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Chapter 6

Optimization

6.1 Introduction

Up to this point, this thesis has shown a methodology that allows modeling the complexity of
the constraints present in the industrial cases (chapter 4) and has also presented how to build
schedules (chapter 5) either from an initial static situation or from an online environment.

The methodology for building schedules described in the previous chapter does not neces-
sarily lead to (except some particular cases) an optimal solution as the greedy heuristics used
provide sub-optimal solutions. This chapter will deal with several optimization procedures
that can improve the solutions given by the procedures described in the previous chapter.

Two different approaches have been attempted: stochastic methods and mathematical
programming. This chapter explains these methods and the results obtained.

6.2 Stochastic methods

In section 2.2.1 (page 11) different works concerning heuristic/stochastic methods applied
to the solution of the scheduling problem were reviewed. In this thesis three different ap-
proaches have been used: simulated annealing, mixed stochastic enumerative search and
genetic algorithms.

6.2.1 Simulated Annealing

6.2.1.1 Introduction

The sequencing of jobs in multi-product batch chemical plants can be seen as a blind ATSP,
for which the changeover matrix is not available. This is mainly due to the same structure
of operations involved in each job, which usually requires to simulate the scheduling of each
pair of consecutive batches to obtain the corresponding changeover time (including clean-
up times). Moreover, this situation worsens when such changeover times depend not only
in the pair involved but also on other jobs in the series. This is the case when jobs do not
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share all the same equipment units or they consume the same limited general utilities (steam,
manpower, etc).

Begin

Set SA parameters

Initial solution S

New configuration S’

OF evaluation
z(S’),z(S )

>=0?

prob=exp[- /(k·T)]

U<prob?

Set S=S’

 =z(S’)-z(S)

equilibrium
criteria

Stopping
criteria

end

New T

δ

δ

δ

U=random[0,1]

No

Yes

Yes

Yes

Yes

No

No

No

Figure 6.1: SA algorithm

Hence, Simulated Annealing has shown to be a good option for solving this kind of blind
ATSP, since it is based on the simulation of each one of the sequences proposed so that they
can be validated, evaluated and eventually accepted. Ku and Karimi (1991) first applied SA to
multi-product problems (unconstrained job sequences). More recently, Graells et al. (1996)
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used SA for solving a kind of multipurpose problems (constrained mini-job sequences). Other
authors also applied SA to the scheduling problem as shown in section 2.2.1.

6.2.1.2 Methodology

The Simulated Annealing algorithm (see figure 6.1) is a probabilistic method for combinato-
rial optimization problems based on ideas from statistical mechanisms. It allows the improve-
ment of an initial schedule (generated using the rule-based methods described in chapter 5)
exploring a defined neighborhood and trying to improve a configurable objective function.

The Simulated Annealing method has an analogy with thermodynamics, specifically with
the way metals cool and anneal. At each temperature T, the system is allowed to reach thermal
equilibrium and should follow Markovian moves, where the next move is only dependent on
the current position and not on the previous ones.

The state of minimum energy for the system would correspond to the optimal solution
in a mathematical optimization problem. A metastable or amorphous state of higher energy
reached due to a quick refrigeration would correspond, in the mathematical sense, to a sub-
optimal solution.

1 2 3 4 5 6 7 8 9

1 6 3 4 7 8 92 5

Figure 6.2: Neighborhood move used in SA

6.2.1.3 Application to the scheduling problem

In order to apply the simulated annealing to the scheduling problem within the framework
presented in this thesis two aspects have to be noted:

� The neighborhood mode

� The feasibility check of the solutions.
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The neighborhood move chosen in this thesis is sequence based as it is shown in figure 6.2.
In this move, the batch in the position i is inserted in the position j of the sequence. Given a
sequence of n batches, there are n

�
n � 1 � possible moves (although leading only to

�
n � 1 � 2

different sequences).
The original SA algorithm is modified in order to check the feasibility of the balance and

to allow assignment changes (see figure 6.3).
Every new sequence goes through a set of assignment rules like the ones described in

section 5.2. The assignment rules used are:

� HPU (Highest Priority Unit): The unit with the highest priority that can process the
same batch size is used.

� FU (First Unit): The first alternative unit defined in the recipe (lowest ID) that can
process the same batch size is used.

� LUU (Less Used Unit): The unit which has been chosen less times in the precedent
batches that can process the same batch size is used.

� MAU (More Available Unit): The unit with the most available time (the unit that end
earliest in the previous batches) that can process the same batch size is chosen.

� SPTU (Shortest Processing Time Unit): the unit that is capable to perform the stage in
less time for the same batch size is used.

