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Sow a thought, and you reap an act;
Sow an act, and you reap a habit;

Sow a habit, and you reap a character;
Sow a character, and you reap a destiny.

Charles Reade (1814 - 1884)






Summary

Dynamism, responsiveness, and flexibility are essential features in the development
of the current society. Globalization trends and fast advances in communication and
information technologies make all evolve in a highly dynamic and uncertain environ-
ment. Popular and modern things one day, become easily obsolete the day after. In
addition, unexpected and sudden situations due to for example rush orders, delays,
traffic jams, or weather conditions, are commonly encountered in our daily activities
and prevent or modify the expected realization of a plan. Within such an environ-
ment, is planning reliable? What happens if expectations cannot be met, if changes
cannot be faced immediately?

A parallelism can be established between these day to day situations and the
planning of operations in a process system. Will raw materials be delivered on time
and according to specifications? Will the required resources be available during pro-
duction? Will customer orders be satisfied? Because of the dynamic and uncertain
operation conditions, plans rarely developed as predicted.

The uncertainty involved in a real process system becomes a critical problem in
decision making, as well as a recognized challenge in the area of Process Systems Engi-
neering (PSE). In practice, effort is expended either searching for safety mechanisms,
such as inventory and lead times, or reacting to the consequences of the uncertainty.
Boards, colored cards, and marker pens initially used for scheduling have been pro-
gressively replaced by computer-aided decision-support systems. Models developed
up to this point, as well as commercial advanced planning and scheduling (APS) sys-
tems, provide reactive scheduling capabilities and what if scenario analysis, but rely
generally on estimated input information, implicitly assuming that a schedule will be
executed without deviations. Rescheduling, though simple, is required at execution
time to deal with disturbances arising as a consequence of the uncertainty, but it is
not always effective or even possible. A promising alternative is to address the uncer-
tainty proactively at the time of reasoning, though so far relatively few research work
has been reported that exploits the knowledge available in the modeling procedure
itself.

In view of this situation, the following questions arise: what do we understand for
uncertainty? How can uncertainty be considered within scheduling modeling systems?
What is understood for schedule robustness and flexibility? How can schedule robust-
ness be improved? What are the benefits? This thesis gives an answer to all these
questions in the context of operational analysis in PSE. Uncertainty is managed not
from the traditional reactive viewpoint, but proactively, and decision-support sys-
tems are developed to identify robust schedules that serve as a useful guidance for
the lower control level in the plant, as well as for dependent entities in a supply chain



environment.

The first contribution aims at formalizing the concept of schedule robustness, which
is commonly understood as the ability of a schedule to deal with uncertain events at
execution time while maintaining an acceptable performance, but a general formalism
is missing. Proactive approaches are then developed based on stochastic and robust
optimization methodologies, and using an statistical representation of the uncertainty.
Both mathematical and procedure-oriented algorithms, coupling simulation and op-
timization capabilities, are assessed and compared. Particularly, research studies are
conducted in three main directions:

|. Robust scheduling focused on operational uncertainties.

The main uncertainties in short-term production scheduling are first considered
(variable operation times and equipment breakdowns). The problem is initially mod-
eled using stochastic programming, and a simulation-based optimization framework
is finally developed, which captures the multiple sources of uncertainty, as well as
rescheduling strategies proactively, that is, in the reasoning stage.

Il. Transport scheduling.

The coordination of production and transport activities, considered so far mainly
in strategic and tactical levels of analysis, is assessed, thus providing a broader op-
erational perspective. The procedure-oriented system developed in the context of
production scheduling is extended to involve transport scheduling in multi-site sys-
tems with uncertain travel times.

I1l. Robust scheduling focused on tactical uncertainties.

The final research point focuses on the effect of product demands uncertainty in
short-term scheduling decisions. The problem is analyzed from a risk management
viewpoint, and financial risk, downside risk and worst-case are assessed as alternative
measures to control the performance of the system in the uncertain environment.

Overall, this research work reveals the advantages of recognizing and modeling un-
certainty, with the identification of more robust schedules able to adapt to a wide range
of possible situations, rather than optimal schedules for an hypothetical scenario. Be-
sides, the management of uncertainty proposed from an operational perspective can
be considered as a first step towards its extension to tactical and strategic levels of
analysis, as well as towards the integration of hierarchical decision-support systems.
In general, the proactive perspective of the problem results in a more realistic view of
the operation of a process system, and it is a promising way to reduce the gap between
theory and industrial practices. It provides valuable insight on the process, visibility
for future activities, as well as it improves the efficiency of reactive techniques and of
the overall system, all highly desirable features to remain alive in the current global,
competitive, and dynamic process environment.



Resum

Dinamisme, capacitat de resposta i flexibilitat sén caracteristiques essencials en el
desenvolupament de la societat actual. Davant les noves tendéncies de globalitzacié i
els avencos en tecnologies de la informacié i comunicacié s’evoluciona en un entorn al-
tament dinamic i incert. Fets que un dia sén populars i moderns, esdevenen facilment
obsolets el dia segiient. Alhora, en tota activitat diaria poden presentar-se situacions
inesperades degut a presses, retards, condicions meteorologiques, etc., que impedeixen
o modifiquen el seguiment esperat d’un pla. En un entorn aixi, és possible confiar en
la planificacié? Que passa si no s’aconsegueixen les expectatives, si no es pot fer front
als canvis de forma immediata?

Existeix un paral-lelisme entre aquestes situacions quotidianes i la planificacié de
les operacions en un sistema de procés. Les materies primeres arribaran a temps i
segons les especificacions? Els recursos necessaris estaran disponibles durant tot el
procés de producci6? Es satisfaran les demandes? Degut a les condicions de treball
dinamiques i incertes, els plans dificilment es desenvoluparan segons les previsions.

La incertesa present en tot procés real esdevé un factor critic a I’hora de prendre
decisions, aixi com un repte altament reconegut en I’area d’Enginyeria de Sistemes de
Procés. A la practica s’utilitzen tant mecanismes de seguretat (produccié d’inventari,
temps morts, etc.), com metodes de programacié d’operacions reactiva per fer front als
efectes de la incertesa. L’us inicial de pissarres, targetes de color i marcadors per pro-
gramar les operacions ha estat substituit progressivament per sistemes de suport a la
decisio assistits per ordinador. Els models proposats fins ara, aixi com també software
comercial de planificacié i programacié d’operacions avangada, presenten capacitats
de reaccié i analisi d’escenaris i si, perd es basen generalment en dades estimades,
assumint implicitament que el programa d’operacions s’executara sense desviacions.
La programacié reactiva de les operacions, tot i simple, sol ésser necessaria en temps
d’execuciéo d’un pla per tal de fer front a pertorbacions que tenen lloc com a con-
seqiiencia de la incertesa, pero no sempre resulta efectiva o factible. Una alternativa
prometedora és considerar la incertesa de forma proactiva, és a dir, en el moment de
prendre decisions; no obstant, relativament poques contribucions s’han presentat fins
ara que explotin el coneixement disponible en la propia modelitzacié del sistema.

Davant aquesta situacié es plantegen les segiients preguntes: que s’entén per in-
certesa? Com es pot considerar la incertesa en un problema de programacié d’opera-
cions? Qué s’entén per robustesa i flexibilitat d’un programa d’operacions? Com es
pot millorar aquesta robustesa, i quins beneficis comporta? Aquesta tesi déna re-
sposta a totes aquestes preguntes en el marc d’analisis a nivell d’operacié en 'area
de PSE. La incertesa es considera de forma proactiva enlloc de I’enfocament reac-
tiu tradicional, i es desenvolupen sistemes de suport a la decisié per tal d’identificar



programes d’operacié robustos que serveixin com a referéncia pel nivell inferior de
control de planta, aixi com també per altres centres en un entorn de cadenes de
subministrament.

La primera contribucié d’aquest treball de recerca pretén formalitzar el concepte
de robustesa d’un programa d’operacions, el qual es defineix generalment com la ca-
pacitat que presenta un programa d’operacions per fer front a les desviacions que
puguin océrrer en temps d’execucié mantenint un rendiment acceptable, pero no ex-
isteix encara una forma sistematica de formalitzar el concepte. A continuacié es
desenvolupen metodes proactius en base a tecniques de modelitzacié estocastica i
robusta, i utilitzant una representaci6 estadistica de la incertesa. S’avaluen i es com-
paren algoritmes tant matematics com heuristics, combinant sistemes de simulacié i
optimitzacié. Concretament, la recerca es realitza en tres eixos principals:

|. Programacié d’operacions robusta centrada en incerteses operacionals.

En primer lloc es consideren les principals fonts d’incertesa presents a nivell de
programacié de la produccié (temps d’operacié i ruptures d’equips). El problema
es modelitza inicialment mitjancant programacié estocastica, desenvolupant-se final-
ment un entorn d’optimitzacié basat en simulacié que captura de forma proactiva les
multiples fonts d’incertesa, aixi com també estrategies de programacié d’operacions
reactiva.

Il. Programacié d'operacions de transport.

Amb una perspectiva més amplia del nivell d’operacié, s’estudia la coordinacié
d’activitats de produccié i transport, analitzada fins ara des d’un punt de vista es-
trategic o tactic. La metodologia desenvolupada en el context de programacié de
la produccié s’estén per incloure la programacié de les operacions de transport en
sistemes de multiples entitats i incertesa en els temps de transport.

I1l. Programacié d'operacions robusta centrada en incerteses tactiques.

L’estudi final considera l’efecte de la incertesa en la demanda dels productes en
les decisions de programacié de la produccié a curt termini. El problema és analitzat
des del punt de vista de gestié del risc, i s’avaluen diferents mesures alternatives per
controlar 'eficiéncia del sistema en un entorn incert.

En general, la tesi posa de manifest els avantatges en reconeixer i modelitzar la
incertesa, identificant programes d’operacié robustos capacos d’adaptar-se a un ampli
rang de situacions possibles, més que no pas programes d’operacié optims per un esce-
nari hipotetic. Alhora, la metodologia proposada des d’un punt de vista operacional
es pot considerar com un pas inicial per estendre’s a nivells estrategics i tactics, aix{
com a la integracié de sistemes jerarquics de suport a la decisié. La visié proactiva
del problema de la incertesa permet visualitzar I'operacié d’un sistema de procés de
forma més realista, i resulta prometedora per tal de reduir el buit existent entre la
teoria i la practica industrial. S’obté un major coneixement del procés, visibilitat
per planificar activitats futures, aixi com també una millora en l'efectivitat de les
tecniques reactives i de tot el sistema en general, caracteristiques altament desitjables
per mantenir-se actiu davant la globalitat, competitivitat i dinamica que envolten un
procés.
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L.

Introduction

It is not in the stars to hold our destiny but in
ourselves; we are underlings.

W. Shakespeare (1564 - 1616)

The chemical process industry (CPI) is facing an ever-changing environment in an
attempt to meet the current market needs. Operations are developed within dynamic
and competitive markets with shorter product life-cycles, and pressures exist to im-
prove safety, sustainability, as well as environmental and social impacts, thus claiming
for efficiency and responsiveness. Besides, higher customer expectations, collaboration
between organizations, and progress in information and communication technology,
lead to new e-commerce markets and enhanced business-to-business communication
over the Internet. The information revolution and globalization trends emerged dur-
ing the last few years have significantly increased competitiveness and posed new
challenges within the Process Systems Engineering (PSE) community (Grossmann,
2005).

The area of PSE emerged in the 1961 focused on the understanding and devel-
opment of improved and systematic decision-making procedures for the design and
operation of the process system itself. Lately, its interests have been extended cover-
ing from chemistry at the molecular level, to wider aspects of engineering concerned
with the management of multi-site operations eventually considering the whole supply
chain (SC) (Grossmann and Westerberg, 2000).

Because of the wider scope of research, the interests of process systems engineers
have also been extended to a wider range of techniques and initiatives closely re-
lated with disciplines of computer science, operations research, applied mathematics,
materials, and life sciences.

Within this highly complex environment, uncertainty and variability become in-
herent characteristics of process systems. As stated by Bogle (2000), ”unsteady-state
operations are becoming the norm, rather than the exception” and the traditional
strategy of operating a plant independently from its environment is not appropriate
any more. Rather, flexibility and responsiveness of production processes are impor-
tant features to be considered and exploited to deal with the eventual effects of the
uncertainty quickly and effectively.

The systematic treatment of the uncertainty is widely recognized as a real problem,
and one of the main challenges in the area of process systems (Shah, 1998; Reklaitis,
2000; Grossmann, 2004; Sahinidis, 2004; Shapiro, 2004; Floudas, 2005; Sargent, 2005;
Shah, 2005). The need to consider the uncertainty is also reflected in the following



1. Introduction

statement of George Dantzig, ”I am working on planning under uncertainty; that’s
the big field as far as I'm concerned. That’s the future.” (Horner, 1999).

This chapter starts with a general perspective of the main problems addressed
in the area of PSE to introduce the concepts and focus the context of the thesis.
Being the basis of the research work conducted, the general scheduling problem is
described, and a comprehensive example is next presented to illustrate some points
that motivate the development of this research. An outline of the thesis is given in
the final section.

1.1 Hierarchical decision making

The interests of PSE span from a molecular level to enterprise management, being the
design and planning problems a central issue in this domain. Focusing on the plan-
ning area, a process system involves multiple and interrelated activities performed
over single or multiple sites, with different time extents and degrees of uncertainty.
Generally, the information flows from the marketing to the manufacturing depart-
ment, where the production schedule meeting the required sales strategies is to be
determined. The joint marketing and manufacturing plan is then passed to logistics
for the development of appropriate transport, warehousing, and inventory strategies.
The decisions made are finally executed, which involves the study of the operation
conditions.

One common and practical view of the different temporal activities distinguishes
between strategic, tactical and operational planning horizons (refer for example to
Shapiro (2000)). Strategic planning involves decisions to be made over long-term
planning horizons (generally 1 - 2 years); tactical planning implies decisions made over
medium-term horizons (3 - 6 months); whereas operational planning covers decisions
involved in the short-term execution of activities (the time horizon generally spans
from days to one or several weeks). Each time horizon implies a different level of
detail in the data describing the process system.

PSE provides the means to systematically transform all the information into deci-
sions in a goal-oriented fashion. As outlined by Pekny (2002), this formalization and
generation of knowledge involves the definition and assessment of the main features
of the problem, the generation of a representative model capturing the constraints
and the desired goals, the development of efficient algorithms to solve the model, and
the validation and implementation of the results obtained. Pekny (2002) also dis-
cussed the features and relationships of several PSE applications, as well as algorithm
architectures for their resolution.

First attempts to the development of computer-aided systems aimed at the use of
monolithic models comprising all levels of decision. These models presented limited
visibility of decisions made in different areas, frequent data inconsistencies, and they
were only applicable to simple settings because of the large computational require-
ments (Shobrys and White, 2002). The need to support the decision making and
improve operations over all levels of planning has lead to the development of several
and hierarchical modeling systems, which have been beneficiated with the advances
in information technology (IT).



1.1. Hierarchical decision making

— Modeling systems

¢ Transactional
- ERP systems
- MRP systems
- CRP systems

¢ Analytical
Descriptive systems

- Forecasting models
- Simulation models
Equation-oriented
Procedure-oriented

Optimization or normative systems
- Mathematical programming models
(LP, NLP, MILP, MINLP)
- Heuristics
- Metaheuristics (GA, SA)

Figure 1.1: Taxonomy of modeling systems.

1.1.1 Modeling systems

A model formalizes the relationship between various flows of information and can
adopt different forms, from spreadsheets to mathematical programs, neural networks
and expert systems. Modeling systems can be categorized from different perspectives.
A general taxonomy distinguishes between transactional and analytical modeling ap-
proaches (Figure 1.1).

Transactional systems are concerned with the acquisition, processing, and commu-
nication of data over the enterprise. Analytical techniques introduce some reasoning
to evaluate the problems, and are further classified into descriptive and optimization
models. Descriptive models can be used to analyze a system, but not to improve
it, and provide a better understanding of internal and external functional relation-
ships in the enterprise (included are forecasting models, cost relationships, resource
utilization relationships, and simulation models). On the other hand, optimization
or normative models are developed as decision-support systems to assist managers in
the identification of efficient and improved decisions.

In general, descriptive and optimization algorithms can be broadly classified into
equation-oriented or procedure-oriented approaches. Equation-oriented approaches
involve rigorous mathematical programs, either deterministic or stochastic, constraint
programming, and graph theory. Procedure-oriented approaches comprise rule-based
techniques, heuristics, and meta-heuristics such as simulated annealing (SA), ge-
netic algorithms (GA), or tabu search, which are based on generic principles and
schemes; they attempt to improve a given solution effectively, but the optimality and
convergence are difficult to assess; there is no systematic procedure for obtaining
good bounds on the attainable optimum values of the objective function (Pekny and
Reklaitis, 1998).

Figure 1.2 represents a hierarchy of particular modeling systems that can be dis-
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Transactional IT
enterprise resource

planning systems (ERP) decision

detail
level

distribution
requirements planning
systems (DRP)

material requirements

planning systems (MRP) Strategic analysis

i A strategic modeling
Tactical analysis system

tactical modeling
system

Operational analysis logistics modeling
systems

distribution scheduling . _
modeling systems production planning
modeling systems

(site i)
production scheduling
modeling systems
(site i)

supervisory and
local control

production plant Analytical IT

Y
>

temporal scale

Figure 1.2: Hierarchy of modeling systems in the area of PSE.

tinguished in the broad area of PSE based on the temporal scale and the level of
decision. The need to integrate the different modeling approaches in a hierarchical
decision-support system makes necessary the use of consistent terminology and con-
cepts to improve the communication and collaboration tasks over the entire system.

1.1.2 Integration standards

The integration of modeling systems for different levels of decision in an enterprise
aims at providing visibility and avoiding data inconsistencies, thus leading to an
efficient use of resources, as well as to improved response times and customer services.
Financial incentives for better integration have been reported by companies, with a
reduction of working capital up to 50 % (Shobrys and White, 2002).

Integration standards emerged to facilitate interoperability between disparate sys-
tems of different vendors by separating process application functions from transport
and communication functions, and by providing models and a formal definition of the
scope, terms and concepts.

Numerous integration standards have been defined from various industries and
government groups. The standards ANSI/ISA S95 (International Soc. for Measure-
ment and Control, 2000) and ANSI/ISA S88 (International Soc. for Measurement and
Control, 1995, 2001) are specially important in the area of PSE for manufacturing
and enterprise planning integration, and for batch process control, respectively. The
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ANSI/ISA S95 international standard organizes the enterprise into four levels of
decision: levels 1 and 2 focus on automation control of the plant facilities; levels 3
and 4 deal with the plant operations and the enterprise, respectively. This specifi-
cation provides the models and terminology to define the interfaces and interactions
between business systems at the enterprise level and manufacturing control systems
at the plant floor level. Within the lower levels, the ANSI/ISA S88 international
standard provides models and terminology to develop operational modeling systems
for batch manufacturing plants and batch control.

Other notable enterprise integration standards are OLE, from OPC Foundation'
for process control, UML (Unified Modeling Language) for object-oriented program
design, and XML (eXtensible Markup Language) for structured documents on the
web. The most important standards can be found in the Purdue Enterprise Reference
Architecture web site?.

1.1.3 Operational analysis

A detailed discussion of software and hardware developments for all the modeling
systems in the field of planning and scheduling is out of the scope of this thesis.
Rather, the research focuses on the lower operational level of decision.

Operational analysis refers to short-term decision problems concerned with the
detailed execution of activities within a single or contiguous sites of a SC. The physical
configuration of the system is usually given (strategic decisions), and the aim is to
support managers on operating decisions such as timing and sequencing.

Within this detailed level of analysis, modeling systems for production and logis-
tics scheduling can be distinguished. Production systems analyze each plant individu-
ally, whereas distribution systems address logistic operations across the organization’s
network. In general, modeling approaches for operational planning require far more
customization to the characteristics of the production environment than those for
tactical and strategic planning.

Operational analysis maintains a close relationship with the lower control level by
providing the production schedule to the process coordinator, which uses it as a guid-
ance to set-up activities and manage the execution of control actions in the plant. On
the other hand, operating results are also required by transactional systems of mate-
rials and distribution requirements planning (MRP and DRP). An MRP system is a
tool used for establishing the needs of dependent components such as raw materials,
parts, subassemblies, or modules; it provides a detailed bill of materials indicating the
types and quantity of resources that need to be purchased from outside, the products
to be manufactured internally, and the time to place the orders. This information is
used by enterprise resource planning systems (ERPs) to integrate sales, finance, man-
ufacturing and distribution activities, and provide an optimum enterprise efficiency
(Waller, 2003).

However, MRP systems tend to aggregate resources into groups, assume infinite
capacity, and are not able to determine feasible schedules with an improved man-
agement of resources and capacities. Therefore, operational analysis is required to
identify schedules with the appropriate resource levels and allocations, to guarantee
schedule feasibility, and to provide transactional systems with more accurate infor-
mation.

LOPC Foundation, <www.opcfoundation.org>, [18 Apr. 2006]
2Purdue Enterprise Reference Architecture, <www.pera.net/Ind_stds.html> [18 Apr. 2006]
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1.2 The scheduling problem

Effective production is very important in today’s global competitive environment.
Multiproduct and multipurpose plants operating mainly in batch mode, but also
continuous or semicontinuous processes, manufacture a variety of products through a
sequence of operations that share the available resources, intermediate products, and
raw materials.

The scheduling of production facilities can be generally defined as a decision-
making process that gives answer to the questions how, where, and when to produce.
How refers to the plant resources required (processing units, steam, electricity, raw
materials, manpower, etc.); the question where is answered by allocating every oper-
ation to a specific unit; finally, when consists of predicting the start and end times
for each operation (Pekny and Reklaitis, 1998).

In its most general form, the scheduling problem requires information related to
the configuration of the plant (set of available equipment units and resources), the
product recipes (set of processing tasks and resources required to manufacture a given
product), precedence relationships between materials, and final product requirements
(demands and related due dates). Given this data, the scheduling problem involves
making decisions on the assignment of resources to tasks (where), the production
sequence of tasks allocated to the same resource (how), and the detailed schedule of
operations expressed as start and end times of each task, the distribution of inventory
levels over time, and the resources profiles (when). Decisions such as what to produce
and lot sizing are generally considered part of larger production planning or tactical
decisions.

The scheduling problem is generally solved to optimize a given criterion. Typi-
cal performance criteria include the makespan (time required to complete all tasks),
plant throughput, some measure of customer satisfaction, economic functions of pro-
duction costs or profit, and the number of tasks completed after their committed due
dates (Reklaitis, 1996). Several objective functions could be used simultaneously for
determining the best schedule in a multi-objective basis.

Scheduling problems can be classified from different points of view. For example,
problems can be static or dynamic based on the way the arrival time of the orders is
managed. On the other hand, the problem is referred to as flow shop, or multiproduct
scheduling, and job shop, or multipurpose scheduling, depending on the layout of the
plant. Another categorization can be established based on the type of order being
processed: make-to-stock facilities plan the production for inventory; instead, pro-
duction is based on requested orders in make-to-order facilities. Finally, a distinction
is made between deterministic and stochastic scheduling problems depending on the
consideration of the uncertainty: deterministic problems rely on estimated values for
the input parameters, whereas uncertain parameters are modeled as random variables
in stochastic scheduling.

1.2.1 Modeling systems for scheduling

Scheduling plays a key role in most industries whenever there is a competition among
activities for limited resources available over a finite time period. The need to coordi-
nate and integrate all resources and manufacturing functions to exploit flexibility and
drive profitability has given rise to an accelerating interest in planning and scheduling
technology, especially from the early 1990s.
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With the developments in IT, the traditional use of white boards, marker pens,
or colored cards becomes out of date. Instead, computer-based modeling systems
for scheduling, usually referred to as Advanced Planning and Scheduling systems
(APS), provide the support to solve the problem effectively, allowing easy and frequent
schedule generation, as well as the integration with other decision-making applications
used in the enterprise. As described in Section 1.1.3, operational systems provide
scheduling information to upper MRP systems, and serve also as a guidance for lower
control levels.

Scheduling in the CPI implies the consideration of specific characteristics and con-
straints resulting from features such as shared resources, tightly integrated equipment,
limited connectivity, precedence relationships, simultaneous transfer operations, un-
stable intermediate products, limited storage time or capacity, limited recover abili-
ties, changeover and maintenance procedures, recycling streams, and scalable batch
sizes. Special features of planning and scheduling problems in the CPI are discussed
in Reklaitis (2000), and Kallrath (2002).

Because of the variety of problems and properties involved, it is difficult to define
a general modeling system for scheduling. Numerous approaches, either rigorous or
heuristic-based, have been reported in the literature. Detailed reviews of scheduling
methodologies in the CPI can be found in Shah (1998); Pekny and Reklaitis (1998);
Floudas and Lin (2004), as well as in the references cited therein. For a categorization
of the scheduling problem and a detailed and uniform description of mathematical
programming approaches refer to the recent contribution by Méndez et al. (2006Db).

The necessity of single-site scheduling

While most of the work related to the scheduling problem focuses on single production
sites, the scope of interest has been recently extended in the spatial dimension to
manage of a whole SC. This view implies taking into account the stock and capacity
of suppliers and customers when placing the orders, the coordination of multiple
facilities, and the shipment of materials through an associated transport network.

However, and as stated by Shah (2005), the performance of a process industry SC is
strongly affected by the flexibility and responsiveness of each production site involved.
Therefore, when considering the static scheduling problem for a given time horizon,
the identification of a reliable and flexible schedule in each entity of a multi-site system
is of utmost importance for an efficient overall performance. The schedule not only
serves as a basis for planning and coordinating external activities with customers and
suppliers, thus ensuring the materials are ordered and served in time, but it is also
useful for the identification of conflicts, bottlenecks, periods with extra or low capacity
requirements, preventive maintenance periods, as well as for cash projections, thus
providing a good insight on the performance of the site and visibility for future actions
(Leon et al., 1994; Mehta and Uzsoy, 1998).

1.2.2 Scheduling under uncertainty

The scheduling problem has usually been seen as a function of known and reliable
information. Modeling approaches developed are mainly deterministic, that is, they
are based on nominal or estimated values for all the parameters, thus implicitly as-
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suming that a predictive schedule® will be executed exactly as planned. However,
this assumption is somehow utopian since most plants operate in an unstable and
dynamic environment, where unexpected events continually occur. Scheduling prob-
lems involve data coming from different sources, and which varies rapidly over time
as customer orders, resource availabilities and/or processes undergo changes. Data
may be ambiguous, outdated or inaccurately predicted before the problem is solved.

Because of the dynamic and uncertain conditions of a real process system, the
schedule executed in the plant will probably differ from the predicted one. The
effects of the uncertainty may impact on the system’s efficiency, eventually leading
either to an infeasible situation, or to the generation of opportunities that improve
its performance. These situations may become even more significant with the new
trends towards managing the whole SC. As stated by Aytug et al. (2005), internet
technology enables companies within a SC to share their production schedules. In
this environment, changes to the production schedule at a downstream node of the
SC can cause significant disruptions in upstream operations. These variations can be
amplified causing what is known as the bullwhip effect (Lee et al., 1997).

The consideration of the uncertainty when modeling the problem is essential for
the development of reliable and effective decision-support systems.

1.3 Motivating example

Consider as a comprehensive example the five-product three-stage flow shop plant
illustrated in Figure 1.3, and detailed in Appendix B.1. The effects of variable op-
eration times and uncertain product demands are next analyzed from an operation
viewpoint.

U1 u3 I —

reaction centrifugation drying

Figure 1.3: Flow shop plant scheme.
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Operation times uncertainty

The predictive schedule with minimum makespan, determined using a deterministic
model of the problem, is represented as a Gantt chart in Figure 1.4 (a). The optimal
sequence for the schedule is A-B-D-E-C, and the makespan value is 101 TU. However,
the actual processing times occurring at execution time can significantly differ from
the estimated ones, leading to eventual inconsistencies, and/or wait times.

3The term predictive schedule is used throughout the dissertation to denote the schedule resulting
from decision variables determined a priori using scheduling systems, before the schedule is executed
and the uncertainty is revealed.
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Assume that the actual operation times are as those reported in Appendix B.1
(Table B.7), where a random deviation from the nominal values has been introduced
in each operation. Using as a guidance the predictive schedule identified assuming
mean processing times (Figure 1.4 (a)), the actual schedule that would result after
execution time in this random scenario is represented in Figure 1.4 (b). The makespan
value increases up to 104 TU, and wait times appear between stages waiting for the
availability of the next processing unit (19 TU). Notice, for example, that the second
batch starts at the predicted time, but the intermediate product can not be trans-
ferred immediately after the second operation since its processing lasts shorter than
expected, and the third equipment unit is still executing the last operation of the first
batch. A similar situation occurs in the last two batches.

Is the predictive schedule determined assuming mean operation times (Figure 1.4
(a)) the optimal one to be implemented if the random scenario actually occurs? Could
other decisions be made to improve the performance of the schedule?

These questions can easily be answered with the resolution of the deterministic
scheduling model for this new (randomly generated) scenario. Proceeding in this way,
an optimal predictive schedule is determined (Figure 1.4 (c)) with a slightly different
production sequence (A-D-E-B-C), a makespan value of 103 TU, and no expected
wait time. Instead, 19 TU of wait times are generated in a makespan of 104 TU if the
predictive schedule identified using the nominal operation times is executed (Figure

1.4 (b)).

: |

a. mk: 101 TU; wt: 0TU. b. mk: 104 TU; wt: 19TU.
u2 ﬂ
c. mk: 103TU; wt: 0 TU. d. mk: 114 TU; wt: 14TU.

Figure 1.4: Gantt charts of the: a) optimal predictive schedule for the nominal sce-
nario; b) schedule (a) executed in the random scenario (Table B.7); ¢) optimal pre-
dictive schedule for the random scenario; d) schedule (c) executed in the nominal
scenario.
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On the other hand, if the optimal predictive schedule in the random scenario is
used as a guidance when the nominal conditions are actually realized, the execution
takes 114 TU, and 14 TU of wait time are generated. The Gantt chart of this executed
schedule is depicted in Figure 1.4 (d).

These results suggest that any deterministic modeling may yield suboptimal solu-
tions in the face of uncertainty.

Product demands uncertainty

Assume now that the objective is to maximize the profit value (PV) taking into
account production and inventory costs for each product i (¢, cl), costs for product
changeovers (¢, ), and a penalty for underproduction (cV) as expressed in equation
1.1. Problem data is reported in Appendix B.1 (for the nomenclature refer to page

153).

maXPV:Z[(%-Qf—cf~QlP—cU~(%—cf)~ gc)_
i 1.1
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Using a deterministic modeling of the problem, considering the nominal demand
values given in Table B.2, the predictive schedule depicted in Figure 1.5 (a) is identi-
fied, with an optimum profit value of 3546 MU. Table 1.1 details the results for each
product related to the number of batches performed (n;), amount produced (QF),
quantity sold (Q%), inventory (Q?), and amount of product not satisfied (QY).

Can the optimality of this schedule be guaranteed if the product demands to be
received are uncertain?

Table 1.1: Optimal results for the nominal predictive schedule.

A B C D E

n; 2 1 3 1 1
P 200 100 300 100 100
S 200 100 300 100 100

! 0 0 0 0 0
QF 0 .. 0 ... 0 ... 0 .. 0.
PV 3546

Consider a particular scenario with the demands detailed in Table B.6, which imply
a deviation around 30 % from the nominal values. If the predictive schedule identified
with the nominal conditions (Figure 1.5 (a)) is implemented when the scenario with
these random demands occurs, orders for products A and B can not be completely
satisfied due to production shortfalls, whereas overproduction occurs for products C
and E. This situation is summarized in Table 1.2. Notice that the expected profit
decreases from 3546 MU to 1790 MU.

The solution of the deterministic model considering the demands of this random
scenario results in a new schedule (Figure 1.5 (b)), with an optimum profit value of
2723 MU as detailed in Table 1.3. This profit is about 35 % higher that the expected

10
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Table 1.2: Results for the nominal predictive schedule executed in the random sce-
nario.

A B C D E

n; 2 1 3 1 1
P 200 100 300 100 100
o 200 100 200 100 80

! 0 0 100 0 20
v 50 30 0 0 0
PV o0

one when using the predictive schedule optimal for the nominal product demands
(1790 MU). Analyzing the performance of the optimal predictive schedule for the
random scenario (Figure 1.5 (b)) in the nominal conditions, the situation detailed in
Table 1.4 is expected. Notice that a profit value about 53 % lower is obtained (1286
vs. 3546 MU).

\ [
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a. PV: 3546 MU. b. PV: 2723 MU.
Figure 1.5: Gantt charts of optimal predictive schedules: a) for the nominal demand
scenario; b) for the random demand scenario.

It is then obvious that the executed schedule can differ significantly from the
predictive one based on a deterministic model with some estimated conditions that
can not be foreseen with certainty. The presence of this uncertainty may result in a
serious reduction of the process efficiency, as well as in opportunity losses.

Table 1.3: Optimal results for the random predictive schedule.

A B C D E

n; 3 2 2 1 1
7300 200 200 100 100
g 250 130 200 100 80

! 50 70 0 0 20
Q! 0 ! 0 ! 0 ! 0 ! 0.
PV 2723

11
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Table 1.4: Results for the random predictive schedule executed in the nominal sce-
nario.

A B C D B

n; 3 2 2 1 1
QF 300 200 200 100 100
Q° 200 100 200 100 100

Q' 100 100 0 0 0
QY 0 0 100 0 0
PV 1286

This simple example clearly suggests that the analysis of the uncertainty becomes
essential for an effective and realistic scheduling. Then, the following questions arise:
how can the uncertainty be addressed? Can the different sources of uncertainty be
generalized and categorized? Is there a general scheduling methodology to deal with
the uncertainty? Is it desirable or rewarding? All these points pose recognized chal-
lenges in the area of process operations, and motivate the development of this research
work.

1.4 Management of the uncertainty

In an operational level of activities, two stages of action can be generally abstracted.
On the one hand, there is an off-line stage based on deciding how, where, and when to
produce or deliver a set of products in order to determine a predictive schedule. On
the other hand, there is an on-line stage with the execution of actions based either on
a predictive schedule determined off-line, or on decisions taken dynamically and for
the immediate future using real-time dispatching procedures. The latter resembles a
process control application in that it implies a rolling horizon perspective.

The management of the uncertainty in scheduling can be considered as the ability
to achieve high quality or robust schedule execution despite the occurrence of unfore-
seen events. The need to analyze the uncertainty in modeling systems is minimum
when using dispatching-based scheduling procedures, since they provide only guid-
ance for the immediate activities, with very little visibility into the future. Instead,
it becomes essential for static scheduling.

Assuming the use of a predictive schedule, and in line with the above stages,
two general strategies can be distinguished to deal with uncertainties in operational
analysis: on the one hand, the uncertainty can be faced proactively in the off-line
stage, prior to its realization at execution time; on the other hand, uncertainty can
be dealt with on-line by reacting to the consequences of its realization occurring at
execution time (Figure 1.6).

1.4.1 Proactive approaches

Conventional proactive approaches are based on the introduction of safety measures
such as buffers in time, capacity or inventory, to avoid the consequences of unexpected
events. These methods are often expensive or inefficient due to additional costs for
inventory handling and plant under-utilization. In addition, if materials leaving a
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— Proactive approaches l[ |

» Safety measures 2 How
Slack-time @o <
Intermediate storage =

Extra capacity @
* Sensitivity analysis Predictive

* Proactive scheduling schedule

— Reactive approaches

* Reactive scheduling
Completely reactive scheduling
Initial - reactive scheduling
» Modification of the operation conditions H\

Figure 1.6: Classification of scheduling approaches to manage uncertainty.

processing unit are unstable, and therefore consecutive operations must be performed
under a zero wait transfer policy, intermediate storage is not a viable solution. These
techniques attempt to reduce the impact of the uncertainty, but they lack of insight
on the process, and limit the possibility to improve its efficiency.

Sensitivity analysis is commonly used to assess the robustness of a proposed sched-
ule to perturbations in the model’s specifications or input data. It determines, on
individual parameters of the model, the range in which the solution remains optimal
provided all other parameters are fixed at their given values. Although valuable knowl-
edge can be obtained, sensitivity analysis is usually considered as a post-optimization
approach that does not provide any mechanism to control and improve the robustness
of a given schedule (Mulvey et al., 1995).

Information of the uncertainty can be exploited within the decision process itself.
This is the goal of proactive scheduling approaches, which explicitly incorporate some
knowledge of the uncertainty in the decision-making stage with the aim to generate
predictive schedules that are in some sense robust or insensitive to a priori supposed
uncertainties. These approaches depend to some extent on whether the uncertainty
can be somehow characterized.

Proactive methods, and mainly proactive scheduling approaches, can be viewed
as sub-optimization strategies that provide visibility for future actions to achieve a
greater system’s performance. If the uncertainty occurs as predicted, the loss of
opportunities and reschedule requirements are reduced, whereas the full force of the
perturbation affect the expected results if the uncertainty is neglected (Aytug et al.,
2005).

Engell et al. (2001) pointed out that proactive approaches disregard the ability to
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react to new information in the future, thus reducing the optimization capabilities.
In contrast, these methods allow to fully exploit the flexibility of the process and,
consequently, to fulfill the production goals to a higher degree. As stated by Gupta
and Maranas (2003a), underestimating uncertainty and its impact can lead to deci-
sions that neither safeguard a company against the threats, nor take advantage of the
opportunities that higher levels of uncertainty may provide. For instance, not tak-
ing into account demand fluctuations could either lead to customer dissatisfaction,
with the consequent loss of market share, or to excessively high inventory holding
costs, undesirable situations in the current market trends. The former scenario does
not recognize an opportunity to capture additional market share, whereas the later
translates into an ineffective management of the risk exposure of the company.

The challenge of introducing some flexibility into the scheduling model in order to
increase robustness without sacrificing efficiency was emphasized in Honkomp et al.
(2000).

1.4.2 Reactive approaches

Most of the attempts for reaction rely on the implementation of reactive scheduling
algorithms accounting for the occurrence of a disturbance. Two main categories
can be distinguished within this field: completely reactive approaches, which make
decisions dynamically when some event occurs; and reactive approaches based on the
modification of a predictive schedule to update the decisions according to the actual
situation.

Another approach consists of the modification of the process operating conditions
to adjust the processing times so as to return to the original requirements. The major
drawback of this procedure is that there may be little flexibility for the modification
of these conditions to guarantee the quality of the products.

In general, reactive methods may be more appropriate for high degrees of uncer-
tainty, or when information about the uncertainty is not available.

1.5 Thesis outline

As introduced so far, with the new globalization trends and the progress on IT the
attention of the PSE community has focused on the area of enterprise management,
with the development of modeling systems to manage a whole SC network. An im-
portant step in this line is the improvement of the strategies used for the operation
and flexible adaptation of individual sites to the dynamic and uncertain environment.

In practice, significant effort is expended either searching for safety mechanisms to
protect against disruptions, or reacting to the consequences of the uncertainty. Com-
monly, orders are expedited, order status is checked at frequent intervals, inventory is
deployed just-in-case, and lead times are increased. All these activities are costly and
directly result from the uncertainty caused by a lack of visibility and communication
among the entities involved in the process system (Geary et al., 2002).

The future is obviously uncertain. Therefore, deviations from a predictive sched-
ule can always occur at execution time, and reactive approaches cannot be excluded.
However, reactive scheduling is not always effective or even possible to deal with the
uncertainty. Particularly, the ability to recover is usually limited in CPIs, and recon-
figurations may be prohibitively costly. Instead, the knowledge of the uncertainty can
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be usefully exploited proactively at the time of scheduling, before disruptions occur,
with the use of more practical models that improve scheduling robustness.

In this sense, this thesis attempts to contribute in the area of operational analysis
with the development of proactive scheduling approaches as decision-support systems
that exploit the flexibility of processes to come up with efficient and robust predictive
schedules coping with the risk of poor performances, and taking advantage of the
opportunities that some levels of uncertainty may provide.

With a general perspective of this research, the following questions can be formu-
lated:

(1) What do we understand for uncertainty?

This question leads to the definition of the concept in the context of PSE, and
to the analysis and characterization of the main sources of uncertainty that can be
encountered in the field, as well as the way they can be formally represented. These
points are examined in Chapter 2.

