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CHAPTER 4. MIMO FEEDBACK CONTROL ANALYSIS

OF THE DIVIDED WALL COLUMN

4.1 Abstract

This chapter addresses the stabilisation and the composition control of the DWC through

decentralised feedback control. The scope of preliminary works addressing decentralised

feedback control in the DWC is further extended to analyse the DWC control design in detail. In

order to find out which are the best control structures, different control structures are

systematically analysed and compared under performance and robustness criteria. Linear

analysis tools are used for the Multiple Input Multiple Output (MIMO) feedback control analysis

and non-linear models are used for simulations. The tuning of Proportional Integral (PI)

controllers is discussed. Performance improvement through the transformation of the

composition controlled variables into logarithms is considered. The effect of the energy

optimisation on the controllability of the DWC is evaluated comparing optimal nominal

• operating conditions with non-optimal nominal operating conditions. In order to test the

generality of the results, different case studies including different designs and separation

problems are analysed.

4.2 Introduction

As was seen in chapter two, thermal coupling and correct thermodynamic distillation sequence

are the main reasons why the DWC energy consumption is lower than the energy consumption of

the conventional arrangements for ternary separations. These conditions can be met thanks to the

complex design of the DWC, which offers extra operation DOF. Because of the DWC

complexity, it has more candidate control variables than the conventional distillation

arrangements. Therefore, the possible control structures are different and the control of the DWC

arrangement is a new subject of study. In addition, the DWC applications in the literature (see

chapter three) indicate moderate to high purity products, with their associated complications due

to non-linearity and large time constants.
i

The general control objectives considered in this thesis work are the column stabilisation, to

maintain the purity of the three products at the setpoints, and to maintain the operation close to
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minimum energy consumption. In chapters four and five, the stabilisation and the composition

control of the DWC are studied. Chapter six will address the DWC optimising control.

As seen in chapters two and three, since its design was proposed almost fifty years ago, many

authors have addressed DWC design considerations. Operation and control of the DWC have

received much less attention. However, some works have been published recently. Preliminary

results reported indicate that decentralised feedback control structures may be used to control the

DWC and acceptable control seems feasible. Since decentralised feedback control is the simplest

control strategy, it has been the first control strategy under concern in this thesis work.

Wolff et al. (1995) considered the operation and control of the Petlyuk Column. Linear analysis

tools and frequency-dependent plots were used to study the L S V control structure in a

decentralised feedback control strategy. This control structure consists in the control of A purity

(XAD) by L, the control of B purity (XBS) by S, and the control of C purity (XCB) by V (see Figure

2.16). From a linear point of view, they did not find major problems with the L S V control

structure. However, they found serious problems related to the steady state behaviour if four

compositions were specified and concluded that "holes" in the operation range would make it

very difficult to control four compositions.

Annakou et al. (1996 b) compared the controllability of the heat integrated column sequences

and the fully thermally coupled distillation column (Petlyuk Column). Through degrees of

freedom analysis and steady state multivariable control synthesis tools, they showed that both

investigated schemes could be controlled by conventional decentralised control structures,

although interaction among control loops was smaller for the heat integrated system.

Abdul et al. (1998) also studied the operation and control of the DWC. They suggested that both

liquid and vapour splits (SPLITD and SPLITS) were maintained constant at their nominal values.

Two control structures were considered in their work: L S V and D S V. The second one consists

in the control of A purity by D, the control of B purity by S, and the control of the C purity by V.

The steady state Relative Gain Array (RGA) of the two control schemes was calculated to make

an interaction analysis and simulations showed, according to the RGA results, that D S V control

structure is better than L S K control structure.

Doukas et al. (1981) studied two control schemes for the "Petlyuk Column" without thermal

coupling. Since this arrangement does not have split variables, the control problem is different.

However, the way the authors proposed to control XBS through the localisation of the product tray

is interesting and could be applied to the DWC.

Results obtained in the literature up to now valorise positively decentralised feedback control

application to the DWC. However, further analysis will be very interesting. Basically, the

objective of this chapter is to search the best control structures and the best operating conditions

offered by the DWC complexity. Importance is given to the inventory control structure and to
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the fact that, having the DWC large reflux ratios, the inventory control structure consisting in the

manipulation of D and B may have serious problems to achieve stabilisation. .

4.3 The models

In this chapter, non-linear and linear models of the DWC are developed and used to study and

simulate the DWC. For the easy manipulation of the transfer functions, reduced linear models

have also been used.

4.3.1 The non-linear model

The non-linear model is used to simulate the behaviour of the controlled DWC. On the other

hand, it is the base for the calculation of the linear model.

4.3.1.1 Non-linear model assumptions
During the modelling task, the level of detail of the model is determined. It is important to find

an adequate model for each purpose. In chemical engineering process control, high frequencies

are out of interest because the control system does not respond to high frequency signals. Since

the frequency response in the range of interest is essentially independent of extraneous model

detail (with high frequency effects), models contemplating a lot of detail are nonsense.

In accordance with the distillation model for the control study of a binary simple distillation
. . . . » t . -.. ;

column proposed by Skogestad (1997), the following set of assumptions have been considered.

These assumptions will give a quite simple model, which will contain the essential elements

driving the control system:

constant pressure

- constant relative volatility of components • , . . - . . .

- constant molar flows through the column sections

no vapour holdup _

linear liquid dynamics

- equilibrium in all stages "

Of all the assumptions, constant pressure has the largest effect on the control system. When

considering the pressure, also its control has to be considered. In most distillation columns, the

vapour entering the condenser is used for pressure control.
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4.3.1.2 Non-linear model description

The developed model is based on the mass balance and equilibrium equations, which apply to

every tray. Energy balance equations are not used. Instead, constant vapour molar flows are

assumed through the column sections at steady state.

The equations for the mass balance at any regular tray z are indicated in equations 4.1 and 4.2,

where v is vapour flowrate, / is liquid flowrate, 10 is the nominal liquid flowrate, Mis the holdup,

MO is the nominal holdup and T is the time constant for the liquid flow dynamics in minutes. v(i),

/(i) and I0(i) are the flowrates leaving tray z.

v(/)=v(/-l) (4.1)

(4.2)

As indicated by equation 4.1, the model does not simulate vapour dynamics. However, as

indicated by equation 4.2, the model simulates liquid dynamics. The liquid leaving a tray

increases with the liquid holdup. The ratio is given by T.

In 4.3 and 4.4, the vapour-liquid equilibrium equations at tray z are shown, where y¿ is the

equilibrium A vapour fraction, XA is the equilibrium A liquid fraction, and the same for y&, XB, yc,

and xc-

(i) (4'3)

(4'4)

Regarding the dynamics, three differential equations are solved at every column tray. They are

the total mass balance, and component A and B mass balances. In 4.5, 4.6, and 4.7, these

equations for the regular trays are shown, where MX.A and MXB are M*x¿ and M*XB.

dM ,„ ,
dt

dMx,

(4.5)

-v(i)*yM) (4.6)
dt

-l)*^(z-l)-v(z)*^(z) (4.7)
dt

The derivatives of the composition variables are calculated from the derivatives of the mass

variables according to equations 4.8 and 4.9.

i(Q= (4.8)
dt M(i)
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dMxg f ^ * " I Y Í f\j» —r^W-^O)*——0)
^L (/) = _* <E*— (4.9)
dt M (i)

Based on equations 4.1 to 4.9, a DMC model is built, which has been programmed in MATLAB

(MATLAB, 1998). The model calculates the derivatives of the state variables (xXO. XB(I), and

M(/)) when the values of the state variables are given to it. Ode 15s MATLAB file, which has a

variant step time and is appropriate for stiff systems, is used to integrate the differential

equations and obtain this way the dynamic simulation of the process. Advantage is taken of

SEVIULINK to simulate and obtain results.

The inputs of the model are the reflux flowrate L, the boilup V, the distillate flowrate D, the

bottoms flowrate B, the sidestream flowrate S, the split of liquid SPLITD, the split of vapour

SPLITS, the feed flowrate F, the A molar fraction in feed stream ZA, the B molar fraction in feed

stream ZB, and the feed liquid fraction qp. A scheme of the modelled DWC can be seen in Figure

2.16.

In the model, the stabilisation of the process (mass balance=0) is not imposed. Two control loops

will be responsible of the column stabilisation or inventory control. Specifically, the stabilisation

loops will control the liquid levels in the condenser and reflux drum (M(l) and M(NM)). The size

of these two tanks influences the liquid dynamics.

Considering the tank levels as state variables, the effect of the tuning of their control can be

studied. In the contrary case, perfect control should have been assumed. Consideration of the tray

f holdups as state variables, or in other words, consideration of the liquid dynamics, introduces a

9 delay in the output responses which has an important effect in the control. It imposes that some

^ time it taken from when a change in the liquid flowrate occurs in the top of the column until this

* change arrives the reboiler (see equation 4.2). T is the hydraulic lag on each theoretical tray. And

A specifically, (JVA/-l)*Tis the time it takes for an increase in reflux to affect the reboiler level. For

* instance, for a column with NM=40 and i^O.063, it will take 40*(0.063 min)=2.52 min. This

t overall lag for liquid response is a good control property because with sufficiently fast control,

i some strong interactions that exist at steady state between the compositions at the top and the

bottom of the column can be avoided. In other words, the initial high-frequency response is

<E decoupled.
t

It is important to notice that, although the liquid dynamics imposes a lag to the column response,

mathematically, a delay is not represented by the model equations. For the model, initial

increments travel instantaneously through the column.

A separation example

A separation example is chosen to illustrate the explications about the model, which will also be

used in other sections of this and coming chapters.
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The chosen DWC design has NT=4Q, NP=W, NM=30, NS=\5, NCB=1, NCD=23 and NF=5. This

is a symmetric design, which has not been optimised.

The ternary mixture to be separated has a=(4.65:2.15:1). The nominal feed conditions are:

- 2,4=0.333 molar, zg=0.333 molar (equimolar mixture)

- feed flowrate F=l kmol/min

- liquid feed qp=\ (saturated liquid)

The nominal purity of the products is:

- XAD = 0.9895 molar

- XBS = 0.9709 molar

- XCB = 0.9815 molar

Operating conditions are not optimised. Simply, input values that fulfil the required

specifications are chosen. The nominal operation is defined by:

- Reflux rate Z,=2.667 kmol/min

- Boilup F=3 kmol/min

- Distillate flowrate D=0.333 kmol/min

- Bottoms flowrate 5=0.334 kmol/min

- Side stream flowrate 5=0.333 kmol/min

- Split of liquid SPLITD=0.55

- Split of vapour SPLITB=0.5

- Holdups in all trays M(/)=0.5 kmol, / =2,... 29, 31,... 40.

- Holdup in reboiler and reflux drum M(1)=M(30)=10 kmol

In Figures 4.1 and 4.2, the profiles of the liquid compositions in the main column and the

prefractionator are shown.

To illustrate the effect of the liquid dynamics for different reboiler and reflux drum sizes, the

behaviour of the DWC with tanks of two different sizes has been simulated. A disturbance of

20% in the feed flowrate has been applied at minute 5. The column is stabilised in the following

way: condenser level is controlled by D and reboiler level is controlled by B. Composition is not

controlled. In Figure 4.3, the profiles of the three product compositions are plotted. For tank

holdups 20 times the holdups in the regular trays (red lines), responses are clearly slower than for

tank holdups equal to the regular trays holdups (green lines). About 50 minutes of difference can
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be observed in the worst case. The importance of choosing,realistic values for the reboiler and

reflux drum holdups is apparent. Values-;of 20 times, the ̂ regular tray holdups are realistic.

