
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



POLYTECHNIC UNIVERSITY OF CATALONIA
UPC

LAMB: a SIMULATION TOOL for AIR-COUPLED LAMB WAVE
BASED ULTRASONIC NDE SYSTEMS

by

José Luís Prego-Borges

A thesis submitted to the Polytechnic University of Catalonia
for the degree of Doctor of Philosophy

Thesis advisor: Dr. Miguel J. García-Hernández
Doctorate Programme in Electronics

Department of Electronic Engineering
Polytechnic University of Catalonia

Barcelona, Spain

September 2010
Vol. 1 of 1



c© José Luís Prego-Borges

Series of dissertations submitted to the Deparment of Electronics
Polytechnic University of Catalonia

ISSN

All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means without permission of the: Consorci de Biblioteques
Universitàries de Catalunya (CBUC) from Polytechnic University of Catalonia.

MATLAB is a registered mark of The MathWorks, Inc. http://www.mathworks.com/.
UNIX is a registered mark of The Open Group http://www.opengroup.org/.
Linux is a trademark registered to Mr. Linus Torvalds. Licensed to the Linux
Mark Institute http://www.kernel.org/.
Windows is a registered mark of Microsoft Corp. http://www.microsoft.com/.

i

http://www.mathworks.com/
http://www.opengroup.org/
http://www.kernel.org/
http://www.microsoft.com/


UNIVERSITAT POLITÈCNICA de CATALUNYA

ACTA de QUALIFICACIÓ de la TESI DOCTORAL

Reunit el tribunal integrat pels sota signants per jutjar la tesi doctoral:

Títol de la tesi: “LAMB: a simulation tool for air-coupled Lamb wave
based ultrasonic NDE systems”.

Autor de la tesi: José Luís Prego-Borges

Acorda atorgar la qualificació de:

� No apte
� Aprovat
� Notable
� Excel·lent
� Excel·lent Cum Laude

Barcelona, .......... de .................... de ..........

El President El Secretari El vocal

.............................. .............................. ..............................
(nom i cognoms) (nom i cognoms) (nom i cognoms)

El vocal El vocal

.............................. ..............................
(nom i cognoms) (nom i cognoms)

ii



iii



Dedicated to my beloved parents Elsa & José

iv



Abstract
Air-coupled ultrasonic Lamb waves represent an important advance in Non-
Destructive Testing and Evaluation (NDT & NDE) techniques of plate ma-
terials and structures. Examples of these advances are the characterization
and quality assessment of laminate materials in manufacturing processes,
the location of damaged parts in aircrafts and structure monitoring in the
aerospace industry.

However the rich and complex nature of mechanical vibrations encountered
in acoustics make the subject of analysis and study of these systems a very
complex task. Therefore a simulation tool that permits the evaluation and
testing of different configuration scenarios using the flexibility of a computer
model is an invaluable aid and advantage.

The objective of this thesis is to provide the field of NDT with free open
source software i.e. the LAMB Matlab r©toolbox. The toolbox is capable of
simulating the behaviour of Lamb wave based NDE systems for single ideal
isotropic laminates using air-coupled ultrasonic arrays. The programme uses
a pitch-catch type of a C-scan NDE arrangement and is composed of three
integrated sections each individually modelling a feature in the system: 1)
Excitation, 2) Propagation, and 3) Reception.

For assessment of the individual modules of the toolbox the thesis presents
comparisons between each section simulations and the data obtained from
different acoustic experiments. The validation of the complete simulator was
carried out by evaluation tests on the copper and aluminium plates by use
of a real hardware prototype of a Lamb wave based NDE system with air-
coupled concave arrays.

The negative impact on the performance of the real air-coupled NDE system
based on concave arrays was effectively confirmed by the programme. This
was produced by the inherent directivity of the individual sensors as well as
their concave arrangement. To emulate this behaviour the thesis introduces
a simple two-dimensional geometric model for the inclusion of the spatial
filtering effect of the sensors plus a group of simulations for a new proposed
air-coupled plane array transducer.
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The software also verified the spatial coherent nature of the Lamb wave fields
emitted by a plate in air. This was demonstrated by the implementation of
a delay and sum beamformer to constitute an initial signal processing stage
in the reception section.

The main purpose of the present work was to contribute a working scenario
for the simulation and testing of new air-coupled array designs and the de-
velopment of enhanced signal processing techniques for the analysis of Lamb
waves fields encountered in non-contact NDE of single isotropic systems.
Finally, although the issue related to the calibration of the programme was
not attainable a reasonable degree of similarity with real NDE data was
achieved.

Keywords: Air-coupled ultrasound, Lamb waves in single isotropic layers,
pitch-catch NDE model, array signal processing, software tool.
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Nomenclature
English letter symbols

a Radius of circular excitation region with constant pressure [m]
2a Width of rectangular transducer [m]
AL,S Amplitude of harmonic bulk L±/S±wave [m]
2b Height of rectangular transducer [m]
c Velocity of sound in a fluid medium [m/s]
ca Cord of a cylindrical concave array [m]
cph Phase velocity of wave in a medium [m/s]
cL/S Phase velocity of an L/S bulk wave in a medium [m/s]
cLamb Phase velocity of a Lamb wave in a multilayered media [m/s]
cI,J Abbreviated subscripts elastic stiffness dyadic (cij,lk) in [Pa]
d Width of material plate [m]
de Distance between center points of array elements [mm]
[D] Field matrix
Df Focal distance
E Young modulus = σ3/ε3 = 1/s11 [Pa]
E Energy of a signal [J]
f Frequency [Hz]
f0 Central frequency in the bandwidth of a transducer [Hz]
fs Sampling frequency [Hz]
h Impulse response function h(x, y, z, t) in [m/s]
H Fourier transform of the impulse response function h(x, y, z, t)

H
(1)
n (z) Hankel function of the 1st. kind and order n

Hr Percentage of relative humidity
i Imaginary unit i =

√
−1

I, J Subscripts for the abbreviated stress/strain tensors: I, J = {1, 2, ..., 6}
Jν(z) Bessel function of the 1st. kind
= Imaginary part of a function or expression
k Wavenumber vector [rad/m]
ki Wavenumber vector component [rad/m]
lx, ly Longitude and width of a laminate excitation profile [m]
L(R) Longitude of an arc [m]
[L] Layer matrix
N Number of samples of a discrete signal
Na Number of an array sensors
Nf Number of discrete frequencies used in a given bandwidth
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p Acoustic over pressure (with sign) added to P0 [Pa]
pe Inter-element space in a real array [mm]
P Generic coordinates (x, y, z) of point in space [m]
P0 Atmospheric pressure [Pa]
r Distance measured on the surface of a plate [m]
R Radial distance or distance to a point [m]
< Real part of a function or expression
sI,J Abbreviated subscripts elastic compliance dyadic (sij,lk) in [1/Pa]
[S] Multilayer system matrix
S Slowness = 1/cph [1/(m/s)]
t Time variable [s]
u Medium particle displacement vector [m]
ui Component “i” of displacement vector u [m]
v Velocity signal [m/s]
vn Normal velocity of the surface of an acoustic transducer [m/s]
w Angular frequency [rad/s]
W Angular frequency vector [rad/s]

Greek letter symbols

α Longitudinal bulk wave velocity of an isotropic medium [m/s]
αi Generic angle [Deg.]
β Shear bulk wave velocity of an isotropic medium [m/s]
δ Incoming angle for the directivity pattern of an array element [Deg.]
δs Steering angle of an array [Deg.]
∆ Fractional change of a volume = εxx + εyy + εzz

εij Strain tensor, full subscript notation
εJ Strain tensor, abbreviated subscript notation
λ Lame constant = c12 in [Pa]
µ Lame constant = c44 in [Pa]
∇ Gradient vectorial operator , (i ∂

∂x + j ∂
∂y + k ∂

∂z )
∇2 Laplacian scalar operator , ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 )
φ Helmholtz scalar potential
θi,r Incidence/reception angles [Deg.]
ρ Mass density [kg/m3]
σij Stress tensor, full subscript notation in [Pa]
σI Stress tensor, Abbreviated subscript notation in [Pa]
τi Generic time instant [s]
υ Poisson ratio = −ε1/ε3 = −ε2/ε3
ξ Wavelength [m]
ξL/S Bulk longitudinal and shear wavelengths [m]
ξR Rayleigh wavelength [m]
ψ Helmholtz vectorial potential

xxv



List of common acronyms

APES Amplitude and Phase Estimation beamformer
ASM Angular Spectrum Method
CW Continuous Wave
DAS Delay and Sum
DOA Direction Of Arrival
dll Data Link Library
DFT Discrete Fourier Transform
FE/FEM Finite Element/Finite Element Method
FFT Fast Fourier Transform
FSF Free Software Foundation
GMM Global Matrix Method
GNU The gnu wildebeest, logo of FSF
GPL General Public License
GUI Graphic User Interface
IDFT Inverse Discrete Fourier Transform
IDT Interdigital Transducer
IFFT Inverse Fast Fourier Transform
IRM Impulse Response Method
MB Mega Byte/s
MV The Minimum Variance or Capon beamformer
NDE/NDT Nondestructive Evaluation/Nondestructive Testing
NPL National Physical Laboratory from the United Kingdom
OS Operating System
PVDF Polyvinylidene Fluoride (a polymer film piezoelectric transducer)
RX/TX Receiver/Transmitter
SNR Signal to Noise Ratio
THS Time Harmonic Solution
TMM Transfer Matrix Method
WGN White Gaussian Noise

List of thesis acronyms

BW Bandwidth
¯BW Fractional Bandwidth = BW

f0

DR Discrete Representation
ele./eles. Element/Elements
FIRST Field Impulse Response Software
IR Impulse Response
mp Multiple precision
PW Plane Wave
PWF Plane Wavefront
SIE Single Ideal Element
SNIE Single Non-Ideal Element
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. . . There are in fact 100 billion other galaxies each of which contains some-
thing like 100 billion stars. . . Think of how many stars, planets and kinds of
life there may be in this vast and awesome universe. . .

As long as there have been humans we have search for our place in the
cosmos. Where are we? Who are we?
We find that we live on an insignificant planet of a humdrum star lost in a
galaxy, tucked away in some forgotten corner of a universe in which there
are far more galaxies than people. . .

We make our world significant by the courage or our questions and by the
depth or our answers. We embarked on our journey to the stars with a ques-
tion first framed in the childhood of our species and in each generation asked
a new with undiminished wonder: “What are the stars? ”

Exploration is in our nature. We began as wanderers and we are wanderers
still. We have lingered long enough on the shores of the cosmic ocean.
We are ready at last to set sail for the stars...

Carl Sagan
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Chapter 1

Introduction

1.1 Thesis motivation

The subject of non-destructive testing (NDT) and non-destructive evaluation
(NDE) is not new in the field of acoustics1. However the topic of air-coupled
ultrasound is a relatively new development and implementation.
Attempts have been made during the past 20 years to change the challenging
contact coupling mode of ultrasound to a non-contact version. Then, a vari-
ety of generation/detection techniques was developed by utilizing laser, ca-
pacitive, electromagnetic (EMATs) and piezoelectric transducers. The latter
is still one of the cheapest and more reliable methods available today.
The complexity of acoustic vibrations and interactions involved in the NDT
of materials makes the subject of analysis, modelling and inverse problem2

solution very challenging and research demanding.
Computer modelling aids then play a fundamental and key role in the vi-
sualization and understanding of the involved phenomena and in the deter-
mination of alternative solutions. Although to the author’s knowledge, few
examples of fully non-contact modelled systems have been reported in the
literature[34, 112, 130, 204] so a real effort has been made in the compilation
of this thesis.
The work is modest because it only involves research on ideal isotropic
single laminate materials, but there are possibilities for future expansion
with the inclusion of isotropic multilayer plate models[46], addition of two-
dimensional arrays3 and inclusion of improved signal processing techniques.

1The acronyms for Non-Destructive Testing (NDT), also called Non-Destructive Evalu-
ation (NDE) or Non-Destructive Inspection (NDI), indicate that experiments and analysis
on a test piece do not destroy the exemplar and they will be used interchangeably along
the thesis.

2Inverse problems are those based on accurate elasticity theory models that compare
ultrasonic measured data to numerical predictions and then infer material properties e.g.
the complex viscoelastic moduli of a plate[38].

3The use of single circular transducers for excitation/reception is not contemplated in
this thesis because these belong to two-dimensional aperture types which at present are
not implemented in the programme.
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1.2 Thesis objectives and contributions

The objective of the present work is to provide the NDE/NDT field with
a free open source computer simulation environment for air-coupled Lamb
wave based systems i.e. The LAMB software4.
The programme is capable to recreate the behaviour of plane and cylindrical
concave arrays[77, 299] used in NDE systems based on single ideal isotropic
laminates excited by air-coupled ultrasonic Lamb waves.
The main purpose of the simulator is to identify the performance of these
systems under different acoustic aperture designs and to study phased array
beamforming techniques in reception. The thesis contributions include:

1.2.1 Directivity effect of individual sensors

The effective verification of the key role of the spatial directivity of indivi-
dual air-coupled array sensors. Two models were proposed for the acous-
tic field simulation of emitting rectangular apertures: 1) SIE and 2) SNIE
approaches5. A simple 2D directivity schema based on the reciprocity of ra-
diation/reception diagrams of a harmonic excited SIE aperture was included
in the receiver section. The influence on detected signals and the corre-
sponding radiation diagrams produced by the geometry of the receiver was
confirmed and compared with those of a proposed new plane array design.

1.2.2 Coherent nature of Lamb wave acoustic fields emitted

The spatial coherent nature of the plate radiated fields produced by the
air-coupled excited Lamb waves was verified by means of several receiver
radiation diagrams.
The reconstruction of the (f, k) dispersion relation maps was verified locating
a simulated plane array parallel to the examined laminate. In this aspect the
use of the coincidence principle with a receiver array is not recommended
since the spatial information contained in the plate radiated fields is lost in
the reconstruction process.

1.2.3 DAS beamforming

A first step in a signal processing block was added to the developed tool by
the implementation of a Delay And Sum (DAS) beamformer. The influence
of the noise and interference present in the detected signals was verified as the
main source of error in the determination of the receiver radiation diagrams.
Other causes of pattern modification such as the use of array with wider
sensors and non-plane aperture designs were also verified.

4A beta version is available now for downloading in the author’s page at the Matlab
Central website: www.mathworks.com/matlabcentral/fileexchange/authors/23152 .

5Acronyms corresponds to the Single Ideal Element and the Single Non-Ideal Element
respectively.
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1.3 Lamb waves

1.3.1 Background

Lamb waves are basically two-dimensional vibrations in plates6. They can
be classified into symmetric and antisymmetric modes7 and they are tightly
related to Rayleigh waves[121] which tend to occur on the boundary of semi-
infinite half spaces8.

They were first studied by Lord Rayleigh in 1889 in the context of geo-
physical phenomena while he was analysing plate vibrations in plain strain
with traction-free faces[218]. Years later in 1917 the seminal work by Horace
Lamb[143] set the basis for the theory of waves that later will carry his name
i.e. Lamb waves.
Lamb developed the mode vibrations and expressions for velocity dispersion
phenomena of these guided waves in an homogeneous plate in vacuum. Later
between 1945 to 1955 Firestone and Ling started the Lamb wave based NDT
era[64, 65].
Since then thanks to the effort of several authors beginning with the signifi-
cant contributions by Mindlin[174] and Viktorov[276, 277] in 1960 and 1967
respectively the field has advanced rapidly. The last work not only covered
the theory of Rayleigh and Lamb waves but also possible NDT applications
for isotropic elastic media.
Others leading contributors to the field were Achenbach[1], Auld[16], Graft[85],
Brekhovskikh[29], Miklowitz[173], and many others.

Because of their 2D wave propagation nature Lamb waves can travel long
distances9 with less attenuation than bulk waves10 which are 3D waves11.
This feature makes Lamb waves very attractive for the NDT of plates and
laminated structures in the aerospace industry[39, 47, 50, 157, 222] because
they can interact with a defect12 which is produced during the manufacturing
process or caused by prolonged use. These modifications apart from causing
changes in the spectrum of test signals can also lead to the appearance of
other Lamb modes other than the excited modes. This is a phenomenon
known as mode conversion[34, 41, 60].

6They could also appear in tubes and structures because they have lower and upper
boundaries with planar dimensions far greater than the thickness dimensions.

7This classification is made is with respect to middle plane of a plate, see Fig. 1.1.
8Semi-infinite half spaces actually do not exist but because of the attenuation of a wave

with the depth if the plate thickness is greater than ≈ 5 wavelengths, Lamb waves cease
to exist leaving only vibrations on the surface, which are in fact Rayleigh waves.

9This specially true for metals in which the wave attenuation is very low so they can
propagate several meters.

10Apart from the intrinsic part produced by the material.
11The terms bulk wave and plane wave are commonly used interchangeable.
12These can be holes, cracks, rivet holes, delaminations and disbonds.
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The subject of Lamb waves has evolved and branched out enormously into
many areas of NDT/NDE study13. Current trends in research include for
example:

• Modelling of wave propagation in complex (non-plane) structures[22,
42, 144, 160, 211].

• Study of the interactions of Lamb modes with defects using the Finite
Element Method (FEM) or Boundary Element (BE) codes[10, 11, 41,
59, 95, 146, 206, 265].

• Development of damage monitoring systems for critical components or
structures through real time analysis of acoustic emitted wave forms.
This led to the concept of smart materials or smart structures[18, 19,
61, 227, 228, 252, 305].

• Determination of complex elastic constants in single and multi-layered
materials (mixtures of isotropic, orthotropic and/or anisotropic14 plates)
by inverse problem procedures with reflected and transmitted ultra-
sonic data[13, 40, 39, 48, 49, 62, 115, 186, 232].

• Detection of corrosion in pipelines in the chemical and petro-chemical
industries. This has major concern in the oil industry because most of
the pipes are buried and insulated and the corrosion may be invisible
even though it is on the surface[7, 56, 141, 151, 159, 162, 199, 249].

• High repeated loads and corrosive environments in aircraft structures
which produce various types of fatigue damage. Because aerospace
structures are principally formed by panels that act as natural wave
guides Lamb waves have increasingly been studied and used and elec-
tronic monitoring systems are being integrated as part of their struc-
tures for early damage detection[24, 51, 75, 76, 129, 163, 185, 301].

• Application and study of new signal processing techniques for Lamb
wave analysis and detection such as: beamforming, migration tech-
niques, probability-based imaging, time reversal, tomography, wavelets,
etc. See for example Refs. [97, 119, 140, 191, 247, 248, 241, 301, 303,
295].

13Due to the vast volume of literature in the field here we cite only some key references.
For a good review on the field see please also Refs.[26, 47, 52, 197, 221, 223, 224, 225, 226].

14In isotropic materials, waves have the same phase speed in all directions, while in
anisotropic solids this variates with the propagation direction. On the other hand or-
thotropic laminates are those with an isotropy plane, like unidirectional fiber composites.
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Figure 1.1: Basic types of Lamb
waves on a plate.

Figure 1.2: Lamb wave dispersion curves
for a d = 0.5mm aluminium plate in air.

1.3.2 Lamb waves: main features

As mentioned before Lamb waves15 are mainly categorized following a geo-
metrical criterion, into symmetric and anti-symmetric modes. This principal
division can be observed in the above Figure 1.1, were the common denom-
ination of the modes is indicated16.
The modes, which actually are the free or forced vibrations of a plate can
be viewed as an internal combination17 of successive reflections of longitudi-
nal (or pressure waves, P) and shear vertical (SV) plane waves in the wave
guide18. Therefore an infinite number of modes can coexist simultaneously
leading to complex wave behaviour patterns.

§Dispersion

A very important characteristic of Lamb waves related to their propagation
velocity in a wave guide is a phenomenon called dispersion19. This distin-
guishing feature is a non-linear relationship between the phase velocity of
the waves and their frequency.

15Also known as plate waves.
16Here the plate deformations are enormously emphasized for the clarity of the figure.
17This wave coupling phenomenon strictly speaking exist in plates with free boundaries.

Then for a wave propagating along the X axis the real wave vector components are:
kP
x = kSV

x = kLamb
x . On a plate with other boundary conditions the P and SV waves

start to lose the coupling[16] Vol.II.
18The P waves have their displacement field oriented towards the direction of propa-

gation, while the SV waves are orthogonal to this direction; both of them into the XZ
plane. Shear horizontal or Love waves[156] have their displacements parallel to the XY,
plane and occur on the interface of two different materials coupled. Like Lamb waves Love
vibrations can be further classified into symmetric and anti-symmetric modes.

19This is not the case for Rayleigh waves which are non-dispersive vibrations with a
constant phase velocity. An approximately expression for the phase velocity in an isotropic
half-space is: cR = cSt

0.87+1.2ν
1+ν

. Where cSt is the phase velocity of shear transversal waves
and ν the Poisson ratio.
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Figure 1.2 shows a typical dispersion map20 for an aluminium plate in air
while the corresponding Lamb mode dispersion equations[143, 277] for an
isotropic plate in vacuum are given by21

tanh sd
tanh qd

=
4k2qs

(k2 + s2)2
(1.1a)

tanh qd
tanh sd

=
4k2qs

(k2 + s2)2
(1.1b)

In a waveguide the physical effect that dispersion produces in the vibrations
as they travel is a lengthening or spread of the wave packets which provokes
a generalized loss in the amplitude of the signals22

§Excitation and reception

Because of the strong relationship of Lamb waves with P and SV waves the
coupling of Lamb waves onto a plate can be carried out by many forms of
excitation (see Figure 1.3). Some of them are for example23:

• Concentrated normal or shear perturbations over the surface of a plate.

• Periodically distributed normal excitations over surface of a laminate.

• Normal perturbations distributed accordingly to a sinusoidal law on the
surface of a plate. The so called wedge method based on the coincidence
principle of Snell law: sin θi = ξair

ξLamb
.

Similar or combined[120, 181, 285] procedures can be applied in the recep-
tion of Lamb waves specially using types a), c) and d)24.

In the case of the present thesis which models the behaviour of an air-coupled
NDT system whose excitation and reception are based on the coincidence
principle the excitation is accomplish by using an arrangement of concen-
trated normal forces in small circular regions on the plate surface25.

20A general approach for the determination of the Lamb mode dispersion curves in
layered media is introduced in Chapter 3 with the Global Matrix Method or GMM.

21Here s =
√

k2 − k2
t ; q =

√
k2 − k2

l with kt = w
√

ρ
µ

and kl = w
√

ρ
λ+2µ

.
22This effect of descent in the amplitudes is different from those provoked by the material

attenuation or the energy leakage to the surrounding media.
23These types belong to the surface class of excitations which is different from

those possibly located inside the plate; after I. A. Viktorov[277]. Classical ultrasonic
sources/receivers used include: EMATs[8, 88, 284],capacitive[37, 187, 188] and piezoelec-
tric polymer film (PVDF) interdigital transducers (IDTs)[100, 152, 176, 177].

24Non-contact excitation/detection examples of types: a) are lasers, while d) arrange-
ments are normally employ in air-coupled systems.

25For more details see the Time Harmonic Solution (THS) in Chapter 4 of this thesis.
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Figure 1.3: Different forms of excitation of Lamb waves: a)Normal pressure, b)
Shear force, c)Normal periodically distributed pressures and d)the Wedge method.

The reception of the signals is based on the calculation of the acoustic field
radiated by a selected area of the laminate26.

1.4 Non-contact NDE with Lamb waves

1.4.1 Background

The majority of NDT methods require normally the use of couplants27 be-
tween the material or test piece under inspection and the transducers. This
is principally to enhance the pairing conditions of the transmitted and re-
ceived signals and in consequence the general sensitivity of the techniques.
However there are certain cases were this is not possible for any of the fol-
lowing reasons:

• Wood or polymer based materials such as paper and foam may be
damaged by contact with couplants or be incapable of withstanding
subsequent dry processes.

• Water may ingress into defects or delaminations reducing and/or chan-
ging the detectability of signals.

• Anti contamination requirements of final products. Typical exam-
ples are aerospace materials which will form part of honeycomb struc-
tures28.

These conditions then lead to the necessity of the elimination of couplants29

and the development of non-contact NDE methods. These can be classified
into laser based[251] and air-coupled techniques[118, 165].

26This is done using the Impulse Response Method (IRM). For more details consult
Chapters 2 and 5.

27Typical examples are: water, glycerine and a variety of water/oil based pastes.
28Other examples are: electronic circuit boards and in-process inspection of a fibre

reinforced plastics.
29Dry-coupled transducers are a possible alternative solution in some cases since they

use a layer of synthetic rubber with similar acoustic impedance to water to provide the
coupling. A disadvantage of this approach is the requirement of significant pressures to
work properly which may be incompatible or inadvisable in the case of delicate materials.
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Because the present work models an array based air-coupled NDE system the
subject of laser techniques will not be discuss30 although the THS method
in Chapter 4 could be apply to model laser NDT techniques.
In the area of air-coupled NDT methods31 grate efforts had been made over
the years by several researchers be it in the development of new and enhanced
air-coupled transducers[90, 169, 187, 188, 189, 194, 240, 254], the improve-
ment of the required electronics[193, 233, 272, 298, 299] or the availability
of superior NDE system models[34, 38, 112, 115, 130, 153].

1.4.2 Air-coupled systems

Air-coupled NDT ultrasound has two main issues that arise in practice during
evaluation tests. One is the effective amount of energy transmitted or coupled
into a the test plate32 and second is the attenuation of ultrasound in air.
Both of these phenomena impose the main limitations on the capabilities of
these techniques33. However with a careful system design and the application
of some general rules they can be overcome. Examples are:

• Achieve the maximum acoustic power from the transmitter/s.

• Maximize the sensitivity of the receiver/s stage.

• Reduce the noise and interference in the receiver electronics as much
as possible.

• Apply signal processing techniques in order to enhance the SNR34.

§The air-coupled problem

More important than attenuation is the coupling effect or the efficient trans-
ference of energy to the laminate being inspected. This effect depends pri-
marily on the difference in the acoustic impedances of air, the ultrasonic
transducers used and the material being inspected.

30The advantage of optical methods is the excitation and detection in a wideband of
frequencies. For more details consult Refs.[4, 117, 120, 175, 181, 191, 192, 246, 292, 297,
300, 303].

31For the case of water coupled NDT ultrasound see Refs.[78, 133, 171, 223, 224, 290,
304].

32Unless explicitly mentioned this term will be used interchangeable for single or mul-
tilayer materials laminates.

33Main setup arrangements for the NDE of plates include: 1) C-scan reflection, 2) C-
scan transmission[133] and 3) C-scan in pitch-catch mode. This last alternative is the one
used in the present model. See Figure 1.4.

34The most common and simple example is the use of averaging e.g. 10 ≤ Nave ≤ 100.
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Because of an enormous mismatch of acoustic impedances between the air
and the solids35, most of the energy is not transmitted or is reflected back
from the surfaces. This phenomenon can be roughly evaluated by the fol-
lowing wave intensity transmission coefficient36

T = 4
ZairZplate

(Zair + Zplate)2
(1.2)

Then to give an example for an aluminium plate immersed in water (with
Zwater = 1.5 MRayls) the transmission will be approximately of Twater

Al
∼= 29%,

while for the same plate examined in air this will be only of T air
Al
∼= 1%.

The fact is that in a normal non-contact NDT scenario there are four in-
terfaces that the ultrasound must cross before being detected. Two are re-
presented by the emitting/receiving transducer surfaces to the air (about:
35 dB + 35 dB). While the other two are form by the air to the plate inter-
face and viceversa. These last two depend on the material being tested and
could be around 50 dB to 90 dB in total. Then the global insertion loss for
an air-coupled NDE system could be between from 120 dB to 160 dB.

This is a well known issue partially solved by the inclusion of λ/4 adaptation
layers attached to the surface of the transducers[80, 81, 82, 83, 110, 131, 178,
179] and the use of new air-coupled composite devices[99, 250, 291].
However an advantage of air-coupled ultrasound in contrast to water-coupled
techniques is the practical elimination of the loading effect on the laminate
specimen. This for example has a significant influence in the attenuation of
the A0 mode when a plate is immersed in a water37.

§Attenuation of ultrasound in air

The attenuation of ultrasound with the distance is unfortunately far superior
in air than in liquids. For example at a frequency of 1MHz in air it can reach
values of α ≈ 164 dB/m!38

However for short distances of only a few centimetres it can have lower dB
figures which do not constitute a significant loss.
An equation for determination39 of the attenuation of ultrasound[272] is40

α = 1.64 10−10f2 [dB/m] (1.3)
35For example for aluminium the acoustic impedance is ZAl ∼= 17.33 MRaysl, while air

has a value of Zair ∼= 427 Raysl @20oC, with 1 Mrayls = 106 kg.m-2.s-1
36This is a simplified expression[118, 133] valid only for the case at normal incidence

θi = 0.
37This is mainly due the out-of-plane displacements of A0 in contrast to e.g. S0.
38At the same frequency in water it has an approximately value of α ≈ 0.22dB/m [133].
39An alternative expression is presented in Chapter 2 and Appendix A of this work.
40Then the acoustic pressure for a single frequency is: p(x, t) = p0e

−αxei(wt−kx).
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A useful relationship41 for the estimation of the so called extinction distance
or ed which is the distance where the amplitude of the pressure wave will be
reduced to 1/e of its original value is

ed =
5 1010

f2
[m] (1.4)

Then for example at f = 100 kHz ⇒ ed = 5 m and the signal will be reduced
to 36.8 % of its original amplitude.

