
Chapter 3

State of the art

The first works related to Fault Diagnosis (FD) started at the beginning of the

seventies. These works treated fault detection in lineal systems. This starting point

coincides with the development reached in that decade by the computers with the birth

of the first microprocessor (1972). Applications of artificial intelligence techniques, such

as artificial neural networks and fuzzy logic, to FD started in the eighties. In the last

decade, the interest about FD in chemical plants increased notably. The International

Federation of Automatic Control (IFAC) created a Technical Committee in 1991. This

Committee organises meetings every three years. This fact has permitted to

standardise concepts and definitions in this area in benefit of the industrial and

scientific community all over the world (Isserman and Ballé, 1997).

FD methods can be classified into three groups: historical based methods, knowledge

based methods and combinations of both.

3.1. Historical based methods

Historical based methods correspond to classification methods, pattern recognition

approaches and statistical techniques. Artificial Neural Networks (ANNs), Principal

Component Analysis (PCA) and Qualitative Trend Analysis (QTA) are the main

examples of techniques of this group.
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3.1.1. Artificial Neural Networks

Among the pattern recognition methods, the Artificial Neural Network (ANN) approach

is the most utilised. ANNs have many very useful properties for fault diagnosis. They

can handle nonlinear and undetermined processes. They learn the diagnosis by means

of the training data. They are very noise tolerant and work well with noisy

measurements. Their ability to adapt during use is also an interesting property.

Figure 3.1 shows a scheme with three common ways of using ANNs for FD. The first

one (Figure 3.1a) is the use of ANNs to differentiate various faults from the normal

condition, and from one another, according to different fault patterns represented in the

measured input-output system data, either by off-line training or on-line training by an

adaptive ANN.

The second one (Figure 3.1b) is a hybrid scheme that uses an ANN to isolate faults,

based on a residual generated by a quantitative model-based method.

The third approach (Figure 3.1c) uses an ANN to predict the plant output, and the

prediction error is used for the residual; another ANN is then used to isolate faults.

In the petrochemical industry ANNs have been used as supervised pattern classifiers.

They are trained on historical or simulated steady state process data with the aim of

detecting a specified number of suspected faults.

The first reports (Hoskins and Himmelblau, 1988; Venkatasubramanian and Chan,

1989; Watanabe et al., 1989; Venkatasubramanian et al., 1990) show the application of

Backpropagation networks (BPNs) using sigmoidal functions in the first layer. In more

recent studies, Radial Basis Function networks (RBFNs) are preferred because they

provide more reliable generalisation and fewer extrapolation errors (Gomm et al., 1998;

Yu et al., 1999). The elliptical basis function neural network is similar to RBFNs with

Gaussian basis function. However, it has more favourable and intuitive results in

function approximation and classification (Chen and Liu, 1998).

Many successful studies have been reported on integrating wavelet transformations

with neural networks (Zhao et al, 1998). Wavelets functions are more localized and

pick up edge effects.

Self Organizing Maps (SOMs), which are trained unsupervised, are not always able to

classify data correctly. However, their ability to classify data autonomously is very

interesting and useful when real industrial processes are considered (Koivo, 1994).



State of the art 11

Plant

ANN

Inputs Outputs

Faults

Plant

ANN

Inputs Outputs

Faults
Residual
Generator

Residuals

Plant

ANN2

Inputs Outputs

Faults
Residuals

ANN1

Predicted Outputs

+

-

c)

b)

a)

c)

Figure 3.1. Ways of using ANNs for Fault Diagnosis. a) Recognising fault patterns in

the input-output plant data; b) Isolating faults, based on residuals generated by a

quantitative model-based-method; c) Predicting plant outputs to generate residuals,

and isolating faults, based on such residuals.

Regarding the special case of faults in sensors, auto-associative neural networks have

been showing good results. Their application is based on the Nonlinear Principal

Component Analysis (NLPCA) technique (Kramer, 1992). Furthermore, a robust auto-

associative neural network can be used to gross error detection, identification and

removal into a single step. Dong and McAvoy (1996) suggest a method that uses

principal curves and three-layered neural networks. Mo et al. (1998) suggest NLPCA

that is based upon functional-link auto-associative neural network (the input layer is

expanded by using the concept of functional link).

