Scanlon et 

al., 2002).  

 

Regional recharge estimation for water resources evaluation has relied mostly on 

groundwater-based approaches, integrating over large spatial scales and generally cannot be used 

to estimate local variability in recharge. Areas dedicate to agriculture present a high spatial and 

temporal variability due to type of tillage (Ndiaye et al, 1997), growth stages, rotation, water 

requirements and irrigation methods for the different crops. A critical element of water balance 

and modelling approaches for recharge estimation in arid and semi-arid regions is to determine 

actual evapotranspiration rates (ETa), which can be below potential rates (ETp) for long periods of 

time (Droogers, 2000; Haque, 2003; Lascano et al., 2007), even in irrigated systems. 

 

Various review works focusing primarily on arid and semi-arid regions recharge have 

been conducted in the past (reviews include Gee and Hillel, 1988; Allison et al., 1994; Simmers, 

1997; IAEA, 2001; Kinzelbach et al., 2002; Scanlon and Cook, 2002; Hogan et al., 2004; Scanlon 
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et al., 2006). Obtained results for recharge estimates indicate that it is: higher in humid than in arid 

regions; the presence of vegetation markedly reduces it (Gee et al., 1994); higher in areas of 

annual crops than in forested (Prych, 1998); greater in coarser than finer textured soil (Cook and 

Kilty, 1992). 

 

 The task of defining optimum methodologies to estimate recharge from cropland is still 

under development, although a number of papers have tried to quantify this water balance 

component, among them:  

 

Ghulam and Bhutta (1996), estimated aquifer recharge for a region of Pakistan (Rechna Doab) 

under semi-arid climate (P = 355 mm). The main activity in this region is agriculture with a high 

variety of crops (cotton; rice; wheat; sugarcase; pulses; oil seed vegetables; orchards; fodder). The 

evapotranspiration was calculated according to Doorenbos and Pruitt (1977) and the modelling 

approach used was a cascade model, which establishes a water budget for surface, soil and aquifer. 

The final recharge ranged between 14–123 mm; with an average value 57 mm. No distinction 

between recharge from cropland and non-cultivated soils was unfortunately provided.  

  

Dawes et al. (1997) evaluated the recharge in a cultivated area (wheat; canola; oats) of Australia 

along one and half year (for this period P = 1097 mm; ET = 974 mm), where the dominant soil 

type was structured clay loam and coarse sand. Soil moisture content at different depths was 

measured by means of time domain reflectrometry (TDR). To reproduce the soil moisture 

measurements a preliminar version of the well-know TOPOG code (Dawes and Hatton, 1993) was 

applied, based on Richards’ equation to resolve the unsaturated water flow. The recharge obtained 

for the aforementioned period was 50 mm. 

 

Zhang et al. (1999) developed the research in two cultivated sites located in Australia. Several 

crop and pasture rotation were considered involving fallow, field pea, mustard, wheat, oats, 

lucerne and medic pastures. The first site was located on a sandy clay soil, whereas the second one 

on a sandy loam soil, with a mean annual precipitation of 351 and 564 mm, respectively. Soil 

moisture content at different depths was measured by means of a neutron probe. The 

measurements were reproduced using a process-based model that simulates the dynamic 

interactions within the soil-vegetation-atmosphere system, which consists in sub-models to 

simulate the energy and water balance. The range of recharge obtained in each site was 4–13 mm 

and 7–26 mm, respectively. 
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Kendy et al. (2003) calculated recharge in an experimental site in North China Plain, where the 

mean annual precipitation is 366 mm. Crop rotation of wheat (winter) and maize (summer) on a 

loam soil was carried out. To measure soil water content at different depths neutron probe was 

used. Recharge was evaluated by a numerical model in which soil water flow was governed by a 

tipping-bucket-type mechanism and actual transpiration was computed based on the soil water 

status using a method introduced by Campbell and Norman (1998). For the range of water input 

(P+I) 435–816 mm, the obtained recharge range was 78–209 mm. 

 

Brunner et al. (2004) estimated recharge by combining remotely sensed data with local values of 

recharge derived from the chloride method, which was used to calibrate the first method. The 

study was located in Botswana, specifically in the Chobe Region and Ngamiland (Kalahari 

Desert). The recharge ranges were -20–260 mm and -35–90 mm for each aforementioned region, 

respectively.  Crop types, water crop requirements or irrigation methods were not specified due to 

the broad extension of this study. It interested to mention the presence of exfiltration phenomenon 

(negative values), observed in the Chad lake area (Leblanc et al., 2003; 2007).  

 

Wang et al. (2008) evaluated the impacts of different soil types (silty clay; silt; clay), land use, 

irrigation, and crop cultivation management on recharge. Average recharge rates were determined 

by tritium and bromide tracing for different sites in Hebei Plain (North China), where the mean 

annual precipitation is 528 mm. Average recharge rates and recharge coefficient were 0.00–1.05 

mm d-1 (mean ± standard deviation 0.35±0.24 mm d-1) and 0.0–42.5%, respectively. The results 

showed the following recharge rates: flood irrigation (0.42–0.58 mm d-1); sprinkler irrigation 

(0.17–0.23 mm d-1); no stalk mulch (0.56–0.80 mm d-1); stalk mulch (0.44–0.60 mm d-1); 

vegetables (0.70 mm d-1); wheat-maize (0.38 mm d-1); peanut (0.51 mm d-1); peach (0.43 mm d-1). 

Even, they provided a linear relationship 0.21( ) 47.75R P I   . A comparison of near-ideal 

tritium tracer with the more common but less ideal bromide showed that bromide moved 

approximately 23% faster than tritiated water, maybe due to anion exclusion. 

 

Compilation of recharge rates from studies in irrigated areas indicates that recharge rates 

increase as a function of precipitation plus irrigation (average 15%). Studies by O’Connell et al. 

(2003) indicate that long fallow periods potentially increase deep drainage by 2 mm yr-1 relative 

to fully cropped systems over a wide rainfall range (134–438 mm yr-1). Similar studies have 

examined cropping intensification and crop rotations to reduce recharge (Latta and O’Leary, 2003; 
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Sadras and Roget, 2004). If irrigation water is derived from surface water sources or deep 

confined aquifers, increase in recharge can result in shallower water tables and water logging of 

soils (e.g. Rajasthan, India. Ritzema et al., 2008). In groundwater-fed irrigation systems (shallow 

unconfined aquifer), increased pumping for irrigation greatly outweighs increased recharge rates, 

resulting in large groundwater level decline. Therefore, cultivation (irrigated and non-irrigated) has 

a large impact on groundwater recharge and water resources (Scanlon et al., 2006). 

 

On the other hand, with the increasing concern on Global Change forecasting of recharge 

predictions, generally relying on model simulations, appears to be a difficult task. Understanding 

the water cycle controls, such as climate, vegetation, and soils, is important in evaluating the 

potential impact of climate variability and land use/land cover change on the water cycle. These 

difficulties motivate the need for quantifying and minimizing uncertainty on recharge estimates 

(non-linear nature) and predictions, improved understanding of how recharge occurs in these sites 

today and how it could be affected in the future, which finally can facilitate groundwater resources 

management (von Igel, 2006; Candela et al., 2009). 

 

 In summary this thesis aims at giving, maybe a small but indeed significant contribution, 

in one of the most difficult components of water cycle: aquifer recharge from irrigated farmland. A 

series of frameworks are developed starting from field observations in both saturated and 

unsaturated media. The development of methodologies and numerical model approaches are used 

to give insight into the processes governing the recharge from irrigated farmland.  

 

 

1.1  Thesis outline 

 

Approaches for recharge analysis were carried out in the Campo de Cartagena area, southeastern 

Spain, a semi-arid region where irrigated intensive agriculture is prevalent. This thesis consists of 

seven chapters after the introductory one. The chapters four, five and six are based on papers that 

have been already published or submitted to international journals. 

 

 Chapter 2 consists of a brief description of the main characteristics of the area where the 

different methodologies have been developed, including climate, land use and agricultural 

practices, as well as geology and hydrogeological framework. 
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 In chapter 3, a common previous step for the next three chapters, characterization of the 

soil profile and the top of the vadose zone by means of laboratory tests, is presented. Methods used 

to determine physical, hydraulic, chemical and mineralogical properties along with the results 

obtained are shown. 

 

 In chapter 4 a field experiment carried out in a plot under drip irrigation and cultivated 

with annual row crops (rotation lettuce and melon) is described. Soil moisture dynamics through 

the root zone and below are simulated with the Richards’ equation. Root water uptake and 

transpiration are calculated according to Feddes et al. (1978). Ground cover and root growth were 

considered also. Field data were collected, soil moisture and pressure head at different depths were 

in situ obtained and used to calibrate and validate the modelling approach.  

    

 Chapter 5 describes a new methodology for the interpretation of a field tracer test. This 

exercise was carried out under the above mentioned conditions for the first approach. The selected 

tracer was tritium (near-ideal) and transport in soil was simulated considering a multiphase 

approach, non-tritiated and tritiated water in liquid and gas phase, beyond transport of heat, ground 

cover, root growth and root water uptake. Tracer concentration profiles, from a limited and sparse 

number of measurements, were used to calibrate and validate the modelling approach.  

 

 Chapter 6 examine the recharge from three different groups of crops: annual row crops 

(lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Daily water balance in 

soil, vadose zone and aquifer was established. Water table fluctuations were used for model 

calibration and predictions. In this last technique, in contrast to the two previous techniques 

presented above, a long period of study was considered (1999-2008), which permitted to evaluate 

the recharge estimation reliability for the group crop overlapped (annual row crops).  
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Chapter 2 
 
 

Study area 
 
 
2.1 Geographical setting and climate 

 

The Campo de Cartagena plain comprises an area of 1440 km2 in the Region de Murcia, southeast 

of Spain. It is limited to the East by the Mediterranean Sea and Mar Menor (hypersaline coastal 

lagoon), and by small mountain ranges to the North, South and West, with elevations ranging 

between sea level and 1065 m.a.s.l. (Figure 2.1).  

 

The region is characterised by a semi-arid Mediterranean climate, with a mean annual 

temperature of 18 ºC and an average annual rainfall of 300 mm, which is unevenly distributed into 

a few intense events highly variable in space and time. Rainfall is mainly produced during spring 

and autumn. Precipitation along the year only takes place during sixty raining days and half 

amount of the precipitation occurs in to five days, with values higher than 17 mm (Figure 2.2). 

Estimates of annual potential evapotranspiration (ETP) range from 875 to 1169 mm yr -1, 

calculated by Thornthwaite and Turc, respectively. Whereas the annual reference 

evapotranspiration (ET0) values obtained by Blaney-Criddle, Hargraves and Priestley-Taylor are 

1313, 1241 and 1274 mm yr -1, respectively (Sánchez et al., 1989). No permanent watercourse 

exists and the area is drained by several ephemeral streams (ramblas). Flash-floods are common 

hydrologic events during autumn. 
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Figure 2.1: Campo de Cartagena plain and Mar Menor coastal lagoon, SE Spain. 
 

 

2.2 Geology  

 

A comprehensive geologic description of the Campo de Cartagena is beyond the scope of this 

chapter, having being studied by a great number of researchers (e.g. IGME, 2005; Jiménez-

Martínez et al., submitted). Only a brief summary of the geological framework is presented here. 

 

The Campo de Cartagena constitutes a Neogene and Quaternary sedimentary basin 

located in the Eastern part of the Betic Cordillera. The detritic sedimentary rocks are 

unconformably laid over three metamorphic complexes those conform the Internal Zones of the 

cordillera. The metamorphic complexes are from bottom to top: (i) Nevado-Filábride, composed of 

marbles and mica-schists of Palaeozoic, Permian and Triassic age and outcrops in the mountain 

ranges to the South and West of the study area; (ii) Alpujárride, outcropping in the northern and 

southern mountain ranges; it is composed of schists, marbles, phyllites and quartzites of Permian 
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and Triassic age; (iii) Maláguide, formed by Permian and Triassic sandstones, quartzites, silts, 

conglomerates and limestones and outcrops in the northern part of the area (Figure 2.3a).  

 

 
 
Figure 2.2: Precipitation and temperature in the Campo de Cartagena for the 2000-2008 period 
(eleven meteorological stations). a) mean annual precipitation. b) mean monthly precipitation. c) 
mean annual temperature. d) mean monthly temperature. e) mean annual number of rainfall events 
and cumulative precipitation. 

 

 

The NE-SW to E-W normal faults break up the bedrock, developing several horst and 

graben structures. During the Tortonian, dacites and basalts flows result of the volcanic eruption 

favoured by fractures as a consequence of the tectonic activity, were deposited in the southern part 

of the basin. The sedimentary infill of the basin, with a maximum thickness of 2000 m, is mainly 
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composed by limestone, sand and conglomerate of Tortonian age, organic limestone of Messinian 

age and sandstone of Pliocene age, with interlayered marls and evaporites between them. Finally, 

overlying the Neogene sedimentary rocks, the Quaternary detritic sediments (conglomerates, sands 

and silts) (Figure 2.3b), covering a great part of the Campo de Cartagena (IGME, 1994). The 

observed stratigraphic variability and structural complexity of the area has important implications 

for the conceptual hydrogeological model establishment. 

 

 

2.3 Hydrogeological framework 

 

The multilayer hydrogeologic system is constituted by deep confined aquifers (Tortonian, 

Messinian and Pliocene age), which outcrops in the northern part of the study area, and a 

Quaternary unconfined shallow aquifer (ITGE, 1991; Rodríguez Estrella, 1995; Jiménez-Martínez 

et al., submitted), which is objective of this thesis. The top unconfined aquifer extends over 1135 

km2 with an average thickness of 50 m (Figure 2.3b).  

 

Whilst groundwater exploitation mainly relies on the deep confined aquifers, the shallow 

unconfined aquifer (Quaternary age) receives recharge from irrigation and precipitation, and is 

barely exploited due to its high pollution by agrochemicals. The regional groundwater flow 

direction in deep confined aquifers is from northwest to southeast, towards the coast, although 

local affections of the flow system occur due to the high density of pumping wells. With regard to 

the top unconfined aquifer (Quaternary), the regional groundwater flow direction is from 

northwest towards the coastal areas, also. The average depth of the water table is 15 m, and the 

hydraulic gradient of the aquifer ranges from 10-4 to 10-3 m m-1 (Figure 2.3a). The hydraulic 

conductivity ranges between 10-1 and 101 m d-1, whereas the transmissivity values vary from 101 to 102 

m2 d-1, depending on the spatial location.  

 

In this chapter, aquifer water balances are not provided. The last works carry out (IGME, 

1994; CHS, 1997; Albacete et al., 2001) do not correspond with the current situation. Moreover, 

several water balance components included in the mentioned works present a high uncertainty due 

to the employed methodology.  
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Figure 2.3: a) Location and geological sketch of the Campo de Cartagena area, Southeastern Spain. 
Experimental plot sites (Chapters 4, 5 and 6) are shown. b) Geological cross-section showing the 
aquifer system. Modified from IGME (1994). 
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A preliminary study by the Spanish Geological Survey (IGME, 1994) estimated that total 

recharge to the top unconfined aquifer, Quaternary age, was about 69 hm3 yr-1, distributed between 

46 hm3 yr-1 due to natural recharge and 23 hm3 yr-1 due to irrigation return flow (where 1 hm3 = 106 

m3). The IGME (1994) study to estimate natural recharge was based on the Thornthwaite method 

(Thornthwaite, 1948); to estimate irrigation return flows a combination of methods were applied 

according to existing data: (i) for areas where crop and irrigation data were available, irrigation 

return flows were calculated as the difference between the applied water and the potential crop 

water use; (ii) for other areas, where only irrigation data was available, irrigation efficiency 

coefficients for different irrigation methods (e.g. drip, furrow, flooding) were used to determine 

the fraction of water contributing to recharge. Thus return flow estimate was only based on 

irrigation water application and did not consider water input from precipitation. Instead, 

precipitation-based recharge from irrigated farmland was implicitly included in the estimate of 

natural recharge, which was a single value for the entire region. 

 

 

2.4 Land and water uses. Agricultural practices 

 

The dominant land use is agriculture, both irrigated and rainfed. Irrigated farmland comprises an 

area of approximately 299 km2, with 128.1 km2 of annual row crops (mainly lettuce and melon), 

34.1 km2 of perennial vegetables (mainly artichoke), and 136.8 km2 of fruit trees (mainly citrus) 

(CARM, 2008) (Figure 2.4 and Table 2.1).  

 

Drip irrigation (Table 2.1) is widely used in crop production due to the scarcity of water 

resources and the need for water conservation. An important aspect of the agricultural 

management in this region is the use of a plastic cover during summer crop (melon) to reduce the 

direct evaporation from soil surface.  

 

Population water supply relies on surface water imported from Canales del Taibilla. 

Water for agricultural irrigation originates from deep confined aquifers, and surface water transfer 

system of the Tajo-Segura Aqueduct (MIMAN, 2000), a system which transfers water from the 

Tajo basin (central part of Spain) to the study region initiated in 1980. During the 1960’s and the 

1970’s, the aquifers were intensively exploited. Since 1980, with the water transfer, the total 

irrigated area increased due to new available water resources. In response, an increase of induced 
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recharge by irrigation return flow to the top unconfined aquifer (Quaternary) was produced. As a 

result, two mechanisms have led to a water level rise in aquifers: irrigation return flow and 

decrease of pumping from wells. Since 2005 and due to the high water demand for irrigation, 

private desalination activities from brackish groundwater have been promoted by the farmer’s 

community in order to increase available water resources. 

 

 
 
 Figure 2.4: Land covered by the principal crops (CARM, 2008). a) vegetables and b) fruit trees.  

 

 

Table 2.1: Main characteristics of the representative crops in Campo de Cartagena (source: Allen et 
al., 1998; CARM, 2007; CARM, 2008) 

 

 

Intensive agricultural practices involve, along with the irrigation return flow, the transport 

of mineral fertilizers, frequently exceeding crop needs (0.9-1.6 t ha-1 yr-1), to the unconfined aquifer 

Drip irrigation 

Crop Surface 
Mean 
height 
crop 

Maximum root 
depth 

Furrow 
spacing

Inside 
diameter 

tubing 

Emitter 
spacing

Discharge 

Crop water    
requirements 

 (km2) (cm) (cm) (m) (mm) (cm) (l h-1) (m3 ha-1 yr-1) 
         

Annual row crops
(principally lettuce and 

melon) 
128.1 30 / 30 30-50 / 80-150 1 16 30 4 3287.8 / 6169.2

         

Perennial 
vegetables 

(artichoke) 

34.1 70 60-90 1.7 16 40 4 6622.8 

         

Fruit trees 
(citrus) 

136.8 300 80-150 6 16 25-125 4 6407.1 
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(Quaternary). Discharge of this aquifer to the Mar Menor (a hypersaline coastal lagoon) is producing 

an important environmental impact (Rodríguez Estrella, 2000; Garcia-Pintado et al., 2007). 