1.4.3 NDT system simulation approaches

The availability of computer models and programs that can accurate simu-
late the behaviour of devices or systems involved in ultrasonic NDT is a
continuous and demanding research topic. Many methods and combinations
are used but basically they can be classified into analytical and finite element
methods (FEM).
As the their name suggests analytical techniques resolve the difficulty by
implementation of available closed form formulas while FEM employs a dis-
cretization of the medium/s for solving the differential equations governing
the problem. Both of these approaches have advantages and disadvantages42

mainly related to the degree of accuracy attained for the solution and the
time employed to obtained it43.

The case of air-coupled ultrasound systems is relative new in the NDE arena
although efforts can be traced back to the 80’s[69, 302].
Several models and programs had been developed for different parts and/or
arrangements of an NDE scheme[58, 106, 115, 122, 158, 161, 167, 182, 183,
245]. However to the author’s knowledge very few models have been develo-
ped for the complete modelling an air-coupled NDT system based on Lamb
waves (see Fig. 1.4). These rely alternatively in FEM[112, 130] and analyti-
cal techniques[204].

The present work contributes to the NDE field with an analytically based
free Matlab simulator44 for an air-coupled array based system like the indi-
cated in Figure 1.4.

41This expression is valid only for f ≤ 100 kHz. See Ref.[102].
42Analytical solutions usually tend to be more simple and fast at the cost of lack of

flexibility while FE methods provide flexible scenarios and throughout solutions at the
cost of more time consuming simulations.

43It is important to mention that unfortunately very few problems encountered in acous-
tics have a closed analytical solution available then the only alternative are FE methods.

44The code was verified and ran in the Matlab r©versions 6.5 and 7.4.0 (R2007a).
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Figure 1.4: Schematic view of a C-scan pitch-catch mode developed air-coupled
NDT system based on Lamb waves and cylindrical concave arrays[299].

1.5 Outline of the thesis

This section describes the organization of the thesis by summing up the meth-
ods and parts that constitute the LAMB simulator whose internal structure
can be appreciated in the following Figure 1.5.

The thesis begins by presenting the generalities of Impulse Response Method
or IRM for the calculation of acoustic fields. Then the particular solution for
rectangular radiators derived by San Emeterio and Ullate[234] is presented.
This method is implemented in the excitation block45 of the LAMB pro-
gramme and also used during the calculation of the radiated fields by the
plates. A model for the attenuation of ultrasound in air is also described
and included with the IRM routines46.
Then comparisons of ultrasonic signals generated by FIRST programme
are made with a well known group of acoustic simulators such as Field II,
DREAM and Ultrasim47 and the data provided from experimental measure-
ments. The chapter finishes by including a set of simulations for a single
rectangular radiator and an array composed with these elements. Conclu-
sions are derived at the end.

The next two chapters, Chapter 3 and 4, are devoted to the programme plate
propagation module.
After an introduction to the field equations for plane waves in an isotropic
solid, Chapter 3 presents two methods for the computation of the Lamb wave

45This section is represented by the developed acoustic field simulator FIRST or Field
Impulse Response Software.

46This model of the attenuation as well as the rest of the models presented on this thesis
are valid only under the assumption of linear acoustics.

47The comparisons made with the Ultrasim software are presented in Appendix A.
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Figure 1.5: Internal block structure of the LAMB simulator programme for
a Lamb wave based NDE system in ideal infinite isotropic laminates.

dispersion relationships48 for attenuated homogeneous plane waves49.
Here the Transfer Matrix Method (TMM) and its enhanced alternative the
Global Matrix Method (GMM) are described.
Then simulation results for a GMM implementation are compared with ex-
perimental data drawn from laser vibrometer measurements in metal plates.
The chapter ends then by presenting main conclusions.

The Time Harmonic Solution method or THS is introduced in Chapter 4.
This method in conjunction with the obtained dispersion data in Chapter
3 allows for the calculation of the displacement fields generated by a single
circular radiator who exerts pressure on the surface of an isotropic plate.
The generalization for broadband pressure signals and arbitrary 2D exci-
tations is then described followed by a short introduction with two other
alternative approaches to THS.
A group of comparisons between THS simulations and the results obtained
from FEM calculations and experimental data from impacted metal lami-
nates are then presented for the case of a single circular radiator. Conclu-
sions are then outline at the end of the chapter.

The internal structure of the LAMB simulator is detailed in Chapter 5. The
integrating parts: 1)Excitation, 2)Propagation and 3)Reception are then
described with special emphasis on the reception module of the software.
In this section of the programme the appropriate size of the plate emission

48The (f, k) maps. See Figure 1.2
49These are solutions with real frequency wRe and a complex wavenumber k = kRe+ikIm.
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elements is discussed50 followed by a description of a two-dimensional model
used for the inclusion of the directivity characteristic of the receiving array
sensors.
Then after an examination of array signal processing key concepts related
to the NDE in air-coupled systems51 a group of comparisons of LAMB pro-
gramme simulations with experimental results are presented.
The assessment tests include copper and aluminium plates52 and were carried
out with a real air-coupled Lamb wave based NDE system using concave
arrays[299].
An analysis of the advantages and disadvantages of using concave shaped53

air-coupled transducer arrays is also presented.
Then a group of programme simulations for three different locations of a new
proposed plane array54 are introduced followed by the chapter conclusions.

Finally Chapter 6 makes a review of the thesis followed by the summary
of findings of the work. The main conclusions are presented plus a list of
suggestions for future investigation topics related to the NDE with Lamb
waves using air-coupled array systems. These are grouped into: 1) LAMB
software improvements and 2) Hardware system improvements.

50This is done here because the IRM field emission calculations for the plate are included
into the reception module.

51These are related to the addition of a Delay And Sum (DAS) beamformer.
52The experiments include three tests: 1)A sweep in frequency with a single receiver

sensor in d = 0.35mm copper plate, 2)Narrowband signals in d = 0.5mm aluminium plate
(full array), and 3)Wideband signals in d = 1.0 mm aluminium laminate (full array).

53Here the geometry applies to cylindrical shaped air-coupled 1D arrays composed of
rectangular piezoelectric sensors[178].

54The proposed linear transducer is composed of 48 sensors with the following dimen-
sions: {2a, 2b, pe} = {0.4, 15, 0}mm for width, height and inter-element space respectively.
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Chapter 2

The impulse response method

2.1 Introduction

This chapter is devoted to acoustic field calculation using the impulse re-
sponse method or IRM. This method is the basis of the first module of the
LAMB software to compute radiated acoustic fields.
The chapter begins with the historical background of IRM and related approaches
to the acoustic field calculation.
Main equations of the method are then introduced, followed by a brief review
of the use of IRM for rectangular radiators.
Then the mathematics for IRM of rectangular apertures is developed with
special emphasis on the inclusion of air attenuation, wavelength and sam-
pling frequency effects.
Finally a set of validation cases is presented to compare the results of the
model with other software packages and conclusions are outlined.

2.2 History of the IRM

The desire to calculate generated fields produced by acoustic radiators, either
by analytic expressions or by closed-form numeric formulas has long existed.
Efforts can be traced back to the field of optics and to the original work by
Kirchhoff[134] who in 1882 whilst working on the mathematical formulation
for diffraction of light, laid the foundations for the later so-called scalar
diffraction theory [84].
This theory although initially intended for light later came to constitute the
base for modern ideas in acoustic field calculations [155].
It represents in the end nothing less than the Huygens-Fresnel principle of
light wave interference first formulated analytically by Kirchhoff[134] and
later revised and expanded by Sommerfeld[253].
We shall begin then our introduction to acoustic field calculation by review-
ing only the main contributions to the subject since a comprehensive review
of the field would doubtlessly be incomplete and beyond the scope of this
thesis. The main purpose here is limited to extending the reader’s familiarity
with the impulse response method leaving aside other possible techniques.
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2.2.1 The Rayleigh surface integral

The above mentioned works of Kirchhoff and Sommerfeld with the exact
solution to the problem of diffraction using a reflecting half-space[253] were
the starting point for acoustic field calculation.
Since then the first studies carried out to solve the baffling piston problem
have made use of the Rayleigh integral solution[155].
In 1917 for example Rubinowicz[230] decomposed the Helmholtz and Kirch-
hoff integrals into a geometrical wave and a boundary diffraction wave. The
latter was expressed as an line integral over the diffracting edge.
Years later in 1934 King[132] provided an alternative solution to the baffling
piston problem for circular radiators with sinusoidal excitation (CW).
Schoch in 1941[242] basing his study on Rubinowicz’s work on the Rayleigh
form of Kirchhoff integral, published a solution for the field of a CW planar
acoustic source of arbitrary shape with a uniform distribution of vibration
amplitude.
Schoch[242] was the first to apply this method to the field of acoustics. For
a comprehensive review of the historical development the reader is referred
to the dissertation by Rutgers[231].
The Rayleigh integral1 is a special case of the Huygens-Fresnell concept in
which the radiating source and the boundary lie on a plane.
This is called the boundary element method or BEM[135, 136, 137, 166].

2.2.2 Nonuniform vibration amplitude distributions

The subject of nonuniform vibration amplitude distributions, evaluating the
Rayleigh integral was studied in the 30’s by Stenzel[255] and McLachlan[170]
with Stenzel working in the farfield and McLachlan on the piston surface.
Jones[128] in 1945 published an extensive report on the Rayleigh integral
tabulating results for farfield radiation patterns.
The majority of articles published during the 50’s and 60’s employed the
Rayleigh surface integral as a basis for numerical analysis.
In 1974 Dekker[54] calculated on-axis and farfield distributions for circular
disks with different types of boundary conditions. These conditions were
piston like motion and radially symmetric velocity distributions for a simple
supported disk and a clamped disk.
Greenspan[86, 87] wrote an extension of the King integral for an arbitrary
axis-symmetric vibration amplitude distribution which was applicable in the
farfield near to the piston axis.

1Formulated analytically by Helmholtz and Kirchhoff.
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2.2.3 Transient excitations

Studies of transient fields produced by pulsed planar radiators in an infinite
rigid baffle have been using integral transforms of time-harmonic expressions
and direct time-domain solutions.
Supposedly Morse[180] was the first to derive an approximate expression for
the radiation from a pulsed circular piston.
Hanish[91] and Freedman[72] have reviewed various aspects of transient field.
A general description of the transient fields produced by an arbitrarily shaped
planar piston in terms of a convolution process was provided by Fischer[66]
and then by Harris[93].
Harris summarised how a transient field can be determinated by convolving
the surface velocity of the piston with the inverse Fourier transform of the
time-harmonic radiation pattern of the piston.
This latter function is without doubt the spatial impulse response function.
In 1967 Chadwich and Tupholme[44] derived results from Oberhettinger’s
work[195] for a circular piston via a complementary scheme using Laplace
and Hankel transform techniques.
Also Tupholme[271] in a study of pulsed fields generated by baffled plane
pistons of arbitrary shape outlined how the Rayleigh integral could be ob-
tained via the appropriate selection of Green’s functions.
In the 70’s Freedman published his results about transient fields[71].
Although not explicitly mentioned as a convolution process, the general
scheme and conclusions incorporate ideas from the spatial impulse response
method. Also Robinson et al.[220], had reported solutions on exact responses
of near transient fields for circular pistons.
Perhaps the best known grouping and discussion of authors on their publica-
tions was made by Freedman[72], Stepanishen[257, 258, 259], and Harris[92]
relating to the convolution integral representation of radiated fields.
Stepanishen plotted the impulse response in a similar form to that of Chad-
wick and Tupholme. He also was the first to do so explicitly by means of a
convolution/impulse response approach.
From the preceding section it is clear that the Rayleigh integral expressions
have provided the framework for numerous studies in the field radiated by
pistons.
Most of the calculations of transient fields were either directly or indirectly
based on the convolution/impulse response representation.
These works are so widely scattered in relevant literature that any discussion
about the subject would remain interminable.

2.2.4 Other approaches

Another approach to the calculation of acoustic fields is the angular spec-
trum method (ASM) or acoustical holography[84, 184, 148].
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This scheme is based on the formulation of the scalar diffraction theory in a
structure that closely resembles the theory of linear invariant systems.
If across any plane the complex field distribution of monochromatic dis-
turbances is Fourier-analyzed, the various spatial Fourier components can
be identified as plane waves travelling in different directions away from the
plane.
Then the field amplitude at any other point or on any other parallel plane
can be calculated by adding these plane wave contributions, always taking
into account first the individual phase shifts they have suffered during pro-
pagation2.
A detailed study of the diffraction theory viewed through this method as
well as applications related to the theory of radio-waves is referred to in the
work of Ratcliffe[216].
Variations on the ASM are the nearfield acoustic holography (NAH), and
the Helmholtz integral formulation implemented numerically by means of
the boundary element method (BEM).
NAH is able to reconstruct radiated acoustic fields coming from vibrating
objects using acoustic pressures measured on a hologram plane[286].
HELS, or the least square equation from the Helmholtz integral formulation
is used to reconstruct interior and exterior regions of arbitrary radiating
structures with relatively few measurements.
However, HELS seems to present problems for highly irregular bodies be-
cause of the slow convergence of solutions.
The above mentioned methods are only some of most important procedures
and variations in techniques currently available in literature for the cal-
culation of acoustic fields. For more information the reader is referred to
Refs.[137, 287, 288, 293, 294].
It is significant that the angular spectrum methods, despite their apparent
differences from the Rayleigh-Sommerfel solution and its different impulse
response approaches, yield identical calculations of diffracted fields. This has
been proved by Sherman[243].

2.3 IRM fundamental equations

To give support to following mathematical development of the impulse re-
sponse method, first we shall define the acoustic properties of the medium
in which waves will propagate.
The fluid medium is deemed to be linear unbounded, nondissipative, nondis-
persive, homogeneous, and isotropic with a wave propagation velocity of
c [m/s], and density ρ [kg/m3].
It is worth mentioning that despite these idealised medium properties, the
conditions of the medium will later be adapted using an elementary attenu-

2See for example Refs.[67, 89, 237, 238, 261, 262, 268, 275].
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ation model to support the air attenuation effect.
It is also important to understand that the following development is accurate
provided that the diffracting aperture is larger than the minimum wavelength
used. This last point is briefly discussed later at the end of the chapter3.
Then according to the scalar diffraction theory the problem of calculating
the acoustic field radiated by an aperture in a medium with the aforemen-
tioned properties could be described in terms of the acoustic velocity poten-
tial φ(P, t) as what is usually called a boundary value problem[180, 133].
This implies that an emitting aperture of area σS with a normal velocity
distribution νn(P0, t) is surrounded by a baffle (soft or rigid) with a normal
velocity of zero.
In order to resolve the problem we take the acoustic field equation for a point
in space P (x, y, z),

∇2φ(P, t) =
1
c2
∂2φ(P, t)
∂t2

(2.1)

where φ is the time-dependent scalar velocity potential related to the medium
particle velocity by

νn(P0, t) = −∇φ(P0, t) (2.2)

Then the sound pressure at point P (x, y, z) is given in terms of the potential
by

p(P, t) = ρ
∂φ(P, t)
∂t

(2.3)

To solve Eq. (2.3) we recur to Green’s theorem choosing first an appro-
priate function associated with the problem[84, 133]to reach the following
expression[258, 259], for the acoustic field potential

φ(P, t) =
∫ t

0

∫
σ
β(z, t)νn(P0, t0)g(P, t|P0, t0)dSdt0 (2.4)

where g(P, t|P0, t0) is the associated Green function given by

g(P, t|P0, t0) =
1
4π

δ(t− t0 − |P − P0|/c)
|P − P0|

(2.5)

and β(z, t) is an obliquity factor[84, 234] depending on the baffle condition
of the problem,

β(z, t) =


2 ,for rigid baffle
2z/(ct) ,for soft, or pressure released baffle
1 + [z/(ct)] ,for free field.

(2.6)

The integral (2.4) is basically a statement of Huygens’s principle in that the
field is found by summing up spherical radiated waves from all parts of the
emitting aperture.

3See please § 2.4.5 on page 31.
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Figure 2.1: Piston schema. Figure 2.2: Piston schema edge on.

Furthermore, it can also be reformulated based on an acoustic reciprocity
idea i.e. an emanating spherical wave4 coming from the field point of interest
P in which its expansion intersects the aperture5 in an arc L(R) and where the
auxiliary point P0 lies (see Fig. 2.1). Then if we incorporate expression (2.5)
for g(P, t|P0, t0), into Eq. (2.4) we get

φ(P, t) =
∫ t

0

∫
σ
νn(t0)

β(z, t)
4π

δ(t− t0 − |P − P0|/c)
|P − P0|

dSdt0 (2.7)

If we consider the vibrating element as having a uniform amplitude distri-
bution we can further simplify Eq. (2.7) to

φ(P, t) =
∫ t

0
νn(t0)

∫
σ

β(z, t)
4π

δ(t− t0 − |P − P0|/c)
|P − P0|

dSdt0 (2.8)

The evaluation of the integral (2.8) could be done by first integrating in
space and then in time or viceversa initial in time and then in space. We
will choose the first alternative and define h(P, t) as

h(P, t) =
∫

σ

β(z, t)
4π

δ(t− t0 − |P − P0|/c)
|P − P0|

dS (2.9)

then from (2.8) and (2.9) we have expression (2.10) indicating the scalar
velocity potential

φ(P, t) =
∫ t

0
νn(t0)h(P, t)dt0 (2.10)

or
φ(P, t) = νn(t) ∗ h(P, t) (2.11)

where the * denotes the symbol for convolution operation. We shall call
h(P, t) the impulse response of velocity potential for the piston-like aperture

4Dirac type impulse, see Eq. (2.5).
5Say at e.g. time instant t0.
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at point P (x, y, z) in response to a Dirac type velocity excitation of its face.
Then incorporating Eq. (2.11) into expression (2.3) which is the acoustic
pressure6 p(Px,y,z, t), we get

p(P, t) =
∂[νn(t) ∗ h(P, t)]

∂t
(2.12)

This can be re-expressed as

p(P, t) = ρνn(t) ∗ ∂h(P, t)
∂t

(2.13a)

or as

p(P, t) = ρ
∂νn(t)
∂t

∗ h(P, t)

= ρa(t) ∗ h(P, t) (2.13b)

From these two alternatives we will choose the second form of equation (2.13b)
including the normal acceleration7 since it eliminates abrupt discontinuities
that could arise from the derivative of Eq. (2.13a).
The idea now is to evaluate the expression (2.9) for p(Px,y,z, t) in order to
resolve the problem.
For this purpose, we have to evaluate first dS.
If we look at figure Figure 2.1 from the side and localize an auxiliary spher-
ical coordinated system at point P (x, y, z), we will see something similar to
figure Figure 2.2.
In fact the contour of the aperture could have any form while it just remains
flat. Then with the auxiliary system localized at P we shall define

R = |P − P0| (2.14)

as the radius of an emanating sphere from P . L(R) is the longitude of the
arc of intersection and θ(R) is the angle formed by the arc and the normal
to the surface at P . While P ′(x, y, 0) is the projection point of P onto the
plane of the aperture.
Observing Figures 2.1 and 2.2, we note that the incremental area ∆S is

∆S = L(R)∆d (2.15)

and
∆d =

∆R
sin(θ(R))

(2.16)

6This is the amount of over pressure (including its sign) added to the normal ambient
pressure P0.

7Hereafter, we will drop the sub-index n for the normal velocity vn and the normal
acceleration an, meaning it’s inclusion.
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Then incorporating this last expression into Eq. (2.15) we get

∆S =
L(R)∆R
sin(θ(R))

(2.17)

where we observe
ds = lim

∆R→0
∆S (2.18)

Then replacing the limit form of Eq. (2.17) into expression (2.9) for h(P, t),
it changes to

h(P, t) =
∫ ∞

0

β(z, t)
4π

δ(t−R/c)
R sin(θ(R))

L(R)dR (2.19)

With the substitution: τ = R/c

h(P, t) =
∫ ∞

0

β(z, t)
4π

δ(t− τ)L(cτ)
τ sin(θ(cτ))

dτ (2.20)

and applying the sampling property of the Dirac function, Eq. (2.20) becomes

h(P, t) = β(z, t)
L(ct)

4πt sin(θ(ct))
(2.21)

From Figure 2.1, we can observe that:

R = ct

sin(θ(R)) =
R′

R
(2.22)

Then introducing these last expressions into Eq. (2.21) we finally get

h(P, t) = β(z, t)
cΩ(ct)

4π
(2.23)

This is the departure expression for the calculation of the impulse response
function for a piston-like aperture at point P (x, y, z) in space.
As we can see Eq. (2.23) primarily depends on Ω(R) which in turn depends
on the relative location of P , the position and form of the aperture and the
propagation velocity of the medium.
It also interesting to note that these results will be a useful approximation
in the case of a convexly or concave radiator (or receiver) in a baffle, as long
as the dimensions and radii of the curvature are larger than the maximum
wavelength over the relevant frequency band.
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2.4 IRM for rectangular apertures

2.4.1 Introduction

The acoustic field of a rectangular aperture cannot be characterised as easily
as that of a circular one since rectangular sources have two corresponding
dimensions and they totally lack axial symmetry.
Thus, their field is dependent on the relationship between these two sides
and on their respective ratios to the wavelengths present.
As a result field patterns of rectangular radiators have not been studied as
extensively as those of circular pistons.
Here a brief introduction will review only the main contributions to the sub-
ject of IRM for rectangular radiators.

To the author’s knowledge the first referenced work was by Stenzel[256] who
in 1952 published an exact solution based on a single integration of a tabu-
lated function for some cases of rectangular aperture.
Then in the early 70’s Freedman[70, 73, 74] and Stepanichen[259, 260] both
studied and found solutions for the farfield of rectangular sources while the
nearfield was investigated by Lockwood and Willette[154]. Ocheltree[196]
presented a method for the calculation of the continuous wave (CW) case
for the rigid baffle condition.
A closed form solution for near and farfield situations was developed by
Emeterio & Ullate in 1992[236, 273, 234].
It is of interest to note that this approach had been successfully used by other
authors for calculations on a rectangular aperture with a cylindrically curved
surface[207] and ultrasonic phased arrays under transient excitation[190].
Recently McGough[168] developed a fast method for calculating the CW ex-
citation of nearfield rectangular transducers by removing numerical singular-
ities in h(P, t) which are caused by the use of inverse trigonometric functions.

Apart from the mentioned works on rectangular apertures, there is a vast
arena of literature on the impulse response method for many other types of
acoustic radiators i.e. circular, triangular, polygons, curved, radiators with
non-uniform surface velocity profiles (apodized transducers) and array trans-
ducers.
A complete review of the subject is not the aim of this study, notwithstand-
ing it would no be complete without mentioning the excellent works of A.
Jensen, S. Holm and B. Piwakowski.
Jensen carried out an in depth investigation into IRM for polygon type
apertures and arrays[122, 124] at various conditions with apodization[125],
medium attenuation[123] and is the author of a very well know acoustic sim-
ulator software called Field II8.

8http://server.oersted.dtu.dk/personal/jaj/field/

23

http://server.oersted.dtu.dk/personal/jaj/field/


Next from the University of Oslo Holm et al.[105, 106, 107, 108] developed
a medical imaging application called UltraSim9.
This is a GUI10 operated Matlab package based on the Rayleigh integral
solution[259] of the discretization of the radiating surface into small piston-
like sub-elements[63].
UltraSim can handle both homogeneous and layered media (without atten-
uation) assuming that the surface velocity of the element behaves like a
separable function: vn(~r, t) = V (~r)v(t).
On the other hand, B. Piwakowski developed a procedure[208, 210, 209]
called discrete representation or “DR” for the calculation of the impulse re-
sponse function.
This would be later implemented into a Matlab toolbox called Discrete Rep-
resentation Array Modelling or DREAM11.
DREAM is applicable to problems characterised by arbitrarily shaped Green
causal functions, and lossy media with rigid, soft and free baffle condition
possibilities.
In view of this scenario and bearing in mind the attainable objective of the
present thesis and despite the existence of these free available packages the
author preferred to develop his own routines since most of the core calcula-
tions for the impulse response in aforementioned softwares are hidden from
analysis by the end user12. The intention is release in the near future a stable
GNU13 version of the LAMB toolbox presented on this thesis14.

2.4.2 Definitions

Once obtained the departure expression of equation (2.23) for the calcula-
tion of the impulse response of a piston-like aperture, the following section
summarises the well known work of Emeterio and Ullate[234].
This is the method which the first part of the LAMB toolbox uses.
The selection for the acoustic field simulation core of the toolbox is made
on the basis that this is a relatively simple closed form solution for the near
and farfield conditions which will later simplify calculations for array type
aperture composed by rectangular radiators.

9 http://heim.ifi.uio.no/ ultrasim/index.shtml
10Graphic User Interface.
11www.signal.uu.se/Toolbox/dream/
12IRM algorithms for calculation of h(P, t), are hidden on private OS dll files.
13The GNU General Public License (GPL) is a widely used free software license written

by Richard Stallman for the GNU project. GPL is a well known example of the type of
strong copyleft license that requires derived works to be available under the same copyleft.
Under this philosophy, GPL is said to grant the recipients of a computer programme the
rights of the free software definition and uses copyleft to secure freedoms are preserved,
even when the work is enhanced or modified.

14A beta version is available now for downloading in the author’s page at the Matlab
Central website: www.mathworks.com/matlabcentral/fileexchange/authors/23152 .
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To begin with one observes that given the mirror-like symmetry of a rectan-
gular radiator (see Fig 2.3) and assuming the medium is fluid with density
ρ, speed of sound c and the above mentioned properties.
All references will be limited to the 1st. quadrant since the rest could be
referred to by taking the absolute value of corresponding coordinates. This
means that the acoustic field at a point e.g. (x1, y1, z1) will have a similar
acoustic pressure at coordinates (−x1, y1, z1, ), (x1,−y1, z1, ) and (−x1,−y1, z1, ).
Defining four regions from the 1st. quadrant in figure Figure 2.3 and also the
distances di(i = 1 . . . 4), from point P ′(x, y, 0) i.e. projection of P (x, y, z) on
the radiator plane to the straight lines which are the sides of the rectangle
we will have

RegionI = x ≥ a, y ≥ b

RegionII = x < a, y ≥ b

RegionIII = x ≥ a, y < b

RegionIV = x < a, y < b

Figure 2.3: Piston zones

d1 = x− a d2 = y − b

d3 = x+ a d4 = y + b (2.24)

Now from figures 2.4 and 2.5 and depending on the relative position of P ′,
eight discontinuities will exist for the active arcs Ω(P, t).
The arcs are formed by the intersection of the aforementioned sphere that
emanates from P and the rectangular piston surface.
These discontinuities will occur when the active arcs include any of the
vertices of the rectangle at time instants τi(i = A . . .D) or when the arcs are
tangent to the rectangle boundaries at time instants τSi(i = 1 . . . 4).
Therefore the time of flight from the signals coming from the vertices to the
field point P will be

τA =
(d2

1 + d2
2 + z2)1/2

c
τB =

(d2
2 + d2

3 + z2)1/2

c

τC =
(d2

1 + d2
4 + z2)1/2

c
τD =

(d2
3 + d2

4 + z2)1/2

c
(2.25)
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Figure 2.4: Piston dimensions Figure 2.5: Piston angles

and when they are tangent to the borders it will be

τSi =
(d2

i + z2)1/2

c
∀ i = 1, 2, 3, 4 (2.26)

A final discontinuity will exist in Ω(P, t) for those points whose projection
P ′(x, y, 0) lie inside the rectangular boundaries of the source. This will be at
the time instant at which the upcoming sphere touches the surface for first
time at t = τ0, and is given by

τ0 =
z

c
(2.27)

With this information it may be concluded that the impulse response func-
tion h(P, t) is a time limited function restricted to the time interval (τmin, τD)
with a null value outside of it and where τmin is assigned to τA, τ2, τ1, τ0 for
the regions I, II, III and IV respectively.
Now according to[234] the functions αi(P, t) that allow us to calculate h(P, t)
will be defined by

αi(P, t) = arcsin[
di

σ(P, t)
] (2.28)

Where σ(P, t) is the radius of the active arc with its centre in P ′, it is defined
by

σ(P, t) =
√

(ct)2 − z2 (2.29)

These α functions each corresponds to the angles αi of Fig 2.5 and the argu-
ments are the principal values in the interval −π/2 ≤ αi ≤ pi/2, for t ≥ τSi.

2.4.3 Determination of h(Px,y,z, t) expressions

Having defined the αi functions one example of how they permit to calculate
the impulse response function at a given point is seen.
Observing in Fig 2.5 the evolution of the active arcs for different time instants
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ti, from point P ′ and assuming that τB ≤ τC [234], Ω can be determined in
the following terms

Ω = α4 − α2 ; for τB ≤ t ≤ τC

Then from Eq. (2.23) and assuming a rigid baffle condition with β = 2 (see
Eq. 2.6) the following expression is reached

h(P, t) =
cΩ(ct)

2π

where αi and its complementary functions ᾱi are defined by

ᾱi =

{
sgn(di)π/2 for τ0 ≤ t ≤ τSi

αi for τSi < t ≤ τD
(2.30)

αi = arcsin[di/σ(P, t)]

In the same manner and following the procedure described by Emeterio &
Ullate in Ref. [234] it is possible to summarize in tabular form all potential
cases for the active arcs Ω(P, t) at any instant in time.
These are illustrated in the following Table 2.1.