Because of that, in the examples studied in this thesis work, these, values are chosen. In Figure
.r

4.3, it can also be seen that no delay is manifested: compositions begin to change at minute 5.

Molar

composition

15 20
Tray number

25 30

Figure 4.1 : Liquid composition profiles in the main column
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Figure 4.2: Liquid composition profiles in the prefractionator
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composition
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Time (rain)
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Figure 4.3: Product compositions for different tank sizes

To illustrate the effect of T, the behaviour of the DWC model with two different T values is

simulated. The values are z=0.063 min and 7=0.63 min. The column is also stabilised by D and B

and composition control loops are open.,A step disturbance of+10% in F is applied. In Figure

4.4, .the tank.level.profiles can be seen. From the reboiler liquid level profiles, a slower response

can be' seen for the large T case (blue line). The level in the condenser (cyan lines) has not

changed in any case because the disturbance is an increase of liquid feed flowrate and no effect

of the disturbance arrives .at the condenser because it is absorbed by the reboiler. In Figure 4.5,

the compositions of all three products are plotted and it is seen that the slower responses

correspond always to T=0.63 min. Therefore, the effect of ris quite important and thus, accurate

values may be required to have a proper control study. A value of í=0.063 min will be assumed

all over this thesis work. This is the value proposed by Skogestad et al. (1996).

Lquid

holdup

10.7

10.6

10.5

10.4

10.3

10.2

10.1

Reboiler liquid leva, ' = 0.063
' Reboiler liquid level, f =0.63
" Condenser liquid level

Time (min)

Figure 4.4: Reboiler and condenser liquid levels for different T
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Figure 4.5: Product compositions for different T
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4.3.2 The linear model

The literature theory developed for MIMO linear systems provides with very useful tools for the

stability, robustness and controllability analysis. Therefore, having a linear model of the DWC

will be very useful whenever the behaviour of the linear model can be extrapolated to the non-.

linear real conditions. Distillation columns are known to be very non-linear. The effect of

changes in the inputs depends strongly on the magnitude of the changes and the operating point.

As multivariable systems, interaction between inputs is also an important aspect of the non-

linearity of a distillation column. Given the non-linearity of distillation columns, especially when

high purity is required, will the results obtained with the linear model apply the non-linear

reality? A large amount of practical experience shows that in many cases, linear controllers

designed using linear methods provide satisfactory performance when applied to real non-linear

plants (Skogestad et al. 1996). The Moran approach (Moran et al., 1989) also bases the

controller design on a linear model.

A large profit of DWC liner models has been taken in this work. Linear methods are used to

design diagonal feedback controllers for the DWC. However, non-linear model simulations are

also used to analyse the behaviour of the controllers.

4.3.2.1 The linearised system

The DWC linear models are obtained from linearisation of the non-linear model described in

4.3.1.2. The linearised systems have the inventory control loops closed. The linear models will

be used to study the composition control. Therefore, the composition control analysis is done for

a specific inventory control, the structure and tuning of which have been solved previously.
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In the case of closing the inventory control loops with L and F, the system is unstable at steady

state. As will be seen, this poses some limitations to the linearisation.

4.3.2.2 Linear model representations

Two representations of the linear models are common in the literature. One is the state-space

model representation through the A, B, C and D^matrixes. The meaning of these matrixes can be

seen in equations 4.10 and 4.1Í, where x are the state variables, y the output variables and u the

input variables.

dx/dt=Ax+Bu: ' ' (4.10)

y=Cx+Du (4.11)

The second representation is the transfer function matrix G. The dimension of G is number of

inputs per number of outputs. Each one of the elements of the matrix is defined as seen in

equation 4.12, where the functions y(s) and u(s) are the Laplace transforms of y(t) and u(t),

being t the time.

G(s)=y(s)/u(s) (4.12)

The elements of the transfer function matrix have an important property. After sending a

sinusoidal signal of frequency w to the system element represented by G(s), the signal's

magnitude is amplified by a factor of \G(j\v)\ and the phase is shifted by the angle defined by the

complex G(fw). The analysis of G(s) is known as the frequency analysis (Luyben, 1990),

(Skogestad, 1996). It will be better explained in section 4.7.2.

Transfer function matrix can be calculated from A, B, C and D as indicated in equation 4.13,

where / is the unity matrix.

G(s)=[C(sI-A)'1B] (4.13)

In this work, MATLAB "Linear Time Invariant" state space and transfer function representations

have been used.

4.3.2.3 Two different ways of obtaining the linear model

Two different ways of obtaining the DWC linear model from the non-linear model have been

considered. One is identification by input step changes and the other is the numerical

linearisation using the model of differential equations. Linearisation is done at nominal operation

point.

Identification by input step changes

The most direct way of obtaining an empirical linear dynamic model of an open-loop process is

to find the parameters that fit the experimentally obtained step response data (Luyben, 1990).

Specifically, step response data is obtained by applying a step input change to each input at a
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time and registering the response of all outputs until a new steady state is reached. The transfer

function in 4.14, a transfer function'"of first "order plM'âêlây|is normally assumed for each input-

output pair, where K is the ratio between the final steady state output increment over the input

increment, -^ is the time it takes the output to reach 63% of its final value, and d is the time it

takes the output to start changing. This method do not provide a precise high order model and is

quite sensitive to non-linearity.

Non-linearity would not be a problem if step changes in the inputs were small enough to be in

the linear area. To illustrate the non-linearity of the DWC through the example in 4.3.1, its

transfer function is searched using the identification method. Matrixes in 4.15 and 4.16 are the

transfer functions G(s) obtained with input steps of 0.5%. G(s) in 4.15 is obtained with positive

steps and G(s) in 4.16 is obtained with negative steps. The elements of the matrixes are ordered

in a way that columns are the inputs (L, S and V) and rows are the outputs (product purities).

G(s) =

G(s) =

L

( 2.06
1 + 805
-3.71

1 + 3525
-5.39

^ 1 + 815

L

( 7.32
1 + 1135
-5.86
1 + 845
-1.84
1 + 425

S

0.02

-0.55
1 + 85.55
0.41

1 + 795
*

S

0

-0.5
1 + 815
0.49

1 + 85.55

F

-8.08
1 + 105.55
-6.67

1 + 81.55
1.91

XAD

1 + 375 )XCB

V

— 2 \x

1 + 705
4.65

1 + 3345
6.17-

1 + 76.55 XCB

(4.15)

(4.16)

The transfer functions obtained for positive and negative input step changes are very different,

even with small step changes (a step of 0.5% is already small to be adjusted in a real plant),

indicating a large non-linearity. Gain values vary more than three times from one matrix to the

other. However, more important from a control point of view is that not all gain signs are equal.

Therefore, none of the matrixes are appropriate linear models because the linearisation was done

out of the linear area. It can be concluded that the DWC is too non-linear for the identification

method to be used in a real plant. However, if an analytical model is available, steps can be made

as small as necessary and the method used trough simulation.

Looking closely to the matrixes, from the steady state gain, it can be seen that:
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- • if the boilup is increased over its nominal value, the decrease in the purity of A in the

distillate is large compared to the increase in purity of C in the bottoms product

- if the reflux is increased over its nominal value, the decrease in the purity of C in the bottoms

product is large compared to the increase in the purity of A in the distillate product

- on the other hand, if the reflux is decreased below its nominal value, the decrease in the

purity of A in the distillate is large compared to the increase in the purity of C in the bottoms

product

- and finally, if the boilup is decreased below its nominal value, the decrease in the purity of C

in the bottoms product is large compared to the increase in the purity of A in the distillate.

According to these results, increasing the purity of products is more difficult than decreasing

them. This is one of the main effects of non-linearity. This behaviour is not caused by the special

design of the DWC but by the high purity distillation nature.

If attention is turned to S and XBS variables, that is, to the second row and second column of the

matrixes, it is seen that:

steady state gain for positive and negative changes in S are similar; a 0.5% change in S is in

the linear region.

- the sign of the (2,3) element in the two matrixes is different. This element corresponds to the

effect of V on XBS- XBS decreases either if V increases or decreases. This indicates that purity

of B has a maximum for some Fbetween F nominal + 0.5% and I7 nominal - 0.5%.

Numerical linearisation using the model of differential equations

This will be the method used in this work to obtain the linear models of the studied separations.

With this method A, B, C, and D matrixes are found. Taylor expansion of order one in terms of

deviation variables is applied to A, B, C, and D as seen in equation 4.17. (See equations 4.10 and

4. 11, too).

Ay = A(dx/dt) / Axj Bij = A(dx/dt)/Auj Q = 4y///tc/ DtJ = tyi/Auj (4.17)

Having 3* NT states, very large matrixes are obtained. Specially, A is a 3NT\3NT matrix.

Reduced models have been used for some applications. Balanced residualisation has been

applied for the model reduction. For the separation example, 16 states have been left because it is

seen that with a 16-state model, the difference between the reduced and the 120-state original

model is only noticed at high frequencies (1000 rad/min).

Comparison between the two linearisation methods

With steps of the same size, 10"10 kmol/min, the two linearisation methods are compared. In 4.18

and 4.19, G(0) obtained with step identification and G(0) obtained with numerical linearisation
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are shown. Results are practically the same indicating that the two methods give equivalent

linear models at steady state. At small frequencies, tKe 'two methods also give quite similar

results despite the very different 5 dependency (the 5 dependency of the linear model obtained by

numerical linearisation is a polynomial of order 120 and of the transfer function assumed in the

case of step identification is of order one). However, for large frequencies the differences

increase. This effect can be seen in Figure 4.6, where the singular values of G(s) for L V S inputs

and inventory control made by D and B are plot. Singular values are different for the step

identification (red lines) and the numerical linearisation (blue lines) at large frequencies. Since

high frequencies are not relevant in distillation control analysis, non-precise high order models

given by step identification method could be appropriate. However, differences between the two

models are already found for frequencies of 0.02 rad/min, and this is still in the range of

frequencies of importance for the distillation columns, as will be seen in 4.7.2. Therefore, the

linearised model found with numerical linearisation will give more precise results.

(7(0) =

V SPLITD SPLITS

1.26 -1.41 0.002 0.008 -O.OÍ

0.58 -0.64 -0.10 0.02 -0.02

-0.68 0.78 0.08 0.02 -0.01

''AD

(4.18)

•i
ÍI
f
è

i»
Ô
o
4}
<»
O

SPLITD SPLITB

1.28 -1.43 0.002 0.008 -0.01

0.58 -0.64 -0.10

-0.68 0.78 0.08

0.02 -0.02

0.02 -0.01

-160
10"

Singular Vàlues

10" 10- 10"
Frequency (rad/sec)

(4.19)

Step identification

Numerical linearisation

Figure 4.6: Singular values of G(s)
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Comparing the two linearisation methods, it has to be said that the identification method can be

only used to linearise open loop stable systems because the new steady state output values are

required. For this reason, it can not linearise the DWC with inventory control made by L and V,

which it is not stable. However, equation 4.17 can still be used to obtain the state-space matrixes

for a DWC with inventory control made by L and V. To avoid having results corresponding to

the column at strange operation conditions, values at small frequencies have not been taken into

account.

4.3.2.4 Scaling

A useful approach for scaling, proposed by Skogestad (1996), is to make the variables less than

one in magnitude. This is the approach in this work. It requires the engineer to make a judgement

at the start of the design process about the required performance of the system. The scaling

approach consists in dividing each variable by its maximum expected or allowed change. For

disturbances and manipulated variables, the scaling is:

^scaled=^unscaled/^max Wscaled=Wunscaled/Wmax (4.20)

where d are disturbances, u are inputs, dmax are the largest expected disturbance changes, and

umax are the largest allowed input changes. The scaling of the outputs can be done for the largest

allowed control error or the largest expected change in reference value. In this work, the first

option is taken:

Jscaled^unscaled/ymax (4.21)

where;; are outputs and.ymax are the largest allowed output errors.

