
Chapter 5

Methodology

A key element to manage abnormal situations in a plant is a robust Fault Diagnosis

System (FDS). As it can be seen in Figure 5.1, it receives plant measurements and is

able to detect a deviation from normal operating conditions and also can determine its

root cause. A fast identification of a fault can be utilised by a scheduling system to

update the schedule in the most effective way, by the control system in order to take

automated control actions and by the operators, as a support for decision-making. The

main objective is to avoid plant shutdowns. The plant should continue working

satisfactorily in spite of the faults. By this way the productivity can be increased.

In this chapter, the proposed FDS is described and the steps for the successful

development are detailed. The algorithms for its on line implementation are also

explained. The design takes into account the usefulness of the fault signal. Hence, in

the last section, the basis for the translation of the fault signals to be used by other

systems is commented.
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Figure 5.1. Abnormal situation management scheme
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5.1. Proposed Fault Diagnosis System

The proposed FDS consists in a combination of a pattern recognition approach and an

inference system. With historical data of past faults an ANN is trained to classify them.

On the other hand, from a HAZOP analysis, a set of if then rules is defined. This set is

complemented with those coming from the experience with the use of the ANN.

An important aspect for the successful implementation of the FDS is the feature

extraction to generate the patterns used in the ANN training. The problem of the

traditional ANNs related to totally capture the space and time characteristics of process

signals is overcome with the use of wavelet functions. Plant signals from the

Distributed Control System (DCS) are pre-processed by a multiscale wavelet

decomposition, then the extrema of high level of detail are determined and they are the

input to the neural classifier. Figure 5.2 shows the information flow in the proposed

FDS. The outputs of the ANN are inputs of the Fuzzy Logic inference System (FLS).

The fault signal has a value between 0 (no fault) and 1, corresponding to a specified

suspected fault.
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Figure 5.2. Proposed Fault Diagnosis System (Detailed scheme)

5.1.1. The use of a combined approach for the FDS

Generally, automatic fault diagnosis can be viewed as a sequential process involving

two steps: the symptom extraction and the actual diagnosis task.

The second step is different from the first in that the output vector is often assumed to

be binary. Regarding their form of knowledge acquisition and interpretation, three types

of algorithms can be distinguished: classification methods, inference methods and

combinations of both.
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Classification methods include geometric, statistic, neural and polynomial classifiers

and generally use reference patterns for learning. Their structure is not transparent but

they can be adapted during use. Inference methods are based on linguistic rules. Most

of the time they are given in a fuzzy way. Expert systems fed with fuzzy rules allow a

fuzzy decision-making, the so-called “approximate reasoning”. The problem with this

approach is the long time needed to develop the rules and the difficulties involved in

adjusting the rule base.

In order to combine the strengths of both methods, an adaptive neuro-fuzzy system

has been developed. The idea is to obtain an adaptive learning diagnostic system with

transparent knowledge representation.

5.1.2. General structure of the proposed Neuro-fuzzy FDS

It is considered an ANN - based supplement of a fuzzy logic system (FLS) in a block-

oriented configuration (Ruiz et al., 1999b). Figure 5.3 shows a general scheme of this

approach.

M1 is the subset of the direct and indirect measurements and/or observations from the

plant, and is selected as input of the ANN approach.

N1 is the set of n1 “pre-faults” diagnosed by the ANN approach. The values N1(i), i

from 1 to n1, are usually between 0 and 1. They are the input of the FLS.

M2 is a set of  m2 direct and indirect measurements and/or observations from the

plant, which is selected as input of the FLS.

When using fuzzy logic in a diagnostic environment, the following successive steps are

involved: fuzzification of “crisp” values; inference using a rule base in which the logical

operations are performed on the membership functions; and defuzzification to obtain

“crisp” outputs.

The inference engine has the knowledge base, expressed in a set of if-then rules.

These rules are of two types: those containing process deep knowledge and those that

are built from experience of the ANN’s performance. In Table 5.1, a scheme of the set

of rules is presented. The outputs F (nf), j from 1 to Nf, are the Nf faults considered.

Detailed aspects of the ANN implementation and the FLS development are described

in detail in subchapters 5.4 and 5.5, respectively.
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Figure 5.3. Proposed Fault Diagnosis System (General scheme)

Table 5.1. Scheme of the set of rules

 

 
Based on experience with 
ANN performance 

 
IF N1(1) is ... AND (M2)... THEN F(nf) is... 
... 
IF N1(i) is ... AND (M2) ...THEN F(nf) is... 
... 
IF N1(n1) is ... AND (M2)... THEN F(nf) is... 

 
Based on process deep  
knowledge 

IF M2(1) is ... AND...THEN F(nf) is... 
... 
IF M2(i) is ... AND ...THEN F(nf) is... 
... 
IF M2(m2) is ... AND... THEN F(nf) is... 