Elevated pumping rates in wells, pollution by agrochemicals, along with aquifers interconnection 

through abandoned and poorly constructed wells, enhanced by its high density (Jiménez-Martínez 

et al., 2010), are the main impacts on the quality and quantity of groundwater resources in the 

region.  

 

 

“The crops of Campo de Cartagena are an important source of fruits and vegetables for the 

European Union. Recently, however, drought conditions have worsened a deterioration that many 

attribute to climate change. The future of irrigated agriculture in Campo de Cartagena is in 

doubt; the United Nations Food and Agriculture Organization has identified current water 

shortage and desertification problems in southeast Spain as possibly being harbingers of what 

may become a global food crisis (New York Times, June 3, 2008)” 
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Chapter 3 
 
 

Soil characterization 
 
 
The soil solid phase has a dominant influence on heat, water, and chemical transport and retention 

processes. Therefore, characterizing the physical and chemical properties of the soil solid phase is 

essential to understand these processes. Many processes in the soil are strongly influenced by the 

properties of the soil matrix, which is formed by soil particles and void spaces (Jury and Horton, 

2004). 

 

 Soil characterization is a common previous step to estimate groundwater recharge for the 

three vadose zone techniques presented in this thesis. To initially characterize soil properties, 

disturbed and undisturbed soil samples were extracted up to a depth of 2 m before the experiments 

started. Disturbed samples were obtained using hand drilling, whereas for undisturbed samples (for 

soil matrix characterization) soil sample rings inserted by percussion were used. Subsequently, 

samples were immediately wrapped and transported in iceboxes to the laboratory. Obtained 

parameters and applied methodology are presented below. 
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3.1 Physical properties 

 

Particle size distribution. Percentages of sand, silt and clay were determined according to 

Gee and Or (2002). To determine clay fraction, laser light scattering (diffraction) was used 

(Malvern Mastersizer E, range 0.5-600 μm) 

 

Textural classification. The soil textural name based on the amount of sand, silt and clay 

was based on the USDA classification system.  

 

Soil structure. Structural category is given from USDA Agricultural Information Bulletin 

199. 

 

Aggregate analysis. Dry-aggregate stability was characterized according to Nimmo and 

Perkins (2002), considering the fraction of soil weight that comprises stable aggregates for a 

defined size (A = >500 μm / <500 μm). 

 

Particle density. Pycnometer method (constant volume container) is used for this purpose 

(Flint and Flint, 2002). 

 

Bulk density. From the core method (undisturbed samples from rings) (Grossman and 

Reinsch, 2002). 

 

Results of the above mentioned physical properties are shown in table 3.1. 

 

Table 3.1: Summary table of soil physical properties (mean ± standard deviation). 

 

 

 

Depth Textural fractions (%) Bulk density 
Particle 
density 

Aggregates 
Textural 

name 
Soil 

structure 
(cm) Sand Silt Clay (g cm-3) (g cm-3) A   

         

0-30 18.7 76 3.5 1.45±0.10 2.64 0.59±0.23 silty loam granular 

30-60 13.8 80.2 6 1.52±0.11 2.65 1.05±0.23 silty loam massive 

60-90 19.5 77.2 3.3 1.58±0.05 2.67 0.59±0.40 silty loam massive 

90-150 10.8 82 6.6 1.70±0.08 2.67 0.89±0.28 silty loam massive 
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3.2 Chemical and mineralogical properties 

 

Chemical composition. Elements and oxidation states were obtained from X-Ray 

Fluorescence Spectrometry (XRFS) (Jones, 1991). 

 

Table 3.2: Soil chemical properties (mean ± standard deviation). 

 Depth (cm) 

 0-30 30-60 60-90 90-150 

% by weight     

Na2O 0.48 0.45 0.43 0.41 

MgO 3.18 2.97 2.42 2.90 

Al2O3 12.5 12.9 9.6 10.5 

SiO2 39.8 40.1 33.7 31.8 

P2O5 0.230 0.150 0.090 0.084 

SO3 0.180 0.120 0.120 0.130 

Cl 0.024 0.015 0.015 0.018 

K2O 2.39 2.40 1.64 1.90 

CaO 15.36 15.85 23.99 26.68 

TiO2 0.58 0.55 0.45 0.50 

MnO 0.071 0.072 0.036 0.047 

Fe2O3 3.75 3.82 2.65 3.11 
     

% by weight (10-4 ppm)     

P 0.0990 0.0660 0.0390 0.0370 

S 0.0700 0.0470 0.0500 0.0510 

Cr 0.0100 0.0086 0.0066 0.0065 

Cu 0.0100 0.0094 0.0094 0.0090 

Zn 0.0130 0.0066 0.0056 0.0055 

Ga 0.0013 0.0014 0.0010 0.0008 

Br 0.0010 0.0012 0.0011 0.0006 

Rb 0.0064 0.0070 0.0043 0.0054 

Sr 0.0371 0.0422 0.0561 0.0524 

Y 0.0039 0.0037 0.0029 0.0033 

Zr 0.0165 0.0150 0.0165 0.0139 

Nb 0.0010 0.0010 0.0010 0.0008 

Ba 0.0320 0.0390 0.0370 0.0310 

Pb 0.0170 0.0034 0.0025 0.0022 
     
     

Organic carbon (% by weight) 5.1±0.2 5.1±0.1 2.6±0.2 3.0±0.1 

Inorganic carbon (% by weight) 29.2±0.4 30.5±0.8 40.2±1.4 46.0±0.4 

Electrical conductivity, EC (μS cm-1) 761 949 644 655 

pH 7.0±0.9 7.2±0.4 7.4±0.3 7.5±0.2 
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Organic Carbon. The soil organic matter content was obtained from Loss of weight On 

Ignition method (LOI) (Storer, 1984). 

 

Inorganic Carbon. The content of inorganic carbon forms is derived from Nelson and 

Sommers (1996). 

 

Electrical conductivity (EC) and pH. EC and pH measurements of the soil solution were 

carried out according to Hanlon (2009). 

 

Mineralogy. X-Ray Diffraction (XRD) technique was applied to mineralogical study of 

clay fraction (Brown and Brindley, 1980). Clay minerals determined are Chlorite, Illite, 

Paragonite, Quartz, K-Feldspar, Plagioclase, Calcite and Dolomite. 

 

Results of the above mentioned chemical and mineralogical properties are shown in table 

3.2 and 3.3, respectively. 

 

Table 3.3: Clay mineral identification. 

 

 

3.3 Hydraulic properties 

 

Saturated hydraulic conductivity (Ks). Constant head soil core (tank) method described by 

Reynolds and Elrik (2002). Results are shown in table 3.4. 

 

Water retention. Characteristic retention curves, pressure head (h) vs. soil water content 

(θ) at different depths (15, 45, 75 and 105 cm) were obtained using pressure plate extractor method 

(Dane and Hopmans, 2002). Pressure head is also commonly called matric potential. Results are 

shown in figure 3.1. 

Depth Clay minerals (%) 

(cm) Chlorite Illite Paragonite Quartz K-Feldspar Plagioclase Calcite Dolomite 
         

0-30 10 37 6 31 1 3 8 3 

30-60 10 31 6 27 2 3 15 5 

60-90 8 32 4 26 2 5 14 7 

90-150 10 36 5 25 2 4 14 5 
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Table 3.4: Saturated hydraulic conductivity values. 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.1: Pressure head (h)-soil water content (θ) function at different depths (15, 45, 75 and 105 
cm). Vertical bars represent maximum and minimum measured water content.  
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Depth (cm) Ks (cm d-1) 

 min / max 
  

15 - 

30 3.7 / 21.7 

45 - 

60 6.7 / 26.7 
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Chapter 4 
 
 

Unsaturated water flow approach* 
 
 
4.1 Introduction 

 

Groundwater recharge is water that enters into the phreatic zone. One of several ways water can 

enter to the aquifers is by migration (percolation) through the root zone and vadose zone. In the 

following chapter, a method to calculate aquifer recharge from a numerical approach, based on 

root and vadose zone unsaturated water flow, is presented.  

 

To account for infiltration and evapotranspiration in many procedures, in lieu of detailed 

meteorological information for the upper boundary and root zone, models usually specify either a 

constant or time-varying flux or pressure head. It is also known that the mechanisms governing 

transient unsaturated flow are more complex. During drainage and water redistribution, flow 

mechanisms may be induced within the root zone by vegetation. Root distribution is non-uniform; 

roots move in the soil as the plant grows (Brown and Scott, 1984), so changes of water content 

distribution in the soil along time and space are expected. It is clear that vegetation uptake can play 

a dominating role in the infiltration and redistributed water that otherwise would become recharge. 

                                                 
* This chapter is based on the article: Jiménez-Martínez, J., Skaggs, T.H., van Genuchten, M. Th., 

Candela, L., 2009. A root zone modeling approach to estimating groundwater recharge from irrigated areas. 
Journal of Hydrology 367, 138-149. 
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Among general recharge modelling efforts, it is worth citing the works of Kendy et al. 

(2003) and Keese et al., (2005). Kendy et al. (2003) evaluated recharge specifically for irrigated 

cropland using a model where soil water flow was governed by a tipping-bucket-type mechanism. 

They assume that gravity forces dominate over matric forces, and therefore a unit gradient exists 

throughout the soil profile. Thus, the modelled flux is always downward. Steenhuis et al. (1985) 

showed that these assumptions are reasonable, especially deep in the profile, where upward flux is 

insignificant. They consider that recharge is more dependent on evapotranspiration rates than on 

soil water distribution, and that errors introduced by these assumptions do not strongly influence 

recharge calculations. While Keese et al., (2005) assessed controls on diffuse recharge (include 

climate, vegetation, soils, and topography) using unsaturated flow modelling based on Richards’ 

equation. Soil hydraulic properties were estimated from soil data by means of pedotransfer 

functions; vegetation parameters were obtained from literature. Long-term simulations were 

conducted from arid to humid climates and different vegetation and soil types with successful 

results. 

 

In this chapter, irrigation return flow from farmland and aquifer recharge, with non-

existent hypodermic flow, is estimated using a root zone modelling approach in which irrigation, 

evapotranspiration, and soil moisture dynamics for specific crops and irrigation regimes were 

simulated with HYDRUS-1D software package (Šimůnek et al., 2005). The code is a well-known 

computer model that simulates water, heat, and solute movement in variably saturated porous 

media. The model was calibrated and validated using field data collected in the experimental plot 

presented in section 4.2. Root zone moisture dynamics are simulated with the Richards’ equation, 

including a sink term to account for water uptake by plants roots. Root water uptake and 

transpiration are calculated according to Feddes et al. (1978). Root growth and ground cover are 

also considered. To evaluate the importance of parameter uncertainty on the estimated recharge 

values, a sensitivity analysis is performed. 

 

 

4.2 Field experiment 

 

The study of root zone soil moisture was conducted on the experimental plot located at the 

Tomas Ferro Agricultural Science Center, a research facility operated by the Technical University of 

Cartagena. Location of the experimental plot in the study area is shown in Figure 2.3. The plot was 
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managed according to agricultural practices that are common in the Campo de Cartagena region, 

including crop rotation (melon and lettuce), drip irrigation and plastic cover for summer crops. To 

avoid boundary effects, the plot sides were also cultivated with the same crops and agricultural 

management conditions. The experiment was performed between 7 February 2007 and 21 August 

2008.  

 

An experimental plot measuring 72 m was established on a silty loam soil (USDA 

classification system). The groundwater level was located at a depth of 14 m below the surface. A 

drip irrigation system, similar to that used in Campo de Cartagena agriculture, was installed on the 

plot (Figure 4.1). The system featured 16 mm inside diameter tubing, 4 L h-1 emitters, and an emitter 

spacing of 30 cm. In total, 36 emitters were installed.   

 

The plot was instrumented to monitor soil water dynamics in the root zone and below (Figure 

4.1). Instrumentation consisted of two tensiometers (Soilmoisture Equipment Corp, Goleta, CA, 

USA), for soil water pressure head measurements, vertically installed at the 30, 45, 60, 90 and 120 

cm depth (10 tensiometers total) (Young and Sisson, 2002). Two 44 mm diameter, 2 m deep access 

tubes (fibre glass) for soil moisture measurements with a TRIME-FM TDR probe (Imko GmbH, 

Ettlingen, Germany), which was specifically calibrated (linearly) for the mentioned soil (Laurent et 

al., 2001; 2005). Meteorological data for the site were available from a Servicio de Información 

Agraria de Murcia (SIAM, 2008); the weather station was located 235 m from the experimental 

plot. The frequency of measure employed for pressure head and water content was every two days 

and weekly, respectively. 

 

 
Figure 4.1: Photograph and schematic of the experiment plot and the instrumentation. 
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4.3 Root zone water flow approach 

 

4.3.1 Numerical model 

 

Water flow and root water uptake was simulated using HYDRUS-1D (Šimůnek et al., 2005). 

Assuming that (i) the soil is homogeneous and isotropic, (ii) the air phase does not affect liquid 

flow processes, and (iii) water flow due to thermal gradients is negligible, the governing equation 

for water flow is the 1D Richards’ equation:  

 

1
h

K S
t x x

             
    [4.1] 

 

where h = soil water pressure head; θ = volumetric water content; t = time; x = vertical space 

coordinate; K = unsaturated hydraulic conductivity; and S = sink term, defined as the volume of 

water removed from a unit volume of soil per unit time due to plant water uptake. The sink term is 

specified in terms of a potential uptake rate and a stress factor (Feddes et al., 1978): 

 

( ) ( ) pS h h S                                                                  [4.2] 

 

where Sp is the potential water uptake rate and α(h) is the dimensionless water stress response 

function (0 ≤ α ≤ 1) that prescribes the reduction in uptake that occurs due to drought stress. For 

α(h), we used the functional form introduced by Feddes et al. (1978): 
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where h1, h2, h3, and h4 are threshold parameters such that uptake is at the potential rate when the 

pressure head is between h2 and h3, drops off linearly when h > h2 or h < h3, and becomes zero 
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when h < h4 or h > h1. Crop-specific values for these parameters (Table 4.1) were taken from the 

database contained in HYDRUS-1D (Šimůnek et al., 2005).  

 

Table 4.1: Root water uptake reduction parameters. 
Crop h1 (cm) h2 (cm) h3 (cm) h4 (cm) 
  

Melon -10 -25 -400 -8000 
     

Lettuce -10 -25 -500 -8000 
     

 

 

The soil hydraulic properties were modelled using the van Genuchten-Mualem 

constitutive relationships (Mualem, 1976; van Genuchten, 1980): 
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where Se is effective saturation: 
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and where θs = saturated water content; θr = residual water content; Ks = saturated hydraulic 

conductivity; α = air entry parameter; n = pore size distribution parameter; and l = pore 

connectivity parameter. The parameters α, n, and l are empirical coefficients that determine the 

shape of the hydraulic functions. To reduce the number of free parameters, we took l = 0.5, a 

common assumption which is based on the work of Mualem (1976). 

 

Running the model required specifying the hydraulic parameters θr, θs, α, n, Ks, and l. 

These parameters were estimated using Rosetta (Schaap et al., 2001), a pedotransfer function 
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model that predicts hydraulic parameters from soil texture and related data. Rosetta contains a 

hierarchy of pedotransfer functions that can be used depending upon available data. The hydraulic 

parameters were predicted using data for bulk density and percentages of sand, silt, and clay. The 

data and estimated parameters are given in Table 4.2. Refinements to these parameter estimates 

were made subsequently based on model fitting to a subset of the measured water content and 

pressure head data (details given below).  

 

Table 4.2: Measured soil textural and bulk density data, along with estimated hydraulic 
parameters† 

†Confidence intervals are two standard deviations (95%), estimated by Rosetta. 
 

 

HYDRUS-1D (Šimůnek et al., 2005) uses the Galerkin finite element method to solve 

Eqs. [4.1-4.5]. The atmospheric boundary condition (explained in the next section) was 

implemented at the soil surface while a free drainage condition (unit hydraulic gradient) was used 

at the bottom, the latter condition being appropriate due to fact that the water table was relatively 

far below the root zone (Šimůnek et al., 2005). 

 

 

4.3.2 Potential evapotranspiration and root growth 

 

Implementing the atmospheric boundary condition required specifying daily irrigation and 

precipitation rates, as well as the potential evaporation and transpiration rates. To determine 

evaporation and transpiration, a reference evapotranspiration ET0(t) was calculated using the 

Penman-Monteith method (e.g. Kashyap and Panda, 2001). The potential evapotranspiration 

ETp(t) was then given by (Allen et al., 1998): 

 

0( ) ( )· ( )p cET t K t ET t                                                     [4.7] 

Textural fractions (%) 
Depth 
(cm) Sand Silt Clay 

Bulk 
density  
(g cm-3) 

θr 
(cm3 cm-3) 

θs 
(cm3 cm-3) 

Log10(α) 
(cm-1) 

Log10(n) 
Log10(Ks) 
(cm d-1) 

          
0-30 18.7 76.0 3.5 1.45 0.04 0.02 0.38 0.06 -2.18 0.51 0.21 0.09 1.67 0.49 
          
30-60 13.8 80.2 6.0 1.52 0.05 0.03 0.38 0.06 -2.16 0.51 0.21 0.09 1.48 0.52 
          
60-90 19.5 77.2 3.3 1.58 0.04 0.03 0.35 0.07 -2.01 0.66 0.19 0.11 1.48 0.67 
          
90-150 10.8 82.0 6.6 1.70 0.04 0.03 0.38 0.08 -2.03 0.76 0.18 0.11 1.12 0.80 
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where ET0(t) was discretized in daily time steps and Kc(t) is a crop-specific coefficient that 

characterizes plant water uptake and evaporation relative to the reference crop. Figure 4.2 

illustrates the time variation of Kc(t) in terms of annual crop growth stage (the initial, crop 

development, mid-season, and late season stages). Allen et al. (1998) provide data on the length of 

the growth stages and the values of Kc for various crops. Allen et al. (1998) method and data are 

considered to specify for each crop the value of Kc during each growth stage (Table 4.3, Figure 

4.2). 

 

 
Figure 4.2: Illustration of crop growth stages and the time variation of the crop coefficient Kc. 

 

   

With ETp given by Eq. [4.7], potential evaporation Ep(t) can be calculated according to 

(e.g. Kroes and Van Dam, 2003; Pachepsky et al., 2004):  

 

· ( )( ) ( )·expp p
LAI tE t ET t                                                 [4.8] 

                                        

where β (≈ 0.4) is the radiation extinction coefficient and LAI(t) is the leaf area index. However, 

LAI(t) data are lacked  so it instead is calculated:  

 

)()( tfETtE pp                                                         [4.9] 

 

where the function f(t) was specified based on the following reasoning. When a crop is first 

planted, ground cover is nonexistent, potential evaporation is maximum, transpiration is zero, and 

thus f(t) = 1. Conversely, when the crop reaches the mid-season growth stage, ground cover is 

complete, evaporation is effectively zero, and thereafter f(t) = 0. All that remains is specifying the 
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transition from f(t) = 1 at planting to f(t) = 0 at the beginning of the mid-season growth stage.   