In this work, £/max and wmax have been assumed the 20% of the d and u corresponding variables.

Since the considered outputs will be all product compositions, _ymax is assumed to be 0.01 molar

fraction.

Scaling is very important in practical applications as it makes model analysis and controller

design much simpler. Two of the most important parameters used to study control performance

are the Morari Resiliency Index (MRP) and Condition Number (GAO. which derive form the

singular value decomposition of the transfer function. Singular values depend on the scaling.

Also the Closed Loop Disturbance Gain (CLDG) and the Performance Relative Gain Array

(PRGA), two matrixes used for the controllability study, are scaling dependent. Another

controllability index used is the Relative Gain Array (RGA). The elements of the RGA matrix on

the contrary, are adimensional and do not depend on the scaling. In section 4.7.3, the definition

of these controllability indexes will be given.
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4.4 Two operating conditions

In order to have two examples for the next sections>iof ¿this chapter, a second example is

introduced. In this case, the column design is the same than the one of the example in section

4.3.1.2. Also the same separation problem is considered. However, different operating conditions

are considered. The nominal operation of the example in section 4.3.1.2 was not optimal.

Contrarily, the example described in this section has optimal nominal operation. Specifying the

purity of the three products, the steady state with minimum boilup has been searched. In chapter

six, more details on the used DWG optimisation procedure will be given. The optimal nominal

operation found is described next. >

- Reflux rate 1=1.944 kmol/min \

- Boilup F=2.276 kmol/min

- Distillate flowrate D=0.332 kmol/min * :

- Bottoms flowrate 5=0.335 kmol/min

- Side stream flowrate 5=0.333 kmol/min

- Split of liquid SPLITD=0.639

- Split of vapour SPLITB=QA11

- Holdups in all trays Aí(i)=0.5 kmol, i = 2,... 29, 31,... 40

- Holdup in reboiler and reflux drum M(1)=M(30)=10 kmol

The boilup flowrate of the optimal nominal operation is 25% lower than the boilup flowrate of

the non-optimal nominal operation. The composition profiles for the optimal operating

conditions are shown in Figures 4.7 and 4.8. - ~

Comparing Figures 4.1, 4.2 with Figures 4.7, and 4.8, the most remarkable difference between

the composition profiles of the two examples is the symmetry presented by the B composition in

the main column and in the prefractionator for the separation at optimal operation.

The process has also been optimised leaving the feed vapour fraction free, and the minimum

boilup has been found for qp=0 (saturated vapour feed). Decreasing qp (increasing feed vapour

fraction), the minimum boilup is lower and the reflux is higher. As seen above, for qp=l

(saturated liquid feed), Z=1.94 kmol/min and F=2.27 kmol/min. For qp=Q (saturated vapour

feed), Z=2.46 kmol/min and F=1.79 kmol/min. The difference in boilup requirement is really

large, 27%. As indicated in section 2.5.4, it is important to consider the vaporisation of the feed

before entering the DWC. However, because a decrease in the boilup will implicate an increase

in the reflux, the best feed heat condition will depend on the disposability of cold and hot

streams in the plant.
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Figure 4.7: Composition profiles in the main column
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Figure 4.8: Composition profiles in the prefractionator

4.5 Degrees of freedom and control levels

Because of the large difference between the mass flow dynamics time constants. and the

composition dynamics time constants, many authors propose to solve the control problem of
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distillation columns by levels (Luyben, 1992). The lower level is the stabilisation of the process,

the inventory control. The upper level is the separation Control or composition control. Finally, if

extra degrees of freedom are available, another control level can be added, the optimising

control.

The approach proposed in the last paragraph is adequate for the DWC and will be the approach

followed to analyse the control of the DWC in this thesis work. Since pressure is not considered

in the proposed DWC model, the inventory control reduces to the control of the tank liquid

levels. As indicated, the inventory control will be solved first. Then, the separation control will

be studied over the stabilised DWC. Different inventory control structures will be proposed and

for each of them, the analysis of the composition control will be developed. Finally, optimisation

control will be considered.

According to the model described, the DWC has seven operation DOF, corresponding to seven

candidate manipulated variables in the process. They are the L, V, S, D, B, PLITD, and SPLITB.

Of the seven DOF, two will be used to stabilise the column, and three will be used to control the

product compositions. The two remaining operation DOF can be used for optimising control.

In this work, the three operation DOF used for composition control will be specifically used for

the control of the A molar fraction in the distillate, the B molar fraction in the sidestream

product, and the C molar fraction in the bottoms product.

4.6 Inventory control

Typically, when considering a column in isolation, the level in the reflux drum is controlled

manipulating the distillate flowrate and the level in the reboiler is controlled manipulating the

bottoms flowrate. This type of control scheme would be used for a column with low to moderate

reflux ratios (less than 4) (Lyuben et al., 1998). However, when a large flow and a small flow

leave a tank, the large has to be used to control the tank liquid level. Therefore, for columns with

high reflux ratios (reflux much larger than distillate), the control of the reflux drum level should

be done manipulating the reflux, not the distillate. Of course, similar arguments apply to the

reboiler level control in columns where the boilup is much larger than the bottoms flowrate.

According to this, in a DWC, the use of D and B to control the liquid level in the reboiler and

reflux drum is not encouraged because typically, the DWC has large reflux ratios (larger than 4)

at both extremes. For the separation example at optimal operating conditions, L/D=5.S and

V/B=6.S. For optimal designs of the DWC found in the literature, reflux ratios are never lower

than 4 for moderate purity requirements (about 0.95). Because of that, in this work, special

attention is given to the inventory control configuration in what the manipulated variables are L

(for the condenser level) and the V (for the reboiler level).
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This inventory control configuration has the particularity that both manipulated variables are

internal streams. Because of that, with the composition control loops open, changes in external

variables unstabilise the system and the gain matrix is singular at steady state. For this reason,

for simple columns, the inventory control structure was not considered by most distillation

control experts. However, it was shown that the configuration does actually work (Skogestad et

al., 1990 a).

In this work, the following structures for stabilisation control are considered:

- "DB" stabilisation: control of the level in the condenser by the distillate flowrate, control of

the level in the reboiler by the bottoms flowrate

- "LB" stabilisation: control of the level in the condenser by the reflux flowrate, control of the

level in the reboiler by the bottoms flowrate

- "DV" stabilisation: control of the level in the condenser by the distillate flowrate, control of

the level in the reboiler by the boilup

"LV" stabilisation: control of the level in the condenser by the reflux flowrate, control of the

level in the reboiler by the boilup

For each of these possible inventory control structures, the search for the best composition

control structures will be done.

4.6.1 Controllers of the inventory control loops

As explained by Luyben (1990), in real plants, most liquid levels represent material inventory

used as surge capacity. In these cases, it is unimportant where the level is, as long as it is

between some maximum and minimum values: "If PI controllers are used to held the level right

at its setpoint we might as well not even use a tank!". Because of that, proportional controllers

are often used to control liquid levels, in order to give smooth changes and filter out fluctuations

in flowrates affecting downstream units.

In distillation columns, the reboiler and reflux drum are large enough to absorb fluctuations.

Because of that, in this work, proportional controllers have been implemented in both inventory

control loops.

For both described examples, the holdup in the reflux drum and the holdup in the reboiler are 20

times the holdup in the regular trays. Tanks of double capacity than the holdup volumes are

assumed (such tanks are large enough to maintain the liquid levels between reasonable maximum

and minimum values). The tuning of the proportional controllers has been done in such a way

that the control valve is half open when the tank is half full (nominal values), the control valve is

wide open when the tank is 75% full, and the control valve is closed when the tank is 25% full.

The saturation of the valve is supposed at a flowrate double than the nominal flowrate.
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According to this, the tuning of the inventory controllers for both examples are found. Non

scaled values are shown in Table 4.'1 for each one 6f-rtHefinventory control alternatives. Only in

section 4.7.4, some different tunings are applied in order to study its effect on the composition

control.

Table 4.1: Non-scaled proportional constants of the inventory controllers (non-optimal
operation/optimal operation)

Inventory control

Condenser loop

Reboiler loop

"D B"

0.066

0.066

"LB"

0.53/0.39

0.066

"D V"

0.066

0.60/0.45

"LV"

0.53/0.39

0.60/0.45

4.7 Composition control

Generally, direct composition measurements will lead to better composition control than

temperature measurements. Besides, temperature can be a very poor indicator of composition for

multicomponent mixtures. In this work, composition measurements are considered, and sample

points are located at the product streams.

Having selected the measured variables, the determination of the diagonal feedback controller

consists in the selection of the manipulated variables, the pairing of the manipulated variables

with the measured or controlled variables, and the tuning. Candidate manipulated variables are L,

V, D, B, S, SPLITD and SPLITS, taking off in each case the variables used for the stabilisation.

In this chapter and the posterior ones, when the pairing of the control structure is relevant, the

manipulated variables will be ordered in such a way that the first one controls the A composition,

the second one controls the B composition, and the third one controls the C composition.

4.7.1 The composition controllers

The integral mode of a feedback controller is required to avoid steady state offset resulting from

disturbances. It is usually combined with the proportional mode in a Proportional Integral (PI)

controller. The transfer function representation of a PI controller isexpressed in 4.22, where Kc is

the gain of the controller, Tc is the time constant of the controller, and / is the integral time or

reset time of the controller. / is the time required for a given input deviation to produce an equal

change in output.

If ^//T o -U / ) //T C* ) ) = If ~\- J/V (À. f*)f^\
J[Y£ f f frçt> ' À J/ ï L· C*X// -»*.£ > .Í/O \J~T*¿*¿*J

In this chapter, PI controllers are the controllers implemented in the composition control loops.
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4.7.2 Frequency domain analysis

The simplest interpretation of the transfer function G(s) is that it represents the system sinusoidal

response. Since all signals can be decomposed as sum of sinusoids of different frequencies, it is

worthy knowing the response of the system to sinusoids of different frequencies. A frequency

domain analysis, in particular at frequencies around the bandwidth, is very useful for the

feedback control study.

The bandwidth (wg) is an indicator of the range of frequencies over which control is effective.

The effect of disturbances is usually largest around the bandwidth frequency: slower frequencies

are attenuated by the feedback control and faster disturbances are usually attenuated by the

process itself. At frequencies lower than the bandwidth (W<WB), feedback is effective and will

affect the frequency response. At frequencies higher than the bandwidth (W>WB), the response

will not be affected by the feedback.

Several bandwidths can be defined depending on the interpretation of effective control. One of

the more used bandwidth definitions is the frequency where the magnitude of the sensitivity

function S crosses 0.707 from below for first time (Skogestad, 1996). This is the definition

considered in this work. For MIMO systems, the bandwidth will depend on the direction and

there is a bandwidth region between a lower frequency where the maximum singular value of S

reaches 0.707 and a higher frequency where the minimum singular value of S reaches 0.707.

However, to associate a single bandwidth frequency to a MIMO system, the worst case direction

is considered and the bandwidth is defined as the frequency where the maximum singular value

of S reaches 0.707 from below for first time.

Two functions characteristic of the control structure and depending on the frequency are usually

used to compare the controllability of different candidate composition control structures. They

are the singular value decomposition and the RGA. For control purposes, singular value

decomposition and RGA have to be analysed at frequencies around the bandwidth frequency.