 

5.2. Step by step methodology

The information needed to implement the FDS includes a historical database, a Hazard

and Operability (HAZOP) analysis and a model of the chemical plant. These three
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sources of information are commented in the following paragraphs. Then, the steps of

the proposed methodology are described.

Historical database

Process computers now collect masses of data from a multitude of plant sensors every

few minutes or seconds. Present chemical plants do not take advantage of this

powerful source of information. A number of applications in process modelling,

monitoring and control can be actually performed.

The historical database that includes information related with normal and abnormal

operating conditions can be used to train the ANN structure. An analysis of historical

data allows the identification of outliers. Additional uses correspond to the FLS tuning

and the test of the FDS performance.

HAZOP

The HAZOP analysis has two important utilities. It allows to generate the if-then rules

for the Knowledge Base and to determine the information to be sent to other levels in

the information system. Implementation of an operator support system by extending the

HAZOP method to fault diagnosis characterisations implies a direct and effective

solution. The generated rules are kept simple to avoid the general problems of large

rule-based knowledge systems, such as contradictory rules, large amounts of irrelevant

information and complex tree structures. HAZOP analysis also can help in the definition

of the set of faults.

Plant model

At different design levels of a plant a model is used. The mathematical model can be

made from experimental data using identification techniques or from energy and mass

balances describing the plant dynamics, or a combination of both. The plant model has

to be validated against available plant data. Nowadays, the use of a commercial

process simulator allows to develop plant models easily. This practice is successful

mainly in the petrochemical industry. Process engineers handle different kinds of plant

models and the model has not to be completely accurate. It has to be accurate enough

in order to have a satisfactory performance in the system that uses it.
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A model of the plant can be used to obtain plant operation experience through

simulation. The simulation can provide data on infrequent faults because in the cases

of faults that rarely occur it is not possible to test the FDS using only plant data.

In addition, by testing the ANN with the model, the development of the rules based on

experience with ANN performance is straightforward. The model is also useful for

testing and validating the FDS.

If a plant model is not available it can be developed using the ways already commented

(process simulators, identification techniques, etc). If the process complexity or the lack

of information makes this step impossible to perform, the FDS can be developed as

well but in a limited form. An example of such situation is shown in one of the industrial

applications (CAICC sugar cane refinery, Chapter 8).

Steps

The methodology can be summarised in the following steps. A simplified flowsheet is

also shown in Figure 5.4 (Ruiz et al., 2001a).

1) Define the faults. Three kinds of faults can be considered: faults in the process (e.g.,

a failure in a pump), in the controllers and in sensors. Faults whose detection can not

be justified in terms of economic impact are not to be considered (e.g., very infrequent

faults). With a HAZOP analysis, the determination of possible faults is straightforward.

The column Causes in such analysis corresponds to the set of possible faults. A

second review should eliminate the faults that are very infrequent, or not important from

the economic point of view or that are easily diagnosed by the conventional alarm

systems. The use of historical data can help in the definition of the set of faults.

Statistical techniques like PCA can be used to determine outliers, but an important

point is to have available good information from plant operators in order to relate the

found outlier with a reported fault (occurred in the past). Figure 5.5 shows the algorithm

for a systematic definition of the set of faults. The main sources of information are the

historical data and the HAZOP analysis. After analysing the historical data, the

identified abnormal deviations, not included in the HAZOP analysis, are added for their

consideration. From HAZOP analysis, each possible cause is analysed by considering

the frequency and the economic impact. This systematic treatment of the information

allows to define a minimum set of faults. This combined criterion for such definition

results advantageous with respect to other alternatives commonly used which only



Methodology 65

consider one source of information. For example, some important faults can be missed

if the historical data are not taken into account.

2) Determine measurements. At the plant design stage, measurements can be

selected on the basis of fault diagnosis methods. In most industrial applications the

FDS is developed using available measurements and sensors that are usually installed

because of their utility for control. It is often necessary to include additional sensors.

This topic is an area of research called optimal sensor location. In this thesis, the

development of the FDS is presented using available measurements, as is typical in

most industrial applications.

3) Obtain the fault patterns: The objective of this step is to have a fault pattern

associated to each defined fault. In the cases of defined faults that have occurred in the

past, the corresponding profiles of all variables (from historical database) are saved. In

the cases of defined faults that have not occurred in the past or no historical data are

available, the profiles of all measured variables, obtained by simulation, are saved. The

saved information can be used directly in the following step. However, better results

can be obtained if the fault patterns are composed by the features of process signals.

Feature extraction is performed by pre-processing the signals by a multilevel wavelet

using a specific filter. As the noise component are reduced and then disappeared as

the scale increases, a detail of high scale is chosen. Then, the extrema of the

processed signal are determined (see section 5.4.2). Hence, the fault pattern is

composed of a set of features from a set of variables measured from the plant. The

generation of the fault patterns can be automated by using the algorithm shown in

Figure 5.6. For each defined fault, a matrix is built with the profiles of all measured

variables. The corresponding data are obtained from the historical database if the fault

occurred in the past and the corresponding data are available. Otherwise, the fault is

simulated. A second matrix can be built for each fault with the features of each variable

which are obtained by multiscale wavelet decomposition. This automatic generation of

fault patterns is useful for the next step.