� AUA (Already Used Assignment): If one assignment has been used with the same
recipe and can process the same batch size , then it is given the highest priority.

� RU (Random Unit): One of the available units that can process the same batch size is
chosen randomly.

Note that there is an important difference between the assignment rules described in section
5.2 and this set of rules: there is another constraint to take into account, the batch size. The
number of possible candidates for the new assignment is reduced depending on the batch size,
therefore it is insured that the batch size and the number of batches remains constant.

Additionally to the assignment, there is also a feasibility check of the sequence. The new
sequence should meet all the balance constraints indicated in section 5.2.2 (page 79). If the
sequence does not accomplish the balance constraints then it is infeasible and a new sequence
is generated.

6.2.2 Mixed stochastic enumerative search

6.2.2.1 Introduction

Despite its many advantages, SA has some remarkable drawbacks, the main one being a tech-
nique too cautious and conservative. The key idea of SA is to allow up hill moves just in case
that a local optimum is reached. However, up hill moves are still allowed even if this local
optimum is not reached simply because such a situation is never detected by SA algorithms.
Hence, experience shows that, when the probability of falling trapped in a local optimum is
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Begin

Set SA parameters
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Figure 6.3: Modified SA algorithm applied to scheduling
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very low, the most practical option and the one leading to the best results is often down hill
random search (zero temperature). This is the case, for example, when very small comput-
ing time is available for improving a bad starting point. It is not until the situation becomes
riskier (as better solutions are attained) that the need for higher temperatures allowing up hill
moves seems to arise.

Several approaches have been proposed to accelerate the annealing procedure. The Non-
Equilibrium Simulated Annealing (NESA)(Cardoso et al., 1994) addresses specifically the
excessive caution of SA but still from a probabilistic point of view and assuming a temper-
ature decreasing scheme. In the NESA approach "thermal" equilibrium is not necessarily
attained at each contraction of the "temperature" control parameter, since the cooling sched-
ule is enforced as soon as an improved solution is obtained.

However, the point is still why to allow backward moving when the search is progressing
in the desired direction. Solution to this problem could be a combined "cooling/heating"
scheme as proposed by Dowsland (1994). However, the problem is still when start heating
and how to heat (heating schedule). In any case, such solution approaches give up the original
simplicity of SA and better performances are attempted at the expense of increased strategy
complexity.

On the other hand, this should be considered in addition to the parameter-tuning problem.
The determination of a good cooling scheme (Laarhoven and Aarts, 1987), which is based
on previous sampling, may be not affordable in many common situations that require prac-
tical solutions within a limited computing time for the every day changing problem (model
changes such as parameters, constraints, objective function, etc.).

6.2.2.2 Local and global optima

Global optimum definition is absolute: it is the best solution among all possible solutions.
The existence of local optima, however, is a consequence of the limitations of the used
optimization techniques and depends on the search procedure employed and the step-size
adopted. A local optimum is the best solution among all possible neighborhood solutions,
attainable from a certain starting point given a search technique and a step-size. Hence, the
change of the search procedure may likely result in the change of the local optima obtained
for the problem considered (Fig. 6.4).

Thus, the strategy presented in this thesis for the solving of the scheduling problem is
based on stochastic search, but considers the exhaustive search of neighborhood at each step
in order to determine if progress is no longer possible with the current searching procedure
(local optimum). When such a situation is detected, this procedure (any procedure) must
obviously be replaced.

6.2.2.3 Methodology

The step-size adopted for the Traveling Salesman Problem (TSP) (analog to finding the best
sequence for an specific set of batches) is usually a change in the sequence defining the
solution, which is given by the permutation of two of its elements or by the reallocation of
one of the elements in the sequence to another position. The latter is the one adopted in this
work.
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X
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Figure 6.4: Local optima are consequence of the limitations of the search procedure and the
step-size (s) employed.
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n(n−1)
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n(n−1)

n!

ω1

Figure 6.5: Sub-spaces explored by the MSES technique

Evolutionary search techniques as SA need short step sizes. Otherwise, the larger the
step-size, the lower the chance of finding local optima, but the closer the search to behave as
a pure random. For a sequence of n elements this means a solution space Ω0 of n! possible
sequences, which cannot be exhaustively explored.

Given the shift of one element of the sequence as the basic step-size, the Mixed Stochastic
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Enumerative Search (MSES) presented proposes the exhaustive enumeration of the surround-
ings of each point attained, which correspond to the subsets ωi in figure 6.5.