Recent works enhance the use of the ANN framework for FD by big improvements in

the following issues: speed of training, introduction of time explicitly into the classifier
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design and on-line updation using a mirror-like process model (Rengaswamy and

Venkatasubramanian, 2000).

3.1.2. Statistical techniques

The use of statistical techniques for FD is based on viewing diagnosis in terms of

quality control. Statistical Process Control (SPC) has been widely used in process

systems for maintaining quality. PCA is a statistical technique that has a wide area of

applications. Among these applications, industrial process monitoring is one of them.

PCA allows to reduce the dimension of the plant models by the use of lineal

dependencies among the variables. The principal components represent the selection

of a new coordination system obtained by rotating the original variables and projecting

them into the reduced space defined by the first few principal components, where the

data are described adequately and in a simpler and more meaningful way.

Considering a matrix X (m x n), that is, m observations of n variables, PCA transforms

it by combining the variables as a linear weighted sum as:

TPTX = (3.1)

where T is defined as principal component scores, P is defined as principal component

loadings. The principal-component loadings denote the direction of the hyperplane that

captures the maximum residual variance in the variables measurements, while

maintaining orthonormality with the other loading vectors. The principal component

scores are the coordinates for the objects in the reduced space. They are uncorrelated

and therefore are measuring different underlying "latent structures" in the data. By

plotting the scores of one principal component vs. another, one can easily see which

objects have similarities in their measurements and form clusters, and which are

isolated from the others and therefore are unusual objects or outliers.

The X data may be decomposed by singular-value decomposition as follows:

VUAX 2/1= (3.2)

where A is a diagonal matrix of eigenvalues of X; PT=V and T=UA1/2.

In practice, the measured variables are usually contaminated by errors, and none of

the eigenvalues are exactly zero, but loadings and scores corresponding to small

eigenvalues are composed of the errors only. Thus, the contribution of the errors in the

data matrix may be decreased by eliminating the loadings and scores corresponding to

the small eigenvalues, and reconstructing the filtered or rectified matrix as:
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represent the selected scores and loadings, respectively. Principal

components are the projections of original variables along the directions determined by

the h eigenvectors {p1, p2, ..., ph } (h<n) corresponding to first h largest eigenvalues of

the covariance matrix of X. An important decision is to select the appropriate number of

principal components that capture the underlying relationship, while eliminating the

errors. Some techniques are available for this task (Jackson, 1991).

Basically, the application of PCA to FD consists in the calculus of the Squared

Prediction Error (SPE) of residual space as:
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where iQ  is the SPE value for the ith sample of process variables.

The process is considered normal if iQ  is between the control limits. These limits are

calculated by:

95% control limits = σ2±Qmean , (3.5)

for 95% confidence limits, being σ  the standard deviation, and

99% control limits = σ3±Qmean , (3.6)

for 99% confidence limits for SPE.

Another index often used for fault detection is the Hotelling T2 test. It is an overall

measure of variability. For new data, the score space is monitored by computing the T2

value as the sum of the squares of the selected scores scaled by the respective

eigenvalue computed from data representing normal operation as:
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where 2
iT is the 2T value for the ith row of measurements, p) is the number of scores

selected, tij is the jth score for the ith row of measurements and jλ is the eigenvalue of

the jth score. Assuming Gaussian distributed measurements, the detection limits are

calculated in the same way described for Q -Equations (3.5) and (3.6) -. It is important

to note that the principal component loadings and detection limits for the scores and

residuals are computed from data representing normal operation.
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Figure 3.2. Example of a Q plot. Fault detected at time 15 (minutes)
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Figure 3.3. Example of a T2 plot and the control limits. Fault detected at time 15 (min.)
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Therefore, the on-line determination of T2 and Q allows to detect a fault. Figures 3.2

and 3.3 show an example where the explained process monitoring charts permit to

detect a fault. Other monitoring charts can be displayed (e.g. plots of one principal

component against other). From the analysis of different monitoring charts a fault can

be diagnosed.

Multiway Principal Component Analysis (MPCA) has been proposed for batch process

monitoring (Nomikos and McGregor, 1994). It will be discussed later on (section 3.4.

Fault diagnosis in batch plants).

PCA has problems to handle a nonlinear process because it is a linear technique.