Table 2.1: Analytic expression cases of Ω = (2π/c)h(P, t) for a piston-
like rectangular radiator in a rigid baffle condition (β = 2) where τm =
min(τB , τC); τM = max(τB , τC) and τmin = τA, τS2, τS1, τB for regions I, II, III
and IV respectively.

τmin ≤ t ≤ τA − π − 2α2 2ᾱ3 − 2α1 −2π − 2ᾱ1 − 2ᾱ2 + 2ᾱ3 + 2ᾱ4

τA ≤ t ≤ τm π/2− α1 − α2 π/2− α1 − α2 −π/2− α1 − α2 + 2ᾱ3 −3π/2− α1 − α2 + 2ᾱ3 + 2ᾱ4

τm ≤ t ≤ τa
M −α1 + α3 −π − α1 + α3 + 2ᾱ4 −α1 + α3 −π − α1 + α3 + 2ᾱ4

τm ≤ t ≤ τb
M −α2 + α4 − −π − α2 + 2ᾱ3 + α4 −π − α2 + 2ᾱ3 + α4

τM ≤ t ≤ τD −π/2 + α3 + α4 −π/2 + α3 + α4 −π/2 + α3 + α4 −π/2 + α3 + α4

‘a’ for τB ≤ τC

‘b’ for τC ≤ τB

Then with aid of equations (2.23) through (2.30) and Table 2.1 it is possible
to build an IR core for rectangular apertures15 that allows the calculation of
acoustic fields for the LAMB toolbox.
This is based fundamentally on the superposition principle (see § 5.2.1) and
is embedded in the emission block and the plate radiation part of the pro-
gramme.

15The IR core it’s a free subset of FIRST available for downloading in the author’s page
at the Matlab Central: www.mathworks.com/matlabcentral/fileexchange/authors/23152
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2.4.4 Inclusion of the air attenuation effect

A fundamental characteristic of the propagation of sound in gases is the at-
tenuation with distance of waves due to various processes that irreversibly
convert the wave energy into heat.
Without entering into an unnecessary level of detail of the many and varied
complex processes that take place during the attenuation phenomenon in
gases[21, 20] only those concerned with the basic structure of present mech-
anisms involved during the attenuation phenomenon of linear acoustics will
be discussed. These are enumerated in the following Table 2.2.
As can be appreciated the main division concerns spreading losses and ab-
sorption losses.
Since the main goal here is to determine the attenuation of sound in a stable
atmospheric environment the effects of spreading losses16 will be left out.
The effects of reflection and refraction are included by assumption of use
of the propagation model (see § 4.3.1). Then only the absorption losses in
the form of classical effects and relaxation absorption effects will be dealt
with17.
These can be taken into account by an αcr coefficient plus two additional
molecular resonance coefficients, αvib,O and αvib,N for oxygen and nitrogen
gases respectively[12, 23].
Then at standard conditions of pressure and temperature (P0 = 1 Atm., T0 =
293.15 K) the total attenuation coefficient of ultrasound in air α [Np/cm] is
given by18

α = αcr + αvib,O + αvib,N (2.31)

and the acoustic pressure e.g. along the X axis for a single frequency wn will
be

p(x, t) = p0e
−αnxei(wnt−kxx) (2.32)

Now to calculate the total pressure at a point p(P, t) including the attenuation
effects for all frequencies, equation (2.13b) will be used:

p(P, t) = ρa(t) ∗ h(Px,y,z, t)

Since this equation depends on the normal piston acceleration a(t) and the
impulse response function h(Px,y,z, t) the attenuation factor α(w) can be ap-
plied to any two functions by means of a time convolution operation.

16Inverse square law and diffraction effects are already incorporated in the IRM ap-
proach.

17Diffusion losses contribute very little (around 0.3%) radiation losses are only important
at very low frequencies and electromagnetic relaxation is significant for NO gas only at
very high frequencies[21]. Absorption by ground and ground cover are not applicable

18For details on the determination of α(P0, Hr, T, w) as well as calculations of the air
density and speed of sound consult Appendix A on air medium characteristics.

28



Table 2.2: Sound attenuation factors in gases.
a. Spreading

losses a.1 Uniform spherical spreading (in-
verse square law) losses.
a.2 Non-uniform spreading. a.2.1 Reflection by finite boundaries.

a.2.2 Refraction by nonuniform at-
mosphere.
a.2.3 Diffraction (scattering) by non-
stationary atmosphere.

b. Absorption
losses b.1 Absorption by ground and

ground cover.
b.2 Absorption by the atmosphere
(Classical absorption).

b.2.1 Viscous losses

b.2.2 Heat conduction losses
b.2.3 Diffusion losses
b.2.4 Radiation losses

b.3 Molecular relaxation absorption. b.3.1 Thermal relaxation among
translational energy and vibrational
energy states of molecules.
b.3.2 Thermal relaxation among a
close vibrational resonance of two dif-
ferent molecules.
b.3.3 Thermal relaxation among vi-
bration of one molecule and rotation
of a different molecule.
b.3.4 Thermal relaxation among
translational energy and rotational
energy states of molecules.
b.3.5 Electromagnetic relaxation
between translational energy and
possible electronic energy states of
molecule.

Table 2.3: Acoustic wavelength values in air and element dimension ratios.
Frequency

[Hz]
Wavelength

[mm]
ra = 2a

ξ/2

elewidth=2a=1mm

rb = 2b
ξ/2

eleheight=2b=15mm

fmin 0.6 106 0.57 3.5 52.4

f0 0.8 106 0.43 4.7 69.8

fmax 1.0 106 0.34 5.8 87.3

This can be viewed from the frequency domain as a Fourier transform im-
pulse response function H(iw) filtering operation.
This approach although not exact, is a fairly good approximation to the
works of Jensen[123] and Piwakowski[209].
Then to include the attenuation effect in the model the corresponding filter-
ing function Aatte.(R, iw) for the point of interest P (x, y, z) at R units distant
from the origin Oa of the acoustic radiator is calculated19.

19See Figure 2.1. For details on the calculation of Aatte(R, iw) consult Appendix A.
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Figure 2.6: Effect of the air attenuation
with temperature at f0 = 1MHz, Hr =
50% and P0 = 1 Atmosphere.

Figure 2.7: Effect of air attenuation
with frequency: Tamb = 21oC, Hr =
50% and P0 = 1 Atm. N.b. @f0 = 1MHz ⇒
atteair ≈ 164 dB/m!

The the following expression is obtained by inverse Fourier transformation
of the multiplication of the frequency domain responses

ha(Px,y,z, t) =
1
2π

∫ inf

− inf
Aatte(R, iw)H(iw)eiwtdw (2.33)

As a result of substitute h for ha in equation (2.13b) the final attenuated
acoustic pressure is given by

p(Px,y,z, t) = ρa(t) ∗ ha(Px,y,z, t) (2.34)

Figures 2.6 and 2.7 represent attenuation in function of the ambient tempe-
rature and frequency for standard conditions of pressure and relative humid-
ity.
Here the most important and worthy case to comment is the relationship
between the attenuation and the frequency since this exerts a primary and
key influence on radiated acoustic fields in air. This relationship responds
approximately to a square dependence law with the frequency of the form20

α = af b
∣∣∣
a ∼= 1.732 10−12

b ∼= 1.996

[dB/cm] (2.35)

Then, as the frequency of the acoustic field is higher the ultrasound almost
utterly vanish in the air after a few cm.
This is a severe restriction for ultrasonic NDT/NDE since most of the time
higher frequencies can carry detailed information of underlying phenomena.
Nevertheless, with the availability of modern analog electronics[298] and sig-
nal processing techniques[98, 96, 121] these possibilities are now increasingly
being studied.

20An alternative formula[272] is: α = 1.64 10−12f2 [dB/cm].
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The curves of the present attenuation model had been contrasted with ava-
ilable data extracted from an internet based calculator from the National
Physical Laboratory21 (NPL) in the United Kingdom. For further details
please see Appendix A.

2.4.5 Wavelength and sampling frequency effects

§Wavelength effect

In any imaging system it is a well know fact that minor details or structures
that need to be seen more clearly must be greater than the minimum wave-
length used by a system for exploration.
In the case of acoustics and ultrasonic radiators which undergo the im-
pulse response theory it is even more important that the size of the ra-
diation element be greater that the maximum wavelength present in the
system[133, 202].
This condition can be summed up by ensuring the parameters: ra,b > 1
(see Table 2.3).
If the parameters are not within these limit boundary conditions the baffle
becomes influential and theory begins to disagree with the experiment.
This is the case for example, of small transducer elements of an ultrasonic
array operating at lower frequencies.
In this case a more exact theory like the angular spectrum method mentioned
in § 2.2.4, could be a more convenient approach to the problem.
For this thesis the simulation of an air-coupled NDE array based system and
the low velocity value of sound propagation in air (c ∼= 343.8 m/s @21oC)
causes the wavelengths in the equation (2.35) to have submillimetre dimen-
sions at working frequencies22. This in turn helps to make aperture dimen-
sion ratios greater than the unit.

ξ↓ =
c↓

f
(2.36)

Table 2.3 shows common wavelength values compared to typical dimensions
of the rectangular elements of an array.
Problems arise when the array is operating at low frequencies and relate to
the width of the elements because at low frequencies the ratio value almost
approaches value 1. Nevertheless, simulations agree fairly well with experi-
mental results (see e.g. § 2.5.1).
A final point to consider concerning the size of emission elements is when
IRM is applied to the radiation zone of the plate (see Fig. 5.1).
Ratio parameters should be kept ra,b > 1 and at the same time corresponding

21 http://resource.npl.co.uk/acoustics/techguides/absorption/
22The indicated values on Table 2.3 could be extended to the BW interval: [0.5−1.5]MHz

in case of necessity obtaining [0.69− 0.23] mm.
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element dimensions should not exceed the minimum Lamb wavelength in the
system so as not to introduce interference effects in the emission model of
the plate23. This point is further discussed in § 5.2.3.

§Sampling frequency effect

In order to implement the impulse response method equations in a computer
system the time traces must first be discretized by choosing an appropriate
value of the sampling frequency fs.
Although the sampling theorem suggest that fs ≥ 2fmax this may be inap-
propriate in this case because IRM is different in some aspects.
One way to work on of these aspects is to try to represent the maximum
frequency (minimum wavelength) of the system. This can be roughly done
by using 10 points per wavelength for example and then set fs = 10fmax.
Although ten points is generally enough for a sinusoidal wave representation,
the impulse response function h may need values higher than 10fmax ≤ fs to
give acceptable results24. In fact, even using GHz values for fs the “exact”
solution, it still may not theoretically be possible to obtain.
Nevertheless, as Piwakowski clearly pointed out in[209], bandlimited signals
fortunately no longer require this restraint.
Using then the following criteria of equation (2.37) for the sampling fre-
quency; this should be enough to ensure later calculations and comparisons
in the 0.5− 1.5 MHz band for the present system25.

fmax

fs
≤ 0.01 (2.37)

This will finally result in sampling frequencies operating within the range of
100 ≤ fs ≤ 500 MHz always depending on the complexity of the problem,
the degree of detail desired and the computing resources available.
A minimum test value assumed will be fs = 100 MHz26.

2.5 Validation of the LAMB IRM Routines

2.5.1 Simulations and experimental comparisons

In order to ensure the validity of acoustic data obtained from the developed
routines, the emission section of LAMB programme27 was checked against
simulations of the aforementioned acoustic packages and compared also with
experimental acoustic signals.

23This is when: {2a, 2b} ≤ ξLAMB
min /2.

24See for example Ref. [209] pp. 428.
25See Ref.[299].
26If more computing power is available a more reasonable value would be fs = 300 MHz.
27This module is built around the Field Impulse Response Software (FIRST v0.1).
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Figure 2.8: Non-attenuated impulse res-
ponse functions for a rectangular aperture
(width = 1 mm, height = 15 mm) at point
(5, 0, 35) mm. Sampling freq. fs = 100 MHz.

Figure 2.9: Attenuated impulse responses
for the rect. aperture of Fig. 2.8. FieldII and
DREAM are using a linear approximation
while LAMB is using the model of Eq. (2.34).

The first validation tests is for the impulse response function h(x, y, z, t) for a
rectangular aperture at a given point in space for the Field II and DREAM
toolboxes28 compared with that obtained from the FIRST software.
The emitter will be a rectangular radiator or a Single Ideal Element (SIE29)
of dimensions: 2a = 1 mm and 2b = 15 mm for width and height respectively
and the point in space30 will be P = (5, 0, 35) [mm] with a sampling frequency
of fs = 100 MHz.
The following Figures 2.8 and 2.9 show results for cases with and without
medium attenuation respectively. Close agreement is demonstrated in the
case of non-attenuating media, while a medium concurrence is obtained for
an attenuating medium.
This is mainly because of the different approaches used during implementa-
tion of the attenuation process. For the Field II & DREAM cases a linear
model was used (α = 2.628f−1.006) near the central frequency (f0 ∼= 0.8 MHz)
in the bandwidth, while for the LAMB toolbox the model of equation (2.34)
was employed31.
In order to achieve experimental comparisons of real ultrasonic signals with
LAMB software simulations it is first necessary to obtain the velocity surface
movement or velocity profile of the acoustic radiator in question.
However, since the use of a complete profile would be impractical because it
would involve an unnecessary discretization of the radiator surface into pis-
ton like sub-elements32, a single average signal obtained from the maximum
vibration points on the surface will be used for this purpose.

28The Ultrasim package could not be used in this test, because it does not allow the
impulse response function to be computed separately. However a group of comparisons
for ultrasonic simulated signals with the FIRST programme is shown in Appendix A.

29For other possible apertures see also Fig. 5.3 in § 5.2.1.
30The rectangular radiator is located in all the cases at: O = (0, 0, 0).
31This is the final attenuation model used in the toolbox for all the simulations.
32For an example of this process please see figures 5.3 and F.4 .
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Figure 2.10: Experimental setup for deter-
mination of the average velocity signal.

Figure 2.11: Obtained average velocity
signal.

For this test a single excited element of the emission array (element 16 of
1-32) was selected and subjected to a surface vibrometer scan where it was
excited with a pulsed signal. The setup for this measurement is observed
in Fig.2.10.
A laser Doppler vibrometer (Polytec OFV-3001) scanned the surface of the
element with a computer controlled stage capable of 10 um of minimum
step size. The element was excited using the pulsed signal from circuit of
Ref.[298], with an f0 ∼= 0.8 MHz, a signal bandwidth of BW ∼= 200 kHz and
DC level of 270 V .
The signals were captured in a 4 by 10 mm grid using 0.25 step sizes on both
axes and the vibrometer was adjusted for velocity signal extraction with a
constant kv = 0.125 (m/s)/V.
Only part of the measured velocity signals that contribute to the average
trace33 are plotted in Fig. 2.11 and the average trace is signalled by a dark
line. As can be appreciated the peak velocity is near ≈ 1 m/s.

An interesting phenomenon better appreciated in the full surface scans of
figures 2.12 and 2.13 is the way the emission area of the array element is in-
creased both in peak velocity amplitude and phase delay vibration profiles.
This effect is mainly due to the interaction between vibrating piezoelectric
bars placed underneath the air-adaptation layers which tend to extend and
apodise in amplitude the active surface of the element34.
The simulated acoustic signal can now be obtained for non-attenuating and
attenuating media respectively from the time derivative of the velocity signal
and equations (2.13b) or (2.33).

33The plotted signals belong to a ±10 % band around the maximum final average
velocity trace.

34For more details on this effect and information about the arrays see Refs.[178, 214].
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Figure 2.12: Laser scan of the central el-
ement of a concave array showing the maxi-
mum velocity signals of the surface.

Figure 2.13: Surface velocity signal de-
tected delays. Plotted delays were captured
detecting the zero cross points after signal
peak+.

This is shown in figure Figure 2.14 where the measured acoustic signal for
the same location in space is plotted.
The corresponding setup for this measurement is shown in Fig. 2.15, where
this time the laser was replaced by a needle type hydrophone (Onda PVDF-
Z44-1000 φ = 1 mm) attached to a two stage amplifier and then to an oscillo-
scope.
Because the SNR of detected signals was low the final traces were captured
100 times by the scope to get an average response35.
Although great care had been taken while measuring the signals a better a
estimate for acoustic pressures could not be achieved.
This is because of the lack of reliable calibration data in the air for the hy-
drophone and the inherent difficulty associated with taking measurements
in such a media.

Figure 2.14: Acoustic pressure signals for a
pulse type excitation: f0 ≈ 0.8 MHz; BW ≈
0.2 MHz; fs = 100 MHz.

Figure 2.15: Experimental setup for mea-
surement of the ultrasonic signals.

35More details in Ref. [214].
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Figure 2.16: Measured values of maxi-
mum acoustic pressure in an XY plane at
z = 35 mm, from the central excited element
of the concave array (ele.16@32).

Figure 2.17: Corresponding simulation
from the LAMB software for SNIE trans-
ducer of 2a = 1.6 mm and 2b = 15 mm.

The sensitivity of the hydrophone was assumed to be −255 dB re. 1 V/uPa.
which is about ∼= 180 nV/Pa36.
Figures 2.16 and 2.17 represent measured and simulated maximum acoustic
pressure distributions respectively on an XY plane for the central element of
a concave array with the same conditions as in Fig. 2.15.
Although some discrepancy in the signals can be observed, agreement in the
figures is still relatively high.
This discrepancy is due to the abovementioned effect of lateral extension of
the emitting surface partially caused by use of the SNIE37 technique during
simulations. Then the broader the emission surface the narrower the beam
emitted. On the other hand, the small longitudinal notch observed along Y
axis at the centre of Figure 2.17 is the result of a known problem not yet
corrected in the IR core of the FIRST software38.

2.5.2 Acoustic field simulations

This section is devoted to providing more examples39 of other possible sim-
ulations achieved with the LAMB software40. For this purpose the SIE
aperture (width = 1 mm; height = 15 mm) previously defined on page 32 will
be used in all further simulations of this Chapter since this ideal piston-like

36This figure is unfortunately 3dB below the declared datasheet lower limit of sensitiv-
ity for new HNZ1000 hydrophone type (−246 ± 6dB); since the old PVDF-Z44-1000 are
currently discontinued. This results in a discrepancy of about ≈ 1.4 times times below
the inferior limit.

37The use of a single rectangular piston-like element increased this effect but was par-
tially mitigated by the Single Non-ideal Element (SNIE) approach. More details of SNIE
can be found in section §?? and Ref.[215].

38This error is possibly located in calls on zone IV of transducer surface, see Fig. 2.3
on pp.25.

39For more details please see Appendix D which summarizes software capabilities.
40Here the acronyms LAMB and FIRST, are used interchangeably.
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radiator resembles the first natural approximation of a single element of an
air-coupled NDE array.
The reasons for the choice of baffle conditions for field simulations carried
out for this thesis namely the rigid baffle (RB), the soft baffle (SB) and the
free field (FF) are defined in the following.
The first type is, as its name implies, the rigid baffle condition and means
that the radiating aperture is solidly clamped to the baffle or frame that
supports and surrounds it.
When using this boundary condition the emitted fields from the apertures
tend to be less of a directive than those with the soft condition. The rigid
baffle condition can be directly derived from Rayleigh’s integral equation[55].
On the other hand the soft baffle setting tends to be a less restrictive clamp
so the Sommerfeld formulation must be employed[14] and the emitted beams
are little more directive. This added directivity is however gained at the cost
of losing some field amplitude.
Because of this effect the rigid baffle condition will be chosen for all acoustic
field simulations carried out in this thesis. Alternatively, the behaviour of
the free field condition is between that of the RB and the SB.
The effect of the three settings can be appreciated in Figures 2.18 and 2.19
which show simulated field contours for continuous wave (CW) excitation on
an XZ plane41.

Figure 2.18: Acoustic field contours for dif-
ferent baffle conditions for the SIE aperture
excited with a CW of 0.5 MHz.

Figure 2.19: Similar settings to Fig. 2.18
but at f = 1.5 MHz. For clarity the FF baffle
condition has been removed.

41In order to enhance the figures appearance only the right half part of the symmetric
diagrams are shown here.
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Figure 2.20: SIE’s peak+ acoustic pres-
sures at the main crossover planes. Excita-
tion is the same as in Fig. 2.11.

Figure 2.21: Side view, of peak acoustic
pressures in the XZ plane for the rectangular
SIE. The SIE drawing in the figures is merely
indicative.

In the same manner, Figure 2.20 shows from a slice-like view of two crossover
main acoustic planes: XZ and YZ for a pulsed excited SIE42. The beam is
very intensive near the transducer surface and narrow on the transversal XZ
plane where it rapidly loses amplitude as it moves away from the radiator.
This is more clearly appreciated in Fig. 2.21 and is an important issue for
air-coupled ultrasonics as pointed out at the end of § 2.4.4.
In the situation of several active elements i.e. when 1D concave array trans-
ducers of the system are used, the above Figures 2.22 and 2.23, show peak
pressure simulated fields on the main plane for an array of 16 SIE emitters
with and without43 beam focalization respectively.
Another possibility for visualization is a time instant photo of generated
acoustic fields. This is the case of Figure 2.24 which shows the acoustic wave
emitted for a SIE at t = 18 us distant from the transducer face.

Figure 2.22: Peak+ acoustic pressures in
XZ plane, for a focalised concave array trans-
ducer form by 16 SIE emitters (R ≈ 35 mm).

Figure 2.23: With the same conditions
as in Fig. 2.22, but for a defocalised array
(plane wavefront formation w/pulsed signal).

42For this figure and all the rest in this Chapter the IRM velocity excitation signal was
the same as in Fig. 2.11.

43With plane wavefront (PWF) generation.

38



When several elements are active forming a PWF as in plot 2.23, the emis-
sion of defocalized fields for steering angles θ = 0o and θ = 9o respectively of
a 16 element array are seen in Figures 2.25 and 2.26.
Notice the irregular saw-like amplitude distortion along the wavefront and
behind it. This effect is even stronger when the beam is steered in on direc-
tion, and in fact it is a type of behaviour which departs from the usually as-
sumed hypothesis of plane wavefront formation and excitation in NDE/NDT
systems44. For more details see Ref.[215].

Figure 2.24: Generated acoustic pressure wave by a single ideal radiator at t = 18 us.

Figure 2.25: Emitted pressure wavefront
by a 16 SIE array at t = 26 us (pulsed signal
@f0 = 0.8 MHz). Time&space discretization
params.: fs = 100 Ms/s, xs = 0.1 mm and
zs = 0.1 mm.

Figure 2.26: With same conditions as in
Fig. 2.21, but PWF steered at 9odeg to the
right.

44The ideal plane wavefront hypothesis, assumes uniform amplitude and phase across
any transversal plane to the wave propagation vector ~k = i kx + j ky + k kz.
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2.6 Conclusions

A new acoustic Field Impulse Response Software (FIRST) has been develo-
ped for the emission part of the LAMB toolbox.
The simulator engine is freely available and has an open source model based
on the GNU General Public License.
The IR core is based on the well known work of San Emeterio & Ullate[234]
for rectangular apertures with special attention on the inclusion of the air
attenuation effect by means of a non-linear frequency dependence model.
This attenuation model is based on the calculations of Refs.[23, 53, 79]; and
was validated thanks to web available data from the National Physical Lab-
oratory (NPL) of the United Kingdom.
Further verifications were also performed for simulated acoustic fields with
the aid of a hydrophone based computer controlled system.
Although simulation and experiment agree moderately well, there is still con-
cern about precise calibration of the system until a calibrated hydrophone
stage in air is made available.
Finally, an issue discussed later on in Appendix E is the degree of detail
desired and computer time required for the simulations, since an elevated
number of points (in space and time) can make simulations go too slow or
even become impossible to carry out45.

45A brief guide of advice about memory fragmentation problem is given in page 141.
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Chapter 3

The global matrix method

3.1 Introduction

In this chapter a modal theory for free wave propagation in a multilayered
media is developed. The theory is based on the Global Matrix Method
(GMM) whose roots rely on another matrix technique, the Transfer Matrix
Method (TMM).
These matrix methods are introduced to allow for calculation of the Lamb
wave dispersion relationships or frequency-wavenumber maps (f, k). These
relationships will served as input to the Time Harmonic Solution explained
later in Chapter 4 which is finally used to calculate the plate displacements
in the LAMB software.
The chapter begins with a brief historical introduction to matrix techniques
followed by an introduction to wave solution types and the classical theory
of bulk1 wave propagation in infinitely elastic solids.
Next the special case of wave propagation in a two-dimensional infinite space,
the so called plane strain propagation, is considered. In this case bulk waves
will be restricted to have displacements on a plane perpendicular to that
of the material layer and the interaction of bulk waves with an interface is
examined.
In general four plane waves will exist on each side of an interface: a longitu-
dinal and a shear wave which come from the top and a longitudinal and a
shear wave which leave the interface.
The analysis is next extended to a pile of isotropic layers or a multi-layered
system by considering a sequence of rigidly connected parallel plate inter-
faces of a given thickness. This system will give solutions only if all boundary
conditions are simultaneously satisfied at all interfaces.
For this purpose a known algorithm is employed[157] to solve the characte-
ristic function of the system for leaky2 Lamb waves and to obtain the final
Lamb wave frequency-wavenumber dispersion eigensolutions.
Finally, the chapter presents a series of simulations and experimental results
for dispersion curves in aluminium plates and conclusions are derived.

1Hereafter, the terms bulk wave and plane wave, will used interchangeably.
2This will to seek solutions with real frequency (f = <{w} /(2π)) and a complex

wavenumber (k = k′ + ik′′).
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3.2 Historical background

Perhaps the first theory of wave propagation in a multilayer system was Lord
Rayleigh’s work[217] on waves travelling on the surface of a free semi-infinite
half-space. Afterwards in 1924, a generalization of this problem for two ad-
joining half-spaces was presented by Stoneley[264] who analysed waves along
the boundary of two elastic solids3.
In 1917 Horace Lamb[143] added another interface to the problem with a
flat layer of material or plate. He resolved the plate equation in vacuum
for symmetric and anti-symmetric modes and these later became known as
Lamb waves.
A previous study by Love[156] also showed that added to these modes, in-
plane transversal shear modes could also exist in plates.
Later in the fifties a derivation of wave propagation into several layers for
seismological applications was presented by Thomson[270] and would later
be known as the current Transfer Matrix Method (TMM).
Here displacements and stresses of the last interface in a multilayered sys-
tem are expressed in terms of those of the first due to the propagation of
boundary conditions.
Haskell[94] later fixed a minor problem in Thomson’s formulation leaving this
technique currently known as the Thomson-Haskell formulation or propaga-
tor matrix method.
During the next two decades TMM received special attention to allow for the
inclusion of wave attenuation during propagation and also issues related with
the stability of solutions. The latter was mainly due to an ill-conditioning
problem arousing from the formulation of the matrix of the system caused
by the occurrence of very small numbers together with the existence of very
large numbers in the matrices (number differences < 10−26), plus limitations
with computing power at that time.
Then a different approach to the problem was presented by Knopoff[138]
namely the Global Matrix Method (GMM).
This technique summarized the equations of the system into a single matrix
for all layers. Modal solution pairs (f, k) of decaying wave modes could then
be obtained from this method without concerns about having to search for
algorithms to solve the problem[157] since minor variations in the search
strategy could lead to slow conversion or unstable solutions.
At the same time derivations of the GMM focuses attention on finding solu-
tions to point source excitations[229, 282, 296]. This subject is introduced
later in the next chapter with the Time Harmonic Solution (THS) since it
will be engine for wave propagation in the LAMB software.

3A Stoneley wave is a free wave whose energy may propagate close to the interface
between two solids without any attenuation. These types of waves appear only in materials
with very similar shear bulk velocities
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Further studies into matrix techniques evolved into several variations and
alternatives to the GMM[36, 111, 113, 115, 269, 278, 279, 280, 281], while
current areas of development include anisotropic viscoelastic stuck plates[186],
layered cylindrical geometries[200] and studies on composite materials[35, 40,
50, 116].
It is interesting to mention that alternative solutions to find the roots of
matrix systems are the spectral methods[28, 68]. These approaches are fast
in solving differential equations by numerical interpolation but at the cost of
inexact results. However this last point proved to be successfully overcome4.

3.3 General considerations about waves

This section briefly discuss the typical features of different types of wave
solutions in a perturbed media.
The idea is to introduce the subject in order to define the type of waves for
which solutions are going to be found later with The Global Matrix Method.
Here the attention is focussed on describing the distinctions among homoge-
neous and inhomogeneous type of waves and mainly in describing the differ-
ences between attenuated homogeneous and damped homogeneous waves.