Since S=(I+G*K)~', where K is the controller transfer function, the bandwidth will not be known

until the controller structure and tuning are known. Thus, there is one problem because the

frequency range where singular value decomposition and RGA have to be analysed when they

are used to select the control structure is not known before the control structure and tuning are

known.

The inverse of the main open-loop time constant is a characteristic frequency of the system. In

distillation, the main time constants are given by the composition dynamics. High purity columns

have very large open-loop time constants. However, the use of feedback changes the dynamics

and the closed-loop time constants may become much shorter. The main time constant of an

open-loop system can be calculated as the inverse of the eigenvalue of the state-space matrix A

with smallest magnitude (Skogestad, 1996).
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The main open-loop time constant will give a first idea of the range of frequencies of interest. To

solve the problem of unknown bandwidth? as first approach;,it will be considered that the closed-

loop time constant is about 10 times smaller than the open-loop time constant. Thus, as first

approach, it will be considered that the frequencies of interest are about 10 times the frequency

corresponding to the main open loop time constant.

For the studied separations, the A eigenvalues with smallest magnitude of the stable systems are

-0.004 for the non-optimal operation case, and -0.006 for the optimal operation case. Thus, in

the frequency dependent analysis, special attention will be given to the values around 0.04

rad/min and 0.06 rad/min. In the case of "LV" inventory control, the A eigenvalue with smallest

magnitude is 0. This is because of the instability. However, the following eigenvalues with

smallest magnitude are -0.004 and -0.006. In the frequency dependent analysis, special attention

is also given to values around 0.04 rad /min and 0.06 rad/min.

Skogestad et al. (1990 a) stated that the frequency range important for feedback control is the

frequency range from about 0.01 to 1 min"1. This gives another idea of the range of frequencies

of interest.

4.7.3 Linear analysis tools

The singular value decomposition of the transfer function G(s) will be used to select the

manipulated variables for the composition control. For MIMO systems, interaction between

control loops as well as loop sensitivity affect the control system behaviour. The singular value

decomposition is a numerical algorithm useful in analysing the multivariable aspect of the gain

matrix, giving the input and output directions for which gains are maximum and minimum. The

MRI is the smallest singular value of the open-loop transfer function. It is the poorer gain of the

process, poorer sensitivity, which corresponds to specific input and output directions. The set of

manipulated variables that gives the largest MRI over the frequency range of interest is preferred.

Another index derives from the singular value decomposition of G(s). It is the ratio of the

maximum singular value to the minimum singular value or CN, a typical index for the selection

of the best set of manipulated variables. It provides a numerical indication of the sensitivity

balance in a multivariable system. Large condition numbers indicate unbalanced sensitivity and

also sensitivity to changes in process parameters. Therefore, the sets of manipulated variables

with smaller CN are preferred. Skogestad (1996) explained that CN larger than 10 may indicate

control problems.

RGA is used to determine the interaction among control loops in a multivariable process and it is

frequently used to select the control pairing. It is defined as the ratio of the open-loop gain for a

selected output when all loops on the process are open, to its open-loop gain when all the other

loops are closed. RGA of a complex non-singular matrix A is calculated as indicated in equation

4.23, where ̂ denotes element by element multiplication.
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RGA(A)=AX(A'1)T (4.23)

Pairings that have RGA close to unity matrix at frequencies around the bandwidth are preferred.

This rule favours minimal interaction between loops, which means independence «of the loops.

Being the loops independent, stability problems caused by interaction are prevented. Numbers

around 0.5 indicate interaction. The RGA indicates other useful control properties (Skogestad et

al., 1996). One of the most important, plants with large RGA elements around the bandwidth

frequency are difficult to control because of sensitivity to input uncertainty.

Another rule to pair control variables is to choose pairings of variables that are close to each

other. These pairings will put minimal restrictions to the achievable bandwidth, which should be

as large as possible.

Two other matrixes have been used for the study of the DWC diagonal feedback control, the

CLDG and the PRGA. Their expressions can be seen in equations 4.24 and 4.25, where Gdiag is

a diagonal matrix with the diagonal elements of G, and Gd is the transfer function corresponding

to the disturbances.

PRGA=Gdiag*G' (4.24)

CLDG=Gdiag*G1*Gd (4.25)

\Li\ larger than \PRGA(i,j)\ and \CLDG(i,j)\ per ally are required for acceptable disturbance

rejection and setpoint tracking performance. \Li\=\G(i,i)*Ki\, where Ki is the transfer function of

the controller in loop /. Therefore, the disturbances and setpoint changes corresponding to large

CLDG and PRGA elements will be more difficult to control. This way, the elements of CLDG

and PRGA inform of which of the disturbances (CLDG) and setpoint changes (PRGA) require

larger bandwidths and larger controller gains for acceptable performance (Skogestad, 1997). In

the case of the PRGA elements, ILzl larger than \PRGA(i,j)\ is only required at frequencies where

setpoints are tracked.

4.7.4 Search of the set of manipulated variables and the pairing

In this section, the best composition control structures for the separation example at optimal and

non-optimal operating conditions are searched. To determine the control structure, the set of

manipulated variables has to be determined, as well as the pairing between manipulated variables

and controlled variables. MRI and CN are used to select the set of manipulated variables. Sets

with large MRI (large sensitivity in the worst direction) and small CN (balanced sensitivities in

different directions) are preferred. RGA is the criterion used to select the pairing. Pairings with

RGA closer to unity (smaller interaction between loops) are preferred.
t

As explained in section 4.7.2, frequencies around 0.04 rad/min for the non-optimal example and

around 0.06 rad/min for the optimal example are given special importance.
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4.7A.I Composition control structure for "DB" inventory control
' ~ ^ ' - ' - ? • • < < • ->. .•%-$$&

In this section, the best composition control structure for the DWC with "DB" stabilisation is

searched. The separation example at non-optimal operation is analysed first, followed by the

analysis of the separation example at optimal operation.

Non-optimal operation f , •'

• Set of manipulated variables: , •

The best five sets of manipulated variables in terms of MRI and CN are shown in Table 4.2.

Values at steady state (s=0) and at 0.04 rad/min (s=0.04) are indicated. The results show that the

split variables (SPLITD andSPLITE) are good manipulated variables. The CAf are quite large (ill

conditioning), indicating unbalanced multivariable gains.

Table 4.2: Controllability parameters of the best sets of manipulated variables

Set of manipulated variables

L S SPLITD

L S SPLITS

V S SPLITD

VSSPLITB

LVS

MRI

s = 0.04

1.44

1.44

1.43

1.43

0.87

j = 0

3.0

2.7

3.0

2.7

0.9

CN

s = 0.04

20

20

23

23

51

s = 0

51

58

57

65

260

Comparing the singular values of the L S SPLITD, L S SPLITB, V S SPLITD, and V S SPLITS

structures, it is seen that they are very similar all over the range of frequencies. Plots are shown

in Figure 4.9. However, of the 4 preferred structures, the ones including SPLITB will not be

preferred because in practice, SPLITB will be more difficult to manipulate than SPLITD. On the

other hand, similar responses are expected with L S SPLITD and V S SPLITD control structures.

To see what is the influence of the tuning of the inventory control loops on the structure

selection, the singular value decomposition analysis is repeated changing it. Neither at steady-

state nor for ^=0.04, the results of the singular value decomposition have changed. Even with

perfect control in the tanks, no difference has been found in the singular value decomposition

results. For simple columns, Skogestad (1997) already explained that the tuning of "DB"

inventory control does not influence the composition control.
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Figure 9:LS SPLITD, L S SPLITB, VS SPLITD, VS SPLITB singular values

• Pairing:

The steady state RGA for the L S SPLITD control structure can be seen in 4.27. It is seen that the

subsystem of S and SPLITD controlling xBs and XCB has important interaction.

RGA(Q) =

L S SPUTD

'0.962 0.009 0.028^1

-0.071 0.533 0.538

0.109 0.458 0.433

(4.27)

The diagonal RGA elements for L S SPLITD and L SPLITD S paired structures are plotted in

Figures 4.10 and 4.11. It can be seen that at the frequency of 0.04 rad/min the L SPLITD S RGA

elements are closer to one than the L S SPLITD ones, indicating that the L SPLITD S pairing is

better. This pairing does not fulfil the rule of pairing variables that are close in the real process

because it consists in the control of B product with SPLITD and the control of C product with S.

A very similar case occurs with the L S SPLITB structure. RGA diagonal elements of Z, SPLITB S

paired structure are closer to one than those of L S SPLITB paired structure at the frequency of

0.04 rad/min. This can be seen in Figures 4.12 and 4.13.

According to the performed analysis, the preferred composition control structure for the non-

optimal example with "DB" inventory control is the paired structure L SPLITD S.
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Figure 4.10: RGA diagonal elements ofLSSPLITD paired structure

10'

10°

RGA(U)

RGA(3,3)
RGA(2,2)

10" 10" 10"
Frequency (rad/min)

Figure 4.11: RGA diagonal elements ofL SPLITD S paired structure

Figure 4.12: RGA diagonal elements of Z- S SPLITB paired structure
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Figure 4.13: RGA diagonal elements of L SPLITB S paired structure

»

Optimal operation

• Set of manipulated variables:

For the optimal operation, the structures with better MRI and CN values are indicated in Table

4.3.

Table 4.3: Controllability parameters of the best sets of manipulated variables

LSSPLITD

L S SPLITB

VSSPLITD

V S SPLITB

LVS

L VSPLITD

L V SPLITB

MRI

s = 0.06

0.18

0.17

0.18

0.17

0.55

0.25

0.26

5 = 0

0.22

0.21

0.22

0.22

0.60

0.005

0.005

CN

s = 0.06

61

65

72

77

32

69

67

•5 = 0

425

436

491

505

236

29000

30000

It can be seen that the preferred set of manipulated variables h L VS. Surprisingly enough, the

preferred control structures for the optimal and the non-optimal examples are different.
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Pairing

Looking at the RGA of the different possible paired structures with the L V S set, it is found that

the best pairing is L S V. In this case, the rule to pair variables close to each other is fulfilled.

RGA diagonal elements of the/, S F paired structure are very high at steady state. However, they

are lower at higher frequencies. As frequency increases, all three diagonal elements tend to one,

as can be seen in Figure 4.14. This is because initial responses do not present interaction. The

RGA matrix for L S F paired structure at 5=0.06 is shown in 4.28.

RGA(Q.Q6) =

L

'5.1

0.88

.4.0

S •

0.001

0.56

0.44

V

4.T

1.3

4-1,

x

x

x.

(4.28)

10

10

10

10
10 10 10 10

Frequency (rad/min)
10

Figure 4.14: RGA diagonal elements ofL S Vf or optimal operation

Interestingly enough, the controllability indexes for the preferred control structure at optimal

operation are worse than the controllability indexes for the preferred control structure at non-

optimal operation: smaller MRI, larger CN and less diagonal RGA. These two control structures

at their corresponding operating conditions will be further studied in section 4.9.1.
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4.7.4.2 Composition control structure for "LB" inventory control

Non-optimal operation

• Set of manipulated variables:

The three best sets of manipulated variables, according to the MRI and CN controllability

indexes, for the non-optimal separation case are indicated in Table 4.4. At 5=0.04, controllability

indexes of the three structures are similar. However, D S SPLITD structure is slightly better.

