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per fer fàcil el que podria haver estat dif́ıcil i al Fayçal Ikhouane
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Resum

Les societats modernes plantegen nous reptes que demanden no-

ves maneres de tractar els projectes d’enginyeria. Els enginyers

han d’afrontar aquests reptes i desenvolupar solucions òptimes

i eficients pels problemes clàssics i nous. Els diferents avenços

prodüıts en la tecnologia hi poden ajudar, però una nova mane-

ra de tractar els problemes enginyerils és també necessària, no

considerant únicament les diferent especialitats de l’enginyeria

äılladament. En aquest context, podem parlar de la creació d’u-

na nova filosofia de fer enginyeria: la Mecatrònica. En els darrers

anys han aparegut diferents definicions: A [2] la Mecatrònica es

defineix com l’aplicació de decisions complexes a l’operació de sis-

temes f́ısics. A [22; 48] la Mecatrònia és definida com la integració

o sinergia de diferents disciplines de l’enginyeria. Aquestes disci-

plines inclouen l’enginyeria mecànica, l’enginyeria elèctrica, l’en-

ginyeria electrònica, l’enginyeria de control, les comunicacions

industrials i l’enginyeria de software. A [50] es dóna una definició

més espećıfica: En general, la Mecatrònica són soluciones de sis-

temes, que poden ser realitzades utilitzant components mecànics,

electrònics, computacionals, materials, qúımics i de programa-

ri amb les seves corresponents disciplines enginyerils. L’objectiu

d’aquestes solucions és incrementar la funcionalitat del sistema,

l’intel·ligència i la fiabilitat, reduint els costos de producció. No

obstant, tal com sosté [48], la importància del concepte no està

únicament en la definició sinó a la filosofia que hi ha al fons. És

important de veure, que la Mecatrònica no és només la suma dels

resultats de diferents disciplines, sinó la filosofia enginyeril per



afrontar els problemes com un de sol, fent servir les eines que

subministren les diferents disciplines.

La present tesi ha estat concebuda com un treball multidiscipli-

nar. Comença centrada en l’anàlisi general de diferents classes

d’actuadors, per després treballar la identificació i control d’ac-

tuadors piezoelèctrics. Per fer la primera part, s’investiguen as-

pectes mecànics i elèctrics, en especial les expressions de la força

i el treball de diferents tipus d’actuadors, aix́ı com totes les mag-

nituds relacionades. La segona part utilitza matemàtiques i en-

ginyeria de control, aplicant-ho a actuadors reals amb electrònica

de potencia i enginyeria de software.

Les dos parts de la tesi tracten problemes de diferent natura.

La primera part es titula Regles de disseny i modelat d’ac-

tuadors per l’optimització de sistemes mecatrònics i es

centra en proporcionar un anàlisis detallat de diferents actuadors

utilitzant un procediment general, orientat a millorar el disseny

de l’actuador. S’introdueix una nova metodologia per analitzar

actuadors lineals electromagnètics i hidràulics modelitzant la se-

ves magnituds mecàniques (força, treball i desplaçament) com a

funcions de la geometria i les propietats del material, estudiant

l’escalabilitat (en el sentit de produir la mateixa distribució de

tensions i deformacions per diferents mides). La motivació de re-

alitzar aquest treball neix de la necessitat d’estructures i sistemes

lleugers i de volum redüıt, que han de ser integrats en el proce-

diment de disseny el més aviat possible. Per tant, s’estudien les

relacions geomètriques, les proporcions i les propietats dels ma-

terials que maximitzen les magnituds mecàniques de sortida dels

actuadors per un volum i pes limitat, aix́ı com l’escabilitat per

la seva posterior integració en estructures. Els resultats són vali-

dats mitjançant anàlisi dimensional de les expressions obtingudes

i comparant els resultats numèrics amb dades d’actuadors indus-

trials. Es considera el comportament estàtic de diferents classes



d’actuadors, incloent actuadors hidràulics i electromagnètics li-

neals.

La segona part es titula Identificació i Control d’Actuadors

Piezoelèctrics. Els actuadors piezoelèctrics estan demostrant

ser una solució fiable per moltes aplicacions, des del microposi-

cionament (màquines eina, dispositius òptics o microscopis mo-

derns) al control actiu d’estructures. La principal motivació de la

segona part de la tesis és aprofundir en models per representar el

comportament histerètic dels actuadors piezoelèctrics per poste-

riorment aplicar els models al desenvolupament de controladors

pels sistemes histerètics. Es desenvolupa inicialment un estudi

general dels actuadors piezoelèctrics per després tractar la seva

modelització. Degut a l’elevat comportament no-lineal observat

es necessita un model d’histèresis. El model de Bouc-Wen ha

estat escollit i s’ha treballat en la identificació dels paràmetres

del model i la seva validació. Un cop el sistema ha estat mode-

lat, s’ha dissenyat un nou controlador lineal i s’ha implementat

en una plataforma experimental utilitzant un DSP (Processador

digital de senyal).

Encara que les dues parts estan clarament diferenciades, la uni-

tat de la tesis pot ser trobada a les arrels de la Mecatrònica. La

tesis tracta la resposta a una sola pregunta: Com podem mi-

llorar un sistema mecatrònic? No obstant, la resposta és doble:

Dissenyant i modelant actuadors òptims considerant el sistema

o estructura complet i controlant el sistema adequadament fent

servir els models desenvolupats.
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Abstract

Fast changing societies come up with new challenges that require

new engineering approaches. Engineers have to face such chal-

lenges and provide novel and more efficient solutions to classical

and new problems. This can be done by using different rele-

vant advances produced in technology. Furthermore, a new way

of addressing the engineering problems has to be applied, not

considering only isolated engineering specialities. In this frame,

we can talk about the creation of a new engineering philosophy:

Mechatronics. Many definitions have been appeared in the last

years: In [2] it is stated that Mechatronics is the application of

complex decision making to the operation of physical systems. In

[22; 48] Mechatronics is defined as the integration or synergy of

different engineering disciplines. Such disciplines may include

Mechanical Engineering, Electrical Engineering, Electronics En-

gineering, Control Engineering, Industrial Communications and

Software Engineering. In [50] a more specific definition is given:

In general, mechatronics are system solutions, which can be real-

ized using mechanical, electronic, computer, material, chemical,

and software components and the corresponding engineering dis-

ciplines. The goal of these solutions is to increase system func-

tionality, intelligence, and reliability while decreasing system pro-

duction cost. Nevertheless, as it is stated in [48], the importance

of the concept does not lie only in the definition but in the philos-

ophy behind it. It is very important to note that Mechatronics is

not only the sum of the results of the different disciplines, but the

engineering philosophy to face engineering problems as a whole,

employing the tools provided by the different disciplines.



The present thesis has been devised as a multidisciplinary work.

It begins focusing on the general analysis of different actuator

classes to later face the identification and control of piezoelectric

actuators. To perform the first part, mechanical and electrical

issues are investigated, focusing on the force and work expressions

of certain classes of actuators, and all the quantities involved.

The second part employs mathematics and control engineering,

applying it to real actuators with power electronics and software

engineering.

The two parts of the thesis deal with problems of different nature.

The first part is titled Design Rules and Actuator Modeling

for the Optimization of Mechatronic Systems and focuses

on providing the detailed analysis of different actuators using a

general procedure and oriented towards improving the actuator

design. It introduces a new methodology to analyze linear electro-

magnetical and hydraulic actuators by modeling their maximum

output mechanical quantities (force, work and stroke) as functions

of the geometry and material properties and discusses the scala-

bility (in the sense of producing the same stress and strain dis-

tribution for different sizes). The motivation to undertake such a

work stems from the need for light and volume reduced structures

and systems, which are to be integrated in the design procedure as

early as possible. Hence, the geometric relationships, aspect ra-

tios and material properties that maximize the actuator output

quantities with a certain limited volume or weight, along with

their scalability for the integration in structures are studied. A

validation of the results is done by performing dimensional anal-

ysis of the expressions obtained and comparing numerical results

with industrial actuator data. The static behavior of different

classes of actuators is considered. Such actuators include linear

hydraulic and electromagnetic actuators.



The second part is titled Identification and Control of Piezo-

electric Actuators. Piezoelectric actuators are proving to be a

reliable solution for many engineering applications, ranging from

micro-positioning (machine tools, optic devices or modern micro-

scopes) to active control of structures. The main motivation of

this thesis part is to delve into models to represent the hysteretic

behavior of piezoelectric actuators in order to apply them to the

conception of controllers for such hysteretic systems. A general

study of piezoelectric actuators is performed to later deal with the

modeling of such actuators. Due to the high non-linear behavior

observed, the problem of identifying and modeling the actuator

requires a hysteresis model. The Bouc-Wen model has been cho-

sen and investigations to identify its parameters and to validate

the model have been undertaken. Once the system has been iden-

tified, a linear controller has been designed and implemented in

a real platform, employing a DSP (Digital Signal Processor).

Although the two parts are clearly differentiated, the thesis unity

can be found in the roots of Mechatronics. The thesis deals with

the response to one single question: How can we improve a mecha-

tronic system? However, the answer is twofold: By designing

and modeling optimum actuators taking into account the whole

system or structure and by controlling the system appropriately

using developed models.
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Thesis Outline

The thesis has been divided into two parts. Part I is entitled Design Rules

and Actuator Modeling for the Optimization of Mechatronic Sys-

tems and includes chapters 1, 2, 3, 4 and 5. Part II is entitled Identifica-

tion and Control of Piezoelectric Actuators and includes chapters 6,

7, 8, 9, 10, 11 and 12.

The first part has been structured as follows. In chapter 1 a brief in-

troduction is presented, defining the orientation, motivation and objectives.

In chapter 2 the methodology is introduced, including the description of

the different steps: design parameters, force-stroke and work-stroke curves,

discussion of the limiting quantities involved in the output quantities ex-

pressions, maximum force for a given size, analysis of the scalability of the

actuator, dimensional analysis study and comparison between the theoretical

results and the industrial actuators quantities.

In chapter 3 the methodology is applied to electromagnetic actuators.

Two linear electromagnetic actuators are considered: solenoids and moving

coil actuators. In chapter 4 the methodology is applied to hydraulic actu-

ators. Finally, in chapter 5 the conclusions are summarized.

The second part has been structured as follows. In chapter 6 a brief in-

troduction is presented, defining the motivation and objectives. In chapter 7

an introduction to the piezoelectric effect is exposed. The relevant quantities

and constants are introduced and the typical linear formulation for low and

high frequency are stated. Piezoelectric actuators are introduced, along with

their common applications, advantages and drawbacks.

The Bouc-Wen hysteresis model is introduced in chapter 8. Thereafter,

an identification technique to determine the parameters is proposed and its

xv



robustness against different classes of perturbations is discussed in chap-

ter 9.

Chapter 10 adds an adaptation to the previous model, in order to allow

it to characterize better the behavior of piezoelectric actuators. The model is

validated with a real actuator and the advantages over the previous chapter

method are shown.

In chapter 11 the models developed are employed to design a new con-

troller. The controller takes into account not only the error but the output

control effort which is tried to keep unchanged when a perturbation occurs.

In chapter 12 the conclusions of the thesis part are summarized.
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Chapter 1

Introduction

An actuator can be defined as an energy converter which transforms energy

from an external source into mechanical energy in a controllable way. The

actuator input quantities depend on the type of energy used. For electromag-

netical, piezoelectric and magnetostrictive actuators the input quantities can

be the current, the charge or the voltage; for fluid power actuators the fluid

pressure or the flow; for shape memory alloys and thermal expansion actua-

tors the temperature. The relevant output quantities to be considered in the

optimization are the force, the work and the stroke. The input quantities are

provided by a control system which lead output quantities to the referenced

values. Such quantities are ruled by the mechanical load system or structure,

which defines the relationship between the force and the stroke. The inte-

gration of actuators and loads in a mechatronic or adaptronic1 system allows

the conception of a unique system which is to be analyzed.

1.1 Design Rules and Actuator Modeling for

the Optimization of Mechatronic Systems

The increasing quantity of different novel actuator technologies being used

in different industrial applications along with the need for light and volume

1Adaptronics is a term referred to the analysis, design and integration of smart struc-
tures and systems.
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1. Introduction

reduced systems are boosting the necessity of general analysis using uniform

criteria.

Regarding the comparison of different actuators, in [1] an actuator selec-

tion criterium is presented in order to develop a software to choose the most

suitable actuator for different applications. To undertake such a task perfor-

mance indices and material property charts are provided. The actuators as

energy converters are analyzed and compared in [37], focusing on robot ap-

plications. A comparison of the performance of different actuators regarding

stress, strain, energy and precision is introduced in [23], showing different

tables and graphics to compare the performance of the studied actuators.

In [12] the performance of solid-state actuators available in the market is

compared and studied. The environmental impact of the mechanical design

is presented in [20], and material property charts including this new crite-

ria are presented. A new selection and classification criterium is introduced

in [60], including a comparison between existing actuators in the market as

well as their stress, strain, power densities, and resolution.

Although the previous references deal with the comparison of different ac-

tuators using different criteria, to the best of our knowledge no methodology

to address the modeling of each actuator allowing comparisons of different

classes of actuators has been found. Therefore, the present work proposes a

novel methodology which might be applied to any class of actuator in order

to optimize mechatronic and adaptronic systems.

The motivation to develop a methodology stems from the need for light

and volume reduced structures and systems, which are to be integrated in

the design procedure as early as possible. Hence, the geometric relationships,

aspect ratios and material properties that maximize the actuator output

quantities with a certain limited volume or weight, along with their scalability

for the integration in structures are studied. A validation of the results is

done by performing dimensional analysis of the expressions obtained and

comparing numerical results with industrial actuator data.
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1.2 Application of the methodology

1.2 Application of the methodology

Once the methodology has been presented, it is applied to electromagnetic

and hydraulic actuators. Electromagnetic actuators are commonly used in

many engineering fields. They have good force and work densities, although

not as high as hydraulic actuators. They are easily controllable and the power

source providing the energy can be placed as far away as necessary. Their

use must be avoided when their environment must be free of electromagnetic

fields or interferences. However, many technologies to deal with such effects

are being developed. The electrical circuit provides the current to the coils.

This current flows through wires and produces heat due to the Joule effect.

Different materials can be employed for the wires but usually copper, silver

or aluminium are used because they present the lowest resistivities. The

magnetic circuit provides the flux and the force. Different materials can be

used in the magnetic circuit depending on the magnetic permittivity. The

electromechanical actuators have an electrical and a magnetic circuit. Such

circuits are built together, and therefore, the heat generated in the coils

by Joule effect must flow through part of the magnetic circuit. The heat

transfer circuit includes all the components of the actuator and depends on

the geometry of each of them. Although different materials can be used in

both the electric and magnetic circuit, it is common to talk about copper for

the electric circuit and iron for the magnetic circuit.

As far as fluid power actuators are concerned, they use the fluid power

to provide mechanical work; the difference between the pressures P in two

different chambers results in a relative pressure which produces a force F in

a given surface S which yields F = PS. The pressure is the input quantity,

performing the same function as the current in electromechanical actuators.

The fluid actuators employed in the industry are mainly divided by the state

of the fluid employed: hydraulic actuators employ an incompressible liquid

(usually oil), while pneumatic actuators employ a compressible gas (air). Hy-

draulic actuators are commonly used in many engineering fields. They show

the following advantages: very good force and work densities (more than any

other actuator), strokes as long as necessary (if enough fluid is supplied),
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1. Introduction

easily controllable and the fact that the power source providing the energy

can be placed far away from the actuator (but not as far as with the elec-

tromagnetic actuators). Their main disadvantages are the safety problems

generated by the high pressures needed (the same fact that provides the

advantages), the leakage flow (that can become an important problem for

actuator performance, safety conditions and environmental issues) and the

hardly inflammability of the oil employed. Pneumatic actuators are used in

many engineering fields, as well. They present good force and work densi-

ties, even though not as high as the hydraulic actuators, they can perform

strokes as long as needed like their hydraulic counterparts, they are easily

controllable and the power source providing the energy can be placed far

away from the actuator. However, they cannot work with pressures as high

as the hydraulic actuators because of the problems derived from the high

compressibility of the gases. This same fact makes the hydraulic actuators

faster in response and stiffer against external load disturbances. The effi-

ciency of the hydraulic systems is also higher. It is caused by the losses

of energy due to the heat transfer (in the air cooling), higher leakage and

worse lubrication which occurs in the pneumatic systems. Nevertheless, the

pneumatic systems can work at higher environment temperatures. In the

present work, the hydraulic actuators are studied. However, some of the

results obtained also apply for their pneumatic counterparts.

Although several studies [1; 12; 23; 37; 60] in the literature provide rules

and charts for selecting the most optimal actuator class for different appli-

cations and others [21] delve into the study of different actuator classes, to

the best of our knowledge no detailed analysis of linear electromagnetic or

hydraulic actuators following a general procedure and oriented towards im-

proving the actuator design has been found. The present thesis introduces

a new methodology to analyze linear electromagnetical and hydraulic actua-

tors by modeling their maximum output mechanical quantities (force, work

and stroke) as functions of the geometry and material properties and dis-

cusses the scalability (in the sense of producing the same stress and strain

distribution for different sizes).
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1.3 Objectives and Scope

The motivation of this thesis part is to provide the detailed analysis of

different actuators using a general procedure, rather than introducing a gen-

eral analysis (see [23]). The static behavior1 of different classes of actuators

is considered. Such actuators include linear hydraulic and electromagnetic

actuators. In this second group, the actuators have been chosen as exam-

ples of electromagnetic actuators with (moving coil) and without (solenoid)

permanent magnets.

1.3 Objectives and Scope

The objectives of the present thesis part may be summarized as:

1. Design of a methodology to deal with the modeling and opti-

mization of industrial actuators. The methodology is the crucial

step for the study of different classes of actuators. The methodology

includes design optimization, scalability analysis and validation with

real actuators and dimensional analysis.

2. Application of the methodology. The methodology has to be ap-

plied to common industrial actuators: hydraulic and electromagnetic.

These two classes of actuators are the most employed in the industry.

As far as the scope is concerned, the optimization is performed for linear

hydraulic and electromagnetic actuators considering static behavior. Neither

the dynamics nor the non-linear motion are considered in this work.

1.4 Outline

The thesis part has been structured as follows. In chapter 2 the method-

ology is introduced, including the description of the different steps: design

parameters, force-stroke and work-stroke curves, discussion of the limiting

quantities involved in the output quantities expressions, maximum force for

1The static behavior analysis assumes very slow operation, and hence it does not take
into account the effect of the frequency in the analyzed system.
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a given size, analysis of the scalability of the actuator, dimensional analy-

sis study and comparison between the theoretical results and the industrial

actuators quantities.

In chapter 3 the methodology is applied to electromagnetic actuators.

Two linear electromagnetic actuators are considered: solenoids and moving

coil actuators. In chapter 4 the methodology is applied to hydraulic actu-

ators. Finally, in chapter 5 the conclusions are summarized.
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Chapter 2

Design Rules and Actuator

Modeling for the Optimization

of Mechatronic Systems

As previously stated, the purpose of this work is to develop design rules and

models for actuator optimization. This section explains the general procedure

introducing all the concepts which are going to provide such rules. The main

steps are:

1. Design parameters. Study of the geometry and materials of the actua-

tors.

2. Force-stroke and work-stroke curves. Analysis of the force, stroke and

work production.

3. Discussion of the limiting quantities involved in the output quantities

expressions.

4. Maximum force for a given size. Study of the limit force, stroke and

work.

5. Analysis of the scalability of the actuator.

6. Dimensional analysis study of the relevant quantities.
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2. Design Rules and Actuator Modeling for the Optimization of
Mechatronic Systems

7. Comparison between the theoretical results and the industrial actuators

quantities.

The first step introduces the design parameters in the construction of

the actuator. A detailed schematic drawing is presented showing the geo-

metric properties and the materials used. In order to obtain a clear design

parametrization geometrical factors, aspect ratios and filling factors are pre-

sented.

The geometrical factors define the ratio between any geometrical di-

mension and a reference geometrical dimension in the same axis. A non-

dimensional factor ki is obtained for each length li as a quotient of this

length and the reference length l in its axis as:

ki =
li
l
→ li = kil (2.1)

Using these factors, all the lengths in the same axis are related to one single

length, simplifying the analysis of the size dependence of different quantities.

The number n of independent reference lengths depend on the degrees of

symmetry of the actuator. An actuator with cylindrical shape presents two

different reference lengths (n = 2, since a cross-section diameter and a length

define a cylinder), a spherical actuator would be defined with one reference

length (n = 1, only a diameter defines a sphere).

The relationships between different reference lengths is obtained using

aspect ratios as:

η =
r

l
(2.2)

If n independent reference dimensions are necessary, n − 1 aspect ratios

are to be defined. The combination of the previous two concepts implies

that all the geometric dimensions are expressed as a function of one single

reference length, which is associated to the size of the actuator and allows

the independent study of the performance of an actuator with a limited size

and the actuator performance when the size is changed.

The filling factor provides the portion of usable cross-section surface when

electric wires are concerned. Due to the shape of the wires and the necessary

10



electrical isolation, the entire cross-section designed for the copper wires is

not employed. The filling factor yields:

kff =
Scopper
Stotal

(2.3)

where Scopper is the cross-section of the wires and Stotal the overall cross-

section of the coil.

A general expression of the output quantities as a function of all the input

quantities involved is developed in the second step. These expressions are

taken from the general physics laws ruling the actuators concerned. Each

type of actuator behaves in a different way and its expressions are presented

describing all the assumptions done. The force-stroke curves and work-stroke

curves are obtained, establishing the characterization plot of the actuator.

The inputs (currents, voltages, pressures, etc.) capable of changing these

curves are presented, explaining why and how they can influence the actu-

ator performance. The different working points depending on the load are

discussed and graphically shown. It is important to note that the design

parameters cannot be considered inputs and their influence is discussed in

the following steps.