4) Train an ANN. The first option is to use directly the profiles of the variables saved in

the previous step. In the case of continuous processes, using the steady state data an

ANN is trained. In the case of batch plants, the measurements from the plant and the

time from the start of the batch are the ANN's inputs. The ANN's outputs are the

signals of the suspected faults. Among the different kinds of ANNs, multilayer

perceptron and radial basis function networks have been used in FDSs in the chemical

process industry. The ANN approach is then tested by simulating the faults. This has to
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be done in “on-line” mode using the simulator or in “off-line” mode in the cases of

available experimental data. The outputs of the ANN (its profiles vs. time) are useful for

the next step. The second option is to train an ANN with the fault patterns composed by

the extracted features of the different signals. ANN implementation in the two described

options is treated in detail in section 5.4.

5) Design the FLS: Inputs to the FLS and the set of if-then rules are defined from plant

experience, operator’s information, HAZOP analysis, operating experience by

simulation and the results of the previous step. Outputs from the ANN are also to be

considered as FLS's inputs. The tuning of the membership functions of inputs and

outputs requires several simulations of the FDS to adjust them properly. The system is

designed with the premise that no diagnosis is better than false diagnosis. FLS

development is detailed in section 5.5.

6) Test the new system by simulation. The test takes into account the speed of

detection and diagnosis, and exactness. It can be compared with the results obtained

with the FLS (without the ANN input) or the ANN working alone. This allows to

appreciate the advantages of the combination.

7) Design the adaptive method. Taking advantage of the learning ability of the ANNs,

the outputs of the FDS are saved. Then, the ANN is retrained perodically, depending

on the cases. Changes to processes are normal in the chemical industry and the

system must be able to adapt to these changes easily. This requires good organization

of the knowledge base and ability to edit the knowledge base with ease. Having two

additional outputs of the FDS, one related to normal operation and the other one

related to a new suspected fault can help in the success of the adaptive method

implementation. By this way, the FDS can have the attribute of novel identifiability.

8) Test with the model. The performance of the FDS has to be checked by simulating

the faults. The use of the system with operators is necessary to train them with the new

system.

9) Implementation in the real plant. The final step is the integration of the FDS with the

existing software and hardware.

An additional step is the design of the correction of the faults in order that the process

continue functioning satisfactorily while the problem is being solved. This aspect is

related to the usefulness of the information given by the FDS (Figure 5.1.) In this

thesis, the basis of the use of the information provided by the FDS is settled. An

explanation with an example is shown in section 5.7.
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Figure 5.4. Flowsheet of the proposed methodology to design the FDS.
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5.3. Performance Index

A FDS has to be robust enough to correctly diagnose a fault. The diagnosis should be

independent of the magnitude, time duration and direction of the fault. Two important

aspects are the time needed to correctly identify a fault and the no existence of false

diagnosis.

A performance index is necessary to compare different FDSs. The first attempts to

introduce a performance index correspond to the evaluation of the ANN performance

for fault diagnosis in steady state processes. In the following paragraph the criteria for

the performance index development is explained.

The ANN is trained with steady-state conditions of a fault. Therefore, when the fault

occurs, the ANN will correctly diagnose when the plant arrives to the new steady-state.

However, in some processes, for example plant with recycle streams, the time needed

to arrive to the new steady state can be long. During that time the ANN can give no

diagnosis, right diagnosis or false diagnosis. In order to compare the performance of

the different ANN approaches for fault diagnosis the following performance parameter

(%P) defined by Equation (5.1) has been proposed (Ruiz et al., 1999d):

100% •






 −
=

ss

dss

t
tt

P (5.1)

which gives the percent relation between the time taken from the correct diagnosis to

the new steady-state condition (tss - td) and the total time of the dynamic state of the

plant from the moment of occurrence of the fault (tss) (see Figure 5.7).

On the other hand, false diagnosis has to be avoided. For comparison purposes it will

be used the percent relation between the number of cases with false diagnosis and the

total number of faults simulated. In order to take into account the false diagnosis and

the low resolution, %P* is considered. It is calculated as in Equation (5.1) but in cases

of false diagnosis or low resolution, td is fixed equal to tss.
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Figure 5.7. Definition of parameters used in the evaluation of the performance of the

fault diagnosis system (steady-state processes)
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Figure 5.8. Definition of parameters used in the evaluation of the performance of the

fault diagnosis system (batch processes)

In order to use the same performance index when dealing with batch processes, the

following reasoning has been made. Each stage of the batch process is considered
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separately. As it can be seen in Figure 5.8, td is the time elapsed since the fault occurs

until the fault is diagnosed correctly. The parameter tss is the time needed to finish the

current stage since the fault occurs. By this way the same presented equations can be

used for %P and %P*.