Table 4.4: Controllability indexes for the best sets of manipulated variables

Structure

D S SPLITD

DSSPLITB

VDS

MRI

s = 0.04

1.15

1.16

0.96

5 = 0

3.0

2.7

1.3

CN

s = 0.04

5.0

4.9

6.1

5 = 0

7

8

15

• Pairing:

RGA diagonal elements for the D S SPLITD paired structure are plotted in Figure 4.15. For the D

SPLITD S paired structure they are plotted in Figure 4.16. As for L S SPLITD and L SPLITD S

for "DB" inventory control, D SPLITD S is preferred and the rule of pairing variables close to

each other is not fulfilled. In fact, the RGA diagonal elements of D S SPLITD and D SPLITD S

paired structures for "LB" inventory control are very similar to RGA diagonal elements of L S

SPLITD and L SPLITD S paired structures for "DB" inventory control.

10

10

10

10
10

RGA(1,1)

RGA(3,3)

RGA(2,2)

10 10 10
Freauencv (rad/min)

10

Figure 4.15: RGA diagonal elements of D S SPLITD structure
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Figure 4.16: RGA diagonal elements of D SPLITD S structure

The singular value decomposition analysis is repeated changing the tuning of the inventory

control. A proportional constant of 5 substitutes the former value 0.53 in the condenser level

loop. At 5=0.04, the MRI and CNindexes indicate that VD S structure is better than D S SPLITD

structure. Therefore, changing the tuning of the inventory control, the preferred control structure

has changed.

It has been seen that VD S is the preferred control structure when the inventory control is tight,

whereas D S SPLITD is the preferred control structure when the inventory control is loose.

Comparing these two scenarios, in terms of MRI and CN at 5=0.04, the V D S control structure

with tight inventory control is better. Therefore, if the inventory loop can be tight without any

side problem, tight inventory control and VD S composition control structure will be preferred.

Optimal operation

VD S structure is found to be the best one. Its controllability indexes at 5=0 are MR/=0.94 and

CA/=20. At 5=0.06, MRI=OA5 and CN=9.

4.7.4.3 Composition control structure for "DV" inventory control

Non-optimal operation

• Set of manipulated variables:

The best sets of manipulated variables and their controllability indexes can be seen in Table 4.5.

The G(s) singular values for B S SPLITD and B S SPLITS structures are very similar for all

frequencies. However, as B S SPLITD uses SPLITD instead of SPLITB, B S SPLITD will be

preferred.
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Table 4.5: Controllability indexes for the best sets of manipulated variables

Structure

BSSPLITD

B S SPLITS

LES

MRI

s = 0.04

1.36

1.35

0.87

5 = 0

3.0

2.7

1.2

CN

5 = 0.04

3.6

3,5

5.7

5 = 0

7.8

8.9

19.7

• Pairing:

RGA indicates that S SPLITD B is the preferred paired structure with the set of manipulated

variables. A matrix very close to unity indicates little interaction. The RGA at 5=0.04 can bee

seen in 4.29. The RGA diagonal elements can be seen in Figure 4.17.

JKZ4(0.04) =

5 SPLITD B

(0.96 0.04 0.05^1

0.08 0.85 0.14

0.04 0.15 0.91

(4.29)

10

10

10

10

RGA(1,1)

10

RGA(2,2)

RGA(3,3)

10 10 10
Frequency (rad/mitO

10

Figure 4.17: RGA diagonal elements of S SPLITD B structure

Optimal opération

The preferred control structure for optimal operation is L B S. Its controllability indexes at 5=0

areMK7=0.8 and CN=23. At 5=0.06, M&?=0.56 and CAM.8.
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4.7.4.4 Composition control structure for "LV" inventory control

Non-optimal operation

• Set of manipulated variables:

In Table 4.6, the controllability indexes of the best sets of manipulated variables are shown.

They indicate that the preferred control structure is D B S.

Table 4.6: Controllability indexes for the best sets of manipulated variables.

DBS

.DSSPLITD

D SSPLITB

BSSPLITD

B SSPLITB

MRI(s=0.04)

0.97

1.00

0.92

0.83

0.87

CA/(s=0.04)

3.2

4.7

4.8 '

5.3

4.8

• Pairing:

The RGA analysis indicates that the D S B is the best pairing for the D B S set of manipulated

variables. In Figure 4.18, the RGA diagonal elements for this paired control structure are plotted.

The RGA values at low frequencies are very large due to the transfer function* singularity at

steady state. However, RGA values at the most interesting frequencies (around 0.04) are good.

10'

10

10

RGA(1,1)
RGA(2,2)

10" IÓ'0 ID" .10'1

.Frequency (rad/min)
10 10'

Figure 4.18: RCA djagqnal elements of D SB control structure
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The RGA plots are done using the reduced linear models and repeated with varying matrixes

from the MATLAB |i-Analysis and Synthesis Toolbox (MATLAB, 1998). In both cases, very

similar plots are obtained.

Optimal operation

At 5=0.06, the singular value decomposition results show that the best structure is D S B, with

MRI=0.46 and C7V=3.2.

With "LV" inventory control, the change of the tuning of the inventory control has an effect on

the composition control. For the non-optimal operation example and inventory control tuning of

0.53 and 0.60, the best structure is D S SPLITD. However, with inventory control tuning of 5.3

and 6.0, and with tighter tunings, the best structure is D B S. For the optimal operation, this

influence of the tuning in the best structure is also found: with a tuning of 0.039 and 0.045, the

best structure is D S SPLITB while it is D B S with a tuning of 0.39 and 0.45, and tighter tunings.

For both examples, optimal and non-optimal operation, with loose inventory controls, D S

SPLITD structure is preferred, and with tight inventory controls, DBS structure is; preferred. The

difference between the non-optimal and the optimal operations is that for some range of

inventory controller tunings, the optimal operation already prefers the D B S and the non-optimal

operation still prefers D S SPLITD. The preferred structure that would be obtained for perfect

inventory control is D B S.

4.7.4.5 'Conclusions

Regarding at the whole set of singular value decomposition and RGA results for the optimal and

the non-optimal,operation examples, all four inventory control structures taken into account, it is

worth noticing that:

- According to MRI, CN, and RGA frequency dependent analysis, the preferred DWC control

structures depend on the operating conditions. For "DB" inventory control, the best control

structureior the non-optimal operation is L SPLITD S, while the best control structure for the

optimal operation is L S V. Of all the stabilised DWC, the best control structure for the non-

optimal operation is "DV" inventory control and B SPLITD S composition control, while the

best control structure for the optimal operation is "LV" inventory control; and D S B

composition control.

- For the non-optimal operation, split variables (SPLITD and SPLITB) appear in the set of

preferred manipulated variables, while they do not appear for optimal operation.

- For all DWC inventory control structures, the best sets of manipulated variables for the non-

optimal operation have better performance indexes than the best sets for the optimal

operation. !
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The CN for "DB" inventory control case are larger than CN for the other inventory control

structures.

The preferred control structures depend on the tuning of the inventory control loops for

"T.R" "DV" and "T.V" inve.ntnrv r.nntrnl stnir.tnrp.s"LB", "DV", and "LV" inventory control structures.

4.8 Tuning

The tuning of the three composition control loops of the DWC is one of the most complex

control problems.

Fixing some stability margins is the base of many tuning methods. The approach has been used

for the tuning of the DWC composition control loops, considering separately the tuning of every

loop. Specifically, the method consists in fixing the Phase Margin and Gain Margin (PM and

GM) to obtain the tuning parameters. For every loop, four equations are used to solve four

unknowns. The equations are the phase and magnitude values of the closed-loop transfer
t

functions at the PM and GM frequencies, \VGM and WPM- The unknowns are Kc, Tc, WGM and WPM

(see equation 4.22). However, with the reduced transfer function as linear model, multiplicity of

solutions has been found, what makes the tuning determination very difficult.

To tune a PI controller, a very extended method is to find the ultimate gain and ultimate

frequency and compute the controller parameters from them trough the Ziegler-Nichols

equations. This method is also based on stability margins. The ultimate gain &„ is the value of

controller gain at which the loop is at the limit of stability with a proportional feedback

controller. The frequency where this occurs is the ultimate frequency wu.

The tuning of the DWC separation example at non-optimal operation, with "DB" L SPLITD S

control structure is considered. When looking for the ultimate values of the L-XAD loop, it is seen

that it is very difficult to make the loop unstable. Very large Kc are needed. This is because of the

immediate response of the output to the input assumed by the model. However, in reality, a delay

will exist when the loop is closed due to the time needed for the measurement. To take this delay

into account, a delay of 0.5 min is added to each control loop. The Pade approximation of order 3

has been used to put the delay in transfer function form (MATLAB, 1998). The singular value

decomposition and RGA analysis are not affected by the addition of this delay.

In Figure 4.19, the Bode plot of G(l,l) is shown for the considered case, without the added delay

and with it. G(l, 1) is the transfer function for the L-XAD loop, which has been calculated through

numerical linearisation and scaled. The phase of the transfer function without delay (red line)

crosses the -180 deg at a higher frequency, indicating a more "difficult unstabilisation (Skogestad

et al., 1996).
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Bode Diagrams

10 10 10

Frequency (rad/sec)

10' 10"

Figure 4.19: G(l, 1) Bode plot •

From the Bode plot shown in Figure 4.19, the values of ultimate gain ku=6 and ultimate

frequency w«=0.73 rad for the L-XAD loop are obtained. In the same way, for the SPLITD-xBS

loop, ¿«=1.5 and wK=l rad are found, and for the S-XCB loop, ku=l3 and wu=Q.9 rad are found.

Comparing the Bode plots ofG(J,J), G(2,2), and G(3,3), it is seen that the phase crosses -180

deg for a much small frequency for G(2,2) and (7(3,3) than for (?(!,!). This is due to the slower

response between the manipulated and the controlled variables for loops 2 and 3.

The Ziegler-Nichols gain and reset time constants for a PI controller can be calculated from

equations 4.30, 4.31, and 4.32. For the studied example, Kc=2.7, rc=7.2 for the L-XAD loop,

^c=0.68, Tc=5.2 for the SPLITD-XBS loop, and ̂ =5.9, rc=5.8 for the S-XCB loop.

Kc= ku 12.2 (4.30)

PK(min)=2n/wM(rad/min) (4.31)

Tc(min)=PM(min) /1.2 (4.32)

The Ziegler-Nichols rules are often not adequate for multivariable systems. For multivariable

systems, it is needed a procedure that simultaneously tunes all controllers, taking intb account

the interaction that exists among the loops. The Biggest Log-modulus Tuning (BLT) is a way to

accomplish this job. It provides settings that work reasonably well in many processes. These

settings may not be optimum because they tend to be somewhat conservative. However, they

guarantee stability and yield tunings that give a reasonable compromise between stability and

performance in multivariable systems (Luyben, 1992).
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The BLT method is based on the Ziegler-Nichols equations. The ultimate gain and ultimate

frequency of each loop are calculated in the classical Single Input Single Output (SISO) way. A

detuning factor FBLT is assumed, which should be greater than 1. The larger the FBLT value, the

more stable the system will be, but more sluggish will be the system response. The gains of all

feedback controllers (Kc) are calculated by dividing the Ziegler-Nichols gains by FBLT- The

feedback controller reset times (TC) are calculated by multiplying the Ziegler-Nichols reset times

by FBLT- To find the appropriate FBLT value, Lcm has to be calculated.

£«=20* log10
W

\ + W
(4.33)

where W= -1 + det(I+G*K) and JTis a diagonal matrix with the PI transfer functions of all loops

as diagonal elements (see equation 4.22). The FBLT factor is varied until the maximum value of

Lcm is equal to 2NsyS, being N^ the order of the system.

For the DWC, Nsy¿=3. The BLT tuning method has been applied to the studied example and

FBLT=% has been found. The resulting tuning is indicated in Table 4.7.