The third step focuses on the quantities involved in the expressions ob-

tained in the second step. The output quantities developed by an actuator

can be controlled by modifying the input quantities (electrical voltages and

currents, fluid pressures and flows, etc.). Some physical limits (maximum

allowed temperature, mechanical resistance etc.) do not allow the actua-

tor output quantities to be increased indefinitely. Since the purpose of the

present work is to separately deal with the maximum force, stroke and work

available in a given size and the performance scalability, only geometric quan-

tities (reference lengths), relationships (geometrical factors, aspect ratios and

filling factors), material properties (magnetic permeability, resistivity, resis-

tivity temperature coefficient, conductivity, etc.), universal physics constants

(µ0, σ, etc.) and physical thresholds (maximum temperature, stress, etc.)

are to be used. Therefore, all the other quantities (currents, magnetic fluxes,

pressures, etc.) must be expressed as functions of the mentioned quantities.
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2. Design Rules and Actuator Modeling for the Optimization of
Mechatronic Systems

The physical thresholds limiting the maximum force, stroke and work are

discussed, showing how they limit the performance of the actuator. The

principle limiting quantity in electromagnetical actuators is the allowed tem-

perature.

The quantities involved in the force, stroke and work expressions devel-

oped in the latter step are substituted in the fourth step in order to express

them depending on the limiting values and design parameters. The analysis

of a given output quantity, for a given class of actuators, as a function of the

design variables, shows (as a rule) a monotonic dependence on certain size

variables. For instance, the limit force will typically depend monotonically on

the actuator cross section and the actuator stroke on the length. Other de-

sign variables will exist (typically some aspect or shape factors) for which the

considered output quantity can be maximized. The search of such optimal

design variables is very useful, since it enables a fair and effective comparison

between actuators of different kinds and can be of essential importance for

the optimization of the whole active mechanical system. These expressions

are carefully analyzed keeping the size constant. The limit force, stroke and

work available in a given size are studied depending on the different design

parameters. The geometric factors, aspect ratios and the materials selected

providing the best performance are discussed. This leads to a general expres-

sion of the maximum force, stroke and work in a given volume and provides

design rules to optimize the actuator’s performance with the proper ratios

and materials.

In the fifth step the actuator performance as a function of the size is

analyzed and the scalability and application range are discussed. If two

geometrically similar passive mechanical systems with a given scale factor are

considered, and their mechanical behavior can be described by an approach

based on continuum mechanics, they are to be loaded by forces whose ratio

is the square of the scale factor in order to produce the same stress and

strain distribution and, consequently, a similar displacement field. A certain

actuator class is mechanically scalable if its output quantities follow the same

rules, i.e. if (by proportional scaling in all directions) the actuator force

is proportional to the square of the size and the actuator displacement is

12



proportional to the size. Usually, a certain actuator class will be mechanically

scalable only in a certain size range; beyond this range, the required actuator

size changes with respect to the rest of the mechanical system, which can

make the use of the considered type of actuator unpractical. Scalability is

discussed for the considered actuator classes.

If the force is proportional to the area and the stroke to the length in

the whole actuator’s domain it follows that the work is proportional to the

volume since the work is obtained from the integration of the force between

two different strokes. If all these requirements are fulfilled and the actuator

is fully scalable significant consequences arise. The structures working in

the elastic region are considered fully scalable loads, the expression ruling

its behavior σ = Eε shows that the quotient between the stress σ = F/A

and the strain ε = x/L is the Young Modulus E without dependence on the

size of the structure. Therefore, if the actuator is shown to be scalable and

the load is scalable in the sense described above, the whole system (actuator

plus load structure) would be scalable, allowing the development of models of

easy (normal size) construction as a preliminary step to the construction of

large or small systems (inside the scalability range), with the corresponding

saving of resources. In this case, the experimental results must be analyzed

as non-dimensional numbers and provide information for all the range of sizes

where the scalability can be assumed.

The requirements to keep the actuator force and work scalable are dis-

cussed. All the scalability analysis is based on some assumptions which are

to be noted. In electromagnetical actuators the Nusselt[3] number is decisive

and its influence on the scalability is discussed. Since the described assump-

tions are necessary to consider one actuator scalable, the non-scalability when

these assumptions do not hold true is studied, too. The actuator performance

as a function of the size is undertaken and conclusions are obtained for each

actuator.

In the sixth step the results obtained are contrasted with dimensional

analysis. Finally in the seventh step the theoretical results obtained are

compared to the data from industrial actuators.

13



2. Design Rules and Actuator Modeling for the Optimization of
Mechatronic Systems

14



Chapter 3

Application to electromagnetic

actuators

Before applying the described methodology to two particular classes of ac-

tuators (subsections 3.1 and 3.2), some general considerations about electro-

magnetic actuators are given.

Electromagnetic actuators are commonly used in many engineering fields.

They have good force and work densities, although not as high as hydraulic

actuators. They are easily controllable and the power source providing the

energy can be placed as far away as necessary. Their use must be avoided

when their environment must be free of electromagnetic fields or interfer-

ences. However, many technologies to deal with such effects are being devel-

oped.

The electrical circuit provides the current to the coils. This current flows

through wires and produces heat due to the Joule effect. Different materi-

als can be employed for the wires but usually copper, silver or aluminium

are used because they present the lowest resistivities (Silver 1.59 · 10−8 Ωm,

Copper 1.68 · 10−8 Ωm, Aluminium 2.65 · 10−8 Ωm). Copper is the most

commonly used material because of the cost. New technologies with super-

conductor materials (of extremely low resistivity) are being developed, but

they are beyond the scope of this work. The magnetic circuit provides the

flux and the force. Different materials can be used in the magnetic circuit

depending on the magnetic permittivity.
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3. Application to electromagnetic actuators

The electromechanical actuators have an electrical and a magnetic circuit.

Such circuits are built together, and therefore, the heat generated in the coils

by Joule effect must flow through part of the magnetic circuit. The heat

transfer circuit includes all the components of the actuator and depends on

the geometry of each of them. Although different materials can be used in

both the electric and magnetic circuit, it is common to talk about copper for

the electric circuit and iron for the magnetic circuit.

Although some magnetic (demagnetization, saturation and magnetization

hysteresis) and mechanical (friction and mechanical stress) effects are impor-

tant in electromagnetical actuators, this work assumes that the temperature

is the quantity that limits the available force. Therefore, to maximize the

force, a study of the heat transfer phenomenon is to be done. Although

there are losses caused by the magnetic hysteresis, eddy currents and fric-

tion, the resistive losses are dominant in the considered actuators operation,

and hence, only such resistive losses are considered. An expression of the

maximum current or current density allowed in an actuator in order to keep

the temperature under the safety threshold has been developed. For the sake

of simplicity, continuous operation (100 % duty cycle) has been assumed,

nonetheless the case of non-continuous operation can be considered by using

the RMS current. The model will be valid as long as the thermal transients

are significantly slower than the mechanical. Otherwise (for fast tempera-

ture transients), the worst case should be considered, and thus, the maximum

current of the cycle should be chosen instead of the RMS current.

Different actuators shapes and heat flow directions are discussed, and the

expressions are later used to evaluate the maximum force of each actuator.

First of all, the resistance of the coils of all the actuators is expressed as a

function of the geometrical dimensions and the copper resistivity as:

R =
δreslw
Aw

=
δ0 (1 + γ∆T ) lw

Aw
(3.1)

where γ is the resistivity temperature coefficient, δ0 the resistivity at a given

temperature T0, ∆T = Tmax−T0 the temperature increment, and lw and Aw

the length and cross-section of the wire. The steady-state heating balance
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equals the heat power produced in the coils due to the Joule effect with the

heat power which the actuator can dissipate by means of conduction and

convection as:

Ri2 = Q̇ =
∆T

ϑcond + ϑconv
(3.2)

where ϑcond is the thermal resistance by means of conduction and ϑconv is

the thermal resistance by means of convection. The thermal resistance is

defined in [3] as the temperature increment ∆T divided into the heat flow Q̇.

Since the electromagnetical actuators studied in this work present cylindrical

shape, only this actuator shape will be considered. If the heat produced in

the coils flows radially, the thermal resistances can be written as:

ϑcond =
log (rout/rin)

2πLλiron
(3.3)

ϑconv =
1

2πLrouthc
(3.4)

where L is the length of the actuator, λiron the conductivity of the iron, hc

the convection coefficient between the iron surface and the air, and rin and

rout the internal and external radium of the pipe surrounding the actuator. If

no pipe is surrounding the actuator there will be no heat transfer by means

of conduction, and therefore, less thermal resistance.

From the heating balance (3.2) an expression of the maximum allowed

current is obtained. The maximum current can be expressed as:

imax =

√
∆T

R(ϑcond + ϑconv)
(3.5)

Substituting the resistance obtained in (3.1) and the thermal resistances

from (3.3) and (3.4) in the last expression, the maximum current can be

written as:

imax =

√√√√ Aw2πL∆T

δ0 (1 + γ∆T ) lw(
log

(
rout
rin

)
λiron

+ 1
routhc

)

(3.6)

When the heat flows axially (moving coil actuator) without any conduc-
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3. Application to electromagnetic actuators

tion (since the air is surrounding de coils), the maximum current can be

expressed as:

imax =

√
Aw∆Tπ(r2

out − r2
in)hc

δ0 (1 + γ∆T ) lw
(3.7)

The conduction coefficient λ is a material property, but the convection

coefficient hc depends on the non-dimensional Nusselt number which is ex-

pressed in [3] as:

Nu−L =
hcL

λair
(3.8)

The Nusselt number can be written as a function of Reynolds, Prandtl and

Grashof numbers, in [33] it is presented as:

Nu = CRm
e P

n
r G

p
r (3.9)

where Re is the Reynolds number (ρvL/η) which shows the relationship

between the inertial forces and the viscous forces in the dynamics of a fluid,

Pr is the Prandtl number (ηc/λ) which characterizes the regime of convection,

Gr is the Grashof number(βg∆TL3/ν2) analog to the Reynolds number when

natural convection is concerned and C, m, n and p can take different values

in forced convection (C < 1,m < 1, n = 1/3, p = 0) and natural convection

(C < 1,m = 0, n < 1/3, p < 1/3). The Nusselt number can be in all the

cases expressed as:

Nu−r = KNur
α (3.10)

where KNu and α must be discussed in each case.

If it is not otherwise stated the values used in the numerical calculations

done in this work are λair = 0.0257W/Km, λiron = 80W/Km, µ0 = 1.25664·
10−6 Tm/At, ∆T = 50 K, µr = 200, µc = µm = 1, Hc = 0.5 · 106 A/m,

ρ0 = 1.68 · 10−8 Ωm and γ = 0.0068 Ωm/K.

3.1 Solenoid actuators

Step 1. The solenoid actuators provide motion exciting a magnetic field

where a plunger (movable part) tries to minimize the reluctance (i.e. the

18



3.1 Solenoid actuators

air gap) moving to the less reluctance position. The geometry is shown in

Fig. 3.1. The non-dimensional constant kψ refer to ψ geometry dimensions

of Fig. 3.1.

l2

l

l1 r
r3 r1

r2

hcu

x

copper wires

iron pipe

iron plates

Figure 3.1: Solenoid actuator sketch

Step 2. The magnetic flux flowing inside a solenoid can be derived from

the reluctance expression. It can be written as:

Φ =
Fmm
<

=
Ni

x
µ0S

+ l2+leq−x
µrµ0S

=
Niµrµ0S

l2 + leq + x (µr − 1)
(3.11)

where < is the reluctance expressed as a function of the magnetic properties

of the iron µr, the length l2, the cross-section of the plunger S = πr2
1 and

the length leq, which is the plunger length with a reluctance equivalent to

the reluctance of the plates and the pipe. Fmm is the magneto-motive force,

equal to the number of turn N times the current i. The number of turns can
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3. Application to electromagnetic actuators

be expressed as a function of the actuator dimensions as:

N =
hcul2kff
Aw

(3.12)

where hcu is the thickness of copper, l2 the coil’s length, kff the filling factor

described in (2.3) and Aw the cross-section of a single wire. The solenoid

force is produced for the change of reluctance due to the change of the air

gap distance. Its expression can be derived from the energy stored in a

solenoid Wm =
∫
idλ =

∫
NidΦ. It yields:

F =
dWm

dx
=

SN2i2µ2
rµ0

2 (l2 + leq + (µr − 1)x)2 (3.13)

The energy can be obtained integrating the force (3.13) between a given

displacement x and 0 as:

W =

∫ x

0

Fdx =
SN2i2µ2

rµ0x

2 (l2 + leq + (µr − 1)x) (l2 + leq)
(3.14)

It can be seen that W is the total energy which the actuator stores in

each position. This energy is transformed in work against a load and kinetic

energy Wk = (1/2)mv2, since this work focuses on the static behavior of the

studied actuators, a quasi-static movement is considered. Therefore, if it is

not otherwise stated all the energy is assumed to be transformed into work.

The force-strokes curves can be seen in Fig. 3.2.

The force-stroke curves are presented when the input quantity (electrical

current) is changed for different loads (one elastic load, equivalent to a struc-

ture, and one constant load). It can be seen how the operating points are

changing depending on the input quantity and the load, when the current is

increased working against an elastic load the working point is moving from

E0 to E5. From the initial working point E0 the load can be moved to the

other points depending on the input current. If a current 3i0 is applied the

plunger moves from E0 to E3 and remains there. The work against a con-

stant load presents more difficulties. When the current is not large enough

the actuator cannot begin to move and remains blocked at the initial posi-
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3.1 Solenoid actuators
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Figure 3.2: Force-Displacement curves for elastic and constant loads

tion, for this reason S1 and S2 do not appear in the curve and a minimum

current 2.5i0 must be established to begin the traction. The force-stroke

curves present hyperbolic behavior, with a horizontal asymptote tending to

0 as the distance increases and a vertical asymptote located in the negative

stroke segment (physically unreachable).

Step 3. The general expressions obtained for electromagnetic actuators

(3.13), (3.12) and (3.8) apply for solenoid actuators.

Step 4. Replacing the maximum current (3.6) in (3.13), using the number

of turns given in (3.12), the convection coefficient of (3.8) and the geomet-

rical expressions of (2.1) the maximum force (obtained when x = 0) can be

expressed as:

Fmax
Sact

=
λairµ0∆Tµ

2
r

δ0 (1 + γ∆T )

k2
Lk

2
r1

(
kr3−kr1

kr2

)
kff(

2kλλair

λiron
+ 4

NuD

) (3.15)
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3. Application to electromagnetic actuators

with kλ = log(1/kr3) and kL = l2/(l2 + leq). The equivalent length ratio

can be expressed as:

leq
l

=
k2
r1(1− 2kl1)

1− k2
r3

+
k2
r1η

2log 1
kr1

kl1
(3.16)

It can be noted that the maximum force divided into the cross-section

of the actuator is expressed as a function of material constants, physical

thresholds and geometrical relationships. A design factor depending on the

design parameters can be defined from (3.15) as:

qf = k2
Lk

2
r1

(
kr3 − kr1
kr2

)
kff (3.17)

Substituting all the terms in the last expression it can be written as:

qf =
k2
l22k

2
r1kff

kr3−kr1

kr3+kr1(
kl2 +

k2
r1kl2

1−k2
r3

+
k2

r1η
2log 1

kr1

(1−kl2)/2

)2 (3.18)

The expression (3.18) has been analyzed numerically. The best design

parametrization has been found for values kr1 = 0.34, kr3 = 0.76, kl2 = 0.50

and η < 0.1. The optimized found design factor is qf = 0.0402.

In Fig. 3.3 the design factor qf depending on the ratios kr1 and kr3 is plot-

ted. The aspect ratio η, the ratio rl1 and the filling factor are kept constant

to allow a three-dimensional plot. The filling factor kff is typically around

0.75 and can be considered independent of the other design parameters. Re-

garding the aspect ratio, in (3.18) it is shown that a large η implies a low

design factor qf , but its importance depends on the other terms on the de-

nominator. It has been seen that below aspect ratios of 0.1 the improvement

of the design factor is insignificant. In Fig. 3.3 it can be seen that kr1 values

between 0.3 and 0.4 provide the best performance for kr3 values between 0.7

and 0.8. In Fig. 3.4 the design factor behavior depending on kl2 and kr3 with

a constant kr1 = 0.34 is presented. The plot shows that high design factors

are obtained for kr3 values between 0.7 and 0.8 and in a wide range (0.1−0.9)

of kl2.
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3.1 Solenoid actuators
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Figure 3.3: Solenoid design factor depending on kr1 and kr3 with kl2 = 0.5
and η = 0.1

The maximum displacement is l2 and is proportional to the length of the

actuator l since l2 = kl2l. The maximum volumetric work is achieved when

the whole displacement is done. It can be obtained integrating the force.

The maximum work expression found yields:

Wmax

Vact
=

qfλairµ0∆Tµ
2
r

kL

(1/kL+µr−1)

δ0 (1 + γ∆T )
(

2kλλair

λiron
+ 4

NuD

) (3.19)

The discussion undertaken for the force optimum design parametrization

applies for the work, too.

Step 5. If the leq/l ratio is kept constant in (3.15) and (3.19) the scal-

ability will depend only on the Nusselt number. If the Nusselt number is

assumed to be constant (α = 0), the force will be independent of the actua-

tor length and it will be proportional to the cross-section. The work will be

proportional to both the length and the cross-section, and therefore to the

volume so that a constant volumetric energy will be shown. Such an assump-
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3. Application to electromagnetic actuators
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Figure 3.4: Solenoid design factor depending on kl2 and kr3 with kr1 = 0.34
and η = 0.1

tion cannot generally be done when studying the different convection cases.

With a positive value of α (which is the behavior observed) the actuator force

and work are not scalable anymore and their maximum performance values

are increased when the size is increased. In such a case the maximum force

per cross-section can be expressed as:

Fmax
Sact

= ka
rα

kb + rα
(3.20)

It can be noted that for high values of r the maximum force tends to be

scalable since lim
r→∞

kar
α/ (kb + rα) = ka. It can also be observed in Fig. 3.5.

For tiny actuators the force and work are strongly unscalable and the per-

formance becomes worse. It may explain that these actuators are not used

when a small actuator is required.

Step 6. The force provided by these actuators can be analyzed with

dimensional analysis using the Buckingham Pi Theorem [5], the quantities

involved are shown in the Table 3.1. The FLTIθ (force - length - time -
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3.1 Solenoid actuators
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Figure 3.5: Solenoid force scalability for different α coefficients in the Nusselt
number expression

current - temperature) system is used.

Table 3.1: Solenoid actuator dimensional analysis quantities
F Force [F ]
x Position [L]
µ Permeability [FI−2]
hc Convection Coef. [FL−1T−1θ−1]
λ Conduction Coef. [FT−1θ−1]
δ Resistivity [FL2I−2T−1]
T Temperature [θ]

The results show that the maximum force can be expressed as:

F

x2
= K

µTλ

δ
Φ (Nu) (3.21)

where it can be observed that it matches perfectly with (3.15) since δ =

δ0 (1 + γ∆T ) and µr and all the geometrical constants are adimensional. The

results obtained for the work match with the expression (3.19), the maximum
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3. Application to electromagnetic actuators

work given by dimensional analysis can be expressed as:

W

x3
= K

µTλ

δ
Φ (Nu) (3.22)

3.2 Moving coil actuators

Step 1. The geometric dimensions are shown in Fig. 3.6. For the sake of

simplicity and without loss of generality it has been assumed that l1 = l2 = l3.

Step 2. Moving coil actuators use the force produced by the interaction

of perpendicular magnetic field and electrical current, described in the Lorenz

force law. It yields:

F = Blwi (3.23)

where B is the field density provided by the permanent magnet, lw is the

length of the wire and i the current flowing in the wire.

The present work assumes that the moving coil stroke is limited to the

region where the flux is flowing, so that the force-stroke curve presents a

constant force depending linearly on the current applied to the coil. The

work is obtained by the integration of a constant function. Without the

assumption of limited stroke, the length of wire lw being crossed by magnetic

flux decreases as the coil is moving outside the flux region, whereas the flux

density and the current are kept constant since the copper permittivity can

be considered equal to the air permittivity.

The flux density B in the coil can be derived from the reluctance expres-

sion. In this case the magneto-motive force is provided by the permanent

magnet Fmm = Hcl, where Hc is the coercitive field (a magnet constant).

The reluctance can be calculated as the series association of all the reluc-

tances sketched in Fig. 3.7. The total reluctance of the magnetic circuit can

be expressed as:

< =

log

(
k

1
kl1

− µr
µcukl4

r2 k

µr−1
kl1

r4

k

2
kl1
r1 k

µr
kl1

− µr
µcukl4

r3

)
+ 2(1−2kl1)

(1−k2
r5)η2

+ 2
µm
µr

k2
r1η

2

µrµ02πl
(3.24)
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3.2 Moving coil actuators
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Figure 3.7: Moving coil actuator reluctances

The flux density (B = Φ/S) can be written as:

B =
Hcl/<
r3l4

=
Hc

r<kr3kl4
(3.25)

The number of turns can be expressed as a function of the actuator di-

mensions as:

N =
dl4kff
Aw

=
(r3 − r2)l4kff

Aw
(3.26)

The length lw used in (3.23) can be expressed as:

lw = 2π
r3 + r2

2
N = πr2l

(k2
r3 − k2

r2)kl4kff
Aw

(3.27)

Since the permanent magnet is always providing the same magneto-

motive force, and the length of wire crossed by the flux is constant, the

force from (3.23) can be considered proportional only to the current.

Step 3. The maximum current in the coil can be taken from (3.7).