The use of the presented performance index %P and the %P* is illustrated in Chapter 7

(Results and Discussion. Plant with recycle and batch reactor cases studies).

5.4. Artificial Neural Network implementation

ANN implementation can be performed in two main different ways: using the saved

profiles of the variables of the defined faults directly or by using the corresponding

features. This last option allows better results and it is included in the proposed FDS

(Figure 5.2).

5.4.1. ANN training using the profiles of variables directly

In the cases of continuous processes, the ANN training inputs are the saved steady

state measured variables for the defined faults and the target outputs are the

suspected faults with a value of 0 or 1 (No Fault or Fault). In some situations  of

process faults, as for example "low feed flow-rate", it is necessary to define which

percentage of variation is considered unpermitted, That is, which condition will be

considered as fault (output = 1). The inputs are scaled down by decreasing in average

and dividing by its standard deviation.

In a similar way, the ANN training is performed for the cases of batch processes. The

only difference is that the ANN training input includes the time from the start of the step

(Ruiz et al., 1999c). Furthermore, each stage has associated an ANN, with the

corresponding defined faults.

An improvement to the explained approach consists in the use of a moving window.

The inputs corresponding to each variable are the current one plus some previous

values. In the case of batch processes the width of the moving window should be the

length of the stage and the time from the start of the stage is not considered.

All the described alternatives are summarised in Figure 5.9. Their implementations are

illustrated in different case studies (Chapter 7 and 8).



Methodology 73

ANN ANN

ANN

M1(1)

M1(2)

M1(m1)

M1(1)
M1(2)

M1(m1)

time

F

F

M1(1)k

M1(1)k-1

M1(1)k-2

M1(m1)k-2

M1(m1)k-1

M1(1)k

a) b)

c)

F

Figure 5.9. ANN implementation using directly the measured variables a)Continuous

processes; b) Batch processes; c) With a moving window for complex dynamics

Figure 5.10 shows the algorithm proposed to develop an ANN using directly the

measured variables in the case of a continous plant. A loop, considering all the

prefaullts is used. For the variables’ profiles of each fault, the time interval k in which

the plant arrives to a new steady state is determined (knf). Equation (5.2) is used to

determine such condition. M1Ki corresponds to the matrix M1Knf   (nf=i, in the loop)

determined in generation of fault patterns approach (Figure 5.6), k is the time interval

and ε  is a small number.

∑
=

≤
∂

∂J

j

i

k
kjKM

1

),(1
ε (5.2)

Once the new steady state condition is determined, the column vector M1Knf(knf) is the

ANN training input (q) and the corresponding target (g) is set with a value of 1 for the

corresponding fault (and zero in the rest of the vector).

Depending on the size of the training data set, a BPN or a RBFN can be

recommended. The RBFN trains faster and has better performance than a BPN.

However, with many fault patterns, the obtained RBFN can be very big (a large number

of centres, nodes in the hidden layer). This aspect implies high computational

requirements. Therefore, a BPN is recommended for such cases.
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Figure 5.10. ANN training using the measurements from the plant directly (continuous

plant)
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The optimisation of the ANN is performed by testing the performance with Equation

(5.1) in a trial and error approach. In the case of the RBFN the spread of the radial

basis function is optimised. On the other hand, the number of nodes in the hidden layer

is optimised in the case of the BPN.

If the performance is not acceptable, ANN training using a moving window has to be

done. Otherwise, the ANN training using the fault patterns composed by the signal

features has to be done. This alternative is explained in the following section 5.4.2.

5.4.2. ANN training using the fault patterns composed by signals features

First, feature extraction will be explained. The signal preprocessing starts with a

multiresolution procedure as has been described in section 4.4 (Figures 4.12 and

4.13). A multilevel wavelet using a specific wavelet filter, in that case the Daubechies-6

filter, has been performed. Observing the detail signals (D1, D2, D3 and D4), the noise

components are disappearing as the scale increases. Considering the detail of high

scale (for example D5), the extrema are then determined. The algorithm of this extrema

determination is shown in Figure 5.11.

function M1’(i)=ExtremaDetermination(D5(i),D5’(i),D5’’(i))

if D5'(i)=0 then

if D5''(i)><0 then

M1’(i)=D5;

end

end

Figure 5.11. Extrema determination

In such algorithm, D5'(i) and D5''(i) are the first and second derivatives of D5(i) -the

detail of the ith measurement- respectively, and M1’(i) the corresponding determined

extrema.