Table 4.7: BLT tuning for the non-optimal operation and "DB" Z, SPLITD S control structure

Loop 1 (XAD control)

Loop 2 (XBS control)

Loop 3 (XCB control)

KC

0.340

0.085

0.740

tc (min)

57.3

41.8

46.5

A DWC simulation with tuning parameters in Table 4.7 is shown in Figures 4.20 and 4.21. A

step change in the feed flowrate from 1 to 1.1 kmol/min was applied as disturbance. In Figure

4.20, the output profiles are plotted. In Figure 4.21, the manipulated variables profiles are

plotted. It can be seen that the BLT tuning time constant of the second loop (SPLITD- XBS) is

large.

But BLT tuning has some limitations. First of all, it makes the tuning more conservative than

necessary applying the same FBLT factor to all the loops, without analysing what loop causes the

small stability margins. In addition, BLT tuning does not give appropriate tuning parameters for

all DWC control structures. For instance, for the studied example at optimal operation conditions

and "DB" L S F control structure, FBLT=\ is found, for which K¿=6.31, Tc=6.16 for the L-XAD

loop, Kc=n.l, Tc=4.93 for the S-XBS loop, and KC=2.1S, rc=2.92 for the V-XCB loop. The non-
scaled tuning parameters have very high gains (Kc =336 for the first loop), which are not correct.
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Figure 4.20: Output profiles for a disturbance in F
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Figure 4.21 : Input profiles for a disturbance in F

4.9 Simulations and comparisons

In section 4.7, the larger differences between the controllability indexes of the preferred control

structures at optimal and non-optimal operations have been found for the "DB" stabilised DWC.

The controllability of the non-optimal operation preferred control structure is better. Further

comparisons between the preferred control structures of the "DB" optimal and non-optimal

operations are performed in this section. The objective is to study the possible trade-off between

operation optimisation and controllability. The preferred control structures of the "LV" optimal

and non-optimal operations will be further studied too, because of the favourable controllability

96



indexes found, and because "LV" stabilising structure-is recommended when reflux ratios are

large.

Simulations are carried out to observe the behaviour of the controlled systems facing different

disturbances. Step changes in disturbances have been considered. The analysis of this kind of

signal is very useful because of its wide frequency content.

4.9.1 "DB" DWC: Comparison between L SPLITD S structure at non-optimal operation

and L S F structure at optimal operation.

In this section, for the studied example at non-optimal operation, the preferred control structure,

L SPLITD S, is considered. For the studied example at optimal operation, the preferred control

structure, L S V, is considered (seeJTables 4.2 and 4.3). Controllability and stability of both
•""!"

examples are analysed and compared. - "
/ ,•

• '-•-_ .•''"' r

CLDG and PEGA matrixes have been calculated and plotted for both examples. For the non-
*

optimal operation example, they can be seen in Figure 4.22. From CLDG plots, it is seen that the

disturbance more difficult to reject is qp for output 1 (XAD). Comparing CLDG and PRGA plots,

it is seen that the setpoint tracking is easier than the disturbance rejection (remember that PRGA

values at high-frequencies are not relevant if only setpoint tracking at low frequencies is

required). Therefore, if disturbance rejection is achieved, setpoint tracking will be achieved, too.

CLDG

ZA

PRGA

— L

— SPLITD

— S

10' 10"

Figure 4.22: CLDG and PRGA for the non-optimal operation. First row plots are for output 1,
second row plots are for output 2, and third row plots are for output 3.
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CLDG and PRGA for the optimal operation example are shown in Figure 4 ; 23, From CLDG

plots, it is seen that the disturbance more difficult to reject is F for output 3 (XCB)- From the

PRGA plots, it is seen that the setpoint change more difficult to achieve is the setpoint change of

output 3 (XCB). Notice that the disturbance and the setpoint change that will impose more tight

control tuning are not the same for the two examples. Notice also that in general, CLDG and

PRGA values are larger for the optimal operation, which indicates a more difficult control.

Specially, the PRGA values are much larger for the optimal operation than for the non-optimal

operation.

CLDG

10-3 IÓ'2 IÓ'1 10° 101

PRGA

IÓ"3 IÓ'2 IÓ'1 10° 101

10

10

10"
10

-2

10"4 10"3 10'2 10"1 10° 101

— L

•SPLUD

— S

Figure 4.23: CLDG and PRGA for optimal operation. First row plots are for output 1,¡ second row
plots are for output 2, and third row plots are for output 3. ¡

To tune the two control systems in such a way that the^, control performances are similar is

difficult because of the great quantity of performance parameters that can be regarded for MIMO

systems. With comparison purposes, tunings which give similar output responses for the more

demanding disturbances have been chosen. They are indicated in Table 4.8. In Figures 4.24 and

4.25, the behaviour of the two control systems is shown when a step change is applied to the feed

vapour fraction (from qp=\ to qp=Q.9). In Figures 4.26 and 4.27, the behaviour of the; two control
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systems is shown when a step change is applied to the feed flowrate (from F=l kmol/min to

F=\.\ kmol/min). . - . -

Table 4.8: tunings of the "DB" DWC preferred control structures

•

Loop 1 (XAD control)

Loop 2 (XBS control)

Loop 3 (XCB control)

Non-optimal column

Kc

0.37

0.45

3.00- ~

TC (min)

66

16

66

Optimal column

Ko

0.38

-2.25

0.33

TC (min)

75

75

75

0.995

Molar

fraction

0.98

0.975

0.97

—Non-optimal
Optimal

0 50 100 150 200 250 300 350 400 450 500
Time (min)

Figure 4.24: Output profiles for a disturbance in

Flowrates

(kmol/min)

Non-optimal
Optimal

0 50 100 150 200 250 300 350 400 450 500
Time (min)

Figure 4.25: Input profiles for a disturbance in
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In Figures 4.24 and 4.25, it is seen that the convergence of loops 1 and 3 is. very slow for the

optimal operation example with L S V control structure. Large tuning changes are required to

slightly improve the time responses. This occurs because L and V variables increase with similar

rates and the reflux ratios increase very slowly. This effect can also be observed in Figures 4.26

and 4.27 for a disturbance in the feed flowrate.

Molar

fraction

1

0.995

0.99

0.985

0.98

0.975

0.97

0.965

Non-optimal
Optimal

0 50 100 150 200 250 300 350 400 450 500
Time (min)

Figure 4.26: Output profiles for a disturbance in F

Flowrates

(kmol/min)

0.05

-0.05
0 50 100 150 200 250 300 350 400 450 500

Time (min)

Figure 4.27: Input profiles for a disturbance in F
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In Figure 4.28, the maximum and minimum S singular values are plot for the two examples. S is

a good indicator of closed loop performance (Skogestad, 1996). Typical specifications in terms

of S include large bandwidth frequency (frequency where max^-S^w))) crosses 0,707 from

below) and a peak of maxío^íjw)) smaller than 2. Larger peaks indicate poor performance as

well as poor robustness. In Figure 4.28, a notable difference is seen between the bandwidth of

the two systems, being larger that of the non-optimal operation case. Having the maximum and

the minimum S singular values very different values, the L S V structure (optimal operation case)

shows the high directionality already indicated by the simulations and the high CN. On the other

hand, similar peaks are found for both examples, both of them larger than two.

10"

Non-optimal

Optimal

10" 10'

Figure 4.28: maximum and minimum S singular values

Having tuned the two examples to have similar performance, it will be interesting to study the

stability of the two control systems. It is difficult to generalise the GM and PM to MEMO

systems. However, the maximum peak criterion may be easily generalised replacing absolute

values in SISO for maximum singular values in MIMO (Luyben, 1992). The criterion require

that the maximum value of the maximum singular value of the complementary sensitivity

function T (T=G*K*(I+G*K)'1) is smaller than 2 for robust stability.

max(e(T(jw))) < 1 (4.34)

The maximum peak criterion can be insufficient for MIMO systems for which advanced tools

considering uncertainty descriptions (|j.-analysis) are needed. However, to have a first idea of the

stability robustness, in Figure 4.29, the maximum singular value of T is shown for the two

examples. Both systems present a maximum value greater than two, indicating possible stability

problems in front of uncertainties.
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Figure 4.29: max(a (I)) !

Another simple method to analyse stability is based on the plot of the maximum singular value

of w/T/ (Ti=KG(I+KG)'1). Robust stability is satisfied if at all frequencies equation 4.35 is

fulfilled, where w/ is the uncertainty in input channels.

^K*7XM><1 (4-35) i
v.

This is a conservative condition of robust stability because it assumes full-block uncertainty,

which is not reasonable for all plants (Luyben, 1992). Since no information about the uncertainty

is available, the w/ proposed by Skogestad et al. (1996) and Moran et al. (1989) for à distillation

column example is assumed. It corresponds to a 20 % gain error and a neglected time delay of

0.9 min. Its transfer function is shown in 4.36.

55 + 1

'0.55 + 1
(4.36)

In Figure 4.30, the maximum singular value of w/*7/ is plotted for the two examples. Both

structures would have problems with robust stability for full-block w/ uncertainty because they

violate the robust stability condition.

Since all results in this section depend on the chosen tuning, a different tuning for the non-

optimal example is chosen to see its influence on performance and stability. The new chosen

tuning is shown in Table 4.9. Compared to the initial tuning (Table 4.8, two first columns), it is

more conservative.

In Figure 4.31, the output profiles for a disturbance in the feed vapour fraction (from qp=l to

<7F=0.9) are shown. In Figure 4.32, the input profiles for the same simulation are shown. It is seen

that the new (less aggressive) tuning gives higher output overshoots and smoother input changes.
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Non-optimal

Optimal

Figure 4.30: max(o (wi*T)~)

Table 4.9: New tuning for the example at non-optimal opération

Loop 1 (XAD control)

Loop 2 (XBS control)

Loop 3 (XCB control)

Kc

0.19

0.23

0.90

TC (min)

50

25

120

Molar

fraction

0.995

0.99

0.985

0.98

0.975 A

0.97

Initial tuning
New tuning

0 50 100 150 200 250 300 350 400 450 ' 500

Time (min)

Figure 4.31 : Output profiles for two different tunings
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Figure 4.32: Input profiles for two different tunings

In Figure 4.33, the minimum S singular value for both tunings is plotted. With the new tuning,

the bandwidth frequency has diminished. However, it continues to be notably higher than the one

of the optimal column (compare Figures 4.33 and 4.28). The influence of the tuning on the

bandwidth frequency is quite large, what indicates that a repeated frequency analysis at the

known bandwidth frequency would be appropriate. In sections 4.11.2.1 and 4.11.2.2, and in

chapter seven, this analysis will be performed.

10

10

10

Initial tuning

-New tuning

10 10 10 10 10

Figure 4.33: minimum S singular value
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In Figure 4.34, the plot of the T maximum singular value can be seen for the two tunings. The

peaks of the two curves are not very different. In any case, the peak of the new tuning is still

larger than 2, indicating possible stability problems in front of uncertainties.

t
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Figure 4.34: max(a (J))
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Finally, in Figure 4.35, the maximum singular value of wi*T is plot for the two tunings. It can be

seen that the peak is lower for the new tuning. However, it is still larger than 1, indicating

possible problems with robust stability for full-block w/ uncertainty.

Analysing other tunings, it is seen that both control structures "DB" L S V and "DB" L SPLITD

S have large stability margins for some tuning parameters. In base of the tunings given in Table

4.8, for "DB" L S V structure, making the tuning of loop 2 looser, max(a(w/*7)) is smaller than

one. For "DB" L SPLITD S structure, making loop 3 looser, max(a(w/*7)) is smaller than one.