(2) How can uncertainty be considered within scheduling modeling systems?

Proactive and reactive scheduling approaches to deal with the uncertainty have
been distinguished. It is clear that some reasoning, though simple, will have to be
done at execution time, but the identification of robust predictive schedules is also
required so as to serve as a useful guidance not only for the control level in the
plant, but also for dependent entities in the SC. General descriptive and optimization
modeling systems developed in the area of decision-making under uncertainty are also
reviewed in Chapter 2, along with related applications reported in the literature.

(3) What is understood for schedule robustness and flexibility? Is there any for-
malism established for these concepts?

Although robustness and flexibility are usually used with a same purpose, there is
a slight distinction between them. The formalization of these concepts is addressed
throughout the state-of-the-art surveyed in Chapter 2, and further discussed in Chap-
ter 3.

(4) Is the problem well solved or deficiencies can be identified?

From the contributions reviewed in Chapter 2, limitations and open issues to be
further considered are identified in Chapter 3, thus leading to the definition of the
detailed objectives and overview of this research.

(5) How can schedule robustness be improved? What are the benefits?

These last questions are directly related to the underlying research, and are ad-
dressed throughout Chapters 4 to 7. The use of both equation-based and procedure-
oriented approaches is examined to analyze different issues of the problem and capture
novel features in the modeling systems.

General conclusions and future research directions are finally drawn in Chapter 8.

A representation of the contents of the thesis is outlined in Figure 1.7.
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Chapter 1
Introduction
Chapter 2 i
Uncertainty' (1) What do we understand for uncertainty?
Background & state-of-the-art (2) How can uncertainty be considered within scheduling
modeling systems?
(3) What is understood for schedule robustness and
flexibility? Is there any formalism established for
Chapter 3 these concepts?
Present and prospective (4) Is the problem well solved or deficiencies can
anaIysis be identified?
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Chapter 4 (5) How can schedule robustness be improved?
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Extension to transport scheduling: coordinated
production and distribution activities

Procedure-oriented
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Equation-oriented
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Figure 1.7: Schematic representation of the contents of the thesis.
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2.

Uncertainty: Background & State-of-the-Art

He conocido lo que ignoran los griegos:
la incertidumbre.

La loteria en Babilonia, J.L. Borges (1899 - 1986)

The notion of uncertainty is quite ambiguous, subjective, and context
dependent. Uncertainties may be different in nature, and caused by im-
precise, outdated or incomplete information, inability to accurately model
the impact of possible or unexpected events, imprecision in judgment, or
lack of effective control actions. They propagate through the system usu-
ally leading to inefficient processing and non-value added activities. It is
then difficult to give a proper and unique definition of the uncertainty, as
well as to establish a general modeling methodology.

This thesis focuses on uncertainty caused by unexpected events as well
as ambiguous or incomplete data in the context of Process Systems En-
gineering (PSE), rather than errors of numerical methods, rounding off,
and human errors. From this perspective, this chapter provides a survey of
uncertainty issues and a state-of-the-art in the field. Specifically, different
sources of uncertainty are first categorized. Methodologies for the repre-
sentation and assessment of the uncertainty and its effects in the context
of decision making are next reviewed, along with modeling approaches and
remarkable contributions proposed so far. The role of the uncertainty in
current industrial practices, as well as its concern in commercial software
packages, are finally discussed.

2.1 Sources of uncertainty

An attempt to provide a general categorization of the uncertainty causes, types of
information, and modeling methods was made by Zimmermann (2000) from an appli-
cation point of view. He identified the lack of information, complexity of information,
conflicting evidence, ambiguity, and measurement errors as general sources of uncer-
tainty; the difficult, if not impossible, generalization of the concept and its context
dependency was emphasized.

In a more detailed level, process systems are subject to a large range of uncertain-
ties, which have increased significantly with the new globalization trends. Common
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unexpected events are unplanned machine breakdowns, sales and demand deviations
from forecasts, variable operation times, and raw materials or components out of spec-
ification. What will customers order? How many products should remain in stock?
Will the required resources be always available during the production time? Will the
supplier deliver the requested materials on time and according to the specifications?
These and other questions are commonly formulated and express uncertain situations
around.

Various criteria have been used so far to categorize the sources of uncertainty.
Based on the time scope over which the uncertainties may alter the system, Sub-
rahmanyam et al. (1994) distinguished between short-term and long-term uncertain-
ties. Short-term uncertainties alter the system in a short period of time, and include
day-to-day processing variations such as canceled or rushed orders, operation times
variabilities, and equipment breakdowns. Instead, long-term uncertainties occur over
longer time horizons, and involve technology changes and variable market trends such
as unit price fluctuations, demand variations, and production rate changes.

A more definite classification was posed by Pistikopoulos (1995), who differenti-
ated between model, process, external and discrete uncertainties. Model uncertainties
include parameters obtained usually from experimental and pilot-plant data such as
kinetic constants, physical properties and transfer coefficients. Process uncertainties
involve data obtained from measurements such as processing times or rates, product
yields, stream quality, flowrates and temperatures. External uncertainties are caused
by environmental conditions, technology changes, and variable market trends such as
canceled or rush orders, and fluctuating product demands, prices, specifications, and
raw material availabilities. Finally, discrete uncertainties describe random discrete
events like the equipment availability.

Though originally suggested in a more financial context, another classification
was proposed by Brautigam et al. (2003) in the two extreme categories of endoge-
nous and exogenous uncertainties. Endogenous or technical uncertainties refer to
enterprise-specific uncertainties that can be modified; uncertainties concerning time
and complexity belong to this category, as well as financial uncertainty in terms of
cost and liquidity, and the variable quality and properties of products. On the other
hand, ezogenous or market-related uncertainties involve uncertainties coming from
the outside; market uncertainties in terms of competition, price and quantity are con-
sidered within this group, along with region-specific uncertainties covering potential
risks such as armed conflicts, regulatory, taxation and legal issues, natural phenom-
ena, infrastructure uncertainty, and social risks.

Within the context of a supply chain (SC), Geary et al. (2002) typified the un-
certainty in process, supply, demand, and control. Process uncertainties focus on each
entity of the SC, and include variations primarily related with process yield ratios and
lead time estimates for operations; this source of uncertainty affects the organization’s
internal ability to meet a production delivery target. Supply uncertainties result from
the lack of suppliers to fulfil the requirements. Instead, demand uncertainties come
from the difference between the end market demand and the orders placed in the
enterprise by its customers. Finally, control uncertainties concern the entire network,
and involve disturbances in the information flows, the procedures used to transform
customer orders into production targets, and supplier raw material requests (inflexible
capacities, wrong decision rules, information delays, and misjudgement by a decision
maker).
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2.1. Sources of uncertainty

With the aim to match the sources of process systems uncertainty in a simple and
useful classification, without attempting to underestimate the alternative categories
previously established, a taxonomy based on the strategic, tactical, and operational
levels of modeling introduced in the previous chapter (see Section 1.1) is abstracted,
and will be referred to throughout the document:

e Strategic uncertainties concern those sources of uncertainty with a main effect
on decisions made over long-term planning horizons. Included are, therefore,
external or exogenous uncertainties coming from environmental conditions, tech-

nology changes, competitors, and governmental regulations among others.

e Tuctical uncertainties cover several sources of uncertainty that may alter de-
cisions over medium-term planning horizons such as market parameters, and
disturbances in information and material flows.

e Operational uncertainties comprise uncertainties primarily affecting detailed
short-term decisions such as variable processing times, yield ratios, operators
absenteeism, and equipment availability.

This taxonomy of uncertainty sources is illustrated in Figure 2.1. It is important to
note that most sources of uncertainty do not fit totally within one of these categories,
but the boundaries are somehow diffuse. Besides, because of the interactions between
the different levels of decision making, uncertainties from one level may affect decisions
made in other levels. Variable demands, for example, not only alter tactical planning
decisions, but also the production process itself, as it is analyzed later in Chapter 7.

decision
detail
level

Operational Uncertainty

processing / transport times
yield ratios

resources availability
resources quality

model parameters
operators absenteeism
control systems
misjudgements

Tactical Uncertainty

information flows

due dates
misjudgements
inflexible capacities

raw materials availability
market demands
cancelled / rush orders

Strategic Uncertainty

environmental conditions

technology changes
market parameters
region-specific features
international aspects

competitors

governmental regulations

financial issues

clinical trials

v

Figure 2.1: Taxonomy of uncertainty sources.

temporal scale
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2. Uncertainty: Background & State-of-the-Art

2.2 Decision making under uncertainty

“Uncertainty refers to decision-making situations in which the decision maker does
not know definitely what to decide as he is indistinct about the outcomes”. This
definition was given by Van der Vorst and Beulens (2002) referred to a SC, though it
is as well applicable to the broad PSE area.

The development of proactive scheduling systems to deal with the uncertainty
involves the research direction of decision making under uncertainty. A decision must
be made before the actual parameter values and the outcome become known. Decision
making under uncertainty has its basics in the area of decision theory, which focuses
mainly on the study of systematic methods for decision making (Lapin and Whisler,
2002; Waller, 2003).

A decision is usually made from a combination of quantitative analysis and sub-
jective reasoning based on the experience. Under certain conditions it is relatively
straightforward to make a decision, since the performance of the system can be known
in advance. Therefore, the decision to be made is the one which results in the best
desired performance. However, when there is an element of uncertainty, the final
performance is unknown at decision time, since it depends on the realization of the
uncertainty once made the decision. Common deterministic optimization techniques
are based on the use of nominal or estimated parameter values for optimal decision
making. They fail to recognize the presence of probable situations other than the
most likely one. In hindsight, that is after the realization of the uncertainty, optimal
decisions made for the nominal conditions may turn out to be infeasible or perform
poorer than other decisions if some different situation occurs.

As it is noticed in Kouvelis and Yu (1997), the best way to cope with the uncer-
tainty is to accept it, make an effort to understand and characterize it, and finally,
involve it in the decision-making stage.

Then, how can uncertainty be involved in the reasoning procedure?

Basic approaches considering the uncertainty rely either on the resolution of a
deterministic optimization problem for each of different parameter scenarios and the
assessment of each outcome in terms of a preferred criterion, or on the application
of parametric programming or sensitivity analysis techniques (see for example the
contribution by Acevedo and Pistikopoulos (1997)).

According to Wallace (2000), approaches based on sensitivity or parametric analy-
sis provide a systematic way to analyze the effect of parameter changes on the optimal
solution of a model, but are not appropriate for decision making under uncertainty.
Sensitivity analysis is a deterministic approach used mainly for deterministic decision
problems to forecast what will happen when making a decision under certainty, rather
than used for making decisions in the face of uncertainty.

Besides, studies have been published which define criteria to assess the effects
of particular sources of uncertainty on predictive schedules. Insight is obtained on
the actual performance of the proposed solutions. However, the knowledge of the
uncertainty is not explicitly modeled within the decision procedure. Some related
contributions can be found in Mignon et al. (1995); Basset et al. (1997); Lawrence
and Sewell (1997); and Jia and Ierapetritou (2004).

Reasoning under uncertainty implies the reformulation of deterministic models,
either descriptive or optimization systems, to include the uncertainty into the input
data. The need for including uncertainty into the modeling systems arose early in
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2.2. Decision making under uncertainty

the history of mathematical programming, and has experienced rapid development
in both theory and algorithms. A key difficulty is the management of large-scale
optimization models derived from a huge uncertainty space, and from the presence
of integer decision variables used to model logical and other discrete decisions in a
multi-period or multi-stage environment (Sahinidis, 2004). Dantzig (Horner, 1999)
considered planning under uncertainty as one of the most important open problems
in optimization.

Several methodologies for simulation and optimization under uncertainty have
been developed based on different criteria, modeling philosophies, and for a wide
variety of application areas. The first main step in this direction is the characterization
of the uncertainty. Once the uncertainty is described, some formal measure can
be defined to assess the robustness or flexibility of a decision in the context of the
uncertainty, to eventually implement an optimization algorithm that improves the
decision to be made in terms of the robustness criterion established.

2.2.1 Representation of the uncertainty

Statistical forecasting techniques relying on the analysis of historical data and/or
market indicators are commonly used in combination with human judgement for the
representation of the uncertainty. Besides, Zimmermann (2000) also identified lin-
guistic information, provided in a natural language rather than a formal language,
and symbolic information. No single methodology exists to model all kinds of un-
certainty (Zimmermann, 2000), but it depends on the context and the information
available. The main approaches considered in PSE for a formal representation of
the uncertainty associated to model parameters and constraints involve probabilistic
methods and fuzzy numbers.

The characterization of the uncertainty in any process system is a critical technical
challenge, and deserves an own and complete study which remains out of the scope
of this research. The knowledge of the uncertainty will be assumed an input to the
system.

Statistical or probabilistic representation

The probabilistic description of the uncertainty is based on probability theory or
stationary random processes, and constitutes the most widely used method for this
purpose. Within this approach, scenario-based and distribution-based representations
are differentiated.

The scenario-based representation of the uncertainty provides a straightforward
way to incorporate the uncertainty into a model using a finite number of discrete
instances that capture how the uncertainty may evolve in the future; a scenario is
defined as a particular realization of all the uncertain parameters, and it has associated
a probability level representing the expectation of its occurrence.

On the other hand, instead of defining a finite set of possible realizations of the
uncertainty, the distribution-based approach associates a probability distribution func-
tion to the uncertain data. The normal form is largely assumed to describe uncertain
parameters, and it is justified on the basis of the central limit theorem considering
that the parameters are affected by a large number of stochastic events (Petkov and
Maranas, 1997).
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2. Uncertainty: Background & State-of-the-Art

Forecasting techniques, evidence from the past, or subjective probability are gen-
erally used to approximate the probability distribution functions or the range of pos-
sible scenarios. Despite being the most used method, the analysis and manipulation
of the uncertainty statistically represented may be difficult, and require considerable
computational effort.

Fuzzy numbers

Fuzzy set theory, developed as a generalization of classical set theory, is applied
to represent uncertain parameters by means of fuzzy numbers. Fuzzy sets have to
be defined for each uncertain variable, based generally on subjective judgement and
managerial experience. Each element of the set has associated a degree of membership
between 0 (not at all in the set) and 1 (completely in the set). Fuzzy approaches
provide a simple representation of the uncertainty, which is specially useful when little
information is available. The main drawbacks are the definition of the membership
function and the computational complexity.

2.2.2 Assessment of the uncertainty effects

The deviations from a predictive schedule occurred at execution time as a consequence
of the uncertainty are more or less critical depending on the robustness and flexibility
features implied by the decisions made. The effects of the uncertainty can then be
assessed by means of some quantifiable measure that indicates how robust or flexible
a predictive schedule is. This criterion can also be regarded as a measure of the
performance of a process system in an uncertain environment, or of the ability to
handle the uncertainties.

Most of the measures proposed when using a probabilistic-based representation
of the uncertainty rely on the assessment of the set of outcomes arising from various
scenarios of the input data, and from different decisions. Some of these metrics
are defined in general terms as mazximin, minimaz, equally likely, minimaz regret,
mazimum likelihood, and Bayes decision criteria.

- Mazimin criterion implies the selection of the decision with the best of the
worst possible outcome from the different scenarios, completely neglecting their
probabilities. It is considered a conservative and pessimistic measure that guar-
antees a minimum performance level assuming the given data is correct, though
the actual situation may not be as bad as supposed. The use of this measure is
also known as worst-case analysis.

- Mazimaz criterion is an optimistic measure based on the selection of the alter-
native with the highest of the best outcome from the set of scenarios.

- Equally likely criterion, also known as insufficient reason, assigns equal proba-
bility values to each scenario assessed, and selects the decision with the highest
expected outcome.

- Minimaz regret criterion makes use of the regret resulting from making a non-
optimal decision. The regret is defined for each scenario as the difference be-
tween the performance of the decision made, and the performance of the best
decision that could have been made if the scenario had been known at decision
time.

22



2.2. Decision making under uncertainty

- Maximum likelihood criterion focuses on the most likely scenario, with the ex-
clusion of all others, even if its performance results poorer that the others.

- Bayes decision rule implies the selection of the decision with a better expected
performance. The expected value is merely a quantitative theoretical value
used for decision making, rather than the actual performance because of the
mutual exclusivity of the scenarios. The main drawback of this criterion occurs
when decisions involve different attitudes towards risk, since it assumes that the
decision maker is risk-neutral. This aspect is further discussed in Section 2.4.

Focusing on specific formalisms, a measure of flexibility was proposed by Gross-
mann et al. (1983) in order to quantify the ability of a chemical process to deal with
uncertainty. The notion of stochastic flexibility was later introduced in Straub and
Grossmann (1993) as a measure of the probability of feasible operation, and methods
were presented for the evaluation and optimization of this metric in non-linear design
models of chemical processes accounting for uncertainties. Reviews of the literature
on flexibility in process design and operations can be found in Straub and Grossmann
(1993); Pistikopoulos (1995); and Georgiadis and Pistikopoulos (1999).

Alternatively, the concept of robustness has been used to evaluate the ability of
a predictive schedule to recover from unexpected events resulting mainly from op-
erational uncertainties. Some robustness measures have been defined to manage the
incorporation of slack time into the schedule, which are based on a linear combination
of expected makespan and expected delay (Leon et al., 1994), on expected job com-
pletion time deviations (Mehta and Uzsoy, 1998; O’Donovan et al., 1999; Davenport
et al., 2001), or on deviations of predicted start times (Herroelen and Leus, 2004a;
Van de Vonder et al., 2005).

Robustness metrics based on the economical or temporal performance of a set of
schedules located around a central schedule were defined by Jensen (2001). Other
criteria have been proposed based on a Taguchi loss function (Bernardo et al., 2001),
or on some reliability index (Sanmarti et al., 1996).

In general, no firm principles exist for preferring one criteria to another, but mul-
tiple formalisms are applied based on the context and the preferences of the decision
maker.

2.2.3 Optimization under uncertainty

Several methodologies are available in PSE for optimization under uncertainty. They
are categorized, in line with the method used to represent the uncertainty (see Section
2.2.1), as outlined in Figure 2.2. It is beyond the scope of this thesis to cover all
the approaches in detail. Rather, the main ideas and contributions reported are
summarized in the following sections, with a special emphasis on stochastic and robust
optimization for being the basis of the modeling systems developed in this research.
For illustration purposes, a schematic representation of a decision-making process in
scheduling under uncertainty is presented in Figure 2.3.

Probabilistic data-based methods

Approaches based on a probabilistic representation of the uncertain data generally
involve an iterative procedure that comprises, either explicitly or implicitly, an opti-
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— Optimization under uncertainty

e Probabilistic data — based methods

- Stochastic optimization
Single-stage approach
Chance-constrained programming
Recourse approach
Stochastic dynamic optimization

- Robust optimization

¢ Fuzzy data — based methods

- Fuzzy programming
Flexible programming
Possibilistic programming

Figure 2.2: Optimization approaches under uncertainty.

mization loop controlling the search for those decisions that improve the desired prob-
abilistic criterion, and an inner loop managing the stochastic features of the problem
(Diwekar, 2002). Sampling techniques are usually embedded in the inner loop when
a scenario or discrete distribution-based representation of the uncertainty is used; for
continuous distribution functions, other analytical or numerical methods are applied.
Generally, most of the algorithms rely on sampling techniques, and proceed according
to the following main steps:

STEP 1. Specification of the uncertainties in the input parameters (see Section
2.2.1).

STEP 2. Sampling from the uncertain parameter domain in an iterative fashion.

STEP 3. Propagation of the effects of the uncertainties through the model, i.e.,
resolution of the model in each scenario sampled.

STEP 4. Application of statistical techniques to analyze the results.

Stochastic and robust optimization, either equation or procedure-oriented, are dif-
ferentiated as approaches based on a probabilistic characterization of the uncertainty.
The main ideas underlying these methods are outlined below in Sections 2.3 and 2.4.

A review of probabilistic techniques for scheduling with uncertainty, as well as con-
tributions reported in the operations research literature, can be found in Davenport
and Beck (2000); Herroelen and Leus (2004b); and Herroelen and Leus (2005).

Nikulin (2004) provided a survey of approaches based on a definition of robustness
in terms of solutions with a minimax regret (minimum worst-case scenario) in the areas
of combinatorial optimization, scheduling theory, and economics.

Another methodology to find robust solutions for LP problems with uncertain lin-
ear coefficients was introduced by Ben-Tal and Nemirovski (2000). The methodology
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Figure 2.3: Decision-making procedure in scheduling under uncertainty.

was extended to mixed-integer linear programming (MILP) problems by Lin et al.
(2004), and further applied to address the short-term scheduling problem with uncer-
tain processing times, market demands, and/or prices of products and raw materials;
two types of statistical uncertainty representation were considered: bounded uncer-
tainty, and bounded and symmetric uncertainty. A robust schedule was obtained in
the sense that it was feasible within the specified uncertainty level and infeasibility
tolerance, though an explicit robustness measure was not defined.

Finally, probabilistic procedure-oriented approaches have also been applied in
multi-site systems. For example, Blackhurst et al. (2004) proposed a network-based
methodology to model and analyze the operation of a SC as an abstracted network,
with uncertainty in variables such as requirements, capacity, material delivery times,
manufacturing times, costs, due dates and priorities. For a simulation-optimization
framework for supply chain management (SCM) based on a multi-agent approach, as
well as a detailed review in the field, refer to Mele (2006).

Fuzzy data-based methods

Fuzzy approaches address optimization problems under uncertainty based on a fuzzy
description of the uncertain data (see Section 2.2.1), and differ from probabilistic-
based methods in the formalism used to model the uncertainty. They are a useful
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2. Uncertainty: Background & State-of-the-Art

approach in the sense that only information about the range of the uncertain parame-
ters is required, although this limits its capacity to deal with a complex representation
of the uncertainty.

The idea underlying fuzzy optimization is the representation of uncertain parame-
ters by fuzzy numbers, and constraints by fuzzy sets. In addition, objective functions
in fuzzy mathematical programming are treated as constraints, with lower and upper
bounds defining the decision-maker expectations.

Two types of fuzzy programming approaches have been distinguished: flexible
programming and possibilistic programming (Sahinidis, 2004). Both approaches use
membership functions to represent the range of uncertainty of coefficients, the ex-
pectations of decision makers about the objective function level, and the degree of
satisfaction of constraints, thus allowing some degree of violation. For a detailed
description of fuzzy set theory refer to Zimmermann (1996).

Fuzzy programming models were compared with stochastic programming by Liu
and Sahinidis (1996) considering the process planning problem under uncertainty in
market demands and supplies; the study concluded that fuzzy techniques require
fewer assumptions and computational effort, but stochastic approaches appear to be
more rigorous and, what is more important, they explicitly address the feasibility
of a solution over the entire range of random parameters. The study implies that
stochastic approaches outperform fuzzy programming models even when the complete
probability distributions of the uncertain parameters are unavailable.

Scheduling contributions based on fuzzy approaches generally address operational
uncertainties in temporal data such as processing times and due dates. For example,
Fortemps (1997) extended a disjunctive graph representation of the job shop schedul-
ing problem to deal with uncertain time durations described by imprecise probability
distributions defined as fuzzy numbers. Balasubramanian and Grossmann (2003) ap-
plied concepts from fuzzy set theory and interval arithmetic to address flow shop
scheduling and new product development process scheduling with uncertain process-
ing times.

Overviews of fuzzy scheduling can be found in the book by Slowinski and Hapke
(2000), and the paper by Dubois et al. (2003). The latter contribution distinguishes
fuzzy modeling approaches for scheduling under flexible constraints to introduce pref-
erence notions, from fuzzy approaches for scheduling with uncertain data due to
incomplete or imprecise information.

Fuzzy-based applications have also been reported for strategic and/or tactical
analysis in multi-site systems. For example, Sakawa et al. (2001) used fuzzy pro-
gramming to address production and transport planning in a multi-site environment
accounting for uncertain capacities and demands in the different sites. Petrovic (2001)
presented a simulation tool (SCSIM) that coupled SC fuzzy analytical models and a
SC simulation model to analyze the dynamic performance of a serial production SC
with uncertain customer demands, external suppliers reliability, and/or lead times
to the sites. Finally, Chen and Lee (2004) proposed a fuzzy multi-objective opti-
mization approach to maximize the degree of satisfaction of multiple objectives in
a SC with uncertain product demands and prices; the problem was formulated as a
mixed-integer non-linear programming (MINLP) model, the scenario-based approach
was considered to represent the demands uncertainty, and fuzzy sets were used to
describe different preferences on product prices (note that fuzziness was used for
multi-objective optimization, rather than for the representation of the uncertainty).
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2.3 Stochastic optimization

Stochastic optimization is based on a probabilistic view of the problem. The underly-
ing idea is to simultaneously consider multiple scenarios of an uncertain future, each
with an associated probability of occurrence, and to optimize an objective function
expressed in terms of some probabilistic measure (see Section 2.2.2).

The term stochastic optimization is sometimes used referred to meta-heuristics
because of the probabilistic nature of these optimization methods. In general, and as
differentiated by Fu (2001), stochastic optimization involves methods specially devel-
oped to address problems with uncertain data, whereas meta-heuristics use stochastic
properties in their search. Although meta-heuristics were not originally formulated
with that purpose, they can be adopted for stochastic optimization.

Stochastic optimization is used throughout the dissertation related to either rig-
orous or procedure oriented optimization techniques for models involving uncertain
data. However, most of the contributions on stochastic optimization concern the
stochastic programming paradigm, where programming implies that various parts of
the problem can be mathematically modeled by linear programming (LP), non-linear
programming (NLP), integer programming (IP), mixed-integer linear programming
(MILP), or mixed-integer non-linear programming (MINLP) models.

Stochastic programming dates back to Beale (1955) and Dantzig (1955), and nu-
merous studies have been conducted from then on to obtain efficient rigorous solution
algorithms. The increasing interest on stochastic programming is well illustrated
in Figure 2.4; there exists a large literature, with applications covering areas from
production planning, scheduling and routing problems to capacity expansion, energy
investment, as well as electricity production, environmental management and control,
water management, design and optimization of chemical process systems, and finance.

£58 -
208 -
156 -

1aa—

Huinker of references

Sh=

— . - = [ R T T TR T T
1958 1968 1370 1338 1998 ZaEa
Year af publication

Figure 2.4: Stochastic Programming Bibliography. Maarten H. van der Vlerk.
http://mally.eco.rug.nl/index.html?spbib.html, last updated on May 2003.

A survey of stochastic programming applications can be found in a recent con-
tribution by Sahinidis (2004); for an extensive and detailed discussion refer to the
standard books of Birge and Louveaux (1997); Kall and Walace (1994); as well as the
Stochastic Programming Community Home Page (2004). Commercial packages for
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stochastic programming have recently emerged (IBM Stochastic Extensions, 2004),
and a description of some available software can also be found in the same Stochastic
Programming Community Home Page (2004).

Based on the characteristics of the model, the main stochastic optimization prob-
lems can be categorized in single-stage, chance-constrained programming, and re-
course problems. Stochastic dynamic optimization can be also included within this
classification.

2.3.1 Single-stage approaches

Single-stage stochastic optimization problems are further classified into two categories
or behavioral models of decision making under uncertainty referred to as “wait-and-
see” and “here-and-now” (Diwekar, 2002).

The wait-and-see approach involves the resolution of a deterministic optimization
problem for each scenario of uncertain parameters. A distribution of optimal decisions
is finally obtained. However, and as underlined by Wallace (2000), the solution with
the best expected performance can not be assured from the evaluation of different
deterministic solutions, since part of the solution space is neglected.

On the other hand, here-and-now problems imply a probabilistic representation
of the objective function and/or constraints, and generate a single optimal solution
with a given level of performance.

Figure 2.5 depicts the stochastic optimization frameworks for the generalized so-
lution of these single-stage problems. The difference between the solutions obtained
from both strategies is known as the ezpected value of perfect information (EVPI).
This concept has been used to analyze the importance of accounting for future in-
formation in the decision stage. It was examined in Pistikopoulos (1995). Later,
Terapetritou et al. (1996) focused on the planning problem under uncertainty, and
developed a stochastic model explicitly incorporating the EVPI as a measure of the
opportunity losses involved in high risk decisions; flexibility was also considered as a
measure of the inherent future plan feasibility.

Optimal
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Figure 2.5: Single-stage stochastic optimization frameworks.
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2.3.2 Chance-constrained programming

Chance-constrained programming, also known as probabilistic approach, considers the
uncertainty by introducing a probabilistic level of constraint satisfaction. It can be
considered as a particular category of single-stage here-and-now problems, where the
uncertain parameters are enclosed in an inequality constraint subject to a probability
or reliability level. A solution is pursued which ensures that a set of constraints will be
satisfied with a certain probability when the uncertainty is realized. This method is
useful to deal with inequality constraints the satisfaction of which is highly desirable,
but not absolutely essential.

Relatively few work has been reported for operational analysis using the chance-
constrained approach. Orgun et al. (1996) used chance constraints in scheduling batch
processes with uncertain set-up and processing times to assess the risk of ending an
operation before its processing was completed. Petkov and Maranas (1997) applied
the chance-constrained approach to address a multiperiod planning and scheduling
of multiproduct plants, and to impose explicit lower bounds on the probabilities of
satisfying correlated uncertain product demands.

2.3.3 Recourse approaches

Recourse problems are staged problems that alternate decisions and realizations of sto-
chastic data, and nowadays constitute the most common stochastic approach. They
involve both here-and-now and wait-and-see problems, since they comprise decisions
to be determined before the realization of the uncertainty (here-and-now), as well as
recourse actions to be taken when information is disclosed (wait-and-see).

The main class of stochastic problems with recourse involves two stages of decision.
The first stage implies those decisions that need to be made here-and-now, prior to the
realization of the uncertainty. The second-stage or recourse variables correspond to
those wait-and-see decisions made after the uncertainty is unveiled and subject to the
restrictions given by a second-stage problem. Recourse variables can be interpreted
as corrective actions taken to deal with disturbances arising as a consequence of the
uncertainty. Different second-stage decisions exist for each scenario realization of the
uncertainty. Therefore, the objective function is somehow uncertain at the first-stage,
and is generally defined as the sum of the first-stage performance measure and the
expected second-stage performance.

Similarly, multi-stage stochastic optimization deals with problems that involve a
sequence of decisions to be made over time. At each stage, decisions are made based
on past realizations of the uncertainty, and prior to the occurrence of future events.

Many applications of recourse techniques in the area of PSE focus on strategic and
tactical analysis for process design and production planning in single-site systems, and
for optimally configuring and managing a SC according to some economic objective.
As reviewed by Shah (1998), research is primarily based on recourse approaches with
two stages in which product demands are assumed to be uncertain. Some examples
for single-site facilities can be found in the papers by Subrahmanyam et al. (1994);
Liu and Sahinidis (1996); Ierapetritou and Pistikopoulos (1996); Petkov and Maranas
(1998); Cheng et al. (2003); as well as in the references cited therein.

For multi-site systems, stochastic mathematical models with recourse were re-
ported by Tsiakis et al. (2001), and Gupta and Maranas (2003a). For a recent survey
in this field refer to Guillén (2006).
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Related to the operational level, two-stage stochastic programming models consid-
ering product demand uncertainties have also been presented. See, for example, the
papers by Vin and Ierapetritou (2001); Sand et al. (2000); Engell et al. (2001); and
Engell et al. (2002). Besides, the scheduling problem of multiproduct batch plants un-
der demand uncertainty was addressed applying multi-stage stochastic programming
models by Sand and Engell (2004) and Balasubramanian and Grossmann (2004).

A review of application areas, problem formulations, and solution strategies for
multi-objective multi-stage decision processes under uncertainty was presented in a
recent contribution by Cheng et al. (2005).

2.3.4 Stochastic dynamic programming

Dynamic programming is usually categorized within the literature of stochastic opti-
mization since the uncertainty is identified as an integral part of a dynamic environ-
ment (refer to Kall and Walace (1994), and Birge and Louveaux (1997)).

Dynamic programming allows the solution of multi-stage or sequential decision
processes in which decisions are made periodically, based on policies and state infor-
mation available at decision time. A dynamic programming algorithm decomposes
the problem into a sequence of single-period subproblems that are solved recursively
backward in time (Bellman, 1957). It is the basis for designing stochastic optimal
control algorithms, also known as Markov decision processes.

Stochastic optimal controlstochastic optimal control algorithms and multi-stage
stochastic programming were compared in Cheng et al. (2004a) for solving multi-
objective decision processes involving sequential decision making under uncertainty.
Both approaches appear to be equivalent, but stochastic programming methods search
for an optimal decision tree that hedges against the tree of scenarios representing the
uncertainty, whereas optimal control focuses mainly on optimal policies that match
each state with the optimal action. It was recognized that both approaches suffer
numerically from the curse of dimensionality due to the large state space in optimal
control, and large sample space in stochastic programming; it was also emphasized
that different solution strategies should be selected and tailored, based on the specific
problem considered.

Applications of multi-objective Markov decision processes in strategic and tactical
analysis with uncertain demands and technology developments can be found in a
series of contributions by Cheng (Cheng et al., 2003, 2004a,b).

2.3.5 Evaluation of expectations

Extensions of deterministic models to stochastic models are very appealing. However,
technical challenges mainly related to the statistical representation of the uncertainty
and the evaluation of expected functions appear when attempting to design and imple-
ment a stochastic model. Using a scenario-based representation of the uncertainty or
discrete probability distributions, the expectation functions are written as finite sums,
and stage variables and constraints are explicitly defined for each scenario. This leads
to large-scale formulations, usually referred to as deterministic equivalent problems.
Applications of the scenario-based approach were reported by Subrahmanyam et al.
(1994) and Tsiakis et al. (2001) to account for uncertain product demands in the
design of batch plants and the design of multiproduct multiechelon SCs, respectively.

30



2.3. Stochastic optimization

When the uncertainty is described with continuous probability distributions the
problem becomes computationally intractable because of the multivariate numerical
integration. To overcome this drawback, the multivariate probability integrals can be
approximated by the explicit or implicit discretization of the distribution functions
using sampling techniques or Gaussian quadrature integration. Such discretization
methods are relatively insensitive to the form of the distribution of the uncertain
parameters. However, Gaussian quadrature integration requires the incorporation of
extra variables into the model in order to account for the quadrature points, which are
selected within the optimization process; in addition, the number of points required
increases exponentially with the number of uncertain parameters. On the other hand,
using sampling methods the number of samples required does not necessarily increase
with the integral dimension, but multiple function evaluations are needed to esti-
mate the objective function constraints and their gradients at every iteration of the
optimization algorithm (Petkov and Maranas, 1997).

Focusing on sampling techniques, Monte Carlo sampling is one of the most widely
used methodologies. Its main advantage lies in the fact that the results obtained from
Monte Carlo simulation can be treated using classical statistical methods because of
the randomness and independence of the generated samples. Other techniques such
as Importance sampling, Stratified sampling, and Latin Hypercube sampling have been
designed to reduce the variance of Monte Carlo estimates (Diwekar, 2003).

Quasi-Monte Carlo methods, also known as low discrepancy sequences, have also
been developed to cover the integration region with a set of uniformly distributed
points. It is established that these methods provide faster convergence rates be-
cause of the better uniformity properties of the sampling design, as compared to
Monte Carlo sampling, although their efficiency and precision diminishes with the
increase of dimensionality (Kocis and Whiten, 1997). Some well-known constructions
for quasi-Monte Carlo sequences are the ones due to Halton, Hammersley, Sobol,
Faure, Korobov, and Niederreiter (Diwekar, 2003). A sampling technique based on
the Hammersley sequence was introduced by Diwekar and Kalagnanam (1997).

The use of discretization methods has extensively been examined in the areas of
process planning and design to estimate the expectation of an objective function. The
use of Monte Carlo sampling was considered by Liu and Sahinidis (1996). Applications
and comparative studies of different integration techniques, ranging from alternative
Gaussian quadrature formula and cubature methods to Monte Carlo integration and
Hammersley sequence sampling, have been reported by Pistilopoulos and coworkers
(Ierapetritou and Pistikopoulos, 1996; Acevedo and Pistikopoulos, 1998; Bernardo
et al., 1999, 2001).

In general, multivariate continuous distributions need to be mapped into a finite
number of scenarios to avoid the high-dimensional numerical integration, the size of
the problems increases exponentially with the number of uncertain parameters when
dealing with discrete scenarios, and the probabilities of occurrence associated with
each scenario may be difficult to estimate. The generation of scenarios to approximate
the expectations requires the forecasting of a representative set of possible realizations
of the uncertain parameters, and it is a research subject itself as also recognized by
Cheng et al. (2004a).

An alternative methodology to avoid the discretization of the probability space
and to reduce the computational limitations is based on the resolution of the inner
recourse problem analytically for the second-stage variables in terms of the first-
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stage variables, followed by analytical integration for expectation evaluation. This
strategy was used by Petkov and Maranas (1998) to solve the design of multiproduct
batch plants operating in single-product campaign mode under normally distributed
uncertain product demands. Later, Gupta and Maranas (2003a) applied the same
methodology to address the medium-term planning problem of multi-site SCs.

Focused on the scheduling problem of zero wait and unlimited intermediate storage
flow shop plants, Balasubramanian and Grossmann (2002) developed an stochastic
MILP model based on an analytical expression for the expected makespan to deal
with uncertain operation times modeled using discrete probability distributions; the
extension of the model to the case of continuous distribution functions was also exam-
ined using a discretization scheme to approximate the expected makespan of a given
sequence.

2.4 Robust optimization

The notion of robust optimization was introduced by Mulvey et al. (1995) to explicitly
deal with the uncertainty and make decisions less sensitive to variations of the input
data. Within this approach, a solution is termed to be robust if the performance of the
actual scenario remains close to the optimal expected performance in the uncertain
space.

In general, stochastic optimization accounts for the uncertainty by optimizing an
expected value, without controlling the variability of solutions that can be attained de-
pending on the scenario eventually realized. Although the decisions can be considered
more robust than those obtained from an optimization based on nominal parameter
values, by taking a purely expected criterion the model ignores the whole distribution
of the objective function values, and assumes that the decision maker is risk-neutral
or indifferent to variability. Therefore, there is no guarantee that the process will per-
form at a certain level over all the uncertain parameters space. The only guarantee
is that average is optimized (Samsatli et al., 1998; Suh and Lee, 2001). This limi-
tation of pure stochastic optimization approaches is well recognized in management
applications (Mulvey et al., 1995).

Some decision makers might prefer a solution with a high expected performance,
even if this implies a considerable risk. Others might be interested in solutions with
low risk of poor system performance, despite obtaining relatively lower efficiency.
An extremely risk-averse decision maker might even prefer the solution with the best
worst-case performance, independently of its expected outcome (Sevaux and Sérensen,
2004). The performance of a decision in all potentially realizable scenarios is then
important.

In this line, robust optimization extends stochastic optimization by incorporating
a measure of variability or risk into the objective function. An additional distinction
of robust optimization is the explicit consideration of feasibility issues; penalty terms
are usually incorporated in the objective function to determine a solution with a
minimum violation of constraints. Instead, stochastic optimization generally assumes
complete recourse, that is, every scenario is supposed to be feasible.

Therefore, robust optimization involves the disciplines of stochastic and multi-
objective optimization to systematically search for efficient frontiers describing the
trade offs between expected efficiency and variability. Generally, it integrates goal
programming formulations with a scenario-based description of problem data (Mulvey
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et al., 1995), though other methodologies could be considered (refer to Steuer (1986)
for a review of multi-objective optimization). Limitations of robust optimization
approaches come mainly from the need to specify effective procedures for selecting
the representative scenarios (as in stochastic optimization), as well as the way to
prioritize or select among the multiple objectives (e.g., use of weights).

The histograms and cumulative curves depicted in Figure 2.6 for two generic so-
lutions illustrate the differences between stochastic and robustness notions. The sto-
chastic solution shows a higher expected performance, though it is also riskier since
losses occur for several scenarios. Instead, the robust solution performs with reduced
variability of possible outcomes, and relatively good performances are expected in
all the scenarios. A risk-averse decision maker would prefer the later solution for
giving almost the same expected level of efficiency, with lower risk of poor perfor-
mance. These preferences cannot be captured using a pure stochastic model, since
information about the distribution of outcomes is not considered at all.
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a. Histograms. b. Cumulative distribution functions.

Figure 2.6: Ilustration of stochastic and robust optimization concepts.