Because crop growth typically follows an S-shaped pattern (e.g. Overman and Scholtz, 2002), this 

transition is modelled using a sigmoid curve.  

 

Table 4.3: Growth and evapotranspiration coefficients for various crops (source: Allen et al., 1998 
and CARM, 2007) 

Growth Stage (number of days) Crop coefficient (Kc) 
Maximum 
root depth  

Crop water 
requirements Crop  

Plant 
date 

Initial Development Mid-season Late-season  Initial Mid End (cm) (m3 ha-1 yr-1) 
           

Lettuce Jan/Sept 35/30 50/40 45/25 10/10 0.7 1 0.95 30-50 3287.8 
           

Broccoli Jan/Sept 35 45 40 15 0.7 1.05 0.95 45-60 1595.7 
           

Cauliflower Jan/Sept 35 50 40 15 0.7 1.05 0.95 45-60 1595.7 
           

Celery Jan/Sept 25 40 45 15 0.7 1.05 1 45-60 2466 
           

Endive Jan/Sept a a a a 0.7 0.95 0.90 30-45 3474.4 
           

Melon May 25 35 40 20 0.5 1.05 0.75 80-150 6169.2 
           

Watermelon May 20 30 30 30 0.4 1 0.75 80-200 5435.1 
           
aNo data available, but casual observation suggests growth stages similar to those of lettuce. 
 

 

With the atmospheric boundary condition, water evaporates from the soil surface at the 

potential rate Ep (a flux boundary condition) as long as the pressure head at the surface remains 

above a threshold value, hcrit. If the soil surface dries out such that the surface pressure head 

reaches the threshold value, the boundary switches to a constant pressure head condition (= hcrit), 

generally leading to a computed actual evaporation rate Ea that is well below the potential rate Ep. 

Summarizing: 
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                                                  [4.10] 

 

In the simulations, hcrit was assumed to be -15 000 cm. The results of the simulations were not 

sensitive to this parameter value when specified in the range -10 000 cm to -15 000 cm because the 

surface soil remained relatively wet due to regular irrigation and thus remained above the hcrit 

threshold.  
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With ETp and Ep given by Eqs. [4.7] and [4.9], the potential transpiration Tp(t) was 

specified by: 

 

( ) ( ) ( )p p pT t ET t E t                                                  [4.11] 

 

 
Figure 4.3: Summary of the modelled soil surface boundary conditions (I = irrigation; P = 
precipitation; Ep = potential evaporation; Tp = potential transpiration). 
 

 

Figure 4.3 summarizes the imposed surface boundary condition, showing daily values of 

precipitation, irrigation, Tp, and Ep. 

 

The modelled rooting depth was assumed to increase with time according to a logistic 

growth function (Šimůnek et al., 2005), achieving a maximum depth at the end of the crop 

development stage. Values for the maximum rooting depth for particular crops (Table 4.3) were 

derived from Allen et al. (1998). 
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4.3.3 Uncertainty and sensitivity assessment 

 

The modelling approach contains several potential sources of uncertainty or error. Two levels or 

types of uncertainty can be distinguished. From one side, uncertainty exists from the computed 

root zone drainage at plot or field. In this context, sources of uncertainty include the values of 

various model parameters such as the soil hydraulic parameters in Eqs. [4.4] and [4.5], the daily 

reference evapotranspiration rate ET0(t), crop coefficients Kc(t), and drought stress parameters (e.g. 

h3 in Eq.[4.3], the threshold pressure head below which uptake is reduced). Quantifying the effect 

of these parameter uncertainties on drainage calculations requires knowledge of their statistical 

variability and correlation structure. In the case of the hydraulic parameters α and n, we have 

information in the form of 95% confidence intervals and correlation coefficients computed by 

HYDRUS-1D as part of the parameter optimization. For other hydraulic parameters, estimated 

confidence intervals are available from the Rosetta model (Table 4.2), but those estimates are 

unrealistically broad because they are only based on the soil separate and bulk density data and 

have not been conditioned on the water content and pressure head field data. The literature 

provides little or no information on quantifying uncertainty in other model parameters such as crop 

coefficients.  

   

A second type, or uncertainty source, involves extrapolation of the field results to a larger 

region. Here, sources of uncertainty include data on regional irrigation practices, cropping rotation 

and acreages, and so forth-the type of uncertainty that exists in any modelling or water balance 

estimation of recharge. Additionally, it may be also consider how specific model parameters vary 

in the region and how those variations would affect root zone drainage calculations. Again, 

however, little knowledge exists on how to quantify such variability in parameters like ET0 or 

Kc(t). For the hydraulic parameters, the Rosetta uncertainty estimates (Table 4.2) potentially 

provide a good starting point for quantifying the effects of hydraulic property uncertainty. Those 

estimates could, for example, serve as the basis for a Monte Carlo calculation of uncertainty in the 

recharge estimate. However, such a calculation is more complex than it may first appear. The 

Rosetta uncertainty estimates are quite broad. For example, the bounds for the 95% confidence 

intervals for Ks span an order-of-magnitude. With that kind of variability, a problem that may be 

encountered is that a given irrigation regime may not be sensitive over the whole range of soil 

properties: a realistic regime for a medium conductivity soil may result in water logging in a low 

conductivity soil (a specific example is given in the sensitivity calculations discussed below, 

section 4.4.3). Thus, a quantitative analysis of hydraulic property uncertainty would have to 
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somehow account for the relationship between soil properties and irrigation regimes (i.e. surface 

boundary conditions).     

 

In sum, it does not seem possible at this time to define quantitative confidence intervals 

on our recharge estimate owing to a lack of knowledge about parameter variability and correlation 

structure at multiple levels. However, it is possible to get some sense of the importance of 

parameter uncertainty by performing a sensitivity analysis. For this analysis, we performed a series 

of simulations in which individual parameters, or in one case a set of parameters, were perturbed a 

fixed amount while all other parameters were held at their baseline values (that is, the values used 

in recharge calculations). The effect of perturbation of the various parameters on the calculated 

recharge was then evaluated. Parameters considered for sensitivity analysis were α, n, Ks, θs, θr, l, 

Kc(t), h3, hcrit and ET0(t). Note in the following that Rosetta assumes that α, n, and Ks are 

lognormally distributed, such that the confidence intervals are not symmetric about the (geometric) 

mean parameter estimate after antilog transformation. Also note that the calibration procedure do 

not treat the hydraulic parameter l as adjustable, instead fixing its value at l = 0.5; it was included 

in the sensitivity analysis for completeness and because Rosetta generally estimates high levels of 

uncertainty for this parameter.   

 

 

4.4 Results and discussion 

 

4.4.1 Model calibration and predictions 

 

Running HYDRUS-1D using the Rosetta hydraulic parameter estimates resulted in simulations 

that were in poor agreement with the field data. Therefore, the soil hydraulic property model (Eqs. 

4.4 and 4.5) was attempted to calibrate using a subset of the data. The most intensive data 

collection at the site occurred during the cultivation of melon from 17 May to 10 September, 2007, 

comprising day of year (DOY 1 = 1st January 2007) 137-253. We used this data set and the 

parameter optimization routines of HYDRUS-1D to calibrate the soil hydraulic parameters. 

Several possible parameterizations were considered which differed according to the number of soil 

layers (from 1 to 4) and the number and type of hydraulic parameters that were fitted for each 

layer (different combinations of 1 to 4 parameters among α, n, Ks, and θs). The initial estimates for 

the parameters when fitted, or their fixed value when not fitted, were the Rosetta estimates given 
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in Table 4.2. If the results of the optimization looked promising, the fitting was repeated using 

different initial estimates to ensure that the same optimized parameter values were obtained. The 

best overall parameterization was informally determined based on diagnostic information provided 

by the HYDRUS-1D routines about the model fit and the convergence behaviour of the inverse 

algorithm, visual inspection of the model fit to the data (including laboratory water retention data, 

Figure 4.4), and the principle of parsimony (i.e. if two parameterizations produced a roughly equal 

fit to the data, the simpler of the two is taken, where “simpler” means fewer fitted parameters 

and/or soil layers). The best parameterization was found to involve four soil layers with two 

adjustable parameters, α and n, for each layer. The final fitted hydraulic parameter values are given 

in Table 4.4; the other parameter values are those estimated with Rosetta (Table 4.2). Fitting more 

  

Table 4.4: Fitted hydraulic parameter values with 95% confidence intervals. 
 

 

 

 

 

 

 

 
 

Figure 4.4: Soil water retention functions at different depths (15, 45, 75 and 105 cm) from Rosetta 
(dashed line) and fitted by HYDRUS (solid line). Vertical bars represent maximum and minimum 
θ measures in laboratory.  

Depth (cm) α  (cm-1) n (-) 

   

0-30 0.078 0.010 1.16 0.01 
   

30-60 0.046 0.005 1.23 0.02 
   

60-90 0.014 0.004 1.27 0.07 
   

90-150 0.020 0.002 1.46 0.05 
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Figure 4.5: Pressure head and water content data (dots) measured at various depths in the soil 
profile, along with final fitted HYDRUS simulations (solid lines) for melon crop (DOY 137-253). 
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than two parameters per layer tended to cause the inverse algorithm to fail. Four soil layers 

produced a better fit to the data than was possible with fewer layers in the profile. Overall, the 

numerical solution with four layers and α and n fitted for each layer provided the best correlation 

between measured and simulated water content and pressure head values. Figure 4.5 shows water 

content and pressure head data for various depths in the soil profile, along with the corresponding 

fitted model simulation. Table 4.5 gives goodness-of-fit measures for the calibrated simulation run 

and data, including R2 = 0.90 for the combined water content and pressure head data. Correlation 

coefficients rx,y computed by HYDRUS-1D for the eight fitted parameters were , 0.4x yr  , with 

three exceptions: 
1 2, 0.54r    , 

1 4, 0.55r    , and 
3 3, 0.75nr    (where numerical subscripts on 

α and n indicate the soil layer). 

 

Table 4.5: Goodness-of-fit measures for simulations and experimental data. 

a Root mean square error, 2

1

1
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i i
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RMSE x y
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With the fitted parameterization, HYDRUS-1D was next used to predict the root zone soil 

moisture dynamics during the growing periods of other crops at the site: the first one grown 

between 7 February and 16 May 2007 (lettuce, DOY 38-136), the second one between 25 

September and 24 December 2007 (lettuce, DOY 268-358), the third one between 3 January and 

  

Simulation Data Set RMSEa MAEb R2 

     

Melon (DOY 137-253) (calibration) Water content (θ) 0.029 0.024  
 Pressure head (h) 33.776 27.971  
 Combined  θ and h   0.90 
     

Lettuce (DOY 38-136) (prediction) Water content (θ) 0.024 0.022  
 Pressure head (h) 56.630 41.271  
 Combined  θ and h   0.82 
     

Lettuce (DOY 268-358) (prediction) Water content (θ) 0.023 0.019  
 Pressure head (h) 40.013 31.279  
 Combined  θ and h   0.82 
     

Lettuce (DOY 368-458) (prediction) Water content (θ) 0.023 0.018  
 Pressure head (h) 67.165 52.548  
 Combined  θ and h   0.80 
     
Lettuce (DOY 459-599) (prediction) Water content (θ) 0.028 0.021  
(with plastic cover) Pressure head (h) 72.860 56.795  
 Combined  θ and h   0.67 
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Figure 4.6: Pressure head and water content data (dots) measured at various depths in the soil 
profile, along with HYDRUS predictions (solid lines) for: a) lettuce (DOY 38-136), b) lettuce 
(DOY 268-358), c) lettuce (DOY 368-458) and d) melon with plastic cover (DOY 459-599). 
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Figure 4.6 (continued) 
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Figure 4.6 (continued) 
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Figure 4.6 (continued) 
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2 April 2008 (lettuce, DOY 368-458) and finally, the last one from 3 April to 21 August 2008 

(melon with plastic cover, DOY 459-599). Figure 4.6 compares the predictions with the 

experimental data at various depths in the soil profile. Overall, good agreement was achieved 

between the field measurements and the HYDRUS-1D predictions. The correlation coefficient (R2) 

between measured and predicted water contents and pressure heads was around 0.80 for all the 

crops except for melon with plastic cover, being 0.67. Additional measures of goodness-of-fit are 

given in Table 4.5. 

 

 

4.4.2 Recharge estimation 

 

Subsequently, calibrated model simulations are used to evaluate the root zone soil water balance 

and calculate the annual recharge rate. The components of the water balance were water additions 

due to irrigation (I) and precipitation (P), losses due to evapotranspiration and drainage below the 

root zone, and changes in root zone water storage. Drainage from the bottom of the soil profile was 

assumed to be irrigation return flow, equal to the groundwater recharge rate. Based on the 

simulated drainage, the recharge rate generated during cultivation of different crops at different 

times of the year can be calculated. Figure 4.7 shows the cumulative drainage (recharge) as a 

function of time computed for all the cropping periods. The percentages of applied water (P+I) 

becoming recharge and irrigation efficiency for each crop are shown in Table 4.7. The higher 

percentage (68.2%) for the lettuce crop between September and December (DOY 254-358) was 

due to high precipitation and low transpiration rates (Figure 4.3), while the difference between 

both melon crops resulted from the use of a plastic cover in the second one, since direct 

evaporation from ground surface is reduced to almost zero. On the other hand, due to technical 

problems in the irrigation system, application of a large water volume (77 mm) on the 

experimental plot in the second melon crop occurred. During the year 2007 recharge was 492 mm, 

whereas during the hydrological year 2007-2008 was 561 mm.  

 

Figure 4.7 also shows the cumulative potential and actual transpiration rates for all the 

cropping periods. Actual transpiration was frequently lower than the potential rate because soil 

moisture at various times was insufficient to sustain the potential uptake rate, with uptake being 

reduced according to Eq. [4.2]. This aspect of the root zone modelling methodology (i.e. the 

physically based calculation of the onset of water stress and subsequent reduced uptake) is crucial 
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for calculating recharge in arid and semi-arid regions where ET may drop below potential rates, 

even in irrigated systems.  

 

 
 
Figure 4.7: Cumulative potential transpiration Tp (grey line), actual transpiration Ta (black line), 
and bottom drainage (dashed line) rates computed for all the crops. 
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Table 4.6: Simulated bottom drainage (recharge) from applied water (P+I) for each crop. Irrigation 
efficiency calculated from potential and actual evaportranspiration (volume of irrigation water 
beneficially used). 

†Irrigation Efficiency from Burt et al. (1997). 

 

 

4.4.3 Sensitivity analyses 

 

The first set of sensitivity calculations involved perturbing the hydraulic parameters α, n, Ks, θs, θr, 

and l one at a time in individual soil layers (Table 4.7). The perturbations to the parameter values 

in this case were large, equal to the bounds of the 95% confidence intervals given in Table 4.2. 

The results for these calculations showed that among the parameters considered, recharge 

calculation was least sensitive to water contents θs and θr. Setting either of these parameter values 

to the bounds of the 95% confidence intervals in any of the four soil layers resulted in a small 

change to the computed recharge, considering that the 95% confidence bounds corresponded to 

large parameter perturbations for θs and θr (Table 4.2). Relatively low sensitivity was also found 

for the remaining soil hydraulic parameters (α, n, Ks, l) in the middle two soil layers. Setting α, n, 

Ks, or l in those layers to the 95% confidence bounds, again, the changes in computed recharge 

were fairly small considering the size of the parameter perturbations for n, Ks and α (recall the 

asymmetric confidence intervals), and greater than 1000% for l. Higher sensitivity was found for 

α, n, Ks, and l in the surface soil layer. Perturbations to those parameters resulted in changes to the 

computed recharge less than 7% with one notable exception: the lower bound for the surface 

saturated conductivity resulted in an increase of 58% to the calculated recharge. The reason for 

this large increase was that the low surface conductivity caused the surface soil to stay very close 

to saturation for long periods of time, such that uptake was reduced according to Eq. [4.3] and 

hence simulated drainage increased. Feddes et al. (1978) model, Eq. [4.3], specifies that uptake 

reduction occurs both when the soil is excessively wet and when it is too dry. The highest 

Recharge Irrigation Efficiency (%)
†
 

Crop 
I  

(mm)
P  

(mm) 
I+P  

(mm) (mm) (%) Potential ET Actual ET 

        

Lettuce (DOY 38-136) (prediction) 133 228 361 89 24.6 100 100 
        

Melon (DOY 137-253) (calibration) 557 32 589 128 21.7 96 83 
        

Lettuce (DOY 268-358) (prediction) 206 197 403 275 68.2 89 63 
        

Lettuce (DOY 368-458) (prediction) 123 61 184 48 26 100 100 
        

Melon (DOY 459-599) (prediction) 617 80 697 238 34.1 93 71 
(with plastic cover)        
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sensitivity to hydraulic parameters was found in the bottom soil layer where the retention and 

conductivity functions directly impact the drainage of water out of the root zone. In this layer, 

setting individual parameters to the lower and upper bounds of the 95% confidence region led to 

changes of recharge between -24 and +62% for Ks, n, l and α. Although some of those changes are 

quite substantial, keep in mind the very large perturbations (e.g. the bounds for α corresponded to 

perturbations of about -83% and +474%) and the low likelihood of such a soil parameter value.  

 

Table 4.7: Computed recharge sensitivity to the hydraulic parameter (θr; θs; α; n; Ks; l) 
perturbations, bounds of the 95% confidence intervals, one at time in individual soil layer. 

 

 

When narrower, more realistic bounds for α and n in individual soil layers were evaluated 

(according to Table 4.4), the changes in the calculated recharge were 4% or less (Table 4.7). 

Unlike the bounds discussed in the previous paragraph, these confidence intervals incorporated 

measured water content and pressure head data, and thus are likely to be more reflective of the 

uncertainty that existed at our experimental site.  