In chapter five, examples of "DB" L S V control structure for which stability margins are

sufficient for robust stability will be studied.

Having introduced a new tuning, it has been seen that the tuning influence on the control system

performance and on the system stability is large, what makes the comparison task still more

complex. In coming chapters, especially in chapter seven, this fact is taken into account in

controllability and stability analysis.

Concluding this section, from the comparison between the studied example at optimal and non-

optimal operating conditions, it can be said that controllability would be better operating at non-

optimal conditions. MRI, CN, RGA, CLDG, PRGA, and simulations indicate this. Therefore, a

trade-off is found between controllability and energy optimality for the "DB" inventory

controlled DWC. On the other hand, stability robustness at both operating conditions could be

problematic. A more detailed study including ̂ -analysis (Morari et al., 1989) would be required.
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Figure 4.35: max(o(w/*I))

4.9.2 "LV" DWC: DSB structure for non-optimal operation and optimal operation.

For the studied separation, with "LV" stabilisation, the preferred control structures at optimal

and non-optimal operating conditions are the same. This structure is D SB. Since in this section,

processes with the same control structure will be compared, to have a base for comparison, the

same tunings are assumed. They are indicated in Table 4.10.

Table 4.10: Tuning for both examples, operation at optimal and non-optimal conditions

Loop 1 (XAD control)

Loop 2 (XAD control)

Loop 3 (XAD control)

Kc

-1.2

-1.2

-1.2

rc(min)

80

80

80

The responses of the controlled systems to a change in F from 1 kmol/min to 1.1 kmol/min are

shown in Figures 4.36 and 4.37. A step change was applied to the disturbance variable during 10

minutes. In Figure 4.36 the output profiles have been plotted. In Figure 4.37, the input profiles

have been plotted. It can be seen that performances of the two control systems are similar.

In Figure 4.38, the maximum and minimum S singular values can be seen for the two operating

conditions. The plots of the maximum singular value of T can be seen in Figure 4.39. Finally, in

Figure 4.40, the plots of the w/*ri maxim singular value are shown. Regarding S plot, the

bandwidth of the two systems is seen to be very similar and none of the systems has a peak

larger than two, indicating good performance'arid'robustness. From the plot of max(o (7)), no
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stability problems are indicated, and neither from the plot of max(a(w/'*jT)). Even this

conservative stability criterion indicates that both control systems would have robust stability in

front of uncertainties.

Molar

fraction

1

0.995

0.99

0.985
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Time (min)

Figure 4.36: Output profiles for a disturbance in F
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Figure 4.37 : Input profiles for a disturbance in F
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Figure 4.38: maximum and minimum S singular values
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Figure 4.39: max(a (T))
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Figure 4.40: ma.x(a(wi*T))
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Comparing the stability analysis in sections 4.9.1 and 4.9.2, it is seen that the stability margins of

the "LV" best control structure are larger than the stability margins of the "DB" best control

structures (compare Figures 4.30 and 4.40).

With "LV" inventory control and D SB composition control structure, the DWC has shown good

controllability indexes and large stability margins at optimal and non-optimal operating

conditions. Controllability and stability are found to be similar at optimal and non-optimal

operating conditions. Only a better MRI for the non-optimal operation case has been found.

Therefore, it does not seem that a trade-off is possible between controllability and operation

<• optimality with "LV" inventory control.

•
£ 4.10 Logarithm of compositions

. In section 4.3.2.3, it was seen that the system under study is very non-linear. This is the case of

£ most distillation systems. However, it turns out that the process response is much less dependent

• on the operating point if instead of considering the compositions, the logarithmic compositions

^ are considered. Normally, the logarithmic composition is defined as the logarithm of the ratio

' between the compositions of the key components,

f y=\n(XL/XH) (4.37)

Q where XL and XH are the compositions of the high and heavy key components.

4| In this section, the control of the DWC product compositions through their logarithms is

• considered through an example. The separation described in 4.3.1.2 (non-optimal operating

i conditions) with "DB" inventory control is chosen. The product composition logarithms have

£ been considered the output variables. The linearisation has been done as explained in section

• 4.3.2.3 and the system scaled as explained in section 4.3.2.4.

Singular value decomposition at 5=0.04 has been given special importance because the larger A

eigenvalue is -0.004. The preferred composition control structures and their MRI and CN at

5=0.04 are indicated in Table 4.11. Table 4.2 corresponds to the same case study considered in

this section but with the product compositions as output variables instead of the logarithm of the

product compositions as output variables. Comparing Tables 4.2 and 4.11, it is seen that the

preferred control structures are the same. Also, it is seen that the MRI are much larger and the

CN smaller for the case with logarithms of product compositions as output variables. Therefore,

according to these indexes, the control of the logarithms of the product compositions improves

the controllability.

The RGA analysis indicates that a crossed pairing is preferred (SPLITD controlling the B

composition and S controlling the C composition). In Figure 4.41, the RGA diagonal elements

for the L SPLITD S paired control structure are plotted. As can be seen comparing Figures 4.11
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and 4.41, RGA does not change because of the consideration ¡ of the logarithms as output

variables.

Table 4.11: Controllability indexes at 5=0.04 for "DB" inventory control

Control structure

LVS

LSSPLITD

LSSPLITB

VSSPLITD

VSSPLITB

MRI

37.7

107

105

107

106

CN

70

16

17

18

19

10

10

10
10

RGA(1,1)

RGA(3,3)

10 10 10

Frequency (rad/min)

10 10

Figure 4.41 : RGA diagonal elements for L SPLITD S control structure
i

To illustrate the system behaviour, the system response to a disturbance in qp is simulated. In

Figures 4.42 and 4.43, the product compositions and input profiles are plotted. The

corresponding tuning parameters can be seen in Table 4.12. In Figures 4.24 and 4.25, control

responses to the same disturbance and identical conditions were shown. In that case, however,

the product compositions were directly controlled instead of controlling the logarithms of the

product compositions. Comparing Figures 4.24 and 4.25 with Figures 4.42 and 4.43, it can be

seen that the input variations are more sluggish and the time responses shorter in Figures 4.42

and 4.43. Therefore, in accordance with the results given by the controllability indexes,

*
%

•
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simulation results indicate that the control of the logarithms of the product compositions

improves the controllability.

Table 4.12: Tuning for the control of the logarithms of the compositions

Loop 1 (\TI(XAD) control)

Loop 2 (ln(xAu) control)

Loop 3 (ln(xM)) control)

Kc

9.80

0.62

2.49

rc(min)

33

6

83

Molar

fraction

0.995

0.99

0.985

0.98

0.975

0.97

0.965
0 50 100 150 200 250 300 350 400 450 500

Time (iran)

Figure 4.42: Product composition profiles for a disturbance in

Flowrates

(kmol/min)

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

-0.02

-0.04
0 50 100 150 200 250 300 350 400 450 500

* Time (min)

Figure 4.43: Input profiles for a disturbance in qp
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4.11 Generalisation

The aim of this section is to explore, through the consideration of different examples, the

generality of the results found in sections 4.7 and 4.9. Different mixtures and operating

conditions are studied.

The considered DWC design in this section has NT=46, NP=13, NM=33, NS=ll, NCB=8,

NCD=26 and NF=1. In all cases, products are liquid saturated flows, feeds are liquid saturated

equimolar flows, and separation into 0.99 molar pure products is required.

4.11.1 DWC controllability for the separation of three different mixtures

The separation of three different mixtures is studied in this section. Their sets of relative

volatilities and ESI are:

«=(4.65 : 2.15 : 1)

«=(4.56: 1.85: 1)

o=(4.65 : 2.45 : 1)

£57=1

£57=1.36

£57=0.77

Optimal operation is chosen in the three cases. The considered DWC design is the optimal

design for the separation of the mixture with £57=1, according to the design methodology

described in 2.6.2.

In Tables 4.13, 4.14, and 4.15, the best control structures and their controllability indexes for the

different stabilised columns and the different mixtures are indicated. MRI and CN values

correspond to a frequency of 0.04. In some cases, the order of preference of control structures

according to the CN is not the same that the order according to the MRI. For this reason, another

index is used to classify the preferred structures. It is the Intersivity Index (II=MRI/CN). Large 77

are preferred.

Table 4.13: Preferred structures for the mixture with ES 1=1

First preferred

structure

Second preferred

structure

"DB"

LVS

MRI=0.25

CN=9l

L VPLITB

MRi=om
CN=212

"LB"

YDS

MRI=Q.29

CN=\2

V S SPLIT B

MRI=Q.W

CN=21

"DV"

IBS

MRI=0.28

CN=U

LBSPLITD

MK7=0.08
' CA/=30

"LV"

DBS

MRI=034

CN=4.6

B S SPLITS

MRI=0.l

CN=12
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Table 4.14: Preferred structures for the mixture with £57=1.36

s=0.04

First preferred

structure

Second preferred

structure

"DB"

LVS

MRI=0.16

CN=264

SSPLITDPLITB

M?/=0.009

CN=139

"LB"

YDS

MRI=0.14

CN=34

VDSPLITD

MRI=Q.04

CN=\\6

ï, "DV"

LBS

MRI=0.14

CN=35

L B SPLITD

MRI=0.04

CN=\\1

"LV"

DBS

MRI=0.12

CN=14

D B SPLITD

MRI=0.04

CN=42

Table 4.15: Preferred structures for the mixture with £57=0.77

s=0.04

First preferred

structure

Second preferred

structure

"DB"

LVS

MRI=0.20

C7V=184

SSPLITDPLITB

MRI=Q.026

CN=11

"LB"

YDS

MRI=Q.l&

CN=28

D S SPLITD

MRI=0.01

CN=38

"DV"

LBS

MRI=OA9 .

CA/=18

L B SPLITD

MRI=0.10 '

CN=36

"LV" ,

DBS ,

MRI=Q.ll

CN=\0

D B SPLITD

MRI=0.09 '

CN=IS "

Regarding at Tables 4.13, 4.14, and 4.15, the following can be observed:

- The preferred control structure do not depend on the separated mixture. This is true for the

four inventory control structures. For the separation example at optimal operating conditions

studied in section 4.7.4, the same preferred control structures were found for all four

inventory control structures. Therefore, some generality can be presumed about preferred

control structures.

- In none of the cases, the preferred control structures have SPLITD or SPLITB variables

chosen for composition control. This was also true for the separation example at optimal

operating conditions studied in section 4.7.4. Therefore, some generality can be presumed,

too.

The MRI and CN controllability indexes indicate that the preferred structure with "DB"

inventory control is the worst of all the preferred structures for the different inventory

controls, and the preferred structure with "LV" inventory control is the best of all the
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preferred structures for the different inventory controls. This is true for all three studied

mixtures, what indicates some generality. Specifically, it is the CN index which is very large

for control structures with "DB" inventory controls, and small for control structures with

"LV" inventory controls.

- The separation of the mixture with £57=1, which is the only with optimal design, has the best

controllability indexes for all the inventory controls. It can be wondered if optimal design

leads to better controllable columns. In chapter seven, the influence of the DWC design on

the controllability will be studied.

- Comparing the MRI and CN values in this section with values obtained for the separation

example at optimal operating conditions studied in section 4.7.4, it is seen that in general,

controllability indexes were much better in that case. This is not rare since different product

purities were specified.

4.11.1.1 Further analysis of the "LV" D S B control structure

For the three separation examples of the three different considered mixtures, with "LV, the

same control structure is preferred, which is D SB. Of all the considered control structures, "LV"

D S B has given the best II. In this section, RGA, PRGA, and CLDG of this structure for the

three separation examples are analysed.