As mentioned before a wave defined as perturbation in a medium that de-
pends both on time and space could be basically classified into: homogeneous
and inhomogeneous type of waves.
This division means that in an homogeneous wave the direction of propaga-
tion of the wave coincides with the direction of the wave attenuation. Then
the field is “homogeneous” in a plane orthogonal to this unique direction.
On the contrary, in an inhomogeneous wave two directions are required one
for the propagation (planes of constant phase) and one for the attenuation
(planes of constant amplitude). These two directions could of course have
any orientation in space depending on the media and the boundary condi-
tions.

Because this thesis is dedicated to isotropic media the subject relative to
inhomogeneous waves will not be discussed here5 then the discussion will
only be limited to the homogeneous phenomenon.

3.3.1 Time harmonic homogeneous plane waves

Consider the acoustic scalar wave equation:

∇2u =
1
c2
∂2u

∂t2
(3.1)

4See for example Refs.[7, 33].
5For an extended review on this topic the reader is referred to the book by M. Hayes[27]
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where c is a constant and u(x, t) the particle displacement field. Then solu-
tions for non-attenuated homogeneous harmonic waves will be of the form:

u = Re
{
Aei(k.x−wt)

}
(3.2)

where A = a eiφ is the constant complex amplitude, k the real wavenumber
vector pointing into the direction of the wave propagation and w the angular
frequency of the oscillations (a real parameter).
This type of solutions describes an infinite train of waves travelling without
attenuation in the direction k.
Introduction of equation (3.2) into Eq. (3.1) and not considering the trivial
case for A = 0 will lead us to obtain to the so called dispersion relation:

k.k =
w2

c2
(3.3)

where v = ±c = ±w/ |k| is the phase velocity of the waves and ξ = 2π/ |k| the
spatial wavelength of the oscillations.

3.3.2 Time harmonic attenuated and damped homogeneous
plane waves

Now consider the following scalar wave equation, where α is a positive cons-
tant:

∇2u =
1
c2

(
∂2u

∂t2
+ α

∂u

∂t
) (3.4)

Solutions for this equation are of two possible types. The first type is called
attenuated time harmonic homogeneous waves. These are solutions of the
form of Eq. (3.2) where in this case k = kn = kRe + ikIm is a wave bivector6

with real direction (nxn∗ = 0)7 and w the frequency of the oscillations (real).
With this parameters equation (3.2) becomes:

u = e−kImnxRe
{
Aei(kRen.x−wt)

}
(3.5)

which describes an infinite train of vibrations travelling in direction n with
an attenuation coefficient kIm and a phase velocity v = w/kRe.

The second type are of solutions that expression (3.4) accepts are named
damped homogeneous plane waves which again correspond to solutions of
the form (3.2) but this time with k = kn as a real vector and w = wRe + iwIm

as a complex number.

6The definition of a bivector is: if c and d are vectors, then A = c + i d is a bivector.
7Here the symbol ∗ denotes complex conjugation.
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With these changes solution (3.2) will be of the form:

u = e−wImtRe
{
Aei(kn.x−wRet)

}
(3.6)

This expression describes waves travelling in the direction n, with wave speed
wRe/k, and wavelength 2π/k. The important point now is that the field u(x, t)
is no longer periodic in time and have a time ‘damping’ factor equal to wIm.
In view of these considerations the searching algorithm of the Global Matrix
Method (see §3.6.2) will find solutions only for attenuated homogeneous plane
waves8 which propagate into the far field of the excitation region of the plate9.
This is because time dependent damped waves are usually present into the
near field of the plate excitation region.

3.4 Field equations for plane waves in isotropic solids

3.4.1 Plane waves in an infinite elastic medium

The equations for propagation of homogeneous plane waves in infinite isotropic10

elastic solids are presented here.
The usual approximation taken in acoustic literature[16] and the develop-
ment carried out by Lowe[158] is followed.
The usual approach is to take an infinitesimal cubic element of a medium
with density ρ and adopt a Cartesian system with medium particle displace-
ments ux, uy and uz in the directions x, y and z respectively.
Then applying Newton’s law of force the equilibrium condition of stress11

components σxx, σxy, ... requires that

∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
= ρ

∂2ux

∂t2

∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z
= ρ

∂2uy

∂t2

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
= ρ

∂2uz

∂t2
(3.7)

8Solutions with real frequency (wRe) and complex wavenumber (k = kRe + ikIm).
9This condition is fulfilled when the distance r from the source to the vibrating point

is: 10 ξLamb
max < r.

10The term isotropic, applies to the medium defined by two constants, the Lamé con-
stants: λ and µ in [Pa], of a maximum of 21 possible stiffness constants.

11Stress components σij follow the regular convention[16], where i ⇒
the ith. component of the force density, acting on the cubic element’s face + j.
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These conditions can be expressed in terms of displacements by means of
the following relationships[16]:

σxx = λ∆ + 2µεxx, σyy = λ∆ + 2µεyy, σzz = λ∆ + 2µεzz

σxy = µεxy, σyz = µεyz, σxz = µεxz

εxx =
∂ux

∂x
, εyy =

∂uy

∂y
, εzz =

∂uz

∂z

εxy =
∂ux

∂y
+
∂uy

∂x
, εyz =

∂uy

∂z
+
∂uz

∂y
, εxz =

∂ux

∂z
+
∂uz

∂x
(3.8)

where ∆ = εxx + εyy + εzz is the fractional change in volume or dilatation and
the Lamé’s constants λ and µ are defined in terms of material properties12

by

λ =
Eν

(1 + ν)(1− 2ν)
= c12

µ =
E

2(1 + ν)
= c44 (3.9)

Then substituting equations (3.8) into Eqs. (3.7) leads to13

ρ
∂2ux

∂t2
= (λ+ µ)

∂

∂x
(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
) + µ∇2ux

ρ
∂2uy

∂t2
= (λ+ µ)

∂

∂y
(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
) + µ∇2uy

ρ
∂2uz

∂t2
= (λ+ µ)

∂

∂z
(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
) + µ∇2uz (3.10)

which can be further reduced by expressing it in a vector form14

ρ
∂2u
∂t2

= (λ+ µ)∇(∇u) + µ∇2u (3.11)

This equation accepts simultaneously two kinds of solutions, one for longitu-
dinal waves and one for shear or transversal waves15 and can not be resolved
by direct integration.
However, a solution to this problem is to employ the Helmholtz decomposing

12The Young modulus E = σ3/ε3, and the Poisson’s ratio ν = −ε1/ε3 = −ε2/ε3 are
defined in terms of the abbreviated stress subscripts σI and strain components εJ [16].

13The definition of the Nabla operator is: ∇ , (i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

), and the Laplacian
operator is: ∇2 , ∂

∂x2 + ∂
∂y2 + ∂

∂z2 .
14Assuming that there are no body forces acting, the corresponding term on the right

hand side of Eq (3.11) is F = 0.
15Longitudinal waves (L), are waves in which the medium particle motion takes place

in the same direction as the wave propagation while for shear waves (S) the particle
movement is orthogonal to the propagation direction. Both are also known as bulk waves.
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method[133] and uncoupled the displacement field into its irrotational and
equivoluminal field parts respectively15.
With this method longitudinal (L) and transversal shear (S) waves are descri-
bed by φ and ψ, the scalar and vectorial field displacement potentials respec-
tively. Now the potential solution can be express in terms of the wavenumber
vector k = (kx, ky, kz), the angular frequency w and the coordinates16 by:

φ = A(L)e
i(k.x̄−wt)

|ψ| = A(S)e
i(k.x̄−wt) (3.12)

while the displacement fields are given by

u(L) = ∇φ

u(S) = ∇xψ (3.13)

Here, A(L) = ALe
iϕ and A(S) = ASe

iϕ represent the complex longitudinal and
transversal wave amplitudes17.
Because the medium is isotropic and solutions for leaky waves are required,
the directions of the wavenumber vector k coincides with the direction of
energy propagation. Then the wave phase velocity cph and wavelength ξ are
given by:

cph =
w

|k|
, ξ =

2π
|k|

(3.14)

By introducing equations (3.12) and (3.13) into (3.11) the expressions for
bulk wave phase velocities in terms of medium properties are finally achieved

cL =

√
λ+ 2µ
ρ

= α

cS =
√
µ

ρ
= β (3.15)

3.4.2 Superposition of plane waves in a layered 2D space

In order to continue with the analysis and at the same time keep solutions as
simple as possible without losing generality, the previous development will
be adapted to a 2D layered wave propagation space. This will be done by
assuming that the L± and S± plane waves are propagating on an XY plane,
see Fig. 3.1.
Here, downward travelling waves are denoted by (+) symbol, while upward
waves are denoted by the (−) symbol.

16The coordinates are represented here by the vector x̄ = (x, y, z).
17Their phase at t = 0 and x̄ = 0 is ϕ.
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With this assumption the particle movement is restricted to the plane Z = 0
which implies a plane strain condition making all ∂(...)

∂z = 0.
Then assuming this is the case for the longitudinal and transversal waves,
the displacements from Eqs. (3.13) and (3.12) can be expressed as:

uL = ∇φ =


kx

ky

0

A(L)e
i(k.u−wt)

uS = ∇xψ =


∂
∂x
∂
∂y
∂
∂z

 x


0
0
ψz

 =


kx

−ky

0

A(S)e
i(k.u−wt) (3.16)

It is a well known fact in acoustics that depending on boundary conditions
between two media18, e.g. at the interface between two solid layers, the in-
cidence of a longitudinal wave will produce two transmitted L and S waves
and two reflected L and S waves (see Fig. 3.1).
Where the relationship between the incidence, reflected and transmitted an-
gles with the wave velocities follows the generalized Snell law,

sin θLi

αI
=

sin θSr

βI
=

sin θLt

αII
=

sin θSt

βII
(3.17)

in particular from figure 3.2 it is observed that

sin θLi =
αI

cph
=

kx

kLi
=
ξLi

ξx
(3.18)

where cph, kx are respectively the phase velocity and wavenumber along the
X axis of induced modal waves19.
While ξLi and ξx are the corresponding incidence and induced wavelengths.
Now displacements and stresses for L± and S± waves can be found by in-
troducing equations (3.16) into Eqs. (3.8).
For example for longitudinal waves the expression of these quantities will be:

18In the general case of two solids[133] boundary condition requires that continuous
components are: 1) normal component of longitudinal stress, 2) transverse component of
shear stress and 3) the normal and transverse components of displacements.

19The wavenumber on the Y axis can be derived from k2 = k2
x + k2

y as:

ky(L±) = ±
√

w2/α2 − k2
x ky(S±) = ±

√
w2/β2 − k2

x
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Figure 3.1: Reflection and refraction
phenomena in the boundary of two
solid media.

Figure 3.2: Phase velocity relationship
for bulk L-waves.

ux = kxA(L±)e
i(kxx−wt)e±i

√
w2/α2−k2

xy

uy =
√
w2/α2 − k2

xA(L±)e
i(kxx−wt)e±i

√
w2/α2−k2

xy

σxx = (w2 − 2β2w2/α2 + 2β2k2
x).iρA(L±)e

i(kxx−wt)e±i
√

w2/α2−k2
xy

σyy = (w2 − 2β2k2
x).iρA(L±)e

i(kxx−wt)e±i
√

w2/α2−k2
xy

σzz = (1− 2β2/α2).iw2ρA(L±)e
i(kxx−wt)e±i

√
w2/α2−k2

xy

σxy = 2β2kx

√
w2/α2 − k2

x.iρA(L±)e
i(kxx−wt)e±i

√
w2/α2−k2

xy

σxz = σyz = 0 (3.19)

While for transversal waves they will be:

ux =
√
w2/β2 − k2

x.A(S±)e
i(kxx−wt)e±i

√
w2/β2−k2

xy

uy = −kxA(S±)e
i(kxx−wt)e±i

√
w2/β2−k2

xy

σxx = 2β2kx

√
w2/β2 − k2

x.iρA(S±)e
i(kxx−wt)e±i

√
w2/β2−k2

xy

σyy = −σxx

σxy = (w2 − 2β2k2
x).iρA(S±)e

i(kxx−wt)e±i
√

w2/β2−k2
xy

σxz = σyz = σzz = 0 (3.20)

The total particle displacements and stress quantities can be determined now
by adding the above contributions for L and S waves and be resumed into a
single matrix [D] called the field matrix:
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
ux

uy

σyy

σxy

 =


kxgα kx/gα Cβgβ −Cβ/gβ

Cαgα −Cα/gα −kx/gβ −kx/gβ

iρBgα iρB/gα −2iρkxβ2Cβgβ 2iρkxβ2Cβ/gβ

2iρkxβ2Cαgα −2iρkxβ2Cα/gα iρBgβ iρB/gβ

 .

︸ ︷︷ ︸
[D]


A(L+)

A(L−)

A(S+)

A(S−)


(3.21)

Where the following appropriate replacements were previously introduce into
the [D] matrix:

Cα =
√
w2/α2 − k2

x gα = ei
√

w2/α2−k2
x.xy

Cβ =
√
w2/β2 − k2

x gβ = ei
√

w2/β2−k2
x.xy

B = w2 − 2β2k2
x F = ei(kxx−wt) (3.22)

3.5 The transfer matrix method

Since the model of wave propagation in a multilayered media involves the su-
perposition of longitudinal and transversal bulk waves into several layers the
transfer matrix method sums up this interaction by imposing corresponding
boundary conditions on all layers in the system.
This is done by relating boundary conditions of the first interface to those
of the last interface in the system.
For the case of a 3-layer system the corresponding nomenclature and also
the origins for all the layers20 are observed in figure 3.3.
Then if we assume that displacements and stresses are known at the first
interface (i1), the amplitude of the waves at the top of layer (l2) could be
found by inverting the corresponding [D]l2,top matrix to get

A(L+)

A(L−)

A(S+)

A(S−)


l2

= [D]−1
l2,top


ux

uy

σyy

σxy


l2,top

(3.23)

Now, knowing the wave amplitudes in l2, the field parameters can be com-
puted at interface (i2) by introducing these values into the corresponding
relationship (3.21)

ux

uy

σyy

σxy


l2,bottom

= [D]l2,bottom.[D]−1
l2,top


ux

uy

σyy

σxy


l2,top

(3.24)
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Figure 3.3: A three layer system in the
Transfer Matrix Method (TMM).

Figure 3.4: A three layer system in the
Global Matrix Method (GMM).

where the layer matrix [L] shall be defined as:

[L]l2 = [D]l2,bottom.[D]−1
l2,top (3.25)

As mentioned previously boundary conditions requires that displacement
and stress must be continuous through an interface of two attached layers,
which in turn requires (see Fig. 3.4) that:

ux

uy

σyy

σxy


l3,top

=


ux

uy

σyy

σxy


l2,bottom

= [L]l2


ux

uy

σyy

σxy


l2,top

(3.26)

This process can be continued further for a system with more layers arriving
at the following relationships:

ux

uy

σyy

σxy


ln,top

= [S]


ux

uy

σyy

σxy


l2,top

(3.27)

with [S] being the final system matrix defined by

[S] = [L]l2.[L]l3...[L]l(n−1) (3.28)

3.5.1 True mode solutions and response solutions

The idea behind true mode solutions (or free modes) and response solutions
is that in the first case the system is in vacuum or at least with no wave

20The origins of the layers are located at the top interfaces except for the 1st. half-space,
in which case this coincides with the origin of layer 2.
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excitation and no energy leakage outside it. Under these circumstances it is
possible to solve the system equations to include free modes that propagate
along the layered plates.
This is done by solving equations (3.27) with null stresses,

ux

uy

0
0


ln,top

= [S]


ux

uy

0
0


l2,top

(3.29)

which can be expand to{
0
0

}
=
[
S31 S32

S41 S42

]{
ux

uy

}
l2,top

(3.30)

Then finding the roots (f, k) of the determinant of the system d = S31.S42 −
S32.S41 = 0, the problem is resolved.
The other alternative for response solutions requires that the system be
excited by (L) and/or (S) plane waves and the equations be resolved to
determine the remaining wave amplitudes21.
The system is then expressed in terms of wave amplitudes. For example for
an n-layer system embedded in a fluid and excited from the top by a single
longitudinal wave with AL+ = 1 this will be:

AL+

0
0
0


ln

= [D]−1
ln,top[S][D]l1,top


1

AL−
0
0


l1

(3.31)

However, since the present work is based on the point source excitation model
and the air-influence is assumed to be rather similar to vacuum conditions for
a metal plate22, we will use the free mode solutions (f, k) as an approximation
to the solution for the system (see § 4.3.2).

3.5.2 Addition of material attenuation and leaky waves effect

The addition of material damping can be introduced by assuming a Kelvin-
Voigt viscoelastic model[36, 113, 157].
This model basically consists in a velocity-dependent damping factor (or
dashpot effect) added to the equations. While the leakage effect can be

21Once these are obtained, the reflection/transmission coefficients as well displacement
and stress fields can be derived from them.

22The mismatch in acoustic impedances for air and common metals is of the order of
≈ 4.104 for Al, and > 1.105 for Fe & Cu.
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included by converting the wavenumber into a complex number23.
Both of these approaches can be applied replacing the Lamé constants by
the following operators24

λatte = λ+
λ∗

w

∂

∂t
, µatte = µ+

µ∗

w

∂

∂t
(3.32)

Then following a similar procedure to the one mentioned above for Eqs. (3.7-
3.10) a similar expression to Eq. (3.11) is arrived at

ρ
∂2u
∂t2

= (λ+ µ)∇(∇.u) + µ∇2u + (
λ∗ + µ∗

w
)∇(∇.∂u

∂t
) + (

µ∗

w
)∇2∂u

∂t
(3.33)

This expression accepts similar solutions to those of Eq. (3.12) but this time
with the wavenumber vector k being complex. These are25:

φ, ψ = A(L,S)e
i(kreal.x̄−wt)e−kimag.x̄ (3.34)

Appropriate introductions of these equations into (3.33), lead to similar ex-
pressions of bulk wave velocities in terms of complex Lamé parameters26.

c∗L =

√
λ+ 2µ− i(λ∗ + 2µ∗)

ρ
= α∗

c∗S =

√
µ− iµ∗

ρ
= β∗ (3.35)

3.6 The global matrix method

3.6.1 Method Equations

The main problem with the transfer matrix method (TMM) is that during
the process of expressing displacement and stress of one interface in terms
of the next, mixtures of very large and very small numbers27 appear in co-
efficients of the layer matrix [L] leading to an ill-conditioning problem28.

23In acoustics normally the preferred choice is a complex wavenumber with a real fre-
quency. While in seismological applications the election is more flexible depending on
current work. For more details see § 3.3.1.

24An ∗ above a variable indicates a complex value, while the omission corresponds to a
real quantity.

25Coordinates are represented by the vector x̄ = (x, y, z).
26A similar development could be done for the transfer matrix method without making

any changes to the theory except that this time boundary conditions require at any in-
terface that both real and imaginary parts of plate projected wavenumbers are matched
(component kx = kx,Re + ikx,Im).

27This problem is also know as “the large fd problem”.
28In ill-conditioning problems the addition of small perturbation to the system matrix

could cause results to change severely leading to wrong solutions. A measure of the
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To overcome this problem Knopoff[138] proposed a different approach in
which the system matrix is assembled directly in one step leading to a sys-
tem of 4(n − 1) equations and arriving at the solution for the whole system
simultaneously.
An improvement to the method was added later[204] by changing the origin
of L and S waves and replacing them with those of figure 3.4 (see page 51).
Here downward travelling waves (L+,S+) originate at the top of layers and
upward travelling waves (L−,S−) at the bottom.
Then analysing interface (i1) and applying continuity boundary conditions
for displacements and stresses at layers (l1) and (l2) using Eq. (3.21) the
following expression is obtained

[D]l1,bottom


A(L+)

A(L−)

A(S+)

A(S−)


l1

= [D]l2,top


A(L+)

A(L−)

A(S+)

A(S−)


l2

(3.36)

This can be resumed in the following form

[D1b]− [D2t]



A(L+)1

A(L−)1

A(S+)1

A(S−)1

A(L+)2

A(L−)2

A(S+)2

A(S−)2


l2

=
{
0
}

(3.37)

where

[Dt] =


kx kxgα Cβ −Cβgβ

Cα −Cαgα −kx −kxgβ

iρB iρBgα −2iρkxβ2Cβ 2iρkxβ2Cβgβ

2iρkxβ2Cα −2iρkxβ2Cαgα iρB iρBgβ



[Db] =


kxgα kx Cβgβ −Cβ

Cαgα −Cα −kxgβ −kx

iρBgα iρB −2iρkxβ2Cβgβ 2iρkxβ2Cβ

2iρkxβ2Cαgα −2iρkxβ2Cα iρBgβ iρB

 (3.38)

As seen this process can be continued for the rest of (n − 1) interfaces and
lead to a system matrix of 4(n− 1) equations and 4n unknowns.

ill-condition of a problem is ‖A‖
∥∥A−1

∥∥, called the condition number of matrix A with
respect to the inversion. This determines the loss in precision due to round off errors.
The exponent of log10(‖A‖

∥∥A−1
∥∥) is an indication of the number of decimal places that

a computer can lose during the round off process.
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In the example of the three layer system of figure 3.4 this process will be
express by:

[
[D1b] −[D2t]

[D2b] −[D3t]

]
.


{A1}
{A2}
{A3}

 =
{
0
}

(3.39)

where the vectors {Ai} condense the layer li wave amplitudes [L+,L−,S+,S−].
This system of Eq. (3.39) as it stands can not be resolved because it has
4 more unknown than equations29, then 4 wave amplitudes must first be
defined before proceeding with the solution. Thus the idea is to solve the
system via response solutions or modal solutions.
Response solutions, as previously mentioned in § 3.5.1, require previously
define the excitations to the layer system and then the separation of unknown
values to solve the equations.
Alternatively modal solutions require the determination of the roots (f, k) of
the characteristic equation of the system i.e. |S| = 0.
For example introducing n = 3 into Eq. (3.31) for a layered system in a fluid
excited by a single unitary amplitude longitudinal wave we have30

[
[D−

1b] −[D2t]
[D2b] −[D+

3t]

]
.


{A−1 }
{A2}
{A+

3 }

 =

[−D+
1b]

[D−
3t]

 .

{A+

1 }
{0}
{A−3 }


(3.40)

where the symbols (±) indicate downward+ and upward− travelling L/S waves,
and the vectors {A±} and matrices [D±] respective partitions are defined by:

{A+} =
{
A(L+)

A(S+)

}
{A−} =

{
A(L−)

A(S−)

}

[D+] =


D11 D13

D21 D23

D31 D33

D41 D43

 [D−] =


D12 D14

D22 D24

D32 D34

D42 D44

 (3.41)

For modal solutions with no excitation the equation to resolve is |S| = 0
with:

[S] =
[
[D−

1b] −[D2t]
[D2b] −[D+

3t]

]
(3.42)

29In general there were always be four more unknowns than equations. In the above
example for n = 3 layers, there are 4x3 wave amplitudes and 4x2 wave equations (Di,t/b

is 4-by-4 matrix).
30In this case wave excitations are: A+

1 = [1 0] and A−
3 = [0 0].
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3.6.2 The searching algorithm

Because modal solutions are used as an approximation to dispersion rela-
tionships in the next chapter, the search algorithm will look for the (f, k)
pairs that resolve the characteristic equation |S| = 0, with real frequency
f = <{w} /(2π) and complex wavenumber (k = kRe + ikIm).
However finding the roots of such an equation for an n-layer system is not an
easy task31. This is especially true when material damping is used and/or
when roots are in close proximity e.g. near cross points of Lamb dispersion
curves.
Nevertheless robust search algorithms based on a two stage search strategy
have been reported in literature[157]. This method had been adapted and
added to the LAMB software in order to obtain the (f, k) dispersion rela-
tionships and is briefly described here32.

The algorithm starts looking for the initial roots of the dispersion traces by
first making frequency and phase velocity sweeps on the (f, k) map. These
are represented by the straight lines of figure 3.5 in which the other corres-
ponding variable is maintained fixed while the search is performed.
Once the starting points of the dispersion curves are located the 2nd. stage
consists in steadily increasing the wavenumber in fixed steps ∆k while a fre-
quency search is performed.
Then after five new solution points are found33 the construction of the curves
switch to an extrapolation scheme seeded by the previous data (see Fig. 3.6)).
This scheme continues until all the detected Lamb mode curves are plotted.

Figure 3.5: Sweeps in frequency and
phase velocity of the first stage of the
search algorithm.

Figure 3.6: Extrapolation scheme of
the dispersion curve of the algorithm.

31To visualize the process, it would be like finding the head of a pin in a kilometre high
funnel with a mouth of hundreds of meters!

32A custom version of this algorithm is the root search engine of the commercial software
Disperse[198].

33A solution is considered found when the min{|S|} is encountered.
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3.7 Dispersion curves: measurement and simulations

This section presents comparison tests between experimental and GMM sim-
ulated results for the dispersion curves for 3-layer systems34: air-Alplate-air.
These are used to validate the GMM code implemented in the LAMB soft-
ware. However the programme is capable of computing the dispersion data
for other layered systems too35.

The experimental data presented here were collected from two tests in alu-
minium plates by use of a laser scan method combined with a two-dimensional
FFT detection technique[9, 101, 145]. This arrangement permits the identi-
fication of propagating Lamb wave modes in an excited laminate.
The setup for the measurements is observed in figure 3.7, where a laser vi-
brometer mounted on computer controlled stage scans a line (xdist = 30 mm)
on the surface of an aluminium plate.
For both measurements the spacing between sampling points was adjusted
to ∆x = 0.25 mm, while the laser vibrometer was set to measure the normal
velocity of the plate with a constant of klaser = 25 (mm/s)/V.

Example of laser detected velocity signals are presented in figures 3.8 and 3.9,
for d = 1.0mm and d = 0.8mm aluminium plates respectively. The signals were
previously averaged 200 times by the oscilloscope before they were stored.
After that the data was processed by means of a two-dimensional Fourier
transform F {u(t, x)} in order to extract the dispersion spectrum and compare
with the GMM simulations.

Figure 3.7: Dispersion curves measurement setup: klaser = 25 mm/s/V, fTC
0 ≈

1 MHz, BWTC ≈ 0.35 MHz, xstep = 0.25 mm, xdist. = 30 mm, fs2 = 1/0.25 mm.

34The majority of measurements and simulations where performed on aluminium plates
(Alplate) of few millimetre of width since this is a common test bench material encountered
in the NDT area.

35See Appendix B for more details.
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Figure 3.8: Measured pulsed signal in Al@1 mm plate, fs = 50 MHz,Vout =
V1@240Vpp.

Figure 3.9: Measured burst@20 cycles signal in Al@0.8 mm plate, fs =
10 MHz, Vout = V2@10Vpp + x10 Amp.

The |F(w, k)| of the processed experimental data are depicted36 in figures 3.10
and 3.11 for the mentioned plates, together with the superimposed curves
from the GMM simulations37.
A good match is clearly observed between the experimental results and the
GMM simulations for the detected A0 mode, since the others modes usually
have lower displacements amplitudes and are thus more difficult to detect.

36The dispersion spectrum has been transformed from (w, k) to → (f, cph).
37A similar example to figure 3.11 for the determination of Lamb wave propagating

modes but this time using a 48 element plane array for the detection instead of a laser
vibrometer is shown in figures B.8 and B.9.
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Figure 3.10: Comparison of laser vibrometer detected dispersion curve map
in an aluminium plate (d = 1 mm) and the superimposed GMM simulations.
Mode: A0, unfiltered pulsed signal,fTC

0 ≈ 1 MHz,fs = 50 MHz,fs2 = 1/0.25 mm.

Figure 3.11: Comparison of laser vibrometer detected dispersion map in
an aluminium plate (d = 0.8 mm) and the superimposed GMM simulations.
Mode:A0, filtered sin.burst 20cycles,fTC

0 ≈ 1MHz,fs = 10MHz,fs2 = 1/0.25mm.
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Simulation results for dispersion curves up to 20 MHz for a 0.5 mm width
aluminium plate in air are depicted in figures 3.12 and 3.13.
As can be appreciated the attenuation+leakage part of the wavenumber is
very small compared to the real part38 This means that Lamb waves will
travel along the plate without almost no attenuation. This is a common
phenomenon in metals but not for example in plastic materials[25, 45].
An attempt was made to compute response solutions for equation (3.31) for
a two layer system e.g. air-Ti excited by a single longitudinal incoming wave
AL+ = 1, but with inconclusive results. These are presented in figures 3.14
and 3.15. The main reason to this unsolved problem is probably related to
the solution of the equations of the system which at present is not converted
to manage the quantity of digits required for matrix inversions39.

Figure 3.12: Group velocity dispersion
curves for a three layers system: air-
Al@0.5 mm-air.

Figure 3.13: Imaginary part of
wavenumber k (attenuation+leakage),
for the same system.

Figure 3.14: Normal displacement for
a 2-layer system: Air-Ti@0.5 mm.

Figure 3.15: Normal stress σyy for the
same Air-Ti@0.5 mm system.