Some modifications of conventional PCA are being investigated in order to be applied

to the monitoring of chemical plants. A combination of Multiscale PCA with wavelet

analysis shows to be superior to conventional PCA (Bakshi, 1998).

Other difficulty of basic PCA method is the isolation of deviations from normal operating

conditions when the shifts are relatively small. The summed-scores construct have

been proposed to improve conventional PCA in this respect (Wachs and Lewin, 1999).

Since it can be expected that disturbances propagate in a dynamical system with a

given directionality, the summed-scores construct leads to a reinforcement of this

directionality, and thus improves the disturbance detectability. Basically, the summed

scores approach is an extension of the moving-average technique, to the

multidimensional space of scores, obtained from applying the PCA model.

The main drawback of PCA in FD is the fault isolation. Hence, research is focused in

this aspect. By using the equivalence between PCA and the parity relation method in

order to generate structured residuals, faults can be isolated better (Gertler et al.,

1999).

A recent study combine the best of linear PCA and Nonlinear PCA. A multiscale

wavelet decomposition is first performed on process data. Then, linear PCA and

NLPCA are performed separately. Finally, an ANN is trained using the linear PCA

transformed data set as the input layer and the non-linear principal scores as the

output layer (Fourie and de Vaal, 2000).

3.1.3. Trend Analysis

QTA transforms the process variable’s data in descriptions of its trends in an explicit

and meaningful form, in real time (Cheung and Stephanopoulus, 1990). Its application
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to FD has been performed through a methodology based on the multiscale extraction

of process trends (Bakshi and Stephanopoulus, 1994). Its application to real cases is

more recent (Vedam and Venkatasubramanian, 1997) and continues being matter of

research.
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Figure 3.4. Fundamental elements, primitives, the language for sensor trends

The QTA-based monitoring and diagnostic methodology has three main components:

the language used to represent the sensor trends, the method used for identifying the

fundamental elements of the language from the sensor data and their use for

performing fault diagnosis.

The qualitative representation of the trends has fundamental elements called

primitives. Examples of them are shown in Figure 3.4. Groups of primitives form

episodes and episodes combined form a trend.

The method utilised for primitive identification can be based on first and second

derivatives of the process trend calculated using the finite difference method. Other

method is the use of an ANN, taking advantage of its ability to learn from examples and

its tolerance to noise.

The primitives thus identified are used in a knowledge base (KB) to perform fault

diagnosis. A key consideration is the window over which the trend is being identified.

The window should be large enough to capture the process dynamics. Vedam and

Venkatasubramanian (1998) used a B-Spline based compression method to identify

piecewise linears from the trend wherein the window is adaptive to the sensor trend.

The general scheme of a QTA framework is shown in Figure 3.5 (Dash and

Venkatasubramanian, 2000). The approach consists of extracting out the features

(trends and frequencies) from the sensor data. The identified trends (Primitive

identification) are used for the purpose of matching against a knowledge base for the
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diagnosis of known events. Hence, the known events are reported. The unknown

events are characterised by abnormal frequencies (Window size distribution). These

novel events are reported as high certainty events if they are significant in terms of

magnitude. Otherwise, they are logged as medium certainty events. Once the operator

annotates the novel high certainty events, using annotations and the historical data, the

current knowledge base is updated. Thus, the system is capable of on-line

learning/adaptability. Honeywell has licensed this technology developed at Purdue

University for incorporation into an intelligent control system called Abnormal Events

Guidance and Information System (AEGIS). The development of the AEGIS is being

carried out with the support of the ASM Joint Research and Development Consortium

led by Honeywell. It was formed in 1992 to develop the technologies needed to allow

plant operations personnel to control and prevent abnormal situations

(http://www.honeywell.com). The problems with this technique for real-time

implementation on large-scale processes are: the large amount of data to be

processed, the need to distinguish between operational and abnormal events, unclear

definition of normal operation, and incomplete annotations, among others.

Process trending is being exploited as key tool for process monitoring. A statistical

approach to wavelet-based trending has been recently proposed (Bakhtazad et al.,

2000). That system uses hidden Markov models.
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Figure 3.5. Qualitative Trend Analysis framework
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3.2. Knowledge-based methods

The second group of methods correspond to the techniques that require a more

detailed knowledge about the process. Model based methods and inference systems

are included in this group. Observer Based Methods -OBMs- (Patton, et al., 1989),

Assumptions Based Methods -ABMs- (Petti et al., 1990), Signed Directed Graph (SDG)

method (Wilcox and Himmelblau, 1994), and fuzzy logic expert systems (Tarifa and

Scenna, 1997) are the most representative of this group. They are difficult to

implement, require a lot of work for maintenance but their structure is transparent.