For the separation of the mixture with ESI=l, the RGA diagonal elements are shown in Figure

4.44. For the separation of the mixture with £57=1.36, they are shown in Figure 4.45. For the

separation of the mixture with £57=0.77, they are shown in Figure 4.46.

10'

10

10

RGA(1,1)

10 10 10 10
Frequency (rad/min)

10 10

Figure 4.44: RGA diagonal elements for separation of the mixture with £57=1
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Figure 4.45: RGA diagonal elements for the separation of the mixture with ESI=\. 36
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Figure 4.46: RGA diagonal elements for the separation of the mixture with £157=0.77

f - ~ - r f

The entire RGA matrix at s==0:04 for the separation of the mixture with ESI=\ is:

D S B

'1.08 0.14 0.20

0.21 0.81 0.02

0.28 0.06 1.21

(4.38)
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The entire RGA matrix at 5=0.04 for the separation of the mixture with £57=1.36 is:

D S B

(1.23 0.20 0.42^1

0.68 0.86 0.54

0.90 0.06 1.95

xAD

(4.39)

The entire RGA matrix at 5=0.04 for the separation of the mixture with £37=0.77 is:

D S B

('1.74 0.11 0.68^1

0.47 0.89 0.54

0.32 0.16 1.15

(4.40)

From the RGA plots and numeric values, it is seen that the three systems have quite well

behaved RGA, indicating good controllability. However, in terms of RGA, the separation of the

mixture with £37=1 has the best controllability. In this case, the RGA matrix is close to unity

around the 0.04 frequency, which means that interaction between control loops is weak.

CLDG PRGA
10*

10
10''

10

10
10"'
10 :

10

10
10"
10

-2

10'3 10'2 10"1 10° 101

10'3 10"2 10'1 10° 101

~ L

•SPL1TD

~~ S

10' 10"4 10"3 10'2 IÓ'1 10° 101

Figure 4.47: CLDG and PRGA for the separation of the mixture with ESI=1. First file plots are
for output 1, second file plots are for output 2, and third file plots are for output 3.
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t
è Figure 4.48: CLDG and PRGA for the separation of the mixture with ESI=1.36. First file plots

are for output 1, second file plots are for output 2, and third file plots are for output 3
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Figure 4.49: CLDG and PRGA for the separation of the mixture with ESI=0.77. First file plots
are for outputl, second file plots are for output 2, and third file plots are for output 3
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Figure 4.47 shows the CLDG and PRGA for the separation of the mixture with £57=1. Figure

4.48 shows the CLDG and PRGA for the separation of the mixture with £57=1.36. And Figure

4.49 shows the CLDG and PRGA for the separation of the mixture'with £57=0.77. In all cases, F

disturbance is found to be the most difficult to reject for the control of the three outputs. Also for

the three examples, a disturbance in ZB for the control of output 2 appears very difficult to reject.

The higher CLDG value is found for the mixture with £57=1. On the other hand, setpoint

changes appear more difficult^for the separation of the mixture with,£57=r.36 (outputs 1 and 3),

and for the separatioñkrf the mixture with £57=0.77 (output-3).'However, if setpoint tracking is

only required at low frequencies, disturbance rejection is more difficult than setpoint tracking

and therefore, if disturbance rejection is achieved, setpoint tracking will also be achieved.

4.11.2 Controllability at different operating conditions _ - „ "'

In this section, the separation of the mixture with ot=(4.65 : 2.15 : 1) is studied to compare the

controllability of the DWC at different operating conditions. Three operating conditions have

been studied. Optimal operation has been compared with two non-optimal operations, indicated

as operation 1 and operation 2. Optimal operation has SPLITD=Q.634 and SPLITB=0.500.

Operation 1 was found fixing SPLITD at 0.614 and SPLITS at 0.500. Boilup increased a 3%.

Operation 2 was found fixing SPLITD at 0.654 and SPLITS at 0.500. Boilup increased a 10%.

In Tables 4.16, 4.17, and 4.18, the preferred control structures for the different stabilised

columns at the different operations are shown. When controllability with SPLID and SPLITS are

similar, SPLITD has been chosen.

Table 4.16: Preferred structures at optimal operation (analysis at £=0.04 rad/min)

"DB"

LVS

MK7=0.25 fi-

CN=9l

"LB"

VDS

,^x MRI=029_. -
• t ' - _ _ ^. - — ~

CW=12

"DV"

Z-55

MRI=0.2S ' ''
• '

if

ÇN=ll

"LV"

D;55

M/?7=0.34

CA^=4.6

Table 4.17: Preferred'structures at operation 1 (analysis at s=0.04 rad/min)

"DB"

L 5 SPLITD

MRI=Q.10

CN=23.1S

"LB"

D S SPLITD

MRI=0.69

C7V=3.82

"DV"t *

B S SPLITD

MRI=0.61

CAT=3.86

"LV"

B S SPLITS

MRI=0.6l

CN=2.\l
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Table 4.18: Preferred structures at operation 2 (analysis at s=0.04 rad/min)

"DB"

L S SPLIT D

MRI=1.01

CA/= 16.09

"LB"

D S SPLITD

MRI=0.9l

CN=2.95

"DV"

B S SPLITD

MRI=1.03

CN=2.6l

"LV"

DSSPLITB

MRI=0.1l

CN=2.04

Comparing the results of Tables 4.16, 4.17, and 4.18, the following can be noticed:

At optimal operation, the preferred sets of manipulated variables do not include the split

variables. On the contrary, at the non-optimal operations, the preferred sets of manipulated

variables include the split variables.

- For all inventory controls, non-optimal operation preferred control structures have better

controllability indexes.

These conclusions coincide with the conclusions in section 4.7.4.5 for a different separation

problem. This indicates that some generality of the results can be presumed.

4.11.2.1 "DB" inventory control

RGA analysis indicates L SPLITD S as the best paired structure for the non-optimal operations

and L S V as the best paired structure for the optimal operation. PI controllers with K¿=\ and

Tc=80 are implemented to each control loop and the bandwidths are searched. MRI and C7V at the

bandwidth indicate the same preferred structures indicated at frequency 0.04 rad/min. According

to the results, controllability of the non-optimal operations is better. Therefore, for "DB"

inventory control, as found in section 4.9.1, a trade-off between controllability and energy

optimality is possible.

Simulations showing the control performance of "DB" L S V structure at optimal operating

conditions will be shown in section 5.9.1.

4.11.2.2 "LV" inventory control
With RGA analysis, the best paired structures are determined. PI controllers with K¿=\ and Tc=80

are implemented to each control loop and the bandwidths are searched. At the bandwidth

frequency, the preferred structure indicated by II for operation 1 is D B S instead of B S SPLITB,

and the preferred structure indicated by II for operation 2 is D S SPLITD instead of D S SPLITB.

At different frequencies, the controllability indexes indicate different preferred structures

because their values for different control structures are similar. For optimal operation, the best

structure is always D S B. A stability analysis through w/*7> maximum singular value indicates
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robust stability for the three operations with their preferred structures. As was seen in 4.9.2,

"LV" inventory control gives robust stability.

4.12 L/D and V/B as manipulated variables ;

¡

Up to this point, the L/D and V/B ratios have not been considered as manipulated variables.

However, some authors have stated their importance. L/D V/B structure for the control of

distillate and bottoms products compositions in simple columns has been found to be the best

one in some cases (Skogestad et al. 1990 b).

G(s) changes depending on the set of DOF chosen. For instance, the same G(s) is not obtained if

the set of DOF is considered to be L VSSPLITD PLITB or if the set of DOF is considered to be

L/D VSSPLITD SPLITS. Specifically, for a DWC with "DB" inventory control, there are four

possible sets of DOF: L VSSPLITD PLITB, L/D VSSPLITD SPLITB, L V/B SSPLITD SPLITS

and L/D V/B S SPLITD SPLITB. Because of that, with "DB" inventory control,! four different

G(s) can be built. Each element of every (?(s) is found making a step change in an'input variable

while all other inputs are kept constant. It would not be correct to mix in the samelC^s) elements

that correspond to one set of DOF with elements that correspond to another set of DOF.

For a DWC with "DB" inventory control, the four C7(s) have been calculated and the singular

value decomposition has been applied to them in order to compare the controllability of the

control structures. The separation of the mixture with «=(4.65 : 2.15 : 1) described in 4.11.1

(optimal operation) is chosen. The results for the L V S SPLITD PLITB set of DOF are shown in

Table 4.13. According to singular value decomposition and RGA, for the L/D \V S SPLITD

SPLITB set, L/D VSis found to be the preferred structure (MRI=O.Q6, CN=194). For the L V/B S

SPLITD SPLITB set, L V/B S is found to be the preferred structure (MRI=0.l 1, CN-59). Finally,

for the L/D V/B S SPLITD SPLITB set, L/D V/B S is found to be the preferred structure

(MRI=0.06, C7V=108). Comparing the four preferred structures, the best II is for the L V S

structure (MRI=0.25, CN=9l). Therefore, L/D and V/B variables do not appear in the set of

preferred manipulated varialbes.

4.13 Conclusions ,

Considering diagonal feedback control, the DWC complex distillation arrangement offers some

possibilities that have not been analysed in the literature and may have better controllability.
¡

Despite the DWC non-linearity, linear DWC models expressed through the system transfer

function are useful to study and compare different control structures within diagonal feedback

control strategy. Several linear analysis tools such as the MRI, the CN, and the RGA among
i

others are used to select appropriate control structures. A frequency analysis has permitted to

give special importance to DWC response at the range of frequencies of interest. Non-linear
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model simulations have been useful to test the controllers designed following linear

considerations. Typical tuning methods are found to be limited for the tuning of the DWC.

The control of the logarithm of the product compositions instead of the control of the product

compositions themselves may be a good alternative in the DWC. Improvement of the control

performance has been proved for a specific example.

Controllability properties of the different stabilised DWC differ, what makes the consideration of

different inventory control structures important. On the other hand, operating conditions have a

large influence on the controllability of the system.

Comparing the separation of different mixtures in a DWC, it is found that the preferred control

structures do not depend on the separated mixture. Therefore, some generality can be presumed.

At optimal operating conditions, split variables (SPLITD and SPLITS) do not appear in the set of

preferred manipulated variables. At non-optimal operating conditions, they do. In general, MRI

and CN indicate that the controllability of structures with "LV" inventory control is better than

the controllability of structures with "DB" inventory control. Specifically, the CN is very large

for control structures with "DB" inventory controls, and small for control structures with "LV"

inventory controls.

The "LV" stabilised DWC with D S B composition control structure meets good control

properties. First of all, it has an inventory control which respects the rule of controlling the liquid

levels in the tanks with L and V if the reflux ratios are large, as typically happens in the DWC.

Secondly, it has good MRI and CN, and a well behaved RGA at the frequencies around the

bandwidth. Finally, it presents large stability margins, what indicates robust stability.

Among the four proposed inventory control structures, the larger MRI and CN differences

between optimal and non-optimal operating conditions are found for the "DB" stabilised DWC.

According to the controllability indexes, the preferred control structures at optimal and non-

optimal conditions are different. The controllability of the preferred control structure at non-

optimal operating conditions is better. Therefore, it could be possible to renounce to energy

savings in order to obtain better control performance. Split variables are included in the set of

preferred manipulated variables at non-optimal operating conditions. The preferred control

structure at optimal operating conditions is L S V. The inclusion of the split variables in the

control structure permits to break the strong directionality of the L S V control structure, and

makes the CN lower.

121