The wvariance is probably the most commonly used measure of variability. How-
ever, variance-based measures are symmetric, and may turn unsuitable in many cases
and overcompensate for the uncertainty. Other criteria have been proposed in the lit-
erature providing one-sided properties; for a review of these measures refer to Ahmed
and Sahinidis (1998), and Samsatli et al. (1998).

Applications of the robust optimization approach defined by Mulvey et al. (1995)
as an extension of the objective beyond simple expectations have recently been re-
ported in the area of process design and long-term planning. For example, Ahmed
and Sahinidis (1998) applied this method to address the capacity expansion problem
in chemical process industries with uncertain product demands and availabilities; a
two-stage stochastic formulation was extended incorporating the upper partial mean
as an asymmetric measure of variability. Suh and Lee (2001) proposed the worst-
case cost as the control measure to be minimized together with the expected cost
in chemical process design and planning problems with demand uncertainty. Chen
and Lee (2004) focused on a tactical planning of a SC system with uncertain product
prices and demands, and applied the lower partial mean as a measure to reduce the
variability of multiple objectives to product demand uncertainties.
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2.4.1 Risk management

Robust optimization provides the means to account for alternative decision-maker
preferences, thus capturing different perspectives of risk when making decisions under
uncertainty. Therefore, the so called risk management approaches, which usually
manage the trade off between risk and return, can be categorized within the robust
optimization domain.

Some contributions to risk management have also been reported. One of the first
discussions was presented by Eppen et al. (1989) in the framework of capacity planning
for the automotive industry. The concept of downside risk was proposed to measure
the cost variability, and to obtain risk-averse investor solutions. This measure was
recently used by Cheng et al. (2004b) to address coordinated capacity planning and
inventory control under uncertain product demands and technology developments.
For a technology selection problem faced by a firm undertaking a market-based pollu-
tion abatement initiative with emission and market uncertainties, Gupta and Maranas
(2003b) discussed three alternative approaches to actively manage the risk exposure
of the firm (variance control, probabilistic analysis, and worst-case analysis).

Considering the scheduling problem of multiproduct chemical batch processes,
Sand and Engell (2003, 2004) extended the objective function in terms of expected
profit for two-stage stochastic integer programming models with the concept of min-
imum risk criterion as a measure of the probability to obtain profit values below a
certain threshold. A similar criteria was studied by Barbaro and Bagajewicz (2004b)
to include financial risk management in the framework of two-stage stochastic pro-
gramming for planning capacity expansion problems. The effect of using inventory
and option contracts to manage risk in the same framework was further examined in
Barbaro and Bagajewicz (2004a).

Within the area of SCM, and from an enterprise-wide perspective, Applequist
et al. (2000) recognized that the simple optimization of expected returns could lead
to riskier solutions, and introduced the concept of risk premium as a measure of risk
for an investment relative to alternative financial investments in a SC.

2.5 Commercial packages

A growing number of advanced planning and scheduling systems (APS) are available
for the industry to support decision making for operational applications. The first
commercial packages appeared in the late 1980s, and focused generally on finite-
capacity shop floor scheduling problems solved using simulation-based techniques
(Sadowski, 1998). A boost in APS systems occurred in the 1990s as an extension
of materials requirements planning (MRP), enterprise resource planning (ERP), and
manufacturing execution systems (MES). From then on, and promoted by the ad-
vances in information technology, numerous applications with improved computa-
tional and optimization capabilities have been developed, which have significantly
reduced the burden of implementation and enhanced return of investment (ROI).

Sadowski (1998) estimated APS systems revenues above $3 billion anually by the
year 2000. According to a recent study reported by Advanced Process Combina-
torics, Inc. (Pekny, 2005), an effective planning and scheduling system leads to a
decrease in process costs, as well as to an increase in process throughout, implying
an improvement about 5% to 15 %.
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However, the application of computer-aided decision-support systems for opera-
tional analysis appears quite limited in the industrial practice. Several factors were
highlighted by Honkomp et al. (2000) as obstacles for a successful computerization
of scheduling systems. Firstly, standard software tools are pursued, easy of use, and
flexible for customization; however, and as suggested by Sand and Engell (2004), plan-
ning and scheduling operations can hardly be standardized due to the complex and
highly plant specific interactions involved. Secondly, assumptions are made to avoid
the formulation of complex large-size models, which may eventually lead to operation
infeasibilities. In addition, external consultants for model development are usually
required due to the lack of internal expertise, thus leading to maintenance costs be-
yond the original software cost. The integration capabilities with other applications
(ERP, MES, forecasting) has also been identified by companies as a critical factor.

Furthermore, the inability of much scheduling systems to address the general issue
of uncertainty is also cited as a major reason for the lack of influence of scheduling
research in industrial practice (Aytug et al., 2005). This idea was also emphasized
by McKay and Wiers (1999), who suggested that assumptions underlying scheduling
research activities were inadequate for real world scheduling, and a change of principles
was claimed to avoid the gap between theory and practice; otherwise, “academia will
continue to model and solve nonexistent problems, and practitioners will continue to
move around in the dark”. Besides, uncertainty was presented as the essential concept
to understand and formalize the problem in the scheduling domain.

In spite of these claims, most commercial APS packages available rely on deter-
ministic modeling systems. As suggested by Shapiro (2004), managers have only
recently been exposed to deterministic optimization models, whereas their extension
to stochastic programming is still restricted to academic research.

The problem of the uncertainty is, therefore, so far not well solved in commercial
software. Most tools claim to provide real-time scheduling capabilities and what if
scenario analysis. In general, they are able to generate updated schedules as disrup-
tions occur, and use interactive Gantt charts which allow to drag and drop operations
for manual rescheduling; however, the incorporation of robustness issues within the
reasoning procedure is not considered at all.

Generally, commercial APS systems differ in philosophy, user interface and tech-
nology. For planning models, mathematical programming formulations become more
and more the state-of-the-art in the chemical, food and pharmaceutical industry,
as well as in refineries; instead, the majority of scheduling packages are still based
on pure heuristics (Kallrath, 2002). Some simple systems are designed around an
electronic and interactive Gantt chart that supports the users for deciding the appro-
priate allocation and sequencing of activities based on their knowledge of the process.
More sophisticated systems incorporate analysis tools and handle process constraints
such as storage policies, labor patterns, maintenance periods, and sequence-dependent
changeovers.

Commercial APS systems built on mathematical modeling approaches are OSS
Scheduler!, VirtECS™ Scheduler?, ProSched?, and ILOG Scheduler*. Other pack-

LOSS Scheduler, from Process Systems Enterprise Ltd., <www.psenterprise.com>, [29 May 2005]
2VirtECS™ Scheduler, from Advanced Process Combinatorics Inc.,
<www.combination.com>, [Jan. 2006]
3ProSched, from Ingenious Inc., <www.ingenous.cc>, [6 Mar. 2006]
4ILOG Scheduler, from ILOG Inc., <www.ilog.com>, [6 Mar. 2006]
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ages to be worth mentioning include PREACTOR?, SchedulePro®%, and ASPROVA”.
A survey of APS software was provided by Elliott (2000).

Several corporations offer also APS systems as modular components of an in-
tegrated decision-support suite of applications for SCM, covering from strategic to
operational planning functionalities. For example, infor:Scheduling, from Infor Busi-
ness Solutions®, supports planning, programming and optimization for small and
medium industrial companies; Aspen Plant Scheduler™ is the application for short-
term scheduling of the Aspen SCM™ suite of solutions?; SAP® SCM solution uses
the application SAP® Advanced Planner and Optimizer (SAP® APO)!°, with its Pro-
duction Planning and Detailed Scheduling (PP/DS) module; i2 Master Scheduling,
i2 Production Scheduler, and i2 Sequencing are tools provided by i2 Technologies!!;
Oracle Manufacturing Scheduling and JD Edwards Production Scheduling modules
are distributed by Oracle corporation'?. Other companies providing scheduling so-
lutions within their SC suite of solutions are Manugistics'®, TXT e-solutions'#, and
Intentia'®.

Applications of such tools have been reported in the literature of PSE. For ex-
ample, the commercial system AspenMIMI™ (now Aspen SCM™) from AspenTech
was applied by Berning et al. (2004) as a collaborative planning platform to ad-
dress the integrated planning and scheduling problem in a multi-site environment
with interdependent multipurpose production plants; the system provided the means
for transparency, collaboration, information sharing, and conflict management, and
was customized to allow manual interaction. The VirtECS™ scheduling software
was used by Jung et al. (2004) to solve the scheduling subproblems embedded in a
simulation-based optimization framework proposed for SCM under demand uncer-
tainty.

Besides the broad offer of commercial software available for SCM, there are generic
packages for risk analysis to support the resolution of optimization problems under
uncertainty. RISKOptimizer is a simulation optimization add-in for Microsoft Excel®
that combines the Monte Carlo simulation technology of @QRisk, a risk analysis add-in
from Palisade!'®, and the genetic algorithm optimization technology of Evolver™ to
allow the optimization of Excel spreadsheet models containing uncertain data. The
uncertainty is modeled using probability distributions from QRISK, and RISKOpti-
mizer runs an optimization of simulations to find the best combination of parameters
that optimizes some defined statistic function. Similarly, Risk Solver Engine!”, from
Frontline Systems Inc., provides interactive Monte Carlo simulation models to support
probability management in Microsoft Excel®.

5Preactor, from Preactor International, <www.preactor.com>, [22 Dec. 2005]
6SchedulePro, from Intelligen, <www.intelligen.com>, [6 Mar. 2006]

TASPROVA, from Asprova corporation, <www.asprova.com>, [6 Mar. 2006]
8infor:Scheduling, from Infor Business Solutions, <www.inforiberica.biz>, [27 Feb. 2006]
9 Aspen Plant Scheduler™, from AspenTech, <www.aspentech.com>, [27 Feb. 2006]
OSAP® APO, from SAP, <www.sap.com>, [27 Feb. 2006]

11i2 Technologies, <www.i2.com>, [27 Feb. 2006]

120racle and JD Edwards scheduling, from Oracle corporation, <www.oracle.com>, [27 Feb. 2006]
B3 Manugistics, <www.manugistics.com>, [27 Feb. 2006]

MTXT e-solutions, <www.txtgroup.com>, [27 Feb. 2006]

15Intentia, <www.intentia.com>, [27 Feb. 2006]

16@Risk, from Palisade, <www.palisade-europe.com>, [27 Feb. 2006]

17Risk Solver Engine, from Frontline Systems Inc., <www.solver.com>, [19 Apr. 2006]
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2.6 Concluding remarks

Uncertainty is a general and somehow ambiguous term that can be defined and man-
aged from different perspectives. The concept of uncertainty in the context of PSE
has been initially presented, and a new taxonomy of different sources of uncertainty
identified in PSE based on the strategic, tactical, and operational levels of decision
making has been proposed, and is used as a reference throughout the thesis.

General techniques for the representation of the uncertainty in the area of PSE
have been reviewed, along with different measures used in decision making to assess
the performance of the system in uncertain environments. Stochastic and robust
optimization methodologies have been further analyzed as powerful techniques for
optimization under uncertainty, and several contributions reported in the field have
been remarked.

A final analysis of commercial APS systems available for industrial practices re-
veals the lack of concern on uncertainty issues from a proactive perspective.

The state-of-the-art presented in this chapter addresses the first two questions
formulated in Section 1.5, and establishes the basis for the analysis and discussion of
the current situation and prospective research, which are examined in Chapter 3.
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3.

Present and prospective analysis

Why is it that such a vast amount of research
is being conducted and financial and intellectual
resources being wasted generating useless solu-
tions to unrealistic problems?

S.F. Hurley (Hurley, 1996)

This chapter discusses the main limitations and challenges that are in-
ferred from the state-of-the-art survey in decision making under uncer-
tainty, thus leading to the definition of the specific objectives pursued in
this thesis. The basis of the formalism for schedule robustness used in this
research work is then established; the sources of uncertainty considered
are assessed in terms of disturbances, effects, consequences, and reactive
actions implied; and the advantages and shortcomings of the modeling
methodologies applied in the dissertation are finally discussed. All this
analysis provides the common features of the overall research presented in
the forthcoming chapters.

3.1 Scheduling under uncertainty:
limitations and challenges

The progress on information technologies provides the means for a continuous im-
provement on the management and communication of all data available in a company,
as well as for the development of modeling systems to support decision making. Suc-
cessful and appealing results have been achieved so far, but limitations and challenges
to be further considered are identified.

I. Significant research has been undertaken for the formulation and solution of re-
liable scheduling models. However, the possibility to analyze the problem from
multiple points of view, with different assumptions, as well as the uncertain and
dynamic operation environment, make difficult the definition of a general
modeling and solution methodology to deal with all the features of the
problem. In addition, numerous proactive operational approaches developed
to deal with uncertainties have primarily been studied in a machine schedul-
ing environment, thus omitting the properties of chemical processes such as
tightly integrated equipment, simultaneous transfer operations, limited storage,
unstable intermediate products, and limited recover abilities.
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The computational requirements become a critical factor for the application
of proactive models to solve practical problems with a large number of uncer-
tain parameters. Large-scale optimization models are frequently obtained. As
stated by Sahinidis (2004), the capability of simulation and optimization meth-
ods under uncertainty is still limited to fairly small problems due to the huge
computational expense. Particularly, stochastic models can become computa-
tionally very expensive either because of the need to apply complex integration
techniques when the uncertainty is represented by continuous distributions, or
because of the large number of scenarios resulting from a discrete or scenario-
based representation of the uncertainty. As it was observed in the previous
chapter (see Section 2.3.5), expectations are usually approximated by the sum
of performances in different scenarios, where each scenario or sample is just one
possible set of realizations of the uncertain problem data. The number of sce-
narios taken determines the accuracy of the estimates of the actual performance
and standard deviation, and their selection becomes a critical problem.

The concept of schedule robustness is generally used referred to the ability of a
schedule to deal with stochastic events occurring at execution time and remain
acceptable (minimum performance deterioration), without assuming reschedul-
ing strategies beyond a simple right-shift of the altered operations. It has slightly
been distinguished from the notion of flexibility, i.e., a flexible schedule denotes
a responsive schedule, easy to be adapted to the environment. According to
Honkomp et al. (2000), the challenge is to identify the optimum way to intro-
duce slack time in a predictive schedule in order to increase robustness and
extend forecasting capability, without sacrificing performance.

Though several formal definitions have been proposed, the attempts to gener-
alize the concepts have not succeeded. Davenport and Beck (2000) identified
the lack of agreement on a formalism for schedule robustness with the fact
that there is no formal definition able to fit the multiple ways in which robust-
ness can be defined for particular systems. In general, any system that hopes
to address robustness in scheduling will have to allow a specific definition of
robustness in different situations to which it is applied.

The robust optimization methodology as defined by Mulvey et al. (1995) (Sec-
tion 2.4) has largely been applied for design and planning analysis, but has not
explicitly been extended to scheduling under uncertainty.

Concern on uncertainty issues is generally focused on product demands in strate-
gic and tactical analysis. Relatively little attention is given to operational
uncertainties, and they are commonly tackled from a reactive point of view
(Section 1.4). The identification and characterization of the uncertainty from a
proactive perspective impliy a knowledge of the process and its external inputs.
However, sometimes only limited information is available and assumptions
are made to draw a formal description.

Unpredictable product demands in strategic and tactical studies, as well as
variable operation times and equipment breakdowns in operational analy-
sis, are the most common sources of uncertainty covered so far for their major
impact on the performance of the system. However, only one source of un-
certainty is usually considered in the models developed and simplifications are
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made, thus limiting their applicability in real industrial scenarios.

As pointed out by Aytug et al. (2005), it is impossible to address all sources of
uncertainty explicitly, and may be even worthless since some of the events might
be too improbable or minor; but an attempt has to be made in considering the
most significant ones to achieve reasonable successful executions. Furthermore,
it is important to keep an industrial focus to develop relevant techniques, so
instead of developing exact solutions to somewhat idealized problems, research
should first try to capture the problem in all its complexity and then explore
rigorous or approximate solution procedures (Shah, 1998).

VII. In general, proactive modeling systems developed up to this point simply con-
sider the stochastic value of some input parameters, whereas disruptions occur-
ring at execution time as a consequence of the realization of the uncertainty, as
well as the reconfiguration procedure to be implemented, are not explicitly
addressed. An improvement in the system’s performance could be eventually
achieved if information about the effects of disruptions and the rescheduling
strategy was modeled, thus being incorporated in the reasoning stage.

VIII. In the operational level of analysis, a production schedule is generally deter-
mined assuming an instantaneous delivery of goods, thus ignoring transport
requirements between sites in a multi-site system. With the recent practices
focused on globalization and integration of activities, transport constitutes a
prominent source of uncertainty, as well as a central activity to be considered
for the distribution of products (Sauer and Appelrath, 2000). The detailed pro-
duction and distribution scheduling problems have extensively been analyzed.
However, both problems have been dealt with primarily decoupled and inde-
pendent from a supply chain (SC) environment (Chandra and Fisher, 1994)
and Ertogral et al. (1998).

All the aspects mentioned above reveal that the ability to develop reliable decision-
support systems for operational analysis under uncertainty is still limited, and it is
recognized as one of the main challenges in the area of process operations.

In general, the high computational requirements, the multiple sources of uncer-
tainty, and the multiple and conflicting objectives involved in a process system are
identified as the main critical points for the agreement on a formal definition of
schedule robustness, as well as for the development of standard and efficient modeling
techniques taking into account all the features of the problem.

3.2 Objectives

Although the main concern nowadays seems focused on the area of enterprise man-
agement, robustness and flexibility of individual entities are essential to improve the
efficiency of the overall sustem. The points discussed in the previous section pose the
basis of this research work. The general objective can be stated as:

The development of a general decision-support framework for operational
analysis of process systems under uncertainty, which exploits their flexibil-
ity and takes advantage of some knowledge of the uncertainty proactively
(at decision time) to determine efficient and robust predictive schedules.
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This objective implies the development of modeling and resolution strategies tak-
ing into account the critical points highlighted in the previous discussion. Stochastic
optimization (Section 2.3) has been selected as the basic modeling system for the un-
derlying research. The stochastic domain, despite its current limitations, constitutes
a practical platform to incorporate the uncertainty in a decision-making process. As
also recognized in Shapiro (2000), a stochastic model provides the means to assess the
performance of a system under several scenarios before they occur, thus denoting the
need to identify and incorporate prospective options for different types of situations.

The objective pursued involves the consideration of the following issues:

a. Study of different sources of uncertainty and their effects both in terms of risk
and opportunities.

b. Evaluation of some measures of robustness used mainly in tactical and strategic
analysis in the context of scheduling under uncertainty. Proposal of a formalism
for schedule robustness.

c. Consideration of the eventual effects of the uncertainty revealed at execution
time in the decision-making procedure.

d. Extension of the methodology from production to distribution scheduling in a
multi-site system, with the aim to assess the flexibility and improve the inter-
operability between different nodes sites a SC.

e. Analysis of equation-based and procedure-oriented approaches.

f. Assessment of different sampling techniques to incorporate the information
about the uncertainty efficiently.

This thesis focuses mainly on the modeling viewpoint of the problem, rather than
on the development of efficient solution algorithms. By analyzing different sources
of uncertainty (a.), a better insight and guidance on the performance of the system
is pursued. The following three points (b., c. and d.) are addressed to establish
a general formalism of robustness, a proper definition of the problem, as well as to
develop practical modeling systems for operational analysis under uncertainty. The
last two issues (e. and f.) aim at the study and consideration of computational aspects
in the development of the strategies. However, this is a critical aspect that deserves
an own and more extensive analysis, which is out of the scope of this research work.

3.3 Research overview and prospective remarks

The points developed for achieving the objective pursued in this research answer the
question formulated initially in Section 1.5, that is: “How can schedule robustness be
improved? What are the benefits?”. In order to provide a global view of the common
features addressed in the following chapters, the concept of schedule robustness used
as well as the disturbances and modeling systems examined are next outlined as a
whole.
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3.3.1 Schedule robustness

The notion of schedule robustness defined in Section 3.1 (III.) is considered in all the
contributions of this thesis as the main objective function to be improved.

A general formalism of the concept is stated as a trade off between the effects of
uncertainty and the efficiency of the system, defined either in temporal or economical
terms. Based on this formalism, quantitative measures are defined to assess the
robustness of the predictive schedule; the effects of disruptions occurring at execution
time as a consequence of the information about the uncertainty available at the time
of reasoning are considered proactively and incorporated in the model.

3.3.2 Analysis of disturbances

As a consequence of the inherent uncertainty when deciding a predictive schedule,
disruptions may appear at execution time affecting the implementation of the sched-
ule. Disruptions may be complex, multiple in nature, and appear randomly over the
span of the schedule.

In this thesis, four types of disturbances are assessed and considered proactively
when addressing the scheduling problem: process time variations; machine break-
downs; travel time variations; and demand variations. For each of these perturba-
tions, the main sources of uncertainty, effects, consequences, and reactive actions to
be implemented are summarized in Table 3.1.

From the survey in Table 3.1, it is observed that the problems encountered ei-
ther in production or transport scheduling due to operational uncertainties (variable
operation times, resources availability, non-uniform quality of raw materials, poor
performance of control systems), and often also combinations of various indetermi-
nate reasons, lie mainly on the timing of the scheduled operations. Wait and/or
idle times may be eventually generated, along with the subsequent delays, customer
dissatisfaction, and/or quality problems implied.

These effects are illustrated in Figure 3.1. On the one hand, and given a pre-
dictive schedule, if the actual processing time is shorter than the scheduled one, idle
times appear and subsequent equipment under-utilization and productivity losses oc-
cur (Figure 3.1 (b)). Scheduling the process using time estimates shorter than the
nominal ones would keep the plant utilization high, at the expense of increased batch
wait times.

On the other hand, if the actual processing time of a task is longer than the
scheduled one, the time spent by batches waiting for the next unit to become available
increases (Figure 3.1 (c)). Wait times may lead to unexpected delays and eventually
result in quality problems for sensitive or unstable materials, which may even force
the rejection of batches. This situation can also be encountered with the breakdown
of an equipment unit (Figure 3.1 (d)), with the consequent increase of operational
costs. Scheduling the operations with time estimates longer than the nominal ones,
inserting idle time and extra resources, would eliminate the batch wait times, but at
the expense of poorer plant utilization, larger cycle times, and higher inventory costs.

Therefore, from a system performance point of view, a trade off exists between
high plant resources utilization, and low batch wait times. This trade off between
schedule efficiency and robustness was also noticed by Herroelen and Leus (2004b).

The analysis provided reveals also the influence in operational decisions of distur-
bances occurred as a consequence of tactical uncertainties such as variable product

43



3. Present and prospective analysis

demands. This point is already discussed in Section 2.1,
Some of the effects underlined here can be observed in the comprehensive example
illustrated in Chapter 1 (Section 1.3).
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Figure 3.1: Hlustration of the effects of operation times variability.

3.3.3 Modeling systems

A general classification of modeling systems is presented in Chapter 1 (Section 1.1.1).
With the aim to manage the uncertainty in the reasoning procedure, rather than
merely processing information, two analytical systems within the stochastic domain
are contemplated throughout this research work: equation-based and procedure-
oriented approaches.

Mathematical programming is considered a standard equation-based method to de-
termine optimal schedules and assure feasibility, and allows a relatively easy modeling
of particular operation modes of the production system.

Using mathematical programming, the optimality of a solution is guaranteed
within reasonable CPU time for small to medium-size models with linear and convex
constraints. Significant computational advances have been presented during the last
few years, and more are expected in the near future. As analyzed by Advanced Process
Combinatorics Inc. (Pekny, 2005), while computers increased in capability by about
a factor of ten from 1990 to 1996, engineering efforts applied to scheduling and plan-
ning problems have increased the power of mathematical programming algorithms
by several factors of ten; mixed-integer linear programming (MILP) technology has
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3. Present and prospective analysis

been rapidly developed, whereas the area of mixed-integer non-linear programming
(MINLP) is still limited to small problems.

In the context of uncertainty, the advances in stochastic programming methods are
very promising. However, further research is required for the resolution of large-scale
optimization models derived not only from industrial problems, but also from sim-
ple process systems. Multiple features and computational requirements additionally
implied by modeling systems involving uncertainty favor the current development of
procedure-oriented approaches.

Within the procedure-based methods, simulation optimization, defined by Fu
(2001) as the optimization of performance measures based on outputs from stochastic
simulations, couples both descriptive and optimization methodologies, and emerge as
a promising strategy to address such problems.

A trade off usually exists between solution quality and computational effort. In
this sense, it is important to consider the value of obtaining optimal solutions for
a particular scenario at the expense of high computational effort, if decisions may
eventually turn out infeasible due to the uncertainty.

Proactive systems for production scheduling are developed in Chapters 4 and 5 as
decision-support systems to improve schedule robustness for operational uncertainties.
Stochastic programming is considered in Chapter 4 as a first approach to cope
with uncertain operation times. The unavailability of an equipment unit is further ad-
dressed in Chapter 5. This implies the simultaneous incorporation of novel scheduling
features in the decision-making procedure, and a simulation-based optimization
strategy is finally developed.

Using a similar procedure-oriented approach, the problem is extended to oper-
ational transport scheduling in Chapter 6 with the analysis of the integration of
production and distribution activities, and the effect of travel times uncertainties.

The concern on uncertain product demands and their effect in the lower oper-
ational level of production scheduling is the center of interest in Chapter 7. With
the same formal idea of schedule robustness, but expressed in economical terms, the
ability of different measures to manage the risk of performing below a selected target
is assessed.

The research overview provided above attempts to be a reference for the common
characteristics of the contributions presented in the following chapters.

46



4.

Robust scheduling focused on operational uncertainties:
First approach with uncertain operation times

4.1

The greatest loss of time is delay and expecta-
tion, which depends upon the future. We let go
the present which we have in our power, and look
forward to that which depends upon chance, and

so relinquish a certainty for an uncertainty.

Seneca (5 BC - 65 AD)

After a retrospective and prospective survey on uncertainty in the area of
Process Systems Engineering (PSE), this chapter presents the first con-
tribution of this research aimed at identifying robust predictive schedules
able to face the major effects driving the operation of batch processes
with operation times variability. It is an initial attempt to formalize the
short-term scheduling problem with operational uncertainties. The chap-
ter starts with an introduction and the definition of the problem addressed.
The use of stochastic programming as the modeling system is adopted,
and a multi-objective two-stage stochastic formulation is first developed
and next extended to explicitly manage the risk of poor performances.
With this purpose, three different robustness criteria are analyzed and
optimized. The effectiveness of the approach as a decision-support tool is
shown and discussed through its application to academic and industrial-
based examples, to finally conclude with some remarks.

Introduction

Numerous sources of uncertainty are identified with a direct effect on short-term de-
cisions (Section 2.1). Time deviations as a consequence of processing time variations
and/or machine breakdowns appear as the most common and costly effects of disrup-
tions encountered in this stage, making difficult the prediction of exact production
times and rates in industrial processes. The degree of variability is a function of the
process itself, but deviations from 5% upward of the estimated processing times are
usual (Cott and Macchietto, 1989). The sources of uncertainty and effects of the
disturbances caused are analyzed in Chapter 3, and wait times and idle times are
identified as their critical consequences (see Section 3.3.2).
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The traditional approach to minimize the effects of processing times uncertainty
consists of introducing intermediate storage devices before the bottleneck processing
units to maintain reserve material for downstream processing. This allows decoupling
the operation of the processing units, avoiding the propagation of unexpected events,
and allowing the execution of the predictive schedule without modifications. However,
as exposed in the introduction of this dissertation (Section 1.4), the production of
reserve material is often expensive, inefficient, and/or technically difficult to maintain,
and dedicated storage units could be required for each product or intermediate with
an additional cost. Furthermore, if materials leaving a processing unit are unstable,
and therefore consecutive operations must be performed under a zero wait (ZW)
transfer policy, intermediate storage is not a viable solution. These approaches use
rough estimates or simply averages of the processing times observed in previous runs.

Relatively few works incorporate information about uncertain operation times
proactively in the decision stage. Though contributions published in the literature
are already reviewed in Chapter 2, some specific works are worth mentioning here.

Kouvelis and Yu (1997) described a mathematical programming framework and
solution procedures for robust discrete optimization problems, and defined alternative
minimax regret criteria to differentiate the robustness of various solutions over a
given set of potential scenarios. Based on this framework, Daniels and Kouvelis
(1995) focused on a single-machine scheduling environment with uncertain processing
times represented using the scenario-based approach, and used the flow time as a
performance criterion; exact branch-and-bound as well as heuristic algorithms were
implemented to solve the problem. A similar proactive scheduling approach was
developed in Kouvelis et al. (2000) for a two-machine flow shop environment, where
the scenario-based and intervals representations of processing times were discussed,
and the makespan was adopted as the performance measure.

Herrmann (1999) presented a two-space genetic algorithm as a general technique
for solving robust discrete optimization problems using a minimax criterion; the al-
gorithm was applied to identify a schedule with the minimum worst-case makespan
for a parallel machine scheduling plant with uncertain processing times.

Recently, Herroelen and Leus (2004a) developed a mathematical programming
model to determine robust predictive schedules in a project scheduling environment
with uncertain operation times represented with discrete scenarios; the robustness
measure to be minimized was defined as the expected weighted deviation of the ac-
tual from the predicted start times, when only the disruption of one operation time
was anticipated; three additional heuristics related to existing algorithms were also
presented and compared with the proposed model. Using the same robustness cri-
terion in the same scheduling environment, Van de Vonder et al. (2005) developed
and validated heuristic and metaheuristic procedures to allocate time buffers and
generate a robust predictive schedule with acceptable makespan; the heuristic algo-
rithms inserted the slack time in a deterministic predictive schedule with minimum
makespan, keeping the assignment of resources fixed; a tabu search algorithm and an
improvement heuristic were also developed to search for the best insertion of time by
exploiting the neighborhood solutions.

In general, the proactive scheduling approaches proposed so far pursue the iden-
tification of predictive schedules with optimal expected performances, or schedules
that guarantee a minimum performance with a certain probability. Simple produc-
tion models are usually assumed (e.g., flow shop, single stage) and/or the main effects
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of the uncertainty are not considered in the modeling system. Therefore, critical sit-
uations that can arise during the execution of a predictive schedule due to deviations
from the estimated operation times are not explicitly addressed, not even analyzed.
For example, with the generation of considerable wait times the quality of sensitive
or unstable materials can decrease and become even unacceptable, thus forcing the
rejection of batches with the consequent increase of operating costs. Furthermore,
completion times larger than those expected can lead to delays in the promised de-
livery dates, and hence to customer dissatisfaction.

This chapter focuses on general multipurpose multi-stage batch plants with un-
certain operation times, and presents a proactive scheduling approach based on a
stochastic programming formulation. The underlying idea is to improve the robust-
ness of the predictive schedule by taking into account, in the reasoning procedure
itself, wait times and idle times that may eventually occur at execution time as a
consequence of the uncertainty.

4.2 Problem statement

The short-term scheduling problem is addressed for a multipurpose multi-stage batch
plant with uncertain operation times. The process-stage-operation hierarchy defined
by the standard ANSI/ISA S88 (International Soc. for Measurement and Control,
1995, 2001) is used to model the data (see Section 1.1.2). Following this standard, each
order has associated a production process, i.e., a set of activities or stages required
to transform the input materials into products. Furthermore, each stage involves an
ordered set of operations that must be executed one immediately after another and
assigned to the same equipment unit. Based on this structured information, given
are the set of production orders to be fulfilled, the set of processing stages required
in each order, a set of units where they can be processed, the operations required in
each stage, and the processing time of each operation represented by a probability
distribution.

The objective is to identify a robust predictive schedule. According to the formal-
ism for schedule robustness proposed in Chapter 3 (Section 3.3.1), the robustness
criterion for the underlying problem is formally defined as the expected value of a
weighted combination of makespan and wait times generated during the execution
of a predictive schedule. This measure balances the trade off between the need for
high plant efficiency, evaluated in terms of makespan, and the low wait times, which
account for the eventual effects arising due to the uncertainty. To avoid the genera-
tion of wait times is particularly important with unstable intermediate products, and
when ZW transfer policies are applied. In addition, the reduction of idle times to
keep reasonable plant utilization is implicitly considered with the minimization of the
makespan.

Due to the uncertain operation times, there is no sense in determining detailed
start and end processing times for each operation in the predictive schedule, but
only the minimum information required to start the production in the plant, i.e., the
sequence, the assignment of units to stages, and the initial processing time of each
process or batch.

The following assumptions are made:

e From the predictive schedule, the lower control level only requires as a guid-
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ance information related to the sequence, the assignment of units to stages,
and the processes start times. Then production proceeds according to the con-
trol recipe, without rescheduling considerations beyond a simple right-shift of
eventual altered operations.

e The non-intermediate storage policy (NIS) between stages is assumed, that is,
an intermediate product remains in the processing unit after its production until
the unit assigned to the next stage is available.

e Within a stage, all the operations must be executed without interruption.

e Three sort of links are differentiated to describe temporal constraints between
operations within a process: simultaneous, instant, and sequential. Simultaneity
accounts for those operations from different stages that have to start and end
at the same time. Instant requirements are defined between those operations
that have to be produced one immediately after the other. Sequential links
establish a relationship between the end time of an operation and the start time
of another operation, i.e., they are defined between operations that have to be
performed consecutively without immediacy requirements.

e To simulate the execution of a predictive schedule when operation times are
uncertain, wait times are introduced at the end of a processing stage, or before a
transfer operation, if the next unit is not available. To account for the generation
of these wait times, sequential links are established in each process between the
last operation of a stage (if it is not a transfer operation) and the first operation
of the following stage, and between a transfer operation and the preceding one
in the same stage.

e If an equipment unit is available before the time determined for the next batch,
and idle time appears, i.e., processes cannot start before their start time in the
predictive schedule (see Figure 3.1 in Section 3.3.2).

e For modeling purposes, a distinction is made between wait times between stages
(wt*) due to the blockage or unavailability of a unit, and start wait times (wt°)
due to delays on the predicted processes start times.

4.3 Modeling approach

An equation-based modeling system is considered in this study for the development of
the proactive scheduling approach. Particularly, a multi-objective two-stage sto-
chastic programming model is formulated to describe the features of the problem.
This rigorous optimization approach is appropriate since decisions related to the pro-
duction sequence, assignment, and start times of each process must be taken to start
production, before the actual values of operations times are revealed, whereas the
eventual effects of the uncertainty and the efficiency of the system are not disclosed
until the execution of the predictive schedule. With a two-stage stochastic modeling,
scenarios of possible operation times are anticipated to take into account different
outcomes at the time of scheduling (refer to Section 2.3 for a review of stochastic
techniques).

A pure stochastic formulation is first presented using the robustness criterion de-
fined in Section 4.2 as objective function. The model is next extended to explicitly
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manage the risk of obtaining highly suboptimal schedule performances. Uncertainty
associated with operation times is represented indistinctly by discrete or continuous
probability distributions. Monte Carlo sampling is then applied over the probability
space to generate a finite set of representative scenarios and approximate the expec-
tation of the objective function (see Section 2.3.5).

4.3.1 Scheduling model

A two-stage stochastic mixed-integer linear programming (MILP) formulation is de-
veloped based on the concept of precedence relationship between stages introduced
by Méndez et al. (2001), and Méndez and Cerda (2003). Decision variables related to
the production sequence, the assignment of units to stages, and the processes start
times are modeled as first-stage decisions to be taken here-and-now, independently
of the realization of the uncertainty. With the predictive schedule fixed in the first-
stage, a detailed executed schedule, with the makespan and wait times generated due
to deviations from the nominal operation times, is computed in a second stage and
for each anticipated scenario, i.e., for each realization of processing times. As as-
sumed (Section 4.2), the processes start times in the predictive schedule act as lower
bounds in the executed schedules, i.e., the start time of each process in each scenario
is constrained to be at least the start time in the predictive schedule.

Material balances, as well as features such as batch mixing and splitting, can also
be contemplated in the model, but have been excluded from the scope of this research
in order to focus on the problem of the uncertainty, and to avoid additional compu-
tational complexities arising from the discrete or continuous -time representation.

The model developed (SCHED1) is described next from equations 4.1 to 4.12 (the
notation is related below, but refer to the Nomenclature chapter in page 153 for an
overall reference). To identify a robust predictive schedule the expectation function
to be minimized is written as a sum of the weighted combination of makespan (mk)
and wait times (wt®, wt®) for each scenario k (eq. 4.1).

Equation 4.2 is a first-stage constraint that establishes the assignment of one of
the alternative equipment units u to each processing stage j for every process i. The
binary variable Y;;, is used for this purpose, which takes the value of 1 if stage j of
process i is assigned to unit u, or 0 otherwise. The other variables related to decisions
to be made independently of the final unveiled scenario (i.e., sequence and initial batch
processing times) are derived from equations 4.3 - 4.12. These constraints (referred to
as second-stage constraints) are defined for all the scenarios k to evaluate a detailed
executed schedule for each instance.

(SCHED1)
minz wr - | p1-mki + p2 - Z Z Z wt, + Zwt?k (4.1)
k i j€J; 0€0; i
Y Yiju=1 VYijel (4.2)
u€Us;;

Tinrozi/k Z Tfnrm-k + wtfn-k — M . (]. — Xiji’j’) — M . (2 — Y;ju — Y;/j/u)

Vk,i,i',j € J;,5 € Jy,0¢€ Oé,o’ € Of,,u € (Ui NUpjr) i <
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Tinryip > Tfnro/i/k + wti,i,k - M - Xijifj/ - M- (2 — Y;'ju - Y—i’j/u)

o Y (44
Vk‘,l,’t/,jEJi,j/EJiI,OEO;,OIEOél,’U,E(UijﬂUi/j/),Z<’Ll

Tinrerirg > Tfnrei, + wip;, — M - (2 — Yiju — Yirjra)

P ol _ 1 ’ f - . Y ./ (4'5)
Vk,i,7',j € Ji,j' € Jir,0 € 0,0 GOj,,UG(UZ]mUZ/]/),Z—’L,]<]

Tinroi, = Ting + wt?, Vk,i,j € Jif, o€ O]f (4.6)

Tfnre, = Tinroik + Topoik Vk,i,j € Ji,0€ O; (4.7)

Tinreir = Tinry ik

. ’ , , . (4.8)
Vk,i,j € Ji,j € Ji,0€ 04,0 € Oj,(0,0") € O™
Tfnrex = Tfnrek
! f -/ / / i (4'9>
Vk,i,j € Ji,j € Ji,0€ 04,0 € Oj,(0,0) € O™
Tfnry, = Tinry;
Jo = Tinro , , (4.10)
Vk,la] € Ji,0€ O]‘,O € Oj,(0,0) € 0™
Tfnreie +wts;, = Tinry ik (4.11)
Vk,i,j € Ji,j' € Ji,0€ 05,0 € 01, (0,0') € 0% '
mki > Tfnron  Vk,i,j € J!,0€ O} (4.12)

Constraints 4.3 - 4.5 are sequencing constraints that express the completion time
of the last operation o of a stage j from process i in scenario k (Tfnry;) as a lower
bound for the start time of the first operation o’ of any later stage 5’ from process 7’
(Tinryii;) assigned to the same unit u. The binary variable X,/ is used to define
the production sequence; it takes the value of 1 if stage j of process ¢ is processed
before stage j’ of processi’ in some unit u, or 0 otherwise. Equation 4.5 is imposed
only for those stages j and j” from a same process ¢ that are processed in the same unit
u; since their sequence is already established by the recipe, the sequencing variable
always takes the value of 1. These sequencing constraints become redundant whenever
the production stages j and j’ are not allocated to the same unit w.

The start time of a process ¢ in the predictive schedule (Tin;) is determined with
constraint 4.6, which expresses the delay of process i in scenario k (wt?k) as the
difference between its actual start time in that scenario (Tinryk), and the predicted
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one decided in the first stage. Equation 4.7 relates the start and end times of the
operations o of each process i for each scenario k through the actual operation time
in the scenario (Topoir)-

Simultaneous requirements in process ¢ between operation o in stage j and oper-
ation o’ in stage j’ are defined through constraints 4.8 and 4.9. Equation 4.10 estab-
lishes the instant links between operations o and o’ in the same stage j of process
i that must be performed one immediately after the other (O*“). For those oper-
ations o and o’ of process i that have to be processed sequentially (O%¢?), without
immediacy requirements, constraint 4.11 is provided; through this constraint, wait
times generated in process ¢ and in scenario k after processing operation o (wt3;;)
are computed. Finally, the makespan of the executed schedule in scenario k (mky) is
defined in equation 4.12.