The enumeration of n
�
n � 1 � states in ω1 is affordable for the search algorithm proposed

(Fig. 6.6). Furthermore, the enumeration is usually not completed because as soon as a better
solution is obtained it is proposed as a new candidate for local optimum. Hence, this point is
taken as the center of a new sub-space (ω2 ) to be exhaustively explored.

Otherwise, if the enumeration is completed the result is the detection of a local optimum.
Therefore, no more single step move makes sense and a further move is necessary. This is
given, for example, using two random moves as illustrated in figure 6.6.

The algorithm in figure 6.6, however, corresponds to the non-constrained case, in which
all sequences are feasible. For the constrained problem the same scheme is still effective,
but a checking stage must be included. In such a case, considering pre-ordering constraints
(Pinto and Grossmann, 1996; Rodrigues et al., 2000) may result in increasing the efficiency
and speed of the procedure, as the sub-spaces to be explored may be significantly reduced.

However, constrained situations may lead to non-convex problems, for which some sub-
spaces (ω3) may not be reachable from the currently explored sub-space (ω2). In order to cope
with this situation, as well as for increasing flexibility, the implementation of this strategy
includes the option for running several times the procedure starting from different random
seeds.

Put into thermal terms, the strategy proposed consists of fast "freezing" of the system
considered with heating when necessary (when local optima is detected).

6.2.2.4 Case study

The following case study is an unconstrained ATSP with 20 cities whose distance or cost
matrix has been randomly determined in the range 0 to 1000 (average circuit distance is
10000). Additionally, the distances for the pairs in the sequence 20-19-18...3-2-1 have been
set to 1 so that the optimum solution is known (minimum distance 21).

Results are summarized in figures 6.7 and 6.8.
Several computational experiments have been carried out to compare the performance

of the MSES approach with random search under different conditions. Figures 6.7 and 6.8
corresponds to the plot of the final objective function attained, OF, after 2 � 106 iterations
versus the probability, P, for accepting a x% positive change of such objective function,
∆

�
OF � , following Metropolis criterion:

P � e

���
∆ � OF �

T � (6.1)

Thus, each column in the plot corresponds to an "isothermal bath" performed at temper-
ature:

T � � x
100

lnP
(6.2)

When discarding a change, the procedure may return to the previous solution or to the
best solution found during the search. Figures 6.7 and 6.8 correspond respectively to these
situations. In both cases, six executions at each given probability are compared with other six
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Begin

Initial sequence: n=1,2...N

Set j=1 and k=2

Move element j to position k

Better? Accept new
sequence

k=k+1

j=j+1

k<=N?

j<=N?

Record best sequence found

Iterate
again?

Move x times
randomly

End: Best sequence found

yes

no
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Undo move

yes

yes

no
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yes
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Figure 6.6: Mixed Stochastic Enumerative Search (MSES) algorithm for unconstrained se-
quences.
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Figure 6.7: Results obtained for different random search procedures following Metropolis
criterion compared with the MSES procedure. Random search returns to previous solution

Figure 6.8: Results obtained for different random search procedures following Metropolis
criterion compared with the MSES procedure. Random search returns to best solution found.
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MSES executions for which the mean value is plotted. Each execution was limited to 2 � 106

iterations (in front of 20! � 2 � 4 � 1018 feasible solutions). Results show how the MSES ap-
proach led readily to the known optimal solution while stochastic search following Metropolis
criterion may lead to close performance only if accurately tuned.

6.2.2.5 Application to the scheduling problem

The same procedure applied in simulated annealing has been followed in MSES. The mod-
ified algorithm (see figure 6.9) includes changes in the assignment and feasibility check of
the sequence. The same rules and coding used in the SA algorithm is also applied here. This
aspect allows the straightforward comparison between both methods.

6.2.3 Genetic algorithms

6.2.3.1 Introduction

Genetic Algorithm (GA) is a heuristic method of local search, which allows the resolution of
large combinatorial optimization problems.

The general idea of a GA is to start with randomly generated solutions and implement a
"survival-of-the-fittest" strategy to evolve good solutions. An individual with a higher fitness
than the general population will have a better chance to survive and become a parent of the
next population. GAs rely on the collective learning process within a population, where each
member represents a search point in the space of potential solutions of a given optimization
problem.

Genetic algorithms have been also applied to the scheduling problem (Jung et al., 1998;
Azzaro-Pantel et al., 1998; Noze et al., 1999; Wang et al., 2000) . In this work GA will be
implemented within the presented framework.