By this way the maxims and minima of the detail are obtained. This extrema are the

features extracted from the original process measurement. The following step is to train
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a ANN classifier (Ruiz et al., 2000b). Figure 5.12 shows an example of Extrema

determination. In the case of batch processes, the preprocessing is performed onto the

difference between the measurement and a reference profile. The reference profile

corresponds to normal operation. By this way, better results have been obtained.
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Figure 5.12. Signal preprocessing to generate the fault patterns used in the ANN

training

An important aspect is the adequate selection of the variables that are to be considered

as the inputs (its extrema) of the ANN. Considering a defined fault, the resulting

extrema of all the measured variables are evaluated. Then, the only measured

variables that have different features (with respect to normal operation) are selected as

training inputs for the corresponding "class" fault.

Some process variables can have no extrema for any defined fault. These variables

are not to be considered as inputs.

A PNN is suitable for the classification of these fault patterns composed by signal

features.

5.4.3. Fault in sensors diagnosis using Autoassociative Artificial Neural Networks

The special case of the diagnosis of fault in sensors is solved with the use of

Autoassociative Artificial Neural Networks (AANNs). This complement of the proposed

FDS is considered in this section because of its strong relationship with ANN

implementation.

Almost all Distributed Control Systems (DCSs) have standard sensor fault detection

features. By this way, sensor failures such as signal loss can be easily detected.
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Currently, the main difficult is to capture if the sensor reading is the actual value or if

there is a constant bias, or drift.

Regarding process monitoring, principal component analysis (PCA) is a way of

reducing the dimension of the space of process variables by linearly mapping the

process variables to a smaller dimension space of “scores”. Unusual process behavior

can be detected in some ways. One of them is based on the reconstruction of the

process vector from the score vector. Therefore, a comparison of the reconstructed

vector with the original vector, using the square prediction error (SPE), permits the

detection of abnormalities.

If the process is highly nonlinear, as is the case of chemical processes, the nonlinear

principal component analysis (NLPCA) is preferred. It uses an AANN consisting in

feed-forward nets trained to produce an approximation of the identity mapping between

inputs and outputs. The residuals of this mapping can be used to detect sensor

failures.

In this work, an AANN (section 4.1.2) is used to diagnose bias errors in sensors.

An AANN is trained using historical data with correct sensor measurements. Input

vector is the measurements’ vector and the output target is the same vector.

After the ANN training, SPE is determined by Equation (4.8) as well as its standard

deviation ( σ ) of the square differences. Considering 99% control limits, the upper limit

SPEsup is calculated by Equation (5.3).

σ3sup += SPESPE (5.3)

The SPE and the σ of each sensor (SPEj and σj respectively) are also determined.

Considering 99% control limits, the upper limit SPEjs is calculated by Equation (5.4).

jjjs SPESPE σ3+= (5.4)

During on-line monitoring the SPE is calculated with the new measurements, and it is

compared with the SPEsup . If this limit is overcome then a faulty sensor exists. To

identify and isolate the fault in one or more sensors, the algorithm shown in Figure 5.13
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has been proposed (Ruiz et al., 1999d). SPEj is calculated for every sensor and its

percentage respect to the respective SPEjs is calculated, too, by Equation (5.5). The

sensor that has the higher SPEjs% is considered as the faulty sensor (j*). In order to

determine if the other sensors are also faulty, the range R of SPEjs% is determined by

Equation (5.6), being SPEjs%higher, the maximum SPEjs considering all the J sensors

and SPEjs%lower the minimum SPEjs%. All the sensors which have the corresponding

SPEjs% value above the middle of the range are considered faulty sensors, too.

100% •=
js

j
js SPE

SPE
SPE (5.5)

lowerSPEhigherSPER jsjs %% −= (5.6)

The advantages of this algorithm can be viewed in the following example. Figure 5.14a

shows the profile of all the SPEj when a bias error in sensor S1 has occurred at time

100. Almost all of the SPEj  overcome their respective SPEjs . This problem happens

due to the extrapolations problems of backpropagation networks. Figure 5.14b shows

the SPEj values as a percentage of their respective SPEjs values, Equation (5.4). The

difference between sensor S1 and the others is clear. In this case the calculated value

for this sensor is the only one that overcomes the fixed limit. Hence, the faulty sensor

has been successfully isolated.
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Figure 5.14. Fault in sensor 1 at time 100. a) SPEj of each sensor; b) SPEjs% of each

sensor
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5.4.4. Recommendations for successful ANN implementation

Beginners in the use of ANN usually have problems in relation to a successful

implementation of this technology. The following recommendations (some of them

based on Freeman, 1999) put in practice in the present thesis, should be taken into

account.

First of all, ANN never has to be trained without a previous conscientious analysis of

data. It is necessary to be sure that are enough data for training. Extensive data

analysis can be performed using data representation techniques (statistics, for

example). In some very simple cases, a least square data fit performed as well as an

ANN. In such cases (it is not the case of FD for complex processes) an ANN is not

needed.