In such a case there is no conduction because the coil can exchange heat

directly with the air surrounding it. Substituting lw, the Nusselt number

from (3.8), using the external diameter of the coil 2r3 as the reference length
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3.2 Moving coil actuators

and arranging, the maximum current can be written as:

imax =
Aw√
rl

√
∆TNuλair

2δ0 (1 + γ∆T ) kl4kr3kff
(3.28)

Step 4. Using the maximum current from (3.28), the length from (3.27)

and the flux density from (3.25), the force expression (3.23) turns into:

Fmax
Sact

= qfHcµrµ0

√
∆TNuλair

2δ0 (1 + γ∆T )
(3.29)

where qf is the design factor which can be expressed as:

qf =

2π√
η
(k2
r3 − k2

r2)
√

kff

k3
r3kl4

log

(
k

1
kl1

− µr
µcukl4

r2 k

µr−1
kl1

r4

k

2
kl1
r1 k

µr
kl1

− µr
µcukl4

r3

)
+ 2(1−2kl1)

(1−k2
r5)η2

+ 2
µm
µr

k2
r1η

2

(3.30)

The expression (3.30) has been analyzed numerically in order to obtain

the most optimum parametrization. It has been found with values kr1 =

kr2 = kr5 = 0.8586, kr3 = kr4 = 1, kl1 = kl4 = 0.50 and η = 6.0606. The

optimized design factor obtained is qf = 0.0108.

In Fig. 3.8 the design factor qf depending on the ratios kr1 and η is plotted.

The filling factor and the other geometric relationships are kept constant to

allow a three-dimensional plot. The filling factor kff is typically around 0.75

and can be considered independent of the other design parameters.

It has been assumed that the coil movement is limited to the region

where the whole coil is being crossed by the magnetic flux provided by the

permanent magnet. Therefore, the available stroke is l1 − l4, which can be

written as l (kl1 − kl4). Since the force does not depend on the displacement

in this region, the work can be easily obtained multiplying the force times

the displacement as:

Wmax

Vact
= Fmax (kl1 − kl4) (3.31)

A modified design factor qfW = qf (kl1 − kl4) is to be analyzed to obtain
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3. Application to electromagnetic actuators
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the best performance design concerning the work. It can be easily seen that

the design parameters providing maximum force produce no work because

they are using the maximum coil width kl4 = kl1 = 1/2, allowing no stroke.

A numerical analysis has been undertaken to obtain the optimum modified

design factor. The best performance values has been found with kr1 = kr2 =

kr5 = 0.8283, kr3 = kr4 = 1, kl1 = 0.50, kl5 = 0.0960 and η = 2.0202. The

optimized design factor obtained is qfW = 0.0029.

Step 5. Regarding the scalability, it can be seen that the force and work

depend on the Nusselt number, while the stroke can be considered com-

pletely scalable. As it has been discussed, if the Nusselt number is consid-

ered constant all the output mechanical quantities can be considered scalable.

Nonetheless, this assumption cannot be done and it is observed that both

the force per cross-section and the volumetric work density depend linearly

on
√
Nu. Hence, the cited output quantities present a linear dependence on

rα/2, implying an improvement of the performance when the size is increased
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and not allowing the use of these actuators for tiny applications.

Step 6. The force provided by these actuators can be analyzed with

dimensional analysis using the Buckingham Pi Theorem [5]. The quantities

involved are shown in the Table 3.2. The FLTIθ (force - length - time -

current - temperature) system is used.

Table 3.2: Moving coil actuator dimensional analysis quantities
F Force [F ]
x Position [L]
µ Permeability [FI−2]
H Magnetic Field Intensity [IL−1]
hc Convection Coef. [FL−1T−1θ−1]
λ Conduction Coef. [FT−1θ−1]
δ Resistivity [FL2I−2T−1]
T Temperature [θ]
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3. Application to electromagnetic actuators

The results show that the maximum force can be expressed as:

F

x2
= KµH

√
TλNu

δ
(3.32)

where it can be observed that it matches perfectly with (3.29) since δ =

δ0 (1 + γ∆T ) and µr and all the geometrical constants are non-dimensional.

The results obtained for the work match with the expression (3.31). The

maximum work given by dimensional analysis can be expressed as:

W

x3
= KµH

√
TλNu

δ
(3.33)

3.3 Industrial actuators

Step 7. Since the electromagnetical actuators are often cooled with air by

means of free convection, a numerical analysis is presented assuming natural

convection. In such case the Nusselt number can be written as a function

of the Rayleigh number in the form NuD = CRn
a where C and n are to

be discussed for different values of Ra as it is exposed in [33]. It has been

found (assuming an air temperature of 293 K and a temperature increment

of 50 K) that for diameters between 2.6 mm and 0.124 m the coefficients

C = 0.48 and n = 1/4 can be used, while for diameters between 0.124 m and

5.75 m, C = 0.125 and n = 1/3 can be used. This range of diameters covers

all the industrial electromagnetical actuators found, but other ranges can be

considered using other coefficients. The Nusselt numbers can be written as:

NuD
=

{
129.20 ·D1/4 0.0026 < D < 0.124 m

217.25 ·D1/3 0.124 ≤ D < 5.75 m
(3.34)

Different manufactured industrial solenoids and moving coil actuators

have been studied. Its output mechanical quantities compared to the max-

imum quantities developed in this work are shown in Fig. 3.10. The maxi-

mum quantities have been calculated using the design factor qf = 0.04 for

the solenoids and qf = 0.0108, qfW = 0.0029 for the moving coils.
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3.4 Conclusions

It can be seen that the solenoid actuator perform better force per cross-

section ratios, between 1 and 2 orders of magnitude, while the difference in

energy densities is smaller (less than one order of magnitude). The data

from industrial actuators have been analyzed and approached using a linear

regression after taking logarithms of the quantities concerned. The force

provided by the solenoid actuators has been approached with the function

9.35 · 106r2.3336. The moving coil actuator has been approached with the

function 4.59 · 104r2.1270. It has been stated that the limiting force for the

solenoid holds F ∝ r2Nu. Therefore, the α coefficient should be located

between 2.25 and 2.333 (according to (3.34), 2+1/4 and 2+1/3 ). It matches

with the α coefficient 2.3336 obtained with the regression. The same can be

said for the moving coil, where the force holds F ∝ r2
√
Nu. In such a case,

the α = 2.1270 coefficient is also located between 2.125 and 2.166.

The solenoid work has been fitted with 1.369 · 105V 1.167, where the coeffi-

cient is close to the expected between 1.083 and 1.111 (1 + 1/4
3

and 1 + 1/3
3

).

The moving coil work has been approached with 8.775 · 103V 1.129, slightly

higher than the expected between 1.041 and 1.056.

As shown in the regression analysis and in Fig. 3.10 and Fig. 3.11, it

can be concluded that the behavior of the industrial actuators follows the

trends developed theoretically and are limited by the maximum mechanical

quantities described.

3.4 Conclusions

The present chapter has dealt with the optimization of linear electromag-

netical actuators. A procedure to obtain the maximum energy and force in

a given volume, weight or cross-section has been described. The scalability

of the analyzed actuators has been also discussed. It has been shown that

solenoid and moving coil actuators are suitable for a number of applications

excluding those where tiny actuators are required or a high scalability is

to be kept. Solenoid actuators can perform higher force per cross-section

and energy per volume than the moving coil actuators, but they face the

problems derived from non-linear force-stroke curves. This problem can be
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Figure 3.10: Industrial electromagnetic actuator force-area comparison
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overcome by using certain design techniques including some high reluctance

parts which are beyond the scope of this work.

The limit output quantities have been found for certain aspect ratios

and geometric relationships. The results have been compared with the per-

formance of industrial actuators and it has been noted that the industrial

actuators behave as expected. Regressions linking the force and work with

the cross-section and volume have been carried out, resulting in similar per-

formances as a function of the size as the theoretically developed models.

The results can be used in any application with volume and weight con-

straints. For given volume or weight constraints, the presented expressions

can show whether the studied electromagnetic actuators match the require-

ments and what materials and shapes are needed.
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Chapter 4

Application to hydraulic

actuators

Fluid power actuators use the fluid power to provide mechanical work; the

difference between the pressures P in two different chambers results in a

relative pressure which produces a force F in a given surface S which yields

F = PS. The pressure is the input quantity, performing the same function as

the current in electromechanical actuators. The fluid actuators employed in

the industry are mainly divided by the state of the fluid employed: hydraulic

actuators employ an incompressible liquid (usually oil), while pneumatic ac-

tuators employ a compressible gas (air).

Hydraulic actuators are commonly used in many engineering fields. They

show the following advantages: very good force and work densities (more

than any other actuator), strokes as long as necessary (if enough fluid is sup-

plied), easily controllable and the fact that the power source providing the

energy can be placed far away from the actuator (but not as far as with the

electromagnetic actuators). Their main disadvantages are the safety prob-

lems generated by the high pressures needed (the same fact that provides

the advantages), the leakage flow (that can become an important problem

for actuator performance, safety conditions and environmental issues) and

the hardly inflammability of the oil employed. Pneumatic actuators are also

used in many engineering fields. They present good force and work densities,

even though not as high as the hydraulic actuators, they can perform strokes
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4. Application to hydraulic actuators

as long as needed like their hydraulic counterparts, they are easily control-

lable and the power source providing the energy can be placed far away

from the actuator. However, they cannot work with pressures as high as the

hydraulic actuators because of the problems derived from the high compress-

ibility of the gases. This same fact makes the hydraulic actuators faster in

response and stiffer against external load disturbances. The efficiency of the

hydraulic systems is also higher. It is caused by the losses of energy due to

the heat transfer (in the air cooling), higher leakage and worse lubrication

which occurs in the pneumatic systems. Nevertheless, the pneumatic sys-

tems can work at higher environment temperatures. In the present work, the

hydraulic actuators are studied. However, some of the results obtained also

apply for their pneumatic counterparts.

In this work an ideal power supply with no losses will be considered,

it implies that the load will not change the supplied pressure and it can

be assumed with no loss of generality if the power of the power supply is

larger than the nominal power consumed by the actuator. The methodology

described in chapter 2 is applied below.

4.1 Step 1. Design parameters

In Figure 4.1 a hydraulic actuator is sketched. It can be seen that for x =

0 both orifices are completely closed, when x > 0 follows P1 > P2 since

Ps > Pr, and the plunger moves forward, when x < 0 follows P2 < P1

and it moves backward. The sections can be written as A1 = πD2
1/4 and

A2 = π/4 (D2
1 −D2

2) where D1 is the diameter of the cylinder and D2 is the

diameter of the rod which guides the plunger.

The geometry of hydraulic cylindrical actuators is shown in Figure 4.2.

The same geometry would be valid for pneumatic actuators, with the only

difference of the fluid used and the corresponding limitations.
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4.1 Step 1. Design parameters

Figure 4.1: Hydraulic Actuator

Figure 4.2: Geometry of a hydraulic actuator
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4. Application to hydraulic actuators

4.2 Step 2. Force-stroke and work-stroke char-

acteristic

The cylinder force can be expressed as F = P1A1 − P2A2 where Pi is the

pressure in the chamber i and Ai is the effective section of the piston. It can

be expressed as:

F = P1π
D2

1

4
− P2π

(D2
1 −D2

2)

4
(4.1)

The force performed by the cylinder in steady-state conditions depends

on whether the movement is done forward or backward, since the section is

different. Assuming P2 = Pr = 0 and P1 = Ps, the forward force can be

expressed as :

Ff = PsπD
2
1/4 (4.2)

Concerning the backward force, P2 = Ps and P1 = Pr = 0. The force

yields:

Fb = Psπ
(
D2

1 −D2
2

)
/4 (4.3)

Assuming quasistatic behaviour the work can be obtained assuming the

force is constant during the time and therefore multiplying the force times

the displacement.

4.3 Step 3. Limiting quantities.

The maximum allowed shear stress is the main quantity limiting the available

mechanical force and work. It can be expressed using the Mohr circle as half

the difference between the radial and tangential stresses. The radial stress in

a thick walled cylinder can be written from [49] as a function of the position

r in the wall as follows:

σrr =
PD2

1

D2 −D2
1

(
1− D2

4r2

)
(4.4)
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4.3 Step 3. Limiting quantities.

The tangential stress in a thick walled cylinder from [49] yields:

σθθ =
PD2

1

D2 −D2
1

(
1 +

D2

4r2

)
(4.5)

The equivalent shear stress can be derived from (4.4) and (4.5) as:

τeq =
σrr − σθθ

2
=

PD2
1

D2 −D2
1

D2

4r2
(4.6)

It can be clearly seen in (4.6) that the maximum shear stress is produced

for the minimum value of r, i.e. r = D1/2. Using the defined geometric

relationships the maximum shear stress yields:

τeq =
P

1− k2
D1

(4.7)

Hence, to not overcome the shear stress threshold, the maximum pressure

must be established as:

PL1 = τeq
(
1− k2

D1

)
(4.8)

For backward motion, there arises another fact: there exists a maximum

axial stress σaa in the rod attaching the load. It implies another pressure

limitation:

PL2 = σaak
2
D2 (4.9)

Then, the maximum pressure for backward motion PLb can be written as:

PLb = min{PL1, PL2} = min{τeq
(
1− k2

D1

)
, σaak

2
D2} (4.10)

Defining ϕ = σaa/τeq, ϕ > 0, it may be expressed as:

PLb = τeqmin{
(
1− k2

D1

)
, ϕk2

D2} (4.11)
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4. Application to hydraulic actuators

4.4 Step 4. Maximum force, stroke and work.

4.4.1 Forward motion

Using (4.8) and (4.2), the maximum available force per cross-section can be

expressed for the forward motion as:

Ff
πD2/4

= τeq
(
1− k2

D1

)
k2
D1 (4.12)

The design factor qf can be defined as:

qf =
(
1− k2

D1

)
k2
D1 (4.13)

and is the factor to be maximized in the design.
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Figure 4.3: Forward force design factor

Analyzing the latter expression, it can be seen that for a given size the

forward force is maximized for kD1 = 1/
√

2 performing a force per cross
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4.4 Step 4. Maximum force, stroke and work.

section of τeq/4 with a design factor qf = 1/4. Graphical results may be seen

in Fig. 4.3.

4.4.2 Backward motion

Using (4.11) and (4.3), the maximum available force per cross-section can be

expressed for the backward motion as:

Ff
πD2/4

= τeqmin{
(
1− k2

D1

)
, ϕk2

D2}
(
k2
D1 − k2

D2

)
(4.14)

An alternative formulation yields:

Ff
πD2/4

=

{
τeq (1− k2

D1) (k2
D1 − k2

D2) 1− k2
D1 < ϕk2

D2

τeqϕk
2
D2 (k2

D1 − k2
D2) 1− k2

D1 ≥ ϕk2
D2

(4.15)

The design factor qf = 4Ff/τeqπD
2 may be defined as:

qf =

{
(1− k2

D1) (k2
D1 − k2

D2) 1− k2
D1 < ϕk2

D2

ϕk2
D2 (k2

D1 − k2
D2) 1− k2

D1 ≥ ϕk2
D2

(4.16)

Analyzing the expression (4.16), the maximum design factor may be found

by using 1− k2
D1 = ϕk2

D2 or its equivalent formulation kD2 =
√

(1− k2
D1) /ϕ.

In such a case:

qf =
(
1− k2

D1

) (
k2
D1 − 1 + k2

D1/ϕ
)

(4.17)

It can be expressed as:

qf = −ϕ+ 1

ϕ
k4
D1 +

2ϕ+ 1

ϕ
k2
D1 − 1 (4.18)

To obtain the maximum design factor:

q̇f = −4
ϕ+ 1

ϕ
k3
D1 + 2

2ϕ+ 1

ϕ
kD1 → 4

ϕ+ 1

ϕ
k3
D1max = 2

2ϕ+ 1

ϕ
kD1max (4.19)
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4. Application to hydraulic actuators

The maximum kD1max yields:

kD1max =

√
2ϕ+ 1

2ϕ+ 2
(4.20)

It can be demonstrated that it is maximum, since q̈f (kD1max) = −12ϕ+1
ϕ
k2
D1+

22ϕ+1
ϕ

= −42ϕ+1
ϕ

which is q̈f (kD1max) < 0,∀ϕ > 0. The maximum design fac-

tor yields:

qfmax =
1

4

1

ϕ2 + 1
(4.21)

And kD2:

kD2max =

√
1

2ϕ(ϕ+ 1)
(4.22)

For ϕ = 1, kD1max =
√

3/2 and the maximum design factor qf = 1/8 for

kD2 = 1/2. It can be noted that the maximum design factor is half the value

of the one found for forward motion. Graphical results may be seen in Fig.

4.4. It is shown how the maximum design factors may be found in the value

stated previously for ϕ = 1.

4.4.3 Considering forward and backward motion

In practical cases, both forward and backward motion are used. If the average

force including forward and backward motion are considered:

Ffb
πD2/4

=
τeq
2

[
min{

(
1− k2

D1

)
, ϕk2

D2}
(
k2
D1 − k2

D2

)
+
(
1− k2

D1

)
k2
D1

]
(4.23)

An alternative formulation yields:

Ff
πD2/4

= τeq
(
1− k2

D1

)
k2
D1 +

{
(1− k2

D1) (k2
D1 − k2

D2) 1− k2
D1 < ϕk2

D2

ϕk2
D2 (k2

D1 − k2
D2) 1− k2

D1 ≥ ϕk2
D2

(4.24)

A detailed analysis (similar to the developed for the backward motion,

and excluded here) show that the maximum can be derived from (4.24),

by differentiating against kD1 and kD2 and equaling to zero. The following
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Figure 4.4: Backward force design factor, ϕ = 1

system of equations is obtained:

kD2 − kD1
1√
2

= 0

ϕk2
D2 − 2k2

D1 = −1

(4.25)

Solving, the maximum is shown for:

kD1max =

√
2

4− ϕ
kD2max =

√
1

4− ϕ
(4.26)

Taking ϕ = 1, graphical results may be seen in Fig. 4.5.

4.4.4 Stroke and Work

The stroke is given by l − 2l1 − l2. For the sake of simplicity, and without

lost of generalization, l1 can be considered equal to l1 = l2 = (D − D1)/2,

since they correspond to the wall thickness. The stroke is then l − 3l1 =
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4. Application to hydraulic actuators
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Figure 4.5: Forward - Backward averaged force design factor, ϕ = 1

l − (3/2)D(1 − kD1) = l (1− 3η(1− kD1)). It will be maximized for η = 0,

which is clearly not possible, due to the fact that no force would be performed

for such an aspect ratio. In this case, the force criterium would be dominant,

while trying to obtain the smaller aspect ratio η for stroke maximization

purposes.

Similar conclusions can be extracted analyzing the work. The maximum

forward work per volume can be expressed as:

Wf

πlD2/4
= τeq

(
1− k2

D1

)
k2
D1 (1− 3η(1− kD1)) (4.27)

As it has been highlighted for the stroke, the work is maximized for η = 0.

Concerning the dependance on kD1, the maximum volumetric work can be
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4.4 Step 4. Maximum force, stroke and work.

found as the solution kD1 of the equation:

− 2k3
D1(1− 3η(1− kD1)) + 2(1− k2

D1)kD1(1− 3η(1− kD1))

+ 3(1− k2
D1)k

2
D1η = 0 (4.28)

whose solution is omitted because of its length. For η = 0, it yields:

kD1max =

√
2

2
(4.29)
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Figure 4.6: Forward work design factor

Graphical results may be seen in Fig. 4.6. It can be noted that only the

forward motion has been addressed. Similar effects to those observed with

the force when dealing with backward and averaged forward and backward

motion appear also with the work.
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4. Application to hydraulic actuators

4.5 Step 5. Scalability

Regarding the scalability, the static behavior of hydraulic actuators does not

have the dependance on size-dependant numbers such as the Nusselt number

(as happened with electromagnetic actuators [14]). Hence, as long as the

static behavior is concerned the scalability criterium applies for the usual

industrial range of dimensions.

4.6 Step 6. Dimensional Analysis

The force provided by these actuators can be analyzed with dimensional

analysis using the Buckingham Pi Theorem [5]. The quantities involved are

shown in the Table 4.1 and 4.2. The FL (force - length ) system is used.

Table 4.1: Hydraulic actuator dimensional force analysis quantities
F Force [F ]
x Length [L]
σ Stress [FL−2]

Table 4.2: Hydraulic actuator dimensional work analysis quantities
W Work [FL]
x Length [L]
σ Stress [FL−2]

The results show that the maximum force can be expressed as:

F

x2
= Kσ (4.30)

where it can be observed that it matches perfectly with previous analytical

results. The results obtained for the work match with the previous results.

The maximum work given by dimensional analysis can be expressed as:

F

x3
= Kσ (4.31)
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4.7 Step 7. Industrial actuators

4.7 Step 7. Industrial actuators

The results obtained analytically are compared with industrial actuators in

the present section. Actuators from different manufacturers including Bosch

Rexroth AG, Parker and Enerpac have been studied, taking into account

their dimensions, maximum allowed pressures, strokes, etc.

The comparison between the inner-output diameter ratio of the analyzed

actuators and the optimum extracted analytically from the equations show

that the matching is remarkable. It can be seen in Figure 4.7. It can be

noted that the real actuator data regression lies between the optimum for

forward and backward motion. It is placed very close to the forward motion

optimum.
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Figure 4.7: Comparison between the input to output diameter ratio existing
in industrial actuators and the results of the present work.

The force-cross section relationship analyzed in Section 4.4 has proven to

apply for the real actuators. In Figure 4.8 it can be noted that the real ac-

tuator performance for different actuators is below the maximum threshold.
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4. Application to hydraulic actuators

The regression analysis of each class of actuator shows that the relation-

ship between the force and the cross-section can be found as the considered

operating pressure.
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4.8 Conclusions

The present chapter has dealt with the optimization of linear hydraulic ac-

tuators. The procedure presented in [14] has been employed to obtain the

maximum energy and force in a given volume, weight or cross-section. The

scalability of the analyzed actuators has been also discussed.

The limit output quantities have been found for certain aspect ratios

and geometric relationships. The results have been compared with the per-

formance of industrial actuators and it has been noted that the industrial

actuators behave as expected. Regressions linking the force and work with
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the cross-section and volume have been carried out, resulting in similar per-

formances as a function of the size as the theoretically developed models.
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4. Application to hydraulic actuators

52



Chapter 5

Conclusions

The present part has focused on providing the detailed analysis of differ-

ent actuators using a general procedure and oriented towards improving the

actuator design. It has introduced a new methodology to analyze linear elec-

tromagnetical and hydraulic actuators by modeling their maximum output

mechanical quantities (force, work and stroke) as functions of the geometry

and material properties and has discussed the scalability (in the sense of

producing the same stress and strain distribution for different sizes). The

motivation to undertake such a work stems from the need for light and vol-

ume reduced structures and systems, which are to be integrated in the design

procedure as early as possible. Hence, the geometric relationships, aspect ra-

tios and material properties that maximize the actuator output quantities

with a certain limited volume or weight, along with their scalability for the

integration in structures have been studied. A validation of the results has

been done by performing dimensional analysis of the expressions obtained

and comparing numerical results with industrial actuator data.