3.2.1. Observer based methods

It is one of the most known residual based technique. It consists of two steps: residual

generation and decision process to identify the cause. Figure 3.6 shows a simple

scheme of an OBM. Faults are detected by setting a (fixed or variable) threshold on

each residual signal. A number of residuals can be designed, each having a special

sensitivity to individual faults occurring in different locations in the system. The

subsequent analysis of each residual, once a threshold is exceeded, then leads to fault

isolation. Therefore, the essential issue is the residual generation.

The residual generation can be performed in different forms: hardware redundancy

using parity equations, state and parameter estimation. The OBMs use state estimation

for residual generation. A model of the process in state-space form is needed:

FfEdBuAx
dt
dx

+++= (3.8)

DuCxy += (3.9)

x: states; u: inputs; y: outputs; d: disturbance; f: faults; and A, B, C, D, E, F are the

corresponding matrices to be determined.

The basic idea behind the OBM is to estimate the outputs of the system from the

measurements (or a subset of measurements) by using either Luenberger observer(s)

in a deterministic setting or Kalman filter(s) in a stochastic setting. Then, the (weighted)

output estimation error (or innovations, in the stochastic case), is used as a residual.

With respect to the estimation using Kalman filters, some techniques are being

investigated in order to perform simplifications and to consider non-linear systems

using Extended Kalman Filters -EKFs- (Chang and Hwang, 1998). These EKFs

linearise about the current mean and covariance.
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Figure 3.6. General Observer based method scheme

There are robustness problems with respect to modelling errors and disturbances.

They are being considered in recent works (Patton and Chen, 1997; Chen and Patton,

1998).

The extension of the existing results of this linear technique to the non-linear case is

not an easy task. With the application of non-linear observer theory some results have

been obtained, principally in the detection and, with some restrictions, also in the

isolation of faults. Some problems taking into consideration more general models as

well as the design of the corresponding non-linear observers are still open, because of

the difficulties of estimating the state or the measurement vector of a non-linear

system, even if the nonlinearities are known and no disturbances are present.

Alcorta García and Frank (1997) present a survey of the principal observer-based

approaches to FD for deterministic non-linear dynamic systems. A complete solution to

the fault detection problem for a general non-linear model is still unsolved. Some

approaches can solve non-linear problems but expressed in special forms. Because

the detection of faults is a necessary condition for their isolation, the general fault-

isolation problem for non-linear systems is still also unsolved.

The use of adaptive observers could provide a solution to the fault isolation problem.

With respect to the threshold selector, an optimal one which finds a compromise

between robustness and fault sensitivity could improve the solutions to the FD problem.

In summary, the main drawbacks of the OBMs are the following. First, it is difficult to

obtain adequate models. And second, most work is restricted to linear systems and

although theory is well developed for such systems, methods for non-linear chemical

processes are restricted.
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3.2.2. Assumption based methods

These methods attribute the residual to the violation of certain assumptions regarding

the normal behaviour of the system.

An algorithm called the diagnostic model processor has been introduced by Petti et al.

(1990). It uses the satisfaction of model equations from process plants to arrive at the

most likely fault condition. The KB consists of a vector of model equations. These

statements are merely listed as a series of governing equations that describe the

process. Associated with each model equation are tolerance limits, which give an

indication of when the equation is no longer representative of the process. Also needed

is an expression for determining the sensitivity of each model equation to various

parameters. A set of assumptions is associated with each model equation. A simple

example of the formulation of a model equation and the associated assumptions

(possible faults) is illustrated in Figure 3.7. A model equation can be written for the

mass balance about the tee:

)()()( 3322111 FFFe ρρρ ++= (3.10)

where e1 is the residual, ρ  the density and F the flow rate of the streams.