 

Additionally, smaller perturbations (10%) of the hydraulic parameters (Ks, θs, θr, α, n 

and l) in individual soil layers were considered (Table 4.8). In these calculations, the calculated 

recharge was least sensitive to θr (~1% change in recharge), while the remaining parameter 

perturbations altered recharge by between 7 and -10%. The simulation for a -10% perturbation of n 

was not completed because the small n value caused numerical difficulties in the simulation model 

(a well-known problem when n  1). Lastly, the same hydraulic parameter in all soil layers was 

simultaneously disturbed. Using 10% perturbations, computed recharge was insensitive to θr, Ks 

α n Layer θr θs 
Rosetta Fitted  Rosetta Fitted 

Ks l 

         

Perturbation (%)         

1 ±56 ±14 -68 / 218 ±13 -17 / 26 ±0.9 -67 / 213 ±1100 

2 ±54 ±15 -70 / 219 ±11 -17 / 23 ±2 -69 / 230 ±2100 

3 ±68 ±19 -78 / 355 ±30 -24 / 26 ±5 -78 / 373 ±1850 

4 ±70 ±22 -83 / 474 ±10 -22 / 30 ±3 -84 / 533 ±900 
         

Δ Recharge (%)         
         

1 0.7 / 2.3 3.3 / -0.3 -11 / -12.4 -2.7 / 3.3 -11.2 / -11 1.6 / -1.1 58 / -6.6 -4.1 / 5.6 

2 1 / -1.8 2.3 / 0.7 1.9 / 1.6 0.4 / -0.2 -1.6 / -5.2 0.4 / -0.3 6.9 / 3.2 2.8 / 0.7 

3 1.2 / 1.7 2.2 / 0.7 1.8 / -5.1 0.7 / -0.5 0.3 / -5.2 0.5 / -0.6 -0.4 / 1.9 1.7 / 1.3 

4 0.4 / 2.5 4 / -1.6 62.2 / -28.6 3.7 / -2.9 -5.7 / -2.5 0.2 / 0 -24.1 / 24.5 20.2 / -3.9 
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and l (about 1% change in recharge), whereas changes in recharge for other parameters were about 

4 to 10%. The lower bound calculation for n was again aborted due to numerical instability.  

  

Table 4.8: Computed recharge sensitivity to ±10% perturbations of the hydraulic parameters (θr; 
θs; α; n; Ks; l) one at time in individual soil layer and one at time in all soil layers. 

 n.i.: numerical instability 

 

 

The final sensitivity calculations involved ±10% perturbations to the parameters h3, Kc(t) 

and ET0(t) and ±33% to hcrit (Table 4.9). Note that because Kc(t) and ET0(t) appear as a product in 

Eq. [4.7], results for a 10% perturbation in Kc(t) are identical to results that would be obtained for 

a 10% perturbation in ET0(t). The recharge calculation was relatively insensitive to perturbations 

of h3 and hcrit, with the calculated recharge changing by less than 1%. Greater sensitivity was 

found for Kc(t) or ET0(t), where the 10% perturbations altered the recharge calculation by about 

9%.  

 

Table 4.9: Computed recharge sensitivity to perturbations of the parameters and boundary 
conditions Kc, ET0, hcrit and h3. 
 
 

 

 

  

 

 

One at time in individual soil layer       
       

Layer θr θs α n Ks l 
       

1 -0.5 / -0.8 -1.8 / 0.7 1.7 / -2.7 -9.6 / n.i. -1.7 / 0.6 -0.6 / -0.8 

2 -0.6 / -0.7 -1.1 / -0.2 -0.9 / -0.3 -1.7 / 7 -0.6 / -0.7 -0.7 / -0.6 

3 -0.6 / -0.7 -1 / -0.3 -0.8 / -0.5 -1.6 / 0.1 -0.6 / -0.7 -0.7 / -0.7 

4 -0.5 / -0.8 -1.9 / 0.5 -3.7 / 2.8 -0.5 / -2.2 0.6 / 2.1 0.9 / 0.4 
       

One at time in all soil layers       
       

Layer θr θs α n Ks l 
       

1-4 -0.3 / -1 -3.9 / 2.7 -1.5 / 1.4 -9.9 / n.i. -0.3 / -0.8 -0.9 / -0.4 
       

Parameter Perturbation (%) Δ Recharge (%) 
   

Kc and ET0 (Eq. 4.7) ±10 -8.9 / 9.9 

hcrit (Eq. 4.10) ±33 -0.5 / -0.7 

h3 (Eq. 4.3) ±10 -0.8 / -0.8 
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4.5  Conclusions  

 

The root zone modelling approach described in this chapter is presented as a suitable method to 

estimate irrigation return flow, assumed as recharge to the aquifer under the two following 

assumptions: small thickness of the unsaturated zone and negligible hypodermic flow rate, as 

occurs on the study area. The main conclusions of this chapter can be summarized as follows: 

 

1. Evapotranspiration and soil moisture dynamics for specific crops and irrigation regimes were 

successfully simulated with HYDRUS-1D. Good agreement was achieved between the HYDRUS-

1D results and field measurements (h and θ at different depths) for melon and lettuce crops. Visual 

inspection and statistics of the model fit to the data show that agreement for θ was better than h. 

Soil moisture measurements with TRIME-FM TDR probe are very representative of the actual soil 

state, since it gives an integrated θ value for an effective influence radium of 15 cm around of the 

measure point, whereas the representativeness of h measurements from tensiometers is more limited. 

Numerical solution for four layers, being α and n fitted for each layer, provided the best correlation 

between h and θ measured and simulated. A better agreement was found between simulations and 

field measurements at higher depths due to a minor influence of plant-atmosphere processes.  

 

2. Simulations showed that actual transpiration was always lower than potential transpiration 

because soil moisture was insufficient to sustain the potential uptake rate, despite regular 

irrigation.  

 

3. The recharge during the 2007 year was 492 mm for a water input P+I = 1353 mm, whereas 

during the 2007-2008 hydrological year was 561 mm for a water input P+I = 1284 mm. Results 

indicated a high amount of recharge late in the year when potential evapotranspiration is lower and 

main precipitation events occur, between October and December, and in summer due to the plastic 

cover.  

 

4. Models as Rosetta, also called pedotransfer functions, permit to translate easily measured data 

such as soil texture and bulk density into unsaturated hydraulic properties. Direct measurements 

permit the most exact determination of soil hydraulic properties, but they often require a 

substantial investment in both time and money. Rosetta permits to reduce the investment in soil 

hydraulic parameter estimation; however, the main problem is that the uncertainty of estimates can 
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be quiet broad. The confidence intervals bounds for some parameters span several orders of 

magnitude. Therefore, a sensitivity analysis over the whole range of soil properties used in a model 

results essential to determine the reliability of the results. 

 

5. The highest sensitivity was found for the α, n, Ks, and l hydraulic parameters in the top and 

bottom soil layers, where the retention and conductivity functions directly impact on the drainage. 

Moreover, in the top soil, Ks strongly impacts on Feddes et al. (1978) model that supposes root 

uptake reduction. 

 

6. Root zone modelling approach shows a promising method for estimating recharge in irrigated 

semi-arid regions. Compared with other techniques, the modelling approach is relatively data 

intensive, involving several of crop- and soil-specific parameters. However, often these parameters 

can be approximated from existing databases and estimation tools. For example, maps of soil 

texture and related soil physical properties are available at many locations; soil hydraulic 

parameters can be easily estimated from those data using pedotransfer functions or related 

approaches. Likewise, water stress parameters for many important crops have been tabulated (e.g. 

Kroes and van Dam, 2003).  
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Notation 

 

α air entry (cm-1) 

α(h) dimensionless water stress response function-uptake reduction (-) 

β extinction radiation coefficient (-) 

Ea actual evaporation (cm) 

Ep potential evaporation (cm) 

ETp potential evepotranspiration (cm) 

ET0 reference evapotranspiration (cm) 

ƒ ground cover sigmoid function (-) 

h soil water pressure head (cm) 

hcrit pressure head threshold value for evaporation (cm) 

I irrigation (cm) 

K unsaturated hydraulic conductivity (cm day-1) 

Kc crop-specific coefficient (-) 

Ks saturated hydraulic conductivity (cm day-1) 

l pore connectivity (-) 

LAI leaf area index (m2 m-2) 

n pore size distribution (-) 

P precipitation (cm) 

S sink term (cm cm-3 day-1) 

Se effective saturation (-) 

Sp potential water uptake rate (cm cm-3 day-1) 

t time (day) 

Tp potential transpiration (cm) 

θ volumetric water content (cm3 cm-3) 

θr residual volumetric water content (cm3 cm-3) 

θs saturated volumetric water content (cm3 cm-3) 

x vertical space coordinate (cm) 
 

 

References 

 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration. Guidelines for 
computing crop water requirements. Irrigation and Drainage. Paper No. 56, FAO, Rome, 
Italy. 

 
Brown, D.A. and Scott, H.D., 1984. Dependence of crop growth and yield on root development 

and activity. In: Barber, S.A., Bouldin, D.R. (Eds.), Roots, Nutrient and Water Influx, and 
Plant Growth, ASA Spec. Pub. No. 49. SSSA, SCA, ASA, Madison, WI. pp. 101-136. 

 



Chapter 4                                                                                                                          Unsaturated water flow 

 53

Burt, C.M., Clemmens, A.J., Strelkoff, T.S., Solomon, K.H., Hardy, L., Howell, T., Eisenhauer, 
D., Bleisner, R., 1997. Irrigation performance measures – Efficiency and uniformity. J.  
Irrigation and Drainage Engineering 123(6), 423-442. 

 
Campbell, G.S. and Norman., J.M., 1998. An Introduction to Environmental Biophysics. 2nd ed. 

Springer-Verlag, New York. 
 
CARM, 2007. El Agua y la Agricultura en la Región de Murcia. Un Modelo de Eficiencia. 

Consejería de Agricultura y Agua de la Región de Murcia. 111 pp. 
 
Feddes, R. A., Kowalik, P.J., Zaradny, H., 1978. Simulation of Field Water Use and Crop Yield. 

John Wiley and Sons, NY. 
 
Kashyap, P.S. and Panda, R.K., 2001. Evaluation of evapotranspiration estimation methods and 

development of crop-coefficients for potato crop in a sub-humid region. Agric. Water 
Manage. 50, 9-25.  

 
Keese, K.E., Scanlon, B.R., Reedy, R.C., 2005. Assessing controls on diffuse groundwater 

recharge using unsaturated flow modeling. Water Resour. Res., 41, W06010, 
doi:10.1029/2004WR003841. 

 
Kendy, E., Gérard-Marchant, P., Walter, M.T., Zhang, Y., Liu, C., Steenhuis, T.S., 2003. A soil-

water-balance approach to quantify groundwater recharge from irrigated cropland in the 
North China Plain. Hydrol. Process. 17, 2011–2031. 

 
Kroes, J.G. and Van Damm, J.C., 2003. Reference manual SWAP: Version 3.0.3. Rep. 773. Alterra 

Green World Res., Wageningen, the Netherlands. 
 
Laurent, J.P., Ruelle, P., Delage, L., Bréda, N., Chanzy, A., Chevallier, C., 2001. On the use of the 

TDR Trime-Tube system for profiling water content in soil. Proceedings TDR´01, 
Evanston-Illinois, USA 5-2 Sept. 2001, 1–10. 

 
Laurent, J.P., Ruelle, P., Delage, L., Zaïri, A., Ben Nouna, B., Adjmi, T., 2005. Monitoring Soil 

Water Content Profiles with a Commercial TDR System: Comparative Field Tests and 
Laboratory Calibration. Vadose Zone J. 4, 1030–1036. 

 
Mualem, Y., 1976. A new model predicting the hydraulic conductivity of unsaturated porous 

media. Water Resour. Res. 12, 513-522. 
 
Overman, A.R. and Scholtz, R.V., 2002.  Mathematical Models of Crop Growth and Yield. Marcel 

Dekker, Inc. New York.  
 
Pachepsky, Y.A., Smettem, K.R.J., Vanderborght, J., Herbst, M., Vereecken, H., Wosten, J.H.M., 

2004. Reality and fiction of models and data in soil hydrology. In: Feddes R.A. et al. (Eds.), 
Unsaturated-zone modeling. Kluwer Academic Publishers, Dordrecht, the Netherlands. 

 
Ramírez, I., Vicente, M., García, J.,  Vaquero, A., 1999. Mapa digital de suelos de la Región de 

Murcia. Consejería de Agricultura, Agua y Medio Ambiente. Handbook and CD-ROM. 78 
pp. 

 



Chapter 4                                                                                                                          Unsaturated water flow 

 54

Schaap, M.G., Leij, F.J., van Genuchten, M.Th., 2001. ROSETTA: a computer program for 
estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 
251, 163-176.  

 
SIAM, 2008. Servicio de Información Agraria de Murcia. Climatology Data. Available from: 

<http://siam.imida.es>. 
 
Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2005. The HYDRUS-1D Software Package for 

Simulating the Movement of Water, Heat, and Multiple Solutes in Variability Saturated 
Media, Version 3.0. Department of Environmetal Sciences University of California 
Riverside, Riverside, California, USA. 270 pp. 

 
Steenhuis, T.S., Jackson, C., Kung, K.J.S., Brutsaert, W.H., 1985. Measurement of groundwater 

recharge on eastern Long Island. J. Hydrol. 79 (1-2), 145-169. 
 
van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conductivity of 

unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898. 
 
Young, M.H., Sisson, J.Y., 2002. Tensiometry. In: Dane, J., Topp, C. (Eds.),  Methods of soil 

analysis, Part 4, SSSA Book Series: 5, Am. Soc. Agron., Madison, WI. pp. 575-609. 
 



 55

Chapter 5 
 
 

Tritium tracer test. Multiphase 
transport approach* 
 
 
5.1 Introduction 

 

Among the available methodologies, isotopic methods integrate all of the processes that jointly 

affect water flow in the vadose zone, such as infiltration, evapotranspiration and recharge (Allison 

et al., 1994; Dunger, 1995). Moreover, they allow direct measurement of water movement. An 

additional advantage is that tracer diffusivity shows less variability to changes in water content and 

soil type than soil water diffusivity (Allison, 1987). Thus, tracer behaviour represents a very robust 

indicator of water movement in soil and has been used to obtain quantitative estimates of water 

flux. In (semi-)arid regions, the main process of solute transport through the vadose zone may be 

solute diffusion in the aqueous phase or solute diffusion in the aqueous and gas phase when the 

solute is volatile (Barnes et al., 1994; Joshi et al., 1997). 

 

Tritium (3H half-life 12.33 yr) is almost an ideal tracer, as it is chemically identical to 

hydrogen and thus directly interacts with water and organic substances. In addition, its behaviour 

                                                 
* This chapter is based on the article: Jiménez-Martínez, J., Tamoh, K., Hunkeler, D., Candela, L. 

Vadose zone tritium tracer test to estimate aquifer recharge from irrigated areas. Multiphase transport 
approach (submitted to Water Resources Research) 
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differs considerably from other radionuclides in the environment (Raskob, 1995) and from other 

more commonly used tracers, such as bromide, which can move faster as a result of anion 

exclusion (Wang et al., 2008). Tritium is frequently used to trace the movement of water in natural 

systems. Tritiated water (HTOl) has a volatile character, gas phase, named HTOg for simplicity. 

Tritiated water can easily diffuse in ordinary water and move with it, either in liquid phase or in 

vapour phase (see Figure 5.1). If soil is covered with vegetation, root water uptake and the 

subsequent loss of HTOl by vapour exchange with the atmosphere through stomata (Kline and 

Stewart, 1974) constitutes an important sink of the HTOl stored in the soil.  

 

 
Figure 5.1: Conceptual scheme for tritiated and non-tritiated water behaviour in liquid and gas 
phase within an unsaturated porous media. 
 

 

Several studies using tritiated water to establish the soil water balance for different 

ground covers and weather conditions have been undertaken, among them Araguás-Araguás et al. 

(1995) and Scanlon (1992) can be cited. In the first one, the authors compared the effective 

infiltration rate in forested soil and grassland in humid tropical climate. The water infiltration was 

1465 and 1850 mm yr-1, respectively. In the second study, 36Cl and tritium were used to evaluate 

liquid and vapour water flow in a desert climate (bare soils); non-isothermal simulations showed 

that annual net downward vapour flux was consistent with the tracers experimental data. In arid 

regions a deeper penetration of tritium than 36Cl was observed, which is attributed to enhanced 

downward movement of tritium in vapour phase, fact being negligible in humid regions. The 

infiltration rate calculated from 36Cl was 1.4 mm yr-1, whereas the one tritium based was 7 mm yr-

1. The difference of infiltration between the two tracers suggested a vapour flux presence of 
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approximately 6 mm yr-1. Good agreement was achieved between simulations and field 

measurements in both studies, with the exception of forested soil, which could not be properly 

reproduced by the model.  

  

Modelling the alternate upward and downward transport of tritium close to the ground 

surface generally requires rather complex models and detailed input, as tritium concentration 

varies sharply and is very sensitive to many interrelated factors, including rainfall amount, 

evapotranspiration rate or root depth. Many numerical models exist to predict tritium migration 

throughout the unsaturated zone. Such models, which have been generally developed by atomic 

energy agencies, can be used to predict the effect of tritiated rain or the reemission of tritium from 

polluted groundwater to the atmosphere throughout the vadose zone (Täschner et al., 1995; Garcia 

et al., 2009). They can also be used to calculate the absorbed mass by plants and food (organically 

bound tritium, OBT) (BIOMOVS II, 1996). A comparison of various existing codes has been 

presented by Barry et al. (1999) and Belot et al. (2005). In other research papers (Logsdon et al., 

2002; Mayers et al., 2005) common numerical models for hydrological studies, such as MACRO 

(Larsbo and Jarvis, 2003) or TOUGH2 (Pruess et al., 1999), have been applied to simulate tritium 

transport in unsaturated porous media. Most of the existing models have been defined under 

isothermal and monophasic conditions or hardly consider the role of the plant. 

  

In this chapter, an experimental method for a tritium tracer test in the field and a 

numerical model approach to estimate aquifer recharge from irrigated farmland are described. The 

present study was carried out in the study site. The modelling approach utilized was SOLVEG 

(Yamazawa and Nagai, 1997; Yamazawa, 2001), a one-dimensional numerical model for 

simulating transport of heat, water and tritiated water in liquid and gas phase through a bare soil. 

The code was modified and adapted for this study to include ground cover, root growth and root 

water uptake. The main objective of the study was to estimate aquifer recharge from farmland, 

taking into account the fact that tritium is a very effective tracer for investigating water movement 

through the unsaturated zone. The aim was to establish an accurate water balance under the 

aforementioned conditions, from of an accurate tritium mass balance obtained in a field 

experiment with relatively low sampling density (from soil drilling).  

 

 

 

 



Chapter 5                                                                                               Tritium tracer test. Multiphase transport 

 58

5.2 Materials and methods 

 

5.2.1 Field site and experiment 

 

The test was conducted in a neighbouring experimental plot (Figure 5.2) to the previously 

described in chapter 4.2. The plot was managed under the same condition including crop rotation 

(lettuce and melon), drip irrigation and plastic cover for summer crops. To avoid boundary effects, 

the plot sides were also cultivated under the same agricultural management and crops. 

 

 
Figure 5.2: Experimental plot and sample points. 

 

 

Isotope content (deuterium 2H; oxygen 18O) in precipitation, including tritium (3H), was 

obtained from a station that belongs to the Global Network Isotopes in Precipitation (GNIP/IAEA, 

2009), located 15 km NE to experimental plot. 

  

In June 2007, a solution of tritiated water (12 L) at a concentration of 7.3·108 Bq m-3 was 

sprinkled (simulated rainfall) over the plot. Subsequently, 250.2 L of tracer-free water was applied 

to the soil surface to push down the labelled water and to reduce tracer losses due to evaporation. 