5.1 Contributions

The main contribution of thesis part is the methodology described in Chapter

2 along with its application to electromagnetic (Chapter 3) and hydraulic

(Chapter 4) actuators. Furthermore, the contributions may be summarized

as:

53



5. Conclusions

• Design of a methodology to deal with the modeling and optimization

of industrial actuators

• Application of the methodology to linear electromagnetic actuators

• Application of the methodology to linear hydraulic actuators

• Design Optimization an scalability Analysis of the analyzed actuators.

• Validation with real actuators and with dimensional analysis of the

analyzed actuators.

Part of these contributions are collected in [14] and [15].

5.2 Future work

The optimization methodology has been performed for linear hydraulic and

electromagnetic actuators considering static behavior. Further research be-

yond the scope of this thesis is encouraged. It may be particularly interesting

to investigate in the following lines:

• Application of the methodology to other classes of actuators, including

some other classical actuators (pneumatic) and new smart actuators

(piezoelectric, magnetostrictive, shape memory alloys, magnetorheo-

logical, etc.)

• Discussion of the validity of the methodology for non-linear motion.

Application to rotative motion, substituting the force by the torque

and the position by the angle.

• Expand the methodology to deal with dynamics, taking into account

other quantities, such as the power or the speed.
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Part II

Identification and Control of

Piezoelectric Actuators
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Chapter 6

Introduction

Although the so-called classical actuators (electromagnetic, hydraulic and

pneumatic) are the most used in the industry, new technologies based on

different physical principles are being developed. In applications where the

size of the actuator has to be minimized [14], or where fast response and

high resolution are needed, the classical actuators fail to respond appropri-

ately. For this reason, non-classical technologies are becoming more relevant.

Among them, the piezoelectric actuators are proving to be a reliable solution

for many engineering applications, ranging from micropositioning (machine

tools, optic devices or modern microscopes) to active control of structures.

The piezoelectric actuators are based on the known piezoelectric effect

described in 1880 by Jacques and Pierre Curie [8]: in certain materials with

crystalline non-symmetrical structure, dipoles are formed when the material

is deformed, i.e. a mechanical strain produces an electrical field; reciprocally,

the application of an electric field produces a strain. These actuators show

a fast reaction time, a high resolution, a high energy density and an easy

miniaturization. However, the piezoelectric actuators have some drawbacks:

the reduced strain (< 0.2 %), the presence of non-linearities and the high

voltage needed for optimal performance. In this thesis part, we focus on

the nonlinear behavior of piezoelectric actuators by taking into account the

presence of hysteresis. In materials, the hysteresis is referred to the memory

nature of inelastic systems where the restoring force depends not only on the

instantaneous deformation but also on the history of that deformation.
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6. Introduction

In this frame, the main motivation is to delve into models to represent

the hysteretic behavior of piezoelectric actuators in order to apply them to

the conception of controllers for such hysteretic systems. These controllers

can allow a more optimum control of the devices employing piezoelectric

actuators.

6.1 Modeling and validation of piezoelectric

actuators

It is known that the presence of non-linearities and the high voltage needed

for optimal performance are the main drawbacks of piezoelectric actuators.

We focus on the nonlinear behavior of piezoelectric actuators by taking into

account the presence of hysteresis.

To describe the behavior of hysteretic processes several mathematical

models have been proposed [54]: the Duhem model [9] uses the property

that a hysteretic system’s otput changes its character when the input changes

direction; the Ishlinskii hysteresis operator has been proposed as a model for

plasticity-elasticity [36]; the Preisach model has been used for the modeling

of electromagnetic hysteresis [43]; the Bouc-Wen model has been used to

model wood joints and structural systems [11]. A survey of the mathematical

models for hysteresis may be found in [40]. These models have been applied

to describe the behavior of piezoelectric actuators: Prandtl-Ishlinskii in [44],

Preisach in [51] and Bouc-Wen in [39]. An energy based model has been

employed in [45].

The present is focused on the Bouc-Wen model. In a recent work, the

hysteresis loop obtained by the Bouc-Wen model has been characterized ana-

lytically [29]. In further work [26], a new parametric nonlinear identification

technique for the Bouc-Wen model based on the analytical description of

[29] is proposed. This method does not use any information from the be-

havior of the system in the plastic region which makes it applicable for a

wide class of materials including base isolation devices, magnetorheological
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6.2 Control of piezoelectric actuators considering the hysteresis

damper, piezoelectric elements, etc. And, unlike most identification tech-

niques for the Bouc-Wen model, this method provides the exact values of

the model parameters in the absence of disturbances, and gives a guaran-

teed relative error between the estimated parameter and the true ones in the

presence of a particular class of perturbations. The main advantages of the

proposed identification methodology are (1) the simplicity of the proof that

the estimated parameters are within a given tolerance with respect to their

true counterparts in the presence of disturbances; (2) the fact that limit cy-

cles can be obtained experimentally in a simple way [4]; (3) its wider range

of applicability than [30]. The identification technique consists in exciting

the hysteretic system with two periodic signals that have a specific shape.

The parameters of the Bouc-Wen model are then obtained from the two limit

cycles using a precise algorithm. The method guarantees that the estimated

parameters are within a given tolerance with respect to the true parameters,

and it is shown that the identification technique is robust with respect a class

of disturbances of practical interest.

However, when applying the method to the modeling of certain piezoelec-

tric actuators, an inexact matching has been noted. To improve the matching

between the model and the experimental behaviour of a certain piezoelectric

actuator, we propose a modification of the Bouc-Wen model. To identify such

a modified model, we have developed a new identification technique based

on the results obtained in [26]. The modified Bouc-Wen model is validated

by means of experiments, and compared to the behavior of the non-modified

Bouc-Wen model.

6.2 Control of piezoelectric actuators consid-

ering the hysteresis

The main challenge for the control design of applications with piezoelectric

actuators is the presence of hysteresis. In this work, we consider the prob-

lem of micropositionning using a piezoelectric actuator. This problem has
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6. Introduction

spurred much interest in the current literature. A robust controller is em-

ployed in [6] to control a piezoelectric bimorph actuator using the Bouc-Wen

model. In [24] a piezoelectric actuator is modeled with neural networks and

controlled with a variable structure control system. In [59], the controller

uses information of the charge instead of the voltage for the control of posi-

tion. This technique takes advantage of the reduced hysteresis between the

displacement and the electrical charge, but presents some difficulty for the

measurement of the charge.

In [31], a second-order mechanical system that includes a Bouc-Wen hys-

teresis is considered for control purposes. The control objective is to guaran-

tee the global boundedness of all the closed loop signals, and the regulation

of both the displacement and the velocity of the device to zero. This objec-

tive is achieved using a simple PID controller. However, the main drawback

of this controller is that the equilibrium point of the closed loop system is

not robust vis-à-vis perturbations which is undesirable in practice. Since the

piezoelectric device is represented in this work using the Bouc-Wen model,

the results of [31] are used and improved for the control of the piezoelectric

element.

In order to solve such a problem, we present a new control law which is

a time-varying PID that guarantees that the equilibrium point of the closed

loop is robust to perturbations. Furthermore, this control law is tested in

numerical simulations and experimentally using a piezoelectric actuator.

The main advantage of the proposed control law over other existing con-

trol schemes, is that it is simple to implement in an industrial context.

6.3 Objectives

The objectives can be summarized:

1. Modeling and validation of piezoelectric actuators: The purpose

is to develop a model capable to capture the hysteretic behavior of

piezoelectric actuators and to introduce an identification technique to
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adjust the parameters involved. The model has to be validated by

means of experiments.

2. Control of piezoelectric actuators considering the hysteresis

Using the knowledge of the system under study provided by the model

a controller has to be designed to optimize the mechatronic system.

3. Platform construction and Experimental validation A platform

has to devised and build in order to validate experimentally all the

results.

6.4 Outline

The thesis second part has been structured as follows. In chapter 7 an

introduction to the piezoelectric effect is exposed. The relevant quantities

and constants are introduced and the typical linear formulation for low and

high frequency are stated. Piezoelectric actuators are introduced, along with

their common applications, advantages and drawbacks.

The Bouc-Wen hysteresis model is introduced in chapter 8. Thereafter,

an identification technique to determine the parameters is proposed and its

robustness against different classes of perturbations is discussed in chap-

ter 9.

Chapter 10 adds an adaptation to the previous model, in order to allow

it to characterize better the behavior of piezoelectric actuators. The model is

validated with a real actuator and the advantages over the pervious chapter

method are shown.

In chapter 11 the models developed are employed to design a new con-

troller. The controllers take into account not only the error but the output

control effort which is tried to keep unchanged when a perturbation occurs.

In chapter 12 the conclusions of the thesis part are summarized.
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Chapter 7

Piezoelectricity

The present chapter introduces basic concepts related to piezoelectricity

which will be later used. The piezoelectric effect is briefly introduced, along

with the different deformation modes, the frequency effect on the piezoelec-

tric elements behavior and some important considerations which are to be

taken into account when dealing with this class of actuators: loading, non-

linearities, temperature dependance, aging and materials. The objective of

this paper is to introduce such concepts in order to allow their use and de-

velopment in the forthcoming chapters.

7.1 The piezoelectric effect

The word Piezo derives from the Greek piezein, which means to squeeze or

press. When joined with electricity forming piezoelectricity it stands for the

material property that links directly the mechanical and electrical states.

The piezoelectric effect was firstly described in 1880 by Jacques and Pierre

Curie [8]. In certain materials with crystalline non-symmetrical structure,

dipoles are formed when the material is deformed, i.e. a mechanical strain

produces an electrical field, reciprocally the application of an electric field

produces a strain.

Although the piezoelectric behavior observed is highly non-linear, simpli-

fied equations are presented in [25; 52; 53] introducing the direct and inverse
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7. Piezoelectricity

piezoelectric effect:
D = dT + εTE

S = sET + dE
(7.1)

where d is defined as the piezoelectric coefficients matrix, εT is the piezoelec-

tric permittivity under conditions of constant stress, sE is the compliance

of the material under constant electric field, D is the electric displacement,

E is the electric field, T the mechanical stress and S the mechanical strain.

Alternatively, it can be written as:

E = −gT + βTD

S = sDT + gD
(7.2)

where g is a piezoelectric constant, sD is the compliance of the material

under constant electric displacement and βT is the impermittivity component

[25] under conditions of constant stress. A third alternative expression yields:

E = −hS + βSD

T = cDS + hD
(7.3)

where h is a piezoelectric constant, βS is the impermittivity component

under conditions of constant strain and cD is the elastic stiffness constant un-

der conditions of constant electric displacement. The relationships between

the different constants can be expressed as:

g = βTd

d = εTg

h = gcD

(7.4)

Note the indices employed to show relevant information about the con-

stants or quantities. The example sE12 indicates that the compliance s is for

a stress in the axis 2 and strain in axis 1 considered under conditions of

constant electrical field E. Such superior indexes are of crucial importance
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7.1 The piezoelectric effect

and it is important to use the appropriated ones. They are linked as:

sD = sE − dg

βT = βS − gh
(7.5)

Depending on the application geometry and the mechanical and electrical

constraints (7.1), (7.2) or (7.3) will be employed.

All the expressions can be written in matrix form. (7.1) may be expressed

as:


S1

S2

S3

S4

S5

S6

 =


sE11 sE12 sE13 sE14 sE15 sE16
sE21 sE22 sE23 sE24 sE25 sE26
sE31 sE32 sE33 sE34 sE35 sE36
sE41 sE42 sE43 sE44 sE45 sE46
sE51 sE52 sE53 sE54 sE55 sE56
sE61 sE62 sE63 sE64 sE65 sE66

×


T1

T2

T3

T4

T5

T6

+


d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36

×
 E1

E2

E3


(7.6)

Using the tetragonal crystal system explained in [25] (7.6) may be written

as:
S1

S2

S3

S4

S5

S6

 =


sE11 sE12 sE13 0 0 0
sE12 sE11 sE13 0 0 0
sE13 sE13 sE33 0 0 0
0 0 0 sE44 0 0
0 0 0 0 sE44 0
0 0 0 0 0 sE66

×


T1

T2

T3

T4

T5

T6

+


0 0 d31

0 0 d31

0 0 d33

0 d15 0
d15 0 0
0 0 0

×
 E1

E2

E3


(7.7)

Analogously:

 D1

D2

D3

 =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0

×


T1

T2

T3

T4

T5

T6

+

 ε11 0 0
0 ε11 0
0 0 ε33

×
 E1

E2

E3


(7.8)
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It can be expressed in a single expression as:

S1

S2

S3

S4

S5

S6

D1

D2

D3


=



sE11 sE12 sE13 0 0 0 0 0 d31

sE12 sE11 sE13 0 0 0 0 0 d31

sE13 sE13 sE33 0 0 0 0 0 d33

0 0 0 sE44 0 0 0 d15 0
0 0 0 0 sE44 0 d15 0 0
0 0 0 0 0 sE66 0 0 0
0 0 0 0 d15 0 ε11 0 0
0 0 0 d15 0 0 0 ε11 0
d31 d31 d33 0 0 0 0 0 ε33


×



T1

T2

T3

T4

T5

T6

E1

E2

E3


(7.9)

The so-called electromechanical coupling factor k is specially significative

in the characterization of a piezoelectric element, it is defined in [52] as:

k2 =
d2

sEεT
(7.10)

and it shows the relationship between the stored mechanical energy and the

input electrical energy when working as an actuator, and between the stored

electrical energy and the input mechanical energy when working as a sensor.

7.1.1 A brief history

Some references [19; 35] deal with the history of piezoelectric technology.

The most important events are reported here briefly.

In 1880, the brothers Pierre Curie and Jacques Curie predicted and

demonstrated piezoelectricity using tinfoil, glue, wire, magnets, and a jew-

eler saw [8; 58]. They showed that crystals of tourmaline, quartz, topaz,

cane sugar, and Rochelle salt (sodium potassium tartrate tetrahydrate) gen-

erate electrical polarization from mechanical stress. Quartz and Rochelle salt

exhibited the most piezoelectricity. The term piezoelectricity was first sug-

gested by W. Hankel in 1881. Converse piezoelectricity was mathematically

deduced from fundamental thermodynamic principles by Lippmann in 1881.

The Curies immediately confirmed the existence of the converse effect and

obtained quantitative proof of the complete reversibility of deformations in

piezoelectric crystals.
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7.1 The piezoelectric effect

In 1910 Voigt published Lehrbuch der Kristallphysik [55], and it became

a standard reference work detailing the complex electromechanical relation-

ships in piezoelectric crystals. During World War I the piezoelectric ultra-

sonic transducer was developed by Langevin. At the same time piezoelec-

tric materials began to be used as microphones, accelerometers, underwater

transducers, etc. However, the limited material performance inhibited com-

mercialization.

During World War II BaTiO3 was discovered as a high dielectric con-

stant material in USA, UK, USSR, and Japan, independently. Gray discov-

ered a poling process, which made ceramic materials act as a single crys-

tal possessing both ferroelectric and piezoelectric properties. In 1952, PZT

was reported as ferroelectric solid-solution system, and the phase diagram

was established by Shirane, et al. PZT was reported as useful piezoelec-

tric transducer material by B. Jaffe et al. in 1954. Piezoelectric ceramics

applications became commercialized, including phonograph pick-ups, micro-

phones, underwater transducers (sonar), ignition systems, discrete actuators,

etc. The 1960s-1980s decades were important for the discovery and research

of transparent electro-optic (Pb, La)(Zr, T i)O3 PLZT ceramics and by the

development of Pb(Mg1/3Nb2/3)O3 PMN and other relaxor ferroelectric ce-

ramics and devices. Also there was the first development of multi-layer stack

actuators.

From 1980 to now piezoelectric actuators has been used for smart struc-

tures, distributed actuator systems, prototype smart beam, active airfoil,

etc.. There has been a development of flexible actuators based on piezo-

electric fibers embedded in polymer matrix (active fiber composites), with

applications for active vibration reduction and noise control system. The use

of piezoelectric actuators in micro and nano positioning devices requiring

high precision such as modern microscopes is one of the actual applications

and challenges of the piezoelectric technology.
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7.1.2 Deformation modes.

The deformation directions are shown in Fig. 7.1. It is important to note

that all the parameters used in (7.1) have to be considered in the different

deformation directions.

Figure 7.1: Axes and deformation directions.

Depending on the electrical field application and the deformation of in-

terest, piezoelectric actuators can be employed using different modes:

• Longitudinal mode d33. See Fig. 7.2(a). Expression (7.6) turns into:

S3 =
6∑
i=1

(
sE3iTi

)
+ d33E3 (7.11)

• Transverse mode d31. See Fig. 7.2(b). Expression (7.6) turns into:

S1 =
6∑
i=1

(
sE1iTi

)
+ d31E3 (7.12)

• Shear mode d15. See Fig. 7.2(c). Expression (7.6) turns into:

S5 =
6∑
i=1

(
sE5iTi

)
+ d15E1 (7.13)
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7.2 Piezoelectric actuator simplified model

(a) Longitudinal mode. (b) Transverse mode. (c) Shear mode.

Figure 7.2: Different deformation modes.

7.2 Piezoelectric actuator simplified model

7.2.1 Low frequency

A piezoelectric element can be modeled from (7.1) as the association in paral-

lel of a capacitor and a charge source, since the charge can be obtained from

the electric displacement D, and the voltage can be derived from the electri-

cal field E, assuming that it is uniformly distributed in a length l (V = E/l).

Expression (7.1) can be written as:

Qe

A
= d

F

A
+ εT

V

z
x

l0
= sE

F

A
+ d

V

z

(7.14)

where Qe is the electrical charge, A is the cross-section in the movement

direction, F is the force, V is the applied voltage, l0 is the initial length in

the movement axis and z is the thickness in electrical field direction. The

first equation of (7.14), (known as the sensor expression) can be written as:

Qe = dF + εT
A

z
V = dF + CV (7.15)

where C = εTA/z is the equivalent capacitance.

The second equation of (7.14), (known as the actuation expression) can

be written as:

x = sEl0
F

A
+ V d

l0
z

= k−1F + d
l0
z
V (7.16)

where k = A/sEl0 is the equivalent stiffness constant. Note that in the

longitudinal mode, the electrical field is applied in the motion’s direction
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and thus:

x = k−1F + dV (7.17)

7.2.2 High frequency

These approximations of (7.15),(7.16) and (7.17) apply for low frequencies

but when the dynamic behavior for higher frequencies (close to the mechan-

ical resonance frequency) is concerned, the model from [56] characterized in

Fig. 7.3 has to be used. It includes the equivalent capacitor and a RLC

branch in parallel where R1 includes the mechanical losses, L1 is the equiva-

lent inductance of the mechanical circuit and C1 the capacitance of the me-

chanical circuit. Each branch has a mechanical resonance at fi = 1/2π
√
LiCi.

A current (or charge) source can be added if the system is mechanically

loaded. More branches can be added corresponding to the resonance fre-

quencies of the mechanical system.

Figure 7.3: Equivalent circuit of a piezoelectric element excited at high fre-
quency.

The impedance behavior against the frequency considering only one res-

onance frequency is plotted in Fig. 7.4. It can be noted that the frequencies

between them show an inductive behavior while the others below resonance

and above antiresonance show capacitive behavior. The resonance and an-

tiresonance frequencies can be found for values close to the series and parallel
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Figure 7.4: Impedance of a piezoelectric element with different R values and
C0 = 0.1 µF, C1 = 1 µF and L1 = 0.1 mH.
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resonant frequency as:

fr =
1

2π

√
1

L1C1

fa =
1

2π

√
C0 + C1

L1C0C1

(7.18)

7.2.3 Load

The relationship between force and displacement can be extracted from ex-

pression (7.16). Manufacturers usually provide the force with no displace-

ment and the free displacement. Defining F0 as the force with no displace-

ment (clamped actuator) and x0 the free displacement with no force:

x0 = dV
l0
z

F0 = dV
A

zsE

(7.19)

Hence expression (7.16) can be rewritten as:

F =
F0

x0

(x0 − x) (7.20)

where both F0 and x0 depend linearly on the applied voltage. Note that

the previously defined stiffness constant k, can be expressed as F0/x0 and

does not depend on the voltage but on the material stiffness. An alternative

expression of (7.20) is:

F = k (x0 − x) = F0 − kx (7.21)

7.2.3.1 Example

An example can be shown with a sample actuator working in the transversal

mode. The parameters are:
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7.2 Piezoelectric actuator simplified model

l0 = 50 · 10−3m
z0 = 0.2 · 10−3m
A = 6 · 10−6m2

sE31 = 15 · 10−12m2/N
d31 = −250 · 10−12m/V

Then:

k =
A

sE · l0
=

6 · 10−6

15 · 10−12 · 50 · 10−3
= 8 · 106N/m

For V = 400 V :

x0 = d · V · l0
z0

= −250 · 10−12 · 400 · 50·10−3

0.2·10−3 = 25 · 10−6m

F0 = x0 · k = 200N
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Figure 7.5: Displacement - Force curves

In Figure 7.5 the load - displacement characteristic for different voltages

can be seen. Also the load - displacement characteristic for different voltages

under a constant load and linear load (for example a spring or a attached

structure) are shown.
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7.3 Considerations

7.3.1 Non-linearities

It is known that the presence of non-linearities is one of the main drawbacks

of piezoelectric actuators. The most important non-linearities involved in

piezoelectric materials are hysteresis and creep. The hysteresis is referred to

the memory nature of inelastic systems where the restoring force depends

not only on the instantaneous deformation but also on the history of that

deformation. The hysteresis (Fig. 7.6) is produced by the retarded reorien-

tation of dipole domains, which initially maintain their direction in the field

direction upon reducing its strength. The creep refers to the time variation

of the strain. When the field is changed and hold constant at a certain level,

more and more dipoles orient themselves in the applied direction and thus,

a increment in the strain is produced. It is important to note that creep is

significative in static conditions while hysteresis has to be always taken into

account.