The assumptions associated with this equation would be:

• The sensors are functioning and correct

• The fluids have the expected densities

• There are no piping leaks

The method uses the fact that violation of a model equation indicates that at least one

of its associated assumptions is invalid. By examining the direction and extent to which

each equation is violated, and by considering the assumptions on which they depend,

the most likely failed assumption can be deduced. An assumption that is common to

many violated equations is strongly suspect, whereas satisfaction of equations

provides evidence that associated assumptions are valid. The system architecture is

shown in Figure 3.8. An important drawback of the system implementation is that

balances that require unavailable measurements can not be used.

Dhurjati (1998) summarised the lessons learned with the implementation of an

assumption based system in industrial plants. Not only the non-availability of sensor

measurements is a difficult but also the accessibility to experts, non-availability of

knowledge in the form of heuristics or models, complicated process dynamics,
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knowledge validation, exclusive dependence on a simple methodology and human

factors are important challenges.

F1

F2 F3

Figure 3.7. Mixing tee example for model equation formulation

Knowledge Base
Model:
Equations

e = function (plant measurements, modelling assumptions)
Tolerances
Sensitivity expressions

Diagnostic methodology
Processing procedure for model equations

Figure 3.8. Diagnostic model processor, an Assumption Based Method

3.2.3. Signed Directed Graphs

SDG is a representation of the causal information, similar to fault trees, which is other

strategy. The process variables are represented as graph nodes and causal relations

by directed arcs. Figure 3.9 shows the signed digraph for the simple example of two

tanks in series, also shown in the same Figure 3.9. F0, F1 and F2 represents flows and

L1 and L2 represents levels.
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Figure 3.9. Two tanks in series and the corresponding signed digraph

The state of the system is described qualitatively by a pattern. Table 3.1 describes a

possible pattern for the two tanks in series. The cause-effect graph is a subgraph of the

signed digraph consisting of valid nodes (any node which is abnormal) and consistent

branches (a consistent path for the propagation of the influence of its initial node to its

terminal node). Given the pattern in Table 3.1 and signed digraph in Figure 3.9, the

corresponding cause-effect graph is shown in Figure 3.10.

Table 3. 1. A possible pattern for two tank in series

Variable F0 L1 F1 L2 F2

Pattern High High High Normal Normal

F0 L1 F1

Figure 3.10. The cause-effect graph for the pattern of Table 3. 1.

The Possible Cause-Effect Graph (PCEG) was introduced by Wilcox and Himmelblau

(1994) as a generalization of the SDG. There are two concepts involved in representing

the process state relative to the PCEG: the representation of the complete state using
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a pattern, and the representation of incomplete knowledge of the process state using a

constraint. An example of a constraint is shown in Table 3.2. With the definition of the

patterns and the constraints, the diagnostic problem can be defined as a composite of

these two structures. Diagnosis or generation of an explanation sketch occurs through

the determination of the cause-effect graph.

Table 3.2. An example of a constraint representing incomplete knowledge of the

process state for the example of the two tanks in series

Variable Constraint

F0 High, Normal, Low

L1 High, Normal, Low

F1 High

L2 High, Normal, Low

F2 Normal

Implementation of the PCEG model requires three basic capabilities:

• The ability to construct the PCEG

• The ability to construct the constraint representing the current state of the process

• The ability to implement an effective inference strategy

A number of approaches exist that can be used to construct the PCEG and the

constraints: direct specification in a general-purpose programming language, use of a

structure editor, or implementation of a special purpose language. However, the most

important part of the implementation of the PCEG model is the inference strategy.

A big drawback of techniques based on cause-effect reasoning is the generation of a

large number of hypothesis. The high computational requirements are high, too.

Therefore, low resolution but high completeness is the feature of these kind of

approaches which facilitate explanation generation.

Recent works considered the use of wavelets as signal preprocessors in order to

perform SDG in processes with load-fluctuations (Tsuge et al., 2000).
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3.2.4. Fuzzy logic expert systems

There is a great improvement respect to the Rule-Based (RB) methods. RB methods

are made up of an antecedent part (series of events) and a consequence part, which

maps these events to a known fault. The main advance corresponds to the use of fuzzy

logic in the RB methods. In the case of Fuzzy Logic Systems (FLSs) the rules are put

in a fuzzy way. Some authors include this technique in the group of historical-based

methods because this information is useful to construct the rules. Historical data can be

used to tune the FLS.