The solution was prepared at the study site before application. Soil profile monitoring for tritium 

transport was performed by destructive sampling.  
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 Soil cores were obtained by hand drilling and the maximum depth was 180 cm. Soil 

samples from cores, representative for a depth interval of 10 cm, were taken at regular depth 

intervals and given times, and the sampled length was determined from the expected tracer 

concentration profile. To prevent possible contamination from overlying layers, soil samples were 

taken from the inner part of the core and immediately stored in leak proof bottles and transported 

in iceboxes to avoid tritium loss by evaporation. 

  

The experiment took place from 17 May 2007 to 21 August 2008, during four crop 

periods. The most intensive data collection for model calibration took place during the first crop 

(melon) from 17 May to 10 September, noted as day of year (DOY) 137-253 (DOY 1 = 1st January 

2007), between the tracer injection day and the harvest of this crop (DOY 170-253). To validate 

the model the following sampling surveys, included in the rest of crops, were used: the first one 

(lettuce) was between 25 September and 24 December 2007 (DOY 268-358), the second (lettuce) 

was between 3 January and 2 April 2008 (DOY 368-458) and finally, the last one (melon with 

plastic cover) was from 3 April to 21 August 2008 (DOY 459-599). 

 

 

5.2.2 Analytical methods 

 

A volume of 0.07 L deionized water was added to 450 g of soil samples from the cores to obtain 

the needed water volume for tritium analysis. Subsequently, samples were centrifuged and the 

resulting pore water was subjected to a process of simple distillation to eliminate coloration, 

organic matter, and salts that might interfere with the analysis. The distilled samples were then 

mixed with a scintillation solution (Ultima Gold LLT). The samples were analyzed at the CEDEX-

Isotopic Technique Lab., using a liquid scintillation alpha-beta spectrometer (Tri-Carb 2560 

TR/XL, Packard Instruments), which enables the measurement of very low-level radioactivity 

(2·10-3 Bq m-3). Finally, pore water tritium concentration of each soil sample was recalculated.  

 

 

5.3 Numerical model 

  

The field tritium tracer test was simulated using SOLVEG (Yamazawa and Nagai, 1997; 

Yamazawa, 2001), a one-dimensional finite-difference numerical model for simulating transport of 
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heat, water in liquid and gas phase, and tritiated water in liquid (HTOl) and gas (HTOg) phase 

through unsaturated bare soil, as well as soil-atmosphere exchange. Radioactive decay is also 

considered. In SOLVEG advection and diffusion terms are resolved with an explicit and semi-

implicit scheme, respectively. The code was adapted to the current experiment by including the 

tritium processes related to ground cover, root growth and root water uptake. The boundary 

conditions were also modified. Hourly data values were used to solve the aforementioned items. 

 

 Although isotopically different, HTOl and H2O molecules behave in a similar way. For 

example, no exiting fractionation processes are produced as a result of evaporation and 

transpiration. However, differences between reemission and evaporation processes exist. 

Reemission is a mechanism that generally acts during nighttime and depends on HTOl content in 

the uppermost soil layer and the concentration of HTOg in the air adjacent to the soil surface 

(Ingraham and Criss, 1993; Slattery and Ingraham, 1994; Ingraham and Criss, 1998). During 

daytime, reemission is coupled to the evaporation process (Täschner et al., 1997). The differences 

between reemission and evaporation are shown in the numerical model that is presented below. 

 

 

5.3.1 Water flow and vapour 

 

A table containing parameters definition and the symbols used in the numerical model has been 

included at the end of the chapter for the sake of clarity.  

 

The model simulates water content θ and the specific humidity of soil air Wa along the 

soil profile. The classical Richard’s equation is used for the liquid water movement, being the 

volumetric water content the dependent variable. The equation has additional terms concerning 

transpiration (via root water uptake) and evaporation-condensation, sinks/sources of water: 

 

1
( )e t

w

q
E E

t z




        
                                               [5.1] 

 

where the vertical flow of water is expressed as: 
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 ( ) ( )wq D K
z

       
                                              [5.2] 

 

The equation for water vapour contains a diffusion term and an evaporation-condensation term: 
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                                  [5.3] 

 

The model does not consider the advection of soil air, which might be caused by air pressure 

variations at the ground surface or by the infiltration of water. τa(θ) is the tortuosity for soil air at 

volumetric water content θ. As in Jackson et al. (1974), the model uses ( ) ( ) /1.5a s     . 

 

 Regarding sink/source terms of water, Et represents the root water uptake due to 

transpiration, whereas the evaporation-condensation of water in soil is expressed as: 

 

 ( )
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e
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r




              when        ( )sat s aW T W      [5.4] 

 

Eq. [5.4] is based on the concept that the driving force of evaporation-condensation in soil is the 

difference of specific humidity between the evaporation site (the surface of the soil water) and the 

pore air. Moreover, evaporation is regulated by the density of moist air ρa, as a function of the 

temperature, and the evaporation resistance re, experimentally determined for the main soil types 

(loam, silt, sand, clay loam, silty sand or silty loam, among others) as a function of θ (Kondo and 

Saigusa, 1994; Kondo and Xu, 1997). It is assumed that water condensation occurs in a very short 

time to keep the specific humidity of soil air lower than or equal to the saturation specific humidity 

at the soil temperature. 

 

 The upper boundary condition of Eq. [5.1] is determined by the continuity of liquid water 

flux at the ground surface: 
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                                                [5.5] 
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where Er is the amount of runoff and qs0 the maximum infiltration flux when the soil is saturated. 

When soil water exceeds the saturated soil water content (θs0), the model assumes that excess 

water is stored at the ground surface, therefore Er = 0. The lower boundary condition corresponds 

to free drainage. 

 

 The boundary condition for the specific humidity (Wa) in Eq. [5.3] can be determined by 

the following equation: 

 

0 0
0

( ) a
a wa a e

z
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E D E

z
  
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
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                                       [5.6] 

 

where 

 

0

0

0e ez
E E dz


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and 

 

 0 0( ) ( )a E r a rE c u W W f t                                           [5.8] 

 

This boundary condition assumes that water vapour flux from the ground surface to the 

atmosphere is composed by the sum of diffused water vapour flux from inside the uppermost soil 

layer and by direct evaporation from the surface (δz0-thick) in contact with the atmosphere. cE is 

the bulk transfer coefficient, a thermodynamic coefficient dependent on wind velocity among other 

meteorological variables (Matsushima and Kondo, 1995), which enables us to estimate the 

evaporation efficiency from bare soil. As natural crop growth typically follows an S-shaped 

pattern (e.g. Overman and Scholtz, 2002), a sigmoid curve f(t) has been used to represent the 

ground cover in the model. When a crop is first planted, the ground cover is non-existent, the 

potential evaporation is maximal, and thus f(t) = 1. Conversely, when the crop reaches the mid-

season growth stage, ground cover is complete, evaporation is zero, and thereafter f(t) = 0. All that 

remains is to specify the transition from f(t) = 1 at planting to f(t) = 0 at the beginning of the mid-
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season growth stage. Table 4.3 provides data on the length (days) of the growth stages (Allen et al., 

1998). 

 

 

5.3.2 Soil hydraulic properties 

 

The water retention h(θ) and hydraulic conductivity K(θ) curves were estimated using the power 

law equations of Campbell (1974). This type of formulation was originally used in the first version 

of SOLVEG (Yamazawa and Nagai, 1997; Yamazawa, 2001), due to its numerical simplicity. It is 

given by: 
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where b is the pore size distribution index and 2b+3 is the pore disconnectedness index. 

  

 The soil water diffusivity is expressed by: 

 

( ) ( )
h

D K 






                                                        [5.11] 

 

Table 5.1 lists soil parameters that are used in the model obtained in laboratory (θs) and from the 

literature (Ks, hs and b) (Clapp and Hornberger, 1978 and Cosby et al., 1984).  

 

 

5.3.3 Tritiated water (HTOl) flow and vapour (HTOg) 

 

The two equations of the one-dimensional form for the transport of tritium in liquid (HTOl) and 

gas (HTOg) phases respectively are: 
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Both equations are linked by the evaporation-condensation term inside the soil, ee: 

 

( )

( )
a sat s w a

e
e w a

W T C C
e

r


  

 
  

 
                                         [5.14] 

 

As for the non-tritiated water, this term is controlled by the evaporation resistance re. The mass of 

tritium extracted by root water uptake corresponds to the product of root water uptake and HTOl 

concentration at each depth. 

 

 The gas phase equation (Eq. 5.13) only includes a diffusion term, whereas the liquid 

phase equation (Eq. 5.12) includes the advection and hydrodynamic dispersion (effective 

diffusion-dispersion) terms. The latter includes molecular diffusion and mechanical dispersion, 

which is a function of the velocity of water flow in soil (Table 5.1): 

 

( )T w Tw
w

q
D D

 


                                               [5.15] 

 

 The surface boundary condition for the liquid phase (HTOl) equation (Eq. 5.12) is 

specified by an additional term for the top layer only (the ground surface), and expresses a gain in 

HTOl, due to precipitation plus irrigation. Mass dilution due to precipitation plus irrigation is 

indirectly accounted for by the increase in water content on the left hand side of Eq. [5.12]. HTOl 

evaporation from the ground surface to the atmosphere is expressed in a similar manner as that of 

non-tritiated water, but independently: 
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where 
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and 

 

 0 0( ) ( )E r a re c u C C f t                                          [5.18] 

 

 

5.3.4 Heat conduction and thermal characteristics 

 

The heat conductivity of soil is obtained according to the McCumber and Pielke (1981) 

formulation, which states that the relationship between soil thermal conductivity, λt (θ), and soil 

water potential is nearly independent of the soil type. This relation comes from fitting Al 

Nakshabandi and Kohnke's (1965) data. 

 

 Soil temperature, Ts, is expressed as a one-dimensional heat conduction equation: 

 

s s b w s
s
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t z z M M z 
           

                                 [5.19] 

 

The equation is composed of three terms from left to right: a conduction term, where ks is the 

thermal diffusivity  ( ) /s t s sk M   and Ms ρs is the volumetric heat capacity of soil as a 

function of θ and the specific heat for both solid and water along with their respective densities 

(Campbell and Norman, 1998); a latent heat exchange term (sink/source of heat) for soil water 

evaporation-condensation ( b eH l E ; l is the latent heat of vaporization of water as function of 

temperature); and an advection (convection)  heat transport term, due to liquid water movement. 

The heat conduction through plant root is assumed to be negligible. 
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Table 5.1: Summary of input parameter values. 

a Clapp and Hornberger (1978); b Cosby et al. (1984); c Cussler (1997); d Mayers et al. (2005); e 
Mills (1973); f Yamazawa (2001); g Farouki (1986) 
 

 

 The upper boundary condition for soil temperature equation (Eq. 5.19) is a ground surface 

heat budget equation; although the latent heat exchange term is not included in it since the water 

vapour flux is resolved in Eq. [5.3] (Yamazawa and Nagai, 1997; Yamazawa, 2001). Constant soil 

temperature is assumed as lower boundary condition.   

 

 

5.3.5 Root water uptake and root growth  

  

Root water uptake due to transpiration is considered a water and HTOl sink term. To estimate 

transpiration, reference evapotranspiration, ET0, at hourly time steps, obtained through Penman-

Parameter   Value Unit 
     

Soil physical properties     

  Sand 15.79 % 

 Textural fractions Silt  79.32 % 

  Clay 4.89 % 
     

 Bulk density ρs 1560±120 kg m-3 
     

Soil hydraulic properties     

 Saturated water content θs 0.372 m3 m-3 

 Saturated pressure head hs -0.759 a b m 

 Saturated hydraulic conductivity Ks 0.281 10-5 a b m s-1 

 Pore size distribution index b 5.33 a b - 
     

Flow and transport     

(liquid and gas phase) Water density ρw 1000 kg m-3 

 Water vapour diffusion coeff. in air Dwa 2.60 10-5 c m2 s-1 

 Molecular HTOg diffusion coeff. in air DTa 2.47 10-5 d m2 s-1 

 Molecular HTOl diffusion coeff. in water DTw 2.24 10-9 e m2 s-1 

 Dispersivity of HTOl λ 0.05 f m 
     

Thermal properties     

 Specific heat of solids Msolid 733 g J kg-1 K-1 

 Specific heat of water  Mw 4186 g J kg-1 K-1 
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Monteith method, is used (e.g. Kashyap and Panda, 2001). The potential evapotranspiration ETp 

was then given by (Allen et al., 1998): 

  

0p cET K ET                                                        [5.20] 

 

where Kc is a crop-specific coefficient that characterizes plant water uptake and evaporation 

relative to the reference crop. Figure 4.2 illustrates the time variation of Kc in terms of annual crop 

growth stage. The Allen et al. (1998) method and Kc data for each specific crop and growth stage 

(Table 4.3, Figure 4.2) were used. Allen et al. (1998) provide data on the length of the growth 

stages and the values of Kc for various crops. 

    

Potential evaporation Ep can be calculated according to (e.g. Kroes and Van Dam, 2003; 

Pachepsky et al., 2004):  

 

· ( )expp p
LAI tE ET                                                  [5.21] 

 

where β (≈ 0.4) is the radiation extinction coefficient and LAI(t) is the leaf area index. However, 

LAI(t) data were not available, so instead Ep was calculated:  

 

( )p pE ET f t                                                      [5.22] 

 

Where f(t) is the function specified above (Chapter 5.3.1).  

 

Given ETp and Ep according to Eqs. [5.20] and [5.22], the potential transpiration Tp was 

obtained as: 

 

p p pT ET E                                                          [5.23] 
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The potential transpiration, defined as the water removed from the soil due to plant water 

uptake, is equally distributed over the root zone. This sink term was computed by a method 

introduced by Campbell and Norman (1998), which is based on soil water status. Actual 

transpiration, Et, is calculated according to Feddes et al. (1978): 
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z
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where α(θ) is the dimensionless water stress response function (0 ≤ α ≤ 1) describing water uptake 

reduction due to drought stress. For α(θ), a modified functional form introduced by Feddes et al. 

(1978) was applied: 
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where h3 and h4 are threshold parameters, in a sense that uptake is at the potential rate when the 

water content is between θ3 and θs. This drops off when θ < θ3 and becomes zero for θ < θ4 or θ = 

θs. Crop-specific values for the parameters (Table 5.2) were taken from Wesseling (1991) and 

Taylor and Ashcroft (1972). 

 

Table 5.2: Root water uptake reduction parameters for Eq. [5.25] (source: Wesseling, 1991; Taylor 
and Ashcroft, 1972). 

 *wilting point 

 

 

Crop h3 (m) θ3 (m
3 m-3) (Eq. 5.9) h4 (m) θ4* (m3 m-3) (Eq. 5.9) 

     

Melon -4 0.270 -80 0.154 
     

Lettuce -5 0.259 -80 0.154 
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A root growth model is required to simulate the change in rooting depth with time for 

annual crops. The model assumes the classical Verhulst-Pearl logistic growth function, and attains 

a maximum depth at the end of the crop development stage. Values for the maximum rooting 

depth for particular crops (Table 4.3) were derived from Allen et al. (1998). 

 

The surface boundary condition, which shows daily values of precipitation, irrigation and 

Tp, are summarized in Figure 5.3. 

 

 
Figure 5.3: Summary of the soil surface boundary conditions (I = irrigation; P = precipitation; Tp = 
potential transpiration). 

 

 

5.4 Results and discussion 

 

5.4.1 Field data 

 

Figure 5.4 shows the HTOl soil water concentration measured along the soil profile in the four 

sampling surveys developed during the initial part of the experiment (DOY 170-253), which was 

carried out during the first crop (melon). For this period, rainfall accounted for 28 mm, irrigation 

for 358 mm and potential evapotranspiration was 426 mm. At the end of this first period, HTOl 

migration attained a maximum depth of 60 cm after 73 days. In Figure 5.5, the HTOl profiles for 
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the following three cropping periods (DOY 254-599) are shown. Background HTOl concentration 

in the soil profile was 925 Bq m-3 and the movement of the tracer’s peak centre of mass through 

the soil profile is clearly observed in the sampling campaigns. In general, the relative standard 

deviation (%) from laboratory samples analyses was lower for high HTOl concentration values. 

The HTOl concentration decreased exponentially due to plant transpiration, evaporation and 

“night-reemission”, which was a result of the high soil and atmosphere tritium concentration 

gradient during the first days of the experiment.  

 

  

5.4.2 Model calibration and predictions 

 

The period between tracer injection day and the harvest of the first crop (170-253 DOY) was used 

for model calibration. The initial input parameters for modelling (Table 5.1) resulted in 

simulations that were in poor agreement with the field data. Therefore manual calibration process 

was carried out. Several parameterizations were considered by varying the number and type of 

parameters and following the principle of parsimony (i.e. fewer fitted parameters). The best 

parameterization was found for two parameters: saturated hydraulic conductivity of soil, Ks, and 

dispersivity, λ. θs and ρs were obtained in the laboratory, some parameters of Table 5.1 were 

considered fixed (ρw; Dwa; DTa; DTw; Mw; Msolid) and the rest of them were taken from literature, 

according to a given soil type (hs; b).  

 

Several statistics to assess goodness-of-fit between the observed and simulated values 

were used: the root mean square error (RMSE), the mean absolute error (MAE), and the mean 

relative error (MRE). Final fitted parameters were obtained by minimizing the objective function 

(MRE) and by visual inspection of the model fit to the data. MRE was selected as objective 

function because trirtium mass decay in soil occurred in an exponential way. The final fitted 

parameter values are given in Table 5.3.  

 

Figure 5.4 shows measured and calibrated HTOl concentration soil profiles. The most 

prominent feature for the calibrated period (DOY 170-253) is the strong decrease of HTOl 

concentration in soil. Although experimental data are relatively sparse and the maximum 

concentration decreases by three orders of magnitude after seventy days, the predicted pattern of 

HTOl concentration is generally in good agreement with data. Table 5.4 gives goodness-of-fit 

results for calibrated data. 
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Table 5.3: Initial and fitted parameter values. 
Parameter Initial value Fitted value 
   

Saturated hydraulic conductivity, Ks (m s-1) 0.281 10-5 0.868 10-5 
   

Dispersivity of HTOl, λ (m) 0.05 0.10 
   

 

 

After calibration, the model was used to predict HTOl and HTOg transport during the growing 

periods of three more crops (DOY 254-599) and results are presented in Figure 5.5. The agreement 

between field observations and simulations appears to be better than MRE results, probably due to 

the gradual decrease of HTOl in the soil and the lower influence of soil-atmosphere processes. 

Goodness-of-fit results are given in Table 5.4. 

 

 

 
Figure 5.4: Measured (dots) and simulated (solid lines) tritium content (HTOl) profiles for the 
calibration period (DOY 170-253, during melon crop). Mean and standard deviation (horizontal 
bars), and sampled interval (vertical bars) are shown for the experimental values. hai: hours after 
injection. 