6.2.3.2 Methodology

In order to apply GAs, each solution of a problem must be encoded into a gene string known
as a chromosome. A symbol or bit in the string is called a gene and it represents a decision
variable value. An initial population needs to be constructed as a set of the chromosomes,
normally generated randomly. Then, the GA operates iteratively, generation by generation,
improving those chromosomes until some termination criteria is satisfied.

The whole process of applying a GA to solve a scheduling problem is summarized in
figure 6.10.

There are several utilities available that handle most of the GA common procedures. In
this work GAlib, an available C++ library of genetic algorithm components developed by the
Massachusetts Institute of Technology (MIT), has been used and extended. GAlib includes
C++ tools for using genetic algorithms to do optimization using any representation and any
genetic operators.

The library works primarily with two classes: a genome and a genetic algorithm. Each
genome instance represents a single solution to the problem and contains three primary op-
erators: initialization, mutation and crossover. The initialization operator determines how
the genome is initialized and it is called when the population or the genetic algorithm is
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Figure 6.9: Modification of the MSES algorithm for schedule sequences
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Begin

Generate initial Population

Evaluate Objective function

Reproduction process:
Selection
Crossover
Mutation

New generation

Termination
criterion

End

Figure 6.10: Genetic algorithm
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initialized. The mutation operator defines the procedure for mutating each genome and the
crossover operator specifies the procedure for generating a child from two parent genomes.

The genetic algorithm object defines how the evolution should take place and operates on
the population to evolve the best solution. It uses an objective function to determine how ’fit’
each genome is for survival and integrates selection and replacement strategies to generate
new individuals.

6.2.3.3 Application to the scheduling problem

In order to use GAlib library for the scheduling problem several objects and algorithms have
been defined:

� A new genome coding the sequence of batches

� A method for generating the initial population

� A mutation operator

� A set of crossover operators

� The evaluation of the objective function

� A feasibilization algorithm for the obtained sequences.

The first aspect to consider is the genome representation of the schedule. In this case an easy
sequence coding like the one used in SA and MSES (see figure 6.2) is also utilized. Each
position in the genome represents a position in the sequence.

The second step is the generation of the initial population. In this case, as an initial
solution is given, the initial population is generated applying n times the mutation operator to
the initial sequence.

The mutation operator used is represented in figure 6.11. As it is shown, the mutation
consist in swapping two positions of the sequence. This mutation operator is different than
the neighborhood move used in the SA and the MSES.

1 2 3 4 5 6 7 8 9

1 6 4 5 7 8 93 2

Figure 6.11: Mutation operator for the GA
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Four different crossover operators adequate for the genome representation have been se-
lected for applying the GA to the scheduling problem:

� PMX (Partially Mapped Crossover)

� OX (Order Crossover)

� CX (Cycle Crossover)

� ERX (Edge Recombination Crossover)

PMX crossover builds an offspring by taking a sub-tour from one parent and preserving the
order and position of as many positions as possible from the other parent (see figure 6.12).
A crossover point is randomly selected to define a matching section. The elements of this
section define an interchange mapping, which is applied pointwise to the parents to get the
offspring.

1 2 3 4 5 6 7 8 9

9 8 7 4 5 6 2 13

9 8 6 5 3 2 17 4

1 2 3 6 5 4 97 8

Figure 6.12: PMX crossover operator

As alternative crossover, OX takes a sub-tour from one parent and preserves the relative
order of the other parent. In this case, two crossover points are picked at random and the
strings between them are selected and maintained. Then, the same alleles (each one of the
positions in the sequence) from the second parent are deleted and the remaining alleles are
copied into the empty positions of the offspring.

The CX operator allows for the combination of two schedules to produce new ones pro-
ceeding as follows: an allele from parent 1 is selected and crossed out from parent 2. The
corresponding allele from parent 1 is again selected and the process is repeated until the cycle
is complete. Then, the remaining positions are copied from parent 2.

The Edge Recombination Crossover builds offspring using only the edges present in both
parents. First, an edge list is build starting from the two parents. The alleles in the offspring
are selected one at a time by choosing the allele with the smallest number of edges between
the alleles connected with the current one (in case of alleles with the same number of edges,
a random choice is made). Once an allele has been selected it is removed from the table and
the alleles connected to it are considered as candidates for the next selection. The procedure
is repeated until all the alleles have been selected.