4.3.2 Robust scheduling model

The formalism of robustness used in the previous stochastic model is based on the
expected value of makespan and wait times over the set of anticipated scenarios. To
avoid the identification of predictive schedules with highly suboptimal performances
in some of the scenarios, criteria based on the worst-case scenario, and defined by
Kouvelis and Yu (1997) in general terms as absolute robustness, robust deviation and
relative robustness criteria, are assessed and optimized.

The absolute robustness criterion (Zag) is a minimaz criterion that attempts to
determine the predictive schedule with simply the best of the worst performance over
all the scenarios. The robust deviation (Zpg) and relative robustness (Zrgr)
criteria are concerned with how the actual system performance compares with the
optimal performance that could have been achieved if certain information about the
scenario realization had been available at scheduling time. These criteria are known
as minimax regret criteria, where regret is defined as the difference or the ratio,
respectively, between the performance of the executed schedule and the performance of
the optimal predictive schedule that would have been attained if the scenario had been
known at decision time. Therefore, these criteria allow, respectively, the identification
of the schedule with the best worst-case deviation or the best worst-case percentage
deviation from optimality over all the scenarios.

For the problem under consideration, and based on the concept of schedule robust-
ness used so far in terms of makespan accounting for the efficiency of the system and
wait times measuring the effects of the uncertainty, the worst-case scenario implies
the scenario with a maximum combination of makespan and wait times. Therefore,
given a predictive schedule, the absolute robustness measure is formally defined as
the maximum sum of makespan and wait times over all the anticipated scenarios,
expressed according to equation 4.13. Similarly, the robust deviation and the relative
robustness criteria are formalized as the maximum difference or ratio, respectively,
over all the scenarios between the makespan and wait times generated in the realized
scenario, and the makespan and wait times of the optimal schedule to be executed
if the scenario had already been known at decision time (OF}). These criteria are
formalized as stated in equations 4.14 and 4.15, respectively.

Zag = max q p1 -mky, + p2 - Z Z Z wty, + Zwt?k (4.13)

i jeJiocO; i
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ZDR:m]?X p1-mky + pa - ZZ Z wtkarZwt —OF; » (4.14)

i jEJ; 0€0;

ZRR = max p1-mki + pa - Z Z Z wiy, + Zwt JOF} & (4.15)

i jEJ; 0€0;

Note that both robust deviation and relative criteria require the computation of
the optimal performance in each scenario sampled (OF}), and hence a deterministic
problem for each realization of processing times is to be solved. This deterministic
model derives simply from the stochastic model developed in Section 4.3.1 (SCHED1)
considering only one scenario with the corresponding operation times. It is worth
noting that when the actual scenario is already known at the time of scheduling, no
delays in the processes start times are expected during the execution of the schedule.
Therefore, only the wait times between stages arising from the application of the NIS
policy are considered in the wait times term of the objective function, and constraint
4.6 is excluded.

The minimum absolute robustness Z¥4", robust deviation Z% . and relative

robustness Z/% . values can be evaluated by solving the SCHED1 model, but
minimizing one of the alternate measures (eqs. 4.13 - 4.15) instead of equation 4.1.
For modeling environments such as GAMS (Brooke et al., 1988) that do not support

minimaz functions, the definition of these metrics is handled by inequality constraints.

It is important to notice that the associated scenario probabilities are not used
with these formulations. Besides, a predictive schedule with a minimum worst-case
is identified, but some degree of flexibility to fix the temporal decisions exists in the
second stage for the evaluation of those executed schedules that show a lower perfor-
mance than the worst-case. Therefore, to be able to compute the proper executed
schedules in the second stage of the solution algorithm, model SCHEDL1 is extended
with the incorporation of two additional constraints: the worst-case formalism in
terms of absolute robustness (eq. 4.13), robust deviation (eq. 4.14), or relative ro-
bustness (eq. 4.15); and the upper bound constraint 4.16, 4.17 or 4.18, respectively.
A robust predictive schedule is then determined, with a maximum expected combi-
nation of makespan and wait times (eq. 4.1), and a minimum worst-case defined in
terms of absolute robustness, robust deviation, or relative robustness.

This new model (SCHED2) can be regarded as a robust optimization approach (see
Section 2.4) with preference for risk-averse decisions. Note that the stochastic model
SCHED1 is extended with the incorporation of the absolute robustness, the robust
deviation, or the relative robustness as a measure of the risk of obtaining highly poor
performances.

(SCHED2)
min (eq. 4.1)
subject to
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eqs. 4.2 - 4.12
eq. 4.13, 4.14 or 4.15

eq. 4.16, 4.17 or 4.18

Zar < Zm (4.16)
Zor < Z3R" (4.17)
Zpr < Zpin (4.18)

The criterion to be applied is up to the decision-maker concern about risk. The
absolute robustness criterion tends to lead to conservative decisions, since it attempts
to hedge against the worst possible outcome. On the other hand, robust deviation
and relative robustness criteria tend to be less conservative when making a decision,
and also look at uncertainty as an opportunity to be exploited rather than just as a
risk to be hedged against. The deviation from optimality can be used as an indicator
of the improvements that can be achieved if part or all of the uncertainty can be
resolved (Kouvelis and Yu, 1997).

4.4 Case Studies

The methodology developed to handle the operation times uncertainty proactively has
been applied to an academic and an industrial-based case studies. The first case is
the motivating example introduced in Chapter 1 (Section 1.3) involving a five-product
three-stage flow shop plant. The industrial-based example consists of the scheduling
of a washing subprocess of a more complex single-product production process; four
orders have been considered for this problem. Both examples are described in appen-
dices B.1 and B.4, respectively.

The multi-objective two-stage stochastic model (SCHED1) is first solved, and
Pareto curves are then obtained by parametrically varying the weight values of both
criteria (makespan and wait times) in the objective function. With fixed and selected
weight values, the deterministic problem is also solved for comparison purposes, and
to assess the suitability of the stochastic modeling system (as indicated previously,
the deterministic model derives directly from the stochastic one considering only
one scenario with the nominal operation times, and excluding constraint 4.6). The
deterministic predictive schedule thus obtained is then evaluated in front of the set
of scenarios, i.e., the production sequence, the assignment, and the processes start
times in the predictive schedule are fixed, and the makespan and wait time values
of the executed schedule in each scenario are computed. The extension of the model
to the robust optimization approach (model SCHED2) is finally analyzed with the
alternate measures of risk defined in terms of absolute robustness, robust deviation,
and relative robustness.
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For both examples, a set of 100 scenarios with equal probability is considered
and derived from the probability distributions of processing times using Monte Carlo
sampling. The models have been implemented in GAMS (Brooke et al., 1988), and
solved using the MILP solver of CPLEX(7.5) on a AMD Athlon 2000 computer.
Computational times about 150s CPU time for the first example, and about 2000s
CPU time for the second case study, are required. Model sizes and computational
requirements for the pure stochastic formulations (SCHED1) of both examples are
reported in Table 4.1; the computational results provide an idea of the complexity
of the model; nevertheless, note that the main purpose is to suggest a strategy for
managing uncertainty in the operation level, rather than to develop the most efficient
solution algorithm.

Table 4.1: Model sizes and computational requirements.

Flow shop Washing subprocess
(section 4.5.1) (section 4.5.2)

Constraints 9536 28449
Binary variables 45 96

Continuous variables 11106 24505
OF 116.2 428.4
CPU time* 144.5 1820.6

*seconds with GAMS 20.5/CPLEX(7.5), on a AMD Athlon 2000
computer.

4.5 Results and discussion

Wait times between stages (wt?,, ) and start wait times (wtl;,) have been distinguished
for modeling purposes. However, and for the sake of clarity, the notation wt is used
in the remaining of the chapter referred to the wait times as a whole.

4.5.1 Motivating example

The Pareto curve between the expected wait time and makespan values obtained with
the resolution of model SCHED1 is depicted in Figure 4.1. Each Pareto point identifies
a predictive schedule with different preferences for wait times and plant utilization.
Solutions obtained using the three alternative control measures (model SCHED2) with
weight values fixed at 1 for the makespan and wait times are also illustrated, along
with the results obtained from the evaluation of the deterministic predictive schedule
and the schedule with minimum expected makespan obtained by Balasubramanian
and Grossmann (2002). If the minimum makespan is pursued, the predictive schedule
identified by the Pareto point P, (p1 = 1, p2 = 0) would be implemented; otherwise,
if wait times have to be avoided, the predictive schedule determined by the Pareto
point Py, (p1 = 0,p2 = 1) would be executed, which guarantees null expected wait
times over the set of selected scenarios at the expense of poor plant utilization.

The predictive schedule obtained by fixing the weight values for the makespan and
the wait time measures at 1 (Pareto point Pg) balances both objectives. According to

56



4.5. Results and discussion

80 T T ; ;
e Pareto front (SCHED1)
p  E[mk] =99.0 = Robust (SCHED2)
70k a  E[wt]=73.4 v Deterministic H
¢ Stochastic*
60r 7
'3'50 r 7
E
=40¢ |
2,
W3 1
p  E[mk] =106.9
s Ew]=93
201 7
10+ p  E[mK =1514 1
b Ew]=0.0
O L L L L L
80 100 120 140 160 180 200
E[Makespan]

* Point resulting from the evaluation of the schedule with optimum ex-
pected makespan identified in Balasubramanian and Grossmann (2002)
(pr=1,p2 =1).

Figure 4.1: Pareto curve between the expected wait times and expected makespan
values for example 4.5.1 (Ps:p1 =1, po0=1;Pa:p1=1,p2=0; Py, :p1 =0,p2 = 1).

this solution, the Gantt charts of the schedules executed in the nominal scenario and in
one of the randomly-generated scenarios are represented in Figure 4.2 (the operation
times for the random scenario are reported in Appendix B.1, Table B.7). Note that
decisions related to the production sequence (A-C-E-B-D), the assignment of units to
stages (fixed for this flow shop plant example in ul-u2-u3), and the processes start
times (0-8-20-39-44 TU) are solved in a first stage and therefore, they are fixed and
independent of the scenario unveiled.

Table 4.2 reports and compares the results obtained related to the expected sum
of makespan and wait times (E[mk + wt]), expected makespan (E[mk]), expected
wait times (E[wt]), the processes start times (7in;), the absolute robustness (Zar),
the robust deviation (Zrp), and the relative robustness (Zgrgr) values for the predic-
tive schedules determined with the different modeling systems. The makespan and
wait time values of the executed schedule in the nominal scenario according to each
predictive schedule are also included (mkyom and wt, o, in the table).

It is important to note from Table 4.2 that the decisions made using the deter-
ministic formulation with nominal processing times poorly face the uncertainty, and
overestimate the performance of the system. Although the makespan and wait time
values of the predictive schedule thus obtained are optimal in the nominal scenario,
when the deterministic decisions are used to face the uncertainty, i.e., an executed
schedule is assessed in each scenario, the expected makespan raises nearly 5% from
the optimum one (from 101 to 105.7 TU), and the generation of significant wait times
is expected (14.7 TU). On the other hand, the stochastic modeling with weight values
fixed at 1 for both criteria in the objective function (STp,) allows the identification

57



4. Robust scheduling focused on operational uncertainties:
First approach with uncertain operation times

a. mk=107 TU; wt=4 TU.

u2

u3

b. mk=114 TU; wt=0 TU.

Figure 4.2: Gantt charts of executed schedules for case study 4.5.1 according to the
predictive schedule determined with model SCHEDLI in the : a) nominal scenario; b)
random scenario (Table B.7) (Production sequence: A-C-E-B-D; assignment: ul-u2-
u3; processes start times: 0-8-20-39-44 TU).

of a predictive schedule with expected wait times reduced nearly 37 % (from 14.7 to
9.3TU), and with acceptable expected makespan (106.9 TU).

Using the robust optimization approach with the minimazx criteria, alternative
predictive schedules are identified with reduced risk of poor performances, while still
maintaining improved robustness with respect to the deterministic approach. Using
the absolute robustness measure (AR), for example, a predictive schedule is deter-
mined with a worst-case performance reduced by 14 % (from 152.0 to 131.6 TU), and
with an expected wait time value about 56 % lower with respect to the deterministic
schedule (6.5 vs. 14.7 TU). The reduction in expected wait times is even higher with
the predictive schedule identified considering the relative robustness metric (nearly
67 %), despite the increase in the expected makespan and the poor performance in
the nominal scenario.

The suitability of the proactive scheduling approach developed in this first contri-
bution can be further supported considering the comprehensive analysis presented in
Section 1.3. The predictive schedules determined using deterministic models for the
nominal and the random scenarios show poorer robustness features than the predictive
schedule identified with the proactive approach. Note the suboptimal performance of
the deterministic predictive schedules when they are executed in a different scenario.
For example, using the predictive schedule identified for the nominal scenario (Figure
1.4 (a)), the executed schedule in the random scenario has a makespan of 104 TU, and
19TU of wait times are generated (Figure 1.4 (b)). With the robust predictive sche-
dule, the makespan of the executed schedule in the random scenario increases up to
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Table 4.2: Results for case study 4.5.1 with different modeling approaches: De-
terministic (DET); SCHED1 (ST); SCHED2 with absolute robustness (AR);
SCHED?2 with robust deviation (DR); SCHED2 with relative robustness (RR).

DET STp.* AR DR RR STp,* STp,” ST!
E[mk +wt] 1204 116.2 119.3 1192 1205 166.0 153.0 1234

E[mk] 105.7 1069 112.8 107.8 1157 99.0 1514  110.2
E[wt] 14.7 9.3 6.5 11.5 4.8 73.4 0.0 13.2
Mknom 101.0 107.0 111.3 107.0 115.8 99.0 153.0  105.0
Whnom 0.0 4.0 1.0 6.5 0.8 67.0 0.0 0.0

T Tina 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 680
Ting 10.0 39.0 30.2 30.0  47.8 2.0 119.0 0.0
Tinc 75.0 8.0 85.3 755  28.7 29.0 92.0 79.0
Tinp 16.0 44.0 352 350  53.0 8.0 34.0 6.0
Ting 57.0 20.0 8.8 8.0 9.3 41.0 15.0 47.0

" Zar 152.0 135.0 131.6 1425 1381 L L 165.0
ZpR 45.0 38.0 435 325 351 i, i, 60.0

ZrR 0.62 0.43 0.59 0.45 0.35 i, i 0.57

mknom: makespan in the nominal scenario; wtnom: wait times in the nominal scenario;
E[mk]: expected makespan; E[wt]: expected wait times; Tin;: processes start times;
Zar: absolute robustness; Zpr: robust deviation; Zgg: relative robustness.

*Ps:p1=1,p2=1;Pa:p1 =1,p2=0; Pp:p1 =0,p2 = 1.

TResults obtained from the evaluation of the predictive schedule with optimum expected
makespan identified in Balasubramanian and Grossmann (2002) (different assumptions are taken,
see text).

fValues not given for being not comparable since different weight values are used.

114 TU (Figure 4.2 (b)), but any wait times are expected; in terms of the robustness
criterion used (mk-+wt), the value decreases from 123 to 114 TU with the proactive
approach developed. A similar behavior occurs when comparing the robust predictive
schedule with the predictive schedule identified for the random scenario (Figure 1.4
(c)). Whereas the execution of the robust schedule leads to an executed schedule in
the nominal scenario with 107 TU of makespan and 4 TU of wait times (Figure 4.2
(a)), the deterministic schedule performs with a makespan of 114 TU, and 14 TU of
wait times are generated (Figure 1.4 (d)).

Expected makespan and wait times vs. expected makespan

The adoption of the expected makespan as the formalism for schedule robustness,
without considering the effects of the uncertainty, is also analyzed. With the model
developed (SCHED1), using only the makespan term in the objective function, a
predictive schedule with a minimum expected makespan value of 99 TU is obtained;
this is at the expense of an important increase in the expected wait times in the
executed schedules (STp, results in Table 4.2). Notice that this predictive schedule
differs from the one identified in the contribution by Balasubramanian and Grossmann
(2002) with optimum expected makespan. In this sense, it is important to mention
that their work did not consider the NIS policy but the ZW one, thus leading to a
higher expected makespan value (106.1 TU instead of 99 TU). Moreover, the processes
start times were not taken into account when evaluating the schedule in different
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scenarios, i.e., they were not fixed but adjusted for each scenario to follow the ZW
policy. This is not always feasible in a real procedure; generally, an increase in
the operation times can not be detected prior to execution, so the production of a
batch starts according to the start time in the predictive schedule (if possible), before
knowing if the processing times of the stages in the preceding batch deviate from the
nominal ones. Therefore, the ZW policy can not be followed at all, and unavoidable
wait times are generated (refer to Figure 3.1 in Chapter 3 for illustrative purposes).
Despite both approaches can not be compared directly, it is interesting to analyze
them to remark the usefulness of considering the start times in the predictive schedule
for developing more realistic modeling approaches and for reducing the generation of
wait times. With this purpose, the predictive schedule identified by Balasubramanian
and Grossmann (2002) is fixed and evaluated in front of the different scenarios with
the assumptions considered in this research work (see Section 4.2). The results are ap-
pended in the last column of Table 4.2. As it can be observed, the predictive schedule
neglects the wait and idle times that can be generated during its execution. Consid-
erable expected wait times appear (13.2 TU), and the expected makespan increases
about 4 % with respect to the optimum expected makespan value reported (110.2 vs.
106.1 TU). Note that both the expected wait time and makespan values are about
42 % and 3% higher, respectively, than those obtained by executing the predictive

I

a. mk: 104 TU; wt: 19 TU. b. mk: 114 TU; wt: 0 TU.

ul
i

c. mk: 113.8 TU; wt: 2.8 TU. d. mk: 108 TU; wt: 22TU.

Figure 4.3: Gantt charts of executed schedules in a random scenario (Table B.7) for
case study 4.5.1, following predictive schedules determined using different modeling
approaches: (a) deterministic; (b) SCHED1; (¢) SCHED2 with absolute robustness;
(d) predictive schedule with optimum expected makespan identified in Balasubra-
manian and Grossmann (2002).

60



4.5. Results and discussion

schedule determined with the proactive scheduling approach developed in this work.
Moreover, the variability of outcomes is also noteworthy as can be observed from the
absolute robustness value (165.0 TU), which is about 25 % higher than the minimum
one (131.6 TU).

Finally, to illustrate the role of the uncertainty in decision making, the Gantt
charts of the schedules executed in the random scenario defined in Appendix B.1(Table
B.7) using different predictive schedules as a guidance are represented in Figure 4.3.
Note that each executed schedule has its own production sequence and minimum
processes start times (see Table 4.2). Other results in terms of production efficiency
would be obtained in other scenarios. The predictive schedule to be finally executed
is up to the decision-maker preferences or organization policies.

4.5.2 Washing subprocess

The Pareto curve illustrating the trade off between the expected wait time and
makespan values for this second case study using the SCHED1 model is shown in
Figure 4.4. The points obtained evaluating the predictive schedules identified with
the deterministic formulation and the SCHED2 model using the alternative robust-
ness measures are also included (for these evaluations, the weight values p; and po
are fixed at 1).

According to the predictive schedule determined with model SCHED1, fixing the
weight values of both criteria at 1, the Gantt charts of executed schedules in the nomi-
nal scenario and in one of the randomly-generated scenarios (Table B.19 in Appendix

40 ; \
e Pareto front (SCHED1)
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Figure 4.4: Pareto curve between the expected wait time and expected makespan
values for case study 4.5.2 (Ps: p1 = 1,p2 = 1; Py : p1 = 0.95,p2 = 0.05; Py, : p1 =
0.06, p2 = 0.94).
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B.4) are represented in Figure 4.5.

Results of the expected sum of makespan and wait times, expected makespan,
expected wait times, processes start times (7in;), absolute robustness (Zag), robust
deviation (Zgp), and relative robustness values (Zggr) for the predictive schedules de-
termined with different modeling approaches are reported in Table 4.3. The makespan
and wait time values that would be attained following the alternative predictive sched-
ules in the nominal scenario are also included. It is worthwhile to note that for this
particular example, and except for the case when only the minimization of the ex-
pected makespan is pursued (STp,), the schedule executed in the nominal scenario
proceeds without the generation of wait times for any of the predictive schedules
determined.

As it is also underlined in case study 4.5.1, the predictive schedules determined
with the stochastic models developed (SCHED1 and SCHED?2) perform better over
the uncertain space than the predictive schedules based on nominal values (DET).
Observe in Table 4.3 that the predictive schedule identified with the stochastic ap-
proach (SCHED1), and weight values fixed at p; = pa = 1 for both criteria in the
objective function, leads to expected wait times reduced 52 % (from 14.0 to 6.7 TU),
and to an acceptable expected makespan (1% increase) compared with the schedule
based on deterministic operation times (DET). Furthermore, a predictive schedule

Al LU0 (T

| D0

v IS ]
u

P1

P2

P3

P4 a. mk=418.9 TU; wt=0 TU.

F1|

F2

P1

P2

P3

P4

b. mk=416.0 TU; wt=6.9 TU.

Figure 4.5: Gantt charts of executed schedules for case study 4.5.2 according to the
predictive schedule determined with model SCHEDI in the: a) nominal scenario;
b) random scenario (Table B.19) (Production sequence / assignment / process start
time: 1 / F1-V-P1-P2-P4 / 0TU; 2 / F2-V-P1-P2-P3 / 52.9TU; 3 / F1-V-P1-P2-P3
/ 158.9TU; 4 / F2-V-P1-P2-P4 / 216.9TU).
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Table 4.3: Results for the washing subprocess case study with different mod-
eling approaches: Deterministic (DET); SCHED1 (ST); SCHED2 with absolute
robustness (AR); SCHED2 with robust deviation (DR); SCHED2 with relative
robustness (RR).

DET STp,* AR DR RR ST, » ST, =

P, Py,
E[mk+wt] 431.7 4284 433.0 430.7 430.7 449.0 44214
E[mk] 4177 4217 429.3  424.9 4249 4129 4416
E[wt] 14.0 6.7 3.7 5.8 5.8 36.1 0.54
mknom ~ 409.3  418.9  426.1  422.1 422.1  409.3  441.3
Whnom 0.0 0.0 0.0 0.0 0.0 35.2 0.0
Ting 157.00 529 T 58.6 1649 165.0  197.6  239.3
Tins 0.0 0.0 1705 220.1 220.1 0.0 174.0
Tins 50.3  158.9  224.1 59.4  59.4 34.8 65.0
Ting 207.3  216.9 0.0 0.0 0.0 147.0 0.0
 Zar 475.9 486.4 449.1 460.2 460.0 [ L
ZbRr 76.3 72.7 57.0  43.9 44.1 f, T,
ZrR 0.19 0.18 0.15 0.11 0.11 f, t,

Mknom: makespan in the nominal scenario; wt,om: wait time in the nominal scenario;
E[mk]: expected makespan; E[wt]: expected wait time; Tin;: orders start times; Zar:
absolute robustness; Zpr: robust deviation; Zrr: relative robustness.

*Ps : P1 = 1,p2 = 1; Py P1 = 0.95,p2 = 0.05; Pb P11 = 0.06, p2 = 0.94.
TValues not given for being not comparable since different weight values are used.

with a relatively small increase in the expected makespan and expected wait times re-
duced 74 % (from 14.0 to 3.7 TU) is identified using model SCHED2 with the absolute
robustness criterion.

Finally, schedules executed according to alternate predictive schedules in the par-
ticular scenario defined in Table B.19 (Appendix B.4) are represented in Figure 4.6.
Note again the different production sequences, assignments of units to tasks, and
processes start times of each schedule. The suitability in terms of production efficien-
cies depends on the final revealed scenario. Therefore, first-stage decisions concerning
the information to be released to the control system imply a trade off to be solved by
the decision maker according to the risk acceptability policy.
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Figure 4.6: Gantt charts of executed schedules in a random scenario (Table B.19) for
case study 4.5.2, according to predictive schedules determined using different modeling
approaches: (a) deterministic; (b) SCHEDI; (¢) SCHED2 with robust deviation.
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4.6 Concluding remarks

The variable and unpredictable operation times appear as one of the most common
sources of operational uncertainty, which has usually been faced through reactive
scheduling mechanisms without taking into account any information available at the
time of reasoning. Instead, a proactive scheduling approach is developed in this
study to account for this uncertainty in general multipurpose multi-stage batch plants,
considering in the decision stage itself the main consequences driving the execution
process.

The proactive approach consists of an optimization model based on a multi-
objective two-stage stochastic formulation. The notion of schedule robustness is for-
malized as the expected weighted combination of makespan and wait times, thus
accounting for the efficiency of the system and for the eventual effects of the uncer-
tainty, respectively. More robust predictive schedules are identified, with significantly
reduced expected wait times and acceptable line occupation.

The use of the expected makespan as the formalism for schedule robustness is also
assessed by evaluating the predictive schedule thus derived. The analysis shows that
ignoring the eventual effects arising at execution time is not realistic, and leads to a
significant increase in the expected wait times and/or plant under-utilization.

Additionally, criteria based on the concepts of absolute, robust deviation and
relative robustness are also analyzed and used as control measures to manage the
risk of poor performances. This robust optimization approach imposes the worst-case
value of these measures as an upper bound, i.e., the predictive schedule determined
will perform with a sum of makespan and wait times lower than the worst-case in all
the scenarios. The method could be further extended by incorporating these metrics
in the objective function, along with the expected criterion, and analyzing the trade
off between them. Alternative robust predictive schedules are obtained.

The study presented in this chapter is a first approach aimed at the formalization
of the scheduling problem with operational uncertainties, addressing explicitly and
proactively the major disruptions occurring at execution time. The results obtained
highlight the importance of managing the uncertainty, as well as its consequences in
decision making to perform effectively in an uncertain environment. However, a single
source of uncertainty has been considered up to this point, and further research is re-
quired to improve the performance of stochastic programming models for applications
of industrial size and complexity.
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D.

Robust scheduling focused on operational uncertainties:
Proactive incorporation of rescheduling strategies

5.1

It is change, continuing change, inevitable
change, that is the dominant factor in society
today. No sensible decision can be made any
longer without taking into account not only the
world as it is, but the world as it will be.

Isaac Asimov

A first proactive approach for scheduling with operational uncertainties
has been developed so far, and different measures for schedule robustness
have been assessed. Useful insight on the performance of the system with
variable operation times has been obtained, as well as promising strate-
gies to deal with this source of uncertainty. In this chapter, the goal is
to step forward in the modeling and resolution of the problem by tak-
ing into account, proactively, uncertainty in the availability of equipment
units, along with information regarding the rescheduling procedure to be
implemented at execution time.

A simulation-based optimization strategy is developed as a proactive appro-
ach to cope with the new features of the problem, and to identify a robust
predictive schedule with the flexibility to absorb disruptive events without
major consequences when rescheduling. After an introduction and defi-
nition of the problem, the modules of the system (optimizer, stochastic
modeler, and scheduling model) are described. The approach is tested in
three different case studies, and overall remarks are finally summarized.

Introduction

Process time variations and machine breakdowns are identified as the most common
disturbances occurring due to the uncertainty in an operational level of analysis, with
a direct impact on predicted time activities. This is also remarked in the previous
chapter (see Section 4.1), and their effects are analyzed in Chapter 3 (see Section
3.3.2). As discussed elsewhere (Section 3.1), it is difficult, if not impossible, to cope
with all sources of uncertainty proactively, and may be even worthless for the im-
probability of some events. However, it is important to exploit some knowledge of the
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uncertainty available at the time of scheduling, as it is also deduced from the studies
presented in the preceding chapter.

Most of the contributions reported in the literature of production scheduling to
deal with the eventual effects of variable operation times and breakdowns address
the problem from a reactive point of view (reactive approaches are introduced in
Section 1.4). In general, rescheduling systems based on a predictive schedule aim at
generating feasible updated schedules relatively quickly, while minimizing deviations
from the predictive plan. A reference work in this field is that of Cott and Macchietto
(1989), where an algorithm for on-line schedule modification was proposed to deal
with processing time and batch size variations; the algorithm detected the deviations
between the target and the predictive schedule at short intervals, and shifted the
operations without sequence modifications. Kanakamedala et al. (1994) described an
heuristic strategy for reactive schedule modification of multipurpose plant schedules
subject to processing time deviations and unit unavailabilities, based on the selection
of the solution with a minimum impact on the rest of the schedule. Numerous works
have been published from then on. See for example the works of Vin and Ierapetritou
(2000); Méndez and Cerdd (2004); and the review by Aytug et al. (2005).

Some other contributions analyze the effects of the sources of uncertainty on pre-
dictive schedules based on a Monte Carlo simulation framework. For example, Mignon
et al. (1995) defined schedule robustness as the standard deviation of a profit-based
function weighted by the absolute value of the deterministic objective to assess the
robustness of schedules obtained from deterministic methods when they were exe-
cuted in the presence of uncertainty. Basset et al. (1997) considered the uncertainty
in processing times and equipment availability to define and assess operating policies
related to production lead times, maintenance protocols, and inventory profiles.

These latter procedures provide insight on the actual performance of a predictive
schedule, though any knowledge of the uncertainty is explicitly used in the decision
stage of the simulation algorithm in order to generate schedules which can better
handle the uncertainties.

Relatively few works have been reported in the literature incorporating the un-
certainties proactively. Refer to Section 4.1 for a survey of contributions considering
uncertain operations times, and to Chapter 2 for a general review.

In addition, several studies have been reported in a machine scheduling environ-
ment based on robustness measures that manage the incorporation of slack time into
the schedule, and consider the right-shifting rescheduling policy after a breakdown. In
this line, Leon et al. (1994) developed and evaluated robustness measures, formalized
as a linear combination of expected makespan and expected delay, to address job shop
scheduling with machine breakdowns or processing time variations; the problem was
modeled using graph theory, and a genetic algorithm was presented for its resolution.
Within the same scheduling environment, Mehta and Uzsoy (1998) focused on the
minimization of the expected job completion time deviations; the problem was mod-
eled using a disjunctive graph representation, and two heuristics were proposed to
insert slack time based on the production sequence of an initial schedule determined
by minimizing the maximum lateness.

A similar approach was proposed by O’Donovan et al. (1999) for a single-machine
environment with stochastic breakdowns; heuristic and rescheduling approaches were
proposed using the total tardiness as a performance measure. Davenport et al. (2001)
examined three different slack-based heuristic techniques in a job shop scheduling
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environment with machine breakdowns; the problem was first solved to optimality
using the summed tardiness as a performance measure; the execution of the schedule
thus obtained was then simulated under uncertainty to evaluate robustness in terms of
the mean simulated tardiness, or the mean absolute difference between the predicted
and the simulated tardiness.

In a series of contributions by Jensen (Jensen, 2001, 2003), different measures were
considered to examine robustness and flexibility of job shop schedules subject to ma-
chine breakdowns, and the minimization of lateness instead of tardiness was proposed
as a way to increase the slack of the schedules; alternative rescheduling methods were
analyzed, and genetic algorithms were implemented as a solution approach. In gen-
eral, the results obtained revealed that no single best method existed to address all
problem instances, but the performance of the robust scheduling methods was highly
dependent on the problem size, the rescheduling strategy, and the machine downtime.

In the area of Process Systems Engineering (PSE), Sanmarti et al. (1996) proposed
a method combining the generation of robust schedules with reactive procedures for
scheduling multipurpose batch chemical plants under equipment failure uncertainty;
schedule robustness was quantified using a reliability index; the schedule with mini-
mum makespan was initially generated, and then used in an evolutionary algorithm to
determine schedules with higher reliability while maintaining the makespan below the
time horizon; the schedule with the best combination of high reliability /low makespan
was finally identified by simulating a set of random equipment failures and analyzing
the efficiency of rescheduling procedures in terms of deviation of completion times
and number of reassignments.

Later, Honkomp et al. (1999) presented a simulation-based optimization frame-
work, which coupled an optimizer based on nominal process data with a Monte Carlo
simulator, to assess and compare strategies for generating robust schedules, as well
as rescheduling techniques when processing times and equipment availability were
uncertain.

In a multiproduct batch scheduling environment, Lee and Malone (2001a,b) pro-
posed a strategy based on a combination of Monte Carlo simulation and simulated
annealing (SA) to determine a predictive schedule with an optimal degree of flexi-
bility, defined as the amount of free time inserted into a schedule to be adapted to
future changes; the expected profit was to be maximized, and tactical and operational
uncertainties were considered; a reactive schedule adaptation algorithm was applied
based on local search techniques that used the incorporated flexibility to respond to
changes during the execution time.

In general, most proactive scheduling approaches proposed so far assume sim-
ple flow shop or single-stage production processes, and deal with a single source of
uncertainty. Multiple sources of uncertainty have been considered with simplifying
considerations, and mainly using simulation-based optimization techniques due to
the multiple features and high computational requirements implied. In addition, the
effects of disruptions occurring at execution time are hardly addressed, and break-
downs are assumed to occur just before the start time of a batch, so batch rejection is
avoided, and simple reassignments and/or resequencing strategies are implemented.

Chapter 4 focuses on short-term scheduling with uncertain processing times, and a
first formalization of the problem in the stochastic programming domain is developed.
However, the need to reduce the gap between theory and the industrial practices
claims for a more realistic view of the problem. In this sense, this chapter considers
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the equipment availability as a source of uncertainty along with the processing times.
In addition, not only a set of anticipated scenarios for the uncertain parameters is used
in the decision stage, but also information concerning the reactive scheduling approach
to be taken during schedule execution. A robust predictive schedule is pursued, with
the flexibility to incorporate disruptive events arising at execution time with minimum
effect on planned activities, while achieving an acceptable performance.

5.2 Problem statement

The short-term scheduling problem is considered in a general multipurpose multi-stage
batch plant with uncertainty in the form of variable processing times and equipment
availability. The input data defined for the approach developed in the previous chapter
(Section 4.2) is required. In addition, information related to the expected breakdown
time and breakdown duration for each fallible equipment unit is also specified in terms
of probability distributions obtained using statistics from historical data.

A robust predictive schedule is again pursued. To balance the trade off between
schedule efficiency and the eventual effects arising because of the uncertainty, the
robustness formalism defined in the previous chapter (Section 4.2) as the expected
weighted combination of the makespan and wait times resulting from the execution
of a predictive schedule is also adopted.

Several reactive scheduling techniques can be assumed to adjust a predictive
schedule in front of a disruptive event and compute its actual performance. This study
focuses on the extreme strategies of right-shifting and complete rescheduling. Right-
shifting consists of a simple move forward in time of all the operations altered by a
disruption, without introducing sequencing or assignment changes. Contrary, com-
plete rescheduling involves the possible resequencing of batches and/or reassignment
of units for those stages not yet executed.

The same assumptions considered in the previous chapter (see Section 4.2) apply
in this study. It is worth remembering:

e A detailed predictive schedule is not required, but only information to be re-
leased to the control system and related to the production sequence, the assign-
ment of units to stages, and the processes start times.

e The non-intermediate storage (NIS) policy between stages is assumed.

e Two different sources of wait times generated during execution are assessed:
wait times between stages due to the blockage or unavailability of a unit; and
wait times due to deviations from the predicted processes start times.

e During schedule execution, wait times are introduced at the end of a processing
stage, or before a transfer operation, if the next unit is not available. Moreover,
processes cannot be started before their start time in the predictive schedule.

In addition, the following issues are assumed:

e Only one equipment unit is subject to failure. The unavailability of more than
one unit could also be contemplated taking into account that the effect of a
breakdown depends on the outcome of the preceding ones. However, it has
been excluded from the scope of this research work to focus on the problem
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of the uncertainty itself, and to avoid additional modeling and computational
complexities.

e Any batch can be processed in the broken unit during a disruption; if breakdown
occurs during the production of an operation, the complete batch is rejected and
it must be restarted from the beginning.

5.3 Modeling approach

The use of mathematical programming to capture all the features of the underly-
ing problem implies the formulation of a complex stochastic mixed-integer model.
To avoid major simplifying assumptions and to reduce computational requirements, a
simulation-based stochastic optimization framework is developed as the proac-
tive scheduling approach incorporating the new modeling features of the problem.

Research on simulation-based optimization is very large, not only in production
scheduling, but particularly in tactical and strategic analysis, as well as in other re-
search directions within PSE. For example, Subramanian et al. (2001) addressed the
pipeline management problem and presented SIMOPT, an architecture that combined
mathematical programming and discrete event simulation to assess the effect of uncer-
tainty and support decision making. The SIMOPT architecture was further discussed
by Pekny (2002) for decision making in general process management applications
involving combinatorics, uncertainty, and risk management.

In the context of supply chain management (SCM) with uncertain product de-
mands, Jung et al. (2004) developed a simulation-based optimization approach to
determine safety stock levels and achieve a customer satisfaction level with minimum
expected value of the cost of supply chain (SC); the strategy involved an outer opti-
mization on the safety stock levels, which minimized the weighted sum of deviations
from the target customer satisfaction levels, and an inner problem comprising re-
peated simulations, each with a given Monte Carlo sample of the demands and a
series of imbedded planning and scheduling subproblems solved in a rolling horizon
scheme. For another application of simulation-based optimization in SCM, as well as
a review in the area, refer to Mele (2006).

The simulation-based optimization framework developed in this research comprises
three interdependent modules (an optimizer, a stochastic modeler, and a scheduling
model), and involves two recursive loops (Figure 5.1).

The outer optimization loop directs the search for alternative predictive schedules
with improved schedule robustness, i.e., better expected sum of makespan and wait
times. From this loop, the scheduling model and the stochastic modeler are viewed as
a blackbozr that returns a performance measure (expected sum of makespan and wait
times value) as output, given a set of decision variables (sequence, assignment, and
initial batch times) as input. The optimizer uses this performance measure to adjust
the decision variables and improve the objective.

The inner sampling loop manages the stochastic features of the problem. In the
stochastic modeler module, uncertainty associated with operation times, equipment
breakdown times, and breakdown durations is represented indistinctly by discrete or
continuous probability distributions. The scenario-based representation of the uncer-
tainty is adopted, and a set of probable scenarios is anticipated by sampling over the
probability distributions of the uncertain parameters. Each scenario specifies a value
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Figure 5.1: Stochastic modeling framework.

for the breakdown time, a breakdown duration, the broken unit, and the operation
times.

Given an scenario generated by the stochastic modeler, the rescheduling strategy
to be followed in front of disruptions, and implementing the decisions (sequence,
assignment, and initial batch times) derived from the outer optimization loop, the
scheduling model simulates the execution of the predictive schedule and computes
the makespan and wait times generated; this step is repeated for each of the scenarios
sampled. After all the simulation runs, the robustness performance (expected sum of
makespan and wait times) is evaluated and returned to the optimizer.

The procedure proceeds iteratively until decision variables converge to their op-
timal values, or some other stopping criterion is satisfied. The framework has been
implemented in C++ using the Borland C++Builder 6.0 programming environment.

5.3.1 Optimizer

Different procedures, either rigorous or heuristic-based, can be implemented for op-
timization purposes within the stochastic framework. As already discussed, the rep-
resentation of the problem with equations and inequalities would lead to a com-
plex stochastic mathematical model with high computational requirements. Instead,
heuristic-based procedures are developed in this research.

Meta-heuristics, and genetic algorithms (GAs) in particular, have proved suitable
for solving deterministic scheduling problems with relatively small computational ef-
fort. Several applications have been reported in the manufacturing industry, although
few publications exist in the process industry (Wang et al., 2000; Graells et al., 2000;
Bjorkqvist, 2005). Some other works rely on simulated annealing (SA) algorithms
to efficiently optimize a probabilistic objective function. Kim and Diwekar (2002)
focused on improving the efficiency of a SA-based stochastic algorithm by using the
more uniform Hammersley sequence sampling (HSS) technique (see Section 2.3.5,
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both in the inner sampling and in the outer optimization loops. The application of
GAs to scheduling under uncertainty is very limited, but they can easily be adapted
to the requirements of an stochastic formulation Leon et al. (1994) and Sevaux and
Sorensen (2004).