38With cph = w/<{k}, e.g.: 0.1 ≤ f ≤ 20 MHz & cph ≥ 600 m/s ⇒ 1000 ≤ k < 45000.
39A solution to this issue partially tested by the author in GMM routines was the use of

a freely available package called mp or Multiple Precision toolbox for Matlab. This toolbox
defines a new mp class allowing for computations with arbitrary precision quantities.
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3.8 Conclusions

The Transfer Matrix Method (TMM) and its improved technique the Global
Matrix Method (GMM), have been introduced and presented in this chapter
showing how these matrix techniques allow computations of field parameters
in multilayered media systems.
A set of corresponding Matlab routines have been developed and added to
the LAMB programme in order to obtain the dispersion relationship pairs
(f, k) required by the propagation module based on the Time Harmonic So-
lution introduced in the next chapter.
Measurement results for laser detected dispersion curves in aluminium plates
were presented and compared with GMM predictions from developed rou-
tines.
The single detected A0 Lamb mode demonstrated a relatively high level of
agreement with the GMM simulations showing the possibilities of this tech-
nique.
However in efforts made to compute response solutions for the single ex-
cited wave in multilayered systems the results obtained were inconclusive.
This might be resolved by carrying out a full revision and translation of the
LAMB-GMM code to the Multiple Precision (mp) arithmetic.
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Chapter 4

The time harmonic solution

4.1 Introduction

This chapter introduces the equations to solve the problem of a infinite ideal
isotropic layer excited by a time harmonic signal exerting pressure over a
circular region. The so called time harmonic solution or THS method which
is used as the main model in the propagation module of the LAMB pro-
gramme.
The chapter begins with a short historical background followed by a presen-
tation of the approximate solution developed by Ditri et al.[57, 201] and the
author’s proposed generalization for the inclusion of 2D arbitrary excitation
regions using broadband signals.
Then a comparison with two similar approaches to the point excitation pro-
blem solution is presented by the introduction of only final calculating ex-
pressions. To complement this point a group of trial simulations using the
two alternative THS modelling cores is also presented.
Additional results obtained with the finite element method (FEM) are intro-
duced for validation of the analytical LAMB propagation model.
Finally, experimental tests with real impacted aluminium plates are also pre-
sented for further confirmation of the models, while conclusions are outlined
at the end.

4.2 Historical background

In elasticity theory there is a long tradition of study for the problem of wave
propagation in an infinite elastic isotropic plates.
It was studied for the first time in 1889 by Lord Rayleigh[218] and then
mainly by H. Lamb[143] who established the dispersive frequency relations
of waves that nowadays bear his name i.e. Lamb waves1.

1As well as Rayleigh, Lamb also investigated (1904) the surface vibrations in a half
space produced by concentrated harmonic and impulsive loads and is now known as the
Lamb problem[142].
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Since then there have been several contributions most notably the plate
approximate theories by Mindlin[174]; dispersion relationships by Viktorov[276,
277]; and transient solutions by Miklowitz[173].
These last three were mainly driven by the application of integral transform
techniques[1] and the evaluation of results by residue calculus[172] and the
method of stationary phase2 or the method of generalized rays3.
In the case of localised forces in a half space an alternative and more effi-
cient solution of integrals for transient solutions was proposed by A.T. de
Hoop[109] who introduced the Cagniard-de Hoop method4 in 1960.
Expansion of the vibration field in normal modes[15, 16, 17] was also an
approach developed and used in the literature[126, 150, 167].
This technique is applicable when the perturbations are small since it allows
for expansion of the solution in a similar manner to Fourier’s analysis in
terms of a sum of orthogonal modes or eigenvalues of the system.
Apart from this brief introduction there is a vast amount of literature related
to the subject5. Excellent reviews on the field can be found in Refs.[19, 47,
172].

4.3 The time harmonic solution

4.3.1 Formulation of the problem

This section presents the equations for the solution of the problem of an
ideal infinite isotropic layer excited by a time harmonic signal which exerts
pressure over a circular defined region. This is the so called time harmonic
solution (THS) used in the propagation module of the LAMB toolbox.
THS uses the work by Ditri et al.[57] using integral transformation methods
to obtain displacement solutions for Lamb waves.
The theory is approximate in the sense that it only takes into account con-
tributions from simple poles to the solution.
Then contributions from other possible “multiple” poles that usually occur
in the vicinity of cut-off frequencies (k → 0) are avoided[274].

2This method (essentially for far field approximations) is based on the fact that when
R is a long distance (R >> d or t >> d/Cph) the variation of the integrand with k is
dominated by rapid oscillations of the Bessel and cosine terms. However if the wavenumber
is fixed (k = k0), the variations of these functions are aligned in phases and then time
displacements are dominated mainly by a sum of simple harmonic functions.

3The theory of generalized rays[43] although being an exact method, becomes particu-
larly cumbersome when the source-receiver distance is greater than a 10 plate thickness
because of the large number of generalized ray integrals that must be calculated.

4This technique deforms the path of integration on the complex plane to solve the
inverse Laplace transforms.

5This not only includes the point-source problem for isotropic plates but also
anisotropic and multilayer laminates.
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Figure 4.1: Chosen geometry for THS
problem in the infinite isotropic plate.

Figure 4.2: 2D view of THS geometry
for the ideal plate.

This element together with the fact that only solutions for leaky Lamb waves
in the (w, k) dispersion map were found in Chapter 3 proves in essence that
the model is valid only in far field approximation, away from the excitation
source.
This last statement applies to distances e.g. r > 10 ξmax, where ξmax is the
maximum Lamb wavelength present in the signal bandwidth and r is the
distance from the observation point to the source on the surface of the plate.
The development begins by considering again an infinite ideal isotropic medium6

for vibrations as viewed in Chapter 3 equation (3.11)

ρ
∂2u
∂t2

= (λ+ µ)∇(∇u) + µ∇2u (4.1)

Because the symmetry of excitation is circular we define the cylindrical co-
ordinates for problem resolution, in the following figures 4.1 and 4.2.
As seen from the symmetry any transversal angular stress σzθ is null.
Then applying boundary conditions for the rest of stress components we have

σzz|(z=d/2) =

{
f(r)e−iwt 0 < r ≤ a

0 r > a

σzz|(z=−d/2) = 0

σrz|(z=d/2) =

{
g(r)e−iwt 0 < r ≤ a

0 r > a

σrz|(z=−d/2) = 0 (4.2)

Where f(r) and g(r) are respectively the normal and transversal components
of the stress applied to the laminate surface7.

6This is also known as the elastodynamic equation. Again as mentioned in page 46,
body forces are considered null.

7The general case with normal (σzz) and radio-transversal (σrz) stress components is
obtained although only the normal components of the stress σzz are actually used.
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4.3.2 Derivation of the solution

§Uncoupling the displacement equation

In the case of cylindrical coordinates Eq. (4.1) must first be uncoupled using
the Helmholtz decomposition method as in the previous chapter where plate
displacements were presented by

u = ∇φ+ ∇xψ , ∇ψ = 0 (4.3)

where φ and ψ are the scalar and vectorial displacement potentials respec-
tively. Then incorporating the decomposition equations in (4.3) into the
equations in (4.1) leads to the following relationships

∇
[
(λ+ µ)∇2φ− ρ

∂2φ

∂t2

]
= 0

∇x

[
−µ∇x(∇xψ)− ρ

∂2ψ

∂t2

]
= 0 (4.4)

Using the vectorial identity ∇x∇xψ = ∇2ψ+ ∇(∇ψ) equations (4.4) can be
re-expressed in the following more appropriate ways:

∇2φ =
1
α2

∂2φ

∂t2
, α =

√
λ+ 2µ
ρ

∇2ψ =
1
β2

∂2ψ

∂t2
, β =

√
µ

ρ
(4.5)

where again α and β represent the longitudinal and transversal bulk wave
velocities in the isotropic laminate.
Because of the axial symmetry the field component of displacement uθ will
be defined as zero and then corresponding components of vector potential
ψr and ψθ will be zero. Then ψ vector potential can be further reduced to a
scalar potential ψ = ψz.
Assuming then a time harmonic dependence for the potentials [g(e−iwt)] equa-
tions (4.5) can be transform finally into

∂2φ

∂r2
+

1
r

∂φ

∂r
+
∂2φ

∂z2
+
w2

α2
φ = 0

∂2ψ

∂r2
+

1
r

∂ψ

∂r
− ψ

r2
+
∂2ψ

∂z2
+
w2

β2
ψ = 0 (4.6)

§Applying the Hankel integral transform

The idea is to resolve the above equations (4.6) applying the boundary con-
ditions (4.2). For this purpose and because of symmetry we will employ the
Hankel integral transform to resolve these equations via residue calculus.
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The Hankel transforms of order n of an arbitrary function h(r) are defined
respectively by

Hn(k) = Hn {h(r)} =
∫ ∞

0
rh(r)Jn(kr)dr

h(r) = H−1
n {Hn} =

∫ ∞

0
kHn(k)Jn(kr)dk (4.7)

where the symbols Hn and H−1
n represent the direct and inverse Hankel trans-

form operators and Jn the 1st. kind of Bessel function of order n.
Then, applying the Hankel transform and its properties8 to equations (4.6)
they are re-express into the transform domain by9

d2Φ0

dz2
+ (k2

L − k)Φ0 = 0 , kL =
w

α
d2Ψ1

dz2
+ (k2

T − k)Ψ1 = 0 , kT =
w

β

(4.8)

where Φ0 and Ψ1 are the zero and 1st. order transform functions of φ and ψ
respectively. These equations have the following general solutions

Φ0(k, z) = A(k) cos(ktlz) +B(k) sin(ktlz) , k2
tl = (w/α)2 − k2

Ψ1(k, z) = C(k) cos(ktsz) +D(k) sin(ktsz) , k2
ts = (w/β)2 − k2

(4.9)

where A(k), B(k), C(k) and D(k) are the amplitudes of the wave functions.

§Satisfying the boundary conditions

Next, boundary conditions from equation (4.2) will be applied to equa-
tions (4.9), in order to find the unknown wave amplitudes.
Since boundary conditions are express in terms of stresses they must first be
expressed in terms of the Helmholtz potentials.

This can be done by using Eq. (4.3) and the following relationship: σ =
λI∇.u+ µ(∇u+ u∇). Then we get:

σzz(r, z) = −λk2
Lφ+ 2µ

∂2φ

∂z2
+

2µ
r

∂

∂r

(
r
dψ
dz

)
σrz(r, z) = −µ

{
2
∂2φ

∂r∂z
+
∂2ψ

∂r2
+

1
r

∂ψ

∂r
− ψ

r
− ∂2ψ

∂z2

}
(4.10)

8Using integration by parts it can be shown that:
H0

{
d2g(r)

dr2 + 1
r

dg(r)
dr

}
= −k2G0(r) and H1

{
d2g(r)

dr2 + 1
r

dg(r)
dr

− g(r)

r2

}
= −k2G1(r)

9As mentioned before kL,T represent wavenumbers for longitudinal and vertical-
transversal waves in the material and k the equation wavenumber.

67



Now on applying the direct Hankel integral to these equations we get the
transform expressions of stresses

Σ0
zz(k, z) = H0 {σzz} = −λk2

LΦ0 + 2µ
d2Φ0

dz2
+ 2µk

dΨ1

dz

Σ1
rz(k, z) = H1 {σrz} = −µ

{
2k

dΦ0

dz
+ k2Ψ1 +

d2Ψ1

dz2

}
(4.11)

Next, by application of the same operations this time to boundary condi-
tions (4.2) we obtain the following relationships:

Σ0
zz(k, d/2) = H0 {f(r)} = F 0(k)

Σ0
zz(k,−d/2) = 0

Σ1
rz(k, d/2) = H1 {g(r)} = G1(k)

Σ1
rz(k,−d/2) = 0 (4.12)

Incorporating expressions of transform potentials (4.9) into Eq. (4.11) and
applying boundary conditions (4.12) leads to the following system of linear
equations for the four unknown wave amplitudes A(k), B(k), C(k) and D(k)

[S]


A
B
C
D

 =


F 0

0
G1

0

 (4.13)

with

[S] =


−µ(k2

ts − k2) cos(ktld/2) −µ(k2
ts − k2) sin(ktld/2) −2µkkts sin(ktsd/2) 2µkkts cos(ktsd/2)

−µ(k2
ts − k2) cos(ktld/2) µ(k2

ts − k2) sin(ktld/2) 2µkkts sin(ktsd/2) 2µkkts cos(ktsd/2)
2µkktl sin(ktld/2) −2µkktl cos(ktld/2) µ(k2

ts − k2) cos(ktsd/2) µ(k2
ts − k2) sin(ktsd/2)

−2µkktl sin(ktld/2) −2µkktl cos(ktld/2) µ(k2
ts − k2) cos(ktsd/2) −µ(k2

ts − k2) sin(ktsd/2)


(4.14)

Then the determinant for the matrix [S] can be found by

‖A‖ = 4µ4∆a∆s (4.15)

where

∆s = (k2
ts − k2)2 cos(ktld/2) sin(ktsd/2) + 4k2ktlkts sin(ktld/2) cos(ktsd/2)

∆a = (k2
ts − k2)2 sin(ktld/2) cos(ktsd/2) + 4k2ktlkts cos(ktld/2) sin(ktsd/2)

(4.16)

These expressions represent respectively the dispersion relationships for straight
crested symmetric and anti-symmetric Lamb waves in the ideal isotropic
layer. Both can be solved for real roots values <{k} by equating them to
zero.
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However the results derived in the previous chapter10 will be used to take
into account the material attenuation and leakage effects11 both represented
by the imaginary part of the wavenumber ={k}.
Now the system of equations (4.13) can be resolved by Cramer’s method to
obtain the following equations for the wave amplitudes

A =
S14(k)G1(k)− S34(k)F 0(k)

2µ2∆s(k)

B =
S13(k)G1(k)− S33(k)F 0(k)

2µ2∆a(k)

C =
S32(k)F 0(k)− S12(k)G1(k)

2µ2∆a(k)

D =
S31(k)F 0(k)− S11(k)G1(k)

2µ2∆s(k)
(4.17)

where Sij are the elements of matrix [S].

§Applying the inverse Hankel transform

Development of the solution follows now by incorporation of determined
amplitude expressions (4.17) into the transformed potential equations (4.11)
and appropriate application of the inverse Hankel transforms.
Then solutions for the Helmholtz potentials are:

φ(r, z) =
∫ ∞

0

S14(k)G1(k)− S34(k)F 0(k)
2µ2∆s(k)

cos(ktlz)J0(kr)kdk

+
∫ ∞

0

S13(k)G1(k)− S33(k)F 0(k)
2µ2∆a(k)

sin(ktlz)J0(kr)kdk

ψ(r, z) =
∫ ∞

0

S32(k)F 0(k)− S12(k)G1(k)
2µ2∆a(k)

cos(ktsz)J1(kr)kdk

+
∫ ∞

0

S31(k)F 0(k)− S11(k)G1(k)
2µ2∆s(k)

sin(ktsz)J1(kr)kdk
(4.18)

Observing the respective denominators of equations (4.18) the potentials can
be correspondingly split into their symmetric and anti-symmetrical parts as

φ(r, z) = φs(r, z) + φa(r, z)
ψ(r, z) = ψs(r, z) + ψa(r, z) (4.19)

10See Chapter 3, the Global Matrix Method at pp 56.
11Certainly, this is only an approximation because we are using plane wave results into

the small circular excitation region.
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Then by using again the Helmholtz decomposition equation (4.3) the dis-
placement field is broken into its in-plane (r) and out-of-plane (z) compo-
nents consequently obtaining:

us,a
r (r, z) =

∂φs,a

∂r
− ∂ψs,a

∂z

us,a
z (r, z) =

∂φs,a

∂z
+
ψs,a

r
+
∂ψs,a

∂z
(4.20)

Replacement of Eqs. (4.18) into above expressions (4.20) and differentiation
under the integral symbols leads to final expressions of plate displacements12:

us
z(r, z) =

∫ ∞

0

Γs
zt(kts, ktl, k)G1(k) + Γs

zn(kts, ktl, k)F 0(k)
2µ∆s(kts, ktl, k)

J0(kr)kdk

ua
z(r, z) =

∫ ∞

0

Γa
zt(kts, ktl, k)G1(k) + Γa

zn(kts, ktl, k)F 0(k)
2µ∆a(kts, ktl, k)

J0(kr)kdk

us
r(r, z) =

∫ ∞

0

Γs
rt(kts, ktl, k)G1(k) + Γs

rn(kts, ktl, k)F 0(k)
2µ∆s(kts, ktl, k)

J1(kr)kdk

ua
r (r, z) =

∫ ∞

0

Γa
rt(kts, ktl, k)G1(k) + Γa

rn(kts, ktl, k)F 0(k)
2µ∆a(kts, ktl, k)

J1(kr)kdk

(4.21)

where the functions Γs,a
α,β are defined in[57] and Appendix C of this thesis.

§Defining the pressure excitation spectrum

In this section the spectrum of the normal pressure excitation is calculated13.
The chosen excitation model will be a uniform pressure distribution in a
circular region of radius a. Then we have:

f(r) =

{
P , r <= a

0 , r > a

g(r) = 0 (4.22)

Now taking the direct Hankel transform of these equations14 we get the
corresponding excitation spectrum:

F 0(k) = Pa
J1(ka)
k

G1(k) = 0 (4.23)

12From Eq. (4.9): ktl =
√

(w/α)2 − k2, and kts =
√

(w/β)2 − k2.
13Although the described model of Eq. (4.21) is valid for both, normal and radio-

transversal excitations only the normal displacement expressions will be used.
14See equation (4.12) on page 68.
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§Contour integration

In order to solve the displacement equations (4.21) the residue calculus is
applied to evaluate the integrals.
This is possible only when the integrand vanish when k → 0 on the large
semicircle enclosing upper half complex plane. However as they stand equa-
tions (4.21) do not satisfy this required conditions. Only with aid of the
following substitution:

J0(z) = [H(1)
0 (z) +H

(1)
0 (z)(zeiπ)]/2

J1(z) = [H(1)
1 (z) +H

(1)
1 (z)(zeiπ)]/2 (4.24)

can integrals be transform into one of the two following forms

I1 =
∫ ∞

−∞
χ1(k)H

(1)
0 (kr)dk

I2 =
∫ ∞

−∞
χ2(k)H

(1)
1 (kr)d (4.25)

where H(1)
n represents the Hankel function of 1st. kind of order n, and χ1 & χ2

are an odd and even functions of k respectively.
With this replacement contour integration is allowed and the integrands15

behave as eikr/k2, for kr � 1.
Now, adding residues from the simple pole16 the following final expression
for the displacements is obtained:

ũs,a
z (r, z) = i

π

2µ

∑
ks,a

Pa
J1(ks,aa)
ks,a

ks,a
Γs,a

zn (ks,a)
∆’

s,a(ks,a)
H

(1)
0 (ks,ar) ; r > a

ũs,a
r (r, z) = i

π

2µ

∑
ks,a

Pa
J1(ks,aa)
ks,a

ks,a
Γs,a

rn (ks,a)
∆’

s,a(ks,a)
H

(1)
1 (ks,ar) ; r > a (4.26)

which can be further resumed in

ũs,a
z,r(r, z) =

∑
ks,a

us,a
z,r(w)eiϕ(w) (4.27)

with us,a
z,r(w) being the modules and ϕ(w) the corresponding phases of plate

harmonic vibrations. The terms ∆’
s,a represent the derivatives of dispersion

equations (4.16) with respect to the wavenumber k.
15The inclusion of the attenuation/leakage effects that are introduce with imaginary

parts of =(k) roots, ensures that poles are shifted from the negative real axis. Then
solutions will correspond only to non-standing outgoing waves.

16The roots of the Rayleigh-Lamb equations are all simple poles except when cut-off
frequencies are approached (k → 0) then Hankel functions behalf as: H

(1)
0 ≈ i 2

π
log(kr)

and H
(1)
1 ≈ i 2

π
( 2

kr
), and singularities may not be simple poles.
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On this subject it is important to point out that these partial derivatives
must be carefully calculated at constant frequency for every point on the
dispersion plane17.

4.3.3 Generalization for broadband signals and arbitrary 2D
excitations

The generalization for broadband signals is made possible by summation
over a finite set of harmonic excitation frequencies (Nf) and by use of the
following inverse discrete Fourier transform (IDFT) relationship

ūs,a
z (t, r, z) = <

{
1

N/2

Nf∑
n=1

us,a
z (wn)ei[k(wn)rĪ−wnt̄−ϕ(wn)Ī]

}
(4.28)

Here Ī represents the unitary row vector and t̄ the time trace vector both of
size (1, N).
Then, ūs,a

z is the final Lamb wave symmetric or anti-symmetric broadband
mode time signal18 at the coordinates (r, z)19.
We observe from the above expression (4.28) that we implicitly assume that
the bandwidth of interest (fmin,fmax,) is segmented into Nf discrete frequen-
cies.
Each contributes with a uniform amplitude spectrum and a corresponding
phase in the small frequency band ∆w = 2πfs/N ; where fs is the time sam-
pling frequency.
Then the total normal broadband displacement ũz(t, r, z) can be calculated
by a sum over an infinite set of Lamb modes by20:

ũz(t, r, z) =
∑
s,a

ūs,a
z (t, r, z) (4.29)

As the total broadband displacement signal for a single circular radiator is
computed with the help of Eqs. (4.28) and (4.29) the generalization for an
arbitrary pressure distribution is made by use of a 2D strip like approxi-
mation of the excitation field. This approach is observed in the following
figures 4.3 and 4.4.

17A summary of analytical and numerical expressions for the calculation of these deriva-
tives as well the Γs,a

zn,rn functions are shown in Appendix C.
18Here and in the following the subscript ‘r’ for radial displacements will no longer be

used since they do not affect the radiated field by the plate.
19Again because of the excitation symmetry here the independent coordinate θ has not

been considered. Then at sufficient distance from the source in the far field (r > 10 ξmax)
the circular crested Lamb waves behave approximately like a plane wavefront.

20In this respect for practical reasons although any Lamb mode can be calculated in
principle only the first four modes will be taking into account (A0, S0, A1, S1).
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Figure 4.3: Example of an ideal PW
simulation with a rectangular profile.

Figure 4.4: View of an acoustic field
excitation with an elliptical profile.

As is apparent the incident acoustic field is reconstructed by a distribution
of a series of parallel excitation strips along the Y axis21.
Then by controlling the size and number of the pressure “points” any exci-
tation acoustic profile can in principle be recreated.
An important aspect in this respect and closely related to computer mem-
ory issues22 is that the software contemplates two possibilities for assigning
signals to corresponding circular radiators:

1. The ideal plane wave (PW) simulation.

2. The acoustic field excitation.

The ideal PW simulation is the more simple case since it does not entirely
couple the emission module23 to the plate model.
Here each strip along the Y axis has a common and unique signal with fixed
amplitude and given delay for all the radiators in the strip.
Then a two dimensional “ideal” finite excitation pattern can be created by a
proper superposition of adjoining Y-strips applied to the laminate.

The second alternative, the acoustic field excitation (computationally more
demanding) couples the emission module to the plate excitation region.
Then each circle on each strip has its unique pressure signal calculated by
the acoustic field simulator24.

21The distance between the center of circles along the X axis is a fixed value of xs = a
√

3.
22This and other subjects related to memory resource use are discussed in Appendix E.
23The acoustic field simulator FIRST, see page 84.
24Because the software is not calibrated yet any issues related to the actual value of the

pressure at a certain point on the surface of the plate are avoided.
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§Effect of size of circular regions: the ratio parameter

Since the size and number of circular filling elements are completely arbi-
trary to choose25 any value in principle could be selected26.
However, some precautions are necessary so as not to produce undesired in-
terference side effects and loose accuracy during the simulations.
In this aspect the principal variables to bear in mind are: a) the size of cir-
cles of radius ‘a’ and b) the minimum Lamb wavelength in the bandwidth
ξmin = cph,min

fmax
. Both of these can be summed up into the following ratio para-

meter: ratio = 2a
ξmin/2 which measures the reconstruction accuracy of ξmin in

terms of the radius ‘a’.
Then by keeping ratio ≤ 1, we have at least one circle by each half period of
the minimum wavelength27. This in turn will help reduce interference effects
across the face of circular radiators and maintain intact the high frequency
components of the displacements.
To see the effect of this interference figures 4.5 and 4.6 show THS simula-
tions of displacement signals for a single radiator (see fig 4.2) observed at a
distance of 100 mm.
As the radius a↑ is increased heavy interference takes place on the radiator
face and consequently the high part of the spectrum is removed. There-
fore an infinite radius radiator will only excite a single frequency while an
infinitesimal transducer will produce an infinite input bandwidth.

Figure 4.5: Normalised vertical displace-
ments for A0 mode at 0.1 m produced by
a single radiator with different radius a.

Figure 4.6: Amplitude spectra for sig-
nals in Fig. 4.5 with respect to radius and
parameter ratio = 2a

ξmin/2 , with ξmin ≈
1 mm.

25Actually the user can only define the radius ‘a’ of filling circular elements and the
type and size of incident field profile (point, line, rectangular, circular or elliptical). The
number of Y-strips and circular regions is calculated automatically.

26Some restriction may apply if the user selects incorrect values: e.g. dimensions of
excitation region < a.

27The limit figure of ratio = 1 is an ad hoc value, a more typical value could be ratio =
0.5 or lower depending on number of points and computing power. For more details
see Appendix E.

74



For an idea of possible values of ξmin, Table 4.1 shows limits for the usual
BW (0.5 MHz−1.5 MHz) for the 1st four modes in a 3.2 mm Aluminium plate.

Table 4.1: Wavelength values for 1st. four Lamb modes in a 3.2 mm Al plate.
A0 S0 A1 S1

ξmin [mm] 2.0 2.0 2.8 3.9

ξmax [mm] 5.2 10.4 16.1 10.0

All lengths are above 1 mm. Then if we assume a typical value28 of e.g.
a = 0.5 mm all cases will be covered by ratio ≤ 1.

4.4 Comparison with other approaches

In this section we present two alternative approaches to the THS method29

plus a set of comparisons with a finite element method (FEM) simulation
programme: COMSOL Multiphysics.
The first approach taken from Ref.[246] uses the same integral transform
techniques for a circular excitation region and is completely analogous to
the described THS.
The second for a point load excitation was derived by Achenbach[5] based
an orthogonal modes relationship.

4.4.1 Alternative THS derivation

This method is analogous to section § 4.3.2 for the THS derivation. It uses an
similar expressions for finding solutions for plate displacements by express-
ing them from the start as inverse Fourier integrals and then incorporating
the corresponding derivatives into Eq. (4.1).
Following Ref.[246] and after some algebraic steps taking into account boundary
conditions (4.2) and solving integrals by residue calculus it is possible to ob-
tain an analogous expression to Eq. (4.28) for the displacements30:

ūs,a
z (t, r, z) =

1
4

∫ ∞

−∞

∑
k

F 0Hs,a
z (d,w)e−iwtdw (4.30)

28This will be the default value for most of the simulations throughout this thesis.
29For a good review on this subject see the article by Chimenti[47] and also Refs.[203,

235, 283].
30Here again the expressions for normal displacements is referred since they solely con-

tribute to plate radiated fields. This is a continuous time version of Eq. (4.28).
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were31

Hs
z(d,w) =

iα̃(k2 − β̃2) sinh(α̃d) sinh(β̃d)
µ∆’

s
, α̃ =

√
k2 − w2/α

Ha
z (d,w) =

iα̃(k2 − β̃2) cosh(α̃d) cosh(β̃d)
µ∆’

a
, β̃ =

√
k2 − w2/β (4.31)

and F 0(k) is given again by equation (4.23).
The sum of equation (4.30) is carried out over a finite set of symmetric
or anti-symmetric Lamb modes. As previously mentioned32 the terms for
partial derivatives ∆’

s,a are calculated with respect to k|w=const..

4.4.2 Point load excitation

The case of a normal point load33 in an unbounded isotropic elastic layer
was studied in detail by Achenbach[5, 6].
He developed a Lamb mode orthogonality relationship based on a reciprocal
identity of time-harmonic elastodynamic states[2, 3]. This procedure helps
to determine plate displacements via an alternative solution to the integral
transforms previously used.
Here we outline only main expressions since the complete development cover
several pages34.
The normal plate displacements can be expressed in a similar way to equa-
tion (4.26), as:

us,a
z (r, z) =

∑
ks,a

Cs,a
z (d/2, z, ks,a)H

(2)
0 (ks,ar) (4.32)

where35

Cs
z(d/2, z, ks,a) = Ds

z[s3 sin(pz) + s4 sin(qz)]
Ca

z (d/2, z, ks,a) = Da
z [a3 cos(pz) + a4 cos(qz)] (4.33)

The reconstruction of the total wideband multi-mode signals for the above
models: § 4.4.1 and § 4.4.2 can be accomplish then with help of Eq. (4.29)
and equations (4.27- 4.29) respectively. This offers alternative solutions for
the propagation toolbox cores36.

31Although expressions for α̃,β̃, differ only in the imaginary factor ‘i’ from those in (4.9),
we prefer to introduce these new variables to retain equation forms.

32See bottom of page 71.
33Actually, this is only a mathematical abstraction for an infinitely small excitation

region of area ∆(s) on the plate surface.
34For more details see Ref.[5].
35A summary of the remaining terms is shown in Appendix C.
36This is controlled upon user selection. The default propagation engine is the presented

THS method, equations (4.26) through (4.29).
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A comparison for single mode simulated signals for the presented models is
shown in the following figures 4.7 through 4.10, for A0 and S0 modes.