A typical problem during ANN training is the overfitting or overtraining. If an ANN is

overtrained, it will work well with training data but the results from test data will likely be

unacceptable.

Undoubtedly, an adequate selection of the data is the most critical point. Sometimes,

several similar patterns for the same defined fault are available. In other cases, similar

steady state data for the same defined fault are available. The data has to be split in

three data sets: for training, for testing and for cross validation. This last group consists

of a data set for final validation. Sometimes, the developer may split the data into

different random sets (to retrain and test again). The cross validation data set is

unused data that the ANN never "sees" during the development. The objective is to

provide an independent test for ANN performance.

The input scaling has to be taken into account. In order to have acceptable results, in

complex problems a multiple ANN, one for each fault (multiple input, one output) has to

be chosen. Generally, one hidden layer is enough. It is important to experiment with

different types of ANN.

Finally, it is necessary to ensure that someone from the end user's staff is available to

assist with integrating the ANN into their system.

5.5. Fuzzy Logic System development

The FLS has two kind of inputs: the ANN's outputs and the measurements from the

plant. The ANN's outputs are already determined by the step of ANN implementation.

The selection of the measurements from the plant that are also inputs to the FLS can
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be determined according to the generated if-then rules. The outputs of the FLS are the

set of the defined faults.

The inference engine has the knowledge base, expressed in a set of if-then rules.

These rules are of two types: those containing process deep knowledge and those that

are built from experience of the ANN’s performance. In Table 5.1, a scheme of the set

of rules has already been presented

5.5.1 Generation of if-then rules from HAZOP analysis

HAZOP analysis allows to generate the if-then rules based on process deep

knowledge. The column Causes in the HAZOP analysis are considered as faults. Other

important point is the consideration of available measurements (direct or indirect). They

are going to be the antecedents in the if-then rules and they are the parameters in the

HAZOP analysis. By this way, the number of if-then rules generated from the HAZOP

analysis is reduced. The final step is the adjustment of the membership functions.

The following example shows the easy generation of if-then rules from HAZOP

analysis. Table 5.2 shows a partial HAZOP analysis of the plant shown in Figure 5.15.

The fault is “pump 1 malfunction” (column "Causes"). Consequently, the conversion to

an if-then rule is as follows:

IF Flow IS Low THEN “Pump malfunction” IS HIGH.

Pump 1

Pump 2

TANK 1 REACTOR 1

Figure 5.15. Example: Some stream lines in a chemical plant
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Table 5.2. A HAZOP analysis of a stream line in a batch process.

Stage: Reactor charge; Element: Tank nº1; Node: Pipe from tank 1 to pump 1; State: to

provide reactant to the reactors; Parameter: Flow

Guideword Causes Consequences Corrective actions Safeguards

Low Pump 1

malfunction

Time needed for

reactor charge

increased

Switch to Pump 2 Maintenance

tests

The generation of if-then rules from HAZOP analysis can be automated by using the

algorithm shown in Figure 5.16.

Each parameter in the HAZOP analysis, that is measured or observed from the plant, is

considered. The deviations HIGH and LOW in such analysis drives to the if-then rules,

only if the considered deviations are included in the set of faults.

For each fault, the if-then rules are defined. One of them has as a consequent the

fuzzy set HIGH, corresponding to the considered deviation. The other one has a fuzzy

set LOW corresponding to the normal operating condition of the considered parameter.
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Consider parameter M2(i)

F(nf) corresponds to
“Possible Cause”?

Add rules:
IF M2(i) HIGH THEN F(nf) is HIGH
IF M2(i) NORMAL THEN F(nf) is LOW

Set of IF-THEN rules from HAZOP

i=1:m2

nf=1:Nf

Guideword HIGH

Guideword LOW

F(nf) corresponds to
“Possible Cause”?

Add rules:
IF M2(i) LOW THEN F(nf) is HIGH
IF M2(i) NORMAL THEN F(nf) is LOW

No

Yes

No

Yes

Figure 5.16. Generation of if then rules from HAZOP analysis
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5.5.2. Generation of if-then rules from ANN performance experience

The if-then rules obtained on the basis of the experience with ANN performance can

have the following form:

If N1(nf) Is HIGH then F(nf) is HIGH

If N1(nf) is LOW then F(nf) is LOW

More complete if-then rules takes into account the other measurements. For example:

If N1(nf) is HIGH and M2(i) is LOW then F(nf) is HIGH

These last if-then rules can be obtained by simulating the different faults and observing

the ANN behaviour.

5.5.3. Adjustment of the membership functions

Trapezoidal MFs are proposed for M2. Three main MFs are necessary: µlow, µnormal

and µhigh. The following steps are followed in order to adjust the mentioned

membership functions:

Assign µnormal=1 to the range of normal operating conditions.