Stochastic Genetic Algorithm (stochGA)

An stochastic GA (stochGA) has been designed and implemented as optimization
procedure in the outer loop of the modeling framework to search for more robust
predictive schedules. The Galib C++ library (Wall, 1996) is used with customized
chromosome classes. The algorithm proceeds following the common steps of a GA
(Goldberg, 1989), but incorporates an embedded inner sampling loop to evaluate the
probabilistic objective function (Figure 5.2). A number of generations is specified as
a termination criterion, and a linear scaling function is used, along with the roulette
wheel selection scheme to choose the chromosomes from a population for mating.
Additional parameters to be defined involve the population size, the overlapping per-
centage, the crossover and mutation probabilities, and the crossover method.

Population size Crossover probability
Generations Mutation probability
% Overlapping Crossover method ‘

‘ Set Parameters ‘

!

‘ Initialize Population F

GA-based search

Reproduction process:
Selection / Crossover / New Population

Mutation
N S S S, Individuals
! evaluation
SCHEDULING MODEL i
(simulation) |
NO I
P !
STHOCASTIC MODELER | ermination ;
(sampling) I~ criterion |
T i
1

Termination

s YES
criterion

YES
Ad

End

Figure 5.2: Stochastic GA-based search procedure.

Representation

The representation of a solution is one of the important issues of a search algo-
rithm. For the problem under consideration, each chromosome or individual of the
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population of solutions identifies a predictive schedule, and hence it consists of both
continuous times and discrete sequence and assignment decision variables. To avoid
the generation of infeasible solutions, each individual is encoded using a mixed repre-
sentation involving the following strings (refer to Figure 5.3 for illustrative purposes):

a. A real-valued vector for the processing times, where each item of the string iden-
tifies the minimum start processing time of the batch assigned to the position
of the item.

b. A permutation of integer values for the sequencing decisions; each item corre-
sponds to a batch, and denotes its position in the production sequence.

c. An integer representation for the assignment; items from this array match the
stages in the batches, and identify the alternative unit assigned to that stage.

To illustrate this encoding consider the example represented in Figure 5.3. According
to this representation, the second batch identified in the list of batches will be ex-
ecuted in the fourth position of the production sequence, starting at least at time
point 22. Moreover, it consists of two stages: the first stage will run on its second
alternative unit, whereas the second stage will be processed in the first one.

From the operators involved in a GA, initialization, mutation, and crossover are
explicitly customized. Suitable procedures are implemented for each string of the
solution vector, and are reported in the following sections. For a detailed description
of these and other available operators refer to Baeck et al. (1997).

Initialization

The initialization procedure implemented to generate the first population of solu-
tions uses a feasible initial predictive schedule, determined with the scheduling module
described in Section 5.3.3 below, using nominal values for the processing times, and
assuming no breakdowns. The sequence, assignment, and start times from this pre-
dictive schedule define the first individual of the population; the other solutions derive
from these initial variables introducing random exchanges of positions in the sequence,
random assignments of the alternative units, and taking the start processing times of
the batches from a temporization of a schedule with the new random sequence and
assignment decisions, and using nominal operation times.

Mutation

The mutation operator pursues the introduction of new solutions, as well as the
modification of the existing ones.

The deviation-based mutation (Baeck et al., 1997) is implemented as operator for
the string of real values. Based on this operator, each item of the string is modified
by generating at random a number between upper and lower bounds determined as
a predefined deviation from the current value.

In the integer permutation vector of a chromosome, a reciprocal exchange mutation
(Baeck et al., 1997) is used. This operator selects two positions of the permutation
array randomly, and then swaps the values in these positions.

Mutation in the integer string is performed by selecting randomly one stage of each
batch, and changing also randomly the integer value among the number of alternative
units available for that stage.
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Crossover

The crossover operator defines the procedure for generating a new solution from
two parent solutions. Unlike mutation, it involves multiple chromosomes.

Two alternative operators are implemented for the real-valued encoding: interme-
diate recombination and line recombination (Chipperfield et al., 1994). Both operators
generate the new real-valued vectors based on the rule stated in equation 5.1. The
intermediate recombination operator uses a factor f different for each pair of items of
the parent vectors, and can generate any point within a hypercube slightly larger than
that defined by the parent strings. On the other hand, line recombination uses the
same value of f for each pair of parent strings combined together, and can generate
any point on a slightly longer line than that defined by the parent solutions within
the limits of the perturbation f.

Offspring = Parenty + f - (Parents — Parenty) (5.1)

The partially mapped crossover (PMX) (Baeck et al., 1997) operator is used in the
integer permutation string of a solution. Based on this operator, two crossover sites
selected at random in each parent string define a matching section that is directly
copied to the new vectors. PMX proceeds by position-wise exchanges, where the
remaining parts are taken from the other parent string.

Finally, the single-point crossover (Baeck et al., 1997) is applied to the integer
array. This operator involves selecting an integer position of the string at random,
and swapping the items of both parents from that point.

5.3.2 Stochastic modeler

The stochastic modeler acts as a central module controlling the generation and evalu-
ation of a finite and representative set of scenarios from the probability distributions
that describe the uncertain parameters in order to approximate the probability space.

The selection of the number of samples required in a stochastic optimization proce-
dure to estimate the performance with a given accuracy is recognized as a challenging
problem (Diwekar, 2003). It depends not only on the types of uncertainty distribu-
tions, but also on factors such as the sampling technique, the values of the decision
variables, and the characterization of the error.

As reviewed in Chapter 2 (Section 2.3.5), different techniques can be applied for
sampling, from the widely used Monte Carlo sampling (MCS) to quasi-Monte Carlo
methods. Two techniques are implemented in this framework using the GNU scientific
library (GSL) (Galassi et al., 2001): a MCS procedure, and the Sobol sequence
algorithm, which seems to maintain good properties as the number of dimensions
increases (Kocis and Whiten, 1997). The MCS technique uses the default MT19937
generator, and the seed is initialized as a random value between 0 and 99999. On the
other hand, the generator using the Sobol sequence algorithm evaluates the dimension
at runtime based on the number of uncertain parameters established.

The sampling procedure is described in Figure 5.4. The number of scenarios
sampled (nk) is assessed at runtime in order to evaluate the actual mean p and
standard deviation o of the performance measure with a given accuracy . However,
a minimum number of scenarios is initially fixed (NKj) to avoid the unnecessary
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Figure 5.4: Sampling algorithm implemented in the stochastic modeler.
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evaluation of the relative error during the first iterations of the algorithm, when the
number of scenarios sampled is still low.

The relative error is approximated with a probability of (1 — «) using the half-
length confidence interval (0,k.q) as stated in equation 5.2 (the sample average and
standard deviation are computed using expressions 5.3 and 5.4) (Law and Kelton,
2000).

Using the Monte Carlo method, and due to the randomness of the uniform gen-
erator, the overall sampling procedure is repeated for a given number of replications
(NR). The objective function is then approximated as the mean value of the expected
performances of all the replications.

o2
nk 0
Y =tnk-1,1-% - Yot _ ok (5.2)
i i
_ Ek Mk
_ 5.3
== (5.3)
2 el — )2
_ 4
7 nk—1 (5-4)

Classical statistical methods make use of the central limit theorem to assume a
normal distribution of the random variables. They appear to provide good estimates
of the confidence interval only for truly random MCS, while tending to overestimate
the bounds for other sampling techniques. Some studies were conducted by Shapiro
and Homem-de-Mello (2000) concerning the convergence of Monte Carlo simulation-
based approximations for a class of stochastic programming problems. However, and
as stated by Diwekar (2003), there is a lack of a systematic procedure to quantify
the accuracy for non-Monte Carlo techniques. Therefore, classical statistical methods
are applied in the stochastic modeler module of the framework to approximate the
average of the performance measure.

5.3.3 Scheduling model

The integrated support system for planning and scheduling of multipurpose batch
chemical plants developed by Cantén (2003) is used for modeling the scheduling pro-
blem and simulating the execution of a predictive schedule. The system is based on
heuristic procedures commonly used in commercial packages, and it has been designed
in a modular way allowing the implementation of alternative heuristic or mathemat-
ical algorithms, as well as additional functionalities to solve and further optimize the
problem as needed.

Given a set of product demands, rule-based algorithms establish the number of
batches to be processed, the sequence, and the assignment of production stages to
specific units. These algorithms are applied in combination with the Event Operation
Network (EON) model proposed by Cantén (2003) to perform the timing of the ope-
rations. This temporization model takes into account complex storage and resource
constraints, and it is based on a graph representation involving a network of events
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(time instants at which some change occurs), and operations (time intervals to be
observed between start and end events).

The scheduling package serves two purposes. First, and as reported in Section
5.3.1, it allows the identification of a feasible predictive schedule, used to initialize
the population of solutions in the stochGA. Secondly, it is the module used in the
inner loop to simulate and evaluate the execution of a predictive schedule derived
from the optimizer in each of the scenarios sampled by the stochastic modeler.

Given the predictive schedule, the rescheduling strategy to be followed, and a
particular scenario (breakdown time, breakdown duration, broken unit, and operation
times), the scheduling system reproduces the situation that would actually occur at
execution time according to the following steps:

STEP 1. Check the status of the batches in the predictive schedule at breakdown
time.

STEP 2. Fix the batches already finished or running.

STEP 3. Reject the operations not yet executed from the batch, if breakage occurs
during batch production.

STEP 4. Incorporate a maintenance task in the broken unit, at breakdown time,
and with an operation time equal to the breakdown duration.

STEP 5. Include a new batch in the production sequence if batch rejection occurred.

STEP 6. Reschedule the non yet executed batches. With complete rescheduling
strategies, as any scheduling problem, different objective functions can be con-
sidered.

An example of the evaluation of a predictive schedule in a particular scenario is
represented in Figure 5.5. The Gantt chart of the executed schedule is illustrated
assuming both right-shifting and complete rescheduling strategies (Figures 5.5 (d)
and (e)). Note the generation of wait times and the incorporation of a new batch,
due to batch rejection, in order to meet the requested demands. Following a right-
shifting policy, the sequence and assignment of the predictive schedule are preserved,
and the new batch is introduced at the end of the production sequence (Figure 5.5
(d)). Instead, complete rescheduling allows sequencing and assignment changes, and
hence a new schedule is determined for the non yet executed batches based on the
objective function selected (Figure 5.5 (e)).
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5.4. Case studies

5.4 Case studies

The simulation-based stochastic optimization framework developed for the generation
of robust predictive schedules has been applied to two academic and one industrial-
based case studies. The first case study is again the comprehensive example used
in the thesis and described in Appendix B.1. The second example concerns a batch
production facility, referred to as Procel, which involves three production stages and
eight operations; it is detailed in Appendix B.3. Finally, the washing subprocess of a
more complex single-product production process, analyzed also in the previous chap-
ter (Section 4.5.2) and described in Appendix B.4, is adopted as a third case study.
Except for the first example that uses a discrete distribution function to describe the
uncertain processing times, variable operation times and breakdown durations are
characterized with uniform probability distributions, whereas an exponential distrib-
ution function is used to represent the uncertain breakdown time.

Two particular scenarios have been distinguished. The first scenario, referred to
as faultless, is a scenario with nominal operation times and no breakdown. Secondly,
a scenario denoted as nominal, with mean values for the operation times and a failure
occurring at the average breakdown time with a mean breakdown duration, is also
considered. For comparison purposes, and to assess the suitability and robustness
of the predictive schedules identified with the developed approach, the deterministic
problem is also solved for the specific scenarios, and the predictive schedules thus
determined are used as input to the inner sampling loop, i.e., they are evaluated in
front of a set of scenarios and for the rescheduling strategies considered.

For the sampling procedure used in the stochastic modeler module, an initial
number of 25 scenarios has been selected, and an accuracy -y of 0.05 approximated
with a 90 % confidence interval is pursued. Concerning the sampling technique, both
the Sobol sequence and MCS have been tested. Deviations of maximum 2% are
observed between the results obtained with both procedures, but the computational
requirements of MCS increase considerably because of the number of replications
used to account for its randomness (the evaluation of a single predictive schedule

Table 5.1: Computational requirements.

Flow shop Procel Washing subprocess
(section 5.5.1) (section 5.5.2) (section 5.5.3)

scenarios ; CPU time ; v*

right-shifting 25;1;0.05 25;1;0.05 30;2:0.05
550;10;0.01  500;20;0.01 800;50;0.01
complete rescheduling - 30;1;0.05 60;3;0.05
- 800;30;0.01 1500;90;0.01
CPU timet
right-shifting 120 660 780
complete rescheduling - 960 1200

*scenarios and seconds for 1 simulation run in the inner sampling loop with a precision ~.
fseconds required for the overall stochGA-based procedure with y=0.05 on a AMD Athlon
2000 computer.

81



5. Robust scheduling focused on operational uncertainties:
Proactive incorporation of rescheduling strategies

for the third example requires about 12 times more computational effort using MCS
compared with the Sobol sequence algorithm).

For information purposes, the number of scenarios sampled in a simulation run
using the Sobol sequence algorithm to evaluate the robustness measure of a predic-
tive schedule are summarized in Table 5.1, based on the precision required and the
rescheduling strategy considered. CPU time expended in the overall stochGA-based
procedure is also reported.

5.5 Results and discussion

5.5.1 Motivating example

After preliminary tuning tests conducted to fix the values of the parameters used in
the stochGA-based search procedure (Table 5.2), a first robust predictive schedule
has been determined considering uncertainty only in the operation times (Robustl);
this predictive schedule is next evaluated in the inner loop considering uncertainty
in both the operation times and the availability of unit U2. On the other hand, a
second predictive schedule has been identified (RobustIl) using the developed proac-
tive approach with variable operation times and uncertain equipment availability; the
performance of this predictive schedule when only the operation times are uncertain
is also assessed within the inner sampling loop.

Table 5.2: stochGA parameter values for case study 5.5.1.

Parameter Value
Population size 10
Generations 100
Overlapping [%)] 70

Crossover probability 0.9
Mutation probability 0.5

Table 5.3 reports the expected makespan and wait times (E[mk+wt]) for these pre-
dictive schedules, the makespan and wait time values of the executed schedules in the
nominal and the faultless scenarios (mknominais Wenominal, Mk fauitiess, Wt fauitiess), 88
well as the start time of the batches (Tin;). The results obtained using a determi-
nistic modeling of the problem for the faultless scenario and evaluated in the two
uncertainty contexts are also included. Right-shifting rescheduling has been assumed
assumed in the simulation runs.

As it is also observed in the previous chapter (Section 4.5), the results obtained
suggest that a deterministic modeling overestimates the performance of the system,;
although the predictive schedule from the deterministic approach (from now on de-
terministic predictive schedule) presents optimal makespan and wait time values if
everything occurs as predicted (faultless scenario), its expected performance decreases
significantly when it is executed in uncertain environments. Instead, the predictive
schedules identified with the proactive approach (Robust] and RobustII) show better
robustness properties over the anticipated scenarios.
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Table 5.3: Results for case study 5.5.1.

Predictive schedule
Deterministic Robustl RobustIl

E[mk + wt]* 123.1 118.2 123.1
E[mk]* 106.2 108.9 118.0
E[wt]* 16.9 9.3 5.2
E[mk + wt] 152.3 152.5 147.7
E[mk]T 121.4 121.0 131.5
E[wt]f 30.9 31.5 16.2
“mknomina 1280 1375 1240
Whnominal 9.0 2.7 18.2
mkfaultless 101.0 108.5 115.8
wtfaultless 0.0 2.7 0.0
Ting 0.0 0.0 7.0
Ting 10.0 39.1 0.0
Tinc 75.0 8.3 89.8
Tinp 16.0 46.5 8.3
Ting 57.0 20.3 52.8

*Expected values obtained using a set of scenarios for the operation
times uncertainty.

TExpected values assessed using a set of scenarios for both pro-
cessing times uncertainty and equipment breakdowns.

Using only the information related to the uncertain operation times, the robust
predictive schedule (Robustl) shows an expected wait time value about 45 % lower
than its deterministic counterpart (9.3 vs. 16.9TU), with a slight increase around
2% in the expected makespan. Using information about the possible breakdowns in
the decision stage itself, maintenance periods along with the incorporation of a new
batch in the production sequence due to batch rejection are taken into account, thus
leading to the identification of a more conservative predictive schedule (RobustT),
with increased slack times. As it is expected, when this predictive schedule is evalu-
ated in scenarios where breakdowns are excluded, it performs with low expected wait
times (5.2 TU, which is about 70 % lower compared with the deterministic predictive
schedule), but with an increased expected makespan (118 TU).

When the predictive schedules are evaluated in the scenarios that consider all
the sources of uncertainty, the deterministic and Robustl schedules show a similar
behavior (152.3 and 152.5 TU), whereas RobustIl exhibits an improved expected
performance (147.7 TU). The expected wait time value is about 48 % lower, at the
expense of an acceptable increase in the expected makespan.

The Gantt charts depicted in Figure 5.6 illustrate the executed schedules in the
faultless and nominal scenarios according to the deterministic and robust predictive
schedules. Notice the different sequencing decisions, and the slack time introduced
between the batches in the robust predictive schedules. Note also that the usage
of information related to breakdowns leads to the identification of a more expanded
schedule (Figure 5.6 (e)) in order to deal with the effects of the breakdown with a
major flexibility. Despite its improved robustness, the predictive schedule RobustIl
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Figure 5.6: Gantt charts of schedules executed in the faultless (left-hand side, LHS)
and nominal (right-hand side, RHS) scenarios for case study 5.5.1 using as a guidance
the predictive schedules: a)/b) deterministic; ¢)/d) Robustl; e)/f) RobustIL.

performs with poorer wait times in the nominal scenario (18.2 TU), though with better
makespan than the deterministic one (124.0 TU). Instead, the predictive schedule
Robust] performs with low wait times (2.7 TU), but with high makespan (137.5 TU).

The methodology developed is heuristic-oriented, so it is difficult to validate from
an optimality point of view. However, the results obtained considering only uncer-
tainty in the operation times can be compared with those reported in Chapter 4 using
the stochastic programming approach, although it is important to note that different
procedures are used to generate the set of scenarios. With the rigorous formulation,
robustness measures of 120.4TU and 116.2TU are determined for the determinis-
tic and robust predictive schedules, respectively (see Table 4.2). These results show
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only a difference of nearly 2% with respect to those obtained with the simulation-
based optimization framework (123.1 TU and 118.2TU in Table 5.3). Moreover, the
same production sequence is identified (A-C-E-B-D), and the processes start times
are nearly equivalent (the assignment is fixed in this case study).

The use of the simulation-based optimization approach leads to a more agreeable
modeling of the system. However, because of the simplicity of this example, its
advantages in terms of computational effort cannot be fully justified. Nevertheless,
the results obtained prove the suitability of the proposed proactive methodology, and
the efficiency of the stochGA for the evaluation and identification of robust predictive
schedules.

The results obtained so far show the quick lose of optimality when using a determi-
nistic predictive schedule, neglecting the known uncertainty, and the inconveniences
generated in terms of efficiency and quality properties. Because of the simplicity and
the lack of alternative units in this case study, only a right-shifting rescheduling strat-
egy has been assumed; the evaluation of alternative rescheduling policies is focused
in the next examples.

5.5.2 Procel

The pilot plant facility Procel (Appendix B.3) is adopted as a second example, and
five orders are considered for scheduling. Table 5.4 details the parameter values used
in the stochGA-based search procedure and fixed after preliminary tuning tests. Table
5.5 reports the expected makespan and wait times, the batches start times, as well as
the makespan and wait time values of the schedules executed in the faultless and the
nominal scenario according to the deterministic and robust predictive schedules, for
both right-shifting and complete rescheduling strategies.

Table 5.4: stochGA parameter values for case study 5.5.2.

Parameter Value
Population size 10
Generations 100
Overlapping [%] 80

Crossover probability 0.8
Mutation probability 0.5

As already remarked in the previous example, these results show that the determi-
nistic modeling overestimates the performance (schedule robustness) of the system.
For example, the robust predictive schedule determined assuming right-shifting re-
scheduling (third column in Table 5.5) shows an expected makespan and wait time
value about 20 % lower than its deterministic counterpart (57.2h vs. 70h); robust-
ness improves at the expense of a relatively little increase in the makespan, as can be
observed comparing the executed schedules in the faultless and nominal scenarios.

These trends are also observable in the Gantt charts depicted in Figures 5.7 and
5.8. They illustrate the actual executed schedules in the faultless and nominal scenar-
ios using as an instruction the deterministic and robust predictive schedules evaluated
assuming right-shifting and complete rescheduling policies, respectively.
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Table 5.5: Results for case study 5.5.2.

Right-shifting

Predictive schedule
Complete rescheduling

Deterministic Robust ‘ Deterministic Robust
E[mk + wt] 70.0 57.2 55.6 53.5
E[mk] 49.3 48.9 | 49.6 48.4
E[wt] 20.7 8.3 6.0 5.1
Cmkpominal - 446 506 : ””” 46.4 52.0
Whnominal 2.6 0.5 | 2.3 4.9
Mk fauiticss 39.8 45.0 39.8 44.7
W faultiess 0.0 0.0 0.0 0.0
Tinpatern 00 310 ' 00 211
Tinparens 5.6 6.3 | 5.6 0.0
Tinbatehs 11.2 229 11.2 6.5
Tinbatcna 16.8 0.0 16.8 27.3
Tinbarehs 22.4 16.6 ! 22.4 12.9

Notice the different sequencing decisions and the insertion of slack time. In the no-
minal scenario, the robust predictive schedule leads to an executed schedule with sig-
nificantly lower wait times than the deterministic one when assuming a right-shifting
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Figure 5.7: Gantt charts of schedules executed in the faultless (LHS) and nominal
(RHS) scenarios for case study 5.5.2 assuming a right-shifting rescheduling strategy
and using as a guidance the predictive schedule: a)/b) deterministic; ¢)/d) robust.
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Figure 5.8: Gantt charts of schedules executed in the faultless (LHS) and nominal
(RHS) scenarios for case study 5.5.2 assuming a complete rescheduling strategy and
using as a guidance the predictive schedule: a)/b) deterministic; ¢)/d) robust.

rescheduling strategy (0.5 vs. 2.6h), and at the expense of a slight increase in the
makespan (Figure 5.7 (b) and (d)). When considering complete rescheduling, the
robust predictive schedule executed in the nominal scenario turns to perform poorer
than the deterministic one despite the better expected performance (Figure 5.8 (b)
and (d)).

Concerning the rescheduling policies, interesting remarks can be presumed com-
paring the strategies examined. Assuming complete rescheduling, the improvements
on robustness in the predictive schedules appear to be less significant than using
right-shifting rescheduling. This observation seems reasonable; complete reschedu-
ling allows the introduction of sequencing and assignment changes in the predic-
tive schedule once the uncertainty is revealed; with the possibility to modify all the
non-executed batches with hindsight, robustness features become less critical than
if adopting a right-shifting strategy with which some modifications in the schedule
and during execution are restricted. It is worthwhile to note that robustness is not
considered in the rescheduling procedures. Hence, no idle time is introduced within
the new scheduled batches, as can be observed for example in the Gantt charts of the
executed schedules in the nominal scenario (Figure 5.8 (¢) and (d)).

Finally, the distribution of the expected performance for both the deterministic
and the robust predictive schedules is represented in Figure 5.9. It is worthwhile to
notice the higher variability of the deterministic predictive schedule when conside-
ring right-shifting rescheduling; the more robust predictive schedule shows not only
a better expected performance, but also a smaller variability of possible outcomes.
Moreover, and as observed before, the advantages of a robust predictive schedule
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using complete rescheduling become less significant.
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Figure 5.9: Distributions of the expected performance of the deterministic and robust
predictive schedules for case study 5.5.2.

5.5.3 Washing subprocess

The more complex washing subprocess (Appendix B.4) is finally tested in the frame-
work of the proactive approach developed in this chapter to corroborate the results
obtained so far. Four orders are considered for scheduling. After tuning tests of the
stochGA-based search procedure, and since the convergence in this case study proved
faster, the termination criterion is fixed after 80 generations, and a 70 % overlapping
is selected; the other stochGA parameters are the same as those reported for the
previous example in Table 5.4.

The expected makespan and wait time values of the deterministic and robust pre-
dictive schedules determined assuming both right-shifting and complete rescheduling
are reported in Table 5.6, along with the start times of the batches, and the makespan
and wait time values that would arise from their execution in the faultless, nominal,
and a random scenarios (see Tables B.21 and B.20 in Appendix B.4). Gantt charts of
the predictive schedules executed in the faultless scenario and in the scenario selected
randomly are depicted in Figure 5.10.

The same trends remarked in the previous examples can also be observed. The
predictive schedules identified with the proactive approach show a better expected
performance (schedule robustness) over the anticipated scenarios. The robust predic-
tive schedule determined assuming right-shifting rescheduling presents nearly a 12 %
improved expected performance (518.0 vs. 523.9 TU); an improvement can also be
appreciated adopting the complete rescheduling strategy, though it is not so significa-
tive. Again, the results show that the robustness features become less critical when
complete rescheduling is adopted, but significant improvements can be obtained if
reschedule limitations are established. These results remark the benefits of introdu-
cing information about the rescheduling strategy to be adhered to at execution time
in the decision stage itself.

Focusing on a particular scenario, the performance of the deterministic and ro-
bust predictive schedules appears to be the same in the nominal scenario (see Table
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Table 5.6: Results for case study 5.5.3.

Predictive schedule

Right-shifting Complete rescheduling
Deterministic Robust ‘ Deterministic Robust
E[mk + wt] 523.9 518.0 | 498.1 495.2
E[mk] 497.1 500.7 ! 485.7 488.6
E[wt] 26.8 17.3 12.4 6.6
Cmknominal 525.9 525.9 1 525.9 525.9
Wnominal 0.0 0.0 | 0.0 0.0
Mk faultiess 409.1 421.3 409.1 420.0
wtfaultless OO 00 : 00 O 0
mkypnqg 554.3 550.6 | 552.6 552.6
e 26 207 | 838 205
Tinpatent 0.0 162.4 0.0 0.0
Tinpatcho 50.3 219.4 : 50.3 55.9
Tinpatens 156.9 0.0 | 156.9 163.9
Tinpatcha 207.2 58.8 ! 207.2 218.3

5.6), whereas the flexibility of the robust schedules can clearly be observed in the
reduced generation of wait times and improved makespan values of the random in-
stance reported. Notice that the different sequencing decisions and the slack time
introduced between the batches of the robust predictive schedule determined with
the right-shifting policy lead to an executed schedule in this scenario with not only
significantly decreased wait times (20.7 TU instead of 42.6 TU), but also a reduced
makespan (550.6 TU). See also Gantt charts (b) and (d) in Figure 5.10.

Finally, this example further illustrates the effects of using proactively the in-
formation about the uncertain equipment availability, as well as the rescheduling
procedure to be implemented in front of a disruption, underlined above in case study
5.5.1. The comparison between the results obtained using all the available informa-
tion (Table 5.6) and those reported in the previous chapter when considering only
variable processing times (see the third column in Table 4.3) reveals the increased
slack times introduced in the robust predictive schedules. With the anticipation of
possible breakdowns in the reasoning procedure, maintenance periods along with the
production of an additional batch if rejection occurs are considered, thus leading to
more conservative decisions. Note the increased value of the expected makespan and
wait times (518.0 TU, or 495.2 TU if complete rescheduling is assumed, instead of
428.4TU determined with the proactive approach developed in Chapter 4), as well
as the slightly increased start times of the batches. However, notice also that the
performance of the predictive schedules in the faultless scenario (denoted as nominal
in the previous chapter) is almost equivalent; the small differences can be due to the
different modeling systems applied, i.e., rigorous and procedure-based approaches.

Again, these results prove the suitability of the proactive methodology developed
using information about equipment breakdowns and rescheduling procedure to be
implemented, as well as the improved robustness of the predictive schedules thus
determined, and its acceptable performance even in a faultless or nominal scenario.
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Figure 5.10: Gantt charts of executed schedules in the faultless (LHS) and a ran-
domly (RHS) selected scenario (Tables B.21 and B.20) for case study 5.5.3 using as a
guidance the predictive schedule: a)/b) deterministic and right-shifting rescheduling;
c¢)/d) robust assuming right-shifting rescheduling; e)/f) robust adopting complete re-
scheduling.

5.6 Concluding remarks

The proactive system developed in Chapter 4 to address the short-term scheduling
problem with uncertain operation times has been extended to deal simultaneously
with uncertain equipment availability, as well as to consider proactively not only
the stochastic features of the input parameters, but also information related to the
reactive scheduling strategy followed at execution time. Valuable information is then
used in the decision stage, which provides a good insight and leads to a more detailed
and realistic modeling system for the operational analysis.
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All the new features of the problem are captured with the development of a
simulation-based stochastic optimization framework instead of a rigorous equation-
based approach. The formalism for robustness defined in the previous chapter in terms
of makespan as the efficiency of the system and wait times to manage the eventual
effects of the uncertainty is also applied. This allows the comparison of the features of
the predictive schedules determined with the different proactive methods. However,
the robustness metric could be easily extended to account for the cost of rescheduling,
using some measure such as the number of jobs reassigned, or the deviations from the
predictive schedule.

The framework developed has been proved suitable for the identification of robust
and flexible predictive schedules. Actually, more conservative schedules with increased
slack times are identified, thus assuring an improved performance when they are
executed in an uncertain environment. In addition, the robust predictive schedules
not only guarantee improved expected makespan and wait times in the context of the
uncertainty, but their performance when they are executed in a scenario with nominal
operation times and no breakdowns is as well acceptable. On the other hand, it has
been proved once again that a deterministic modeling of the problem does not consider
the proper idle times to improve flexibility and robustness, and tends to overestimate
the performance of the process.

The results obtained suggest that the efficiency of the proactive approach highly
depends on the problem instance, as well as on the rescheduling method adopted.
From the strategies analyzed in this study it has been shown that robustness is essen-
tial when restrictive rescheduling policies are used, but it becomes less critical with
the possibility to modify the predictive schedule at execution time.

The case studies illustrated in this research work are quite simple, and relatively
little variability is associated with the uncertain parameters. Because of this, the
advantages of the procedure-oriented approach in terms of computational require-
ments cannot be fully justified. Moreover, robustness features are not considered
when rescheduling. Therefore, further improvements can be achieved by introducing
the robustness criterion also in the reactive scheduling approach. However, it is im-
portant to notice the consequences of neglecting the known uncertainty, the different
decisions that can be determined based on the strategy assumed in the plant, and the
quick loose of optimality when implementing a deterministic schedule.

This study completes the formalization of the short-term production scheduling
problem with operational uncertainties, covering not only the major disruptions oc-
curring due to the uncertainty at execution time (i.e., process time variations and
machine breakdowns), but also incorporating the rescheduling procedures proactively
in the decision stage of scheduling. In general, the proactive modeling approach de-
veloped appears as a promising framework to provide visibility for future actions and
a more practical model of the real problem. Interesting directions exist for improve-
ments in applications of industrial size and complexity, thus providing the appropriate
support for remaining effective and competitive within a dynamic and uncertain SC
environment.
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0.

Extension to transport scheduling: Coordinated production and
distribution activities

It's astonishing in this work how things don't turn
out at all the way you expect them to.

Agatha Christie

Within the development of proactive modeling systems to deal with uncer-
tainties in the operational level of analysis, the focus of interest is extended
in this chapter from production to distribution scheduling in a multi-site
context. The efficient coordination of production and distribution sys-
tems becomes a challenging problem as companies move towards higher
collaborative and competitive environments. The idea is to support the co-
ordination of short-term production and transport activities in uncertain
conditions to properly manage the inventory profiles and material flows
between sites, thus improving the flexibility and interoperability between
different nodes in a supply chain (SC).

The chapter starts with an introduction to Supply Chain Management
(SCM) from an operational perspective, and the proper definition of the
problem addressed. The modeling and resolution approaches are then de-
scribed relying on a procedure-oriented methodology. Special attention is
centered on the modeling of the transport scheduling problem, and uncer-
tainty is considered in the travel times, thus taking into account eventual
delays and/or exceeded due dates due to unpredictable transport events.
Two case studies are presented and discussed, to finally conclude with
some remarks.

6.1 Introduction

SCM focuses on the combination of strategies and tools to integrate all the entities
of a SC (suppliers, production plants, distribution centers, retailers, markets) and
achieve a common objective.

Most of the work published in the literature addresses the SC problem from an
strategic or tactical point of view to optimally configure and manage the system
according to some economic objective (refer to Shapiro (2000) and Mele (2006) for an
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extensive survey of SCM). Some models considering product demands uncertainty in
these domains are reviewed in Chapter 2.

From an operational perspective, and as discussed in Chapter 3 (Section 3.1),
numerous contributions have been reported so far to analyze short-term production
scheduling and distribution problems, although both problems have been dealt with
primarily decoupled and independent from any SC environment (Chandra and Fisher,
1994; Ertogral et al., 1998). Generally, a production schedule is developed assuming
a constant delivery of goods, thus ignoring the transport requirements between pro-
duction sites in a SC. However, the problem in which a number of vehicles available
in a site of the SC has to serve a set of geographically dispersed locations (either dis-
tribution centers or final markets) can be identified in most of the production sites.
Assignment, routing and timing decisions are involved. In addition, transport tasks
have to cope with a highly dynamic and uncertain environment. Transport failures or
the unexpected unavailability of vehicles are common events that may lead to eventual
delays in downstream sites, and/or to exceeded due dates. Furthermore, disruptions
occurring in the production lines may also imply delays in transport scheduling.

The transport scheduling problem, usually referred to as pickup and delivery pro-
blem (PDP), has been extensively analyzed in the area of Operations Research. Nu-
merous exact and heuristic algorithms have been proposed for its solution, focusing
mainly on individual and geographical aspects to reduce delivery costs (Hillier and
Lieberman, 2001). Various problem types ranging from the basic traveling salesman
problem (TSP) to the multi-vehicle pickup and delivery problem with time windows
(PDPTW) are distinguished as special cases of the general PDP (Savelsbergh and
Sol, 1995). They are summarized in Table 6.1.

Table 6.1: Taxonomy of transport problems according to Savelsbergh and Sol (1995).

Problem type Definition Decisions

Traveling Salesman Problem  Find the shortest route through  routing
(TSP) a set of cities, visiting each city
exactly once and returning to
the start city.
Pickup and Delivery Problem  All vehicles depart from and re-  assignment
(PDP) turn to a central depot to de-  routing
liver transport requests between
a given origin and destination.

Pickup and Delivery Problem  PDP in which transport requests  assignment

with Time Windows additionally specify pickup and  routing
(PDPTW) delivery time windows. timing
Vehicle Routing Problem ~ PDP in which either all the ori-  assignment
(VRP) gins or all the destinations are  routing
located at the depot.
Vehicle Routing Problem ~ VRP in which transport requests ~ assignment
with Time Windows have to be served within a given  routing
(VRPTW) time window. timing
Dial-a-Ride Problem ~ PDP in which the loads to be  assignment
(DARP) transported represent people. routing
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An extensive review of heuristic solution techniques for vehicle routing problems
(VRP) and TSP problems was presented in Marinakis and Migdalas (2002). Other
contributions can be found in Solomon and Desrosiers (1988), and Thangiah et al.
(1996). Recently, Karimi et al. (2005) addressed a tank container management pro-
blem in the chemical process industry (CPI) to minimize logistic costs; a two-stage
event-based order-driven approach with a continuous time representation was pre-
sented, where the container movements were first identified, and a linear programming
(LP) formulation was then proposed to determine the events that minimized the sche-
dule cost. The logistics problem was addressed from a tactical perspective, assuming
an unlimited number of containers of the same type, and without addressing the
scheduling /routing problem of limited resources.

New variants of the transport problem involve dynamic and stochastic routing
problems. Verweij et al. (2003) proposed two-stage stochastic formulations for mod-
eling three classes of routing problems with random travel times or vehicle failures;
routing decisions were considered in the first stage, whereas the second stage involved
a penalty or a rerouting decision as a resource; the overall objective was to minimize
the sum of the first-stage routing cost and the expected recourse cost. The VRP was
also considered by Kenyon and Morton (2003) in the stochastic programming domain
with random travel and service times; vehicle routes were determined with minimum
expected completion time and maximum probability of completing the project by a
prespecified deadline.

The decoupled production and distribution processes rely on finished goods in-
ventory to buffer both operations from each other. However, inventory costs and the
trend to operate in a just-in-time (JIT) manner are putting pressure on firms to reduce
inventories in their distribution chain. Coupling production and transport activities
requires the consideration of additional features. Particularly, complex temporal and
capacity interdependencies arising between production processes in a SC environment,
due to load sizes, travel time allowances, and service time windows, place important
constraints to be taken into account; moreover, the total of a product to be delivered
at any time point cannot exceed the amount available as implied by the production
schedule first determined.

The efficient coordination of production and distribution systems remains an open
area for research, with an increasing interest as companies move towards into higher
collaborative and competitive environments. Only few contributions have been re-
ported so far in this direction, and most of them focus mainly on the integration
of production-distribution systems in the strategic and tactical levels; moreover, the
presence of uncertainty is neglected (existing literature was reviewed in Sarmiento
and Nagi (1999), and Erengiig et al. (1999)).

Chandra and Fisher (1994) presented a computational study to assess the value of
coordinating production and distribution scheduling; the production scheduling pro-
blem was mathematically formulated as a capacitated lot size problem to minimize
the cost of setups and inventory holdings subject to meet total demand; the distrib-
ution problem was modeled as a multiperiod VRP, with a discretization of the time
horizon into uniform time periods for which demands at each retail order had to be
met in that period or earlier; no travel times were considered in that level of analysis.

Ertogral et al. (1998) addressed the integration of production and transport plan-
ning in SCs from the automotive and electronic industries; both problems were for-
mulated as mathematical models to determine the loads to be pickup and delivered,
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and the travel time allowances that minimized the operational cost over both planning
functions; transport planning was modeled as a PDPTW assuming a single depot and
an homogeneous fleet of vehicles; transport times were considered as parameters of
the model.

Recently, Méndez et al. (2006a) presented a rigorous mathematical mixed-integer
linear programming (MILP) formulation based on a continuous-time representation
to coordinate short-term production and transport scheduling.

In general, literature related to the integration of production and transport sche-
duling problems in the operational level of analysis is almost void, not only for SCs
in CPIs, but also in a manufacturing environment. This integration, as well as the
consideration of disturbances arising from the complex dynamic and uncertain SC
environment, deserve further research. A first attempt in this direction is the purpose
of the study presented in this chapter.

6.2 Problem statement

The coordination of production and transport activities is addressed from the perspec-
tive of a production plant of a multi-site system that owns, or leases on a long-term
basis, a fleet of vehicles for its logistic needs. Particularly, the scenario considered
concerns a multipurpose batch plant, which produces a number of products over time
and maintains an inventory of finished goods that have to be distributed to a number
of delivery centers or retail outlets. The work by Méndez et al. (2006a) is adopted as
a reference. A scheme of the underlying problem is illustrated in Figure 6.1.

| =

Figure 6.1: Representation of the coordinated production and transport scheduling
problem.

Transport scheduling is devised as a general scheduling problem (see definition
given in Section 1.2 from a production perspective), where vehicles are the resources
available, equivalent to equipment units (how), and the routes define the specific
allocation of vehicles to distribution activities between sites, similar to the assignment
of units to production stages in a batch (where).

The data is again modeled according to the ANSI/ISA-S88 standard (International
Soc. for Measurement and Control, 1995, 2001). Information is given for production
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scheduling related to the configuration of the plant with the available equipment
units, the production recipes, and the set of production orders to be produced. For
transport scheduling, data is required concerning the set of interconnected locations
with a distances matrix, the fleet of available vehicles, and the set of transport orders
to be fulfilled.

Note that a distinction is made between transport and production orders, which
is especially useful when considering a decentralized SC. A transport order is defined
for each amount of material to be delivered in a particular site at a requested due
date. For production scheduling, production orders are considered from two different
points of view. First, the efficiency of the system is defined irrespective of due dates
for specific orders; this perspective reproduces a strategy of a manufacturing plant
looking for its own benefits, neglecting the efficiency of the overall system. Secondly,
a maximum customer satisfaction is pursued, thus due dates for specific orders are
taken into account in production scheduling; this situation is typical in SC systems
with a centralized management policy.