To describe the behavior of hysteretic processes several mathematical

models have been proposed [54]: the Duhem model [9] uses the property

that a hysteretic system’s otput changes its character when the input changes

direction; the Ishlinskii hysteresis operator has been proposed as a model for

plasticity-elasticity [36]; the Preisach model has been used for the modeling

of electromagnetic hysteresis [43]; the Bouc-Wen model has been used to

model wood joints and structural systems [11]. A survey of the mathematical

models for hysteresis may be found in [40]. These models have been applied

to describe the behavior of piezoelectric actuators: Prandtl-Ishlinskii in [44],

Preisach in [51] and Bouc-Wen in [39]. An energy based model has been

employed in [45].

In the present thesis part we consider the modeling of a piezoelectric

actuator using the Bouc-Wen model for smooth hysteresis [57]. This model

has received an increasing interest due to its ability to capture in an analytical

form a range of shapes of hysteretic cycles which match the behavior of a

wide class of hysteretical systems [46]. In particular, it has been used to
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Figure 7.6: Example of a displacement - voltage hysteresis curve

model piezoelectric elements [39], magnetorheological dampers [7; 47] and

wood joints [11]. The models, derived from experiments, have been used

either to predict the behavior of the physical hysteretic element [47] or for

control purposes as in [6; 28; 31].

7.3.2 Temperature dependance

The temperature is an important quantity to be considered when dealing

with piezoelectric actuators. The Curie temperature TC is a threshold value.

Above TC the piezoelectric materials lose their piezoelectric properties. The

Curie temperature ranges from 160 ◦C to 350 ◦C depending on the materials.

It is important to remark that depolarization begins to occur below TC and

thus the temperature should be limited to half of the Curie temperature.
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7.3.3 Aging

As it is explained in [34] the mechanical and electrical loading of piezoelectric

materials can lead to micro-cracking. Such phenomenon can change the

material properties or destroy the actuator or sensor. Some improvements

introduced in manufacturing processes and material engineering are allowing

certain actuators to achieve up to 109 high-level cycles without suffering

substantial damage.

7.3.4 Piezoelectric materials

The piezoelectric materials are divided in single-crystal materials, piezoce-

ramics, piezopolymers, piezocomposites and piezofilms. Comprehensive in-

formation about them may be found in [52]. The most significant paramaters

employed to describe piezoelectric actuators can be found in Table 7.1. The

most relevant properties of some piezoelectric materials are shown in Table

7.2.

Table 7.1: Piezoelectric material relevant parameters.
Quantity Description Units
dij Piezoelectric Strain Constant C/N
gij Piezoelectric Voltage Constant V m/N
kt Thickness-extensional coupling factor
kp Planar coupling factor
ε Relative permittivity
Qm Mechanical Quality Factor
TC Curie Temperature ◦C

7.4 Applications

The employment of piezoelectric actuators has been increased in the last

decades. The main advantages [42] shown by the piezoelectric actuators are:

• High Resolution: A piezoelectric actuator can perform very small

and precise position changes to the subnanometer range.
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Table 7.2: Piezoelectric material properties [52].
Parameter Quartz BaTiO3 PZT PST (Pb, Sm) PVDF

4 5H TiO3 TrFE
d33 pC/N 2.3 190 289 593 65 33
g33 10−3V m/N 57.8 12.6 26.1 19.7 42 380
kt 0.09 0.38 0.51 0.50 0.50 0.30
kp 0.33 0.58 0.65 0.03
ε 5 1700 1300 3400 175 6
Qm > 105 500 65 900 3-10
TC

◦C 120 328 193 355

• Easy miniaturization: The fact that they are solid state actuators

allows to miniaturize them and allow their application to micro and

nano-scale applications. This advantage is very significative in com-

parison with their electromagnetic counterparts [14].

• Work in different directions: It is not necessarily an advantage but

it certainly allows a wide range of applications, not only longitudinal

traction.

• Large Force Generation: Piezoelectric actuators generate large forces.

It leads to high energy and power densities.

• Very Rapid Response: Piezoelectric actuators offer very fast time

response. It enables to be used in applications requiring very high

frequencies.

• Absence of Magnetic Fields: Piezoelectric actuators are especially

indicated for applications where magnetic fields are not allowed.

• Low Power Consumption: The piezoelectric effect converts directly

electrical energy to motion. The electrical energy is consumed only

during the motion. The static losses can be considered very low in

comparison with other kinds of actuators.
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• Compatible with vacuum and clean rooms: Piezoelectric actua-

tors use ceramic elements which do not need lubrication and exhibit no

wear or abrasion. This makes them clean-room compatible and ideally

suited for ultra-high-vacuum applications.

The main drawbacks include:

• Reduced displacement: The piezoelectric actuators range is small in

comparison with other actuators. The maximum typical deformation

is approximately < 0.2 %.

• High voltage operation: To obtain a certain displacement usually

requires high voltage operation, with all the drawbacks involved.

• High non-linearity: Piezoelectric actuators show an elevated non-

linearity due to hysteresis and creep. The present thesis concentrates

in this drawback. Forthcoming chapters will introduce techniques to

model accurately the hysteresis present in piezoelectric actuators and

present controllers able to minimize the hysteresis effect for control

purposes.

The mentioned advantages make piezoelectric actuators appropriated for

a wide range of applications. They are summarized in Table 7.3.
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Table 7.3: Main applications of piezoelectric devices.
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Chapter 8

The Bouc-Wen model

8.1 Introduction

Hysteresis is encountered in a wide variety of processes in which the input-

output dynamic relations between variables involve memory effects. Ex-

amples are found in biology, optics, electronics, ferroelectricity, magnetism,

mechanics, structures, among other areas.

In the present thesis part we consider the modeling of a piezoelectric

actuator using the Bouc-Wen model for smooth hysteresis [57]. Consider

a physical system with a hysteretic component that can be represented by

a map x(t) 7→ Φs(x)(t), which is referred to as the “true” hysteresis. The

so-called Bouc-Wen model represents the true hysteresis in the form [57]

ΦBW (x, t) = αkx(t) + (1− α)Dkz(t), (8.1)

ż = D−1
(
Aẋ− β|ẋ| |z|n−1z − γẋ|z|n

)
, (8.2)

where ż denotes the time derivative, n ≥ 1, D > 0, k > 0 and 0 < α < 1.

This model was originally developed in the context of mechanical systems

in which x is a displacement and Φs is a restoring force. It represents the

hysteretic force Φs(x)(t) as the superposition of an elastic component αkx

and a purely hysteretic component (1− α)kDz, in which D > 0 is the yield

constant displacement and α ∈ (0, 1) is the post to pre-yielding stiffness

ratio. The hysteretic part involves a nondimensional auxiliary variable z
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8. The Bouc-Wen model

which is the solution of the nonlinear first order differential equation (8.2).

In this equation, A, β and γ are nondimensional parameters which control

the shape and the size of the hysteresis loop, while n is a scalar that governs

the smoothness of the transition from elastic to plastic response. The Bouc-

Wen model has received an increasing interest due to its ability to capture

in an analytical form a range of shapes of hysteretic cycles which match the

behavior of a wide class of hysteretical systems [46]. In particular, it has

been used to model piezoelectric elements [39], magnetorheological dampers

[7; 47] and wood joints [11]. The models, derived from experiments, have

been used either to predict the behavior of the physical hysteretic element

[47] or for control purposes as in [6; 28; 31].

8.2 The normalized Bouc-Wen model

8.2.1 Classification of the Bouc-Wen models

The nonlinear hysteretic behavior may be conceptualized [32] as a map

x(t) 7→ Φs(x)(t), where x(t) represents the time history of an input variable

and Φs(x)(t) describes the time history of the hysteretic output variable.

Two fundamental properties are shared by many physical hysteretic systems

arising from structural, mechanical and electromechanical engineering:

Property 1: For any bounded input x(t), the output of the true hysteresis

Φs(x)(t) is bounded. This bounded input-bounded output (BIBO) property

stems from the fact that, in practice, many (electro)mechanical and struc-

tural systems are stable in open loop.

Property 2: The physical systems that include hysteretic components

dissipate energy.

To represent adequately the true hysteresis Φs(x)(t), the Bouc-Wen model

ΦBW (x)(t) needs to keep both properties, that is to be BIBO and dissipative.

Define the sets:
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8.2 The normalized Bouc-Wen model

Ωα,k,D,A,β,γ,n = {z(0) ∈ R such that ΦBW is BIBO

with fixed values of the parameters α, k,D,A, β, γ, n} (8.3)

ΩA,β,γ,n = {z(0) ∈ R such that z(t) is bounded for any C1 bounded

input signal x(t)with fixed values of the parameters A, β, γ, n} (8.4)

Ω?
A,β,γ,n = {z(0) ∈ R such that z(t) is bounded for any C1 input

signal x(t) with fixed values of the parameters A, β, γ, n} (8.5)

Then, we have the following result which characterizes the two classes of

Bouc-Wen models that are BIBO and asymptotically dissipative [29].

Theorem 1 Define the constants:

z0 , n

√
A

β + γ
and z1 , n

√
A

γ − β
. (8.6)

Then, Table 8.1 holds.

Table 8.1: Classification of the BIBO, passive and thermodynamically con-
sistent Bouc-Wen models

CASE ΩA,β,γ,n Upper bound on |z(t)| CLASS
A > 0 β + γ > 0 and β − γ ≥ 0 R max (|z (0)| , z0) I

Furthermore, we have

Ωα,k,D,A,β,γ,n = Ω?
A,β,γ,n = ΩA,β,γ,n (8.7)

A by-product of Theorem 1 is the existence and uniqueness of the solu-

tion z(t) over t ∈ [0,+∞). Equality (8.7) means that the boundedness of
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8. The Bouc-Wen model

the signal z(t) depends only on the parameters A, γ, β and n, and it is inde-

pendent of the boundedness of the input signal x(t). This fact is particularly

important for system control theory: when x(t) is a closed loop signal, we

cannot assume a priori that it is bounded. The fact that Ω?
A,β,γ,n = ΩA,β,γ,n

shows that for every input signal x(t) (under the only assumption that it

is C1), the output z(t) is always bounded if the set Ω is non-empty, and if

z(0) ∈ Ω.

In parallel work [10], the study of the thermodynamic admissibility of

the Bouc-Wen model within the context of the endochronic theory led to

the following result: the conditions A > 0 and −β 6 γ 6 β are necessary

and sufficient for the thermodynamic admissibility of the Bouc-Wen model.

This means that the class I Bouc-Wen model is consistent with the laws of

thermodynamics.

8.2.2 The normalized Bouc-Wen model

Consider two Bouc-Wen models (8.1)-(8.2) whose parameters are such that

n2 = n1 = n, A2 = A1, β2 = νnβ1, γ2 = νnγ1, D2 = νD1, α2 = α1, k2 = k1

where ν is a positive constant, and with an initial condition z2(0) = z1(0) = 0.

Then both models belong to the same class, and for any input signal x(t)

they deliver exactly the same output ΦBW (t). This means that the input-

output behavior of a Bouc-Wen model is not described by a unique set of

parameters {α, k,D,A, β, γ, n} and, for this reason, identification procedures

that use input-output data cannot determine the parameters of the Bouc-Wen

model. To cope with this problem, users of the Bouc-Wen model often fix

some parameters to arbitrary values as in reference [41] where the coefficient

(1 − α)Dk of z(t) in equation (8.1) has been set to one and the parameter

D has also been set to one. Other authors compare the shape of the limit

cycle instead of comparing the identified parameters with their true values

as in reference [47]. This fact makes it very difficult to compare results

of different identification methods by comparing the identified parameters.

Thus it is necessary to elaborate some equivalent “normalized” model whose

parameters define in a unique way the input-output behavior of the model
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8.2 The normalized Bouc-Wen model

allowing a parametric-based comparison of identification methods for this

hysteretic model. To this end, define w(t) =
z(t)

z0

so that the model (8.1)-

(8.2) can be written as:

ΦBW (x)(t) = κxx(t) + κww(t), (8.8)

ẇ(t) = ρ
(
ẋ− σ|ẋ(t)| |w(t)|n−1w(t) + (σ − 1)ẋ(t)|w(t)|n

)
(8.9)

where

ρ =
A

Dz0

> 0, σ =
β

β + γ
≥ 0, κx = αk > 0, κw = (1− α)Dkz0 > 0.

(8.10)

We call equations (8.8)-(8.9) the normalized form of the Bouc-Wen model.

Note that if the initial condition w(0) is such that |w(0)| ≤ 1 then, by

Theorem 1, |w(t)| ≤ 1 for all t ≥ 0. This means that the variable z(t) has

been scaled to unity. It can be checked that the normalized form of the Bouc-

Wen model defines a bijective relationship between the input-output behavior

of the model and its parameters. It also has the advantage of having only five

parameters to identify instead of the seven parameters for the standard form.

Note that the normalized form of the Bouc-Wen model is exactly equivalent

to its standard form. Indeed, for any input x(t), both forms deliver exactly

the same output ΦBW (t) taking into account that we have w(0) =
z(0)

z0

. The

classification of the normalized Bouc-Wen models is given in Table 8.2. It

Table 8.2: Classification of the BIBO, passive and thermodynamically stable
normalized Bouc-Wen models

CASE Ωσ,n Upper bound on |w(t)| CLASS
σ ≥ 1

2
R max (|w (0)| , 1) I

can be seen that a single parameter σ is needed for this classification.
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8. The Bouc-Wen model

With these notations we obtain from equation (8.9):

For w(t) ≥ 0, ẋ(t) ≥ 0 ẇ(t) = ρ (1− w(t)n) ẋ(t) (8.11)

For w(t) ≤ 0, ẋ(t) ≥ 0 ẇ(t) = ρ (1 + (2σ − 1) (−w(t))n) ẋ(t)(8.12)

For w(t) ≥ 0, ẋ(t) ≤ 0 ẇ(t) = ρ (1 + (2σ − 1)w(t)n) ẋ(t) (8.13)

For w(t) ≤ 0, ẋ(t) ≤ 0 ẇ(t) = ρ (1− (−w(t))n) ẋ(t) (8.14)
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Chapter 9

Analysis and parameter

identification of the Bouc-Wen

model

It is known that the presence of non-linearities and the high voltage needed

for optimal performance are the main drawbacks of piezoelectric actuators.

As it is explained in Section 7.3.1, we focus on the nonlinear behavior of

piezoelectric actuators by taking into account the presence of hysteresis.

The normalized version of the model introduced in chapter 8 relates the

output restoring force ΦBW (x)(t) to the input displacement x(t) in the fol-

lowing way:

ΦBW (x)(t) = κxx(t) + κww(t), (9.1)

ẇ(t) = ρ
(
ẋ(t)− σ|ẋ(t)| |w(t)|n−1w(t)+

+(σ − 1)ẋ(t)|w(t)|n) (9.2)

where κx > 0, κw > 0, ρ > 0, σ >
1

2
and n ≥ 1 are the model parameters

that shape the hysteresis loop. The range of the parameter σ corresponds

to the Class I Bouc-Wen model which is stable, asymptotically dissipative

and thermodynamically consistent [29]. This chapter deals with the problem

of identifying the model parameters in the presence of disturbances. The

signals that are accessible to measurements are the input x(t) and the output
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9. Analysis and parameter identification of the Bouc-Wen model

ΦBW (x)(t). The state w(t) is not accessible to measurements. As can be seen

from equations (9.1)-(9.2), the difficulty of the identification problem lies (1)

in the nonlinear form of the model, especially in relation with the estimation

of the parameter n which forms part of the “structure” of the model and

(2) in the fact that the state w(t) is not accessible to measurements. A

survey of the parametric and non parametric methods that have been used

in the literature for the identification of the Bouc-Wen model may be found

in [38]. The main theoretical deficiency of these methods is that they rely

mainly on numerical simulations and do not offer, to a large extent, a rigorous

mathematical proof of the convergence of the estimated parameters to their

true counterparts.

In this chapter, we propose a new parametric nonlinear identification tech-

nique for the Bouc-Wen model based on the analytical description of [29].

This method does not use any information from the behavior of the system

in the plastic region which makes it applicable for a wide class of materials

including base isolation devices, magnetorheological damper, piezoelectric

elements, etc. And, unlike most identification techniques for the Bouc-Wen

model, this method provides the exact values of the model parameters in

the absence of disturbances, and gives a guaranteed relative error between

the estimated parameter and the true ones in the presence of a particular

class of perturbations. The main advantages of the proposed identification

methodology are (1) the simplicity of the proof that the estimated parame-

ters are within a given tolerance with respect to their true counterparts in

the presence of disturbances (2) the fact that limit cycles can be obtained

experimentally in a simple way [4] (3) its wider range of applicability than

[30]. The identification technique consists in exciting the hysteretic system

with two periodic signals that have a specific shape. The parameters of the

Bouc-Wen model are then obtained from the two limit cycles using a precise

algorithm. This method guarantees that the estimated parameters are within

a given tolerance with respect to the true parameters, and it is shown that

the identification technique is robust with respect a class of disturbances of

practical interest.
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9.1 Parameter identification for the Bouc-Wen model

9.1 Parameter identification for the Bouc-Wen

model

9.1.1 Class of inputs

In this chapter we consider that the input signal x(t) is T -wave periodic [29].

This means that it is continuous on the time interval [0,+∞) and periodic of

period T > 0. Furthermore there exists a scalar 0 < T+ < T such that the

signal x is C1 on both intervals (0, T+) and (T+, T ) with ẋ(τ) =
dx(τ)

dτ
> 0

for τ ∈ (0, T+) and ẋ(τ) < 0 for τ ∈ (T+, T ) (see Figure 9.1). We denote

Xmin = x(0) and Xmax = x(T+) > Xmin the minimal and maximal values of

the input signal, respectively. We assume that max (|Xmax|, |Xmin|) ≤
κw
κx

so

that the Bouc-Wen model is consistent with the hysteretic property [30].

Figure 9.1: Example of a T -wave periodic signal.
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9. Analysis and parameter identification of the Bouc-Wen model

9.1.2 Analytic description of the forced limit cycle for

the Bouc-Wen model

Define the following functions:

ϕ−σ,n(w) =

∫ w

0

1

1 + σ|u|n−1u+ (σ − 1)|u|n
du (9.3)

ϕ+
σ,n(w) =

∫ w

0

1

1− σ|u|n−1u+ (σ − 1)|u|n
du (9.4)

ϕσ,n(w) = ϕ+
σ,n(w) + ϕ−σ,n(w) (9.5)

for any scalar w ∈ (−1, 1). In this section and in the rest of the chapter we

denote w(t) the solution of the differential equation (9.2) while the notation

w without an argument is used for a given scalar. It has been shown in

[29] that the functions ϕ−σ,n(·), ϕ+
σ,n(·) and ϕσ,n(·) are strictly increasing on

the interval (−1, 1) so that they are bijective. Their inverses are denoted

ψ−σ,n(·), ψ+
σ,n(·) and ψσ,n(·), respectively. These functions have been studied

extensively in [29]. Note that for w ≥ 0 we have

ϕ−σ,n(w) =

∫ w

0

1

1 + (2σ − 1)un
du (9.6)

ϕ+
σ,n(w) =

∫ w

0

1

1− un
du (9.7)

and for w ≤ 0 we have

ϕ−σ,n(w) =

∫ w

0

1

1− (−u)n
du (9.8)

ϕ+
σ,n(w) =

∫ w

0

1

1 + (2σ − 1)(−u)n
du (9.9)

The limit cycle for the Bouc-Wen model is described by the following [29]:

Theorem 2 Let x(t) be a T -wave periodic input signal. Define the functions

ωm and φm for any positive integer m as follows

ωm(τ) = w(mT + τ) for τ ∈ [0, T ] (9.10)

φm(τ) = κxx(τ) + κwωm(τ) for τ ∈ [0, T ] (9.11)
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9.1 Parameter identification for the Bouc-Wen model

where w(·) is the solution of equation (9.2) with initial condition w(0). Then

the sequence of functions {φm}m≥1 (resp. {ωm}m≥1) converges uniformly on

the interval [0, T ] to a continuous function Φ̄BW (resp. w̄) defined as

Φ̄BW (τ) = κxx(τ) + κww̄(τ) for τ ∈ [0, T ] (9.12)

w̄(τ) = ψ+
σ,n

(
ϕ+
σ,n [−ψσ,n (ρ (Xmax −Xmin))] +

+ρ (x(τ)−Xmin)) for τ ∈ [0, T+]

(9.13)

w̄(τ) = −ψ+
σ,n

(
ϕ+
σ,n [−ψσ,n (ρ (Xmax −Xmin))]

−ρ (x(τ)−Xmax)) for τ ∈ [T+, T ]

(9.14)

Furthermore we have for all τ ∈ [0, T ]

− 1 < −ψσ,n (ρ (Xmax −Xmin)) ≤ w̄(τ)

≤ ψσ,n (ρ (Xmax −Xmin)) < 1 (9.15)

the lower and upper bounds of w̄(τ) being attained at τ = 0 and τ = T+

respectively.

9.1.3 Identification methodology

In general, the nonlinear state variable w is not accessible to measurement.