Figure 6.15 and its associated table 6.1shows an example of this operator.
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1 2 3 4 5 6 7 8 9 9 8 6 5 3 2 17 4

1 2 7 6 5 4 93 89 8 3 4 5 6 2 17

Figure 6.13: OX crossover operator

1 2 3 4 5 6 7 8 9 9 8 6 5 3 2 17 4

9 2 3 4 5 6 17 81 8 7 6 5 4 2 93

Figure 6.14: CX crossover operator

The evaluation procedure requires feasible sequences in terms of the material balance
constraints (section 5.2.2, page 79) so the crossover operator lead very often to infeasible
sequences. Therefore a method for obtaining feasible sequences is needed. In this work the
algorithm shown in figure 6.16 is used. The resulting sequences of the crossover operator are
considered as priority sequences, the resulting sequence is then feasible in terms of material
balance thus allowing the evaluation of the objective function.

The same rules used in SA and MSES for assignment are also used in GA after the
feasibilization algorithm. Therefore the feasibilization algorithm should also be included in
the generic GA algorithm resulting in the new algorithm shown in figure 6.17.

6.3 MILP model

6.3.1 Introduction

As it has been commented in section 2.2.2 (page 13) mathematical programming has been
extensively used in the field of planing and scheduling. In order to compare the stochastic
methods extensively used in this thesis with the mathematical programming approach a new
MILP mathematical formulation has also been developed.

The objective was to develop a detailed model that takes into account most of the aspects
described in this thesis like detailed recipe description and storage constraints.
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1 2 3 4 5 6 7 8 9 9 1 2 5 4 6 87 3

9 8 1 7 6 4 23 59 1 8 7 2 3 5 64

Figure 6.15: ERX crossover operator

Table 6.1: Connection table for the crossover operator shown in figure 6.15

Position Connected to
1 2 9 7
2 1 3 7 5
3 2 4 5
4 3 5 6
5 4 6 2 3
6 5 7 4 8
7 6 8 1 2
8 7 9 6
9 8 1

The Batch plants scheduling problem modeled in this thesis can be described as:
Given a multipurpose batch plant consisting of a set of units U capable of producing a set

of batches B each one characterized with a batch size BSb and a set of stages Sb , and each
stage capable to be performed in a set of different units Ubs. The goal is to produce all the
batches in a minimum time.

6.3.2 Mathematical model

The following assumptions have been made to derive the proposed mathematical model.
Model parameters are all deterministic.
Processing times only depend on the operation.
The starting point for the model presented is the formulation of the EON timing model

which is shown in the equations (6.3) to (6.8).
minimize:

Z � C1 � MS
� M

∑
m � 1

C2
m � TWm

� N

∑
n � 1

C3
n � Tn (6.3)

subject to:

0 � MS � Tn � n;n � 1 � � � N (6.4)
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be added
in EL? 

i=i+1
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End

Yes

Yes

No

No

Figure 6.16: Feasibilization algorithm for GA sequences

0 � Tn � T min
n � n;n � 1 � � � N (6.5)

TFNm
� TINm

� TOPm
� TWm � m;m � 1 � � � M (6.6)

0 � TWm � TW max
m � m;m � 1 � � � M (6.7)

TDNk
� TONk

� ∆Tk � k;k � 1 � � � K (6.8)

These equations were described in section 4.2 on page 39.

6.3.3 Allocation constraints

New allocation binary variables (Ybsu) are introduced which equals to 1 if stage s of the batch
b is allocated to unit u. Each stage should be assigned at least to one unit, but it can not be
assigned to more than a specific number of units (MaxUnitsbs):
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Begin
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Apply Assignement rules

Figure 6.17: Modified GA for scheduling

1 � ∑
u � Ubs

Ybsu � MaxUnitsbs � b � B � s � Sb (6.9)

Additionally the allocated units have to be able to produce the required batch size (BSb)
given by the unit capacity (Qu) using a size factor (SFbsu) associated to the batch, the stage
and the unit used:

∑
u � Ubs

�
SFbsu � Qu � Ybsu � � BSb � b � B � s � Sb (6.10)

Finally, the assignment has to agree with the topology of the plant. A batch b allocated
to unit u � Ubs at stage s � Sb can be allocated to unit u � at stage s

�
1 only if the unit u � is

connected to unit u.