Figure 4.7: Comparison of A0 mode
normalised z-displacements for the three
models in an aluminium plate@3.2 mm.

Figure 4.8: Corresponding amplitude
spectra of normalised A0 displacements
for three models in Fig. 4.7.

Figure 4.9: Comparison of S0 mode
normalised z-displacements for the three
models in an aluminium plate@0.5 mm.

Figure 4.10: Corresponding amplitude
spectra of normalised S0 displacements
for three models in Fig. 4.9.

Figure 4.11: Comparison of S0 mode
norm. displacements for point load model
and THS approach with different radii.

Figure 4.12: Corresponding amplitude
spectra of normalised S0 displacements
for models in Fig. 4.11.
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As can be observed a fairly coherent agreement is achieved37. A comment on
the solution to chose for the single circular radiator case is, since the princi-
pal THS model and the alternative approach § 4.4.1 are complementary in
principle they can be used interchangeably. However computer implementa-
tions of both can lead to some differences as can be observed in the figures.
This problem has not yet been resolved.
On the other hand point load solution is the limit case for THS when a→ 0.
This phenomenon is observed in figures 4.11 and 4.12, where displacements
for three THS signals with decreasing radii are compared against the point
load model. As observed the interference effect mentioned in § 4.3.3 is more
influential as the radius of the radiator is increased.

4.4.3 Comparisons with FEM simulations

In this section a set of four cases are presented for comparison between the
THS method (main core § 4.3.3) and the finite element method (FEM) from
the COMSOL Multiphysics package. The normal plate displacements for
THS have been changed in scale by a factor of uz = 0.065 uTHS

z , in order to
attain a better graphic match with FEM results.
The COMSOL simulations38 were calculated for an ideal surround with infi-
nite absorption properties around the finite plate (50x50 mm wide) so as not
to receive reflections from the edges. This effect is clearly appreciated in the
graphs.
In all the figures the results are view along the X axis of the plate with the
location of the single circular radiator centre at x0 = 16 mm.
For better adjustment the THS traces were ploted for two slightly different
time instants: t1 = 3.45 us, and t1 = 3.17 us respectively39.
As seen from the first three plots (Figs. 4.13-4.15) the relative matching
seems to be more or less satisfactory40.
However, as the plate width is increased as in Figure 4.16) the difference
between the amplitudes unfortunately seems to increase slowly41.
With the use of Hankel functions in the time harmonic method a singularity
in the origin (at x0 = 16mm) of all the figures42 is observed in all comparisons.
This is another reason to calculate the plate vibrations away from the exci-
tation zone in the far field.

37Here normalised displacements have been presented since the amplitudes for the three
models differ only by a multiplicative constant among them.

38The author would like to express his sincere gratitude to Dr. Bernard Hosten and
Dr. Michel Castaings from Laboratoire de Mécanique Physique (LMP) France, for their
collaboration and support in the achievement of COMSOL results.

39This is because the instantaneous moment of the COMSOL data are unknown(?),
although it is believed they corresponds to the computer instant t = 0.

40This is of course including the ad hoc scaling factor sTHS = 65/1000. Roughly
speaking THS displacements are 15 times grater than COMSOL calculations.

41The author acknowledges that this point requires further investigation.
42The sign of the THS picks is changed as traces are plotted for different time instants.
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A final observation from all the comparisons was the increased loss of phase
between traces as the observer moves away from the time origin.
This effect is principally due to a mismatch in Lamb wave phase velocities
for both simulation programs probably produced by a slight differences in
material parameters of aluminium laminates. This causes THS vibrations to
go a little slower than COMSOL waves.

Figure 4.13: Normal displacements in an
Al@0.5mm plate produced by a single ra-
diator (a = 2mm) excited by a CW signal
of f0 = 0.232 MHz.

Figure 4.14: Normal displacements in an
Al@0.5mm plate produced by a single ra-
diator (a = 2mm) excited by a CW signal
of f0 = 0.2965 MHz.

Figure 4.15: Normal displacements for
an Al@0.8 mm plate produced by a single
radiator (a = 2mm) excited by a CW
signal of f0 = 0.2965 MHz.

Figure 4.16: Normal displacements for
an Al@1.5 mm plate produced by a single
radiator (a = 2mm) excited by a CW
signal of f0 = 0.2965 MHz.

4.5 Comparisons with experimental results

In this section some experimental results are introduce for validation of the
THS routines implemented in the LAMB programme. The data are drawn
from real impacted aluminium plates by a circular profile colliding tip.
The tests were performed by means of the tail bit from a drill43 dropped
from a known distance above the surface onto a plate.

43The flat tail part of the drill bit (see Fig. 4.18) has an approximately and uniformly
hard circular face: tip∅ = 1 mm.
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Figure 4.17: Setup for the impact experi-
ment in Al plates: klaser = 0.025(m/s)/V.

Figure 4.18: Photography of the impact
tip (tail of a drilling tool bit) plus rail guide.

A laser vibrometer was used for detection of the plate velocity signals (see
Fig. 4.17). Three aluminium plates of different widths: d1 = 0.3 mm, d2 =
0.5 mm and d1 = 0.8 mm were tested.
In all the experiments the distance44 to the detection point was fixed to
r = 30 mm with a velocity detection constant of klaser = 0.025 (m/s)/V.
As pointed out before THS displacements were scaled again in order to attain
a better match with the experimental data45.
The following figures 4.19 through 4.22 depict the results.

Figure 4.19: Displacement signals for
the impact experiment on an Al@0.3mm
plate: r = 30 mm, tip∅ = 1 mm, fs = 108 Hz.

Figure 4.20: Displacement signals for
the impact experiment on an Al@0.5mm
plate: r = 30 mm, tip∅ = 1 mm, fs = 108 Hz.

44Other test for longer distances were perform with similar results but were omitted due
to their increasing poor SNR. This effect can be observed in the Fig. 4.22 note the noisy
aspect of the velocity signals detected.

45This problem remains unsolved at the moment making the LAMB programme not
calibrated.
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Figure 4.21: Displacement signals for
the impact experiment on an Al@0.8mm
plate: r = 30mm, tip∅ = 1mm, fs = 50MHz.

Figure 4.22: Corresponding velocity sig-
nals for impact experiment on Al@0.8mm
plate: r = 30mm, tip∅ = 1mm, fs = 50MHz.

4.6 Conclusions

The Time Harmonic Solution method or THS had been introduced and de-
veloped for the calculation of the normal displacements on an infinite ideal
isotropic laminate produced by a single circular radiator.
Three computer models were implemented in this case for the propaga-
tion module of the LAMB software.
The first two approaches were similar in their mathematical development
and in principle interchangeable, while the third was asymptotically conver-
gent when a → 0. This method was derived by Achenbach for a point load
problem based on the orthogonality relationships of Lamb modes.

The plate excitation of the LAMB programme was implemented by means
of a strip filling method for the impact area of the acoustic field.
The filling technique entails a discretization by a series of strips each com-
posed of small circular radiators along the Y axis of the excitation region.
Then by an adequate filling of this area of the plate any two-dimensional
profile can be created.
It is important to consider the relationship between the minimum wavelength
present during simulations and the size of excitation circular radiators.
This is summarized by the ratio parameter which should be kept below ratio
ratio ≤ 1 in order to avoid any destructive interference effects.
The assignment of signals for each radiator is based on the election of one of
the two strategies.
Ones strategy assumes an ideal plane wavefront excitation which employs a
common delayed signal for each individual Y strip; while the other possibi-
lity performs a full computation of the acoustic field at each desired location
on the plate by the emission simulation module FIRST.
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With respect to the validation of programmed routines, a group of simula-
tion comparisons between the three propagation engines were presented.
These showed that results among them were in fact very similar although
there were still some differences on the scale to resolve.
A set of validation points between the main THS core and the finite element
method were also introduced.
These were carried out with help of the COMSOL Multiphysics package in
order to evaluate the agreement of the plate vertical displacements with those
computed with the implemented THS method.
The results had shown a relatively good match between both simulations
although a scaling constant had to be added to allow the comparisons. This
ad hoc factor was observed that slightly changed unfortunately, as the plate
width is increased.
Nevertheless assuming it remain constant with frequency, the construction of
a broadband signal can be formed by superposition of the mode vibrations.
In this respect, the comparison with a simulated FEM broadband excitation
is still a point to verify in the future, as well as assessment tests with several
radiators acting at the same time.
Also, a smooth increased miss-alignment between spatial phases of THS and
FEM traces was observed. This undesired side effect was probably caused by
a non-exact match of Lamb wave phase velocities, due to slight differences
in material parameter definition of both software.
On other hand, from the experimental point of view, a set of comparisons
of broadband THS simulations, against real displacement signals obtained
from tip-impacted plates had been presented in order further verify the im-
plemented model.
It was shown that a reasonable match was attained, although a scaling factor
have to be introduced again in order to compare results. This is unsolved
issue in the programme and makes the software be not calibrated at the
moment.
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Chapter 5

Description of the software system model

5.1 Introduction

This chapter summarizes previous sections by describing and integrating the
constituting modules: 1)Emission, 2)Propagation, and 3)Reception, of the
LAMB software; whose internal structure is detailed in Figure 5.1.
The chapter begins with an analysis of each module, highlights the main
features and limitations. Special attention is paid to the receiver section
since the other two, emission and propagation were previously introduced in
Chapters 2 to 4.
The selection of the appropriate size of the plate radiation elements is dis-
cussed continued by the description of a simple two-dimensional geometric
model for the inclusion of the directivity of the receiving array elements.
Then a brief analysis of array signal processing issues related to the NDE
with air-coupled systems is discussed.

The integrity of the complete software model is evaluated then by a set ex-
perimental results drawn from a real air-coupled NDE Lamb wave system[77,
299].
The assessment tests include the use of copper and aluminium plates with
burst and wideband signals for use with the principal A0 Lamb wave mode1.
Although the programme is capable of simulating multi point receivers2,
only single point sensors were used during the simulations carried out for
the chapter because of the non substantial differences with 2D patterns3

thus avoiding time consuming calculations.
Finally, a discussion of the use of a concave aperture with simulations for a
proposed new air-coupled plane array are presented while main conclusions
are outlined at the end of the chapter.

1Due to limitations in the hardware caused by noise levels and bandwidth in the re-
ception amplifiers and the laser vibrometer the upper Lamb modes S0, A1, etc. could not
be detected.

2These are individual array sensors modelled by containing more than a single acoustic
signal inside their spatial limits. See e.g. Fig. D.5 in Appendix D.

3This also applies to the X line type excitation/emission profiles used. For more details
see Figs. D.1 and D.2 in App. D.
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Figure 5.1: Schematic view of the LAMB programme interactive parts.

5.2 The LAMB software constituting parts

5.2.1 Emission module: the acoustic field simulator FIRST
The emission module of the software is represented by the programme FIRST[213]
which is based on the impulse response method explained before in Chapter 2.
To comprehend better the operation of programme the following matlab
pseudocode illustrates its internal structure:

main_first() {
[first_vars] = f_input_data(user_entry) % Define programme input data.

[ele_coords,ele_angles,ele_delay,...] = f_def_array(type,Ra,Na,[2a 2b p_e],pos,orient)
[Ps_coords,m,n] = f_cal_field_coords(reg_type,dims,orientation) % On plate surface.

vn = f_define_velocity_signal(v_type,v_amp,fs,BW) % For IRM
an = diff(vn) % Det. element’s surface aceleration signal.

for k=1:Na
a_k = f_delay_&_apodice(an,ele_delay(k),ele_apodization(k))
%--------------------------------------------
% Cal. pressures for array element(k)
for j=1:m

for i=1:n
[x y z] = f_translate_&_rotate(Ps_coords,ele_coords,ele_angles)

[zone,distance] = f_IRM_zone([x y z],2a,2b); % Determinate IRM-zone of point [x y z]
A = f_construct_atte_filter(distance,BW,fs)) % BW = frequency bandwidth.
h = f_impulse_response(t,zone,[2a 2b],[x y z]) % Cal. impulse response.

Ha = A.*fft(h) % ’.*’ -> poin by point vector multiplication.
ha = real(ifft(Ha))

Psk(i,j,:) = rho*conv(a_k,ha) % rho = air density.
end

end
%--------------------------------------------
Ps = Ps + Psk;

end
Ps_lamb = f_down_sample(Ps,fs,fs_low) % Pass fs >= 100Ms/s -> 20Ms/s for Lamb programme. }
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Figure 5.2: Superposition strategy of
Na acoustic planes for pressure calc.

Figure 5.3: List of possible acoustic
sources simulated with FIRST.

After entering input variables into the programme some function calls take
place in order to define the excitation aperture4, the spatial coordinates of
the field being calculated and the type of velocity signal used as excitation5.
Then the calculation of the plate excitation field is made by means of a su-
perposition of acoustic planes6, one for each aperture element see Fig. 5.2.
Here the principal aspects of the programme are: 1) the calculation of the
impulse response function ha(x, y, z, t) and 2) the determination of the air-
attenuation filter A(iw); both derived previously in § 2.4.3 and § 2.4.4 res-
pectively.

The type of acoustic apertures the programme can handle are basically
plane and cylindrically concave 1D arrays composed of two types elements:
1) Single Ideal Element (SIE) and 2) Single Non-Ideal Element (SNIE),
see Fig. 5.3.
This last type of emitter was introduced for modelling the broadening effect
produced by the air adaptation layers7.
With respect to the calculation speed and accuracy of the programme in
contrast to other software such as Field II and Ultrasim; FIRST is about 6-7
times slower than Field II8 and agrees well with both[212].

4This includes: arrays (plane/concave), Na elements & dims.{2a, 2b, pe}, apodization
& delays profiles (focused beam or PWF gen.@θo), and element location & orientation.

5Sinusoidal, sinusoidal burst (square/Gauss windowed), square burst (symmetric/anti-
symmetric), pulse model, impact model, sinusoidal chirp, Heaviside and Dirac.

6This is only an abstraction to designate the associated data matrix to the spatial
coordinates (point, line and grid) where the acoustic field is being calculated.

7See Figures 2.12, 2.13, Appendix F and Ref.[214].
8This test is based on 1000 free runs computing the impulse response function at a

certain point. The lower performance is mainly due to C compiled feature of the Field II
core (dll) in contrast to the matlab code of FIRST.
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Figure 5.4: View of the LAMB simulated air-coupled NDE system with two
concave arrays which indicate the excitation and emission zones on the plate.

In this respect, the intention of the programme was not to compete with
excellent software programmes such as Field II and Ultrasim but rather be
an open source alternative for the IRM of rectangular apertures9.

5.2.2 The propagation module

The isotropic plate propagation module of the LAMB software was derived
as an extension to the work developed by Pavlakovic et al. (1994)[201] for
circular radiators and used a linear superposition method (see Figure 5.4).
It is principally constituted by: 1) a GMM dispersion curve routine that
solves the determinant of Eq. (3.42), and 2) the main core of the THS method
developed in Chapter 4, equation (4.21) and equations (C.1-C.11).
In the following matlab pseudocode, once the plate width and type are se-
lected10, the programme loads pre-stored Lamb dispersion data11, or calcu-
lates new with the GMM code.
Next, the definition of the plate excitation and emission regions take place.
Signals and coordinates are assigned or computed depending on whether the
acoustic field simulator or the ideal PWF excitation are selected in the ex-
citation zone12.
Then normal displacements on the plate radiation area are calculated indi-
vidually from the results of pressure signals in the excitation zone and with

9The IRM core is a available for free downloading from the author’s page on the Matlab
Central website: http://www.mathworks.com/matlabcentral/fileexchange/authors/23152

10Available materials at present include: aluminium, copper, steel, gold and titanium.
11The data contain the dispersion relationships (f, k) for the real frequency and the

complex wavenumber respectively.
12For more details consult pages 73 and 84.
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aid of the dispersion data.
This process is repeated until all the displacement signals are computed.

main_propagation() {
[plate_type,plate_width,a,...] = f_input_vars(first_data,user_entry)
[f,k] = f_GMM(plate_type,plate_width,...) % Cal./load plate dispersion data.
if using_First

% Use First calculated pressures.
[e_coords,e_signals,Ne_points] = f_THS_load_excitation()

else
% Compute ideal PW excitation.
[e_coords,e_signals,Ne_points] = f_THS_define_excitation(e_reg_type,e_dims,...)

end
[r_coords,Nr_points,...] = f_THS_define_emission(r_reg_type,r_dims,...)

for j=1:Nr_points
%--------------------------------------------
% Sweep excitation field for emission point r(j)
for i=1:Ne_points

% Call LAMB main THS core.
u_i = f_THS_displacement(plate_type,plate_width,a,W,K,e_signals,e_coords,r_coords...)

U(j,:) = U(j,:) + u_i; % Acumulate u_i vector in U(j,:) matrix location.
end
%--------------------------------------------

end}

5.2.3 The reception module

The purposes of the reception section are: 1) to calculate the plate radiated
acoustic field, and 2) emulate the electric signals in the receiver array.
The schematics of the reception module can be appreciated in Figure 5.1.
Once normal displacements are obtained13 they are added14, up-sampled15

and space filtered16, before the plate radiated field is calculated and further
processed in the receiver unit.

§Plate radiated field calculations: size of IRM elements

Before preceding it is important to define the appropriate size of plate emis-
sion elements17 because the coupling between plate vibrations and the final
signals received is carried out using the impulse response method.
For this point an accurate representation of the displacements (Lamb wave
sampling) at first suggest that IRM elements should be as small as possible
in order to represent better any Lamb mode present and to avoid aliasing
effects.

13The simulated mode displacements in module 2 can be view and analysed separately.
14This process detects and adds the signals “located” inside the sensor boundaries of a

simulated multi-point receiver.
15Normal THS sampling rates are fTHS

s ≤ 20 MHz, while IRM needs f IRM
s ≥ 100 MHz.

16The effect of the directivity filter is explained next in page 88.
17These are rectangular elements of dimensions [2ar, 2br]
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Figure 5.5: A0 mode wavelength
curves showing ra,b & 0.5 mm limits.

Figure 5.6: Geometric view of the 2D
model for 9 element cylindrical array.

This happens when the element dimensions exceed the limit value of ξLamb
min /2.

However, as pointed out in § 2.4.5, the radiation parameters of any rectangular
element requires that dimensions should be grater than ξairmax/2 in order to
maintain the radiation condition ra,b ≥ 1.
These opposing requirements can better be observed in the following figure
5.5 where different wavelength curves for some plates with the A0 mode are
shown together with the radiation limit conditions ra,b = 2 and ra,b = 1.

It is clear that this problem requires a solution compromising both condi-
tions. So a value that fulfils both requirements was adopted for the simula-
tions carried out in this thesis is. This value is: [2ar, 2br] = 0.5 mm indicated
by the horizontal line in the figure18.
With these values Lamb wavelengths are sampled at least 2− 4 times in the
bandwidth even under the worst conditions i.e. using copper d = 0.35 mm19.

§Plate radiation field calculations: 2D directivity filter model

An important effect to consider when modelling an array aperture apart
from the number of elements, their geometrical arrangement and sensitivity
frequency response, is the associate directivity of its sensors.
This is a characteristic closely related with the geometry of the array since
only a punctual receiver would have an ideal omni directional response[133,
219].
In the case of the present work aimed at the simulation of an air-coupled
NDE system based on arrays composed of rectangular transducers, the in-
clusion of the directivity of the real sensors is a point strongly required.

18Depending on the emission/reception field complexities other values could be 0.40mm
or 0.25 mm. These may require more time or computing resources, see Appendix E.

19For other Lamb modes this restriction if even less significant consult Appendix B.
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However this is not simple to achieve20 but it is crucial for the correct sim-
ulation of the final aperture.

The proposed model acts as a two-dimensional directional filter Adir.(iw, δ)
for the field radiated by the plate and is included during the IRM calcula-
tions, see Fig. 5.1.
It is defined for plane and cylindrical concave arrays based on geometrical
considerations of the XZ plane and simulations of the field emitted by a si-
nusoidal excited rectangular source.
These simulations are based on the assumption that reciprocity of the emis-
sion/receiving characteristics of an aperture are at a defined distance21.
Figure 5.6 shows the geometric analysis for a 9 element cylindrical concave
array which receives the field emitted by two plate radiators.
The incoming angle22 δi,k to the directivity pattern is determined then by
the expression:

±δi,k = ±βi − (±αk) (5.1)

This angle is used as entry point for the energy radiation pattern of Figure 5.7
to obtain the filter response by taking its square root i.e. A+

dir. =
√

E(f+, δ).
See the white line in the figure23. Next the filter response is applied to the
impulse response function ha in a similar manner to Eq. (2.32) by:

h(x, y, z, t) =
1
2π

∫ inf

− inf
Aatte.(iw)Adir.(iw)H(iw)eiwtdw (5.2)

This process is repeated for every plate radiator(i) and sensor(k) pair24.
The pattern in Figure 5.7 was generated by the FIRST programme sim-
ulating a rectangular source (width, height = [2, 15] mm) with a sinusoidal
excitation.
This pattern shows the energy of signals at points with a common distance
of R = 35 mm which lie on a cross sectional plane in front the face of the
radiator25.
This R distance matches the radius of the array and was chosen as a com-
promised value because the radiation characteristic changes slowly in space.

20In fact each array element is made of two piezoelectric twin bars electrically connected.
See for example Fig. 5.20.

21The directional radiation response of an individual element of the cylindrical concave
array can be observed in Appendix F

22Positive angles δ are measured towards direction of the source. The egg like lobes in
the figure are meant to imitate the directivity pattern associated to the individual sensors.

23The final values used are in fact an interpolation of
√

E(f, δ).
24Here a spherical wavefront is assumed as coming from each radiator on the plate.
25The image was generated in angle and frequency steps of: ∆δ = 0.5o & ∆f = 10 kHz.
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Figure 5.7: Normalized energy pattern
E(f, δ) for a rectangular SIE source:
2a = 2mm, 2b = 15mm with sinusoidal ex-
citation and no attenuation @R = 35mm.

Figure 5.8: Sensitivity response in
frequency of the 32 concave array
elements. The dark line indicates the
average response & test points.

An enhanced width of 2a = 2 mm was used for the emulated array sensors26

in Fig. 5.6 although “real” elements are approximately 1 mm wide, see Fig.
5.20. This is because this value is the best that matches27 the experimental
pattern produced by interaction of adaptation layers[214].

An important conclusion suggested by this elementary model is the poor
omni directional characteristic that the real receiver sensors has.
Note the small operative zone in Fig. 5.7 from −10o ≤ δ ≤ 10o. This will
have an important effect on the beamforming performance of a real array
transducer which detects incoming fields because the directivity of its sensors
is already set28.

§Addition, coupling and filtering of the received signals

After the plate radiated field is calculated in the receiver zone with IRM29,
the signals detected inside boundaries of each array element are added and
changed from pressure to velocity with use of the following expression30

v =
p

Zair
(5.3)

Then the velocity signals are converted to electrical potentials using the con-
version factor kr = 32.58 V/(m/s).

26Although the availability of a more accurate array element model (SNIE) the SIE
approach was used for the emitter pattern of Fig. 5.7 due its simplicity and uniform surface
behaviour. For details on the directivity response of SIE/SNIE models see Appendix F.

27Other E pattern simulations has been tested also for sources of 2a = 1-2.5mm in steps
of 0.5 mm.

28The global concave geometry contributes also to this phenomenon.
29The user may wish to include or not the spatial filter Adir.(iw, δ) in the calculations.
30The value of the characteristic acoustic impedance for air at 20oC is Zair ∼= 427 Rayls.
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This transducer value was determined from the maximum peak31 of the ave-
rage sensitivity frequency response32 of the array elements, see Figure 5.8.
This average response is normalized and used to further filter the simu-
lated received signals. This process completes the receiver aperture black
box model.

§Addition of signal processing: DAS beamforming

The main idea of using an array of sensors to detect signals is that this device
boasts the inherit capability of distinguishing and separating fields arriving
from different directions, something opposed to what occurs in a continuous
aperture. However in order to perform this task an ideal receiver array must
previously satisfy some requirements like:33

• Omni directional (punctual) narrowband sensors34.

• Separation distance between sensors de ≤ ξ/2 (avoid spatial aliasing).

• Wider aperture size (contribute to thinner beampatterns).

• Sensor & electronics with high sensitivity and low noise (high SNR).

Nevertheless in the reality these restrictions are relaxed due mainly to hard-
ware limitations and the particular application at hand.
In the case of the present work which involves the simulation of an ideal
air-coupled array based NDE system with Lamb waves the following added
difficulties are encountered:

• Inherit directivity of array sensors35 (response between −10o ≤ δ ≤ 10o).

• High attenuation of ultrasound in air with the frequency, specially if
f > 1 MHz. See Figure 2.7.

• Extremely low amplitudes of Lamb vibrations (apart from A0 mode,
see Fig. 5.28). The use of signal averages is common practice.

• Noise & interference in the receiver electronics (e.g. AM radio band).

• Possible need of wideband signals36 and transducers37.
31Near f ≈ 830 kHz, see figure 5.8.
32For this measurement the setup of Fig. 2.10 was used in conjunction with a variable

frequency sinusoidal tone burst @44.37 V̂, 100 cycles.
33This constraints are however highly application dependable.
34This is based on the narrowband assumption of signals which is satisfied when the

fractional bandwidth ¯BW = BW
f0

<< 1. This avoids the occurrence of a phenomenon
known as dispersion in the array[164].

35The array geometry & the distance de is also an important issue discuss later in § 5.3.2
36Typical signals presented in this thesis do not fulfill the narrowband assumption
¯BW << 1, i.e. ¯BW = 0.2 MHz

0.83 MHz
∼= 0.241, see Fig. 5.8 with transducers response.

37Even if inspection signals are narrowband, for NDE spectrum analysis require trans-
ducers to respond in wideband of frequencies.
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All of these technical aspects contribute to make the task of collecting and
analysing the received information very complex.
However without entering into to the field of signal processing, which is not
the subject of this thesis, the first step is to implement a simple DAS or
Delay And Sum beamformer to help identify plate radiated fields.
This beamformer works by aligning the impinging signal in phase at each
array sensor. It uses a corresponding delay td(δs) which depends on the
steering angle δs.
This method allows for a coherently addition of the signals at the DAS output
and is also known as a spatial matched filter [164] with a SNR of:

SNR = Na SNRele (5.4)

Where Na is the array number of sensors and SNRele is the signal-to-noise
ratio at a single sensor element.
This beamformer has been implemented in the last part of the reception
section (see Fig. 5.1) and being used to analyse the plate emitted fields.

5.3 LAMB: programme simulations and results

5.3.1 Experimental results

This section introduces the experimental results made to validate the com-
plete LAMB programme.
These include the following tests: 1)a sweep in frequency with a single re-
ceiver sensor in d = 0.35mm copper plate, 2)narrowband signals in d = 0.5mm
aluminium laminate with a receiver array and 3)wideband signals in d =
1.0 mm aluminium plate also with a receiver array.
Is is important to highlight that because the software is not calibrated, the
presented comparisons have been scaled to obtain an appropriate match in
the graphics.

§Experimental and simulation setups

The following Figures 5.9 and 5.10 show details of the measurement setup
composed of a 16 element plane array used for the excitation38 (left in Fig.
5.9), and a 32 element concave aperture used as a receiver (right in Fig. 5.9).
The metal plate was vertically located at an equidistant space between both
transducers.
The source of emission was appropriately oriented with a goniometer and ex-
cited by a common signal (all elements in parallel) coming from a signal gen-
erator (V̂in = 3.5 Vp) and a power amplifier with a voltage gain39 of Vg = x50.

38Unfortunately due to failure of the other concave array only 1 transducer was available.
39Except for the last test with Al@1 mm commented later on page 97.
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Figure 5.9: View of exp. setup. Left a
16 eles. plane array (excitation). Right
a 32 eles. concave aperture (receptor).

Figure 5.10: Back view of the concave
array with the reception electronics:
4x8, 2-stage amplifiers @Gv = 40dB+40dB.

The concave receiver was connected to 32 channels with two-stage amplifiers
each with a gain of Gv = 80 dB. The signals were then selectively extracted
with a 4 channel scope. It is important to mention that due to the array
geometry only 14 sensors were actually used (9 − 22) and their final traces
proceed from an averaging process40.
Both apertures were correctly pointed towards the plate with the same in-
cidence/reception angles θ and a common focal distance of Df = 35 mm.
For the aluminium plates the distance between focal points on the laminate
surface41 was of r = 70 mm while for copper it was of r = 40 mm.
On the other hand the simulation setup was composed of a 16 SIE element
plane array for the excitation and single point aperture for the receptor.
The excitation/emission zones of the plate were modelled by single line pro-
files (along X axis) with the following parameters42:

• Incidence & reception angles: θi = θr = θ

• Focal distances: Dfi = Dfr = Df = 35 mm.

• Excitation zone: X axis line 20 mm long, a = 0.5 mm (see Fig. 5.23).

• Emission zone: X line 50mm & 100mm, [2ar, 2br] = 0.5mm (see Fig. 5.24).

• Maximum plate excitation pressure: pmax = 1Pa (Normalized condition43).