However, in many cases of practical importance, the hysteretic limit cycle

can be obtained experimentally [41]. The hysteretic system under study is

assumed to be described by the normalized Bouc-Wen model (9.1)-(9.2), with

unknown parameters κx, κw, ρ, σ and n. The loading part of the limit cycle

(that corresponds to an increasing input x(t)) can be obtained from Theorem

2 as:

Φ̄BW (x) = κxx+ κww̄(x) (9.16)

w̄(x) = ψ+
σ,n

(
ϕ+
σ,n [−ψσ,n (ρ (Xmax −Xmin))] +

+ρ (x−Xmin)) (9.17)

91



9. Analysis and parameter identification of the Bouc-Wen model

Note that, by an abuse of notation, we use the same symbol w̄(·) to describe

the function w̄(τ) and w̄(x). This is justified as the function x(τ) is bijective

in the loading part of the limit cycle. The proposed identification method

assumes the knowledge of the relation Φ̄BW (x), that is the knowledge of the

limit cycle. In equations (9.16)-(9.17), the parameters κx, κw, σ, ρ, n are

unknown. From equation (9.17) it follows that:

dw̄(x)

dx
= ρ (1− w̄(x)n) for w̄(x) ≥ 0 (9.18)

dw̄(x)

dx
= ρ (1 + (2σ − 1) (−w̄(x))n) for w̄(x) ≤ 0 (9.19)

Consider two wave T -periodic signals x(t) and x1(t) such that x1(t) =

x(t)+q for a given constant q. Denoting the corresponding hysteretic outputs

w̄(x) and w̄1(x1) respectively, we get from equation (9.13) that w̄1(x1) = w̄(x)

for all x ∈ [Xmin, Xmax]. It follows from equation (9.12) that Φ̄BW,1(x1) =

Φ̄BW (x) + κxq which gives the value of κx as:

κx =
Φ̄BW,1(x+ q)− Φ̄BW (x)

q
(9.20)

for any value of x ∈ [Xmin, Xmax]. Since κx has been determined, the quantity

κww̄(x) can be computed from equation (9.12) as

κww̄(x) = Φ̄BW (x)− κxx , θ(x). (9.21)

Then, equation (9.18) can be written as:

dθ(x)

dx
= a− b θ(x)n for θ(x) ≥ 0 (9.22)

where a = ρκw and b = ρκ−n+1
w . The coefficient a can be computed from

equation (9.22) as:

a =

(
dθ(x)

dx

)
x=x∗

(9.23)

where x∗ is such that θ(x∗) = 0. The existence and uniqueness of this zero

follows from Theorem 2. Take two design input values x∗2 > x∗1 > x∗, then
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9.1 Parameter identification for the Bouc-Wen model

the parameter n and the quantity b can be determined as:

n =

log


(
dθ(x)
dx

)
x=x∗2

− a(
dθ(x)
dx

)
x=x∗1

− a


log

(
θ(x∗2)

θ(x∗1)

) (9.24)

b =

a−
(
dθ(x)

dx

)
x=x∗2

θ(x∗2)n
(9.25)

and the parameters κw and ρ are computed as follows:

κw = n

√
a

b
(9.26)

ρ =
a

κw
(9.27)

Then, the function w̄(x) can be computed from equation (9.12) as:

w̄(x) =
θ(x)

κw
(9.28)

The remaining parameter σ is determined as:

σ =
1

2



(
dw̄(x)

dx

)
x=x∗3

ρ − 1

(−w̄(x∗3))
n + 1

 (9.29)

where x∗3 is a design parameter such that w̄(x∗3) < 0 or equivalently x∗3 < x∗.

The identification methodology is summarized in the following steps.

• Step 1. Excite the Bouc-Wen model with a wave periodic signal x(t).

After a transient, the output ΦBW (t) will have a steady state Φ̄BW (t)

as proved in Theorem 2. Since both the input and the output are

accessible to measurements, the relation
(
x, Φ̄BW (x)

)
is known.
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9. Analysis and parameter identification of the Bouc-Wen model

• Step 2. Choose a nonzero constant q and excite the Bouc-Wen model

with the input x1(t) = x(t) + q. After a transient, the output ΦBW,1(t)

will have a steady state Φ̄BW,1(t) as proved in Theorem 2. Since both

the input and the output are accessible to measurements, the relation(
x1, Φ̄BW,1(x1)

)
is known.

• Step 3. Compute the coefficient κx using equation (9.20).

• Step 4. Compute the function θ(x) using equation (9.21).

• Step 5. Determine the zero of the function θ(x), that is the quantity

x∗ such that θ(x∗) = 0.

• Step 6. Compute the parameter a using equation (9.23).

• Step 7. Choose two design constants x∗1 and x∗2 such that x∗2 > x∗1 >

x∗. Then, compute the parameters n and b using equations (9.24) and

(9.25) respectively.

• Step 8. Compute the parameters κw and ρ using equations (9.26) and

(9.27) respectively.

• Step 9. Compute the function w̄(x) using equation (9.28).

• Step 10. Choose a design constant x∗3 such that x∗3 < x∗. Then,

compute the parameter σ using equation (9.29).

As can be seen, this identification method provides the exact values of

the Bouc-Wen model parameters in the absence of disturbances. The next

section analyzes the robustness of the method with respect to a class of

disturbances of practical interest.

9.1.4 Robustness of the identification method

In practice, the T -periodic input signal x(t) excites the hysteretic system via

a (generally) linear actuator. Assume that the frequency of the input signal

lies within the bandwidth of this actuator and that the latter has a unity gain
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9.1 Parameter identification for the Bouc-Wen model

at the zero frequency. Then the output of the actuator can be written in the

steady state as xd(t) = x(t)+d(t) where the term d(t) is due to the fact that

the higher harmonics of the signal x(t) are filtered by the actuator. Since the

input x(t) is T -periodic, so are the signal xd(t) and the perturbation d(t).

On the other hand, T -periodic measurement disturbances result from the

fact that a sensor has always a limited bandwidth. Thus, the high frequency

components of the hysteretic output are filtered so that in the steady state,

the measured output and the real output differ by a T -periodic function v(t).

Note that if the input disturbance d(t) is not T -periodic (for example a

random noise), then the limit cycle does not occur. Also if the measurement

disturbance v(t) is not T -periodic, then even if the input disturbance d(t) is

T -periodic, the limit cycle is not observed. However, even though the ne-

cessity for the disturbances to be T -periodic constitutes the main theoretical

limitation of our identification method, experimental evidence shows that in

many cases of practical relevance, limit cycles are indeed observed (see for

example [4, Figure 6.12 upper]). This means that for these cases, the most

relevant disturbances are indeed T -periodic.

We consider in this section that the input signal is corrupted by an ad-

ditive disturbance which is constant or periodic with the same period as

the input signal. More precisely we consider that an unknown disturbance

d(t) is added to the input signal x(t) resulting in a corrupted input signal

xd(t) = x(t) + d(t). If the signal xd(t) is accessible to measurement, then

the analysis of the identification method is much easier as this is equivalent

to identifying the Bouc-Wen model parameters with a known input and in

the absence of disturbances. This case is included in the more general case

of a signal x(t) that is accessible to measurement and a signal xd(t) that is

not accessible to measurement. This corresponds to an unknown signal d(t)

which is often the case in practice.

We also consider that the hysteretic output Φ̄BW (t) is corrupted by an

additive measurement disturbance v(t). We choose the signal x(t) so that 0 <

Xmax = −Xmin, and we make the following assumption on the disturbances

d(t) and v(t) that are denoted by the generic notation ξ(t):
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Assumption 1 The unknown disturbance signal ξ(t) is constant or periodic

of period T , is continuous for all t ≥ 0 and C1 on the interval (0, T+)
⋃

(T+, T ).

Moreover, there exists a constant 0 ≤ µ < 1
2

such that:

|ξ(τ)| ≤ µXmax for τ ∈ [0, T ] (9.30)∣∣∣ξ̇(τ)∣∣∣ ≤ µ |ẋ(τ)| for τ ∈ (0, T+)
⋃

(T+, T ) (9.31)

Clearly the disturbances d and v belong to the class of constant or small

slowly time-varying periodic disturbances. These disturbances will be said

µ-small. Note that, in practice, the perturbations may have high frequency

components that do not verify Assumption 1. In this case, a low pass fil-

ter may be designed to eliminate these components so that the resulting

perturbations comply with Assumption 1.

Under Assumption 1, the corrupted input signal xd(t) belongs to the

class of inputs of Section 9.1.1 so that limit cycles occur and are described

by Theorem 2. Denoting Xd,max and Xd,min the maximal and minimal values

of xd we get Xd,max = Xmax + d(T+) and Xd,min = −Xmax + d(0) and the

limit cycle is described by the equations

Φ̄BW (τ) = κxXmaxx̄(τ) + κxXmaxd̄(τ) + κww̄(τ) +

+Xmaxv̄(τ) for τ ∈ [0, T ] (9.32)

w̄(τ) = ψ+
σ,n

(
ϕ+
σ,n [−ψσ,n (δ (1 + εd))] +

+
δ

2

[
x̄(τ) + 1 + d̄(τ)− d̄(0)

])
for τ ∈ [0, T+] (9.33)

w̄(τ) = −ψ+
σ,n

(
ϕ+
σ,n [−ψσ,n (δ (1 + εd))]

−δ
2

[
x̄(τ)− 1 + d̄(τ)− d̄(T+)

])
for τ ∈ [T+, T ] (9.34)

where we take−1 ≤ x̄(τ) =
x(τ)

Xmax

≤ 1 as the normalized input function which

is accessible to measurement and δ = 2ρXmax. The quantities d̄(τ) =
d(τ)

Xmax

and v̄(τ) =
v(τ)

Xmax

correspond to the (unknown) normalized disturbances and
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9.1 Parameter identification for the Bouc-Wen model

εd =
d̄(T+)− d̄(0)

2
. For any normalized Bouc-Wen model parameter p we

denote p◦ the identified one. Let 0 < ε < 1
2

be the maximal tolerance allowed

for the identified parameters. This means that for each parameter p of the

Bouc-Wen model and its corresponding identified value p◦, we should have∣∣∣∣p− p◦

p

∣∣∣∣ ≤ ε.

In this section, we consider only the loading part of the hysteretic limit

cycle, that is we consider that in equations (9.32)-(9.34) we have τ ∈ [0, T+].

Since the input signal x̄(τ) is, by assumption, such that ˙̄x(τ) > 0 for all

τ ∈ (0, T+), the function x̄(τ) is a bijection from the time interval [0, T+]

to [−1, 1]. Thus it is possible to define its inverse function from the interval

[−1, 1] to the time interval [0, T+]. By an abuse of notation, we denote this

inverse function τ .

With these notations, we rewrite equations (9.32)-(9.33) as:

Φ̄BW (x̄) = κxXmaxx̄+ κxXmaxd̄ (τ(x̄)) + κww̄(x̄) +

+Xmaxv̄ (τ(x̄)) (9.35)

w̄(x̄) = ψ+
σ,n

(
ϕ+
σ,n [−ψσ,n (δ (1 + εd))] +

+
δ

2

[
x̄+ 1 + d̄ (τ(x̄))− d̄(0)

])
(9.36)

where we did not use the letter l for loading to simplify the notations. We

also use the notations q̄ =
q

Xmax

and x̄∗i =
x∗i
Xmax

, i = 1, 2, 3. We now state

the main result of this section.

Theorem 3 Let x̄∗1, x̄∗2 and x̄∗3 be design parameters and let ε > 0 be the

desired precision on the estimated parameters. There exists a real number

µ∗ (κx, κw, ρ, n, σ, q̄, x̄∗1, x̄∗2, x̄∗3, ε) > 0 called robustness margin such that:

for any µ-small disturbances d and v verifying 0 ≤ µ ≤ µ∗, and for any

parameter p ∈ {κx, κw, ρ, n, σ}, the corresponding identified parameter p◦

using the methodology of Section 9.1.3 is such that

∣∣∣∣p− p◦

p

∣∣∣∣ ≤ ε.

The proof of Theorem 3 is given in the appendix A.

Robustness is a central issue in identification methods. It is not enough

that the method gives the correct parameters in the absence of perturba-
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9. Analysis and parameter identification of the Bouc-Wen model

tions, it is also desirable that a “small size” of disturbances leads to a “small

discrepancy” between the identified parameters and the true one. Theorem 3

says that, given an ε > 0, for all µ-small disturbances such that 0 ≤ µ ≤ µ∗,

the relative error between the identified parameters p◦ and the true parame-

ters p does not exceed ε. If the quantity µ∗ were zero, this would have implied

that, even for arbitrarily small disturbances, the identification method may

lead to a large discrepancy between the identified parameters and the true

ones. Theorem 3 guarantees that the robustness margin µ∗ > 0 so that all µ-

small disturbances with µ ∈ [0, µ∗] lead to a relative error in the parameters

no more than ε.

9.2 Numerical simulation example

In this section we consider the Bouc-Wen model given by the unknown pa-

rameters κx = 2, κw = 2, ρ = 1, σ = 3, n = 1.5. The objective is to use the

technique presented in the previous sections to identify its parameters. As

seen in Section 9.1.3, the identification technique has 10 steps.

Step 1. The first step of the identification procedure is the choice of the

T -periodic input signals. Due to Assumption 1 we have
∣∣∣ξ̇(τ)∣∣∣ ≤ µ |ẋ(τ)|.

This implies that derivative ξ̇(τ) of the disturbance ξ(τ) needs to be zero

whenever the derivative of the input signal x(τ) is zero. Thus, a sine wave

input signal candidate would impose that ξ̇(τ) should be very small around

the time instants 0 +mT and
T

2
+mT (m is any positive integer) which is

unlikely to happen in practice. For this reason, a good choice of an input

signal is a triangular one so that the derivative ξ̇(τ) needs only to be small

with respect to the slope of the input signal which is constant (in absolute

value). The next design parameter to be chosen is the frequency of the input

signal. Since the Bouc-Wen model is rate independent, its input-output

behavior is independent of the frequency of the input signal. We thus take

T = 1 and T+ =
T

2
. We also choose Xmax = −Xmin = 0.2.

Step 2. In this step, one has to choose a value q 6= 0 to obtain a second

input signal x1(t) = x(t) + q. The signals x(t) and x1(t) are given in Figure
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9.2 with q = 0.1.
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Figure 9.2: Upper left. Solid: input signal x(t), dashed: input signal x1(t).
Lower left. Solid: output ΦBW (x)(t), dashed: output ΦBW,1(x)(t). Right.
Limit cycles (x, Φ̄BW ) (solid) and (x1, Φ̄BW,1) (dashed) that have been ob-
tained for the time interval [4T, 5T ]

In practice, the input and output data are in the form of a finite number

of samples x(kh), Φ̄(kh) where h is the sampling period, k = 0, 1, · · · ,m and

m the number of samples. These samples have to be taken once the output

of the system is in steady-state. Note that, since the identification technique

uses only the loading part of the limit cycle, we can choose the time instant

kh = 0 such that x(k = 0) corresponds to the lowest value of x and the

time instant mh so that x(k = m) corresponds to the largest value of x.

This implies that the samples that are used for identification purpose verify
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9. Analysis and parameter identification of the Bouc-Wen model

x(i) < x(i + 1) for all 0 ≤ i < m as we are considering the loading part of

the limit cycle.

Step 3. The estimate κ◦x of the coefficient κw is computed from equation

(9.20) as:

κ◦x =
Φ̄BW,1 (x(0) + q)− Φ̄BW (x(0))

q
(9.37)

where x(0) is the value of x at the time instant k = 0.

Step 4. An estimate θ◦(x) of the function θ(x) is computed from equation

(9.21) as

θ◦ (x(i)) = Φ̄BW (x(i))− κ◦xx(i) for i = 0, · · · ,m (9.38)

Step 5. It has been shown in the previous section that the estimate θ◦(x)

is strictly increasing and has a unique zero, that is there exists a unique

point x∗ such that θ◦(x∗) = 0. Since all the samples x(i) are such that

x(i) < x(i + 1), we have θ◦ (x(i)) < θ◦ (x(i+ 1)). The existence and unicity

of the zero of the function θ◦ shows that there exists a unique integer r such

that θ◦ (x(r)) ≤ 0 < θ◦ (x(r + 1)). This implies that x(r) ≤ x∗ < x(r + 1),

and a linear interpolation gives an estimate x◦∗ of the zero x∗. A simple

computer program can be done to determine the integer r.

Step 6. An estimate of the parameter a is computed from equation (9.23)

as:

a◦ =
θ◦ (x(r + 1))− θ◦ (x(r))

x(r + 1)− x(r)
(9.39)

Step 7 Choosing the design parameters x∗2 = x(l2) > x∗1 = x(l1) > x◦∗,

the estimates n◦ and b◦ are computed from equations (9.24) and (9.25) as

follows:

n◦ =

log

( θ◦(x(l2+1))−θ◦(x(l2))
x(l2+1)−x(l2)

− a◦

θ◦(x(l1+1))−θ◦(x(l1))
x(l1+1)−x(l1)

− a◦

)

log

(
θ◦(x∗2)

θ◦(x∗1)

) (9.40)

b◦ =
a◦ − θ◦(x(l2+1))−θ◦(x(l2))

x(l2+1)−x(l2)

θ◦(x∗2)n
◦ (9.41)

Step 8 Estimates of the parameters κw and ρ are computed from equations
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(9.26) and (9.27) as follows:

κ◦w = n◦
√
a◦

b◦
(9.42)

ρ◦ =
a◦

κ◦w
(9.43)

Step 9 An estimate of the function w̄(x) is computed from equation (9.28)

as follows:

w̄◦ (x(i)) =
θ◦ (x(i))

κ◦w
for i = 0, · · · ,m (9.44)

Step 10 Choose a design parameter x∗3 = x(l3) < x◦∗. Then an estimate of

the parameter σ is computed from equation (9.29) as:

σ◦ =
1

2


w̄◦ (x(l3 + 1))− w̄◦ (x(l3))

x(l3 + 1)− x(l3)
ρ◦

− 1

(−w̄◦(x∗3))n
◦ + 1

 (9.45)

The numerical simulation gives κ◦x = 2.0000, κ◦w = 2.0059, ρ◦ = 0.9971,

n◦ = 1.4954, σ◦ = 2.9728.

9.3 Conclusion

This chapter has presented a new identification method for the Bouc-Wen

model. The method consist in exciting the hysteretic systems with two input

signals that differ by a constant, and use the obtained limit cycles to derive

the parameters of the Bouc-Wen model. This technique provides the exact

values of the parameters in the absence of disturbances, and proves to be

robust with respect to a class of perturbations of practical relevance.
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Chapter 10

Adaptation of the Bouc-Wen

model for the modeling and

validation of a piezoelectric

actuator

In this chapter, we propose a modification of the Bouc-Wen model to describe

the experimentally observed behavior of a piezoelectric actuator. To iden-

tify this modified model, we have developed a new identification technique

based on the results obtained in [26], where the problem of identifying the

Bouc-Wen model parameters is addressed. The modified Bouc-Wen model is

validated by means of experiments, and is compared to the behavior of the

non-modified Bouc-Wen model.

The chapter is structured as follows. Section 10.1 shows that the model

presented in the last chapter does not describe with precision the experi-

mental behavior of the piezoelectric actuator. In Section 10.2 the modified

Bouc-Wen model is introduced, along with the corresponding parameter iden-

tification methodology. Section 10.3 applies the identification technique of

Section 10.2 and validates the obtained model using experiments. It also

presents a comparison between the modified and non-modified Bouc-Wen

models. The conclusions are summarized in section 10.4.

103
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a piezoelectric actuator

10.1 Experimental observations

The system under study is the patch of Figure 10.1 which is a piezoelectric

actuator that contains the foil PIC-255 (Physik Instrumente). The actuator

is seen as a SISO system whose input is the voltage v applied to the 3 axis

and the output is the displacement y along the 1 axis. The model of the

piezoelectric actuator is given by:

Figure 10.1: Piezoelectric patch employed for the experiments.

mÿ(t) + cẏ(t) + k1 (y(t)− y0) + k2w(t) = k3v(t) (10.1)

wherem is the equivalent mass of the free edge point of piezoelectric actuator,

y(t) its relative position with respect to the sensor, y0 is a constant that

depends on the choice of the origin, v the input voltage, and ki, i = 1, 2, 3

are constant gains. The nonlinear term w(t) takes into account the effect of

hysteresis. We use in this section periodic input voltage functions that have

a low frequency. In this case, the terms mÿ(t) and cẏ(t) may be neglected so
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10.2 The modified model and the corresponding identification methodology

that the model of the piezoelectric actuator can be written as:

y(t) = kvv(t) + kww(t) + y0 (10.2)

where kv and kw are constant gains. In the rest of the section, we approximate

the nonlinear term w(t) with a Bouc-Wen model and we use the identification

method of Section 9.1.3 to determine its parameters. Note that the input

variable is the voltage v (which plays the role of x in equations (9.1)-(9.2)),

and the output variable is y (which plays the role of Φ(x) in equations (9.1)-

(9.2)).

According to this methodology, two wave T -periodic voltages of low fre-

quency f = 0.1 Hz, and that differ by a constant offset of q = 100 V are

applied to the actuator. Figure 10.2 upper gives the two limit cycles obtained

asymptotically as a response of the actuator to the two input voltages. If the

actuator were described precisely by the Bouc-Wen model, we would have

from equation (9.20):

Φ̄1(v + q)− Φ̄(v) = κvq (10.3)

for any value of v ∈ [Vmin, Vmax]. Hence, such a difference would be constant

so that a drag-and-drop of the two voltage-displacement curves of Figure

10.2 upper would lead to a perfect matching. However, we observe in Figure

10.2 lower that this is not the case. This means that the model composed of

equations (9.1)-(9.2), (10.2) does not describe satisfactorily the experimen-

tal behavior of the piezoelectric actuator. The next section is dedicated to

modifying this model so that it matches with experimental observations.

10.2 The modified model and the correspond-

ing identification methodology

In the previous section, it has been observed that the Bouc-Wen model does

not represent precisely the experimental behavior of the piezoelectric actua-

tor. For this reason, we propose a modification of the model which consists in

105



10. Adaptation of the Bouc-Wen model for the modeling and validation of
a piezoelectric actuator

0 50 100 150 200 250 300 350 400
0

10

20

30

40

Voltage [V]

D
is

pl
ac

em
en

t [
μ 

m
]

0 50 100 150 200 250 300 350 400
0

10

20

30

40

Voltage [V]

D
is

pl
ac

em
en

t [
μ 

m
]

Figure 10.2: Drag and drop of the voltage-displacement curve of 100−400 V
input signal over the 0− 300 V input signal. It can be seen that the curves
do not match.

introducing a higher degree polynomial in the input variable instead of a lin-

ear term. We also propose a modification of the identification methodology

of Section 9.1.3.