The problem consists of identifying detailed production (number of batches to
be produced, assignment of units to production stages, sequencing and timing) and
transport schedules (loads, assignment of vehicles to transport orders, routing and
timing), so as to optimize some established objective function. Different criteria, from
time considerations (delivery times to meet the due dates, flow time) to economical
measures (cost of production setups, transport and inventory), can be considered for
the evaluation of both production and transport schedules.

6.3 Modeling approach

Different methodologies, either equation-oriented or heuristic-based rules, could be
implemented to develop a model and solution procedure for the underlying problem.
An MILP mathematical representation was presented in Méndez et al. (2006a) . The
formulation was based on a continuous-time representation, where the assignment and
sequencing decision variables were managed independently. Even though the examples
presented were based on simple SC configurations, they led to large-scale optimization
problems, for which the identification of optimal production and transport schedules
was not possible with reasonable computational effort.

The aptitude of heuristic-based procedures is assessed in this research. An over-
all framework has been designed adopting an object-oriented representation and in a
modular way, thus allowing the implementation of alternative heuristic or mathemat-
ical algorithms, as well as additional functionalities to solve or further optimize the
problem as needed. The framework has been implemented in C++ using the Borland
C+-+Builder 6.0 programming environment.

The production and transport scheduling models are first described individually.
Next, the coordination of both activities is addressed.

6.3.1 Production scheduling

Modeling architecture

The integrated support system for planning and scheduling of batch chemical plants
developed by Cantén (2003), and used in Chapter 5 as the scheduling module in
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the simulation-based stochastic optimization framework (Section 5.3.3), is also used
in this study for production scheduling. The data model allows the definition of
different production recipes for the same material, as well as alternate units for each
stage. For a detailed description of the object-oriented models used to characterize
all the information required refer to Cantén (2003).

Different objective functions can be defined for optimization purposes to assess a
short-term production predictive schedule. Common criteria to be considered involve
the makespan, due date-based measures such as earliness and tardiness, or economical
functions considering revenues and production costs. Robustness metrics defined and
assessed in the previous research studies can be also applied. The results obtained
so far highlight their advantages for the determination of more robust predictive
schedules in uncertain operation environments.

Table 6.2: Priority rules implemented in the production scheduling module for process
selection, assignment and sequencing decisions.

Process selection ~ AUP: Already Used Process

FP: First Process

HPP: Highest Priority Process
Assignment ~ AUA: Already Used Assignment

FU: First Unit

HPU: Highest Priority Unit

LUU: Less Used Unit

MAU: Most Available Unit

SPTU: Shortest Processing Time Unit
Sequencing ~~ EDD: Earliest Due Date

HSL: Highest Storage Level

SCT: Shortest Cycle Time

SPT: Shortest Processing Time

LCT: Longest Cycle Time

LPT: Longest Processing Time

LSL: Lowest Storage Level

Solution methodology

For production scheduling, a rule-based heuristic algorithm available in the scheduling
system is used to establish the number of batches to be performed, the sequence, and
the assignment of production stages to specific units.

For recipe selection and task to unit assignments, as well as for sequencing de-
cisions, common dispatching rules used in commercial packages are applied in com-
bination with the Event Operation Network (EON) temporization model (the main
priority rules implemented in the module are reported in Table 6.2). Based on the
characteristics of the problem and the objective function previously defined, different
combinations of these rules can be selected.

The algorithm proceeds as shown in Figure 6.2. Given the production orders to
be met, a material balance is first performed to draw a list of batches to be next
sequenced and assigned to specific units. Assignment and sequencing decisions are
made simultaneously based on the corresponding rules selected. The detailed timing
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6.3. Modeling approach

of the operations is then calculated by means of the EON model. This procedure
allows the identification of an initial feasible schedule, which can be further improved
according to some objective function. Meta-heuristic algorithms such as simulated
annealing (SA) and genetic algorithms (GA) have been implemented for this purpose
within the module.

‘ Make material balance ‘

|

Select batch to be
processed

}

‘ Select assignment ‘

}

‘ Add new batch ‘

|

‘ Update material balance ‘

YES

Left batch to be
produced?

NO
v
- Production schedule
‘ OF evaluation ’—> optimization
End < ‘

Figure 6.2: Rule-based heuristic algorithm for production scheduling.

6.3.2 Transport scheduling

Modeling architecture

The transport scheduling model is developed based also on a hierarchical organiza-
tion of the information. Emulating the ANSI/ISA S88 standard (International Soc.
for Measurement and Control, 1995, 2001), the entities of transport route, transport
stage, transport operation, transport order, and vehicle are used referred to trans-
port scheduling similarly to the objects of batch, unit procedure, batch operation,
production order and unit used, respectively, in the production scheduling paradigm.
Different classes have been defined to identify these categories. A class diagram
of the transport scheduling model is illustrated in Figure 6.3 using a UML (Unified
Modeling Language) representation. The main entities are following described.
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TransportRoute | TransportStage TransportOperation
start time 1 * | start time T * start time
end time end time * end time
load * ) operation time
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* start location
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Vehicle 1 * [ AssocTransportOrder
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speed
variable cost *
fixed cost 1 1 1
materials T —ord
ransportOrder Location
*
material .
quantity capaC|_ty
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due date stop time
\

*

*\_ | Distance

distance

Figure 6.3: Class diagram of the transport scheduling model.

Model entities

TransportRoute. A transport route (¢r) represents the distribution of a set of trans-

port orders among different and dispersed locations. It consists of a sequence
of transport stages that an assigned wehicle must perform when it leaves the
plant. Each transport route must start and finish at the plant. Therefore, a
route involves at least two transport stages: from the plant to a delivery center,
and the return stage to the plant.

TransportStage. A transport stage (¢s) identifies a distribution task between two

locations, and consists of a set of transport operations to characterize the specific
steps involved (charge of materials, transport, discharge, etc.), as well as a set
of associated transport orders to be delivered.

TransportOperation. A transport operation (fo) provides the detailed definition
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of the time required for each transport step. Particularly, the travel from the
start to the end location, the discharge operation in the delivery center, and a
stop time are distinguished as transport operations in the modeling framework
developed.

For each transport stage, the operation time for the travel operation (Top{ evel)
is computed based on the speed of the vehicle undertaking the corresponding
route (s,), and the distance (dist;s) to be covered (eq. 6.1). The operation
time for the discharge operation depends on the amount of material delivered
in the stage (Q%); a transport factor qufl is used as unloading rate (eq. 6.2).
The operation time for the stop operation is calculated with a fixed stop time
specified for each site, which is considered a minimum stop time; some slack
could be included to account for early deliveries or unexpected requirements.
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1
Topiravel = - - distys (6.1)

v

Top;lsischarge — lt}z"l . Q;is (62)

TransportOrder. A transport order (¢0) defines an amount of material to be deliv-
ered in a particular location at an specific due date.

AssocTransportOrder A transport order may need more than one transport stage
to be fulfilled depending on the capacity of the vehicles available. Associated
transport orders (atf) are defined to establish the percentage of a transport
order associated to a stage.

Vehicle. A fleet of vehicles (v) is assumed to be available in the plant for its distri-
bution needs. Each vehicle can operate on more than one transport route, and
is characterized in terms of capacity (C,), mean speed (s,), variable and fixed

costs (c%,cf), and materials that can be transported.

Location. A location () describes a delivery center or retail outlet where products
have to be distributed. Each location is characterized by a capacity (C}), a set
of related materials, and a fixed stop time.

Performance measures

Because of the complexity and dynamics of a SC system, it is difficult, if not impos-
sible, to define a general optimality criterion for transport scheduling that efficiently
takes into account all the features of the problem. Multiple and even conflicting ob-
jectives, based either on time or economical attributes, can be considered depending
on the preferences of each organization. In this thesis, the flow time (F'), the due
date-based measures of summed lateness (L), summed tardiness (7T'), and summed
earliness (E) are examined, along with transport costs (c!"), inventory costs (c!),
and the number of routes required (Routes). These criteria are defined as stated in
equations 6.3 - 6.8.

Notice that the lateness criterion favors JIT deliveries, and seeks a transport sche-
dule with minimum tardiness, while keeping order earliness at reasonable values. From
a production scheduling point of view, by completing the production orders as closed
to their due dates as possible, the system implicitly minimizes inventory costs and
penalties for missed demands at the same time. However, from a transport scheduling
perspective, the lateness criterion favors JIT transport schedules without accounting
for the production inventory remaining in the plant waiting for distribution.

On the other hand, the transport cost associated with a transport schedule, and
expressed in equation 6.7, is defined as the contribution of a fixed charge (¢f) and a
variable cost (c!*) depending on the distance covered. Note that this cost only depends
on transport decisions, whereas the due date-based measures are also subject to the
release date of the vehicles implied by the production schedule. The inventory cost,
defined in equation 6.8, accounts for the storage of all the materials in the plant and
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throughout the time horizon; this criterion couples both production and transport
scheduling.

F = (Tfny — Tiny,) (6.3)

tr

L=>"3"Y" |Tfnw — ddayl (6.4)

tr ts€tr atfcts

T=> > max(Tfn — ddaw,0) (6.5)

tr ts€tr atOcts

E=> YY" max(ddag — Tfns,0) (6.6)

tr ts€tratfcts

T = Zc£ + Z (cy - distys) (6.7)
tr

tsetr

=Yl Q! (6.3

In order to assess multiple objectives simultaneously, the measures of flow time
(F), number of routes (Routes), summed earliness (F), and summed tardiness (T')
are translated into economical terms and aggregated in a single multiple cost function
(c*™) as stated in equation 6.9. Transport and inventory costs can be also appended
in the metric, but have been excluded and evaluated as mono-objectives to be able to
compare the procedure-oriented methodology with the rigorous mathematical model
proposed in Méndez et al. (2006a).

csum:p1-F+p2~ROUt€S+P3'E+p4'T (69)

Solution methodology

A rule-based heuristic algorithm is developed for transport scheduling to define
the transport routes and associated transport stages, the assignment of vehicles, and
the transport time intervals. Rules are used to establish the criteria to prioritize the
requested transport orders, the assignment of vehicles, to charge a vehicle with free
capacity, and to temporize the routes. The rules implemented are detailed in Table
6.3, and the heuristic algorithm is represented in Figure 6.4.

Given the set of transport orders to be fulfilled, and based on the orders selection
rule, the transport scheduling algorithm starts with the definition of a prioritized list
of associated transport orders, and the assignment of a vehicle to each of them based
on the assignment rule. This selection directs the scheduling of transport routes. The
algorithm proceeds with an iterative procedure to match the associated transport
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Table 6.3: Priority rules implemented in transport scheduling for transport orders
selection, vehicles assignment, vehicles loading, and routes temporization.

Orders selection EDD: Earliest Due Date
HD:  Highest Demand

Vehicles assignment ~ BFV: Best Fit Vehicle
BUV: Best Used Vehicle
FFV: First Fit Vehicle
LUV: Less Used Vehicle

Vehicles loading DD: Due Dates
ML: Maximum Load
MRT: Minimum Release Time

Temporization BD:  Backward from due date
FD: Forward from earliest pick up

orders within routes. At each step, a transport route is defined to deliver the first
associated transport order in the list, along with other remaining orders assigned to
the same vehicle, provided that the capacity of the vehicle is not exceeded and the
loading criterion selected is met. According to the due dates rule (DD), associated
transport orders remaining in the list and assigned to the same vehicle will also be
selected for transportation in that route while free capacity is available, and the
release time of the vehicle does not exceed the due date of the first order selected.
Instead, assuming the minimum release time rule (MRT) as a loading criterion, an
associated transport order is also assigned to the route if free capacity is available and
it does not imply a delay in the release time of the vehicle due to the unavailability
of material in the storage. If the maximum load (ML) rule is adopted, a full load of
the vehicle is pursued, irrespective of delays in the release time or exceeded due dates
of the tranpsort orders involved.

The end sites of the associated transport orders appended to a route establish the
number of transport stages associated, that is a transport stage is defined for each
set of associated transport orders with the same end location; the direction is given
by the priority of the orders. Once the route and its associated transport stages are
defined, the detailed temporization of the transport operations is performed based on
the temporization rule, the availability of all the materials to be released as implied
by the production schedule, as well as the availability of the assigned vehicle.

Travel times uncertainty

The time-based measures defined before are based on estimated values of the
speed of the vehicles and therefore, of the travel times. To account for the variability
associated with transport times, mainly due to usual unpredictable events such as
deviations and traffic jams, uncertainty is introduced in the speed of the vehicles,
and it is characterized by a probability distribution function. The scenario-based
representation of the uncertainty (refer to Chapter 2, Section 2.2.1) is then adopted
by sampling over the probability space defined by the speed parameter.

Once the assignment and routing decisions are established following the solution
procedure described above, the execution of the inferred transport schedule is sim-
ulated in each of the scenarios through a series of temporization runs. Different
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Figure 6.4: Rule-based heuristic algorithm for transport scheduling.
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recourse actions, from a simple right-shifting to a complete rerouting of the pending
transport stages, could be considered at execution time once disruptions or devia-
tions occur due to the uncertainty. In this study, a retiming with right-shifting of the
altered transport stages is assumed in the simulation step. The selected criterion is
then computed for each scenario, to finally evaluate an expectation of the objective
function. This evaluation procedure is equivalent to the inner sampling loop of the
modeling framework developed in Chapter 5 (Section 5.3); the number of scenarios
to be sampled (nk) is also assessed at runtime following the procedure described for
the stochastic modeler module in Section 5.3.2.

New metrics are defined related to the expected flow time E[F], the expected
summed tardiness E[T], and a general expected deviation E[Dev] based on the sum of
delays from the predicted delivery times (Tfn}™) (egs. 6.10 - 6.12, respectively). The
predicted delivery times are obtained from the resolution of the transport scheduling
problem using the mean value for the speed parameter, that is, nominal travel times.

Fl=> wi > (Tfnirk — Ting.x) (6.10)
k tr

Zwkz Z Z max(Tfns k — ddge,0) (6.11)

tr tsctr athets

E[Dev] = Zwk Z Z max(Tfngs kx — Tfni™, 0) (6.12)

tr tsetr

6.3.3 Coordinating production & transport scheduling

Two different procedure-oriented methodologies are examined for coordinating pro-
duction and transport activities: a sequential procedure and an integrated approach.

Sequential coordination

As a procedure commonly applied in the industry to coordinate the scheduling pro-
blems, a sequential approach is implemented using a two-stage strategy. A scheme of
this approach is depicted in Figure 6.5.

The production scheduling problem is first solved as exposed in Section 6.3.1 to
determine the production activities that fulfill a set of production orders. Then, the
transport schedule is established according to the strategy described in Section 6.3.2.
Temporal and capacity conditions implied by the production schedule constrain the
start time of the transport routes, that is, the vehicle assigned to a route cannot be
released until the full amount of transport orders to be delivered in its associated
transport stages is available in the plant.

An exhaustive enumeration procedure is also implemented for the evaluation
of all possible combination of transport rules in terms of the alternative criteria. This
procedure consists of two recursive loops, similarly to the simulation-based stochastic
optimization system developed in Chapter 5. There is an outer loop that explores the
different combination of rules; an inner loop is embedded to determine the transport
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Figure 6.5: Sequential coordination for production and transport scheduling.

schedule for the combination of transport rules given by the outer loop, and to eval-
uate it in terms of the different criteria. For stochastic measures, a set of travel time
scenarios is anticipated by sampling over the probability distribution describing the
speed of the vehicles, and the performance of the transport schedule is simulated in
each scenario to finally compute the probabilistic metric. For the evaluation of deter-
ministic measures, only the scenario with nominal values for the speed parameters is
considered.

Integrated coordination

With a sequential coordination of production and transport schedules, different crite-
ria can be established for each problem, transport times are not considered in produc-
tion scheduling, and the inventory in the plant is usually neglected. This approach
may lead to critical inventory costs, and may be particularly unsatisfactory when due
date-based measures are considered in transport scheduling since JIT deliveries are
favored, thus neglecting the subsequent generation of stock in the plant.

By integrating production and transport scheduling decisions, the flexibility of the
plants is exploited to improve the overall management of resources and material flows
through multiple sites. Numerous strategies could be considered for this purpose. The
definition of a general procedure is out of the scope of this research, but an attempt
is made to imply the value of integrated decisions using the procedure represented in
Figure 6.6.

The procedure is based on updating the production orders and due dates for pro-
duction scheduling in accordance with temporal requirements implied by the transport
schedule. Particularly, the algorithm developed starts with the resolution of the pro-
duction and transport scheduling problems using the sequential procedure exposed
above to derive an initial feasible coordinated schedule. The production schedule thus
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Figure 6.6: Integrated coordination for production and transport scheduling.
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determined is allowed to change by redefining the production orders and related due
dates according to the following steps:

STEP 1. A production order is defined for each of the associated transport orders
established in the transport schedule.

STEP 2. The due date associated to each new production order is determined as
the start time of the transport route that delivers the corresponding associated
transport order, adjusted with the maximum tardiness originated in that route
(or minimum earliness if all the orders are delivered in time).

The maximum tardiness (7}*") of a transport route is evaluated as the major
difference between the delivery time and the due date among all the transport
orders distributed (eq. 6.13). Similarly, the minimum earliness of a route is
calculated as stated in equation 6.14.

T =  max  [max(Tfnis — dda,0)] (6.13)

atO€ts,tsetr

Emin min  [maz(ddatg — Tfnes, 0)] (6.14)

atOets,tsctr

With the new production decisions, the production and transport scheduling pro-
blems are solved again. The strategy proceeds iteratively while improvements are
obtained. Because of the features of the rule-based algorithm developed in this re-
search work, the priority list of associated transport orders and the assignment of
vehicles established in the first transport schedule remain fixed, thus reducing the
possibilities for improvement. Therefore, the algorithm has been implemented with
a single iteration. Nevertheless, the transport times, initially unknown in production
scheduling, are now taken into account.
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6.4 Case studies

Two different case studies are next presented to prove the flexibility and applicability
of the framework developed to support and coordinate production and transport
scheduling decisions.

The first case study has been adapted from the example proposed in Dondo et al.
(2003), and involves the distribution of a single product in 10 different locations. A
fleet of 2 vehicles is available in the plant. A description and problem data for this
case study are reported in Appendix B.5. The production layout for this example is
very simple, but the aim is to illustrate the modeling approach developed for trans-
port scheduling and the coordination of production and transport activities from the
operational perspective, rather than to focus on the well-known production scheduling
problem.

The second case study is based on the Procel production facility (Appendix B.3),
and involves two different products that have to be distributed in eight retail out-
lets geographically spread around 200 km from the production site. The example is
detailed in Appendix B.6. This example illustrates the concept of associated trans-
port order (notice that transport order 5, 800 WU, is higher than the capacity of the
available vehicles, 500 and 700 WU, hence two associated transport orders need to be
defined).

For both case studies, the sequential coordination of production and transport
scheduling has been solved first. The production schedule has been determined to
fulfill the required production orders. Then, the exhaustive enumeration procedure
has been used to identify the transport schedule for each combination of transport
rules and to evaluate it in terms of the alternative criteria defined.

The first example considers the distribution of a single product. Therefore, the
application of the integrated approach to exploit the flexibility of the plant is irrele-
vant. For the second case study, and in order to improve the management of inventory
and the coordination of the activities, the integrated approach is assessed with three
criteria: summed lateness, flow time, and multiple cost. Weight values for the F,
Routes, E and T criteria in the multiple cost function (p1, p2, 3, p4 in equation 6.9)
have been fixed at 50, 100, 5 and 20, respectively.

Concerning the computational issues, the heuristic-based modeling approach de-
veloped in this research work has been compared with the rigorous formulation pro-
posed in Méndez et al. (2006a). The results obtained are discussed in the next sections.

6.5 Results and discussion

6.5.1 Production & transport: single product facility

For the single product case study, selected results obtained from the exhaustive enu-
meration procedure (see Section 6.3.3), out of the 48 possible combination of rules,
are detailed in Table 6.4. The Gantt charts of coordinated schedules identified with
the minimum lateness value (schedule 3 in Table 6.4, 4.7h) and with the minimum
multiple cost (schedule 5 in Table 6.4, 592.53€) are depicted in Figures 6.7 and 6.8,
respectively. The latter presents also a minimum flow time (5.3h).

These results illustrate the wide range of decisions that can be made based on
the criterion selected, and valuable insight on the performance of the system can be
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drawn. On the one hand, it is important to note the effects of the temporization rule.
As expected, the Backward from due date rule (BD) favors earliness at the expense
of high inventory costs, whereas the Forward from earliest pick up rule (FD) leads to
reduced storage costs due to the sooner release of products and the subsequent lower
inventory maintained in the plant throughout the time horizon (this is observed, for
example, in schedules 4 and 6 in Table 6.4). On the other hand, the Highest Demand
policy (HD) for prioritizing the transport orders guarantees that the major orders
are delivered first, but it ignores completely the due dates, thus leading to increased
lateness values (see, for example, schedules 5 and 0 in Table 6.4).

Different schedule performances are also observed concerning the loading criterion
of the vehicles. The Mazimum Load rule (ML) associates orders within the same
vehicle provided that enough capacity is available, even if the release date is delayed.
This way, the number of routes required to fulfill the transport orders is reduced (see
schedules 2, 5 and 10 in Table 6.4).

Regarding the assignment of vehicles, since the vehicles available in this exam-
ple have the same attributes, First Fit Vehicle (FFV) and Best Fit Vehicle (BFV)
rules tend to assign always the first vehicle of the list to all the transport orders.
Consequently, tighter transport schedules are determined, with less flexibility and an
underutilization of the resources as can be observed from the high expected deviation
and lateness values (note, for example, schedules 1 and 2 in Table 6.4).

Concerning the uncertainty, it is interesting to notice the different ability of the
schedules to deal with variable travel times, and the increased expected performance
measures when compared with criteria based on nominal parameter values. In addi-
tion, observe for example schedules 5 and 6 from Table 6.4. Schedule 5 would be
preferably selected in front of schedule 6 due to its better performance in terms of
lateness, tardiness or earliness; however, its expected deviation and tardiness values
are significantly higher (about 40% and 30%, respectively) than those for schedule 6.
Therefore, the implementation of schedule 6 may not result in the optimal strategy,
but it appears to be more flexible and perform better in an uncertain environment.

Reactor
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Figure 6.7: Gantt chart of the coordinated schedule with minimum lateness for case
study 6.5.1 (4.71h).
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Figure 6.8: Gantt chart of the coordinated schedule with minimum multiple cost
(592.53€) and minimum flow time (5.3 h) for case study 6.5.1.

In general, however, when comparing the solutions from different combinations
of rules, it is observed that a transport schedule with a good performance in the
nominal scenario tends to perform also good when it is evaluated in terms of an
expected performance. It is important to note that the modeling approach developed
proceeds over a set of different rules using always the same input information, and the
effects of the uncertainty are not managed proactively in the decision stage, but just
evaluated. Therefore, it cannot be considered a proactive procedure to determine
robust solutions. However, the analysis of simple measures in the context of the
uncertainty, such as the expected deviation, can be used as valuable indicators of the
most flexible schedules.

Generally, the results obtained provide powerful insight on the implications of
the uncertainty and suggest that the deterministic criteria tend to overestimate the
performance of the schedules, whereas the possibilities for making improved decisions
when considering the uncertainty are very promising.

Rigorous vs. procedure-oriented modeling systems

With the use of an heuristic-based procedure to make decisions, there is no means
to know how far they are from the optimal solution. To get a general idea of the
effectiveness of the approach developed, this case study has also been solved using the
mathematical formulation presented in Méndez et al. (2006a). The results obtained
with both approaches for different objective functions are compared in Table 6.5.

The applicability of rigorous methods limited to quite small cases due to the
inherent combinatorial nature of scheduling problems can be observed with the simple
example examined. Note in Table 6.5 that the optimal solutions can not be found
within reasonable computational time. For example, a multiple cost of 543.61€ is
obtained after 10000 s CPU time with a relative gap of 14 %, whereas an approximated
solution of 592.53€ is identified within 5s using the rule-based heuristic algorithm.

Notice that the procedure-oriented approach required only 5 seconds to explore
the overall combination of rules and identify the transport schedule based on the
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Table 6.5: Comparison between heuristic and mathematical solution algorithms for
case study 6.5.1.

MILP* | Heuristic

criterion % rel. gap CPU [s] ! criterion CPU [s]
F 4.6 0.32 1000 , 5.3 5
L 1.3 0.46 1000 ' 4.7 5
v 616.25 0.38 1000 | 592.53 5
v 54361 0.14 10000 ' 592.53 5

*MILP formulation presented in Méndez et al. (2006a), implemented in
GAMS 20.5, and solved using the MILP solver of CPLEX(7.5) on a AMD
Athlon 2000 computer.

criterion selected. The algorithm developed proves to be suitable on the generation
of coordinated schedules with acceptable performance, particularly when considering
flow time and multiple cost criteria. Additional heuristics may be further developed
to improve the results when other objectives are pursued.

Concerning the uncertainty, the incorporation of variability in the travel times
implies the reformulation of the MILP model into a stochastic programming problem
(see Section 2.3), with the consequent increase in computational effort. An additional
complexity is added in the model, which would hardly end up with a feasible solution;
therefore, the extension of the rigorous formulation to the stochastic domain has not
been contemplated.

6.5.2 Production & transport: Procel

The second case study considered for production and transport scheduling concerns
the Procel production facility (Appendices B.3 and B.6). The production scheduling
problem is first addressed without taking into account the due dates of specific orders;
the Longest Processing Time rule (LPT) is used for sequencing. With the subsequent
application of the exhaustive enumeration procedure, alternative transport schedules
are obtained. The trends observed in the previous example based on the combination
of rules, as well as the analysis of uncertainty, are corroborated.

Table 6.6 summarizes the combination of rules and the values of the alternative
criteria for transport schedules identified applying the sequential coordination and
the integrated approaches (see Section 6.3.3) with minimum multiple cost (s1, i11-
i41), minimum lateness (s2, i12-i42), minimum flow time (s3, i13-i43) and minimum
inventory cost (s4). For example, for the integration considering the multiple cost
criterion, the sequential approach is first solved, and the transport schedule with the
best multiple cost (s1) is identified using the exhaustive enumeration procedure; this
schedule is next used to update the production orders and derive a new production
schedule that finally leads to the transport schedules i1 - i1 depending on the
desired criterion; the same is performed with the other objective functions.

Figure 6.9 depicts Gantt charts of coordinated schedules identified with the best
multiple cost, lateness, and flow time using the sequential and integrated method-
ologies. The transport routes of the transport schedule obtained with the minimum
multiple cost (schedule 771 in Table 6.6) are detailed in Table 6.7. Figure 6.10 depicts
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Figure 6.9: Gantt charts of sequentially (left-hand side, LHS) and integrated (right-
hand side, RHS) coordinated schedules for case study 6.5.2 according to selected
transport schedules in Table 6.6: a)/b) minimum multiple cost; ¢)/d) minimum late-
ness; e)/f) minimum flow time.

the corresponding transport routing.

The results obtained illustrate that the incorporation of information from the
transport schedule in production scheduling allows to exploit the flexibility of the
plant, thus leading not only to a better management of material flows between the
plant and the distribution centers, but also to improved performances from different
criteria point of view. Notice the reduced inventory costs of the schedules derived
from the integrated approach as an indication of the improved inventory handling.
For example, considering the lateness criterion, the best transport schedule obtained
from the integrated approach (schedule ¢22 in Table 6.6) shows lateness and inventory
cost values reduced about 26 % and 18 %, respectively, compared with the schedule
obtained in using the sequential procedure (schedule s2). The effects of integration
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6.5. Results and discussion

Table 6.7: Transport routes for transport schedule 77 in Table 6.6.

Route Vehicle Start End Order Site Arrival Departure F T

R1 V1 579 71.2 300 GIR 60.0 60.8 0.0 0.0
200 LLE 65.9 66.6 1.1 0.0
R2 V2 65.0 80.0 400 TAR 67.0 68.2 0.0 0.0
300 PER 739 75.2 34.2 0.0

R3 Vi1 106.6 126.2 400 VIC  108.0 108.9 0.0 0.0

100 VAL 1171 118.2 21.9 0.0
R4 V2 132.0 148.7 700 VAL 139.0 140.7 0.0 0.0
R5 Vi1 180.8 196.0 250 ZAR 187.0 188.8 0.0 0.0
R6 V2 183.0 193.3 350 AND 187.0 188.4 0.0 0.0

are also noticeable when transport orders are prioritized based on the highest amounts
rather than the due dates (see schedule s3 from Table 6.6); although a schedule with
the same flowtime value (78.3h) and a slightly higher lateness value is identified after
integration (schedule i33), note the improved inventory management and the reduced
tardiness measure (nearly 34 % with respect to schedule s&). This may be particularly
important when customers satisfaction is a critical point. Again, these results show
the wide range of decisions that can be drawn depending on the objective function
considered.

In the context of the uncertainty, explicit effects of the integration on the robust-
ness and flexibility features of the schedules cannot be perceived in this case study.
In this sense, it is important to mention that these properties highly depend on the
characteristics and the tightness of the schedules. In the integration algorithm im-
plemented, the production sequence is rearranged with the implicit incorporation of

—7 e

Figure 6.10: Transport routing representation for transport schedule 711 in Table 6.6.
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6. Extension to transport scheduling: Coordinated production and distribution activities

transport times information, whereas the assignment of vehicles to the associated
transport orders remains fixed. Therefore, the routes identified assuming the same
set of transport rules are likewise organized.

Rigorous vs. procedure-oriented modeling systems

This example has also been solved rigorously using the MILP formulation pre-
sented in Méndez et al. (2006a). Table 6.8 compares the results obtained with both
approaches using the multiple cost criterion as objective function. As it can be ob-
served, a poor solution is obtained with the pure MILP model after 10h CPU time.
Instead, the heuristic-based approach proves suitable for the generation of coordi-
nated schedules with acceptable performance. However, using an heuristic algorithm
as itself there is no means to know how far the solution is from the optimum one. The
development of hybrid techniques coupling the inherent capabilities of MILP models
and heuristics could result highly advantageous to efficiently address the simultaneous
optimization of production and transport scheduling.

Table 6.8: Comparison between heuristic and rigorous solution algorithms for case
study 6.5.2.

MILP* Heuristic T

csum 8474.9 5390.5
FE 16.1 57.1
T 191.5 0.0
F 79.3 90.1
Routes 6 6

CPU[s] 36000  240.0
% rel. gap  0.64 -

*MILP formulation presented in Méndez et al. (2006a), im-
plemented in GAMS 20.5, and solved using the MILP solver of
CPLEX(7.5) on a AMD Athlon 2000 computer.

fRules: EDD - BAV - MRT - BD

Due date-based production scheduling

Up to this point, specific due dates of production orders have been neglected in
production scheduling, as if all the requests for the same product had been aggregated
in a single production order. This perception of the problem is commonly applied in
manufacturing plants to derive a production schedule, neglecting the efficiency of
the overall SC. The results obtained exemplify that significant improvements can be
obtained from the integration of production and transport scheduling, at the expense
of slightly suboptimal schedules.

The consideration of specific due dates for production orders when determining
the initial production schedule has also been tested using the Farliest Due Date
rule (EDD) for sequencing. Improvements are also achieved using the integration
procedure, as can be observed from the results summarized in Table 6.9.

Note that considering the due dates already in the first production scheduling
problem, it is difficult to identify better schedules from the multiple cost, lateness,
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Figure 6.11: Gantt charts of sequentially (LHS) and integrated (RHS) coordinated
schedules for case study 6.5.2 according to selected transport schedules in Table 6.9:
a)/b) minimum multiple cost and lateness; ¢)/d) minimum flow time.

and flow time points of view. However, an improved management of the transport
activities and the storage is attained, thus reducing significantly the inventory costs.
Gantt charts of some coordinated schedules are depicted in Figure 6.11.

6.6 Concluding remarks

A more general perspective of the operational level of analysis is achieved in this
chapter by extending the scope of research from production to distribution scheduling
in a multi-site environment.

The coordination of production and transport activities constitutes a challenging
problem, difficult, if not impossible, to generalize in terms of a single objective. A SC
environment is highly dynamic and uncertain, and multiple priorities can be estab-
lished when addressing the problem. In view of this situation, a procedure-oriented
modeling and resolution framework has been developed, which allows the evaluation
of schedules in terms of alternative criteria, and robustness and flexibility features are
also addressed considering the uncertainty in the speed of the vehicles as a source of
common unpredictable delays eventually arising in transport systems.

A methodology to sequentially coordinate production and distribution tasks has
been implemented, coupled with an exhaustive procedure to evaluate different com-
binations of transport rules and to identify the transport schedules based on the
criterion selected. This technique provides useful insight on the performance of the

118



6.6. Concluding remarks

system. An integrated algorithm has also been developed to exploit the flexibility of
the plants by updating the production scheduling problem with information about
the associated transport orders and times derived from the transport schedule.

The strategy has been successfully applied to two different case studies showing its
suitability to coordinate production and transport activities for the operational man-
agement of each entity in a multi-site system. The results obtained illustrate different
trends and a wide range of decisions that can be made based on the preferences of
the decision maker, as well as the benefits of an integration methodology especially
in terms of inventory handling.

The framework can be easily embedded in a hierarchical modeling system for the
simultaneous optimization of the SC at different levels (Figure 6.12). In a higher
level, and as a result of an aggregated planning problem, tactical decisions are made
(global production, warehouse and transport needs); these decisions are then used as
constraints in the corresponding local sites (inferior level) when solving their detailed
production and transport scheduling.

Aggregated scheduling '

material flows
due dates

¢
v .

capacity
factors

Detailed scheduling

Figure 6.12: Hierarchical modeling system.

Concerning the uncertainty, the effects of variable travel times are merely evalu-
ated, but it is again evidenced that deterministic approaches tend to overvalue the
performance of the system, i.e., in terms of time efficiencies, the predicted times are
lower than those actually realized during the implementation of the schedules, with
the consequent increase of disturbances (see the analysis in Section 3.3.2, Table 3.1).

The recognition of the uncertainty and its incorporation in decision making be-
comes a step forward on the development of practical decision-support systems. The
proactive approach presented in the previous chapter for short-term production sche-
duling could easily be incorporated in the production scheduling module of the frame-
work developed in this chapter to deal also with uncertain processing times and
equipment availability. An interesting proactive modeling approach could be gener-
ated, where not only variable travel times would be taken into account in production
scheduling, but also the effect that uncertainties in the production process may even-
tually cause in transport scheduling. However, these operational uncertainties have
been excluded from the modeling approach developed in this chapter to focus on the
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coordination of production and distribution activities, as well as on the transport
scheduling problem from an operational perspective, avoiding additional modeling
and computational complexities. A contribution is made in this direction, though
further research is required to deal with this operational problem as a whole.
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7.

Robust scheduling focused on tactical uncertainties:
Risk management with uncertain product demands

7.1

| wanted a perfect ending. Now I've learned, the
hard way, that some poems don’t rhyme, and
some stories don’'t have a clear beginning, mid-
dle, and end. Life is about not knowing, having
to change, taking the moment and making the
best of it without knowing what's going to hap-

pen next.

Gilda Radner (1946 - 1989)

To complete the development of proactive modeling systems for scheduling
under uncertainty, the study in this chapter aims at providing insight on
the effect of product demands as a tactical source of uncertainty in the low
operational level of analysis. With this purpose, stochastic and robust op-
timization approaches are developed to address the short-term scheduling
problem of batch plants with uncertain product demands. After an intro-
duction and definition of the problem, a two-stage stochastic programming
model is presented, and then extended to incorporate the availability of
option contracts. Next, management of risk is explicitly addressed by
appending a control measure in the objective function. Three alternative
metrics are assessed and compared for this purpose. The suitability of the
proactive approach is analyzed in two case studies, to finalize with some
concluding remarks.

Introduction

The problem of product demands uncertainty has been largely considered in strategic
and tactical levels of analysis, and different stochastic and robust optimization ap-
proaches have been proposed for the design and planning of process systems based on
some probabilistic objective function. The main contributions in the field are outlined
in Chapter 2.

Proactive scheduling approaches dealing with demand uncertainties and based on
stochastic optimization (see Section 2.3) have been proposed. For example, Petkov
and Maranas (1997) applied the chance-constrained technique (see Section 2.3.2) to
address the multiperiod planning and scheduling problem of multiproduct plants and
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impose explicit lower bounds on the probabilities of satisfying variable demands; the
problem consisted of obtaining the optimal planning policy (production and sales) and
a corresponding feasible schedule that maximized the expected profit, while satisfying
single or joint product demands with a minimum probability level; the expectation of
the objective function, as well as the chance constraints, were expressed in a deter-
ministic equivalent mixed-integer non-linear programming (MINLP) model.

Vin and Ierapetritou (2001) presented a two-stage stochastic programming formu-
lation (see Section 2.3.3) for the short-term scheduling problem of batch plants, where
the average makespan over a set of anticipated scenarios was to be minimized; the
schedule obtained using nominal demand values and that obtained from the stochas-
tic approach were assessed and compared in terms of different robustness measures
based on the standard deviation or on one-sided deviations; however, these measures
were not incorporated into the decision-making procedure. Another application of
two-stage stochastic programming for scheduling a multiproduct batch plant was pre-
sented in Engell et al. (2002).

Sand et al. (2000) proposed a two-level hierarchical model involving a long-term
planning problem, formulated as a two-stage stochastic linear problem, and a short-
term deterministic scheduling problem. This framework was further considered by
Engell et al. (2001) to address the same problem with uncertain demands and poly-
merization yields; it was claimed that scheduling is a real-time problem where only
those decisions to be actually implemented have to be made within sufficient short
response times based on the information available at decision time; all other coupled
decisions should be regarded as a recourse for the effects of realized uncertainties.

With the latter idea, Sand and Engell (2004) proposed the application of two-
stage stochastic integer programming techniques within a model predictive schedu-
ling framework to address the real-time scheduling problem of multiproduct batch
processes; the model fitted into the framework of multi-stage stochastic integer pro-
gramming, and was decomposed into a master scheduling problem with demand and
plant capacity uncertainties, and a detailed scheduling problem reflecting variable pro-
cessing times and yields; both problems were approximated by two-stage stochastic
integer programs using an scenario-based representation of the uncertainty.

A multistage stochastic mixed-integer linear programming (MILP) model for multi-
product batch plants was also presented by Balasubramanian and Grossmann (2004);
an approximated resolution strategy was developed based on the solution of a series
of two-stage models within a shrinking-horizon approach.

As it can be observed from the literature review, most of the contributions consider
the demands uncertainty from a tactical perspective, and optimize only expected
performances, thus assuming the decision maker is risk-neutral. In general, however,
decision makers tend to be risk-averse, thus implying a major preference for lower
variability for a given level of return.

The ability of robust optimization methods to account for different attitudes to-
wards risk is highlighted in Section 2.4. Although the concept of robust optimization
has largely been applied in design and planning problems, its extension to the lower
level of scheduling is almost void. Within a multiproduct scheduling environment,
Sand and Engell (2003, 2004) extended the objective function expressed in terms
of expected profit with the concept of minimum risk criterion as a measure of the
probability to obtain profit values below a certain threshold; nevertheless, demand
uncertainties were analyzed in a long-term basis.
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7.2. Problem statement

This study focuses on the effects of product demands uncertainty in short-term
production scheduling, thus considering the interaction of a tactical source of un-
certainty in the lower operational level. A proactive scheduling approach based on
stochastic programming is first developed, and then extended to manage the risk of
performing below a desired level. Alternative measures are evaluated in this robust
optimization approach to explicitly control the variability of performances.

7.2 Problem statement

The scheduling problem of multiproduct batch plants with variable product demands
is addressed to improve schedule robustness and to obtain alternate scheduling policies
reflecting different attitudes versus risk in the context of demand uncertainty. Given
are the production lines, a set of products to be produced with their given recipes, the
time horizon, the economic data, and the probability distributions associated with the
uncertain parameters. The decisions involve the number of batches to be produced of
each product, the detailed production sequence, and the start and end times of each
operation performed.

Schedule robustness is formalized as an expected profit accounting for revenues
coming from the sales of products, production costs, changeover costs, inventory
costs, and costs for underproduction. According to the general definition for schedule
robustness given in Chapter 3 (Section 3.3.2), revenues along with production and
changeover costs assess the efficiency of the system, whereas inventory and shortage
costs can be regarded as a measure of the effects of uncertain product demands.