 

 

Presence of HTOl in sampled profiles at higher depths than simulated can be explained by 

preferential flow generation through roots and cracks within the first centimetres of the soil surface 

(tilled soil). In addition, only one water retention h(θ) and hydraulic conductivity K(θ) curve were 

considered for the total soil profile, they could also account for the difference. 
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Figure 5.5: Measured (dots) and simulated (solid lines) tritium content (HTOl) profiles for the 
predicted period (DOY 254-599, during three cropping periods). Mean and standard deviation 
(horizontal bars), and sampled interval (vertical bars) are shown for the experimental values. hai: 
hours after injection. 

 

 

Table 5.4: Goodness-of-fit for simulated and experimental values.  
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Simulation RMSEa MAEb MREc 
    

Melon (DOY 137-253) (calibration) 785158.1 326002.7 0.580 
    

Lettuce (DOY 268-358) (prediction) 29031.6 21505.1 0.706 
    

Lettuce (DOY 368-458) (prediction) 14238.8 10375.3 0.686 

    

Melon (DOY 549-599) (prediction) 4634.8 3224.3 0.530 

(with plastic cover)    
    

Total prediction period (DOY 254-599) 17817.2 11370 0.681 
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5.4.3 Temperature soil profiles 

       

Simulated soil temperature following diurnal variations is illustrated in Figure 5.6. For the sake of 

simplicity, only temperature (ºC) at 1, 10, 30, 50 and 100 cm depth along with the air temperature 

for a one summer day (Figure 5.6a) and one winter day (Figure 5.6b) have been presented. The 

predicted summer temperatures decrease with depth during the day, while the opposite behaviour 

was observed during winter. For both seasons, the maximum temperature at the ground surface 

was between 12 and 18 pm. 

 

 
 
Figure 5.6: Diurnal variation of predicted soil temperature for (a) June 22, 2007 (DOY 173), and 
(b) January 22, 2008 (DOY 387). 
 

 

5.4.4 Tritium transport and mass balance 

 

The transport of HTOl includes the advection and hydrodynamic dispersion terms (Eq. 5.15). 

Hydrodynamic dispersion (DT) is defined as the sum of effective molecular diffusion (Dp) and 

mechanical dispersion (Dd). Dp, also called pore diffusion, is a function of molecular diffusion 

coefficient in free solution (DTw) and the tortuosity of the medium as function of water content 

(τw), ( )p TwwD D  . DTw was taken directly from the literature (Mills, 1973) and was used to 

determine the range of possible values of Dp. Previous research on clay soils (bentonite, kaolinite, 

montmorillonite) reported Dp values for tritium between 4.5·10-4 mm2 s-1 and 17·10-4 mm2 s-1 

(Phillips and Brown, 1968; Gillham et al., 1984). Young and Ball (1998) found Dp in the range of 
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3.8-5.9·10-4 mm2 s-1 for a soil with 35% clay, 38% silt, and 27% sand. Toupiol et al. (2002) 

reported a value of Dp ranges between 4 and 8·10-4 mm2 s-1 for a compacted soil with 30% clay, 

33% silt, and 37% sand. For this study (silty loam) Dp was estimated between 2.4·10-4 mm2 s-1 and 

4.7·10-4 mm2 s-1 (10-10 m2 s-1). On the other hand, mechanical dispersion is equal to the product of 

the seepage velocity vs ( /sv q  ) and the dispersivity λ (  d sD v  ), as shown in Eq. [5.15]. 

While advection controls the transport of HTOl in all soil profile, mechanical dispersion (Dd) 

decrease with depth and effective molecular diffusion (Dp) stay more or less constant along the 

profile (Eq. 5.12).   

 

 Transport of HTOg only includes the diffusion term, effective molecular diffusion or pore 

diffusion (Eq. 5.13). The model was run including in the Eq. [5.13] the advection term for HTOg 

that supposes diffusion of non-tritiated vapour in air (Eq. 5.3). The obtained results with the 

included change were equal that those obtained considering only effective molecular diffusion. 

This fact supports that the main transport process of HTOg is molecular diffusion. 

 

Hourly tritium concentration in the soil vapour (HTOg) at different depths is shown in 

Figure 5.7 for the calibration period (first crop experiment, DOY 170-253). A seasonal diurnal 

variation in HTOg concentration, which was directly related to meteorological parameters (Figure 

5.6), along with a trend to decrease with depth, is observed. Soil heat storage in the daytime 

favours HTOl evaporation to HTOg in the soil media. Subsequently, at sunset, condensation begins 

(Eq. 5.14). Within the first centimetres of soil (the surface), the decline of HTOg concentration 

during the night time is reinforced by “night-reemission”. After application of a large volume of 

water (precipitation or irrigation), the increase in HTOg concentration at greater depths is due not 

only by the downward flux of HTOl, but also by downward molecular HTOg diffusion, DTa (Eq. 

5.13).  

 

Tritium mass balance for the total studied period (DOY 170-599) is presented in Figure 

5.8. Tritium mass for each water balance component and states have been considered: tritium mass 

in liquid and gas phase; evaporated and transpirated tritium mass; deep drainage of tritium mass; 

and radioactive decay. The tritium mass decay after 83 days (1992 hours), between the day of 

tracer injection and the harvest of the first crop (melon), was 95%. After 429 days, which was the 

total duration of the field test, the background HTOl concentration in the soil was practically 

recovered. 
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Figure 5.7: Simulated tritium gas concentration (HTOg) in soil vapour at different depth for the 
calibrated period (DOY 170-253, during melon crop). (hai): hours after injection. 
 
 

 
Figure 5.8: Tritium mass included in each water balance components and states, it involves: 
tritium mass in liquid and gas phase, evaporated and transpirated tritium mass, deep drainage of 
tritium mass, and radioactive decay. (hai): hours after injection. 
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5.4.5 Water balance and recharge 

 

One of the objectives of the modelling exercise was to evaluate soil water balance and to calculate 

recharge rate. The components of the water balance included water addition due to irrigation and 

precipitation; losses by transpiration, evaporation and drainage; and changes in soil water storage. 

Potential recharge to the aquifer is made up the drained volume of water from the bottom of the 

soil profile or irrigation return flow. Simulated drainage permits to determine the recharge rate 

generated by each crop at different times of the year under two assumptions: small thickness of the 

unsaturated zone and negligible hypodermic flow rate, as occurs in the study area.  

 

Percentages of applied water (P + I) that constitute recharge for each crop are shown in 

Table 5.5. The high percentage of recharge (48%) generated during the second crop (lettuce, DOY 

268-358) was due to high precipitation (197 mm) and lower transpiration between September and 

December. Differences between the first (14.9%) and fourth (32.3%) crop (melon) are the result of 

the plastic crop cover, since this type of agricultural management reduces direct evaporation from 

the ground surface to almost zero (Figure 5.3). The important irrigation dose (77 mm) applied to 

the experimental plot could also explain this difference. Total recharge for the 2007-2008 

hydrological year was 476 mm. 

 

Table 5.5: Simulated bottom drainage (recharge) following applied water (P+I) for each crop. 
Irrigation efficiency calculated from potential and actual evaportranspiration (volume of irrigation 
water beneficially used). 

†Irrigation Efficiency from Burt et al. (1997). 
 

Recharge  Irrigation Efficiency (%)
†
 

Crop 
I  

(mm) 
P  

(mm)
I+P  

(mm) (mm) (%) Potential ET Actual ET 

        

Melon (DOY 137-253) (calibration) 557 32 589 88 14.9 96 100 
        

Lettuce (DOY 268-358) (prediction) 206 197 403 194 48.1 89 61 
        

Lettuce (DOY 368-458) (prediction) 123 61 184 57 30.9 100 100 
        

Melon (DOY 459-599) (prediction) 617 80 697 225 32.3 93 60 
(with plastic cover)        
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Figure 5.9: Cumulative potential transpiration (Tp), actual transpiration (Et), evaporation (Ee) and 
drainage (recharge) rates computed for the four crops. 

 

 

Figure 5.9 shows cumulative recharge values along with some water balance components 

(Tp; Et; Ee) for the four cropping periods. Actual transpiration was lower than the potential values 

in all cases, because soil moisture content was not enough to sustain potential root water uptake 

(Eqs. 5.24 and 5.25) at several periods of time. This is crucial for recharge calculation in semi-arid 

regions, in which actual evapotranspiration may drop below potential rates, even for irrigated 

systems. 
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5.5 Conclusions  

 

The defined field experiment and modelling approach appears to be highly suitable for estimating 

aquifer recharge by irrigation return flow, when small thickness of the unsaturated zone and 

negligible hypodermic flow rate exist, as occurs in the study area. The main conclusions from this 

chapter are: 

 

1. Tritium downward movement is clearly observed in the sampling campaigns. The relative 

standard deviation from laboratory analyses was lower for high tritium concentration value. 

Numerical solution with two parameters Ks and λ fitted for the soil provided a good agreement 

between simulations and field measurements, in spite of the relatively low sampling density. The 

presence of tritium at higher depths than simulated can be explained by several reasons: (i) 

preferential flow in top soil (roots and cracks); (ii) only one water retention h(θ) and hydraulic 

conductivity K(θ) curve defined for the total soil profile; (iii) water retention h(θ) (power law) 

from Campbell (1974) do not work well close to saturation.  

  

2. The effective molecular diffusion (Dp) of tritium in liquid phase obtained from this study (silty 

loam) was estimated between 2.4·10-4 mm2 s-1 and 4.7·10-4 mm2 s-1. Advection and mechanical 

dispersion controlled the transport of liquid tritium, whereas molecular diffusion (pore diffusion) 

was the main process for tritium in vapour phase. Diffusion of non-tritiated vapour in air does not 

meaningfully contribute to the final results for tritium gas transport.  

 

3. Seasonal diurnal variation in tritium gas concentration directly related to seasonal variation of 

meteorological parameters was observed. The decline of tritium gas concentrations in the top soil 

during night time is reinforced by “night-reemission”. 

 

4. The sink terms of tritium evaporation, transpiration, deep drainage and radioactive decay 

account for 61.51%, 34.65%, 3.13% and 0.29% tritium losses, respectively. According to 

modeling, tritium mass balance error was 0.5%. Evaporation and transpiration contribute 

meaningfully to the decontamination process. After 83 days tritium mass decay was 95 %, and 

tritium background concentration in soil is practically recovered after 429 days. 
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5. During the 2007-2008 hydrological year recharge was 476 mm for a water input P+I = 1284 

mm. Intensive precipitation events (between September and December) greatly contribute to 

natural recharge, as high water content prevails in the soil profile due to irrigation. 

 

6. Actual transpiration was lower than potential values in all cases, despite high irrigation 

frequency, as soil moisture content was not enough to sustain potential root water uptake at several 

periods of time. 

 

7. Field investigation and monitoring of tritium present the complexity of profiling tritium 

concentration in soil and the difficulty of sampling tritium migration through preferential flow. 

Compared with other available techniques, this methodological approach requires relatively low 

sampling density. 

 

8. If tritium is used as a tracer, multiphase transport has to be considered for accurate recharge 

predictions. 
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Notation 

 

 

 

( )0 values at the ground surface 

α dimensionless water stress response function (-) 

b pore size distribution index (-) 

β extinction radiation coefficient (-) 

cE bulk transfer coefficient for evaporation (-) 

Cr HTOg concentration at reference height (Bq m-3 air) 

Ca HTOg concentration of soil air (Bq m-3 air) 

Cw HTOl concentration of soil water (Bq m-3 water) 

D soil water diffusivity function (m2 s-1) 

Dp effective HTOl molecular diffusion (pore diffusion) (m2 s-1) 

Dd HTOl mechanical dispersion (m2 s-1) 

DT effective HTOl diffusion-dispersion in water (m2 s-1) 

DTa molecular HTOg diffusion coefficient in air (m2 s-1) 

DTw molecular HTOl diffusion coefficient in water (m2 s-1) 

Dwa water vapor diffusion coefficient in air (m2 s-1) 

ee evaporation-condensation of HTOl in soil (kg m-3 s-1) 

et transpiration of HTOl in soil (kg m-3 s-1) 

Ee evaporation-condensation of water in soil (kg m-3 s-1) 

Er amount of runoff (kg m-2 s-1) 

Et actual transpiration due to root water uptake  (kg m-3 s-1) 

Ep potential evaporation (kg m-2 s-1) 

ETp potential evapotranspiration (kg m-2 s-1) 

ET0 reference evapotranspiration (kg m-2 s-1) 

ƒ ground cover sigmoid function (-) 

τa tortuosity for soil air (-) 

τw tortuosity for soil water (-) 

h pressure head (m) 

hs saturated pressure head (m) 

Hb latent heat of evaporation in soil (J m-3 s-1) 

I irrigation (kg m-2 s-1) 

K unsaturated hydraulic conductivity of soil (m s-1) 

Kc crop-specific coefficient (-) 

Ks saturated hydraulic conductivity of soil (m s-1) 

ks thermal diffusivity of soil (m2 s-1) 

l latent heat of vaporization of water as function of temperature (J kg-1) 

LAI leaf area index (m2 m-2) 

λ dispersivity of HTOl (m) 

λt thermal conductivity of soil as function of water content (J s-1 m-1 K-1) 

Ms specific heat of soil (J kg-1 K-1) 

Msolid specific heat of solids (J kg-1 K-1) 

Mw specific heat of water (J kg-1 K-1) 
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Chapter 6 
 
 

Water balance approach. Soil, vadose 
zone and aquifer* 
 
 
6.1 Introduction 

 

Water table fluctuation method (WTF) to estimate aquifer recharge is a groundwater-based 

approach founded on groundwater level data. Its application requires knowledge of specific yield 

and changes in water level over time. Although simplicity is one of the method advantages, 

uncertainties associated to the limited accuracy of some parameters determination (e.g. specific 

yield) may restrict its applicability. Techniques based on groundwater level are among the most 

widely applied methods for estimating recharge rates. This is likely due to the availability of 

groundwater level records and the simplicity of estimating recharge rates from temporal 

fluctuations or spatial patterns of groundwater levels (Healy and Cook, 2002). 

 

 The WTF approach can be only applied to unconfined aquifers. It is based on the premise 

that rise of groundwater level is due to recharge water arriving to water table. The time lag span 

between the water application (from irrigation or precipitation) and the water arriving to the 

                                                 
* This chapter is based on the article: Jiménez-Martínez, J., Molinero, J., Tamoh, K., Candela, L. 

Groundwater recharge in irrigated semi-arid areas with different crops. Quantitative hydrological modelling 
and sensitivity analysis (submitted to Hydrogeology Journal) 
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aquifer during a recharge event is critical for this approach. It is valid over short periods of time 

(hours or a few days). If water is abstracted from the water table at a rate that is not significantly 

slower than the rate at which recharge water arrives at the water table, then the method is of little 

value.  

 

Modelling aquifer water balance is not a new undertaking and several numerical codes are 

applied, generally. For codes describing balance processes, the reader is referred to SAHYSMOD 

(ILRI, 2005), VisualBALAN v. 2.0 (Samper et al., 2005), TOPOG (CSIRO, 2008), and INFIL 

(USGS, 2008), among others.  

 

This chapter presents a method to estimate aquifer recharge from different crop types 

based on water table fluctuations. The current work concerns the application of a computer code, 

VisualBALAN v. 2.0 (Samper et al., 2005), to simulate water balance in the soil, vadose zone and 

aquifer. The boundary conditions were detailed for each crop and according to the agricultural 

practices. The chapter starts with the field experiment description. Next, the numerical modelling 

approach is described. Finally, a critical discussion of the recharge results from irrigation return 

flow obtained for each crop is undertaken. A comprehensive sensitivity analysis is performed to 

evaluate the reliability and uncertainty of the estimated recharge values.  

 

 

6.2 Field experiment 

 

Three experimental plots with different types of crops (LM, A and C in Figure 2.3) were 

selected to assess the water balance: LM, with annual row crops (rotation of lettuce and melon); A, 

with perennial vegetables (artichoke); and C, with fruit trees (citrus). The main criteria for selecting 

the sites were prior long-term cultivation of the crops in the experimental area (1999-2008), the 

existence of piezometric records (piezometers 1, 2 and 3) and a nearby meteorological station (TB 

and SJ), as shown in Figure 2.3.  

 
Each experimental plot had an area of 10 000 m2 and the soil is a silty loam (USDA soil 

textural classification), which is relatively uniform throughout the Campo de Cartagena region 

(Ramírez et al., 1999). Daily meteorological data for the study period were provided by SIAM and 

the water level data, recorded every two months, were obtained from the CHS database. 
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The plots (LM, A and C) were managed according to agricultural practices that are common 

in the Campo de Cartagena region (Table 6.1), including crop rotation for annual row crops (lettuce 

and melon), drip irrigation and water requirements (Figure 6.1). For summer row crops (melon) 

cultivation is carried out under plastic to increase irrigation efficiency. For simulation purposes and to 

avoid boundary effects, the same agricultural management practices were conducted in the 

neighbouring areas of experimental plots. 

 

Table 6.1: Main characteristics of the experimental plots (source: Allen et al., 1998 and CARM, 
2007). 

 

 

 
 

Figure 6.1: Monthly water requirements for the three types of crop studied. 
 

 

 

 

 

 

Drip irrigation Exp. 
plot 

Mete.  
station 

Piezometer Crop 
Mean 
 height 
crop 

Maximum 
 root depth 

Furrow
spacing Inside diameter 

tubing 
Emitter  
spacing 

Discharge 

Crop water  
requirements 

    (cm) (cm) (m) (mm) (cm) (l h-1) (m3 ha-1 yr-1) 

           

LM TB 1 lett. / melon 30 / 30 30-50 / 80-150 1 16 30 4 3287.8 / 6169.2

           

A SJ 2 artichoke 70 60-90 1.7 16 40 4 6622.8 

           

C SJ 3 citrus 300 80-150 6 16 25-125 4 6407.1 
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6.3 Estimation of recharge using water balance modelling 

 

6.3.1 Water balance modelling description: equations and parameters used 

 

Water recharge was calculated with VisualBALAN v. 2.0 (Samper et al., 2005), a computer code 

suitable for long-term simulation of water balance in the soil, vadose zone and aquifer. 

VisualBALAN has been applied successfully at many Spanish and South American case studies, 

as for example Carrica and Lexow, 2004; García-Santos et al., 2005; Samper et al., 2007; 

Castañeda and García-Vera, 2008; Candela et al., 2009; Sena and Molinero, 2009, among many 

others. The experiment was performed for the October 1999 and September 2008 period, nine 

hydrological years. Calibration and prediction were accomplished for annual row crops (lettuce 

and melon), perennial vegetables (artichoke) and fruit trees (citrus). 

 

In comparison to other mentioned codes (INFIL, SAHYSMOD, TOPOG), VisualBALAN 

aims at using generally available input data, that can be estimated with reasonable accuracy, or 

easily measured. For example, INFIL (ILRI, 2005) focusses in the root zone, whereas 

SAHYSMOD (USGS, 2008) was designed for long-term management applications and output 

results are based on weighted seasonal averages. Moreover, the latter requires runoff like input 

data.  