Tarifa and Scenna (1997) reported the development of a method consisting in fuzzy

logic expert system. It has been shown good performance with large and batch

processes (Tarifa, 1995). The method has two stages, the first one is done in off-line

mode while the second one is carried out in on-line mode. In the off-line stage a SDG is

used to model the process to be supervised. Besides, all the potential faults are

determined using tools of the Reliability Engineering (e.g. Hazard and Operability

analysis). Afterwards, all the possible patterns of each potential fault are found out by a

Qualitative Simulator. Finally, these patterns are compiled into IF-THEN rules, one rule

for each potential fault. This set of rules is the KB to be used by an Expert System. The

off-line stage must be done only once for each new process to be supervised, and the

time is not a critical variable. Conversely, the on-line stage must operate with the

supervised process, and the time is a critical variable. In this stage, an Expert System

evaluates the set of rules using data about the actual process state. Fuzzy logic is used

in the evaluation to overcome the problems caused by the data noise, compensatory

response, inverse response, and the model limitations. Moreover, additional

information from the Qualitative Simulation is used to explain the diagnosis. If it is

necessary, this information is also used to improve the diagnosis. Previous methods

have not these important feature.

3.3. Combinations

Finally, in order to combine the strengths of both pattern recognition and inference

methods, adaptive Neuro-Fuzzy (NF) systems are being developed. The idea is to

obtain an adaptive learning diagnosis system with transparent knowledge

representation. Some combinations are subject of current research (Leonhardt and

Ayoubi, 1997): ANNs influenced by fuzzy logic (e.g., fuzzy models within ANNs), fuzzy

systems influenced by ANNs (e.g., serial configuration), and hybrid NF systems. In the
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last years, the application of combined methods for fault diagnosis has steadily been

growing (Issermann and Ballé, 1997).

Table 3.3. Classification of FD methods and their attributes

Knowledge-basedHistorical based

Inference Model-based

CsMethods'
classification 4
Attributes
6 ANN PCA QTA FLS RB SDG ABM OBM NF

Fastness 4 4 4 r r r r 4 4
Isolability 4 r r 4 r r r 4 4
Robustness 4 r r 4 r r r 4 4
Novel identifiability s 4 4 s s 4 4 4 s
Multiple fault ident. s 4 4 4 s 4 4 4 4
Explanation facility r r r 4 4 4 4 r 4
Adaptability 4 4 4 4 4 4 r r 4
Computational Req. 4 4 4 s r r r r s

Cs: Combinations; 4: Favourable; r: Not favourable; s: Situation dependent

A comparison of the methods can be seen in Table 3. 3. A single method is inadequate

to handle all the attributes of an ideal FDS.

Blackboard
Architecture

SDG OBM QTA RB ANN

Scheduler
- Conflict resolution
- Prioritisation

Explanations
- Cause effect

Operator

Library
of
models

QueriesExplanations
Recomendations

Process

Data

Figure 3.11. Blackboard architecture for a hybrid framework
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A hybrid framework, in which different diagnosis methods are integrated to perform

collective problem solving has been shown to display a lot of promise (Myralaswamy

and Venkatasubramanian, 1997). The philosophy behind it is similar to using a panel of

expert physicians to diagnose a complex illness. Following this idea, a blackboard

architecture has been proposed. Figure 3.11. shows it schematically. The components

are a collection of one or more diagnostic methods discussed earlier, the blackboard (a

placeholder for various process states), a scheduler which mainly resolve the possible

conflicts in the results from the experts, the plant input-output interface and the

operator interface. However, its implementation does not seem very easy. Otherwise,

industrial implementations of such system have not been reported, only some

simulation results have been shown.

Recently, Vedam et al., 1999, presented a combination of PCA-SDG and a system

based on QTA. An algorithm based on rules solve the possible conflicts that can exist

between the individual results from each of the previous systems.

An agent-based framework for the diagnosis of chemical processes, based on spatially

distributed diagnosis architecture, has been recently proposed (Soo Young Eo et al.,

2000). It uses only the information about process topology and control structure.

The problems of maintenance and implementation of individual methodologies makes

industrial implementation of hybrid frameworks difficult. A complex task is the conflict

resolution. On the other hand, the use of combinations, where methods are adapted to

each other in order to enhance the advantages and to reduce the drawbacks seems to

be the right choice.