The following assumptions are made:

e One production line is considered, with fixed assignment of equipment units to
tasks, and fixed batch sizes for each product. This assumption can be easily
relaxed with slight modifications in some constraints.

e The zero wait (ZW) transfer policy is adopted. Under this policy, an inter-
mediate product must be immediately transferred to the next processing step
just after its production. Neither intermediate storage nor wait times in the
processing units are available. This assumption could be easily modified to con-
sider unlimited intermediate storage (UIS) or non-intermediate storage (NIS)
transfer policies.

e Scheduling is addressed for a time horizon of one week. It is considered that
products have to be delivered at the end of the week in a just-in-time (JIT)
manner, but scheduling decisions must be made beforehand to start production
and be able to meet the expected customer demands.

e Fixed costs for final inventory and shortage are adopted for each product. Costs
for product changeovers are also considered to take into account technical diffi-
culties that may arise with the change of products, as well as to avoid excessive
shifts between them.
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7.3 Modeling approach

The use of an equation-based modeling system is appropriate for describing the fea-
tures of the underlying problem, and it is again considered for the development of the
proactive scheduling application.

A stochastic programming approach is first generated based on a recourse
model with two stages (refer to Section 2.3.3) to optimize an expected performance
evaluated in terms of profit. The formulation is further extended with the possibility
of selling some amount of products by exercising an option contract, thus aiming at
introducing flexibility and implicitly reducing the risk of performing below a certain
profit level. Both stochastic models assume that the decision maker is risk-neutral. A
robust optimization modeling system (see Section 2.4) is finally developed for risk
management to control the variability of solutions and reduce the risk of low profit
values.

The uncertainty associated with product demands can be described indistinctly
with discrete or continuous probability distributions, which are then discretized using
Monte Carlo sampling (MCS) to generate a finite set of scenarios.

7.3.1 Scheduling model

A two-stage stochastic MILP formulation is derived based on a batch slot concept.
for which the time horizon is viewed as a sequence of batches b, each of which is to
be assigned to one particular product i. Decision variables related to the number
of batches to be produced of each product and the detailed schedule, that is, the
sequence and the start and end operation times of each task j, are considered first-
stage decisions since it is assumed that they have to be made at the scheduling
stage, before the uncertainty is unveiled. On the second stage, sales (Qf’k), inventory
(QL), and unsatisfied orders (QY) are evaluated in each scenario k. A profit value is
obtained for each particular realization of demand uncertainty. The model developed
(SCHED) accounts for the optimization of schedule robustness, formally stated as the
maximization of the expected value of the distribution of profits, and it is detailed
below. The notation used is defined throughout the description of the model; however,
refer to the Nomenclature chapter in page 153 for an overall reference.

(SCHED)

maxEPV:Z{wk-[Z(Vi-ka—C{' fk—CU'(Vi—CzP)' ?k)]}_
(7.1)

k i

ZCZP ' Qf) - Z Cfi/ : XMbiil - ZTinjb

b,i,i’ J»b

H>Tfn;, Vb (7.2)

T = Z(Xbi - Top;;) Vi,b (7.3)

%
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Tfng = Tingy + Ty Vi, b (7.4)

Tingy > Tfny, — Vj,b< BV =b+1 (7.5)

Tfnjb = Tinj/b Vj,j/ = j + 1, b (76)

Y Xu<1 Wb (7.7)

> Xpi=n; Vi (7.8)
b

Xpi + Xy — 1 < XMy;ir Vb < B, b =b+ ].,’i,il (79)

> ni<B (7.10)

Qf =ni-BS; Vi (7.11)
Q5. = min(0i, QF) Vi k (7.12)
=07 - Qi ik (7.13)
bo=0w— Qi Vik (7.14)

The maximization of the expected profit value (EPV), equation 7.1, involves an
expected second-stage performance, written as a sum of the sales of each product,
inventory costs, and a penalty for underproduction in each scenario k weighted by
its probability (wy) of occurrence, and first-stage costs related to variable produc-
tion costs and costs for product changeovers. Therefore, the maximization of the
objective function establishes the most appropriate production policy that balances
benefits with the effects of the uncertainty, i.e., inventory costs (which control the
overproduction) and the cost for production shortfalls (which measures the loss of
profit due to the unavailability of a product, and is modeled with a factor ¢V of this
profit value; for ¢V = 1 the underproduction cost equals the profit lost due to the
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unsatisfied demand, whereas higher or lower values of this parameter impose a stricter
or more relaxed safeguard against underproduction, respectively). A product demand
satisfaction level is not explicitly imposed. The last term on the right-hand side of
the objective function is a timing term, which is incorporated to reduce degeneracy
and to assure that the operations will start as soon as possible when some slack time
exists. A is a parameter with a very small value that does not modify the optimality
related to the other terms in the objective function.

Equations 7.2 to 7.11 are first-stage constraints that define the sequence and prece-
dence relationships, the timing, and the number of batches to be produced. Equation
7.2 expresses the requirement of all tasks j to end within the time horizon H. Equa-
tion 7.3 is incorporated to assign to each batch b the operation times of the product
i produced in that batch (Top;;). The binary variable X, defines the assignment of
product i to batch b; it takes the value of 1 if product i is produced in batch b, or 0
otherwise. The connections between the start (Tin;) and end times (Tfn;3) in each
stage j of batch b are provided by equation 7.4. To express the requirement of the
initial time of every stage j from batch b to start after the same operation in the pre-
vious batch ', the precedence constraint 7.5 is used. In the same way, the sequence
constraint 7.6 assures the ZW transfer policy between stages j of the same batch b.
According to equation 7.7, at most one product ¢ can be assigned to each batch b. In
equation 7.8, the number of batches assigned for each product is constrained to be
the number of batches produced of that product (n;).

Concerning changeovers from product ¢ to product ¢’, the aggregated variable
XMy;; is defined to avoid the introduction of non-linearities into the model. With
equation 7.9, when a change occurs from product ¢ in batch b to product i’ in the
following batch b’, Xy;, Xprr, and consequently X My;;» take the value of 1. Through
equation 7.10 the number of batches processed is limited to the maximum number of
batches defined B. Finally, equation 7.11 defines the amount produced of each product
(QF) based on the batch size (BS;).

Second-stage constraints are defined from equations 7.12 to 7.14. They evaluate for
each product ¢ in each scenario k the quantity sold ( fk), final inventory requirements
(QL,), and production shortfalls (Q%,) at the end of the time horizon. Since an amount
of product higher than the production can not be delivered, the quantity sold of each
product is defined as the minimum between the demand and the amount produced (eq.
7.12 is internally handled in the modeling environment with two inequality constraints
as stated in eqs. 7.15 and 7.16).

Q5. < O Vi, k (7.15)

S <QF ik (7.16)

7.3.2 Scheduling model with option contracts

Options are contracts that give the holder the possibility of purchasing a certain
amount of product at an specified price v?¢. Since contracts are signed beforehand,
the total amount of product that can be sold by exercising the respective put option
has to be considered independently of the scenario finally realized. However, the
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amount of products eventually sold allocated to option contracts varies under the
different scenarios.

Therefore, in addition to the number of batches and the scheduling decisions,
first-stage variables in the new model (SCHEDOC) include the amount of options
purchased (QZOC). In the second stage, the quantity of product 7 allocated to option
contracts in each scenario k is also assessed (Q5°2¢). The new model is detailed below.

(SCHEDOC)

max EPV = {wk : [Z (vi- Qi+ 17 Q77 —ef - Qi
k

%

—c (i e) %)]}—Z@OQ?CH;.Q;)_ (7.17)

%
= ey XMy — XY Ting,

byii! 4,b
subject to:
egs. 7.2 to 7.11
o+ QiCY = min(0:x, QF + Q7°) ik (7.18)
=00 +QP7 - Q5 — QY Vik (7.19)
=0 — Qi — QI°°  Vik (7.20)
B<QF Vik (7.21)
Qi <QYC  Vik (7.22)

Equation 7.18 expresses the sales of each product 7 in each scenario k as the min-
imum between the demand (6;;) and the available quantity, which is the product
produced (QF) plus the product available from option contracts (QY¢) (as for eq.
7.12, this constraint is handled in the modeling environment with two inequality con-
straints). Inventory requirements (Q%, ) and production shortfalls (QY,) are computed
in constraints 7.19 and 7.20, respectively. Sales coming from the own production
(Q%.), can not be higher than the amount produced (QF); this is expressed by con-
straint 7.21. On the other hand, the amount of product allocated to an option contract
(Q59°) must be lower than the total amount contracted (QY), as it is stated by

inequality 7.22.
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7.3.3 Risk management

Different metrics can be considered for robust optimization as a measure of the risk
of obtaining poor revenues. As it is reviewed in Chapter 2 (see Section 2.4), the
variance is one of the metrics commonly used for quantifying the variability of per-
formances. However, two significant drawbacks of this measure for risk management
have been identified. On the one hand, the variance is a symmetric measure of dis-
persion around the expected value; therefore, in an attempt to reduce the dispersion
of values around the mean, some decisions leading to favorable results are discarded.
On the other hand, it introduces non-linearities into the formulation, thus increasing
the computational requirements of the models.

In view of these limitations, and pursuing the identification of more robust pre-
dictive schedules that guarantee an acceptable expected profit value with reduced
risk exposures, three alternative measures for risk management are considered and
appended as a second criterion to the objective function of the stochastic models
presented above: the financial risk metric as analyzed by Barbaro and Bagajew-
icz (2004b), the downside risk definition proposed by Eppen et al. (1989), and the
worst-case performance.

To understand and assess the trade offs between risk and profit, the so called risk
curve is used, which is the cumulative curve of profit values over all the scenarios,
and which indicates the level of incurred risk at each profit value. Depending on the
decision-maker attitude towards risk, low risk for some conservative profit aspiration
levels or low risk at higher profit aspiration levels (even if risk at lower profit values
increases), would be desired. Hypothetical examples of these extremes are depicted
in Figure 7.1.

100
90r
80r
701
601

501

% cumulative

401
301

201

Risk-taker decision

10 — Risk-averse decision T

Profit

Figure 7.1: Examples of risk curves with different risk preferences.

Financial Risk

Financial risk (FR) is a probabilistic approach for risk management defined as the
probability of not meeting a target profit Q (Barbaro and Bagajewicz, 2004b). Tt is
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mathematically expressed as stated in equations 7.23 and 7.24.

FRQ = Zwk . Ykg (723)
k

Vk (7.24)

1 if PV <,
Yo = .
0 otherwise

The risk term is included in the objective function of the stochastic models as
expressed in equation 7.25, where the goal programming weight p is incorporated to
manage the trade off between both criteria. The EPV term is defined according to
equations 7.1 and 7.17 for the SCHED and SCHEDOC models, respectively.

To enforce the new integer variable Yio to take the value of 1 if the profit is less
than the corresponding target value 2, constraint 7.26 is required; otherwise, the
value of 0 in the optimal solution is assured by the own risk term in the objective
function. The PV} term includes all sales and cost terms defined in the objective
function (eqs. 7.1 and 7.17), except for the timing term.

max EPV —p- Y wi- Yo (7.25)
k

PV, >0— M- -Yig Vk (7.26)

Downside Risk

Downside risk (DR) is an alternative measure of risk defined as the expected value of
the positive deviation from the target Q (Eppen et al., 1989). It is mathematically
formulated by equations 7.27 and 7.28.

DRq = E[¢ka] (7.27)

Vk (7.28)

S = Q- PV, if PV, <Q,
R 0 otherwise

For robust optimization using the downside risk metric, the stochastic formulations
are extended with the incorporation of the downside risk term in the objective function
(eq. 7.29), and the additional constraints 7.30 and 7.31. Again, the EPV term is
defined as in equations 7.1 or 7.17.

max EPV —p- Zwk - dro (7.29)
k
dio>Q—PVi Yk (7.30)
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dka >0 Vk (7.31)

It is worthwhile to note that financial risk is defined as a probability, whereas
downside risk is an expected value. Barbaro and Bagajewicz (2004b) showed the quan-
titative relationship between financial and downside risk measures stated in equation
7.32. Therefore, downside risk is determined by the area under the risk curve from
profit £ = —oo to the profit target £ = Q. Using downside risk in the framework of
two-stage stochastic models leads to modeling strategies similar to the case of financial
risk. The advantage of using downside risk is that the spectrum of solutions with diffe-
rent risk preferences can be obtained without the need of introducing binary variables
in the model. The only known problem is that downside risk is not monotonic with
financial risk, that is, a solution having smaller downside risk than another does not
necessarily present an smaller financial risk. This aspect was underlined by Barbaro
and Bagajewicz (2004b).

Q
DRg, = / FRed¢ (7.32)

— 00

Worst-case risk

The worst profit value (WPV) is also adopted as an alternative metric to control
or reduce the probability of meeting unfavorable scenarios. A major difference with
respect to the other approaches is that the probability information of the uncertain
data is not used. Moreover, both the expected profit and the profit in the worst-case
scenario are to be maximized as shown in the modified objective function stated in
equation 7.33; as in the previous approaches, the EPV is defined as the objective
functions of the stochastic models SCHED (eq. 7.1) and SCHEDOC (eq. 7.17).
Constraint 7.34 needs to be also incorporated into the models to assess the worst-case
profit value that balances the expected profit with a weight value p.

max EPV +p-WPV (7.33)

WPV < PV, Vk (7.34)

The predictive schedule with the best worst profit value attainable (WPV™%)
can be obtained by applying the following procedure:

STEP 1. Solve the SCHED (SCHEDOC) model maximizing the WPV as a single
objective function, instead of equation 7.1 (7.17), and incorporating constraint
7.34.

STEP 2. Solve the SCHED (SCHEDOC) model maximizing the expected profit as
defined in equation 7.1 (7.17), and incorporating constraint 7.34 as well as the
WPV™ value obtained in the previous step as a lower bound (eq. 7.35).

WPV > WPy ™me (7.35)
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7.4 Case Studies

The proactive models developed in the framework of two-stage stochastic programming
for risk management in scheduling under demand uncertainty have been tested in the
motivating example introduced in Section 1.3, and described in Appendix B.1, as well
as in the multiproduct batch plant presented in Appendix B.2.

First, the deterministic formulations with nominal demand values are solved, and
the predictive schedules thus obtained are evaluated in front of the different scena-
rios, i.e., fixing the scheduling decisions, the profit values that would be obtained
after the execution of the deterministic predictive schedule in each of the scenarios
sampled are computed. Deterministic models derive simply from the stochastic for-
mulations presented above (SCHED and SCHEDOC) considering only one scenario
with the nominal demand values. The pure two-stage stochastic models are next
solved, and the effectiveness of the methodologies developed for risk management are
finally investigated.

In both examples, products have to be produced within a time horizon H of one
week (168h), and a value for the production shortfall cost (¢V) of 2MU has been
adopted. Demand uncertainty has been represented with normal probability distri-
butions, which have been discretized in 100 independent and equiprobable scenarios
through MCS. The standard deviation of product demands has been assumed to be
50 % of their mean values. Although this deviation is relatively high, it makes sense
for the relative short time horizon of operation, during which the required amounts
may vary from null orders to some considerable quantities. Besides, the parameter A
for the timing term in the objective function has been fixed at 1076,

The models have been implemented in GAMS (Brooke et al., 1988), and solved
using the MILP solver of CPLEX (7.5) on a AMD Athlon 2000 computer. For infor-
mation purposes, model sizes and computational requirements for the stochastic and
robust formulations of both examples considering options (SCHEDOC) are reported
in Table 7.1.

Table 7.1: Model sizes and computational requirements.

Flow shop Multiproduct plant
(section 7.5.1) (section 7.5.2)
Stochastic model
Constraints 4849 4948
Binary variables 580 580
Continuous variables 2287 2347
EPV 1732 2192
CPU time™ 70.2 645.6
" Robust model with FRisk; DRisk; WCase

Constraints 5049 ;5049 ;4949 5148 ;5148 ;5048
Binary variables 680 ;580 ; 580 680 ;580 ; 580
Continuous variables — 2287;2387 ;2288  2347;2447 ;2348
EPV 1634 ;1634 ;1553  2189;1883;1947
FRa—o0; DRa—o; WPV 0.0;0.0;221 0.2;1.87;-108
CPU time™ 50.9;67.6;36.9 1956.3;196.4;224.1

*seconds with GAMS 20.5/CPLEX(7.5), on a AMD Athlon 2000 computer.
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7.5 Results and discussion
7.5.1 Motivating example
Deterministic vs. stochastic

Detailed results obtained from the resolution of the deterministic and the two-
stage stochastic SCHED and SCHEDOC models are reported in Tables 7.2 and 7.3,
respectively. The corresponding cumulative distributions of profit values for all the
scenarios sampled are plotted in Figure 7.2.

It is important to notice from these results that the solutions predicted with the
deterministic formulations poorly represent the uncertain environment, i.e., the sche-
dules obtained assuming nominal product demands (and referred to as deterministic
predictive schedules) may be critically inefficient when another demand is ordered.
Indeed, although the profit values of the deterministic predictive schedules are opti-
mal in the nominal scenario and higher than their stochastic counterparts (see PV,,om
in Tables 7.2 and 7.3), when the deterministic predictive schedules are executed in the
uncertain environment, the expected profit value drops about 65 % from the optimum
in the nominal conditions (from 3546 to 1257 MU). The schedules determined using
the stochastic models (and referred to as robust predictive schedules) perform with
a better expected profit over the uncertain space (1596 and 1732 MU), about 21 %
and 27 % higher than the deterministic ones (1257 MU). This is also reflected with the
shift to the right of the stochastic risk curves (Figure 7.2). Note that the deterministic
models do not account for inventory to hedge from adverse scenarios and meet cus-
tomer requirements, as the stochastic ones do, and hence the deterministic predictive
schedules propose fewer batches than the robust ones. Despite the higher inventory
costs, the robust predictive schedules show reduced production shortfalls, and hence
improved customer satisfaction, thus assuring a much better overall expected profit.

Concerning the availability of option contracts (SCHEDOC model), these are not
used in a deterministic context for this case study since no additional benefits are
obtained (see Table 7.3). Instead, in the stochastic environment the same number

Table 7.2: Deterministic and stochastic results for case study 7.5.1 with model SCHED
(ni: number of batches for each product; QF: production amounts; E[QS}]: expected sales;
E[QL]: expected inventory; E[Q!}]: expected underproduction; PVym: profit value in the
nominal scenario; EPV: expected profit value).

Deterministic Stochastic

Product '11”’7172’”’i’?;”’i’Af"i’5”f”11””12””13”7147”15'
n; 2 1 3 1 1,3 1 4 1 1
QF 200 100 300 100 100 ' 300 100 400 100 100
E[ka] 170 83 256 84 &4 : 205 83 295 84 84
E[ fk] 30 17 44 17 16 , 95 17 105 17 16
E[ %] 35 13 49 16 15 l 0 13 10 16 15
PV,om 3546 | 2616

EPV 1257 ‘ 1596
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Table 7.3: Deterministic and stochastic results for case study 7.5.1with model
SCHEDOC (n;: number of batches for each product; QF: production amounts; QY:
options purchased; E[Q$;]: expected sales from production; E[Q5PC]: expected sales from
options; E[Qf,]: expected inventory; E[Q%]: expected underproduction; PVy,om: profit value
in the nominal scenario; EPV: expected profit value.).

Deterministic ' Stochastic

Product il i2 i3 s i i2 i3 s
n; 2 1 3 1 1,3 1 4 1 1
P 200 100 300 100 100 ' 300 100 400 100 100
Q¢ O 0 0 0 0,0 22 0 28 24
E[Q%] 170 83 256 84 84 1205 69 295 66 70
E[Q3°°] o 0 0 0 0 0 2 0 28 24
E[QZ] 30 17 44 17 16 1 95 31 105 34 30
E[QY] 3 13 49 16 15' 0 5 10 5 5
PVoom T 3546 T or7T T
EPV 1257 ! 1732

of batches predicted with the SCHED model is determined, but the use of option
contracts introduces some degree of flexibility, which translates into an 8 % higher
expected profit (1732 vs. 1596 MU) due to an improved customer satisfaction level.

To assess the value of knowing and using distributions of future outcomes, i.e.,
to evaluate the advantages of solving the stochastic model, the Value of Stochastic
Solution (VSS) can be easily computed (Birge and Louveaux, 1997). This value is
the difference between the solution obtained from the stochastic formulation and the
expected value of the deterministic problem. Without option contracts the VSS is
339 MU (1596-1257 MU); with the introduction of option contracts the VSS raises
up to 475 MU (1732- 1257 MU).
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Figure 7.2: Deterministic and stochastic risk curves for case study 7.5.1 with models:
a) SCHED; b) SCHEDOC.
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Another metric used in the stochastic domain is the expected value of perfect infor-
mation (EVPI), which measures the value of knowing the future with certainty (see
Section 2.3.1). It is evaluated as the difference between the mean value of optimal
solutions in each scenario and the solution of the stochastic model. Solving the de-
terministic SCHED and SCHEDOC models for each scenario, the mean profit value
over all the scenarios resulted in 2546 MU and 3448 MU, respectively. Based on these
quantities, the EVPI is 950 MU (2546 - 1596 MU) without option contracts, and raises
up to 1716 MU (3448-1732MU) when introducing the options.

To further illustrate the suitability of the stochastic formulation developed and
the poor adequacy of a deterministic approach in an uncertain context, the perfor-
mance of the robust and deterministic predictive schedules in the random scenario
evaluated in Chapter 1 (see Tables 1.2 and 1.3) is analyzed. As assessed in Chap-
ter 1, the optimum profit of 2723 MU for the random scenario drops about 34 % (to
1790 MU) when the predictive schedule determined assuming nominal demands is ex-
ecuted in the conditions of the random scenario. A better performance is obtained
using the robust predictive schedules as a guidance during execution (see the results
summarized in Table 7.4). When implementing the predictive schedule derived from
the SCHED model, a profit value of 1885 MU is obtained in the random scenario,
whereas the benefits are slightly higher (up to 1987 MU) when option contracts are
available (SCHEDOC model). These performances represent an increase of 5% and
10 %, respectively, from the revenues expected if the uncertainty is ignored.

Table 7.4: Results from the execution of the robust predictive schedules in the random
scenario defined in Table B.6 for case study 7.5.1.

SCHED SCHEDOC
Product i1 82 i3 i i5 il Ci2 i3 i 5
n; 3 1 4 1 1, 3 1 4 1 1
P 300 100 400 100 100 ' 300 100 400 100 100
oc O 0 0 0 0,0 22 0 28 24
o 250 100 200 100 80 1250 130 200 100 80
20C o 0 0 0 0!0 2 0 0 0
L 50 0 200 0 20,50 0 200 28 44
v 0 3 0 0 0'!'0 8 0 0 0
PVoom 2616 ‘ 2177
PVyna 1885 ‘ 1987
EPV 1596 ! 1732

Risk analysis

Robustness is next investigated using the robust optimization formulations derived
from the appendage of the alternate metrics for risk management presented in Section
7.3.3. Different target profits (2) and weight values (p) for the risk measures are
tested obtaining several alternate predictive schedules. Results related to the profit
value in the nominal scenario (PV,m), the expected profit (EPV'), the worst profit
value (WPV'), and the financial (FR) and downside risk (DR) values at targets 0 and
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500 MU obtained with both SCHED and SCHEDOC models are summarized in Tables
7.5 and 7.6, respectively, for different approaches out of the multiple combinations of
target profits and weight risk values. Selected risk curves are depicted in Figure 7.3,
where the pure stochastic solution is included for comparison purposes.

Table 7.5: Selected results from risk management with financial risk (FRisk), downside

risk (DRisk), and worst-case risk (WCase) measures for case study 7.5.1 with model
SCHED.

SCHED PVpom EPV WPV FRa—o FRa—s0 DRa—o DRa—s00
Deterministic 3546 1257 19 0.00 0.13 0.00 30.43
Stochastic 2616 1596 -681  0.07 0.14 20.38  66.58
FRiskq—500;p—10%) 3166 1435 -339  0.05 0.12 8.64 46.33
DRisk (o—0:p—20) 3166 1435 -339  0.05 0.12 8.64  46.33
WCase(,—0 48) 3166 1435 -339  0.05 0.12 8.64 46.33
WCasemaz 3546 1257 19 0.00 0.13 0.00 30.43

Table 7.6: Selected results from risk management with financial risk (FRisk), downside
risk (DRisk), and worst-case risk (WCase) measures for case study 7.5.1 with model
SCHEDOC.

SCHEDOC PViom EPV WPV FRqo—o FRo=s00 DRo-—o0 DRa=500
Deterministic 3546 1257 19 0.00 0.13 0.00 30.43
Stochastic 2177t 1732 -676 0.05 0.10 16.58 52.67
FRisko—100;p=101) 2950 1602 100 0.00 0.07 0.00 16.61
FRisk(o=108;p=104) 2888 1596 38 0.00 0.08 0.00 17.65
DRisk(g=0;p=10) 2633 1695  -217 0.02 0.07 4.12 29.57
DRisk(n=500;p=100) 3198 1475 125 0.00 0.07 0.00 10.10
WCase(,—0.3) 2891 1623 38 0.00 0.06 0.00 18.94
WCase(,—0.4) 3002 1584 149 0.00 0.08 0.00 15.62
WCase(,—0.5) 3074 1553 221 0.00 0.08 0.00 13.87
WCasemax 3182 1456 329 0.00 0.09 0.00 12.41

The results obtained reveal how the risk management methodology tries to re-
structure the risk curves so as to reduce risk and the dispersion of profits, while
maintaining an acceptable expected revenue. Notice that the risk curves obtained lay
below the distribution with maximum expected profit (stochastic risk curve) at low
profit values and, as expected, they intersect it at some point.

With the SCHED model (see Table 7.5), the same predictive solution is attained
with the three alternative risk metrics, and a clear reduction of risk is achieved when
compared with the stochastic formulation; however, the realization of some of the
scenarios still shows a negative return. Note that the deterministic solution matches
the solution with the maximum worst profit, hence any robust solution can be ex-

pected with a minimum profit value over all the anticipated scenarios better than
19 MU.

The possibility of using option contracts (SCHEDOC model) translates into a
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Figure 7.3: Risk curves for case study 7.5.1 with alternative robust formulations with
models: a) SCHED; b) SCHEDOC.

larger flexibility and a more effective management of risk, as can be observed from
the high number of alternative configurations obtained with the robust optimization
methodologies for different weight values (see Table 7.6). In addition, several predic-
tive schedules are obtained with the entire risk curve above a target of 0 MU, i.e.,
predictive schedules which assure a positive return within the entire uncertain region.
The expected profit values of these more robust solutions are slightly lower than the
maximum expected profit determined with the pure stochastic model (1732 MU), but
they are more than 13 % higher that the expected performance of the determinis-
tic predictive schedule for all the curves identified, with a good revenue also in the
nominal scenario.

At this point, the trade off between risk and profit is further investigated by
parametrically varying the weight of the risk term in the objective function. Pareto
curves obtained managing downside risk at target profits of 0 and 100 MU with the
SCHEDOC model are depicted in Figure 7.4 (a). Equivalent curves obtained with
the worst-case risk measure are plotted in Figure 7.4 (b).

Each Pareto point corresponds to one risk curve, i.e., an alternative predictive
schedule; the decision of which one to implement is up to the decision maker. As it
is expected, a reduction of downside risk or a better worst profit value are attained
at the expense of a reduction in the expected performance. As the weight value
of the risk functions decreases, the expected profit of the solutions converges to the
maximum performance obtained with the stochastic model. The latter is also attained
by increasing the target profit at fixed weight values.

In general, the results obtained reveal that the three alternative measures im-
plemented in the proactive scheduling approach seem appropriate to deal with the
uncertain demands in the decision-making process and provide different risk profiles.
Concerning the computational effort, the time required to obtain robust solutions
for this case study ranges from 40 to 1000 seconds of CPU time depending on the
metric, the target profit, and the weight values (as pointed out previously in Chap-
ter 3, note that the major purpose of the study is to propose a framework for risk
management, rather than to developed the most efficient solution algorithm). Tt is
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Figure 7.4: Trade off between the expected profit and risk for case study 7.5.1: a)
downside risk; b) worst-case risk.

worthwhile to mention the increased combinatorial complexity associated with the
financial risk procedure due to the additional binary variables. On the other hand,
the simple worst-case risk procedure shows a remarkable efficiency for identifying ro-
bust scheduling strategies with a good performance over the uncertain region, with
significantly reduced computational requirements.

With the aim to directly compare the robustness of the different methodologies
in each scenario, the profit value that would be attained depending on the predictive
schedule implemented is depicted for all the anticipated scenarios in Figure 7.5. The
optimum performance in each scenario is included, along with the expected profit of
each optimal schedule over all the scenarios (optimum and expected values, respec-
tively, in Figure 7.5); these values are obtained by solving the deterministic formu-
lation for each realization of demand uncertainty, and by evaluating each predictive
schedule thus determined over all the other scenarios sampled.

The scarce representation of the uncertain environment by the deterministic for-
mulation is also observed in these graphics from the significative difference between
the optimum profit value for each scenario and its expectation when the uncertainty
is faced. It is important to point out the higher variability of the stochastic solution
when compared with solutions attained by controlling risk.

In addition, the pictures in Figure 7.5 clearly illustrate the different performance of
the system and the major flexibility when option contracts are available, which leads
to larger revenues and a more effective management of risk over all the scenarios.
However, the difference between the optimum and the expected profits is stressed,
thus emphasizing the need of addressing the uncertainty from a proactive viewpoint
to avoid highly unsatisfactory performances. Note that the stochastic modeling sys-
tems developed in this study lead to predictive schedules that meet the optimum
performance for some scenarios when option contracts are not considered (Figure 7.5
(a)), but they are far from the optimum when options are introduced, although the
performance in each scenario is much better than the expected one when adopting a
deterministic view of the problem.

On the other hand, it is worthwhile to note that all the predictive schedules ob-
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Figure 7.5: Optimum and expected profit values in each scenario resulting from the
deterministic predictive schedules, and profits obtained when implementing the pre-
dictive schedules derived from the stochastic and worst-case approaches for case study
7.5.1 using the models: a) SCHED; b) SCHEDOC.

tained with the different approaches show a coherent performance over the scenarios,
which can be considered as an indication of the representability of the scenarios sam-
pled.

Finally, Gantt charts of the predictive schedules with maximum expected profit
and maximum worst profit determined with the stochastic and the worst-case risk
SCHEDOC formulations are depicted in Figure 7.6.

One important thing to notice for this case study is that the predictive schedule
determined with the worst-case risk approach is also identified with the other risk
management methods reported in Table 7.6, except for the downside risk with a
target profit of 0 MU, and corresponds also to the deterministic predictive schedule.
The different revenues and risk values come from the different contracts purchased.

: M
: 0 B
' i
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Figure 7.6: Gantt charts of predictive schedules for case study 7.5.1 with: a) maximum
expected profit; b) maximum worst profit.
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7.5.2 Multiproduct plant
Deterministic vs. stochastic

Similar results as those reported for the previous case study are observed in the
multiproduct plant example. Tables 7.7 and 7.8 detail the results obtained with
the deterministic and two-stage stochastic SCHED and SCHEDOC models, respec-
tively, related to the number of batches for each product, n;; amounts produced
or contracted, QF and Q9Y; expected sales, E[Q7,] and E[Q5°¢]; expected inven-
tory, E[QL,]; expected underproduction, E[QY,]; profit value for the nominal scenario,
PV, om; and expected profit value, EPV. The corresponding risk curves are plotted
in Figure 7.7.

The deficient performance in the uncertain environment of predictive schedules
obtained with the deterministic formulations can also be inferred from this example.
The expected profit value of the deterministic predictive schedules is about 63 % lower
than the optimal performance in the nominal scenario when using the SCHED model,
and 66 % lower using the SCHEDOC model (see PV, and EPV values in Tables
7.7 and 7.8). The robust predictive schedules perform with an expected profit over
the uncertain space about 21 % and 27 % higher than the deterministic one. Note also
the shift to the right of the risk curves, and the larger variability of the stochastic
solution (Figure 7.7). As it is also observed in the previous example, taking into
account demands uncertainty in the reasoning procedure leads to the scheduling of
a major number of batches, with the consequent increase of inventories to deal with
adverse scenarios, and reduced production shortfalls.

Both SCHED and SCHEDOC models show the same trends, but the flexibility
obtained with the introduction of option contracts translates into a slightly better ex-
pected profit due to the fewer inventory requirements and the somewhat improvement
on customer satisfaction.

The VSS for this case study is 454 MU (2140- 1686 MU) without option con-
tracts, and raises up to 600 MU (2192-1686 MU) when the availability of options

Table 7.7: Deterministic and stochastic results for case study 7.5.2 with model SCHED
(n;: number of batches for each product; QF: production amounts; E[Q%,]: expected sales;
E[QL]: expected inventory; E[Qf}]: expected underproduction; PV;em: profit value in the
nominal scenario; EPV: expected profit value).

Deterministic Stochastic
'11”"i2"7’i3”"{4””1’5"T”11””12””13”7147”15'
n; 3 2 3 2 3, 4 2 4 3 3
f 180 160 300 120 180 ' 240 160 400 180 180
E[ f’k} 153 132 256 100 139 : 177 132 295 119 139
E[ fk} 27 28 44 20 41 63 28 105 61 41
E[ f{f} 31 21 49 19 9 ‘+ 7 21 10 0 9
PV,om 4508 | 3059
EPV 1686 ‘ 2140
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Table 7.8: Deterministic and stochastic results for case study 7.5.2 with model
SCHEDOC (n;: number of batches for each product; QF: production amounts; QY
options purchased; E[Qf}]: expected sales from production; E[Q5PC]: expected sales from
options; E[QJ,]: expected inventory; E[Q%]: expected underproduction; PVyom: profit value
in the nominal scenario; EPV: expected profit value.).

Deterministic ' Stochastic

2 i3 s i i i3 i
n; 3 2 3 2 2 | 4 2 4 2 3
P 180 160 300 120 120 ' 240 160 400 120 180
QPC 0O 0 0 0 3,0 3 0 33 4
E[Q73] 153 132 256 100 109 1 177 113 295 80 136
E[Q;50°] o 0 0 0 17 0 3 0 33 4
E[QL] 27 28 44 20 24 , 63 47 105 40 44
ElQY] 31 21 49 19 22 ' 7 10 10 7 8
PVoorn 4631 T 3039
EPV 1592 ! 2192

is considered. To assess the EVPI, the deterministic SCHED and SCHEDOC mod-
els have been solved for each scenario resulting in mean profit values over all the
scenarios of 3897 MU and 4583 MU, respectively. Therefore, the EVPI is 2301 MU
(3897-2140 MU) without options, and 2391 MU (4583-2192MU) when considering
the options.

Risk analysis
Concerning the robust optimization approaches, results obtained out of the mul-

tiple combinations of target profits (Q) and weight risk values (p) tested for each
measure of risk are reported in Tables 7.9 and 7.10. Results of the deterministic and

100 T T T T T T 100
90f 1 90
80 1 80
70F 1 70F
£ 6ot 2 eof
s 8
2 s0r 2 sor
5 3
S 3
s 40p s 40F
30F 1 30F
201 1 201 1
101 Deterministic 10r Deterministic
—— Stochastic —— Stochastic
—2%00 -1000 0 1000 2000 3000 4000 5000 —20000 -1000 0 1000 2000 3000 4000 5000
Profit Profit
a. b.

Figure 7.7: Deterministic and stochastic risk curves for case study 7.5.2 with models:
a) SCHED; b) SCHEDOC.
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stochastic formulations are also included for comparison purposes. Detailed are the
profit value in the nominal scenario (PV,,,m), the expected profit (EPV'), the worst
profit value (WPV'), and the financial (FR) and downside risk (DR) values at tar-
gets 0 and 500 MU obtained with both SCHED and SCHEDOC models for different
approaches. Selected risk curves are represented in Figure 7.8.

Using the SCHED model (see Table 7.9), the same scheduling configuration is
identified with the three risk metrics, with a reduction of risk at a target profit of 0 MU
above 90 % compared to the stochastic schedule, and better expected performance
than with the deterministic approach (1818 vs. 1686 MU). However, the realization
of some of the scenarios still presents a negative return. Again, the availability of
option contracts translates into a larger flexibility and better management of risk,
which allows the identification of predictive schedules with positive returns within
the entire uncertain space (Table 7.10). The robust solutions have higher expected
profit values than the deterministic schedule, and the revenue in the nominal scenario
is only around 7% lower than the optimum one (4631 MU).

Table 7.9: Selected results obtained from risk management with financial risk (FRisk),
downside risk (DRisk), and worst-case risk (WCase) measures for case study 7.5.2 with
model SCHED.

PViom EPV WPV  FRa—o FRa-s500 DRa-o0 DRa=500

Deterministic 4508 1686 62 0.02 0.07 1.23 19.35
Stochastic 3059 2140 -1160  0.06 009 3394  7L67
FRisk —op—104) 4190 1818 -29  0.01 0.08 0.29 20.72
FRisk(g_105,p—101) 3770 1871 -454  0.04 0.12 780  45.18

DRiskq_o,—105) ~ 4190 1818 -29  0.01 0.08 0.29  20.72
DRisk(o—s00;p—s) 3490 2090 -732  0.06 0.12 19.88  64.00
WCase naz 4190 1818 -29  0.01 0.08 029  20.72

Table 7.10: Selected results from risk management with financial risk (FRisk), down-
side risk (DRisk), and worst-case risk (WCase) measures for case study 7.5.2 with
model SCHEDOC.

PViom EPV WPV FRo—o FRo=s500 DRo—o DRa=500

Deterministic 4631 1592 -49 0.02 0.11 0.96 33.59
Stochastic 3042 2192 -1179 0.05 0.11 21.04 54.87
FRiskg—0;p=101) 3000 2189 -1222 0.02 0.12 21.00 55.60
FRiskg—200;p=5.101y 4075 1949 -144 0.01 0.06 1.44 16.07
DRiskg—o;p=103) 4219 1883 0 0.00 0.06 0.00 17.05
DRisk=200;p=103) 3488 2145  -731 0.02 0.07 11.18 29.59
WCase(,—0.3) 3738 2090  -481 0.03 0.07 6.79 27.89
WCase(,—0.5) 4110 1947  -108 0.02 0.08 1.54 20.52
WCase(,—0.7) 4280 1843 61 0.00 0.08 0.00 13.78
WCasemaa 4400 1750 181 0.00 0.17 0.00 13.14

The computational time required for this case study ranged from 200 to 20000
seconds CPU time. As also highlighted in the previous example, the worst-case risk
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Figure 7.8: Risk curves for case study 7.5.2 with alternative robust formulations with
models: a) SCHED; b) SCHEDOC.

procedure shows the best efficiency for the identification of robust predictive schedules
with lower computational requirements.

The trade off between risk and profit is illustrated in the Pareto curves depicted in
Figure 7.9. Figure 7.9 (a) shows the Pareto curves obtained managing downside risk
at target profits 0 and 200 MU with both SCHED and SCHEDOC models. Pareto
curves obtained with the worst-case risk approach are plotted in Figure 7.9 (b). The
same trends observed in the previous example apply here. In addition, the advan-
tages of using option contracts are also illustrated in the Pareto graphs, where the
curves obtained with the SCHEDOC formulation lie above those obtained without
considering option contracts. Therefore, for a given level of risk, higher benefits are
expected by holding option contracts.

The profit value that would be attained in each particular scenario depending on

2400 . . . . 2400
22000 EPV=2192 | 22001 EPV=2192 |
EPV = 2140 EPV=2140
2000} , 20000
> >
[N o
w w
1800 , 1800}
16001 * SCHEDOC a=200 16001 9
* SCHEDOC o=0
v SCHED 0=200 « SCHEDOC
+ SCHED a0 +  SCHED
1400 : ; 1400 : ; . . . .
0 10 20 30 40 50 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400
DR wcC
a. b.

Figure 7.9: Trade off between the expected profit and risk for case study 7.5.2: a)
downside risk; b) worst-case risk.
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Figure 7.10: Optimum and expected profit values in each scenario resulting from
the deterministic predictive schedules, and profits obtained when implementing the
predictive schedules derived from the stochastic and worst-case approaches for case
study 7.5.2 using the models: a) SCHED; b) SCHEDOC.

the predictive schedule executed is depicted in Figure 7.10, along with the optimum
performance in each scenario and the expected profit of each optimal schedule over
all the other scenarios.