 

The code used in this investigation comprises three sub-models that take into account 

processes in a) the upper part of the soil (root zone), b) the vadose or unsaturated zone (lower soil) 

and c) the saturated zone (aquifer). A schematic representation of the balance components is 

represented in Figure 6.2.  

 

The state variable in each of the three zones is water volume, expressed as volume per 

surface unit (e.g. l m-2) or equivalent height of water (e.g. mm). The water volume in soil (Vs) is 

the product of water content (θ) and soil thickness (bs), s sV b . The amount of water in the 

vadose zone is  h e hV y  , where Φe is the drainable porosity and yh the thickness of the 

waterfront. In the saturated zone, the relationship between water volume (Va) and height of the 

groundwater level (h) are related by the specific yield Sy by a yV S h  (for unconfined aquifer is 

assumed  yS S , where S is storage coefficient or storativity). Model parameters are automatically 
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calibrated by means of the comparison between measured and estimated water levels, and are 

optimized by minimizing the objective function through the Powell Method or multidimensional 

minimization (Press et al., 1989).  

 

The water balance for vegetated soil is represented by: 

 

s a eP Ir In E ET P                                                [6.1] 

 

 
 
Figure 6.2: Scheme of the water balance components in soil, vadose zone and aquifer as defined in 
the VisualBALAN computer code (Samper et al., 2005). Notation can be found in the text and at 
the end of this chapter. 
 

 

where P is precipitation, Ir irrigation, In canopy interception, Es runoff, ETa represents the actual 

evapotranspiration, Pe is the potential recharge to the vadose zone and ∆θs is the variation of soil 

water storage. The approach assumes a cascade model for precipitation, interception, runoff, 

evapotranspiration and the recharge process. In the aforementioned model, water balance in soil is 
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attained by usinging rainfall and daily irrigation data. The model simulates temporal differences 

(between ti and tf, f it t t   ) of actual evapotranspiration and groundwater recharge.  

 

As infiltrated water is the residual water after evapotranspiration, the infiltration term, I, 

can be introduced in the water balance equation as:  

 

( )a eI ET P                                                          [6.2] 

 

sP Ir In E I                                                           [6.3] 

 

Eq. [6.1] is the sum of Eq. [6.2] and [6.3]. 

 

Canopy interception, In, is the fraction of precipitation intercepted by the vegetation 

(leafs, branches and trunk), which involves loss of water by evaporation and runoff decrease. 

Canopy interception was derived from the empirical model of Horton (1919), which describes a 

linear relationship between intercepted volume In and total precipitation on vegetation Pd in a 

rainfall event:  

 

d dIn S P                                                              [6.4] 

 

being Sd and γ empirical parameters related to the type of vegetation and plant height (Table 6.2). 

As In is a fraction of precipitation, it cannot exceed the Pd value, therefore Eq. [6.4] is valid only 

when Pd exceeds a threshold defined by: 

 

1
d

d

S
P





                                                               [6.5] 

 

For values lower than threshold, In = Pd. 

 

The surface runoff estimation, Es, is derived from the curve number method (Soil 

Conservation Service, 1975), which is based on the relations between losses by canopy 

interception and precipitation. Before runoff occurs, there is a precipitation threshold, Po, due to 



Chapter 6                                                                                    Water balance in soil, vadose zone and aquifer 

 93

interception and infiltration. If this is taken into account, precipitation is P-Po. For dry conditions 

 

Table 6.2: Applied Sd and γ parameters (Horton method) and crop height (from López and 
Giráldez, 1997). 

Crop Sd γ 
Mean height crop 

Z (m) 
    

Annual row crops 
(lettuce and melon) 

1.67·Z 0.49·Z 0.3 

    

Perennial vegetables 
(artichoke) 

1.67·Z 0.49·Z 0.7 

    

Fruit trees 
(citrus) 

1.02 0.18 3 

    

 

 

and intensive rainfall events, as in our specific study area, Es can be empirically calculated 

according to: 

 

2( )

4
o

s
o

P P
E

P P





                                                     [6.6] 

  

 A critical element for recharge estimation is to determine actual evapotranspiration ETa(t) 

rates, which can be below potential rates ETp(t) for long periods of time in arid and semi-arid 

regions, even for irrigated systems. An exponential method to relate ETa(t) with ETp(t) was used 

(e.g. Poulovassilis et al., 2001). The method works with hydric deficits θhd at time t: 

 

 -0.6523[ ( ) ( )]/1.9 ( ) e    ( ) ( )

( )

( )                                         ( ) ( )

hd cemet W t
p hd ceme

a

p hd ceme

ET t  t W t

ET t

ET t t W t

   

 

  
 
  

               [6.7] 

 

where W(t) represents the input water along time (available water), being ( ) ( )hd fct t    , θfc is 

field capacity and θ(t) soil water content. θceme constitutes the hydric deficit limit value and ranges 

between field capacity (θfc) and wilting point (θwp). All parameters are expressed as equivalent 

height of water. 
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The potential diffuse recharge to the vadose zone Pe was estimated assuming that the soil 

is homogeneous and isotropic. To solve this aspect, a linear function was applied (e.g. Castañeda 

and García-Vera, 2008), defined as: 

 

0                   ( )

( ) ( )        ( )

             ( )

fc

e fc fc fc vs

vs fc vs

 t

P t t t K t

K t t K t

 

    

 

 


     
    

                             [6.8] 

 

where Kvs is the soil vertical hydraulic conductivity and θfc and θ(t) are expressed as equivalent 

height of water. 

 

 In the vadose zone, potential recharge Pe, constitutes the entry of water, which can be 

divided into hypodermic Qh, and vertical flow or percolation to the aquifer Qp, defined by the 

following expressions: 

 

( ) ( )h h hQ t V t                                                                [6.9] 

 

( ) ( )p vv p hQ t K V t                                                       [6.10] 

 

being Vh water volume stored in the vadose zone, αh and αp are depletion coefficients for 

hypodermic flow and vertical flow or percolation, respectively, and Kvv the vertical hydraulic 

conductivity in the vadose zone. The αh parameter is proportional to the horizontal hydraulic 

conductivity Khv, drainable porosity Φe, mean slope i and length in the hypodermic flow direction 

L, according to: 

 

2 hv
h

e

K i

L
 


                                                        [6.11] 

 

 As in Eq. [6.10], αp is obtained by considering that Vh and yh are related by means of 

 h e hV y  , where yh is the thickness of the waterfront, taking into account the distance between 

the waterfront and the regional groundwater level p: 
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vv
p

e

K

p
 


                                                       [6.12] 

 

In this study, an explicit scheme was applied for solving water balance in the vadose 

zone.  

 

Water balance in the aquifer, VisualBALAN (Samper et al., 2005), was obtained by 

estimating the groundwater level in the aquifer at each Δt. The code enables solving the water 

balance by treating the region as a mono-cell or multi-cell pattern. For this exercise, the 

experimental plot (10 000 m2) was considered as only one cell. The water volume in the aquifer, 

Va, and the groundwater level, h, are related to a reference value, ho (base value), which 

corresponds to a volume Vao. The water volume stored over the reference value, ( )a a aoV V V   , 

is related to the change of level ( )oh h h   through the specific yield Sy by means of 

 a yV S h   . Balance in the aquifer is carried out considering the entry of water by vertical flow 

or percolation Qp and the groundwater discharge Qs: 

 

( )s s aQ t V                                                        [6.13] 

 

where αs is the discharge depletion coefficient, 

 

2s

T
a

S



                                                       [6.14] 

 

which is related to hydraulic diffusivity (T/S) by means of the transmissivity, T, and storage 

coefficient, S (  yS S  for unconfined aquifer), a characteristic length λ and a dimensionless 

constant α (common range between 1/3 and 1/1.5). The stored volume in the aquifer at time t, 

Va(t), is obtained from: 

 

( ) ( 1) ( )a a p sV t V t Q Q t                                          [6.15] 

 

Once the final volume is known, the water level is calculated, h(t): 
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( )
( ) a ao

o

V t V
h t h

S


                                                   [6.16] 

 

which allows an estimation of the water level in the aquifer. 

 

Goodness of fit between measured and simulated water levels was assessed by the root 

mean square error (RMSE) and mean absolute error (MAE). 

 

 

6.3.2 Atmospheric boundary conditions 

 

Daily irrigation, Ir, and precipitation, P, rates are the only input to the system. In order to 

determine evaporation and transpiration rates, reference evapotranspiration, ET0(t), was calculated 

according to Penman-Monteith method. The potential evapotranspiration, ETp(t), was derived from 

(Allen et al., 1998): 

 

0( ) ( )· ( )p cET t K t ET t                                                  [6.17] 

 

where Kc(t) is a crop-specific coefficient that characterizes plant water uptake and evaporation 

relative to the reference crop. ET0(t) was obtained at daily time steps. Values for Kc(t) are shown in 

Table 4.3 and Figure 4.3 for annual row crops, along with growth stages and length (days). An 

annual mean value of Kc = 0.95 (Allen et al., 1998) for perennial vegetables (artichoke) and a 

monthly mean value (Castel, 2001) for fruit trees (citrus) respectively was applied, although for 

the last case the annual mean value is Kc = 0.68 for a ground cover ≥ 64%. 

 

 Potential evaporation Ep(t) was calculated according to (e.g. Kroes and Van Dam, 2003; 

Pachepsky et al., 2004):   

 

 · ( )( ) ( )·expp p
LAI tE t ET t                                                [6.18] 

 

being β (≈ 0.4) the radiation extinction coefficient and LAI(t) is the leaf area index. Data on LAI(t) 

was not available and it was estimated as: 
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)()( tfETtE pp                                          [6.19] 

 

The f(t) function was defined on the basis of the following reasoning: when a crop is planted for 

the first time, ground cover is nonexistent, potential evaporation is maximal, transpiration is zero, 

and thus f(t) = 1. Conversely, when the crop reaches the mid-season growth stage, ground cover is 

complete, evaporation is effectively zero, and thereafter f(t) = 0. The transition from f(t) = 1 at 

planting to f(t) = 0 at the beginning of the mid-season growth stage was modelled using a sigmoid 

curve (Jiménez-Martínez et al., 2009). 

 

 Therefore, potential transpiration Tp(t) was determined as: 

 

( ) ( ) ( )p p pT t ET t E t                                                  [6.20] 

 

 According to agricultural practices in the area, the ETp(t) for winter crops (lettuce) is 

given by Eq. [6.17], while for summer crops (melon) only Tp(t) from Eq. [6.20] was taken into 

consideration. Selection was based on the fact that the plastic cover reduces Ep(t) to zero (Figure 

6.3). For perennial vegetables and fruit trees, the ETp(t) given by Eq. [6.17] was applied 

considering that a complete growth development occurs. 

 

 
 
Figure 6.3: Estimated potential evapotranspiration ETp (Eqs. 6.17-6.20) as a soil input boundary 
condition for annual row crops (set lettuce and melon). 
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6.3.3 Uncertainty and sensitivity analysis 

 

The modelling approach contains several potential sources of uncertainty, which are either related 

to model parameters (Po; αh; αs; S; hd; Kvv; αp; θceme; bs; Φs; θwp; θfc; Curve Number; Kvs), initial 

conditions (initial water content in the soil and vadose zone; initial water level in the single-cell 

aquifer) or the boundary conditions (precipitation; crop coefficient; reference evapotranspiration; 

irrigation; height of the crop). Quantifying the effect of uncertainties on the recharge calculation 

requires knowledge of the abovementioned model parameters and of their statistical variability and 

correlation structure. To our knowledge, the literature provides little or no information on 

quantifying uncertainty for some of the parameters. However, it is possible to evaluate the 

importance of the parameter uncertainties on recharge as objective function by means of sensitivity 

analysis. 

  

 To involve a cascade model, the parameters and initial conditions that potentially concern 

the recharge are included in soil and vadose zone (Po; αh; Kvv; αp; θceme; bs; Φs; θwp; θfc; Curve 

Number; Kvs; initial water content in soil and vadose zone), whereas parameters and initial 

conditions of the aquifer (αs; S; hd) have a impact on water level but no on the objective function, 

recharge. A series of simulations were performed on individual parameters by a given amount of 

perturbation and by estimating water balance.  

 

The uncertainties associated with the boundary conditions were evaluated by computing a 

defined relative sensitivity as AS CP . Parameter CP is the relative change of a given variable or 

parameter, defined as / ·100s b bP P P , and AS is the relative change in the output (recharge) value, 

defined as / ·100s b bC C C . Ps and Pb are variable values used for sensitivity and calibrated base 

runs, respectively, and Cs and Cb are output data (recharge) computed in sensitivity and calibrated 

base runs, respectively. The magnitude of the perturbation (CP) was ±10% with respect to the 

original data. However, for the height crop this figure stood at ±30%. 
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6.4 Results and discussion 

 

6.4.1 Model calibration and predictions 

 

As could be expected, initial simulations using guessed parameters were in poor agreement with 

measured data. We therefore attempted to calibrate model parameters in the three zones (soil, 

vadose zone and aquifer) by parameter optimization routines and field data (water level data). 

Several possible parameterizations were considered, according to the number and type of 

parameters that were fitted. The best overall parameterization was determined on the basis of 

diagnostic information from the computer program, a visual inspection of the model fit to the data 

and the principle of parsimony (i.e. if two parameterizations produce equal fit, the simpler of two 

 

Table 6.3: Initial value and final fitted parameter estimates. Prescribed values when not fitted 
parameters. 

Source:aJiménez et al., 2007 and Jiménez-Martínez et al., 2009 ; b Soil Conservation Service, 1975. 

 

Annual row crops Perennial vegetables Fruit trees 
(lettuce and melon) (artichoke) (citrus) Parameter 

Initial value Fitted value Initial value Fitted value  Initial value Fitted value

Calibration period  99-02  99-05   99-03 
       

Fitted       

       

Rainfall threshold to downpour, Po (mm) 2 2 2 2 2 2 

Hypodermic flow depletion coefficient, αh (day-1) 0.01 0.01 0.01 0.01 0.01 0.01 

Groundwater discharge depletion coefficient, αs (day-1) 0.0173 0.0050050 0.0173 0.0009812 0.0173 0.0009812

Storage coefficient, S 0.2 0.2098 0.2 0.2065 0.2 0.2 

Discharge single-cell aquifer water level, hd  (m) 15.80 15.78 1.50 1.50 13.55 13.57 

Vadose zone vertical hydraulic conductivity, Kvv (mm day-1) 432 432 432 432 432 432 

Vertical flow depletion coefficient, αp (day-1) 0.6931 0.6931 0.6931 0.6931 0.6931 0.6931 

θceme (mm) [hydric deficit limit value, between θwp and θfc]  20 1.549 20 0.965 20 1.006 

       

Prescribed
a
       

       

Soil thickness, bs (m) 0.5  1  1.50  

Soil total porosity, Φs (m
3 m-3) 0.4  0.4  0.4  

Wilting point, θwp (m
3 m-3) 0.1  0.1  0.1  

Field capacity, θfc (m
3 m-3) 0.2  0.2  0.2  

Curve Number
b
 58  58  25  

Soil vertical hydraulic conductivity, Kvs (mm day-1) 382  382  382  
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Figure 6.4: Simulated (calibration: black line; prediction: grey line) and observed (dots) water 
level for the piezometers 1, 2 and 3 located in each experimental plot (see Figure 2.3). Daily 
precipitation is shown as black bars.  
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is took, namely, fewer fitted parameters). Subsequently, the fitting was repeated using different 

initial estimates to ensure that the same fitted parameters were obtained. The best parameterization 

was found for eight of a total of fourteen parameters. Table 6.3 shows the initial value of the 

parameters, the prescribed value when not fitted, and the fitted parameter estimates. The final 

fitted parameter values were very similar for the three experimental plots, which confirmed the 

homogeneity of soil type in the study area (Ramírez et al., 1999). 

 

Calibration for each crop type was carried out for a given number of years (annual row 

crops 3 yr; perennial vegetables 6 yr; fruit trees 4 yr); once fitted parameterization was attained, it 

was used to predict at the site (Figure 6.4) the water level for the rest of the period (annual row 

crops 6 yr; perennial vegetables 3 yr; fruit trees 5 yr), in order to evaluate the model’s reliability. 

Figure 6.5 shows for each crop type the root mean square error (RMSE) for a selected calibration 

period. As it can be observed, the RMSE reaches a sill and remains more or less constant after a 

certain number of years. Obtained results were used to assess the optimum number of years for 

model calibration in the area. In the annual row crops (set lettuce and melon) and perennial 

vegetables (artichoke) the RMSE value was stabilized after three years (≈ 0.3 and ≈ 0.65, 

respectively), while for the fruit trees (citrus) it stabilized after two years of calibration (≈ 0.3). 

Figure 6.4 shows observed and simulated water level measurements, while Table 6.4 presents the 

goodness-of-fit for the calibrated and predicted periods shown in Figure 6.4. Good agreement was 

obtained for annual row crops and fruit trees. However, this was not the case for perennial 

vegetables, which has been related to pumping near of this experimental plot  

 

 

Figure 6.5: Root mean square error (RMSE) for the calibrated periods and the three crop types. 
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Table 6.4: Model performance assessment by fitting experimental data (water level, h) for 
calibrated and predicted periods shown in figure 6.4. 
 

 

 

 

 

 

a Root mean square error, 2

1

1
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n

i i
i

RMSE x y
n 
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  b Mean absolute error, 

1

1 n

i i
i

MAE x y
n 

   

 

 

6.4.2 Water balance and recharge estimation 

 

Figure 6.6 shows the recharge evolution for each crop during the October 1999–September 2008 

period. Considering that irrigation has remained more or less constant throughout the study period, 

the annual recharge variation has to be related to changes in precipitation. For the study period, 

mean recharge was 397 ± 70 mm for annual row crops (set lettuce and melon), 201 ± 64 mm for 

perennial vegetables (artichoke) and 194 ± 75 mm for fruit trees (citrus). Values were consistent 

with data for this type of crops provided by different authors (e.g. Castel et al., 1987; Hanson et 

al., 1997; Lidón et al., 1999).  

 

Due to the high irrigation dose and frequency of application, recharge dramatically 

increases when intensive precipitation events occur. As shown in Figure 6.4, the groundwater level 

increase correlates with the heaviest precipitation events. This rapid water level response is due to 

the relative narrowness of the vadose zone in the study area, with thickness of 3, 11 and 8 m in 

LM, A and C plot, respectively. Moreover, continuous and relatively high water content in the soil 

facilitates the infiltration process during intensive precipitation events. The pie diagrams of Figure 

6.6 present the average value (%) of the different water balance components for each crop and 

study period (October 1999–September 2008). A higher value of interception for perennial 

vegetables and fruit trees than for the annual row crops is observed. The amount of hypodermic 

flow and runoff is very low. 