3.4. Fault Diagnosis in batch processes

Most of the FD approaches presented so far show to be applicable to steady-state

processes. These approaches, as explained before, can be divided in three groups:

historical based methods, knowledge based techniques and combinations of both.

However, the application of these diagnosis approaches to batch chemical processes

is usually difficult.

In the past decades, research was focused on the use of either fundamental models or

detailed knowledge based models. The first monitoring procedure is based on

estimation methods. The second relies on the knowledge of the operators and

engineers about the process.
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More recently, the use of pattern recognition methods based on ANNs and the use of

statistical techniques are matter of research. There are few applications reported in

relation to the use of ANNs for FD in batch processes. Some interesting results have

been obtained at pilot plant scale and in simulated cases (Tsai and Chang, 1995). The

problem of the traditional ANNs related to totally capture the space and time

characteristics of process signals is overcome with the use of wavelet functions.

Studies on wavelet functions, of extensive use in signal processing, have advanced

rapidly in the last years. Its application to fault diagnosis is being performed in two

ways:

• For feature extraction; the wavelet function outputs are then processed either by an

ANN (Chen et al., 1999), by Qualitative Trend Analysis (Vedam and

Venkatasubramanian, 1997), or by a Principal Component Analysis approach

(Bakshi, 1998);

• As an activation function of the ANN (Zhao et al., 1998).

With respect to the use of statistical techniques, there are several procedures

developed and under investigation to apply PCA on the batch process monitoring.

MPCA has shown good results for on-line batch process monitoring (Nomikos and Mc

Gregor, 1994; Lee et al., 1999). The only information needed is a historical database of

past batches. However, it has some drawbacks like the difficult isolation and

localisation of the fault.
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Figure 3.12. Arrangement and decomposition of a three-way array by MPCA
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MPCA consists in treating multidimensional matrices in a better way than the

conventional PCA. The relation between MPCA and PCA is that MPCA is equivalent to

performing ordinary PCA on a large two-dimensional matrix formed by unfolding the

three-way array X. The matrix X is built in the following way. Consider a typical batch

run in which j=1,2,...,J variables are measured at k=1,2, ..., K time intervals throughout

the batch. Similar data will exist on a number of such batch runs i=1,2, ..., I. All the data

can be summarised in the X (IxJxK) array illustrated in Figure 3.12. The objective is to

decompose the three-way array X into a series of principal components consisting of

score vectors (tr) and loading matrices (Pr), plus a residual matrix E. The ith elements

of the t-score vectors corresponds to the ith batch and summarise the overall variation

in this batch with respect to the other batches in the database over its entire duration.

The P loading matrices summarises the time variation of the measurement variables

about their average trajectories. Once historical data of normal batches are treated in

the explained way, the implementation of the on-line MPCA is as follows:

1) Take the new vector of measurements at time interval k.

2) Substract the means and divide by standard deviation, which corresponds to the k-th

time interval from the normal database to get the vector with the current deviation.

3) Set the rows of Xnew from k onward equal to the current deviation vector.

4) rnewkr PXt o=, (3.11)

∑
=

⊗−=
R

r
rkrnew PtXE

1
, (3.12)

∑
=

=
J

j
k jkESPE

1

2),( (3.12)

The matrix operations are:

PXt o=  -----> ∑∑= ),(),,()( jkPkjiXit (3.13)

PtX ⊗=  ----> ),()(),,( kjPitkjiX = (3.14)

5) Return to step 1.

If the batch that is being monitored is normal, the residuals E(k,j) should be small, and

its score values (tr,k) should continue to fall within the region of variation defined by the

reference distribution.
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The use of this technique is illustrated in the present thesis (see the Chapter 7. Results

and discussion, section 7.2.3) because it has been used for comparison purposes.

Batch analysis and monitoring method based on MPCA and Multiway Partial Least

Squares (Multiway PLS) have been extended by using multi-block-multiway Partial

Least Squares (Kourti et al., 1995). This extension allows one to utilize the historical

data on the measured process variable trajectories, the measured feed-stock

properties and other variable initial conditions and the final product quality

measurements at the end of each batch.
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Figure 3.13. % Contribution to the SPE value for all processes variables at a time k for

an abnormal batch (taken from Tates et al., 1999)

Recent works in the area of on-line batch process monitoring based on MPCA are

related to fault isolation. It is performed by analysing the monitoring charts. Tates et. al,

1999, consider the use of batch contribution plots. They consist in the plot of the

contribution of process variables to the SPE value at each time instant. By this way, the

deviated process variable can be analysed to determine the root cause. Figure 3.13

shows an example. The variable number 13 (e.g. reactor level) presents the larger

error contribution and the fault is localised in relation to it.