Note, once again, the higher variability of the pure stochastic solution compared
with solutions attained by managing risk, the prevention of negative returns at the
expense of relatively lower expected profit values, as well as the considerable gap
between optimum revenues for each scenario and its expectation in an uncertain envi-
ronment, thus denoting the poor robustness of deterministic predictive schedules and
the advantages of managing the uncertainty. The different performance of the mod-
eling systems based on the availability of option contracts discussed for the previous
case study is also observed.

” T | = D 11
“4 RERISRi | | W

Makespan: 167 h Makespan: 152 h
a. b.

Figure 7.11: Gantt charts of predictive schedules for case study 7.5.2 with: a) maxi-
mum expected profit; b) maximum worst profit.
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Finally, the Gantt chart of the predictive schedule that maximizes the expected
profit, and that for the schedule with the best worst revenue identified with the
SCHEDOC model are depicted in Figure 7.11. Notice the different number of batches
predicted for each product based on the modeling approach.

7.6 Concluding remarks

The contribution of this thesis to the development of decision-support systems for
operational analysis under uncertainty is completed in this chapter with the develop-
ment of a proactive approach based on robust optimization in the context short-term
scheduling of multiproduct batch plants with uncertain product demands. Schedule
robustness has been evaluated in terms of profit, taking into account sales, production
and changeover costs, as well as the effects of the uncertainty in terms of inventory
and shortage costs. A two-stage stochastic programming model accounting for the
maximization of the expected profit has been first developed, and further extended
with the incorporation of the availability of using option contracts to implicitly deal
with the effects of the uncertainty. The stochastic formulations have been next ex-
tended to explicitly manage the risk of obtaining profit values below a desired level.
In this sense, financial risk, downside risk and worst-case risk have been studied as
alternative measures for risk management, and have been appended as a second cri-
terion in the objective functions. The suitability of the proactive approach developed
has been finally illustrated in two different case studies.

The importance of managing uncertainty features within the modeling systems is
shown from a comparison of results obtained between the stochastic model and its
deterministic counterpart with nominal demand values. The expected profit of the
deterministically generated predictive schedules drops above 60 % from the optimum
value when they are implemented in the uncertain environment. On the other hand,
stochastic models lead to a significant improvement of the expected performance over
all the realizations of product demands. Management of risk is attained with the
three alternate measures, and predictive schedules with limited dispersion, reduced
risk values, and acceptable expected profits are identified. The three risk measures
appear appropriate for the identification of robust predictive schedules, but the worst-
case risk approach is shown to be very effective both in terms of robustness and
computational effort. Moreover, the availability of option contracts not only provides
flexibility to cope with demand uncertainties, but also leads to predictive schedules
with higher expected revenues for a fixed level of risk. Therefore, alternative robust
scheduling policies in the context of demands uncertainty are easily identified by
appropriately managing risk in the decision-making process. The predictive schedule
to be finally executed is subject to the decision-maker preferences towards risk.

In general, this final contribution is a step forward on the hierarchical integration
of different sources of uncertainty. The study reveals that tactical uncertainties not
only have a direct effect on medium to long-term planning analysis, but may also
alter production decisions in short-term periods, and clearly shows the benefits of
adopting a proactive view of the situation taking them into account in an operational
level of reasoning. Globalization and competitive trends may increase the need for
JIT deliveries, whereas the exact demands may not be predictable when production
is to be scheduled. With the application of the robust optimization methodology, a
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better management of resources is possible, thus reducing the risk of capital losses
while maintaining acceptable expected revenues.

Only uncertainty in product demands has been considered in this study to provide
insight on the underlying scheduling problem. The next step would be the incorpo-
ration of the model as an upper level within the modeling framework developed in
Chapter 5, thus providing a more realistic view of the overall system.
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8.

Conclusions

If a man will begin with certainties he shall end
in doubts; but if he will be content to begin with
doubts he shall end in certainties.

Francis Bacon (1561 - 1626)

The challenge for considering uncertainty issues in modeling process sys-
tems undergoes a growing interest due to the increased recognition by
most firms of the uncertainties faced in a dynamic and competitive oper-
ation environment, as well as to the progress in computer-aided systems,
information technology, and optimization capabilities. This thesis con-
tributes to the analysis and development of decision-support systems that
take into account the main sources of uncertainty involved in an opera-
tional level of analysis. Concluding remarks are discussed throughout the
document for the particular issues addressed, but overall conclusions as
well as future research directions are outlined in this chapter.

8.1 Research results

Is it worth spending effort to obtain a predictive schedule optimal in economic or
temporal terms for nominal conditions that will eventually change at execution time
due to disruptions and changes in the operation environment? This thesis outlines an
answer to this question by considering the uncertainty not from the traditional reactive
perspective, but proactively, that is embedded in the decision-making procedure itself,
to deal with the problem before disruptions occur.

The situation is examined in the introduction of the thesis, where an overview of
the broad Process Systems Engineering (PSE) area is initially provided to eventually
focus on the context of this research work, that is the consideration of uncertainty
and robustness features in plant operational analysis. Some motivating issues are pre-
sented and a few questions formulated (Section 1.5), which are answered throughout
the dissertation.

(1) What do we understand for uncertainty?
(2) How can uncertainty be considered within scheduling modeling systems?
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Once established the basis of the problem, the concept of uncertainty is analyzed
focused on the occurrence of unexpected events, as well as the presence of ambigu-
ous or incomplete data in the context of PSE. Different sources of uncertainty are
extracted and categorized into strategic, tactical and operational uncertainties, sim-
ilarly to the hierarchical levels of decision. The probabilistic representation of the
uncertainty using the scenario or distribution-based approaches is underlined, and
stochastic and robust methodologies for decision making under uncertainty are re-
viewed as the basis of the modeling systems to be developed. The state-of-the-art in
the area is also surveyed.

(8) What is understood for schedule robustness and flexibility? Is there any for-
malism established for these concepts?
(4) Is the problem well solved or deficiencies can be identified?

The analysis reveals the lack of standard and reliable decision-making systems
able to deal with uncertainty issues, the consequent void of successful commercial Ad-
vanced Planning and Scheduling (APS) packages available for the industry addressing
the problem proactively, as well as the challenge implied in the area of process opera-
tions. The high computational requirements, the multiple sources of uncertainty, the
multiple and conflicting criteria involved in a process system, as well as the lack of
a general formalism for the concept of schedule robustness, are identified as the main
critical issues.

Although computational issues are relevant in the industrial practice, the main
contribution of the thesis is concerned about the appropriate definition of the pro-
blem and the management of the uncertainty to improve the robustness features of
predictive schedules through the development of proactive decision-support systems
for operational analysis.

(5) How can schedule robustness be improved? What are the benefits?

This question drives the main contents of the underlying research. The improve-
ment of schedule robustness implies a first understanding and definition of the
concept. In view of the lack of a common formalism, an attempt is made to establish
a general basis to formalize the notion of schedule robustness in the context of ope-
rational analysis. Robustness is defined as a trade off between scheduling efficiency
and the eventual consequences of the uncertainty, both measured either in temporal
or economic terms according to the preferences of the decision maker. Notice that
with this formalism, and contrary to the measures commonly used so far, critical
situations that may arise at execution time are explicitly managed in the reasoning
stage, thus providing a more realistic modeling approach for the problem.

The critical issues, as well as the set of specific points involved in the objective
pursued (refer to Section 3.2) are covered within three main topics:

|. Robust scheduling focused on operational uncertainties.

A first contribution is the development of proactive modeling systems to account
for the main operational uncertainties in short-term production scheduling
(variable operation times and equipment breakdowns). Schedule robustness is for-
malized to manage the trade off between the desired efficiency, evaluated in terms of
makespan, and the need to avoid the generation of wait times during the execution
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of a predictive schedule. This new formalism for schedule robustness proves suitable
for the identification of more conservative predictive schedules, which not only assure
an improved performance with significantly reduced expected wait times when they
are executed in an uncertain environment, but also maintain an acceptable efficiency
in the nominal scenarios.

Both rigorous and procedure-oriented models are developed and analyzed in this
research work. Stochastic programming is first used to formulate the problem con-
sidering only uncertainty in the processing times. A simulation-based optimiza-
tion framework is finally developed to capture the multiple sources of uncertainty,
as well as the rescheduling procedures proactively in the decision stage, thus providing
a more complete view of the problem. Instead of formulating a complex mathemati-
cal model for the optimization module, the use of meta-heuristics is incorporated to
stochastic optimization with the development of a stochastic GA (stochGA), which
proves to be very promising for the identification of robust predictive schedules.

The results obtained fully validate the convergence properties and suitability of
the simulation-based optimization approach. However, the case studies used to test
the proactive modeling systems are relatively simple to fully justify their advantages
in terms of computational effort.

Il. Extension to transport scheduling.

The procedure-oriented modeling system developed in the context of production
scheduling is next extended to involve short-term transport scheduling in muti-site
systems with uncertain travel times, thus covering a broader operational perspec-
tive. While the integration of production and distribution problems has generally been
considered in strategic and tactical levels of analysis, being the presence of uncertainty
usually neglected, their coordination in the low operational level is a step forward in
this research direction. Though the problem is difficult to generalize because of the
multiple features and objectives involved, a better management of inventory profiles
and material flows can be easily attained. Concerning the uncertainty, the effects of
variable travel times are merely evaluated in this research work, but it is again evi-
denced that deterministic approaches tend to predict lower times than those realized
during the implementation of the schedules, thus contributing to further disturbances.

I1l. Robust scheduling focused on tactical uncertainties

This research work concludes with the consideration of product demands va-
riability as the most common source of tactical uncertainty with a direct effect in
short-term scheduling decisions. Schedule robustness is formalized in terms of profit,
taking into account the inventory and unsatisfied demands as effects of the uncer-
tainty; the problem is analyzed from a risk management point of view, using and
comparing financial risk, downside risk, and worst-case revenues as alternative control
measures. These three metrics prove suitable for identifying predictive schedules with
limited dispersion and acceptable expected profits, although the worst-risk approach
is shown to be the most effective, both in terms of robustness and computational
requirements.

The concept of risk management has largely been used in strategic and tactical
levels of decision, mainly in the area of portfolio management. However, its appli-
cation had not been extended to short-term scheduling. It may be argued that the
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consideration of demand uncertainty in short-term scheduling is somehow a contra-
diction, since it is usually related to long-term decisions. Though demand uncertainty
has essentially a long-term meaning, its effects may easily propagate to short-term
decisions implying changes in production amounts, as it is noticed in this research.
It is not uncommon that production scheduling relies on forecast demands to draw
a predictive schedule that allows the initialization of production and the delivery of
products in a just-in-time fashion.

With the research conducted, the objectives devised in view of the situation in
the area are successfully achieved. In general, the proactive approaches developed in
the thesis prove suitable for the identification of predictive schedules with improved
robustness when they are to be executed in uncertain environments, and provide
valuable insight and general guidance on the performance of the process system.
Instead, it is shown that predictive schedules determined assuming certainty tend to
overestimate the performance of the system, leading to suboptimal or even infeasible
realizations when they are implemented in practice.

The need to face the uncertainty proactively with the development of modeling
systems that incorporate information about the uncertainty at the time of reasoning
implies by no means the exclusion of rescheduling at execution time. Multiple sources
of uncertainty can be encountered, but some of them may be too minor and it seems
not reasonable or even worthy to take all of them into account when modeling the sys-
tem. Therefore, some reasoning, though simple, will have to be done during execution.
However, the proactive view of the uncertainty, with the incorporation of information
about not only stochastic parameters, but also rescheduling strategies, is proved to
be highly advantageous; on the whole, it provides insight on the performance of the
system as well as visibility for future actions, knowledge that can usefully be exploited
when planning external activities with customers and suppliers. Besides, the difficulty
of rescheduling procedures not only depends on the consequences of a disturbance,
but also on the features of the predictive schedule; some predictive schedules may
lead to rescheduling problems with lower implementation costs that others.

Therefore, proactive scheduling appears as a promising way to support online
scheduling strategies, thus avoiding inefficient or costly reconfigurations and keeping
low what is known as schedule nervousness (a schedule is considered nervous if it
experiences large and frequent changes). Finally, proactive approaches can be seen as
a way to reduce the gap between theory and the industrial practice, and in general,
to improve the robustness, flexibility and performance of the overall process system,
properties that undergo an increasing interest to remain effective and competitive in
current global and dynamic operation environments.

8.2 Future research

The large and multidisciplinary area of PSE, along with the growing trends to operate
in global, competitive, dynamic and thus uncertain environments, pose a huge number
of directions and challenges for research. Despite the increasing interest in Supply
Chain Management (SCM), the impact of flexibility and responsiveness characteristics
of every production process and task in the overall supply chain system is highly
significant and deserves its own research effort. The contribution of this thesis can
be considered as a basis for further improvements on the development of decision-
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support modeling systems managing uncertainties in operational analysis. Future
research and opportunities can be directed, among others, to the following points:

e Optimization under uncertainty, and particularly stochastic optimization, im-
plies large modeling systems quickly affected by the course of dimensionality.
Although this subject is the center of significant research, computational issues
are still one of the major challenges for the development of applicable and effi-
cient solution algorithms. Effort could be devoted towards the development of
decomposition or approximation algorithms for multi-stage stochastic problems,
as well as on efficient and uniform sampling techniques. A deeper understanding
of the properties and structure of the problem is needed.

e Because of the detailed and complex models required to capture the features
of problems under uncertainty, their rigorous resolution is unlikely to reward
the computational effort implied. On the other hand, the implementation of
purely heuristic-oriented approaches may miss the opportunities for improved
solutions. Instead, the combination of heuristic and mathematical programming
algorithms should be considered as a promising way to model and solve opti-
mization problems efficiently.

e The notion of robustness has been applied in proactive scheduling approaches
to identify predictive schedules. However, it can also be extended to the pro-
blem of rescheduling when repairing a predictive schedule, either in an on-line
implementation, or in a proactive modeling system as those developed in this
thesis. Robustness could be addressed in a rescheduling procedure using only
information about the uncertain parameters, without incorporating further re-
scheduling strategies (otherwise, the modeling approach derives in an endless
loop). This new perspective in rescheduling strategies provides also a more
realistic and effective reaction.

e Being the interests focused on globalization and SCM, the integration of proac-
tive scheduling methodologies with tactical and/or strategic analysis can be
considered so as to provide an improved guidance on the performance of the
whole system.

e The formalism of robustness proposed in this thesis could be extended to strate-
gic and tactical levels, and a hierarchical integration of the effects of several
sources of uncertainty could be considered. These steps imply the evaluation of
the effects of the uncertainties within the different levels of decision, and their
incorporation into the performance criteria of the modeling systems.
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Nomenclature

The characters and acronyms used in the thesis are defined when are used
for the first time. This chapter is a reference of the nomenclature used
over the entire document.

Characters

atf subscript for associated transport orders
b subscript for batches

B upper bound on the number of batches
BS; batch size of product ¢

., cost of changeover from product ¢ to ¢’
cf fixed cost of vehicle v

el inventory cost (of product 1)

9c cost of option contracts of product i
cf production cost of product ¢

csum multiple cost

ctr transport cost

v cost of production shortfall

c¥ cost of vehicle v for distance unit

C capacity of location [

C, capacity of vehicle v

ddyg due date of transport order tf

dev deviation criterion

distys distance covered in transport stage ts
DRgq downside risk at profit target 2

E summed earliness criterion

EPV expected profit value

E[] expected value

F flow time criterion

FRq financial risk at profit target Q
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Nomenclature

tr
v,l

Ehmw&ﬂasﬁhg rs.m

mk, mky,

NK

154

transport factor of vehicle v in location [

time horizon

subscript for products or processes

subscript for stages

set of first stages j of process 4

set of last stages j of process i

set of stages j required for the production of process i
subscript for scenarios

subscript for location

summed lateness criterion

large weight value

makespan value (of scenario k)

number of scenarios sampled

number of initial scenarios in a sampling algorithm

number of replications in a sampling algorithm

number of batches produced of product @

subscript for operations

optimum objective function value of scenario k

set of first operations o of stage j

set of last operations o of stage j

set of operations o and o’ in stages j and j’ to be performed sequentially
set of operations o and o’ in stages j and j’ to be performed simultaneously
set of operations o and o’ in stage j to be performed one immediately
after the other

set of operations o in stage j

profit value (of scenario k)

amount of product ¢ stored (in scenario k)

amount of product ¢ contracted

amount of product ¢ produced

amount of product ¢ allocated in option contracts in scenario k
quantity of product ¢ sold in scenario k

quantity of product 7 not satisfied in scenario k

amount of materials discharged in transport stage ts

subscript for replications

initial stock of product i

speed of vehicle v

summed tardiness criterion

subscript for transport operations

subscript for transport routes



ts

Tfnroik

Tfn,

Tfnjp

Tfnee, T friek
Tfns, T s
Tinroik

Tin;

T’Lﬂjb

Tingy, Ting,
Tings

Topbreak
Top;;
Toplswp
Topoik
Topdischarge

ts
travel

Topy:,
to

wi,
wt g,
WPV
XMy
KXo
Xijirgr

}/iju
Yia

ZPR,

ZRR
—break

Nomenclature

subscript for transport stages

completion time of operation o of process i in scenario k
predicted final time of transport stage ts

final processing time of stage j in batch b

final time of transport route ¢r (in scenario k)

final time of transport stage ts (in scenario k)

start time of operation o of process ¢ in scenario k
start time of process i

initial processing time of stage 7 in batch b

initial time of transport route tr (in scenario k)
initial time of transport stage ts

duration of a breakdown

processing time of product 7 in stage j

fixed stop time in location [

processing time of operation o of order i in scenario k
discharge operation time of transport stage ts

travel operation time of transport stage ts

subscript for transport orders

period of time of product ¢ in storage

processing time of stage 7 in batch b

subscript for units

set of units u available to process stage j of process i
subscript for vehicles

wait times

start wait time or delay of process i in scenario k

wait time between stages (after operation o of process ¢ in scenario k)

worst profit value

variable indicating the change from product 7 to ¢’ in batch b
binary variable denoting the assignment of product i to batch b
binary variable denoting that stage j of process i is processed before

stage j’ of process ¢’

binary variable denoting the assignment of stage j of process 4 to unit u

binary variable denoting that the PV} is lower than the target profit {2

absolute robustness criterion
robust deviation criterion
relative robustness criterion

mean time point at which a breakdown occurs
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Nomenclature

Greek characters

@ confidence level

Onk,a half-length confidence interval for nk samples and confidence level «
y relative error of an estimate of a mean value

A low weight value

Vio ¢ sales price of option contracts of product 7

v; sales price of product i

Q target profit

Wik probability of occurrence of scenario k

I3 mean value of performance measure p

DPrQ positive deviation of the profit value from target {2 in scenario k
0, Pi weight value (of criterion ) in a multi-objective function

o standard deviation value

ot transport request of product ¢

0;, 0k production request of product ¢ (in scenario k)

Acronyms and abbreviations

APS advanced planning and scheduling
CPI chemical process industry

CRP capacity requirements planning
DARP dial-a-ride problem

DRP distribution requirements planning
EON Event Operation Network

ERP enterprise resource planning

EVPI expected value of perfect information
GA genetic algorithm

GSL GNU scientific library

HSS Hammersley sequence sampling
IT information technology

JIT just-in-time

LHS left-hand side

LP linear programming

MCS Monte Carlo sampling

MES manufacturing execution systems
MILP mixed-integer linear programming
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MINLP
MRP
MU
NIS
NLP
nom
ocC
PDP
PDPTW
PMX
PSE
1Y%
RHS
rnd
ROI

SA

SC
SCM
TSP
TU

UIS
UML
VRP
VRPTW
VSS
WU
W

Nomenclature

mixed-integer non-linear programming
materials requirements planning
monetary units

non-intermediate storage

non-linear programming

nominal value

option contract

pickup and delivery problem

pickup and delivery problem with time windows
partially mapped crossover

Process Systems Engineering

profit value

right hand side

random value

return of investment

simulated annealing

supply chain

Supply Chain Management

traveling salesman problem

time units

unlimited intermediate storage

unified modeling language

vehicle routing problem

vehicle routing problem with time windows
value of the stochastic solution

weight units

zero wait
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B.

Case studies - Problem data

The processes used as case studies to assess the suitability of the modeling
approaches developed in this thesis are described in this appendix. Their
configurations and problem data are also reported.

B.1 Motivating example

The motivating case study is a comprehensive example that consists of a five-product
three-stage flow shop plant studied first by Balasubramanian and Grossmann (2002).
A scheme of this plant is shown in Figure B.1. Each stage involves one single opera-
tion, and only one unit is available for its processing (Table B.1).

u3 —

reaction centrifugation drying

Figure B.1: Scheme of the flow shop plant of the motivating example.

mooOw>»

The operation times are considered uncertain, and are represented by discrete
probability distributions with three possible time realizations for each product oper-
ation in each stage. The example is extended with information related to uncertainty

Table B.1: Recipe data for the motivating example.

Stage Unit Operation 1))
jl ul reaction ol
j2 u2 centrifugation 02
i3 u3 drying 03
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B. Case studies - Problem data

in the availability of unit u2, as well as with production and economic data. Con-
cerning the uncertain equipment availability, an exponential distribution function is
used to describe the breakdown time, whereas the downtime is represented using a
uniform probability distribution. Production and time data are provided in Section
B.1.1, whereas economic data is given in Section B.1.2.

B.1.1 Operational data

A common batch size of 100 kg is assumed for all the products; nominal product
demands are detailed in Table B.2. The characterization of the uncertain equipment
availability, that is, the mean breakdown time (??Om) and the minimum and maximum
breakdown durations (Top®"®®*), are given in Table B.3. Concerning the time data,
Table B.4 reports the mean operation times. These values have been calculated
based on the discrete probability distributions reported in Table B.5, which describe
the uncertain processing times for each product operation. A scenario with product
demands different than the nominal ones is evaluated in Sections 1.3 and 7.5.1; this
particular scenario is reported in Table B.6. Finally, a specific scenario with random
operation times used for validation purposes in Sections 1.3 and 4.4 is detailed in
Table B.7.

Demands are defined in kg, whereas times are given in arbitrary time units, TU.

Table B.2: Nominal demands (6, ") for the motivating example.

Product g,
il 200
i2 100
i3 300
i4 100
j5) 100

Table B.3: Characterization of the uncertain equipment availability for the motivating
example.

—break

Unit ¢ Topbreak

(min - max)

u2 75 12-24

Table B.4: Mean operation times for the motivating example.

Operation A B C D E
reaction 6 6 9 25 17
centrifugation 8 12 8 20 4
drying 14 16 9 17 14
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B.1. Motivating example

Table B.5: Characterization of the operation times uncertainty for the motivating
example.

Orders Operation | k1 ko k3
"t w ot w ot w
A ol L2 0.15 | 4 025 , 8 0.60
A 02 16 050 110 015 112 0.35
A 03 ;12 0125 ,14 0775 ,16  0.10
B ol 13 030 ' 5 030 8 040
B 02 4 050 15 025 ;25 025
B 03 18 0.40 115 020 125 040
B ol 5 010 |7 040 12 050
C 02 16 0.20 1 8 0.50 110 0.30
O 03 |8 080 10 010 |14 010
D ol /12 015 124 025128 0.60
D 02 16 050 '20 015 '25 035
D 03 11 0125 ,17  0.775,23  0.10
B ol 15 030 18 040 '19 030
E 02 2 0.25 | 4 050 , 5 0.25
E 03 8 040 '14 020 '19 040

Table B.6: Random product demands scenario (gznd) for the motivating example.
—rnd
Product 0;

i1 250
i2 130
i3 200
i4 100
i5 80

Table B.7: Random operation times scenario for the motivating example.

Operation A B C D E
reaction 2 5 7 28 15
centrifugation 6 4 10 25 4
drying 16 15 8 17 8
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B. Case studies - Problem data

B.1.2 Economic data

Concerning the economic information for the motivating example, data related to sales

prices (v;, v2¢), production costs (cI’), costs for option contracts (c¢), inventory
costs (c!), and costs for product changeovers (cf,) is reported in Tables B.8 and B.9.
This data is used in Sections 1.3 and 7.5.1. Prices and cost parameters are assumed

to be in monetary units, MU.

Table B.8: Sales prices (v;, v9¢), production costs (¢!’), costs for option contracts

(c9€), and inventory costs (c!) for the motivating example.

Product v Vio c ij CT:O c C{
A 10 10 5 5.5 0.5
B 12 12 6 6.5 0.6
C 7 7 3.5 4 0.3
D 10 10 5 5.5 0.5
E 8 8 4 4.5 0.3

Table B.9: Costs for product changeovers (cg,) for the motivating example.

A B C D E
A 0 3 1 2 1
B 1 0 1 1 2
C 1 3 0 2 1
D 1 2 1 0 1
E 2 3 1 2 0

B.2 Multiproduct plant

The multiproduct plant case study is an adaptation of the example presented in
Petkov and Maranas (1997), which consists of a multiproduct batch plant with 4
production stages and 5 different products. Only one production line is considered,
and a scheme of the plant is depicted in Figure B.2.

Operational data related to product demands, batch sizes and processing times
for each product is given in Section B.2.1. Section B.2.2 details the economic in-

il
i2
Stage 1 i3
i4
i5

Figure B.2: Scheme of the multiproduct plant of case study B.2.
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B.2. Multiproduct plant

formation. Operation times, sales prices, and production costs are taken from the
example in Petkov and Maranas (1997). Different product demands and batch sizes
are considered because of the distinct time horizon and requirements of the modeling
systems developed in this thesis. Additional data for inventory costs, costs for option
contracts, and changeover costs is specified.

B.2.1 Operational data

Data concerning nominal product demands (g?om) is reported in Table B.10. Batch
sizes (BS;) and operation times are assumed known with certainty for each product,
and are given in Tables B.11 and B.12, respectively.

Times are specified in hours h, whereas demands and batch sizes are given in kg.

—nom

Table B.10: Nominal demands (¢, ) for the multiproduct plant example.

Product ?me
il 180
2 160
i3 300
i4 120
i5 150

Table B.11: Batch sizes (B.S;) for the multiproduct plant example.

Product BS;

il 60
i2 80
i3 100
i4 60
i5 60

Table B.12: Processing times for the multiproduct plant example.

Product stage 1 stage 2 stage 3 stage 4

il 10 4 10 1
i2 3 10 6 12
i3 4 12 6 10
i4 16 3 8 4
i5 7 2 ) 3
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B.2.2 Economic data

Economic data related to sales prices (v;, v°¢), production costs (cf), costs for

option contracts (c{“), inventory costs (c!), and costs for product changeovers (c$,)
is defined in Tables B.13 and B.14. This information is assumed to be in monetary

units, MU.

Table B.13: Sales prices (v;, v, production costs (c’), costs for option contracts

(c9€), and inventory costs (c!) for the multiproduct plant example.

Product v; uio C cf C?C c{
il 9 9 4.5 5 0.8
i2 9 9 4.5 5 0.8
i3 12 12 6 6.5 1
4 12 12 6 6.5 1
i5 8 8 4 4.5 0.6

Table B.14: Costs for product changeovers (c$,) for the multiproduct plant example.

il i2 i3 i4 ib
il 0 1 5 3 2
i2 2 0 4 5 1
i3 1 1 0 1 2
i4 1 2 2 0 3
ib 3 2 5 4 0

B.3 Procel

Procel is a batch production pilot plant located in the laboratory facilities of the
chemical engineering department in the Universitat Politecnica de Catalunya. It
consists of three tank reactors, three heat exchangers, and the necessary pumps and
valves to allow configuration changes. The production recipes used in this facility
involve 3 production stages and 8 operations to manufacture two different products.
A scheme of this process is presented in Figure B.3. Uncertainty has been introduced
in the processing times for the operations of loading, heating and discharging, as well
as on the availability of Reactor! used in the third procedure.

Recipe data related to the production stages, operations in each stage, available
equipment units, and processing times for each product is given in Table B.15. For
the operations with variable processing times, this uncertainty is described with a
uniform distribution function, and the minimum and maximum values are reported.

The parameters related to the availability of Reactorl, i.e., the nominal break-

—brea

down time (¢ k) characterizing an exponential distribution function, and minimum
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B.4. Washing subprocess

Procedure 1

load

Tank _
hold Procedure 2

discharge

Procedure 3

charge | Reactor 1 /

transfer
heat Reactor 2

dischargg —— >

clean

Figure B.3: Production process of Procel.

and maximum breakdown durations (Top®"¢?*) defining the boundaries of a uniform
distribution, are reported in Table B.16. Time data is given in hours, h.

Table B.15: Recipe data for Procel.

Recipe Stage Unit Operation Top 4 Topp
(min - max) (min - max)

A/B  Procedure 1 Tank load tank 2.3-3.0 23-3.0
hold 1.0 1.0
discharge tank 2.0 2.0
Procedure 2 Pump transfer 2.0 2.0
Procedure 3 Reactor 1/2 charge 2.0 2.0

heat 2.1-28 4.0 - 4.7

discharge 4.0 - 4.8 5.2-59
clean 1.5 2.0

Table B.16: Characterization of the uncertain equipment availability for Procel.

—break

Unit t Topbreak
(min - max)

9-15

Reactor 1 15

B.4 Washing subprocess
The washing subprocess case study is an industrial-based example that consists of

the scheduling of a washing subprocess of a more complex single product production
process. A scheme of this subprocess is shown in Figure B.4.
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»(p1)

v Y

BT -
E
F1 F2 lsold formation |
(+3) _ discharge |

cleaning
| sistoets filling water

washing cake
water discharge

drying
discharge
charge
mixing
bleaching
discharge

Figure B.4: Washing subprocess scheme.

The processing environment is essentially of batch nature, and involves 6 pro-
duction stages with 18 different activities, either batch operations in filters or semi-
continuous auxiliary operations. The importance of addressing the operation times
uncertainty comes from the desire to achieve high and uniform product quality.

Table B.17: Recipe data for the washing subprocess.

Stage Unit Operation 1D Top (min - max)
Filtration F1 charge ol 10.6 - 22.4
F2 solid formation 02 30.0 - 34.0
discharge 03 8.3 - 16.6
cleaning o4 2.0-3.6
filling water 05 8.0
washing cakes 06 50.0 - 70.0
water discharge o7 10.0 - 12.0
drying o8 6.6 - 11.0
discharge 09 5.0-5.6
Mixing M charge 010 simultaneous with 09
mixing oll 10.0
bleaching 0l2 30.0
discharge 0l3 5.0
Dosification P1 pumping ol4 simultaneous with ol
Spraying 1 P2 spraying | olb simultaneous with o4
Spraying 11 P2 spraying II 016 simultaneous with 09
Washing P3 washing I ol7 simultaneous with 05
P4 washing 11 0l8 simultaneous with 06
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B.4. Washing subprocess

Recipe data concerning the stages, operations in each stage, available equipment
units, and processing times information is given in Table B.17. The uncertain pro-
cessing times are described with uniform probability distributions between the min-
imum and maximum values given in the table. The availability of unit F1 is also
subject to uncertainty; the nominal breakdown time (fbreak) characterizing an ex-
ponential distribution of failure times, as well as minimum and maximum values of
a uniform distribution for the breakdown duration (Top?"¢?*), are reported in Table
B.18. Times are assumed to be in arbitrary time units, TU.

Particular scenarios with random values for the uncertain parameters have been
defined to assess the suitability of the proactive approaches developed in the thesis.
In Chapter 4 (Section 4.5.2) only uncertainty in the processing times is addressed,
and the random scenario tested is detailed in Table B.19. For the proactive approach
developed in Chapter 5 (Section 5.5.3) managing both uncertain processing times and
equipment availability, the scenario with definite breakdown time (fbrmk)7 breakdown
duration(Top® ?*), and operation times is reported in Tables B.20 and B.21.

Table B.18: Characterization of the uncertain equipment availability for the washing
subprocess.

Unit 7% Topbreak

(min - max)

F1 240 72 - 96

Table B.19: Operation times for the washing subprocess in a particular scenario
analyzed in Section 4.5.2.

ID Order 1 Order 2 Order 3 Order 4

ol 17.7 18.6 12.0 13.0
02 32.9 31.8 33.2 31.2
03 16.4 12.9 14.3 9.4
o4 2.7 2.3 2.3 2.7
06 53.8 56.8 69.6 57.1
o7 10.7 10.9 10.4 10.3
08 10.2 6.8 6.9 10.5
09 5.6 5.3 5.5 5.2

Table B.20: Equipment availability for the washing subprocess in a particular scenario
analyzed in Section 5.5.3.

Unit tbreak TOpbreak
F1 1128 81
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Table B.21: Operation times for the washing subprocess in a particular
scenario analyzed in Section 5.5.3.

ID Order1 Order 2 Order 3 Order 4

ol 15.0 20.9 15.0 12.1
02 32.5 32.5 33.5 32.5
03 9.3 9.3 13.5 114
o4 2.8 2.8 2.8 2.8
06 45.2 60 60 60
o7 * 10.8 10.3 10.8
o8 * 9.4 10.5 8.3
09 * 5.1 5.1 5.2

*rejected operations because of the breakdown.

B.5 Production & transport: single product facility

A multi-site environment involving the production and distribution of a single product
is adopted as case study to test the approach developed for integrating production
and transport scheduling. It is based on the example proposed in Dondo et al. (2003).
A product manufactured in a processing plant P is to be distributed in 10 different lo-
cations. The production recipe involves a single production stage with one operation,
and a fleet of 2 vehicles is available in the plant.

Production data concerning the recipe, production orders, and inventory condi-
tions is reported in Section B.5.1. Problem data related to the transport problem is
detailed in Section B.5.2. Capacities and demands are assumed to be in weight units
WU, time data is given in hours h, distances are in km, and costs are supposed to
be in €, or €/ WU if they are unitary costs.

B.5.1 Production data

Recipe data related to the process stage, operation, available equipment unit, batch
size, and operation time is detailed in Table B.22. Table B.23 reports the initial level
of stock in the plant (S?), production orders (f;), and unitary inventory costs (cf).

)

Table B.22: Production recipe data for case study B.5.

Recipe Stage Unit(ps—2000) Operation Top
A Procedure 1 Reactor Reaction 0.5

Table B.23: Initial stock level (S?), production orders (6;), and unitary inventory cost
(¢l for case study B.5.

Material SY 0; cf

?

Product A 4000 10000 0.3
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B.5. Production & transport: single product facility

B.5.2 Transport data

Transport data for the vehicles, locations, the distances matrix, and transport orders
established in the sites is reported in Tables B.24 - B.27, respectively.

In addition, the transport factor ( 52) used as unloading rate to evaluate the

operation time of a discharge operation is assumed to be 0.000083 (12000~ h/WU)
for all vehicles in all the locations; the weight values for the flow time (F’), Routes,
earliness (E) and tardiness (T') measures in the multi-objective criterion are fixed at
p1=50, p2=100, p3=5, and ps;=20, respectively; and the schedule start time is set
at time 12:00 h.

Table B.24: Vehicles data for case study B.5 (C,,: capacity; s,: mean speed; c?:unitary
cost; ¢/ fixed cost).

Vehicle C, s, ¢ c{j

V1 7500 30 0.5 30
V2 7500 30 0.5 30

s

Table B.25: Locations data for case study B.5 (Cj: capacity; Top, toP. fixed stop time).

Location  C;  Top;'”
P 15000 0.30
T1 1000 0.15

T2 1000 0.15
T3 2000 0.15
T4 1000 0.15
Tb 3000 0.15
T6 1000 0.15
T7 1000 0.15
T8 2000 0.15
T9 3000 0.15
T10 2500 0.15
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Table B.26: Distances matrix for case study B.5.

\ P T1I T2 T3 T4 Th Te6 Tv T8 T9 TI10

P - 6.2 95 82 9.7 148 127 96 86 12 10.7
T1 62 - 34 67 92 76 64 34 46 83 b5
T2 95 34 - 33 48 42 47 40 62 95 8.0
T3 82 6.7 33 - 1.5 63 84 73 96 132 123
T4 9.7 92 48 1.5 - 55 86 88 11.1 148 13.8
TS 148 76 42 6.3 5.5 - 34 65 87 94 115
T6 12.7 64 47 84 86 34 - 3.1 53 60 81
T7 96 34 40 73 88 65 31 - 23 59 5.0
T8 8.6 46 6.2 96 11.1 87 53 23 - 3.7 29
T9 12 83 9.5 132 148 94 6.0 59 3.7 - 3.2

T10 | 10.7 5.5 8.0 123 138 11.5 81 50 29 3.2 -

Table B.27: Transport orders (61") and related due dates for case study B.5.

Order Location Material 6! Due date

1 T1 A 440 13:00
2 T2 A 580 13:00
3 T3 A 1370 13:00
4 T4 A 820 13:00
5 T5 A 2850 14:00
6 T6 A 750 14:00
7 T7 A 520 14:00
8 T8 A 1480 15:00
9 T9 A 2500 15:00
10 T10 A 1940 15:00
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B.6 Production & transport: Procel

A multi-site environment based on Procel pilot plant described in Section B.3 is
considered as a case study for production and transport scheduling. It involves two
final products that have to be distributed in 8 retail outlets geographically spread
around 200 km from the production site. Two vehicles with different features are
available. A scheme of this example is represented in Figure B.5.
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Figure B.5: Scheme of case study B.6.

Production data is reported in Section B.6.1, whereas Section B.6.2 details the
input information for transport scheduling. Capacities and demands are specified in
weight units WU, times are given in hours h, distances in km, and costs are assumed
to be in €, or €/WWU if they are unitary costs.

B.6.1 Production data

Recipe data related to process stages, operations in each stage, available equipment
units, batch sizes, and operation times for each product is detailed Section B.3 above
(Table B.15). Nominal operation times are adopted for the uncertain operations.
Table B.28 reports the initial level of stock in the plant (SY), production orders (6;),
and unitary inventory cost (c!).

Table B.28: Initial stock level (SY), production orders (6;), and unitary inventory cost
(cf) for case study B.5.

Material S 6, cf

A 500 1750 0.20
B 300 1250 0.25
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B. Case studies - Problem data

B.6.2 Transport data

Data characterizing the vehicles, locations, the distances matrix, and transport orders
established in the sites is reported in Tables B.29 - B.32, respectively.

The transport factor ( yl) used as unloading rate to evaluate the operation time

of a discharge operation is assumed to be 0.001 h/WU for all vehicles in all the
locations; the weight values for the flow time (F'), Routes, earliness (E) and tardiness
(T) measures in the multi-objective criterion are also fixed at p;=>50, po=100, p3=5,
and py=20, respectively; and the schedule start time is set at time day 1 - 00:00 h.

Table B.29: Vehicles data for case study B.6 (C,,: capacity; s,: mean speed; cl':unitary
cost; ¢/ fixed cost).

Vehicle C, s, c¢* c{:

v

V1 500 50 0.12 10
V2 700 50 0.12 12

S

Table B.30: Locations data for case study B.6 (C;: capacity; Top;"": fixed stop time).

Location C;  Top;™”

BAR 5000 1.0
GIR 2000 0.5
LLE 1500 0.5
TAR 2000 0.8
VIC 1500 0.5
VAL 2500 1.0
ZAR 2500 1.5
PER 2000 1.0
AND 1500 1.0

Table B.31: Distances matrix for case study B.6.

\BAR GIR LLE TAR VIC VAL ZAR PER AND

103 178 101 70 351 311 192 198
256 194 68 444 389 96 215
107 158 348 149 346 153
- 162 260 240 283 273
VIC 70 68 158 162 - 411 35 158 151
VAL 351 444 348 260 411 - 328 535 534
ZAR 311 389 149 240 356 328 - 479 302
PER 192 96 346 283 158 535 479 - 163
AND 198 215 153 273 151 534 302 163 -

BAR -
GIR 103 -
LLE 178 256 -
TAR 101 194 107
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Table B.32: Transport orders (6") and related due dates for case study B.6.

B.6. Production & transport: Procel

Order Location Material 6" Due date
1 GIR B 300 day 3-12:00
2 LLE A 200 day 3-19:00
3 TAR A 400 day 3 - 19:00
4 VIC B 400 day 5 - 12:00
5 VAL A 800 day 6 - 19:00
6 ZAR B 250 day 8- 19:00
7 PER B 300 day 5 - 12:00
8 AND A 350 day 8- 19:00
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