Assign µnormal =0 from the value considered as abnormal situation

Assign µhigh=0 / µlow=0 in the bounds of the range of µnormal =1

Assign µhigh=1 / µlow=1 in the considered abnormal conditions (low or high,

respectively).

Figure 5.17 shows the general scheme of the membership function according to the

described assignment. In this example, the range of normal operating conditions is 70-

80 (e.g. ºC). A value less than 60 has been considered low (an abnormal operating

condition). On the other hand, a value that is more than 90 has been considered high

(an abnormal operating condition).

With respect to the outputs, the crisp functions are only two: µfault (=1) and µnofault

(=0).
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By this way, it is easy for plant engineers to adjust the MFs.

There are other variations of MF adjustment. They are illustrated in some comparisons

of FLSs in Chapter 7, section 7.2.4. However, the shown choice is recommended (Ruiz

et al., 2001f).

        Low                   Normal                      High

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

50 60 70 80 90 100

Input

Figure 5.17. Input membership functions adjustment

5.6. On line implementation of the FDS

Figure 5.18 shows the algorithm for on line implementation of the FDS. It is in

accordance to MATLAB programming language that has been the one utilised. The

inputs are the M1 and M2 vectors and the time. The output is the vector F. Some

values from the previous function FDS call are necessary if the signal pre-processing is

utilised. Such variables are indicated as global variables.

Then, a loop is used to perform wavelet decomposition and extrema determination for

all the m1 variables that are inputs of the ANN block. Details at level 5 and the mother

wavelet Daubechies-8 have been chosen. Then, the first and second derivatives of the

signal Detail 5 (D5) are determined. Extrema determination is performed using the

algorithm shown in section 5.4.2 (Figure 5.11).

After the explained loop, the variables time, detail and its first and second derivatives

are updated.

µ
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Then, the output of the ANN block is determined. In case of using direct measurements

(without signal pre-processing), the input is M1 instead of the extrema (M1').

Finally, the vector F is obtained by calling the function FLS. Its inputs are the M2 and

M1 vectors.

function F=FDS (M1,M2,time)

global timeprevious D5previous D5'previous D5''previous

for i=1:n1

D5(i)=WaveletDecomposition(M1(i),time,5,'db8');

D5'(i)=(D5(i)-D5previous(i))/(time-timeprevious);

D5''(i)= (D5'(i)-D5'previous(i))/(time-timeprevious);

M1'(i)=ExtremaDetermination(D5(i),D5'(i),D5''(i));

end

timeprevious=time;

D5previous=D5;

D5'previous=D5';

D5''previous=D5'';

N1=ANN(M1');

F=FLS(M2,N1);

Figure 5.18. Main program for on line implementation of the FDS

Figure 5.19 shows the determination of the ANN output for the case of using a BPN

and the vector M1 as input. The weights and biases (W and b, the subindex indicates

the layer number) have already been determined during the FDS development

procedure. The number of nodes S1 in the hidden layer has been the result of the

performance optimisation approach. In the first loop, the hidden layer output is

calculated. A sigmoidal function is used. In the second loop, the ANN output is

determined by a linear funcion.
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function N1=ANN(M1)

for i=1:S1

∑
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Figure 5.19. ANN output determination, using a BPN

Figure 5.20 shows the FLS function algorithm. The first loop considers the so called

“firing” of the if-then rule rl by applying the MF to the antecedents. They can be MF

values of the M2 or N1 variables. In the case of M2, the MFs can be low, normal or

high, as has been shown in section 5.5.3. In the case of N1, the MF can be low or high.

After this fuzzification of the input, the fuzzy set for the consequent F(nf) is determined

(Cnf
rl). The approach shown in section 4.2.1, Figure 4.7, is used for multiple

antecedents. After this inference procedure, the loop continues with the following rule

until finishing with all the defined Rl if-then rules. The following loop considers the

determination of the fuzzy sets for each of the defined faults F(nf). This procedure

usually called aggregation is done by determining the union of the fuzzy sets calculated

in the previous loop. By this way, the fuzzy output set for each fault is obtained. Finally,

the defuzzification step using the centroid method is done (section 4.2.2).

The resulting crisp output vector is the FLS output, and also corresponds to the FDS

output.
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F= FLS(M2,N1)

Apply MFs to the antecendents of if-then rule rl.
µlow(M2), µnormal(M2), µhigh(M2),
µlow(N1), µhigh(N1)

Determine Fuzzy set Cnf
rl for the

consequent (F(nf)) of the if-then rule rl

rl=1:Rl

Union of fuzzy sets

U
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nfnf CC
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nf=1:Nf

Defuzzification (centroid method)
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Fuzzification