The use of external information, batch run specific or process specific information can

improve the methodology of on-line MPCA. The objective is to increase the detection

capability and/or the diagnostic capability (locating and finding the causes of the fault).

This combination has been introduced by Smilde et al., 2000.
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Figure 3.14. Hybrid modular hierarchical architecture for FD in batch plants

In relation to the already mentioned combination methods for FD, there are very few

reports of their applications to batch processes.

Frameworks of integration of MPCA and knowledge based fault diagnosis is being tried

at pilot plant scale (Leung and Romagnoli, 2000).

A hybrid modular hierarchical approach has been proposed for FD in batch plants

(Scenna et al., 2000). By using such modular architecture the temporal evolution of the

process is divided in a set of a temporal invariant modules (models). Each qualitative

partition of the process is called Pseudo Continuous Block (PCB). Different temporal

parts of the batch process are qualitative assimilated to continuous processes.

This system architecture has been implemented using a set of ANNs, that is a modular

system, identifying each ANN with a portion of the temporal evolution of the process.

Besides, the control unit includes an Expert System conforming a hybrid hierarchical

system, which uses the outputs of the ANNs in addition to process variables for the FD

(Figure 3.14). The developed approach has been successfully applied to a batch

distillation column. The type of ANNs used in that work were the SOMs.

The necessities of the information support system for the plant includes the integration

of different hierarchical levels as well as specific developments in the programming,

monitoring, diagnosis and control (Reklaitis, 1996). The integration of FD and the

scheduling and planning system in multipurpose batch chemical plants is matter of

current research. In batch plants, it is difficult to predict the processing times of each
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unit. The variability is due to different deviations such as equipment faults, fluctuations

in utilities availability and changes in the quality of raw materials. The modification of

the schedule in the most effective way is called “reactive scheduling”. A scheme based

on the heuristic of the least impact has been proposed by Kankamedala et al., 1994.

Scheduling in multipurpose batch chemical plants in the presence of uncertainties has

been considered recently (Sanmartí et al., 1997). Puigjaner and Espuña (1998)

proposed a integrated system of management and control in the manufacturing batch

industry.

In all the above cases, the main problem is the complex strategy of implementation that

delays their application in real industrial plants. It is important to take into account that

the information given by the FDS of a batch plant has to be used at different levels in

the decision-making hierarchy structure, including the advanced control system and the

scheduling system. While developing and implementing a FDS, this important aspect

must be considered.



Chapter 332

Acronyms

ABM Assumption Based Method
AEGIS Abnormal Events Guidance and Information System
ANN Artificial Neural Network
ASM Abnormal Situation Management
BPN Backpropagation Artificial Neural Network
EKF Extended Kalman Filter
FD Fault Diagnosis
FDS Fault Diagnosis System
FLS Fuzzy Logic System
IFAC International Federation of Automatic Control
KB Knowledge Base
KBES Knowledge Based Expert System
MPCA Multiway Principal Component Analysis
NF Neuro-Fuzzy
NLPCA Nonlinear Principal Component Analysis
OBM Observer Based Method
PCA Principal Component Analysis
PCB Pseudo Continuous Block
PCEG Possible Cause-Effect Graph
PLS Partial Least Squares
QTA Qualitative Trend Analysis
RB Rule Based
RBFN Radial Basis Function Neural Network
SDG Signed Directed Graphs
SOM Self Organising Map
SPC Statistical Process Control
SPE Squared Prediction Error

Notation

E Residual matrix for a new batch
E Residual matrix for historical database
i Index for batches (or for samples)
I Total number of batches
j Index for measurements variables
J Total number of measurements variables
k Index for time intervals
K Total number of time intervals
p Principal components loading vector
P Principal components loading matrix
PT Transpose of matrix P
Q Sum of squares of the residuals
r Index for principal components
t Principal component scores vector
T Principal component scores matrix
T2 Overall measure of variability
X Bidimensional matrix
X Tridimensional matrix