• Excitation array: plane, 16 SIE rectangular emitters {2a, 2b, p} = {2, 15, 0}mm.

• Concave receiver: composed of punctual receivers (1/8/10, R = 35mm, Adir = on).

40Signals were averaged 100 times @fs = 50 MS/s, with a Lecroy Waverunner 2000.
41Some other test for other distances (90mm and 100mm) were performed with similar

results but with less SNR.
42Because no significant difference was observed with multi-point receivers these were

disregarded. The same can be applied with respect to the use of time consuming 2D plate
profiles. More details in Appendix D.

43Because the programme is not calibrated this value was set for all simulations.
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Figure 5.11: Measured signals with channel 16 for 0.35 mm copper plate.

Figure 5.12: LAMB programme simulations for copper plate with a single
sensor Gr = 17 dB, σ2

n = 1 pW. A custom delay of ∆t = 152.3 us was added for
alignment.
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§1st. test: frequency sweep with a single receiver sensor in Cu plate

The first test was carried out on a copper plate of d = 0.35 mm. Here a
variable frequency sinusoidal burst of 15 cycles was used for the excitation
with an incidence angle of θ ∼= 15.8o.
The received signals were captured only with the central element of the con-
cave array (channel 16).
Figures 5.11 and 5.12 shows respectively the experimental and simulated sig-
nals for the four tested frequencies: 650, 750, 850 and 950 kHz.
It is clearly observed how main contributions come from signals near the
central frequency in the bandwidth around f ∼= 830 kHz, see Fig. 5.8.
Then if the plate scans are required to be within a wideband of frequencies,
the relationship between the amplitudes of the signals must be taken into
account. Regarding the matching of the figures a reasonable degree of simi-
larity was obtained.
In this subject two points are critical for the correct modelling: 1) the exac-
titude of the plate dispersion relationships (f, k) and 2) the noise model and
level selected. The last of these effects is represented here by the addition of
a simple Gaussian process44 with σ2

n = 1 pW.

§2nd. test: narrowband signals in an aluminium laminate

The next experiment was performed on a aluminium plate of d = 0.5 mm
applying the same excitation: a rectangular windowed sinusoidal burst with
f0 = 800 kHz with 15 cycles and incidence/reception angles θ ∼= 12o.
The received signals were captured this time with the array channels 9− 22.
The following Figures 5.13 and 5.14 depict the respective measured and
simulated traces for the concave receiver array.

Figure 5.13: Measured signals in Al
from concave array with channels 9−22.

Figure 5.14: Simulated traces for the
concave receiver: Gr = 17 dB, σ2

n = 1 pW.

44Because this might required a more complex treatment that includes dependences on
the real receiver electronics and present interference it had been left as a future addition.
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Figure 5.15: Radiation diagrams for the d = 0.5 mm aluminium plate with
Gr = 17dB, σ2

n = 1pW. The maximum main lobe occurs approx. at θr ≈ 11.7o.
As observed the signals decrease in amplitude as one moves away the cen-
ter of the array near channel 16. This phenomenon is more pronounced in
the experiment (Fig. 5.13) than in the simulation45 and is provoked by the
combined effects of receiver geometry and directivity of the elements.
Next, by properly delaying and adding signals for a range of δs input an-
gles with the DAS beamformer the corresponding array steered response
or radiation diagram can be obtained for the experiment and simulation,
see Fig. 5.15.
Note the aperture grating lobes near ±25o produced by aliasing effect when
the inter-element space condition de ≤ ξ/2 is not respected46.
The agreement of the diagrams were achieved not without difficulties be-
cause many aspects influence the patterns. The main factor is the added
noise+interference model and level used.
This not only provoke changes in the diagrams but also decreases the diffe-
rence between the main lobe and the sidelobes when the noise power σ2

n is
increased.
Nevertheless a moderate similarity between the simulations and the experi-
mental results was obtained47.

45This is an issue still not solved in the model and because of this only 8 channels were
used in the simulations.

46This also happens when elements are side by side i.e. with pe = 0, but their width
2a > ξ/2. For further details see § 5.3.2.

47For the appropriate matching of all radiation diagrams a custom level in dB was added
to the simulated patterns. These were in all cases below level < 10 dB.
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§3rd. test: wideband signals in an aluminium plate

The last test was for a d = 1.0mm aluminium plate with an incidence/reception
angle of θ ∼= 9o.
The excitation of the plane array 16 elements was a single cycle square pulse
of V̂in = 500Vp, f0 ≈ 750kHz. The captured signals were again extracted from
the concave array channels 9− 22.
An alternative set of two-stage Gv = 80 dB amplifiers was used this time for
the receiver.
The levels in the gain factor Gr and noise level were adjusted to suit the new
group of signal amplifiers. While the DAS measured and simulated patterns
can be observed in the next Figure 5.16.
The output of the DAS beamformer for the plane wavefront (PWF) and fo-
cused conditions are shown in corresponding Figures 5.17 and 5.18.
The gain in SNR is clearly appreciated when using the array PWF conforma-
tion instead of the focused technique. However the focused technique should
not be abandoned if improved signal processing methods are used[266, 267].
Another observation is the increased amplitude of the focused simulated
signal in comparison to the experimental trace.
This is again a side effect of the problem commented on page 96 which refers
to the programme elementary directivity model.

Figure 5.16: Radiation diagrams for the d = 1 mm Al plate were Gr =
29.5 dB, σ2

n = 0.06 pW. The maximum main lobe occurs approximately at
θr ≈ 9.25o.
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Figure 5.17: Measured and simulated
PWF signals from DAS output @δs = 0o

Figure 5.18: Measured and simulated
focused signals from DAS at δs = 0o.

5.3.2 The air-coupled concave arrays

This section introduces and briefly discuss the characteristics of the air-
coupled concave apertures used in an NDT system with Lamb waves[77, 299].
Figures 5.19 and 5.20 shows images of one of the 32 element concave arrays
that integrate a developed NDE system used during the tests of the LAMB
software48.
The arrays are basically composed of 64 piezoelectric slabs arranged in a
cylindrical shape with a radius of R ∼= 35 mm.
The bars are connected by pairs forming 32 twin sensors with the frequency
response shown in Figure 5.8. The dimensions of the bars are: 2̂a = 0.3mm, 2̂b =
15 mm and p̂e = 0.2 mm for width, height, and inter-element space respecti-
vely. This configuration results in the following approximate size of final
receivers: {2a ≈ 1 mm, 2b = 15 mm, and pe ≈ 0 mm} ⇒ de ≈ 1 mm.

Figure 5.19: Photo a cylindrically
concave array with the air-adaptation
layers (Na = 32 eles, R ≈ 35 mm).

Figure 5.20: View of internal 64 piezo-
electric slabs forming 32 twin elements
{2a = 0.3mm, 2b = 15mm, pe = 0.2mm}.

48For more details consult Refs.[178]
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The main purpose of the concave design is to maintain the impact point
fixed while the scan of the plate is performed without any mechanical rota-
tion of the transducer. This is done by switching different sub-array sets in
the aperture when the plate is insonified.
In this aspect this strategy has advantages respect other geometries because
it is capable of focusing on a region with different focal depths[48, 104, 114].
The grouping scheme into twin elements was used to avoid lateral vibration
modes in the piezoceramic slabs and to increased only thickness mode vibra-
tions.
However because the spatial aliasing condition de > ξair/2 is not fulfilled49

the array beampatterns showed in 5.21:P1 present the typical grating lobes50

near ±25oand ± 65o [147, 164].
Figure 5.21 depicts also beampatterns51 for plane arrays with de = ξ0/2 (P2)
and de = 0.4mm (P3), containing Na = 40, and Na = 48 elements respectively.
In the last example the sidelobes are decreased due to the use a Hamming
window creating tapering in the array52.

Figure 5.21: Beampatterns for different ideal plane (P) arrays @f0 = 830 kHz:
P1{Na = 8eles., d = 1mm}, P2{Na = 40eles., d = ξ0/2} & P3{Na = 48taper

eles. , d = 0.4mm}.

49In this case at f0 = 0.83 MHz ⇒ ξair
0
∼= 0.414 mm, see also Table 2.3.

50The P1 beampattern shown in the figure does not actually correspond to a concave
transducer, however with fewer elements (Na ≤ 8) the concavity is low and the pattern
can be approximated by those of an easily calculated ideal plane array.

51Beampatterns should not be confused with the array steered response to a set of
signals.

52Unfortunately this method also increase the width of the main lobe a little.
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Figure 5.22: Side view of the programme simulation scenario indicating the
excitation and emission zones with different receiver arrangements.

Finally we note how a wider aperture reduces the width of the main lobes
which increases the resolution.
In this matter the concave silhouette represents a limitation because of the
combined effect of their inherent geometry and the directivity of the sensors,
see Fig. 5.6.

5.3.3 Simulations for a proposed new plane array

This section introduces a group simulations53. for a proposed air-coupled
plane receiver composed of 48 sensors with the following dimensions {2a, 2b, pe} =
{0.4, 15, 0}mm.
This new design was selected among other alternatives between a wider aper-
ture width54 (lA ↑) and a diminished aliasing effect condition de → ξ/2.
The simulations presented were made for a d = 1.5mm aluminium plate under
ideal conditions (σ2

n = 0) with different receiver arrangements: L1, L2 & L3

(see Figure 5.22).
The individual aperture sensors were emulated using ideal point receivers55

either with or without the directivity filter effect (Adir.) presented in §5.2.3.
The emitter used in all cases was a concave array (R = 35mm) made up of 16
SIE emitters {2a, 2b, pe} = {1, 15, 0}mm, excited by a 1cycle symmetric square
wave with f0 = 830 kHz.
The distance between focal points on the plate was r = 70mm except for the
last example where r = 100 mm was used.
Figures 5.22 - 5.24 show details of the simulation setup indicating the three
possible receiver locations: L1, L2 & L3.

53For a simulation of a dispersion map detection in d = 0.8 mm aluminium plate using
this array see Appendix B.

54Details of phased array design can be found for example in Refs.[289, 244]
55Consult Appendix D for differences in calculations when multi-point sensors are used.
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Figure 5.23: Detail of the plate excita-
tion zone with 24 @a = 0.5 mm circular
radiators arranged in an X line.

Figure 5.24: Detail of the laminate
emission area with 201 rectangular
sources [2ar, 2br] = 0.5mm along X axis.

The first comparisons were for the A0 mode with four types of receiver aper-
tures all positioned at L1@θr = 8o and the following characteristics:

• C1: a 10 element concave array (R = 35mm, de = 1mm) with Adir. = on.

• P2: a 48 element linear array (de = 0.4 mm) with the filter Adir. = on.

• P3: a 48 element linear array (de = 0.4 mm) with the filter Adir. = off.

• P4: a 48 tapered-element linear array (de = 0.4 mm) with Adir. = off.

The respective steered responses for each of the arrays are depicted in Fig. 5.25.
It is clearly appreciated that the effect of directivity of the sensors modifies
the patterns whether the directivity model is included or not.
Note that the narrow main lobes of the wider plane aperture (lA = 19.2 mm)
and the lower grating lobes with de = 0.4 mm instead of those of the concave
receptor.56.

The next simulation was for the A0 and S0 modes using receiver P2 placed
at different locations: L1, L2 & L3.
Here Lamb modes were modelled as pure vibrations, each isolated from the
others assuming ideal conditions (σ2

n = 0 pW).
The radiation patterns for the corresponding array positions are shown in
Figure 5.26. Locations L1 and L2 were simulated with a reception angle of
θ = 8o for P2 while the angle for L3 was θ = 0o.

56In a real transducer the dimensions could be: {2a, 2b, pe} = {0.4, 15 − 30, 0}mm for
width, height and inter-element space respectively. Also, although not used here due to
the current settings, the frequency operation band of this transducer should be close to
→ 0.5 MHz in order to avoid the spatial aliasing effect.
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Figure 5.25: Radiation diagrams for the A0 mode on the d = 1.5 mm alu-
minium plate (L1, Gr = 20 dB, σ2

n = 0 pW). The main lobes occurs near
θr ≈ 8o. A Hamming window was used for tapering the array P4.

Figure 5.26: These are the radiation diagrams for the A0 and S0 modes
in the d = 1.5 mm aluminium plate using array P2 in different locations
(Gr = 20 dB, σ2

n = 0 pW). The main lobes for A0 are near θr ≈ 8o, while for
S0 is close to θr ≈ 3.85o.
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Figure 5.27: DAS output for A0 mode
in Al@1.5 mm with P2 in L1 and L3.

Figure 5.28: DAS output for A0, S0 &
A1 modes in Al@1.5mm with P2 array
in L1 and r = 100 mm.

The major effect observed is the low power of the S0 mode in contrast to
those of A0 more than 20 dB.
This makes the task of identifying and isolating this mode from the others
very difficult even under ideal conditions.
Note the signal gain obtained when the array is situated closer to the plate
i.e. about 5 dB for position L2.
With regard to the saw-like silhouette observed to the left of the A0 main
lobes, this phenomenon also appears faintly in the experimental patterns of
figures 5.15 and 5.16 and seems to be provoked by an interference effect at
the receiver that degrades the output signals when the array is steered in
the direction away the source.
The next Figure 5.27 shows respective outputs from the DAS beamformer
for cases L1 and L3 at δs = 0o with the A0 mode. While Figure 5.28 depicts
final beamformer signals for the A0, S0 & A1 modes with P2 located at
L3 : δs = 0o and r = 100 mm57.
Note the very low amplitudes of the S0 and A1 modes in contrast to those
of A0. This is more than 1000 times for e.g. A1 mode.
However the validation of the amplitudes of these modes requires further
experimental tests which unfortunately can not be addressed with the present
hardware limitations.

5.4 Conclusions

This chapter have introduced the constituting parts of the LAMB software:
1)Emission, 2)Propagation and 3)Reception, describing their main charac-
teristics and integration.

57When δs = 0o is indicated we mean the DAS output at the maximum peak in the
diagram of the corresponding mode.
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Special emphasis was given to the reception section who simulates the re-
ceiver aperture and includes a model for the spatial response of indivi-
dual sensors. This feature was implemented by means of two-dimensional
directivity model based on the emission/reception reciprocity analogy and
using the energy radiation pattern produced by a rectangular source at a
fixed distance.
The array sensors limited directional response was effectively verified by
experiments and simulations and its important influence on the global per-
formance of an air-coupled NDE system was confirmed. This spatial effect
is tightly coupled to the general geometry of the arrays and determines its
final response.
Then, although the benefits of a concave receiver for maintaining fixed the
focal point while the angular scan of the plate is performed, because of the
strong directional response of the sensors it it suggested that this aperture
should be replaced by a plane transducer. In this aspect, a new plane air-
coupled receiver composed of 48 sensors with the dimensions [2a, 2b, pe] =
{0.4, 15, 0}mm was proposed58.
This was selected as a compromised choice between a wider amplitude aper-
ture with narrow sensors and a moderate number of receiver channels. It
is also suggested, although this is highly application dependable, that the
frequency operation band of the transducers should lower, around ≈ 0.5MHz
in order to not introduce much aliasing effect. This in turn will reduce the
attenuation of the ultrasound in air, as well as simplify the design of the
receiver electronics59.

The assessment of the complete programme was made by comparisons with
experimental data obtained from metal plates examined with a real proto-
type of an air-coupled NDE system using Lamb waves[77, 299].
A moderate degree of accuracy have been obtained during all tests with the
detected A0 mode. On the other hand, the evaluation of the software with
other Lamb modes i.e S0, A1, etc. still remains subject to the availability of
an improved hardware. This is an important point to attain in the future in
order to further verify the accuracy and usefulness of the tool.
As well, although efforts has been made to achieve the programme calibra-
tion, this was not possible to attain by the moment. This is because there
are still issues relative to the GMM code and the simplified directivity model
presented that possibly might require revision and further improvement.

58This dimensions corresponds to: width, height and inter-element distance. The actual
value for the height is not so determinant because this is a 1D array, then it could be for
example between 10 mm− 30 mm.

59The is a very important issue when designing a high frequency, high gain (more that
60 dB) ultra-low noise amplifier[298].
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The coherent nature of the plate radiated fields produced by the Lamb waves
was effectively characterized by the inclusion of a Delay And Sum (DAS)
beamformer in the reception module of the programme.
The problem of identification of low energy Lamb modes (i.e S0, A1, etc)
buried into A0 signals, was also introduced by comparisons of different radi-
ation patterns. These clearly depict the problem of single mode separation
when several modes are present in the array detected signals60. However
with the availability of improved signal precessing techniques this might be
circumvented61.

60In this aspect attempts had been made by the author to implement a Side Lobe Can-
celler (SLC) for wideband signals[127, 164] in the receiver stage, although with inconclusive
results.

61These are for example the use of wavelets[97]
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Chapter 6

Conclusions and future work

6.1 Review of the Thesis

This thesis has investigated and developed of an analytically based matlab
simulator i.e. the LAMB software.
The main objective of the programme is the analysis of the performance of
new array aperture designs and the testing of signal processing techniques
applicable to NDE systems which use Lamb waves in single ideal isotropic
laminates.
The tool is divided into three modules: 1)Excitation, 2)Propagation and
3)Reception which use the following calculations:

• Calculation of acoustic fields: excited and radiated pressures p(x, y, z, t).

• Determination of the Lamb wave dispersion relationships (<{f}, k).

• Computation of displacements of an ideal isotropic plate uz(x, y, z, t).

The theory developed in Chapter 2 explores the Impulse Response Method
or IRM as a possibility for calculating acoustic fields.
Emphasis was placed on determinating the fields radiated by a rectangular
aperture with use of the IRM approach which was developed by Emeterio
and Ullate[234].
This technique constitutes the basic building block for the excitation module
and the plate radiation computations.
Using this approach an acoustic field simulator FIRST1 was build in Matlab.
The programme simulations were then verified with other well known rep-
utable tools such DREAM, Field II and Ultrasim and the results agreed well.

The basic concepts of wave propagation in multilayered media were reviewed
in Chapter 3.
Matrix techniques such as the Transfer Matrix Method (TMM) and its en-
hanced version the Global Matrix Method (GMM) were analysed.

1The acronym stands for Field Impulse Response Software.
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GMM was implemented to determine the Lamb wave dispersion relationships
(<{f}, k). The results from the GMM code were tested using experimental
data. This data was obtained from laser vibrometer detection techniques and
a 2D FFT method. The GMM code was then included in the propagation
section of the programme.
Chapter 4 investigated the role of a harmonic excited circular radiator which
exerted pressure on the surface of a perfectly elastic isotropic layer. This is
the so called Time Harmonic Solution (THS).
The Lamb wave dispersion data obtained in Chapter 3 were then used to cal-
culate the THS mode vertical displacements based on the assumption that
the far field approximation of circular crested Lamb waves appear as plane
waves.
Then the THS was generalized for wideband signals and the spatial excita-
tion of the laminate was recreated by using the following two strip based
alternative techniques:

• Ideal plane wave (PW) simulation.

• Acoustic field excitation.

The first method uses an arrangement of adequately phased equal amplitude
(along Y-strips) pressure signals distributed along the laminate. While the
second approach uses the acoustic signals calculated with the FIRST simu-
lator.
Both techniques construct the air-coupled excitation by a finite arrangement
of radiators based on neighbouring strips along Y axis on the plate surface.
An alternative formulation of the THS and the point load excitation method
were then compared with the results of principle THS technique.
FEM2 and plate tip impacted experimental data were also compared with
THS simulations and moderate acceptable results were obtained.

The techniques discussed in previous chapters were then unified in Chapter 5
were the internal organization of the LAMB software was presented.
The validation of the programme was carried out by making tests to com-
pare the A0 Lamb mode with data provided by a real air-coupled Lamb wave
based NDT system[77, 299].
A brief analysis of concave aperture array was then made and a simple two-
dimensional directivity model (XZ plane) for individual array sensors was
introduced.
Finally several radiation diagrams simulations for different receiving aper-
tures (plane and concave) with various Lamb modes were presented.

2The author would like to express his sincere gratitude to Dr. Michel Castaings and
specially to the unfortunate and recently deceased Dr. Bernard Hosten from LMP in
Bordeaux-France for their collaboration and support in the achievement of COMSOL
data.
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6.2 Summary of Findings

6.2.1 A new air-coupled Lamb wave based NDE tool

A new free and open source3 simulator is now available for the test of array
aperture designs and the implementation of signal processing techniques ap-
plicable to Lamb wave based air-coupled ultrasonic NDE systems.
The programme was built around three interactive core modules: 1)Excita-
tion, 2)Propagation and 3)Reception and runs in the Matlab r© environment
simulating an ideal isotropic plate under ultrasonic test.
The programme is capable of using single and multimode Lamb waves to
compute the laminate displacements, receiver trace signals and to perform
simple beamforming radiation diagrams.

6.2.2 Directivity effect of individual sensors

The spatial directivity effect of air-coupled individual array sensors was effec-
tively demonstrated and two models were proposed for IRM acoustic field
simulations: 1)SIE and 2) SNIE.
A simple 2D directivity schema based on the reciprocity of radiation/reception
diagrams of a harmonic excited SIE aperture was included in the receiver
section of the programme.
The influence on detected signals and corresponding radiation diagrams pro-
duced by the geometry of the receiver i.e. concave array, was confirmed and
compared with a those from a proposed new plane design4.

6.2.3 Coherent nature of Lamb wave acoustic fields emitted

The spatial coherent nature of the laminate radiated fields produced by the
excited Lamb waves was verified by several receiver radiation diagrams.
It was also shown that it is possible to reconstruct the (f, k) dispersion re-
lation maps locating a plane array parallel to plate5. In this aspect the use
of the coincidence principle with a receiver array is not recommended6 since
the spatial information contained in the plate radiated fields is lost.

3The LAMB programme is covered by the GNU General Public License Version 3 (29
June 2007) from the Free Software Foundation (FSF) http://www.gnu.org.

4The air-coupled plane receiver proposed is composed of 48 sensors with the following
dimensions {2a, 2b, pe} = {0.4, 15, 0}mm. The height dimension (2b) could be widened.

5See figures B.8 and B.9 in Appendix B.
6This is applicable when a wide plane array is used to detect the (f, k) or (f, cph)

dispersion spectrum instead of other apertures. In other cases the use of the coincidence
principle with a slide sampling receiver is an alternative. See for example Refs.[97, 104,
114].
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Only when the SNR ratio is low the application of this principle in conjunc-
tion with e.g. spatial matched7 filter is advised.

6.2.4 DAS beamforming

The first stage of a signal processing block was added to the tool by the
implementation of a simple DAS beamformer.
The influence on the radiation diagrams provoked by the noise and interfe-
rence contained in the detected signals was verified as the main source of
error in the diagrams.
Other causes of pattern modification such as the use of arrays with wider
sensors8 and non-plane aperture designs were also verified.

6.3 Future work

6.3.1 Individual modules

§Emission:

Future work in this software section involves fixing the problem encountered
in zone IV of the IRM calculations of the FIRST simulator9.
The addition of other types of apertures such as circular and two-dimensional
array transducers is also of interest for possible inclusion in the programme.
The translation of the code to C/C++ can greatly improve the speed of the
programme. This will be possible as soon as the will be reorganise to obtain
a stable version.

§Propagation:

The GMM code implemented to determine the Lamb wave dispersion rela-
tionships can be enhanced by: 1) revising the searching algorithm to improve
its time/accuracy efficiency, 2) translate the code to the mp arithmetic10.
The THS method used to calculate the plate displacements can be extended
to more complex multilayer isotropic models[?].
A full study of the coded equations to solve response solutions11 can lead to
a connection of GMM with the angular spectrum method (ASM) introduced
on § 2.2.4. This would be a more accurate solution than the THS and an
interesting addition to the LAMB software.

7This is the simple Delay And Sum beamformer (DAS). For other types of beamformers
see Ref.[164].

8This provokes spatial aliasing effects when ξair
min/2 < 2a.

9See e.g. the notch in Fig. 2.17.
10The matlab multiple precision arithmetic toolbox http://www.swox.com/gmp .
11These are the solutions for a multilayered system excited by plane waves[204].
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§Reception:

To improve this programme module an enhanced model for the noise+interference
effects should be added to the simulated received signals.
A revision and 3D generalization of the directivity model will enable the anal-
ysis of plate emitted fields with two-dimensional arrays. The implementation
of other types of adaptive spatial filters and signal processing algorithms12

apart to the DAS beamformer included is also suggested.

6.3.2 LAMB software: further assessment

Because the software is on its initial stage many are the comments and
suggestions possible. The following is a list of the main for improvement:

• Programme assessment with other Lamb modes i.e. S0, A1, etc. This
will require improved hardware that permits acquisition of crucial ex-
perimental data to compare with the toolbox predictions.

• Translation of the complete code to C/C++ programming language.
This will reduce significantly the time required for the computations
and allow for more complex simulations to be carried out.

• Programme calibration: this is the most difficult goal to attain because
it involves the emulation of a complex system. However with the avai-
lability of additional measurement data this could help to identify a
calibration subset for some materials and plate widths.

6.3.3 Air-coupled NDT systems: hardware improvements

A short list with suggestions for the design of new air-coupled NDT systems
based on air-coupled Lamb waves is summarized here.

• Better receiver electronics design: the reduction of noise and the inter-
ference are key factors in the design of a successful air-coupled NDT
system. This is because the received signals are often too noisy and in
some cases extremely weak to detect.

• Use of plane arrays: despite the natural focusing advantages of a con-
cave aperture the use of small elements and wider plane arrays im-
proves the spatial discrimination feature required in NDT with Lamb
waves[147, 149].

12The inclusion of the Minimum Variance (MV) or Capon beamformer[30, 32], the
Amplitude and Phase Estimation beamformer (APES)[103, 263], as well Direction Of
Arrival (DOA) or angle estimation techniques[164]
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• Use of broadband air-coupled transducers: although some NDT ap-
plications may require only narrowband signals, the study and anal-
ysis of complex phenomena may need the operation in wideband of
frequencies[194, 205, 239, 292]. For example high acoustic pressures
may lead to nonlinear responses with harmonics[24, 75]. The air atte-
nuation effect is a strong drawback in this respect and operations be-
yond f > 3.5 MHz are not recommended. See e.g. Fig. 2.7.

Apart from these suggestions there are many others possible for a complex
structure such as an air-coupled NDE system based on Lamb waves whether
it be real or simulated. This is because the vibration phenomena it involves
are simply enormous.
Simple questions such as: What does this feature in this signal mean when
the plate is. . . ? or How will the laminate/s respond when a crack of this...
is present? and so on. . . requires a profound understanding of many pheno-
mena and diverse fields such as mechanics, electronics and signal processing.

Throughout time the efforts of many researchers have contributed to the
growth of knowledge in this field both in the comprehension of the mecha-
nics of vibrations and of its new applications in modern technology.
In recent years the NDT/NDE field has experience a tremendous expansion
with the increasing addition of signal processing aids.
The present tool although modest in its scope valid for single isotropic plates
offers an approximate simulation scenario of an air-coupled ultrasonic NDE
system based on Lamb waves using 1D array transducers.
The main objective of the programme is the modelling new emitter/receiver
apertures designs and the test of improved signal processing methods before
implementation into a hardware prototype.
Finally, to be able to advance knowledge in this field a deep understanding
of the fundamental mechanics and signal processing techniques is essential
for successful analysis of the gathered information.
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Appendix A

Calculation of the air medium characteristics

This appendix summarizes the expressions for determination of the air medium
characteristics used in the LAMB programme plus a group of comparisons of
simulated ultrasonic signals between the Ultrasim software and the FIRST
programme.