Inference

Aggregation

Defuzzification

Figure 5.20. FLS algorithm for on line implementation of the proposed FDS

A simple example is shown in Figure 5.21. Two if then rules are considered. One of

them has a M2 value as antecedent and the other one a N1 value. A fuzzy set for the

consequent fault F(nf) is determined for each rule. The inference in each rule is simple

because there is no AND/OR operators. Then, the aggregation is performed by the
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union of the obtained fuzzy sets. Finally, using the centroid method, the crisp output is

obtained.
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rl=1; IF M2(i) is HIGH THEN F(nf) is HIGH

rl=2; IF N1(nf) is HIGH THEN F(nf) is HIGH
Aggregation

Defuzzification

Figure 5.21. A simple example of the application of the FLS algorithm

5.7. Determination of the information to be sent to other levels

The FDS system receives sensor data from the plant and the control signals. They can

be continuous signals (temperatures, flowrates, pressures) or discrete signals (valves

open or close, pumps on or off). The outputs are a set of suspected faults. The signal

corresponding to each suspected fault is considered binary (0 or 1). This output can be

used by the advanced control module in order to take control actions, or by the

operators who have to take decisions or by other levels in the computer system as the

scheduling system. The output of the FDS system has different forms according to the

level of information.

HAZOP analysis can help in this "translation" of the information provided by the FDS,

as it will be shown now (Ruiz et al., 2000a). Following the example shown in Figure

5.15 and according to the explained HAZOP analysis (Table 5.2), the information at

different levels from the FDS system output when the fault “Pump 1 malfunction” is

diagnosed, is summarised in Table 5.3. Note that the construction of that table is

straightforward from the HAZOP analysis.
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Table 5.3. Information to be sent to other levels

Module Translation from FDS output

Control System Switch to Pump 2

Scheduling System Time needed for tank charge increased

Operator's console Check the Pump 1

5.8. Conclusions

The proposed FDS has been introduced. It consists in a combination of a pattern

recognition approach based on an ANN and inference system based on fuzzy logic.

After a general description of the approach, the successive steps for its development

has been described. Then, the development of the ANN and FLS blocks has been

specially considered due to their importance in the FDS framework.

The ANN is trained by supervised learning. It can be done directly with the saved

variables' profiles or by using the signal features. If the first alternative does not show

an acceptable performance, the last one is recommended. Such option requires signal

pre-processing using wavelets at a high level and extrema determination for feature

extraction. The selection of the type of ANN is not a critical point. Nevertheless, a

RBFN trains faster and usually has better performance. However, for high dimensional

training data sets, it is not the recommended option because of the high computational

requirements involved (RBFN of high dimensions). On the other hand, a PNN is

suitable for the classification of fault patterns composed by signal features.

With respect to the FLS, the use of a Mamdami system has been commented.

However, Sugeno FLS type can be also utilised. Results of its application will be shown

later on (Chapter 7, section 7.2.4).

The program for the on line implementation of the FDS has been shown and explained

in detail.

Finally, the basis for the translation of the FDS signal, in order to be utilised at other

levels in the information system as the scheduling level has been presented
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Acronyms

AANN Autoassociative Artificial Neural Network
ANN Artificial Neural Network
DCS Distributed Control System
FDS Fault Diagnosis System
FLS Fuzzy Logic System
HAZOP Hazard and Operability study
MF Membership function
NLPCA Nonlinear Principal Component Analysis
PCA Principal Component Analysis
PNN Probabilistic Artificial Neural Network
SOM Self Organising Map
SPE Squared Prediction Error

Notation

ai Output vector of the ith layer in a BPN
b i Bias vextor of the ith layer in a BPN
Di Detail of the ith wavelet decomposition
F Fault vector
j Index for measurements (sensors)
J Total number of measurements (sensors)
k Index for time intervals
K Total number of time intervals
m Index for nodes in an ANN
M1 Vector of measurements from the plant that are the ANN's input
M1Knf Matrix with the measurements profiles for the fault nf
M1’Knf Matrix of extrema of the measurements for the fault nf
m1 Length of vector M1
M2 Vector of measurements from the plant that are part of the FLS's input
m2 Total number of measurements that are part of the FLS's input
ni Activation status vector of the ith layer in a BPN
N1 Output vector of the ANN in the proposed FDS
n1 Total  number of "pre-faults" diagnosed by the ANN
Nf Total number of defined faults
nf Index for faults
%P Performance parameter for FDS
%P* Modified %P which takes into account cases of false diagnosis
R Range of the SPEjs% of the set of sensors
rl Index for rules
Rl Total number of rules in a FLS
Si Total number of nodes of the ith layer of an ANN
SPEj SPE calculated for the measurement j and the corresponding output of the AANN
SPEjs 99% upper control limit of SPEj for a set of correct measurements
SPEjs% Percentage relation between SPEj of a new measurement and SPEjs

SPEsup 99% upper control limit of SPE for a set of correct measurements
td Time spent by a FDS for correct diagnosis
tss Time with the plant in non-steady state after a fault occurs
W i Weight matrix of the ith layer in a BPN
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Greek symbols

ε Small number
µ Membership function
σ Standard deviation