 

Calibration period Prediction period 
Simulation 

RMSEa MAEb  RMSEa MAEb 
      

Annual row crops 
(lettuce and melon) 

0.324 0.276  0.312 0.246 

      
Perennial vegetables 

(artichoke) 
0.686 0.607  0.529 0.397 

      
Fruit trees 

(citrus) 
0.337 0.260  0.352 0.306 
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Figure 6.6: a) Annual recharge evolution (annual row crops: dashed line; perennial vegetables: 
solid line; fruit trees: doted line) and annual precipitation (grey bars) for each crop and studied 
period (Oct 1999-Sept 2008). b) Pie diagrams present average value (%) of the different water 
balance components for each crop. In: canopy interception; Es: runoff; Qh: hypodermic flow; ETa: 
actual evapotranspiration; Qp: aquifer recharge. 
 

 

 Figure 6.7 shows ETp, ETa and recharge cumulative values for the last simulated 

hydrological year (October 2007–September 2008) and the three crop types. The ETa rate was 

frequently lower than the ETp, as soil moisture at various times failed to sustain the potential 

transpiration Tp. This is particularly important for perennial vegetables, due to the lack of irrigation 

during June and July. Regarding recharge process, it could be divided into three stages for each 

experimental plot. Groundwater recharge mainly occurred between October and December, the 

rate decreased between January and May, and there was no recharge between June and September. 
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Note that the plastic cover on summer crops had a major impact on the annual row crops recharge. 

Percentage of applied water (P+I) becoming recharge and irrigation efficiency for each crop and 

mentioned period are shown in Table 6.5. 

 

 
 
Figure 6.7: Cumulative potential evapotranspiration ETp (grey line), actual evapotranspiration ETa 
(black line) and aquifer recharge Qp (dashed line) for the different crops, Oct 2007-Sept 2008 
hydrological year. 
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Table 6.5: Simulated recharge according to applied water (P+I) for each crop type, 2007-2008 
hydrological year. Irrigation efficiency calculated from potential and actual evaportranspiration 
(volume of irrigation water beneficially used). 

†Irrigation Efficiency from Burt et al. (1997). 
 

 

6.4.3 Sensitivity analyses 

 

Figure 6.8 shows the effect on the estimated recharge values of some parameters (set 1) and initial 

conditions (set 2). A series of simulations were performed in which individual parameters and 

initial condition values were perturbed into a range (shown in brackets, see Figure 6.8), while all 

other parameters and initial conditions were held at their baseline values (that is, the values used in 

our recharge calculations). The effect of perturbations on the estimated recharge (base run) was 

then evaluated.  

 

The set 1 of sensitivity analysis involved evaluating a total of eleven parameters. The 

perturbation ranges of these parameters were sufficiently large and consistent with the scientific 

literature. Results of these calculations showed that recharge was most sensitive to six parameters 

in particular: field capacity θfc, wilting point θwp, θceme (hydric deficit limit value, between θfc and 

θwp), curve number, and hypodermic flux depletion coefficient αh (see Figure 6.8). For θfc, θwp, 

θceme and αh the three crop types (annual row crops; perennial vegetables; fruit trees) present the 

same trend of recharge change with respect to the perturbations. However, with respect to the 

curve number, such perturbations are only affecting changes in recharge for annual row crops and 

perennial vegetables. The set 2 of sensitivity analysis involved the evaluation of initial conditions: 

initial water content in soil θ(ti) and initial water volume in vadose zone Vh. Recharge was only 

sensitive to θ(ti), with a similar trend for all three crops. 

Recharge Irrigation Efficiency (%)
†

Crop 
I  

(mm)
P  

(mm) 
I+P  

(mm) (mm) (%) Potential ET Actual ET 

        

Annual row crops         
        

Lettuce (Sept-Dec) 206 189 395 209 52.9 91 66 
        

Lettuce (Jan-Apr) 269 45 314 49 15.6 100 97 
        

Melon (May-Aug) 471 81 552 194 35.1 73 63 
(with plastic cover)        
        

Perennial vegetables (artichoke) 662 382 1044 212 20.3 100 99 
        

Fruit trees (citrus) 641 382 1023 237 23.2 100 100 
        



Chapter 6                                                                                    Water balance in soil, vadose zone and aquifer 

 106

 
 
Figure 6.8: Effect of parameters and initial conditions (horizontal axes, expressed as a fraction of 
change) on the computed recharge (vertical axes). Horizontal axes cross at estimated recharge 
values (base run). Parameters considered for sensitivity analysis were: Po; αh; Kvv; αp; θceme; bs; Φs; 
θwp; θfc; Curve Number; Kvs; θ(ti); Vh. Only key parameters and initial conditions are plotted. 
Perturbation ranges are shown in brackets. 
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With regard to the sensitivity analysis for selected boundary conditions, effects due to 

temperature, number of daylight hours, wind velocity, air relative moisture or albedo appear to be 

included in ET0. Kc causes a similar effect to ETp according to Eq. [6.17], and it is not included in 

this analysis. The greatest change in the recharge is not always due to perturbations in the 

irrigation Ir, but also to variations in the precipitation P in the case of fruit trees (citrus) (Table 

6.6).  

 

Table 6.6: Summary of the relative sensitivity analysis performed for the selected boundary 
conditions. 

Recharge 
Boundary Condition  Annual row crops 

(lettuce and melon) 
Perennial vegetables 

(artichoke) 
Fruit trees  

(citrus) 

Name CP (%)  AS (%) AS/CP  AS (%) AS/CP  AS (%) AS/CP 
        

+10 5.36 0.53 7.39 0.74 11.65 1.16 
Precipitation, P 

-10 6 0.60 8.18 0.82 11.51 1.15 

        

+10 9.04 0.90 10.03 1.00 5.57 0.56 
Reference evapotranspiration, ET0 

-10 10.79 1.08 14.36 1.44 9.22 0.92 

        

+10 15.08 1.50 16.42 1.64 8.47 0.41 
Irrigation, Ir 

-10 13.45 1.34 12.54 1.25 5.47 0.57 

        

+30 4.01 0.13 15.37 0.51 - - 
Height of the crop, Z 

-30 4.03 0.13 16.17 0.54 - - 
        

CP: relative change (%) of a given variable or parameter; AS: relative change (%) in the output value; AS/CP: relative sensitivity 

 

 

6.5 Conclusions 

 

The daily water balance from water table fluctuations (WTF) used in this chapter is presented as a 

suitable method for estimating long-term groundwater recharge from farmland. This approach is 

valid under the next premises: (i) the rise in groundwater level is due to recharge water arriving to 

water table; (ii) the time lag span between the water application and the water arriving to the 

aquifer has to be short (hours or a few days); (iii) the water transport rate away from the water 

table has to be significantly slower than rate at which recharge water arrives at the water table. The 

presented analysis leads to the following main conclusions: 
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1. Water table fluctuations and recharge values for different crop types and irrigation regimes were 

successfully simulated with the presented approach. Good agreement was obtained for annual row 

crops and fruit trees, whereas not for perennial vegetables, which maybe related to a nearby 

pumping area. The best parameterization was found for eight of a total of fourteen parameters. The 

optimum number of years for model calibration for the study area and available data ranges 

between two and three years. Field observations suggest that hypodermic flow is negligible, 

confirmed by the fitted hypodermic flow depletion coefficient (αh) and the estimated values for 

this water balance component. Higher values of vertical flow depletion coefficient (αp) than 

groundwater discharge depletion coefficient (αs) validate the premise (ii). The similar fitted 

parameters values obtained for the three experimental plots confirm the homogeneity of soil type 

for the study area (Ramírez et al., 1999). 

 

2. The mean recharge and standard deviation for the studied period (Oct 1999-Sept 2008) was 397 

± 70, 201 ± 64 and 194 ± 75 mm for annual row crops, perennial vegetables and fruit trees, 

respectively. Regarding annual row crops (lettuce and melon) the recharge for the hydrological 

year 2007-2008 was 452 mm for a water input P+I = 1261 mm. Due to the high irrigation dose and 

frequency of application, a high recharge rate can be recognized when intensive precipitation 

events occur (mainly between September and December), as a consequence of constant high water 

content in the soil and the potentially preferential flow contribution.  

 

3. The actual evapotranspiration rate was frequently lower than the potential rate, as soil moisture 

at various times failed to sustain the potential transpiration. This is particularly important for 

perennial vegetables, due to the lack of irrigation during June and July. The plastic cover on 

summer crops had a major impact on the annual row crops recharge.  

 

4. The uncertainties associated with the high number of parameters that are employed, along with 

the particularities of the semi-arid climate and agricultural practices are associated difficulties with 

this type of method and environment. The highest sensitivity was found for the field capacity θfc, 

wilting point θwp, θceme, curve number, and hypodermic flux depletion coefficient αh parameter. 

With regard to the initial conditions, recharge was only sensitive to initial water content in soil 

θ(ti). An intrinsic property of the presented approach (cascade model) is that parameters and initial 

conditions potentially concerning recharge (objective function) are included in soil and vadose 

zone. For boundary conditions, recharge was not always sensitive to the irrigation, also it was to 

the precipitation in the case of fruit trees (citrus). 
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 5. Water balance approach based on water table fluctuations appears to be a promising method to 

estimate recharge from different crop types in intensively irrigated areas. It requires relatively low 

data density, generally available (meteorological and water level data), which can be estimated 

with reasonable accuracy, or obtained from literature with relative ease. 
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Notation 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

α dimensionless constant (-) 

αh hypodermic flow depletion coefficient (day-1) 

αp vertical flow depletion coefficient (day-1) 

αs groundwater discharge depletion coefficient (day-1) 

β extinction radiation coefficient (-) 

bs soil thickness (m) 

Ep potential evaporation (mm) 

Es amount of runoff (mm) 

ETa actual evepotranspiration (mm) 

ETp potential evepotranspiration (mm) 

ET0 reference evapotranspiration (mm) 

ƒ ground cover sigmoid function (-) 

Φe drainable porosity (vadose zone) (m3 m-3) 

Φs soil total porosity (m3 m-3) 

γ empiric coefficient (depend of the vegetation type) (-) 

h groundwater level (m) 

hd discharge single-cell aquifer water level (m) 

hi initial single-cell aquifer water level (m) 

h0 reference base level in the aquifer (m) 

i mean slope in the hypodermic flow direction (m m-1) 

I Infiltration (mm) 

In interception (mm) 

Ir irrigation (mm) 

Kc crop-specific coefficient (-) 

Khv horizontal permeability of vadose zone (mm day-1) 

Kvs vertical permeability of soil (mm day-1) 

Kvv vertical permeability of vadose zone (mm day-1) 

L length in the hypodermic flow direction (m) 

LAI leaf area index (m2 m-2) 

λ characteristic length (m) 

p distance between waterfront and regional groundwater level (m) 

P precipitation (mm) 

Pd precipitation on the vegetation (mm) 

Pe potential recharge (mm) 

Po precipitation limit (mm) 

Qh hypodermic flow in vadose zone (mm day-1) 

Qp vertical flow in vadose zone, recharge (mm day-1) 

Qs groundwater discharge (mm day-1) 
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Chapter 7 
 
 

Conclusions and future research 
 
 
7.1 General conclusions 

 

In (semi-)arid regions surface water resources are generally scarce and highly unreliable, being 

groundwater the primary source of water. Therefore, accurate estimation of aquifer recharge 

appears to be essential for sustainable water resource management, even more if intensive 

agriculture is practiced. Aquifer recharge estimation from intensively irrigated farmland is not easy 

task since there are many interrelated factors included in atmosphere (rainfall amount, evaporation 

rate), crop (root depth, transpiration rate, interception), soil and vadose zone (infiltration capacity), 

aquifer (water table position), but overall agriculture management (water requirements, crop 

rotation, irrigation method, etc). 

 

This chapter offers a summary of the main findings of this research. Main contributions of 

this thesis are: 

 

1. An improvement of the understanding of the processes controlling aquifer recharge from 

intensively irrigated agriculture, usually carried out in semi-arid climate, by using different 

approaches: a) unsaturated water flow assessment; b) multiphase transport through a tritium tracer 

test; and c) water balance in soil, vadose zone and aquifer.   
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2. Consistent aquifer recharge values derived from the most common crops cultivated in the 

Mediterranean context have been provided. A deeper knowledge of aquifer recharge under 

mentioned conditions should prove helpful in upgrading water resources management and 

assessing aquifer vulnerability to contaminants.  

 
 With regard to the first contribution of the thesis, development of methodologies and field 

observations in both saturated and unsaturated media, along with the numerical modelling reveal 

the processes that govern recharge from different crop types (vegetables and fruit trees) and 

agricultural management. The specific contributions of each developed methodology can be 

summarized as follows:  

 

a) Unsaturated flow approach for the root zone (Chapter 4) shows a suitable behaviour of the 

Richards’ equation and van Genuchten-Mualem constitutive relationships, with an important 

influence of Ks on the root water uptake reduction. In spite of the lower frequency of θ 

measurements from TDR compared to h measurements from tensiometers, water content data are 

highly representative. The use of pedotransfer functions to specify the hydraulic parameters 

allowed to reduce the laboratory tests and provided reliable results, although refinements of some 

parameters based on model fitting to a subset of data are necessary. 

   

b) Multiphase transport approach of tritium tracer test (Chapter 5) provides a suitable method to 

estimate recharge by irrigation return flow from a relatively low field sampling density. However, 

preferential tritium transport can be recognised due to soil tillage in the top soil. Richards’ 

equation and Campbell constitutive relationships (only one water retention and hydraulic 

conductivity curves for the total soil profile) permitted to successfully reproduce tritium transport 

in soil, in spite of that (i) Campbell’s power law does not fully reproduce water content values 

close to saturation, and (ii) tritium concentration varies sharply and is very sensitive to many 

interrelated factors (soil-plant-atmosphere). Advection and dispersion processes controlled 

transport of tritium in liquid phase, whereas in vapour phase only molecular diffusion process was 

considered. Effective molecular diffusion (pore diffusion) in liquid phase was approximately half 

of the obtained in clay soils. The main sinks of tritium were evaporation and transpiration. The 

tritium mass decay in soil took place in an exponential way, a loss of 95% occurred after 83 days, 

after 429 days tritium background concentration in soil was practically attained.  
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c) The long-term experiment water balance in soil, vadose zone and aquifer (Chapter 6), based on 

water table fluctuations (WFT), permitted to asses obtained recharge from the two other short-term 

methodologies (unsaturated flow and multiphase tritium transport) for annual row crops. Water 

balance approach permitted to reproduce successfully water table fluctuations, based on a linear 

function for solving drainage from soil to vadose zone, due to time step employed, days. For an 

improvement of obtained results and smaller time steps application, continuous unsaturated 

hydraulic conductivity function in soil and vadose zone should be necessary. The main advantage 

of this technique is relatively low data density requirements, generally available (e.g. water level 

data). On the other hand, it requires specific hydrodynamic conditions of the unconfined aquifer 

such as short time lag span between the water application and the water arriving to the aquifer, 

also groundwater level increase should be only due to water arriving. Considering recharge as the 

objective function, it only was sensitive to parameters included in soil and vadose zone, which is 

an intrinsic property of the presented water balance approach, a cascade model.  

   

 Common conclusions obtained from the three procedures are: (i) similar recharge values 

are obtained, although for unsaturated flow approach it is slightly overestimated; (ii) actual 

evapotranspiration was always lower than potential evapotranspiration, because soil moisture was 

insufficient to sustain the potential plant uptake, despite high irrigation frequency; (iii) although 

the agricultural practices from farmers are sound (high irrigation efficiency), high recharge values 

are achieved. Rainfall is unevenly distributed into a few intensive events highly variable in space 

and time, likewise very common in semi-arid regions, because soil water content is consistently 

high thus it meaningfully contributes to deep percolation; (iv) many of the involved parameters for 

model simulations can be estimated with reasonable accuracy or obtained from literature with 

relative ease.  

   

As for the second contribution of the thesis, recharge values for the most common 

intensively irrigated crops in a Mediterranean context are provided. Results indicate that irrigation 

return flow accounts for a substantial portion of the total aquifer recharge, in spite of the current 

irrigation efficiency, as occur on the Campo de Cartagena. Improved irrigation scheduling based 

on soil moisture status and weather conditions could significantly reduce irrigation return flow. 

However, this is not an easy task, due to rainfall regime. 

 

Many other crops (Table 4.3) have similar cultivation period and water requirement as the 

crops of the experiment, and they are grown for the same climate and soil conditions across the 
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Campo de Cartagena region. Therefore, in a first approximation, it may be assumed that irrigation 

return flow results are representative for other crops. Row crops in the region cover about 128.1 

km2. Approximately 19.3% of the crops are cultivated between January and April, 25.3% between 

May and August, while 55.4% are between September and December. Using the obtained recharge 

values for each of these periods, the recharge to the top unconfined aquifer from irrigation of 

annual row crops during hydrological year 2007-2008 was 22.4 hm3. From irrigated perennial 

crops (34.1 km2) and citrus (136.8 km2) the recharge for the same period was 7.2 and 32.4 hm3, 

respectively. 

   

Obtained recharge, 62 hm3 yr-1, is almost three times greater than value estimated by the 

Spanish Geological Survey (IGME, 1994), 23 hm3 yr-1. The different estimation methods applied 

by IGME (1994), depending on available data, were based in the assumption that crop water use 

was at the potential rate. As indicated above, this fact tends to overestimate water use and hence, 

underestimates recharge.  

 

Reliable recharge estimates are critical for management of water resources. Long-term 

average recharge rates are beneficial to groundwater management because management plans are 

generally developed at decadal timescales. Understanding factors controlling groundwater 

recharge shown in this thesis can be used to assess potential impacts by agrochemicals, climate 

variability and land use/land cover on aquifer. 

 

 

7.2 Future research 

 

Further work on this subject may be developed along the following lines of research: 

 

- Specifically for the approaches presented in this thesis, parameter calibration for 

multiphase tritium transport model (Chapter 5) was carried out manually. However, this 

process is very time consuming. In order to carry out an automatic calibration, algorithms 

for parameter optimization need to be implemented.  

 

- Numerical model restrictions condense or simplify the details contained in groundwater 

recharge process. To achieve greater reliability of model predictions, parameter 



Chapter 7                                                                                                           Conclusions and future research 

 119

uncertainty and correlation structure at multiple levels should be quantified to establish 

confidence intervals.  

 

- Recharge estimates of this thesis assumes equilibrium basis (uniform flow); however a 

non-equilibrium analysis (preferential flow) should be necessary in order to distinguish 

between preferential and non-preferential flow and transport and its quantification. 

 

Future simulations should consider a distributed modelling approach and the intensity of 

precipitation for accurate recharge simulation in irrigated regions. The most fundamental 

conceptual aspect should be addressed to simulate vegetation dynamics (ground cover and root 

growth). 

 



 

 

 


	Proyectos-Dedicatoira-Cita
	Agradecimientos
	Abstract V3
	Resumen V3
	Table of Contents V3
	List of Figures
	List of Tables
	Chapter 1 V5