A.1 Equations for determination of the attenuation
of ultrasound in air

The frequency response attenuation function Aatte(R, iw) or attenuation filter
used in equation (2.33) to calculate the attenuated impulse response function
ha(x, y, z, t) at a point Px,y,z is expressed by

Aatte = 10−
Rα
20 (A.1)

Where R [m] is the distance between the point where the acoustic field is
calculated Px,y,z and the origin of the rectangular radiator1.
The equations for the determination of the attenuation coefficient α [Np/m]
were obtained from Refs.[20, 21, 23] and are:

α = αcr + αviv,O + αviv,N (A.2)

with the classical+rotational and the vibrational oxygen and nitrogen atte-
nuation coefficients expressed by2:

αcr = 1.84 10−11f2

(
P0

P01

)√
T

T01
(A.3)

αviv,O = f2

(
T0

T

)5/2
1.278 10−2 e

−2239.1/T

fr,O + f2

fr,O

 (A.4)

1See Oa in figures 2.1 and 2.3
2The ambient pressure is P0 [Bar], the relative humidity Hr[%] and the absolute tem-

perature T [K]. While P01 = 1 Bar, T0 = 293.15 K and T01 = 273.16 K.
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αviv,N = f2

(
T0

T

)5/2
1.068 10−1 e−3352/T

fr,N + f2

fr,N

 (A.5)

The oxygen fr,O and nitrogen fr,N relaxation frequencies in [Hz] are given by

fr,O =
(
P0

P01

)(
24 + 4.04 104h

(
0.02 + h

0.391 + h

))
(A.6)

fr,N =
(
P0

P01

)√
T0

T

(
9 + 280 h e

−4.17

((
T0
T

)−1/3
−1

))
(A.7)

with

log10

(
Psat

P01

)
= 10.79586

(
1− T01

T

)
− 2.2195983

+ 1.50474 10−4
(
1− 10−8.29692(T/T01−1)

)
+ 0.42873 10−3

(
104.76955(1−T01/T )

) (A.8)

and the water mole fraction h [%] is:

h = Hr
Psat/P01

P0/P01
(A.9)

A.2 Calculation of the air density

The calculation of the air density ρ[kg/m3] was based on Refs.[31, 53, 79], with
t [oC] and T [K] being the ambient and absolute temperatures respectively3.
Then:

ρ =
P0Ma

[
1− xv

(
1− Mv

Ma

)]
ZRT

(A.10)

with

Z = 1− P0

T

[
a0 + a1t+ a2t

2 + (b0 + b1t)xv + (c0 + c1t)x2
v
]
+
P 2

0

T 2

[
d+ ex2

v
]

(A.11)

xv =
Hrfptpsv

100P0
fpt = α+ βP0 + γt2 psv = eAT 2+BT+C+D

T (A.12)

3Here the atmospheric pressure is P0 [Pa] and the percentage of relative humidity Hr.
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and the following coefficients values:

R = 8.31441 [J/(mol K)] a0 = 1.62419 10−6 [K/Pa] (A.13)

Mv = 48.015 10−3 [kg/mol] a1 = −2.8969 10−8 [1/Pa] (A.14)

Ma = 28.9635 10−3 [kg/mol] a2 = 1.0880 10−10 [1/(K Pa)] (A.15)

A = 1.2811805 10−5 [K-2] b0 = 5.757 10−6 [K/Pa] (A.16)

B = −1.9509874 10−2 [K-1] b1 = −2.589 10−8 [1/Pa] (A.17)

C = 34.04626034 c0 = 1.9297 10−4 [K/Pa] (A.18)

D = −6.3536311 103 [K] c1 = −2.285 10−6 [1/Pa] (A.19)

α = 1.00062 d = 1.73 10−11 [K2/Pa2] (A.20)

β = 3.14 10−8 [1/Pa] e = −1.034 10−8 [K2/Pa2] (A.21)

γ = 5.6 10−7 [1/oC2] (A.22)

A.3 Determination of the speed of sound in air

The following equation was used for the calculation for the speed of ultra-
sound in air[23, 102]

c = c0

√
T

T0
; with

{
c0 = 331.31 m/s
T0 = 273.16 K

(A.23)

A.4 Comparison of ultrasonic signals with Ultrasim

This section presents a group of comparisons between simulations with the
FIRST programme and the Ultrasim acoustic simulator. The simulations4

were carried out for a single rectangular transducer or Single Ideal Element
(SIE5) and plane and concave6 arrays composed of 16 SIE radiators. The
comparisons were made for single frequency (CW) and pulse type7 signals
without inclusion of the attenuation of sound in air8.

4All the simulations show the maximum amplitudes of the signals normalized and
expressed in dB. The simulations along the X and Y axes were carried out for segments of
lines at 35 mm distant from the origin of the transducers and the focus of the array were
set at infinity.

5All SIE used had the following dimensions: 2a = 1 mm, 2b = 15 mm for width and
height respectively. For details on the geometry see for example figures 2.1 and 2.24.

6This is a cylindrical concave array with a radius R = 35 mm.
7A single cycle sinusoid signal @f0 was used.
8This because Ultrasim does no includes a model for the attenuation effect, then α = 0.
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§SIE comparisons

Figure A.1: SIE simulations with CW @f0 = 0.5 MHz along an X line.

Figure A.2: SIE simulations with CW @f0 = 0.5 MHz along an Y line.

Figure A.3: SIE simulations with CW @f0 = 0.5 MHz along an Z line.
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Figure A.4: SIE simulations with pulsed signal @f0 = 1MHz along an X line.

Figure A.5: SIE simulations with pulsed signal @f0 = 1 MHz along an Z line.

§Concave array comparisons: R = 35 mm, Na = 16 SIE

Figure A.6: Concave array CW simulations @f0 = 1 MHz along an X line.
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Figure A.7: Concave array CW simulations @f0 = 1 MHz along an Y line.

Figure A.8: Concave array CW simulations @f0 = 1 MHz along an Z line.

Figure A.9: Ultrasim CW simulation
for a concave array generating a plane
wavefront (PWF) f0 = 1 MHz in an XZ
plane.

Figure A.10: FIRST CW simulation
for a concave array generating a PWF
(focus at infinity) f0 = 1 MHz in an XZ
plane.
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§Plane array comparisons: Na = 16 SIE

Figure A.11: Plane array CW simulations @f0 = 1.5 MHz along an X line.

Figure A.12: Plane array CW simulations @f0 = 1.5 MHz along an Y line.

Figure A.13: Plane array CW simulations @f0 = 1.5 MHz along an Z line.
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Figure A.14: Plane array pulsed simulations @f0 = 1.5 MHz along an X line.

Figure A.15: Plane array pulsed simulations @f0 = 1.5 MHz along an Y line.
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Appendix B

Lamb wave dispersion curves and wavelengths

This appendix depicts Lamb wavelength values and dispersion curves for
other modes and layered systems.

B.1 Lamb wavelength curves for S0 and A1 modes

The values of the Lamb wavelengths for the S0 and A1 modes in aluminium
and copper plates are presented with the element radiation parameter1 con-
ditions ra,b = 2 and ra,b = 1 and the size of the IRM plate elements used in
the simulations [2ar, 2br] = 0.5 mm.

Figure B.1: Wavelength curves for S0
modes indicating the radiation condi-
tions ra,b and the limit of 0.5 mm.

Figure B.2: Wavelength curves for A1
modes indicating the radiation condi-
tions ra,b and the limit of 0.5 mm.

B.2 Lamb wave dispersion curves for other systems

The dispersion curve results obtained with the implemented Global Matrix
Method[158] (GMM) in the LAMB programme are presented here for two
other 3-layer systems: 1)water-Titanium-water2 and 2)air-Aluminium-air.

1For more details see Table 2.3 and Figure 5.5.
2This particular example had been selected in order to validate the developed routines

with well known data[157]
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Figure B.3: Dispersion curves for 1 mm width Titanium sheet in water.

Figure B.4: Attenuation curves for the same system water-Ti@1 mm-water.
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Figure B.5: Dispersion curves for 3.2 mm width Aluminium sheet in air.

Figure B.6: Attenuation curves for the same system air-Al@3.2 mm-air.
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B.3 Plane array detected dispersion maps

This section shows the Lamb wave dispersion data for an aluminium plate
(d = 0.8 mm) generated by a two-dimensional FFT transform[9, 101, 145] of
the signals received with the proposed 48 element plane array3.
This simulation resembles the experiment carried out with the laser vibrom-
eter in Chapter 3, Fig. 3.11.
The LAMB programme simulation setup is shown in the following figure B.7.

Figure B.7: View of the simulation scenario for the dispersion data detection
with a 48 element plane array located at: (P3, L1) and (P3, L2).

Then observation of figures B.8 and B9 (see the next page) clearly indicate
that use of the coincidence principle in the receiver i.e θr = θi = 9o, destroys
the Lamb waves spatial information contained in the acoustic field radiated
by the plate.

In this case the positioning of the plane receiver oriented parallel to the
laminate is a better location for this purpose.
It is of course possible to reconstruct the same map by aligning the receiver
signals in location L2 with e.g θr = 9o. But in multimode Lamb wave signals
this process has to be done for all present modes4, then this technique is not
recommended.

3Single point elements were used to simulate this array {2a, 2b, pe} = {0, 0, 0.4}mm.
4This depends on which modes are being simulated (?).
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Figure B.8: Comparison of plane array (L1@θr = 0o) dispersion map detected
in an aluminium plate (d = 0.8mm) and the superimposed GMM simulations.
Mode: A0, sinusoidal burst @20cnt., f0 = 1 MHz, fs = 100 MHz, fs2 = 1/0.4 mm.

Figure B.9: Comparison of plane array (L2@θr = 9o) dispersion map detected
in an aluminium plate (d = 0.8mm) and the superimposed GMM simulations.
Mode: A0, sinusoidal burst @20cnt., f0 = 1 MHz, fs = 100 MHz, fs2 = 1/0.4 mm.
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Appendix C

The time harmonic equations

This appendix summarize the required equations for the Time Harmonic
Solution (THS) in order to calculate the displacement fields provoked by a
single circular radiator exerting a sinusoidal pressure waveform on the sur-
face of an infinite ideal isotropic laminate of width d.

C.1 Summary of equations for the THS method

The normal and radial displacements on the plate are given by:

ũs,a
z (r, z) = i

π

2µ

∑
ks,a

F 0 (ks,a) ks,a
Γs,a

zn (ks,a)
∆’

s,a(ks,a)
H

(1)
0 (ks,ar) ; r > a (C.1)

ũs,a
r (r, z) = i

π

2µ

∑
ks,a

F 0 (ks,a) ks,a
Γs,a

rn (ks,a)
∆’

s,a(ks,a)
H

(1)
1 (ks,ar) ; r > a (C.2)

with the following equations for the Γs,a
z,r (z, k) functions for symmetric and

anti-symmetric Lamb modes1:

Γs
zn = ktl

[
2k2 sin (ktld/2) sin (ktsz) +

(
k2

ts − k2
)
sin (ktsd/2) sin (ktlz)

]
(C.3)

Γs
rn = k

[
−2ktlkts sin (ktld/2) cos (ktsz) +

(
k2

ts − k2
)
sin (ktsd/2) cos (ktlz)

]
(C.4)

Γa
zn = ktl

[
−2k2 cos (ktld/2) cos (ktsz) +

(
k2

ts + k2
)
cos (ktsd/2) cos (ktlz)

]
(C.5)

Γa
rn = k

[
−2ktlkts cos (ktld/2) sin (ktsz) +

(
k2

ts − k2
)
cos (ktsd/2) sin (ktlz)

]
(C.6)

The expression of the spatial spectrum function for the piston like harmonic
pressure excitation is

F 0 (k) = Pa
J1(ka)
k

(C.7)

1More details in Refs.[57, 201].

127



Where P in [Pa] is the amplitude of the pressure and a [m] the radius of the
piston. The dispersion relationships ∆s,a are given by:

∆s =
(
k2

ts − k2
)2 cos (ktld/2) sin (ktsd/2) + 4k2ktlkts sin (ktld/2) cos (ktsd/2)

(C.8)

∆a =
(
k2

ts − k2
)2 sin (ktld/2) cos (ktsd/2) + 4k2ktlkts cos (ktld/2) sin (ktsd/2)

(C.9)
where

ktl =

√
w2

c2L
− k2 ; cL =

√
λ+ 2µ
ρ

(C.10)

kts =

√
w2

c2S
− k2 ; cS =

√
µ

ρ
(C.11)

§Expressions for determination of the derivatives of the dispersion
equations

The analytic expressions for the derivative terms ∆’
s,a of the dispersion rela-

tionships (C.8) and (C.9) are given respectively by2

∆’
s = −8qk cos (ktld/2) sin (ktsd/2) +

q2k

ktl
(d/2) sin (ktld/2) sin (ktsd/2)

− q2k

kts
(d/2) cos (ktld/2) cos (ktsd/2) + 8ktlktsk sin (ktld/2) cos (ktsd/2)

− 4
ktsk

3

ktl
sin (ktld/2) cos (ktsd/2)− 4

ktlk
3

kts
sin (ktld/2) cos (ktsd/2)

− 4ktsk
3(d/2) cos (ktld/2) cos (ktsd/2) + 4ktlk

3(d/2) sin (ktld/2) sin (ktsd/2)
(C.12)

∆’
a = −8qk sin (ktld/2) cos (ktsd/2)− q2k

ktl
(d/2) cos (ktld/2) cos (ktsd/2)

+
q2k

kts
(d/2) sin (ktld/2) sin (ktsd/2) + 8ktlktsk cos (ktld/2) sin (ktsd/2)

− 4
ktsk

3

ktl
cos (ktld/2) sin (ktsd/2)− 4

ktlk
3

kts
cos (ktld/2) sin (ktsd/2)

+ 4ktsk
3(d/2) sin (ktld/2) sin (ktsd/2)− 4ktlk

3(d/2) cos (ktld/2) cos (ktsd/2)
(C.13)

2These are calculated taking the derivative of ∆s,a with respect to k and maintaining
the frequency fixed ⇒ w = const.
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were

q =

√
w2

c2S
− 2k2 (C.14)

Alternative numerical expression for the determination of these derivatives
can be also accomplish using for example the following approximation formula[139]
with: y = f(x) = ∆s,a(k,w); w = conts. and x = k ; e.g. ∆x = k/10000

y
′
n ≈

1
12∆x

(3yn+1 + 10yn − 18yn-1 + 6yn-2 − yn-3) (C.15)

C.2 Summary of expressions for point load excitation

A list of the remaining terms for calculation of the displacement fields for
the point load solution is shown here. For more details consult Refs.[5, 6]3:

us
z(r, z) =

∑
ks

Ds
n[s3 sin (pz) + s4 sin (qz)]H(2)

0 (ksr) (C.16)

ua
z(r, z) =

∑
ka

Da
n[a3 cos (pz) + a4 cos (qz)]H(2)

0 (kar) (C.17)

us
r(r, z) = −

∑
ks

Ds
n[s1 cos (pz) + s2 cos (qz)]H(2)

1 (ksr) (C.18)

ua
r (r, z) = −

∑
ka

Da
n[a1 sin (pz) + a2 sin (qz)]H(2)

1 (kar) (C.19)

where

Ds
n =

kPŴ n
s (z)

4iÎs
nn

Da
n =

kPŴ n
a (z)

4iÎa
nn

(C.20)

and

s1 = 2 cos (qh) a1 = 2 sin (qh) (C.21)

s2 = −[(k2 − q2)/k2] cos (ph) a2 = −[(k2 − q2)/k2] sin (ph) (C.22)
s3 = −(2p/k) cos (qh) a3 = (2p/k) sin (qh) (C.23)

s4 = −[(k2 − q2)/(qk)] cos (ph) a4 = [(k2 − q2)/qk] sin (ph) (C.24)

The expression for W n
s,a and Is,a

nn are:4

W n
s = An[s3 sin (pz) + s4 sin (qz)] W n

a = Bn[a3 cos (pz) + a4 cos (qz)]
(C.25)

Is
nn = µ[cs1 cos2 (ph) + cs2 cos2 (qh)] Ia

nn = µ[ca1 sin2 (ph) + ca2 sin2 (qh)]
(C.26)

3Here the nomenclature of [5] is followed.
4The caret above the symbols in Eqs. (C.20) indicates that An = Bn = 1.
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with

cs1 =
(k2 − q2)(k2 + q2)

2q3k3
[2qh(k2 − q2)− (k2 + 7q2) sin (2qh)] (C.27)

cs2 =
(k2 + q2)
pk3

[4k2ph+ 2(k2 − 2p2) sin (2ph)] (C.28)

ca1 =
(k2 − q2)(k2 + q2)

2q3k3
[2qh(k2 − q2) + (k2 + 7q2) sin (2qh)] (C.29)

ca2 =
(k2 + q2)
pk3

[4k2ph− 2(k2 − 2p2) sin (2ph)] (C.30)

and5

p =

√
w2

c2L
− k2 ; cL =

√
λ+ 2µ
ρ

(C.31)

q =

√
w2

c2S
− k2 ; cS =

√
µ

ρ
(C.32)

5The corresponding dispersion equations are the same as Eqs. (C.8) and (C.9).
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Appendix D

Results for different receivers and plate profiles
The differences in simulations when using punctual and multi-point receivers
in the LAMB programme are presented in this appendix. The appendix also
includes comparisons results for line and two-dimensional excitations/emission
plate profiles as well as simulations when the ideal plane wave (PW) excitation
condition is used. The common parameters for the simulations were:

• Plate and mode: d = 1.5mm aluminium laminate with A0 Lamb mode.

• THS zone parameters:

– Excitation 1: line {[lx, ly] ∼= [20, 0] mm} & two-dimensional rectan-
gular profiles {[lx, ly] ∼= [20, 8]mm}. Radius of filling circles a = 0.5mm.

– Emission 2: line {[lx, ly] ∼= [40, 0] mm} and two-dimensional rec-
tangular profiles {[lx, ly] ∼= [40, 8] mm}. Square IRM plate filling
elements {2ar, 2br} = {0.5, 0.5}mm.

• Emitter1:

– Transducer1: SIE concave array: Na = 16, R = 35mm, tilt θi = 8o,
cord ca ∼= 15.87mm. Element dimensions {2a, 2b, pe} = {1, 15, 0}mm.

– Excitation: plane wave generation (focus at infinity), with a single
cycle symmetric square pulse f0 ∼= 830 kHz, BW = 0.7-1.2 MHz.

• Receiver:

– noise+directivity: ideal conditions σnoise = 0, directivity Adir = on.

– Transducer 2a: concave array: Na = 10, R = 35 mm, θr = 8o, ca ∼=
9.97mm. Element type: single point sensors {2a, 2b, pe} = {0, 0, 1}mm

– Transducer 2b: concave array, Na = 10, R = 35 mm, tilt θr = 8o,
cord ca ∼= 9.97 mm. Element type: rectangular multi-point sensors
{width,height} ↔ {2, 10} points, dims. {2a, 2b, pe} = {1, 10, 0}mm.

• Normalization: All reception radiation diagrams are normalized and
express in dB.

1This is valid for all the cases with the exception on the last two examples in which
the array were replaced by the ideal PW excitation. See pp. 73.
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The following figures A1-A6 detail the plate simulation conditions (E1a,b and
E2a,b) used in the calculation of the radiation diagrams with single (T2a) and
multi-point (T2b) sensor arrays2. The comparisons were made using different
combinations of receiver transducers and excitation/emission plate profiles.

Figure D.1: View of the line profile
simulation scenario with T1 and T2a.

Figure D.2: View of the 2D profile
simulation scenario with T1 and T2b.

Figure D.3: Top view of the line
excitation region E1a.

Figure D.4: Top view of the 2D
excitation region E1b.

Figure D.5: Top view of the line emis-
sion zone E2a with a 10 sensors multi-
point transducer T2b on top.

Figure D.6: Top view of the 2D plate
emission area E2b with the single point
10 element transducer T2a on top.

2In figure A5 only the central points of the IRM plate radiation elements are plotted.
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Figure D.7: Radiation diagrams for single and multi-point sensor arrays.

Figure D.8: Radiation diagrams with different emission laminate profiles.
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Figure D.9: Radiation diagrams with different excitation laminate profiles.

Figure D.10: Radiation diagrams for single and multi-point sensor receivers
with different excitation/emission profiles.
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Figure D.11: Radiation diagrams for multi-point 10 sensors concave arrays
with different plate excitation conditions: 1) T1 SIE@16 concave array, 2)
PW or ideal plane wavefront condition [lx, ly] ≈ [20, 8] mm and 3)PWc the
same as PW (see Fig. D.4) but a crossed profile [lx, ly] ≈ [8, 20] mm.

Figure D.12: Radiation diagrams for multi-point 10 sensors concave arrays
with different plate excitation conditions: 1) T1 SIE@16 concave array, 2)
PW [lx, ly] ≈ [20, 8] mm and 3) 1 single SIE radiator {2a, 2b} = {10, 10}mm.
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Appendix E

LAMB toolbox capabilities and computer issues
The software result analysis capabilities and the issues related to time con-
sumed and memory required for the calculations of the toolbox are presented
in this appendix.

E.1 Software results and analysis capabilities

The programme main results and the possibilities of their analysis are listed
here. The possible calculations can be separated into three main categories
with the following characteristics1:

1. Emission results

(a) Pressure signals p(t) on the laminate surface.

2. Propagation results

(a) Calculation of the Lamb dispersion relationships for a given isotropic
layered system by the GMM.

(b) Determination of the displacements u(t) on the plate emission area.
(c) Calculation of the (f, k) spectrum map by 2D FFT from a dis-

crete set of displacement traces captured along a line on the
emission area.

3. Reception results2

(a) Pressure signals p(t) on the receiver input.
(b) Voltage signals v(t) on the receiver output.
(c) DAS Beamforming3

i. Radiation diagrams (energy or amplitude) of v(t) signals.
ii. Beamformer output signal vDAS(t), with or without delays.

1In all the cases were signals are available the extraction and plotting of maximum
amplitude, power and signal delay profiles are available in forms a line and surface plots.
Photo and movie capabilities are also available for pressure and surface displacements.

2The inclusion of the directivity filter Adir(iw) is selectable by the user as well as the
addition of a fixed amount [W] of white Gaussian noise to the traces.

3This is possible only in case of use of an array as a receiver; then a simple Delay
And Sum (DAS) beamformer is available. The code for an implemented sidelobe canceller
(SLC) is also available but inconclusive results at present.

137



E.2 Computer issues

§Time consumed in the calculations

Because of the structure of the software the time consumed during the calcu-
lations depends basically on the size and relative position of the field areas4

defined in the following stages:

1. IRM excitation calculations

(a) Number of transducer excitation elements Nai.

(b) Number of plate field “points” Np.

(c) Distance between the transducer and the plate Ri.

(d) IRM sampling frequency f IRM
s .

2. THS propagation calculations

(a) Number of plate excitation “points” Np.

(b) Number of plate emission elements Ne.

(c) Number of Lamb modes simulated m.

(d) Distance between the excitation/emission areas Rp.

(e) THS sampling frequency fTHS
s .

(f) Number of discrete frequencies Nf to compute in the BW5.

3. IRM plate emission calculations

(a) Number of plate emission elements Ne.

(b) Number of sensors and field points by sensor in the receiver Nar, N
p
ar.

(c) Distance between the emission area and the receiver Rr.

(d) IRM sampling frequency f IRM
s .

These items can be summarized in the following estimated times:

et1 = t̂p1 Np Nai

et2 = t̂p2 mNf Np Ne

et3 = t̂p3 Ne N
p
ar Nar (E.1)

4These two factors in combination with the sampling frequencies chosen determine the
number of points in the traces N1−3. The final Ni = g(tIRM

max ) values are selected after a
→ 2n conversion process for speed up the FFT calculations.

5This is given by: Nf = BW
∆f

, with ∆f = fTHS
s /NTHS.
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where t̂pi [s] are the corresponding estimated times6 required to calculate a
signal at a point originated from a single radiator. Then the programme
total computing estimated time is given by

et = et1 + et2 + et3 (E.2)

Example 1:
As an example of a full computation scenario the following Table E.1 sum-
marizes the parameter values and estimated elapsed times from the test with
A0 mode7 in Figure D.11

Table E.1: Full 2D simulation example from Figure D.11.
1) Nai = 16 Np = 204 m = 1 tp1 = 0.0077 s et1 = 25.13 s
2) Nf = 41 Np = 204 Ne = 1377 tp2 = 0.00032 s et2 = 3685.5 s
3) Ne = 1377 Np

ar = 10 Nar = 10 tp3 = 0.0071 s et3 = 977.67 s
et = 1 : 18 : 14 hrs:min:sec

Example 2:
A more typical and fast example is using line excitation/reception profiles
such as those from Figure D.10. Then the parameters and time are given in
the following Table E.2:

Table E.2: Simplified example from Figure D.10 with line profiles (a case).
1) Nai = 16 Np = 24 m = 1 tp1 = 0.0066 s et1 = 2.53 s
2) Nf = 41 Np = 24 Ne = 81 tp2 = 0.0003 s et2 = 23.91 s
3) Ne = 81 Np

ar = 1 Nar = 10 tp3 = 0.0073 s et3 = 5.91 s
et = 32.4 s

§Programme Memory Use

The programme main memory requirements (Mi in Bytes or Mega Bytes) are
described in this section. These are highly dependant on the way the pro-
gramme was coded and closely related to time calculations8 and the matlab
environment characteristics9. For the LAMB programme these are dived

6These are based on 10 trial calculations on dual core AMD r© 6400+ Athlon machine
running Windows r©XP/SP2 with 3.25 GB of Ram.

7Other parameters for this case were:N1,3 = 16384, N2 = 960, Ri,r = 35 mm, fIRM
s =

100 MHz, fTHS
s = 12 MHz, BW = 0.7-1.2 MHz, ∆f = 12.5 kHz,.

8When using for...to loops in a computer programme there is always a transaction
between memory consumed and time elapsed of calculations. Then the faster the compu-
tations, the more memory is required to perform them.

9The multiplicative constant 2 in equations A.3 and A.5 is due to the use of an addition
buffer during superposition calculations. The case equation A.4 is different because the
frequency excitation matrix [E] is composed of Nf rows and Np columns includes the
amplitude and phase spectrum. The number of Bytes required to storage a quantity in
double type format in matlab is nd = 8 Bytes.
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into:

1. Emission requirements:

M1 = 2Np N1 nd (E.3)

2. Propagation requirements:

M2 = (mNe N2 + 2Np Nf) nd (E.4)

3. Reception requirements:

M3 = 2Nar N
p
ar N3 nd (E.5)

Then the total software memory requirement is given by:10

Mt = M1 +M2 +M3 (E.6)

Using the data from the examples given before, the storage needs in the case
of example 1 will be:

Table E.3: Memory requirements for example 1, Fig. D.11 tIRM
max = 100 us.

1) Np = 204 N1 = 16384 nd = 8 M1 = 53477376 Bytes
2) Ne = 1377 N2 = 960 Nf = 41 M2 = 10709184 Bytes
3) Nar = 10 N3 = 16384 Np

ar = 10 M3 = 26214400 Bytes
M ∼= 86.21 MB

and for example 2 are:

Table E.4: Memory requirements for example 2, Fig. D.10 tIRM
max = 100 us.

1) Np = 24 N1 = 16384 nd = 8 M1 = 6291456 Bytes
2) Ne = 81 N2 = 960 Nf = 41 M2 = 637824 Bytes
3) Nar = 10 N3 = 16384 Np

ar = 1 M3 = 2621440 Bytes
M ∼= 9.11 MB

An example of the → 2n conversion process applied to number of points on
the IRM traces (N1,3) to speed up the FFT calculations are given in the
following Table A.511:

10This is actually an approximated expression based on principal variables only.
11The determination of N2 is not described here because although its determination is

more complex it has less influence in the memory required.
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Table E.5: Number of points of IRM signals N1,3 in function of the maximum time.
tIRM
max 10 us 80 us 100 us 300 us 500 us 1 ms 2 ms

N̂ @f IRM
s = 100 MHz 4000 8000 10000 30000 50000 100000 200000

↓ 212 213 214 215 216 217 218

N1,3 4096 8192 16384 32768 65536 131072 262144

N̂ @f IRM
s = 300 MHz 3000 24000 30000 90000 150000 300000 600000

↓ 212 215 215 217 218 219 220

N1,3 4096 32768 32768 131072 262144 524288 1048576

§Memory fragmentation issues

A common difficulty encountered in a PC environment running Matlab is
the memory fragmentation problem. This problem arouse because of a poor
memory management made by the operating system (OS) and the way in
what matlab stores the information.
The basic idea is although a machine can have large amounts of memory,
say 4 GB the largest size of a free continuous block is bounded by the exis-
tence of other programs and OS process. This situation can be increased by
continuous runs of a matlab programme to reduce the size of the largest free
available block.
Then if a large matrix has to be stored it may not be enough continuous
space to allocated it although there is still memory in the system. This is
because matlab stores matrices in a continuous fashion12.
A list of possible solutions to circumvent this problem are for example:

• Close all non matlab programme and process.

• Activate the /3 GB switch in the boot.txt file13

• Reallocate with a memory utility tool the OS process (dll’s) that ob-
struct and fragment the memory space.

• Re code (if possible) the programme or routine in such a way that uses
less memory at expenses of long computation times.

• Run the programme in a Linux/Unix OS.

12Tools to find out the size of the largest available block are: dumpmemmex.dll in
matlab 6.5 and chkmem.m in matlab 7.x.

13This is for the Windows OS only. To do this enter into Control panel, System, Advance
options, Start & Recovery. Then press edit and add at the end of the line (file boot.txt)
the switch: /3GB .
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Appendix F

Directional response of individual array radiators
This appendix shows the directional response of the individual elements that
integrate the air-coupled concave arrays used in this thesis1. The response of
a real single excited radiator is compared with those of two proposed models:
1)Single Ideal Element (SIE) and 2)Single Non-Ideal Element (SNIE)2.

Figure F.1: Photos of an air-coupled
array with and without adaptation
layers.

Figure F.2: View of the experimental
setup.

Figure F.3: Details of the SIE model. Figure F.4: Details of the SNIE model.

1See figure F.1 and Ref.[178]. The 64 piezoelectric slabs {2a, 2b, pe} = [0.3, 15, 0.2] mm
forms the 32 twin elements.

2For more details consult Ref.[214].
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The setup for the measurements can be observed in figure F.2. A pulsed
signal of f0 ∼= 0.8 MHz and BW ∼= 0.2 MHz was used and the common radial
distance of the measurements was R = 17.3 mm3

Figure F.5: Measured directivity in the XZ plane.

Figure F.6: Measured directivity in the YZ plane.

3This value of approximately half the curvature radius of the array (R ∼= 35 mm) was
used due the very low amplitude of the signals in air. More details in Ref.[214].
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