Ybsu � ∑
u ��� Ubs � bs 	 1

Ybsu � � b � B � s � Sb (6.11)
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6.3.4 Sequence constraints

Sequence constraints complementary to equation 6.8 should also be introduced. Equation
6.8 was used in the original formulation not only for expressing the time constraints within
a recipe, but also to represent the constraints between tasks in a given sequence of batches.
Each stage has associated a start event (SNbs) and an end event (ENbs). To generate the
sequence constraints the concept of predecessor, from Mendez and Cerdá (2000), is used.
The predecessor concept is introduced using a new binary variable, (Pbb � ) which relates a pair
of batches (b and b’). If batch b is processed before batch b’ then the predecessor variable
Pbb � equals to 1. At this point is important to notice than for each couple of batches only
a new variable is needed as Pbb � � 1 � Pb � b. In fact the total amount of precedence binary

variables needed to represent the sequence constraints for n batches is n � � n � 1 �
2 . Once defined

the predecessor variables, the new sequence constraints are formulated using a big M:

TSN
b � s � TENbs

� M � �
1 � Pbb � � � M � �

2 � Ybsu � Yb � su �

� b � b � � B � b ��� b � s � Sbb �
(6.12)

TSNbs
� TEN

b � s � M � Pbb � � M � �
2 � Ybsu � Yb � su �

� b � b � � B � b � � b � s � Sbb �
(6.13)

In the simplest case, where the unit assignment is fixed, so the allocation constraints do
not exist, the sequence constraints are much simpler:

TSN
b � s � TENbs

� M � �
1 � Pbb � � � b � b � � B � b � � b � s � Sbb � (6.14)

TSNbs
� TEN

b � s � M � Pbb � � b � b � � B � b � � b � s � Sbb � (6.15)

6.3.5 Storage constraints

As the model basis is the EON model, complex storage constraints can be easily modeled as
shown in section 4.5 (page 55) . In this model only the single input-output (SIO) constraints
are used. Each material (m) to be stored should be allocated to one storage. This allocation
is given by an allocation binary variable Xmbg. If the binary variable is 1 then the flow of
material m of the batch b (Fmb) is associated to the storage g which can be one of the storages
associated to the material m (Gm). Each material flow has associated a start event (SEmb) and
an end event (EEmb). The storage constraints can be formulated as follows:

Each material flow can only be associated to one storage:

∑
g � Gm

Xmbg
� 1 � b � Bm � m � M (6.16)

In one storage it can only be one material flow at the same time:

TSE
mb � � TEEmb

� M � �
1 � Pbb � � � M � �

2 � Xmbg � Xmb � g �

� b � b � � Bm � b ��� b � g � Gm

(6.17)
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TSEmb
� TEE

mb � � M � Pbb � � M � �
2 � Xmbg � Xmb � g �

� b � b � � Bm � b � � b � g � Gm

(6.18)

At any time the amount of material stored in one storage unit should be between the
maximum level (Maxmg) and the minimum level (Minmg)

Minmg � Fmbg
�

∑Pb � bFmb � g �
∑

�
1 � Pbb � � � Fmb � � g � Maxmg

� b � b � � b � � � Bm � b ��� b � b � b � � � g � Gm

(6.19)

where Fmgb is the flow associated to the material m of the batch b that is assigned to the
storage g, and its value is:

Fmbg
� XmbgFmb � b � Bm � g � Gm (6.20)

Equations (6.19) and (6.20) should be linearized before solving. This can be easily per-
formed again using a big M transformation as the expression

Fmbb � g � Pbb � Fmb � g (6.21)
can be reformulated as

Fmbb � g � Fmb � g � �
1 � Pbb � � M (6.22)

Fmbb � g � Fmb � g � �
1 � Pbb � � M (6.23)

Fmbb � g � M � Pbb � (6.24)

6.4 Comparison

The industrial based case study proposed by Honkomp et al. (2000) has been chosen to com-
pare the different optimization approaches described. The complexity of the original case
study has been decreased in order to make this comparison. The following modifications
have been made:

� Only recipes concerning to blending have been introduced.

� The number of storage tanks has been decreased (from 80 to 34).

� No shifts have been introduced, the availability is supposed to be the 100% the 24 hours
per day.

As an illustrative example a test performing between 5 and 20 batches of different recipes
is been carried out. The recipes chosen for each test are the first N recipes given in the
referenced paper (i.e. the test with 7 batches calculates the production of one batch of each
of the first 7 recipes provided in the case study).

Results of applying the MILP model to the test case using Gams/CPLEX 7.5 running in a
2 GHz Athlon under Windows 2000 with a resource limit of 10 hours are shown in the table
6.2 and figure 6.18.
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Table 6.2: Variables and CPU time needed using the MILP model

Batches Constraints Variables Binary variables CPU (sec.)

5 811 232 190 0.56
6 1195 281 231 3.75
7 1653 331 273 52.1
8 2185 382 316 421
9 2791 434 360 1000

10 3472 491 409 5344
11 4233 549 459 6381
12 5074 608 510 14311
13 5995 668 562 10475
14 6996 729 615 22440
15 8077 791 669 36000
16 9238 854 724 36000
17 10479 918 780 36000
18 11800 983 837 36000
19 13210 1049 895 36000
20 14682 1116 954 36000

The large amount of constraints needed is due to the amount of different units capable
to perform the same stage. That forces to compute equations (6.12) and (6.13) for each
combination of the assignment and sequence binary variables.