10.2.1 Modified model

The term κxx(t) of (9.1) is substituted by a polynomial function as:

Φ(x)(t) =
N∑
i=1

κix
i(t) + κww(t) (10.4)

where κi are constants to be determined. No modification is introduced in

equation (9.2).

10.2.2 Non-hysteretic term parameter identification

The modification of the model implies a modification of the identification

methodology. Similar to Section 9.1.3, two inputs x(t) and x(t) + q that
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differ by a constant q are applied to the piezoelectric actuator. Then, the

obtained asymptotic outputs Φ̄1(τ) and Φ̄2(τ) can be written:

Φ̄1(τ) =
N∑
i=1

κix
i(τ) + κww̄1(τ) (10.5)

Φ̄2(τ) =
N∑
i=1

κi (x(τ) + q)i + κww̄2(τ) (10.6)

where τ ∈ [0, T ]. Note that we have w̄1(τ) = w̄2(τ) , w̄(τ) from Theorem 2.

Subtracting (10.6) from (10.5) it follows:

Φ̄2(τ)− Φ̄1(τ) =
N∑
i=1

κi

[
(x(τ) + q)i − xi(τ)

]
,

N−1∑
j=0

gjx
i(τ),∀τ ∈ [0, T ]

(10.7)

where gj are constant coefficients. Expanding the terms of equation (10.7)

and rearranging we get:



g0

g1

g2

g3
...

gN−1


=



q q2 q3 q4 . . . qN

0 2q 3q2 4q3 . . .

(
N

N − 1

)
qN−1

0 0 3q 6q2 . . .

(
N

N − 2

)
qN−2

0 0 0 4q . . .

(
N

N − 3

)
qN−3

...
...

...
...

. . .
...

0 0 0 0 . . .

(
N

N − k

)
qN−k

...
...

...
...

. . .
...

0 0 0 0 . . .

(
N
1

)
q



×



κ1

κ2

κ3

κ4
...
κN



(10.8)

which is equivalent to:
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gj =
N∑

k=j+1

(
k

k − j

)
qk−jκk , j = 0, 1, ..., N − 1 (10.9)

Note that equation (10.9) is of the form

G = Q×K (10.10)

On the other hand, in equation (10.7), the quantities Φ̄2(τ), Φ̄1(τ) and x(τ)

are experimental data, the integer N is chosen, and the constants g0, · · · ,
gN−1 are unknowns to be determined using regression techniques. Hence, the

matrix K of equation (10.10) can be determined as:

K = Q−1 ×G (10.11)

where Q is invertible since q 6= 0. The simplest case is when N = 1, and

corresponds to the model (9.1)-(9.2).

If we take N = 2, then we get:

Q =

(
q q2

0 2q

)
(10.12)

so that:

K = Q−1G →
(
κ1

κ2

)
=

( 1
q
−1

2

0 1
2q

)(
g0

g1

)
=

( g0
q
− g1

2
g1
2q

)
(10.13)

10.2.3 Hysteretic term parameter identification

The hysteretic part of the model is obtained from equation (10.4) as:

κww̄(τ) = Φ̄(τ)−
N∑
i=1

κix
i(τ),∀τ ∈ [0, T ] (10.14)

The identification method of the parameters characterizing the hysteretic

term has been described in section 9.1.3. To determine the intermediate
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parameters a and b, and the relevant parameters n, ρ, κw, σ, the design

parameters x∗, x∗1, x∗2, x∗3 have to be chosen as in Table 10.1.

Table 10.1: Design parameters.
Input Condition Curve region Comments

1 x∗ θ(x∗) = 0 w̄(x) = 0
2 x∗1 x∗1 > x∗ w̄(x) > 0 in the linear region
3 x∗2 x∗2 > x∗1 > x∗ w̄(x) > 0 close to the largest voltage value
4 x∗3 x∗3 < x∗ w̄(x) < 0 close to the smallest voltage value

The unknown parameters are calculated according to Table 10.2.

Table 10.2: Parameter expressions
Parameter Expression Parameter Expression

a
(
dθ(x)
dx

)
x=x∗

n

log

( dθ(x)
dx )

x=x∗2
−a

( dθ(x)
dx )

x=x∗1
−a


log

(
θ(x∗2)
θ(x∗1)

)

b
a−( dθ(x)

dx )
x=x∗2

θ(x∗2)n κw n
√

a
b

ρ a
κw

σ 1
2

 ( dw̄(x)
dx )

x=x∗3
ρ

−1

(−w̄(x∗3))n + 1



10.3 Piezoelectric actuator modeling

10.3.1 Experimental setup

The system under study is sketched in Figure 10.3. The actuator is driven

by means of a power amplifier whose working voltage is set by a function

generator where the reference waves are introduced.
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Figure 10.3: Block diagram of the experiment.

The actuator employed (Fig. 10.1) is a patch where the voltage v is

applied in the 3 axis and the main displacement y is performed in the 1

axis. Such an actuator can be used in a number of applications ranging from

active control of structures to micro-positioning and optics applications. For

the sake of completeness, we give the physical characteristics of the patch.

The piezoelectric ceramic used is a PI (Physik Instrumente) PIC-255. The

material shows a d31 piezoelectric coefficient of −180 · 10−12 m/V , dielectric

permittivity εT33/ε0 of 1800, elastic constant sE11 of 16.1 · 10−12 m2/N , density

of 7.80 gr/cm3 and Curie temperature of 350 oC. The piezoelectric foil shows

a mass of 2.34 g. and dimensions of 50 mm×30 mm×0.2 mm and the entire

patch a mass of 3.405 g. and dimensions of 60 mm× 35 mm× 0.5 mm.

The piezoelectric actuator lays in a low friction surface where it is clamped

in one extreme and left free in the other in order to allow its free movement.

The piezoelectric actuator has been previously polarized with a constant

voltage of 450 V during 5 min in order to ensure its optimal performance.

An Ono-Sokki Multi-Purpose FFT Analyser CF-5220 has been used as a

function generator to generate triangular, sinusoidal and random functions.

The amplifier employed is a PI (Physik Instruments) with the modules E-
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10.3 Piezoelectric actuator modeling

107 and E-111. The voltage v is measured with a probe Tes(A)tec TT-

SI-9002. The displacement of the free edge of the piezoelectric actuator is

measured by means of a laser triangulator Micro-Epsilon optoNCDT 1607

with range 500 µm - ±10 V , bandwith of 10 kHz and resolution of 0.1 µm.

The data has been acquired with a four channel Tektronix TDS 3014 (band-

width 100 MHz). All the quantities have been sampled depending on the

function under study so that 10000 samples for each plot (including two or

three full periods) are provided.

Figure 10.4: Experimental layout.

10.3.2 Identification procedure

The actuator under study has been identified using the methodology de-

scribed in section 10.2.2. Similar to Section 10.1, it follows from equations

(10.1) and (10.4) that:

y(t) =
N∑
i=1

κiv
i(t) + κww(t) + y0 (10.15)

As it can be seen in Fig. 10.5, the input and output signals are corrupted

by noise. Since the identification method uses the values of the derivatives

at some points of the limit cycle, it is necessary to filter the data before
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applying the identification algorithm. To this end, a second order filter of

the form
ω2
n

s2 + 2ζωns+ ω2
n

is used, with ζ = 0.7 and ωn = 50 × ωs where

ωs = 0.1 × 2π rad/s is the frequency of the voltage input signal. The fact

that the bandwidth of the filter is much larger than the frequency of the volt-

age input and displacement output signals, implies that the filtering process

eliminates only the high frequency disturbances while introducing very little

deformation on the relevant data.

Figure 10.5: Input and output signals.

The input and output signals are plotted in Fig. 10.5. As the identifica-

tion methodology of Sections 10.2.2 and 10.2.3 uses the asymptotic values of

the output signal y(t), the model (10.15) is rewritten as:

ȳ(τ) =
N∑
i=1

κiv
i(τ) + κww̄(τ) + y0,∀τ ∈ [0, T ] (10.16)

where the quantities ȳ and w̄ set for the limit functions of y and w as de-

scribed in Theorem 2. As explained in section 10.2.2 the coefficients gj are

determined by means of regression analysis. The results are given in Table

10.3.
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10.3 Piezoelectric actuator modeling

Table 10.3: The gi coefficients
N g1 g2 g3 g4

1 1.1736e-005 - - -
2 1.3091e-005 -9.8691e-009 - -
3 1.3116e-005 -1.0447e-008 2.1060e-012 -
4 1.3151e-005 -1.2285e-008 1.9438e-011 -4.2099e-014

For each value of N , we get a set {g0, g1, ...gN−1}. This set of values

determines the parameters {κ1, κ2, ...κN} using equation (10.11).

To compute the parameter y0, we integrate equation (10.16) over the

period [0, T ], taking into account the fact that, due to Theorem 2, we have∫ T

0

w̄(τ)dτ = 0:

y0 =
1

T

∫ T

0

(
ȳ(τ)−

N∑
i=1

κiv
i(τ)

)
dτ (10.17)

The obtained coefficients are given in Table 10.4. At this point, the

hysteretic term can be obtained from equation (10.14). Then, we use the

methodology described in sections 9.1.3 and 10.2.3 to determine the param-

eters n, ρ, κw and σ. The obtained parameters are given in table 10.5. Note

that the input variable is −v instead of v so that the loading and unloading

lead to a clockwise limit cycle as expected for the Bouc-Wen model.

Table 10.4: Coefficients κi
N y0 κ1 κ2 κ3 κ4

1 3.0587e-006 1.2117e-007 - - -
2 1.7858e-006 1.401e-007 -5.0949e-011 - -
3 1.7715e-006 1.4068e-007 -5.4986e-011 7.2482e-015 -
4 1.7463e-006 1.4223e-007 -7.4161e-011 8.7947e-014 -1.0867e-016

10.3.3 Model validation

The results have been validated with a periodic sinusoidal function between

0 and 400 V and non-periodic random function. The initial condition of the
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Figure 10.6: Points used to determine the Bouc-Wen model parameters κw,
n, ρ and σ. In bold filtered experimental data. In grey fitted data for the
computation of the derivatives.

Table 10.5: Bouc-Wen model parameters
N n ρ κw σ
1 1.27 0.00893 5.08e-006 0.74
2 1.12 0.0047 9.22e-006 0.812
3 1.12 0.00463 9.35e-006 0.815
4 1.12 0.00461 9.37e-006 0.815
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model can be obtained from equation (10.15) as

w(0) =
y(0)−

∑N
i=1 κiv

i(0)− y0

κw
(10.18)

where y(0), κi, v(0), y0 and κw are available.

Figures 10.7(a) and 10.10(a) give the output of the model (10.15) for

N = 1 and N = 2, along with the experimental output of the actuator. It can

be observed that the model matches better the experimental data for N = 2.

This conclusion can also be drawn from Figures 10.7(b) and 10.10(b), where

the difference between the model and the experimental output is plotted

for N = 1 and N = 2. It can be observed that after a transient phase,

the error is smaller for N = 2. The same conclusions can be drawn from

the displacement-voltage plot of Figure 10.9. Other experiments for N ≥ 3

show that the behavior of the model for such values of N is not significantly

different from that of N = 2.

10.4 Conclusion

The chapter has focused on the modeling of a piezoelectric actuator using a

modified version of the hysteresis Bouc-Wen model. The modification con-

sists in representing the non-hysteretic part of the model as a degree N poly-

nomial instead of a linear relationship. The results for different values of N

have been computed and compared with the real displacements of the actu-

ator. The modified model has proven to match better the experimental data

for N > 1.
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(a) Experimental output and model output for N = 1 and N = 2.

(b) Model error for N = 1 and N = 2.

Figure 10.7: Model response to a sinusoidal input.
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Figure 10.8: Excitation voltage

Figure 10.9: Displacement - Voltage plot of the response to a sinusoidal input
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(a) Experimental output and model output for N = 1 and N = 2.

(b) Model error for N = 1 and N = 2.

Figure 10.10: Model response to a random input.
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Figure 10.11: Excitation voltage
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Chapter 11

Control of a piezoelectric

actuator considering the

hysteresis

This chapter deals with the modeling and control of a piezoelectric actua-

tor. The main challenge for the control design is the presence of hysteresis.

This nonlinearity is represented in this chapter using the Bouc-Wen model

and a time-varying PID controller is designed for micropositionning purpose.

The performance of the controller is tested using numerical simulations and

experimentally.

We consider the problem of micropositionning using a piezoelectric actu-

ator. This problem has spurred much interest in the current literature. A

robust controller is employed in [6] to control a piezoelectric bimorph actu-

ator using the Bouc-Wen model. In [24] a piezoelectric actuator is modeled

with neural networks and controlled with a variable structure control system.

In [59], the controller uses information of the charge instead of the voltage

for the control of position. This technique takes advantage of the reduced

hysteresis between the displacement and the electrical charge, but presents

some difficulty for the measurement of the charge. Since the piezoelectric

device is represented in this work using the Bouc-Wen model, the results of

[31] are used and improved for the control of the piezoelectric element. In
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11. Control of a piezoelectric actuator considering the hysteresis

[31], a second-order mechanical system that includes a Bouc-Wen hystere-

sis is considered for control purposes. The control objective is to guarantee

the global boundedness of all the closed loop signals, and the regulation of

both the displacement and the velocity of the device to zero. This objective

is achieved using a simple PID controller. However, the main drawback of

this controller is that the equilibrium point of the closed loop system is not

robust vis-à-vis perturbations which is undesirable in practice. The main

contributions of this chapter are the following:

• We present a new control law which is a time-varying PID that guar-

antees that the equilibrium point of the closed loop is robust to per-

turbations.

• This control law is tested in numerical simulations and experimentally

using a piezoelectric actuator.

The main advantage of the proposed control law over other existing control

schemes, is that it is simple to implement in an industrial context.

11.1 Background results. PID control of a

Bouc-Wen hysteresis

We consider the second order mechanical system described by:

mẍ+ cẋ+ Φ(x)(t) = u(t), (11.1)

with initial conditions x(0), ẋ(0) and excited by a control input force u(t).

The output restoring force Φ is assumed to be described by the normalized

Bouc-Wen model [29]:

Φ(x)(t) = κxx(t) + κww(t), (11.2)

ẇ(t) = ρ
(
ẋ(t)− σ|ẋ(t)| |w(t)|n−1w(t) + (σ − 1)ẋ(t)|w(t)|n

)
(11.3)

with an initial condition w(0). The parameters n ≥ 1, ρ > 0, σ ≥ 1

2
,

κx > 0, κw > 0, m > 0 and c ≥ 0 are unknown. The range of the
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11.1 Background results. PID control of a Bouc-Wen hysteresis

parameters corresponds to the Class I Bouc-Wen model which is stable,

asymptotically dissipative and thermodynamically consistent [29]. The dis-

placement x(t) and velocity ẋ(t) are available through measurements, but

the signal w(t) is not. Let yr(t) be a (known) smooth and bounded refer-

ence signal whose (known) smooth and bounded derivatives are such that

limt→∞ yr(t) = limt→∞ ẏr(t) = limt→∞ ÿr(t) = limt→∞ y
(3)
r (t) = 0 exponen-

tially. This means that there exist some constants a > 0 and b > 0 such that∣∣∣y(i)
r (t)

∣∣∣ ≤ ae−bt for t ≥ 0 and i = 0, 1, 2, 3.

The control objective is to globally asymptotically regulate the displace-

ment x(t) and velocity ẋ(t) to the reference signals yr(t) and ẏr(t) preserving

the global boundedness of all the closed loop signals; that is x(t), ẋ(t), w(t)

and u(t).

We assume the following:

Assumption 2 The unknown parameters lie in known intervals. That is

we have m ∈ [mmin,mmax] with mmin > 0, c ∈ [0, cmax], κx ∈ (0, κxmax ],

κw ∈ (0, κwmax ], σ ∈
[
1

2
, σmax

]
, ρ ∈ (0, ρmax].

Note that the unknown structure parameter n ≥ 1 is not required to lie in a

known interval.

The problem of controlling the system (11.1)-(11.3) has been treated in

[31], where it is demonstrated that a PID control insures that the displace-

ment and velocity errors tend to zero. Introduce the variables:

x1(t) = x(t)− yr(t), x2(t) = ẋ(t)− ẏr(t), x0(t) =

∫ t

0

x1(τ)dτ (11.4)

and choose as a control law the PID controller:

u(t) = −k0x0(t)− k1x1(t)− k2x2(t) (11.5)

where the ki’s are design parameters. Then we have [31]:
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11. Control of a piezoelectric actuator considering the hysteresis

Theorem 4 Consider the closed loop formed by the system (11.1)-(11.3)

and the control law (11.5). Define the following constants:

k2min
=

√
2mmax (σmaxρmaxκwmax + κxmax + k1) (11.6)

e1 =
(cmax + k2)

3

m2
min

e2 =
k2

1

m2
max

(
k2

2 − k2
2min

)
k0max = min

(
k1k2

mmax

,−e1 +
√
e21 + e2

)
(11.7)

and choose the design gains k0, k1 and k2 in the following way: take any

positive value for k1; then choose k2 such that k2 > k2min
; finally take 0 <

k0 < k0max. In this case we have the following:

1. All the closed loop signals x0, x1, x2, w and the control u are globally

bounded.

2. lim
t→∞

x(t) = 0 and lim
t→∞

ẋ(t) = 0.

11.2 Experimental Platform

11.2.1 Experimental Layout

The system under study is the patch of Figure 11.1 which is a piezoelectric

actuator that contains the foil PIC-255 (Physik Instrumente). The actuator

is seen as a SISO system whose input is the voltage u applied to the 3 axis

and the output is the displacement y along the 1 axis.

The actuator can be used in a number of applications ranging from ac-

tive control of structures to micro-positioning and optics applications. For

the sake of completeness, we give the physical characteristics of the patch.

The piezoelectric ceramic used is a PI (Physik Instrumente) PIC-255. The

material shows a d31 piezoelectric coefficient of −180× 10−12 m/V, dielectric

permittivity εT33/ε0 of 1800, elastic constant sE11 of 16.1 × 10−12 m2/N, den-

sity of 7.80 gr/cm3 and Curie temperature of 350 oC. The piezoelectric foil
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Figure 11.1: Controlled piezoelectric actuator.

shows a weight of 2.34 gr. and dimensions of 50 mm ×30 mm ×0.2 mm and

the entire patch a weight of 3.405 gr. and dimensions of 60 mm ×35 mm

×0.5 mm. The piezoelectric actuator lays in a low friction surface where it

is clamped in one extreme and left free in the other in order to allow its free

movement. It has been previously polarized with a constant voltage of 450

V during 5 min in order to ensure its optimal performance.

The experiments have been undertaken with the platform sketched in

Figure 11.2. The control is performed by a DSP1 Controller. The actuator

is driven by means of a power amplifier whose working voltage is set by the

DSP controller. The amplifier can work with voltages between −450 V and

450 V with a maximum current of 100 mA.

The displacement of the free edge of the piezoelectric actuator is measured

using a laser triangulator Micro-Epsilon optoNCDT 1607 with range 500 µm,

bandwidth 10 kHz and resolution 0.1 µm. The data has been acquired with

a four channel Yokogawa DL9000 (bandwidth 500 MHz). All the quantities

have been sampled so that at least 25000 samples are provided for each plot.

1DSP stands for digital signal processor
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Figure 11.2: Block diagram of the platform.
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11.2.2 System modeling

The system model is given by [6]:

m′ẍ(t) + c′ẋ(t) + κax(t) = κbΦ(u)(t) (11.8)

where κa and κb are elastic constants, m′ and c′ are the equivalent mass and

damping coefficient of the piezoelectric actuator, x(t) its relative position

with respect to the sensor, and kbΦ(u)(t) is the force produced by the actu-

ator. The term Φ(u)(t) is assumed to follow a Bouc-Wen equation so that

the actuator may be represented by:

m′ÿ(t) + c′ẏ(t) + κa (y(t)− y0) = κbκ
′
xu(t) + κbκ

′
ww(t), (11.9)

ẇ(t) = ρ
(
ẏ(t)− σ|ẏ(t)| |w(t)|n−1w(t) + (σ − 1)ẏ(t)|w(t)|n

)
(11.10)

where κ′w and κ′x are constant gains. The nonlinear term w(t) takes into

account the effect of hysteresis.

Defining:

m =
m′

κaκ′x
, c =

c′

κaκ′x
, κx =

κa
κbk′x

, κw = −κ
′
w

κ′x
(11.11)

it can be seen that the actuator follows equations (11.1)-(11.3). This model is

valid only for low frequencies (well below the resonance of the actuator), as an

important mismatch has been observed experimentally for high frequencies.

11.2.3 Control objective

The control objective is to insure the boundedness of all the closed loop

signals, along with the regulation of the displacement and velocity of the

piezoelectric actuator to zero. Furthermore, in steady-state, the control out-

put has to have a unique value so that the closed loop system has a unique

equilibrium point.
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11.3 Parameter identification

The system under consideration is described by equations (11.1)-(11.3) in

which the system parameters m, c along with the Bouc-Wen model parame-

ters κx, κw, ρ, σ, n are unknown. The objective of this section is to determine

these parameters using the measurements of the relative displacement x(t)

and the voltage input u(t). Since we are dealing with a model valid only for

low frequencies, the terms mẍ and cẋ can be neglected in equation (11.1) so

that the actuator model can be approximated by equations (11.2)-(11.3).

The problem of identifying the parameters of the Bouc-Wen model (11.2)-

(11.3) has been treated in references [26; 30]. The technique presented in

those references consists in choosing for u(t) a periodic signal with a loading-

unloading shape (that is a wave periodic signal [29]). This implies that x(t) is

also wave periodic so that a limit cycle (x, u) is obtained asymptotically. The

experimentally obtained limit cycle is then used to determine the unknown

Bouc-Wen model parameters.

The identified parameters are given in Figure 11.3. It can be seen that

these parameters are almost constant in the fequency range [0, 100 Hz]. The

parameters values are shown in Table 11.1.