A second point to show is that calculation of problems with 15 or more batches requires
more than 10 hours. Additionally, it can be observed that the CPU time required to calculate
13 batches is lower that the CPU time required for 12 batches. This fact is due to a change in
the recipe structure of the batch number 13.

The same experiments have been carried out using the different optimization strategies
presented in this chapter and in the previous one. The same computer equipment and condi-
tions that in the MILP experiments were used. In order to illustrate the results the following
tests has been selected in order to illustrate the totality of the results:

� MILP model calculation with a CPU time limit of 5 minutes, 1 hour and 10 hours.
(MILP 5’ , MILP 1h, MILP 10 h).

� Generation of an schedule using all the possible combinations of methods shown in
chapter 5 and selection of the best result. (Best Seq.).

� Generation of a bad initial solution using one possible combination of the sequencing,
assignment and material balance rules (FP,FU,LSL) (Init. sol. A).

� Generation of a good initial solution using FP+MAU+LSL (Init. sol. B).

� MSES limited to 500 iterations starting from Init. sol. A and Init. sol. B using the
assignment LUU rule (MSES A and MSES B).
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Figure 6.18: Number of constraints and variables needed using the MILP model

� SA limited to 500 iterations starting from Init. sol. A and Init. sol. B using the
assignment LUU rule (SA A and SA B).

� GA of 50 generations and 10 individuals each generation using the assignment LUU
rule and the PMX operator starting from Init. sol. A and Init. sol. B (GA A and GA
B).

Table 6.3 shows the amount of CPU time required for each of the situations (the maximum
time is shown for each of the stochastic methods). The CPU time required for each of the
three stochastic methods used is of the same order of magnitude as all of them executes
approximately the same number of evaluations (500). The evaluation of the 190 possible
combinations of the sequencing algorithms requires a considerable amount of time, basically
due to all the rules that needs the calculation of partial schedules (MAU,SPT,LPT,etc.). How-
ever, all the experiments done with stochastic methods require considerable fewer time than
the time required by the MILP formulations.

Table 6.4 summarizes the results of the objective function found using the different ap-
proaches. The best solutions found are highlighted. Several aspects can be noticed:

� The MILP limited to 10 hours of calculation was able to found the best solution only
in 10 of the 16 scenarios.

� The SA and MSES generated the same solution, in the best case the performance was
worse that the MILP as they only find in five cases the best solution.
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Table 6.3: CPU times required for the sequencing and optimization algorithms

Batches Best. Seq.
(sec)

Init. Sol
(sec.)

MSES
(sec.)

SA
(sec.)

GA
(sec.)

MILP
(min.)

5 12 0.1 3 10 9 0.01
6 13 0.1 4 12 10 0.1
7 16 0.1 8 20 11 0.9
8 19 0.1 12 25 13 7.0
9 24 0.2 20 30 15 50.0
10 30 0.2 22 35 17 89.1
11 38 0.2 25 39 19 106.4
12 47 0.2 28 45 21 238.5
13 62 0.2 32 51 24 174.6
14 79 0.3 36 57 27 374.0
15 95 0.3 39 63 30 >600
16 115 0.3 43 70 33 >600
17 138 0.3 47 77 34 >600
18 163 0.4 52 85 42 >600
19 195 0.4 57 91 43 >600
20 233 0.4 62 99 50 >600

� Generating all the possible combination of assignment and sequencing rules generates
in nine cases the best solution. It also generates better solutions than the MILP used
when the number of batches is high.

� The Genetic Algorithm was the best performer of all the tests presented. The best
solution was found in all but 1 scenario.

6.5 Conclusions

This chapter has shown all the optimization techniques used in this thesis within the the
scheduling approach used. Stochastic and mathematical methods have been used and tested.

Regarding to the stochastic methods, a new optimization algorithm (MSES) has been in-
troduced that improves the performance of the SA algorithm. The GA algorithm has also been
considered and a transformation algorithm is included to convert the infeasible sequences
commonly generated into feasible ones. All the stochastic methods used were adapted to be
used in a batch oriented approach involving batch sequencing and rule driven unit assignment.

Regarding to the mathematical approach, the mathematical formulation presented in chap-
ter 4 has been extended introducing sequence and assignment variables as well as storage
constraints.

A motivating example has been taken as a test case. All the optimization approaches
presented as well as all the sequencing algorithms presented in the previous chapter have
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Table 6.4: Makespan obtained aplying the different optimization approaches

Batches MILP
10h

MILP
1h

MILP
5 ’

Best
Seq.

Init.
sol. A

MSES
A

SA A GA A Init.
sol. B

MSES
B

SA B GA
B

5 10.45 10.45 10.45 10.45 14.52 10.45 10.45 10.45 10.45 10.45 10.45 10.45
6 12.18 12.18 12.18 12.18 17.27 12.18 12.18 12.18 12.18 12.18 12.18 12.18
7 13.92 13.92 13.92 13.92 20.02 13.92 13.92 13.92 13.92 13.92 13.92 13.92
8 15.65 15.65 15.65 15.65 22.77 15.65 15.65 15.65 15.65 15.65 15.65 15.65
9 17.77 17.77 19.80 17.77 26.37 18.55 18.55 17.77 18.55 18.55 18.55 17.77
10 17.77 17.77 18.78 17.83 28.67 18.55 18.55 17.77 18.55 18.55 18.55 17.77
11 17.77 18.47 19.48 17.83 31.18 18.55 18.55 17.77 18.55 18.55 18.55 17.77
12 17.77 18.78 20.50 17.83 33.70 18.55 18.55 17.77 18.55 18.55 18.55 17.77
13 17.77 18.78 20.82 17.77 36.52 18.55 18.55 17.77 18.55 18.55 18.55 17.77
14 18.47 18.55 18.55 17.83 39.33 18.55 18.55 17.77 18.55 18.55 18.55 17.77
15 17.77 25.70 36.28 18.55 41.85 18.55 18.55 17.77 18.55 18.55 18.55 17.77
16 21.78 25.50 22.67 18.55 44.15 18.55 18.55 17.77 18.55 18.55 18.55 17.77
17 21.47 25.87 25.84 18.67 46.90 19.12 19.12 18.67 19.12 19.12 19.12 18.67
18 23.70 29.83 36.08 19.95 49.72 21.40 21.40 19.90 19.95 19.95 19.95 19.90
19 27.60 29.42 43.90 20.88 52.23 21.40 21.40 21.07 21.07 21.07 21.07 21.07
20 25.32 28.22 28.85 21.57 54.53 23.02 23.02 22.08 21.57 21.57 21.57 21.57
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been executed in the test case and the results compared. The GA approach have been shown
to be the best approach for this case study, finding the best solution in most of the scenarios
used whit short CPU times.
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Nomenclature

B: Set of batches.

BSb: Batch size of batch b.

DNk: Destination event of link k

EEmb: End event associated to Fmb.

ET � : Finishing time of operation’

ETn: Finishing time of operation n.

ENbs: End event associated to the stage s of batch b.

Fmgb: Flow associated to the material m of the batch b that is assigned to the storage g.

Fmb: Flow of material m of the batch b .

Gm: Set of storages storages associated to the material m.

FNm: Final event of operation m

INm: Initial event of operation m

IT � : Starting time of operation’

ITn: Starting time of operation n

K : Delta time

Kn :Fraction of discharge µn

MaxUnitsbs: Maximum number of units that can perform simultaneously the stage s of batch
b �

Maxmg: Maximum level for material m in storage g.

Minmg: Minimum level for material m in storage g.

MS : Makespan value

NIVn
: Initial event of variation Vn

NFVn
: End event of variation Vn

ONk: Origin event of link k

P: Probability.

Pbb � : Binary variable which relates a pair of batches (b and b’). If batch b is processed before
batch b’ then the predecessor variable Pbb � equals to 1.
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Qu: Capacity of unit u.

Sb: Set of stages of batch b .

SEmb: Start event associated to Fmb.

SFbsu: Size factor associated to the batch b, the stage s and the unit u.

SNbs: Start event associated to the stage s of batch b.

TOPn: Operation time associated to the operation n

TWm : waiting time of operation m

TW max
m : Maximum waiting time for operation m

TWmaxn: Maximum waiting time for the operation n

Tn: Time value associated to event n

T min
n : Minimum time associated to event n

U: Set of units.

Ubs: Set of units that can perform the stage s of batch b.

Vi: Level variation of an storage.

Xmbg: Binary variable which is 1 then the flow of material m of the batch b (Fmb) is associated
to the storage g.

Ybsu: Binary variable which equals to 1 if stage s of the batch b is allocated to unit u.

Z: Objective function value

∆Tk: Delta time associated to link k

∆
�
OF � : Change in the objective function.

Ω0: Solution space of n! possible sequences.

ωi: Sub-space � Ω0.
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