Table 11.1: Identified parameters.
Parameter Smallest Largest Mean Unit

Value Value Value
n 1.16 1.192 1.176 -
σ 0.9094 0.9212 0.9153 -
ρ 7.632× 104 9.5× 104 8.566× 104 m−1

kw 39.97 48.74 43.57 V
kx 9.83× 106 10.8× 106 10.35× 106 V m−1

For higher values of the frequency, the Bouc-Wen model parameters are

highly frequency dependent.

The model (11.2)-(11.3) is tuned with the parameters obtained in Table

11.1 (column 4), and the initial condition is calculated from equation (11.2)
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Figure 11.3: Identified parameters for different input frequencies.
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Figure 11.4: Model response to a random input function.
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as

w(0) =
u(0)− kxx(0)

kw
(11.12)

To check the validity of this model, it is excited with a random signal whose

frequency content lies in the interval [0, 100 Hz]. Figure 11.4 gives the re-

sponses of both the model and the actuator. A reasonable match is observed.

11.4 Control laws

This section introduces three control laws for the piezoelectric device, which

are based on the linear controller of Section 11.1. These controllers are tested

by means of numerical simulations.

11.4.1 PID Control

In this section we consider the closed loop formed by the system (11.1)-(11.3)

along with the control law (11.5). The closed loop is then described by the

equations:

ẋ0 = x1, (11.13)

ẋ1 = x2, (11.14)

ẋ2 = m−1 (− (c+ k2)x2 − (κx + k1)x1 − k0x0 − κww

−mÿr − cẏr − κxyr) , (11.15)

ẇ = ρ
(
x2 + ẏr − σ|x2 + ẏr| |w|n−1w + (σ − 1) (x2 + ẏr) |w|n

)
.(11.16)

In order to determine the PID constants k0, k1 and k2, we need to have known

bounds on the unknown parameters (Assumption 2). The identification pro-

cess of Section 11.3 gives these bounds for the Bouc-Wen model parameters

κx, κw, ρ, σ, n. Section 11.2.1 gives information on the rest of the system

parameters. We use the following bounds:

• mmin = 3.98× 10−3 V s2 m−1
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• mmax = 6.63× 10−3 V s2 m−1

• cmax = 13.43 V s m−1

• kxmax = 10.8× 106 V m−1

• σmax = 0.9212

• ρmax = 9.510× 104 m−1

• kwmax = 48.74 V

The PID controller parameters are determined using Theorem 4. The first

design parameter to be chosen is k1 = 5× 106 so that we get k2min = 567.6.

We choose k2 = 580 so that we obtain k0max = 1.16 × 109. Finally we take

k0 = 1× 109.

Figure 11.5 gives the behavior of the closed loop signals withm =5.3×10−3

V s2m−1 and c = 13 Vsm−1. The initial conditions are x0(0) = 0 m·s,
x1(0) = 20×10−6 m, x2(0) = 0.2 m/s and w(0) = 0. For the reference signal,

we choose yr as the output of the second order linear system
ω2

0

s2 + 2ξω0s+ ω2
0

with ξ = 0.7, ω0 = 2π×500 rad/s and zero input; that is, the linear system is

driven only by the non-zero initial conditions yr(0) = x(0) and ẏr(0) = ẋ(0).

It can be seen that the outputs x1 and x2 are regulated to zero. Note that,

although the control signal u is zero for negative times, its asymptotic value

is different from zero. This fact can be explained as follows. Taking yr = 0 in

equations (11.15)-(11.16), it can be seen that the four states system (11.13)-

(11.16) has an infinite number of equilibrium points. These equilibria are

defined by {x1 = 0, x2 = 0, k0x0(∞) = κww(∞) = u(∞)}. It is not neces-

sary that x0(∞) = 0 so that the control value may be nonzero asymptotically

(see Figure 11.5). In practice, this behavior is undesirable as it implies that

the actuator applies a control action at equilibrium, which means an unneces-

sary loss of energy. Another inconvenient of this behavior is the modification

of the equilibrium point of the system.
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Figure 11.5: Closed loop signals relative to the control law of Section 11.4.1.
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11.4.2 PID plus a sinusoidal component

The previous section has pointed out to the possible modification of the equi-

librium point of the system under the action of a PID controller. Since this

behavior is not acceptable in practice, a modification of the controller is pro-

posed in this section to reduce this effect. The reason for having a control

which is not zero asymptotically is that u(∞) = κww(∞) where w(∞) is not

necessarily zero. To solve this problem, the idea would be to force the hys-

teretic term to go to zero asymptotically, inducing the control to go to zero.

Consider that the system (11.1)-(11.3) is in open loop and choose for u(t) a

wave periodic input signal (see Section 9.1.1). Numerical simulations show

that the obtained displacement signal x(t) is also wave periodic. On the other

hand, we know from Theorem 2 that, if the signal x(t) is wave periodic, then

the hysteretic output w(·) is also wave periodic and that it belongs asymptot-

ically to the interval [−ψσ,n (ρ (Xmax −Xmin)) , ψσ,n (ρ (Xmax −Xmin))]. On

the other hand, it can be shown that, for fixed values of the parameters

σ and n, the function ψσ,n(µ) is increasing with its argument µ. This im-

plies that the interval [−ψσ,n (ρ (Xmax −Xmin)) , ψσ,n (ρ (Xmax −Xmin))] can

be made as small as desired if the quantity Xmax − Xmin can be reduced

arbitrarily. Numerical simulations suggest that if the amplitude of the wave

periodic voltage input u(t) is decreased, then the amplitude of the corre-

sponding displacement signal is also decreased.

These remarks suggest the following control law for the system (11.1)-

(11.3)

u(t) = −k0x0(t)− k1x1(t)− k2x2(t)− A sin (2πft) (11.17)

where A and f are positive design constants, and k0, k1, k2 are computed

using Theorem 4. The closed loop behavior is given in Figures 11.6 and

11.7 with the values of k0, k1, k2 that have been determined in the previous

section, and for different values of the parameters A and f . The initial states

are x0(0) = 0 m·s, x1(0) = 20 · 10−6 m, x2(0) = 0.2 m/s and w(0) = 0. The

reference signal is chosen as in Section 11.4.1.
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Figure 11.6: Closed loop signals relative the control law of Section 11.4.2.
The figures in the right are a zoom in the indicated region of the figures in
the left.
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Figure 11.7: Closed loop signals relative the control law of Section 11.4.2.
The figures in the right are a zoom in the indicated region of the figures in
the left.

136



11.4 Control laws

As noticed before, the steady-state response of the closed loop is periodic,

and it can be seen that the amplitude of the closed loop signals x(t), ẋ(t)

and u(t) decreases as A decreases. The amplitude of the steady-state closed

loop signals is independent of the frequency f . This frequency influences the

settling time: the transient response of the system has a shorter duration for

higher frequencies f .

As a conclusion, adding a term A sin (2πft) to the PID controller makes

the closed loop set point oscillating around zero. The amplitude of the os-

cillations can be made as small as desired by reducing the design parameter

A.

11.4.3 PID plus a sinusoidal component with a time

varying amplitude

The previous section has studied the behavior of a PID plus a sinusoidal

component in the control law. It has been noticed that the set point of

the closed loop steady-state systems oscillates around zero. As oscillations

are also undesirable in practice, the control law has to be modified in order

to eliminate them. Notice that the amplitude of the oscillations decreases

with the amplitude of the sinusoidal component of the control law. This fact

suggests to use for this component a time-varying amplitude that tends to

decrease as the control law goes to zero. Since u(∞) = k0x0(∞) for the PID

case, we choose as control law the expression:

u(t) = −k0x0(t)− k1x1(t)− k2x2(t)− kAx0(t) sin (2πft) (11.18)

where kA is a constant gain.

This control law has been tested using numerical simulations. The initial

conditions are x0(0) = 0 m·s, x1(0) = 20 × 10−6 m, x2(0) = 0.2 m/s and

w(0) = 0. The reference signal is chosen as in Section 11.4.1.

The frequency f is taken to be 100 Hz as this value makes the settling

time shorter without harming the overall response (see the previous section).
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Figure 11.8: Closed loop signals applying the contol law introduced in Section
11.4.3 with f = 100 Hz and different kA values.

138



11.5 Experimental Results

Three values of kA are chosen to study the effect of this parameter. The

results of the closed loop simulations are given in Figure 11.8. It can be seen

that the closed loop signals x1 and x2 converge to zero and that larger values

of kA lead to a shorter settling time. Furthermore, the control value is the

same before and after the perturbation so that the equilibrium point of the

closed loop remains unchanged.

11.5 Experimental Results

In this section, we apply the control laws of Sections 11.4.1, 11.4.2 and 11.4.3

to the piezoelectric element of Section 11.2.1. The numerical simulations

conducted in the previous sections consisted in starting the system with

nonzero initial conditions and seeing how the closed loop behaves. In our

experimental platform, we first close the loop (that is we apply the control

law) with a set point for the control around 200 Volts. Then we open the

loop during 10 milliseconds in which the control is forced to have a constant

value of 72 Volts. Then we closed the loop again. This time instant in

which the loop is closed again corresponds to t = 0 in the previous numerical

simulations. In this section, we take yr = 0. The position of the piezoelectric

element is measured directly so that the state x1 is equal to the measured

position. The state x0 is obtained by approximating the exact integral by a

sum of rectangles. The state x2 is obtained using an Euler approximation.

11.5.1 PID Control

The controller of Section 11.4.1 is applied to the piezoelectric element. The

PID constants are the same as in Section 11.4.1. The closed loop signals are

given in Fig. 11.9. As observed in the numerical simulations, the position

error and the velocity go asymptotically to zero, but the final value of con-

troller output differs from its initial value. This means that the equilibrium

point of the closed loop system is not robust to perturbations.
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11. Control of a piezoelectric actuator considering the hysteresis

Figure 11.9: Closed loop signal with the controller of Section 11.4.1.
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11.5.2 PID plus a sinusoidal component

The controller of Section 11.4.2 is applied to the piezoelectric element. We

choose A = 15 V and f = 10 Hz. The constants k0, k1 and k2 are the same

as before. The closed loop signals are given in Fig. 11.10. Similar to what

happens in numerical simulations, the closed loop system oscillates around

zero.

11.5.3 PID plus a sinusoidal component with a time

varying amplitude

The controller of Section 11.4.3 is applied to the piezoelectric element. We

choose kA = 1.5× 109 and f = 100 Hz. The constants k0, k1 and k2 are the

same as before. The closed loop signals are given in Fig. 11.11. It can be

seen that the equilibrium point of the closed loop system is the same before

and after the perturbation.

11.6 Conclusion

This chapter has presented a new control law for a piezoelectric actuator.

The main challenge for the control design is the presence of hysteresis. The

actuator has been represented using the Bouc-Wen model for hysteresis, and

the model parameters have been identified. A nice agreement has been ob-

served between the behavior of the piezoelectric actuator and the obtained

model. Then, three control laws have been tested both numerically and ex-

perimentally for the position regulation of the piezoelectric device. It has

been observed that a PID with a time-varying component insures that the

displacement and velocity of the actuator go to zero asymptotically, while

maintaining the same equilibrium point for the closed loop system. The

tracking problem for the micropositionning of the device, and the develop-

ing of a model of the piezoelectric actuator for high frequencies, are under

investigation.
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Figure 11.10: Closed loop signal with the controller of Section 11.4.2.
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11.6 Conclusion

Figure 11.11: Closed loop signal with the controller of Section 11.4.3.
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Chapter 12

Conclusions

12.1 Contributions

The present thesis part has investigated models to represent the hysteretic

behavior of piezoelectric actuators in order to apply them to the conception

of controllers for such hysteretic systems. The Bouc-Wen hysteresis model

has been introduced, along with an identification technique to determine

the parameters. Its robustness against different classes of perturbations has

been discussed. The original model has been modified in order to characterize

better the behavior of piezoelectric actuators. The model has been validated

with a real actuator and the advantages over the original have been shown.

Furthermore, a new control law for a piezoelectric actuator has been

introduced, taking into account the presence of hysteresis. Three control

laws have been tested both numerically and experimentally for the position

regulation of the piezoelectric device. It has been observed that a PID with

a time-varying component insures that the displacement and velocity of the

actuator go to zero asymptotically, while maintaining the same equilibrium

point for the closed loop system.

The contributions of this thesis part can be summarized:

• Improvement of the existing Bouc-Wen model by considering a poly-

nomial relationship in the non-hysteretic term, along with the modifi-

cation of the identification technique and the experimental validation
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12. Conclusions

of the results. These contributions are collected in [16; 17; 26; 27]

• The design of a linear time-varying controller for the obtained model of

a piezoelectric actuator. This design improves the previous results of

the literature in the sense that the closed loop is asymptotically stable.

These results are summarized in [18]

12.2 Future work

There are a number of possible interesting and challenging fields to investi-

gate. It may become specially interesting to delve into:

• Modeling of piezoelectric for high frequencies. It is known that many

applications of piezoelectric actuators take advantage of the high fre-

quency capability of such a class of actuators. In this frame, the mod-

eling of the actuators at high frequencies is an important challenge.

• Tracking. The micro-positioning regulation problem has been dis-

cussed; however, many applications require tracking control approaches

which can possibly be addressed using similar techniques to those de-

scribed in this thesis.

• Employment of non-linear controllers. Although linear controllers

have the important advantage of easy implementation, non-linear con-

trollers may provide some improvements in the response of the actuator.

To these end, the introduction of such strategies is encouraged.
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Appendix A

Outline of the proof of

Theorem 3

The proof is done in several steps.

A.1 Determination of the parameter κx

As seen in chapter 9, the determination of the parameter κx involves two

experiments: the first one consists in obtaining the limit cycle with the input

x and the second one consists in obtaining the limit cycle with the input

x1 = x+ q. Both experiments are subject to input disturbances d and d1 as

well as to measurement disturbances v and v1. All of these perturbations are

supposed to verify Assumption 1. The equation of the limit cycle obtained

with the input x1 comes from Theorem 2 as:

Φ̄BW,1(x1) = κxXmaxx̄+ κxXmaxd̄1 (τ(x̄)) + κww̄1(x1) +

+Xmaxv̄1 (τ(x̄)) + κxXmaxq̄ (A.1)

w̄1(x1) = ψ+
σ,n

(
ϕ+
σ,n [−ψσ,n (δ (1 + ε1d))] +

+
δ

2

[
x̄+ 1 + d̄1 (τ(x̄))− d̄1(0)

])
(A.2)

where ε1d =
d̄1(T

+)− d̄1(0)

2
, d̄1(τ) =

d1(τ)

Xmax

and v̄1(τ) =
v1(τ)

Xmax

.
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A. Outline of the proof of Theorem 3

The estimated parameter κ◦x is computed from equation (9.20) as:

κ◦x =
Φ̄BW,1(x1)− Φ̄BW (x̄)

q
(A.3)

Using standard analysis tools, it follows that the relative error on the param-

eter κx is given by:∣∣∣∣κ◦x − κx
κx

∣∣∣∣ ≤
∣∣d̄1 − d̄

∣∣
q̄

+
κw

Xmaxκxq̄
|w̄1(x1)− w̄(x̄)|+

+
|v̄1 − v̄|
κxq̄

(A.4)

which leads to: ∣∣∣∣κ◦x − κx
κx

∣∣∣∣ ≤ c1µ

q̄
(A.5)

for some constant c1. From inequality (A.5) it is clear that to get

∣∣∣∣κ◦x − κx
κx

∣∣∣∣ ≤ ε

it is enough to have µ ≤ εq̄

c1
. The next step is to compute the function θ de-

fined by equation (9.21). However, the true value of the parameter κx is not

known, and we know instead its estimate κ◦x. Thus, all we can compute is

the estimate:

θ◦(x̄) = Φ̄BW (x̄)− κ◦xXmaxx̄ (A.6)

A.2 Existence and unicity of the zero of the

function θ◦(x̄)

As seen in chapter 9, the determination of the rest of the parameters uses the

zero of the function θ◦. The existence of this zero will be insured if we can

show that θ◦(1) > 0 and θ◦(−1) < 0 due to the continuity of the function

θ◦(x̄). From equations (A.6), (9.35), and (9.34) we get:

θ◦(1) = (κx − κ◦x)Xmax + κxXmaxd̄(T
+) +

+Xmaxv̄(T
+) + κwψσ,n (δ (1 + εd)) (A.7)
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A.3 Determination of the parameter n

Using Assumption 1 along with equations (A.7) and (A.5) it follows that:

θ◦(1) ≥ −µXmaxc2 + κwψσ,n (ρXmax) (A.8)

for some constant c2. The term ψσ,n (ρXmax) can be developed in Taylor

series as ψσ,n (ρXmax) = 1
2
ρXmax + o (Xmax). Thus, if we have µ <

ρκw
2c2

= c3

then, by equation (A.8), we have θ◦(1) > 0 for all Xmax ∈ (0, A] for some

constant A. To have θ◦(1) > 0 for all Xmax ∈
(

0,
κw
κx

]
it is enough to have

µ <
κwψσ,n (ρA)

c2
κw

κx

= c4. Similarly, it can be shown that we have θ◦(−1) < 0

for all Xmax ∈
(

0,
κw
κx

]
for µ < c5 for some constant c5. Thus we have proved

that for µ sufficiently small, the function θ◦(x̄) has at least one zero. Using

standard analysis arguments, it can be shown that:

∂θ◦(x̄)

∂x̄
≥ Xmax (−µc2 + c6) (A.9)

for some constant c6. Taking µ ≤ c6
2c2

we get from equation (A.9):

∂θ◦(x̄)

∂x̄
≥ c6

2
= c7 > 0 (A.10)

From equation (A.10) it comes that the function θ◦(x̄) is strictly increasing

which proves the unicity of its zero that we denote x̄◦∗.

A.3 Determination of the parameter n

It is to be noted that, by combining equations (A.6), (A.5) and the fact that

θ◦ (x̄◦∗) = 0, we have:

|w̄ (x̄◦∗)| ≤
c2
κx
µ = c8µ (A.11)

Now, let x̄∗1 = x̄◦∗ + r1 (1− x̄◦∗) where 0 < r1 < 1 is a design parameter.

Then we have from equation (A.10) that

θ◦ (x̄∗1) ≥ c7 (x̄∗1 − x̄◦∗) = c7r1 (1− x̄◦∗) = c9 (A.12)
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A. Outline of the proof of Theorem 3

Due to the fact that the function θ◦ is increasing, for all x̄ ≥ x̄∗1 we have

θ◦(x̄) ≥ c9. This fact along with equations (A.6), (A.5) and Assumption 1

gives w̄(x̄) > 0 for all x̄ ≥ x̄∗1 for all µ ≤ κxc9
2κwc2

. Let x̄∗2 = x̄◦∗ + r2 (1− x̄◦∗)

where 0 < r1 < r2 < 1 is a design parameter. An estimate of the parameter

n comes from equation (9.24) as:

n◦ =

log


(
dθ◦(x̄)
dx̄

)
x̄=x̄∗2

−
(
dθ◦(x̄)
dx̄

)
x̄=x̄◦∗(

dθ◦(x̄)
dx̄

)
x̄=x̄∗1

−
(
dθ◦(x̄)
dx̄

)
x̄=x̄◦∗


log

(
θ◦(x̄∗2)

θ◦(x̄∗1)

) (A.13)

Standard mathematical arguments lead to:∣∣∣∣n◦ − n

n

∣∣∣∣ ≤ c15µ (A.14)

for some constant c15. Thus, to get

∣∣∣∣n◦ − n

n

∣∣∣∣ ≤ ε it is enough to have µ ≤ ε

c15
.

A.4 Determination of the parameter κw

The next parameter to identify is κw using equation (9.26). An estimate of

this parameter can be computed from equation (9.26) using the formula:

κ◦w = θ◦(x̄∗2)× n◦

√√√√√√
(
dθ◦(x̄)
dx̄

)
x̄=x̄◦∗(

dθ◦(x̄)
dx̄

)
x̄=x̄◦∗

−
(
dθ◦(x̄)
dx̄

)
x̄=x̄∗2

(A.15)

A simple mathematical analysis gives:∣∣∣∣κ◦w − κw
κw

∣∣∣∣ ≤ c20µ (A.16)

for some constant c20. Thus, to obtain

∣∣∣∣κ◦w − κw
κw

∣∣∣∣ ≤ ε it is enough to have

µ ≤ ε

c20

.
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A.5 Determination of the parameter ρ

A.5 Determination of the parameter ρ

The identification of the parameter ρ is done using equation (9.27):

ρ◦ =

(
dθ◦(x̄)
dx̄

)
x̄=x̄◦∗

Xmaxκ◦w
(A.17)

Using standard mathematical arguments, it follows that:∣∣∣∣ρ◦ − ρ

ρ

∣∣∣∣ ≤ c22µ (A.18)

for some constant c22. Thus, to get

∣∣∣∣ρ◦ − ρ

ρ

∣∣∣∣ ≤ ε it is enough to have µ ≤ ε

c22
.

A.6 Determination of the parameter σ

To determine the parameter σ we have to compute the function w̄(x̄) using

equation (9.28). However, in this equation the parameter κw and the function

θ are unknown. Thus we define the computable function:

w̄◦(x̄) =
θ◦(x̄)

κ◦w
(A.19)

An estimate of the parameter σ can be computed from equation (9.29) as:

σ◦ =
1

2



(
dw̄◦(x̄)

dx̄

)
x̄=x̄∗3

Xmaxρ
◦ − 1

(−w̄◦(x̄∗3))n
◦ + 1

 (A.20)

where x̄∗3 and is a design parameter such that w̄◦(x̄∗3) <
θ◦(−1)

2κ◦w
= r3 < 0.

Standard arguments show that:∣∣∣∣σ◦ − σ

σ

∣∣∣∣ ≤ c27µ (A.21)
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for some constant c27. Thus, to get

∣∣∣∣σ◦ − σ

σ

∣∣∣∣ ≤ ε it is enough to have µ ≤ ε

c27
which ends the proof of Theorem 3.
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