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Summary 
The overexploitation of marine living resources challenges the scientific community for 

developing new analytical approaches providing effective tools for marine management, 

ensuring long-term conservation of the harvested and threatened species. Currently, the 

scientific efforts are mainly focused on the development of techniques and concepts to 

improve the assessment and management of these populations from a holistic point of view 

within the framework of the Ecosystem Based Management (EBM). While the principles and 

objectives of EBM have been accepted by the scientific community and those responsible for 

the management of the fisheries and conservation, there is not a consensus about how it 

should be implemented. One of the decisive reasons hindering its implementation is the 

complexity related to the modeling of complex socio-ecological systems, which covers from 

environmentally driven effects to social aspects in the management. Focusing on key 

processes of ecosystems such as the relationships between species ecological processes and 

essential habitats offers a path to advance towards the implementation of EBM without having 

to reach the development of excessively complex end-to-end models of an ecosystem. 

The research developed along this PhD has two main objectives. 1)  the application of 

new concepts and techniques to improve the characterization of essential habitats of two top 

predator species, the dusky grouper (Epinephelus marginatus, Lowe 1834) and the Atlantic 

bluefin tuna (Thunnus thynnus, Linnaeus 1758). 2) To propose new methodologies based on 

habitat information to improve current assessment and management approaches of those 

species.  

Conservation of dusky grouper and Atlantic bluefin tuna exploited populations is tackled 

today from different technical approaches due to differences in their ecological characteristics.  

Dusky grouper is a highly resident species that inhabits rocky bottoms in coastal 

Mediterranean ecosystems, where conservation of exploited populations through the 

establishment of marine protected areas has provided positive results. Atlantic bluefin tuna is 

a highly migratory pelagic species with a wide geographical distribution along the Atlantic 

waters, and performs long migrations during spring to reach the spawning areas, among of 

which the Balearic Sea is one of the main ones. Management of Atlantic Bluefin tuna is 

approached mainly by technical measures such as minimum weight regulation and limitations 

in the total allowable catches, established as a function of the status of the adult stock 

populations calculated from virtual population analysis. 
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In recent years the application of traditional landscape ecology techniques to characterize 

habitat in the coastal environment has promoted the beginning of the seascape ecology 

discipline. These techniques have been applied here to improve the definition of dusky 

grouper essential habitats and to identify changes in habitat use along ontogenetic 

development. The definition of dusky grouper habitats at different developmental stages 

provided insights about the species ecology and provided criteria for designing more efficient 

Marine Protected Areas (MPAs). Findings from the study of dusky grouper essential habitat 

and the improvement on habitat definition by using seascape metrics provide the basis for 

developing new methods for MPA design within the framework of Rapid Assessment 

Programs. Therefore, in this PhD a method is proposed for rapid multidisciplinary 

environmental assessment of coastal areas for the design and management of MPAs. This 

method provide tools for the selection, design and management of coastal MPAs when time, 

budget or potential human pressures, either alone or in combination, create an urgent need 

for prioritization. 

The conceptual scheme applied to link littoral species with essential habitats and the 

transference to management has been adapted to the pelagic environment. Transferring ideas 

and techniques of seascape ecology to the pelagic realm was not straightforward. New pelagic 

seascape metrics have been proposed and tested to study the Atlantic Bluefin tuna spawning 

habitats around the Balearic Sea, advancing in the knowledge of species ecology. The 

developed pelagic seascape metrics have been applied to the development of a spawning 

habitat forecasting model to assist managers. This methodology is entirely based on 

oceanographic data obtained from operational data sources.  Finally, monitoring and modeling 

Atlantic bluefin tuna pelagic essential habitats at larval stages allowed developing new larval 

indices, providing information on Atlantic bluefin tuna adult eastern stock population. 
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Resum 
 
L’estat actual dels recursos vius i dels ecosistemes marins suposa un desafiament 

constant per a la comunitat científica, que obliga a un progrés continu que asseguri, a llarg 

termini, la seva explotació sostenible i la seva conservació. Avui en dia els esforços en la 

investigació se centren, en gran mesura, en el desenvolupament de tècniques i conceptes per 

millorar l’avaluació i la gestió d’aquestes poblacions des d’un punt de vista holístic en el marc 

de la gestió basada en l’ecosistema (EBM per les seves sigles en anglès). Mentre que els 

principis i objectius de l’EBM han estat acceptats per la comunitat científica i pels responsables 

de la gestió de la pesca i de la conservació, no existeix un consens sobre com s’ha d’aplicar. Un 

dels motius determinants que obstaculitzen la seva implantació és la complexitat associada a 

la modelització de sistemes socio-ecològics complexos, que abasta des dels efectes ambientals 

fins a aspectes socials en la gestió dels recursos. La identificació de processos clau en un 

ecosistema, com puguin ser les relacions entre l’ecologia de determinades espècies amb els 

seus hàbitats essencials, ofereix una possibilitat per avançar cap a l’aplicació de la EBM sense 

haver d’assolir el desenvolupament de models super-complexos que abordin tots els processos 

que ocorren en un ecosistema. 

Els diferents estudis desenvolupats  al llarg d’aquesta tesi doctoral tenen dos objectius 

principals. En primer terme s’ aborda l’aplicació de noves tècniques i conceptes per tal de 

millorar la caracterització dels hàbitats essencials de  dues espècies marines localitzades en els 

estatges superiors de la cadena tròfica, com són l’anfós (Epinephelus marginatus, Lowe 1834) i 

la tonyina vermella (Thunnus thynnus, Linnaeus 1758). En segon terme, el desenvolupament 

de metodologies basades en la informació obtinguda sobre els seus hàbitats essencials, la qual 

cosa permetrà   millorar l’avaluació i gestió de les poblacions d’aquestes espècies. 

Avui dia, la conservació de les poblacions explotades de l’anfós i la tonyina vermella  

s’aborden des d’enfocaments ben diferenciats, sobre la base de les seves característiques 

ecològiques. L’anfós és una espècie altament resident que habita fons rocosos dels 

ecosistemes costaners de l’oceà Atlàntic, l’oceà Índic i el mar Mediterrani. La conservació de 

les seves poblacions explotades es basa principalment en l’establiment d’àrees marines 

protegides. Per la seva banda, la tonyina vermella és una espècie pelàgica amb una àmplia 

distribució geogràfica al llarg de l’Atlàntic, que realitza llargues migracions durant la primavera 

per arribar a les àrees de reproducció, entre les quals s’hi troba el Mar Balear. La gestió 
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d’aquesta espècie es basa, principalment, en l’establiment de quotes de pesca a partir de 

l’avaluació de l’estat de les poblacions mitjançant l’aplicació de models monoespecífics. 

En els darrers anys l’aplicació de tècniques procedents de l’ecologia del paisatge terrestre 

(landscape ecology) en estudis d’ecologia del medi costaner ha donat lloc a l’inici de la 

“ecologia del paisatge marí” (seascape ecology). En els estudis desenvolupats en el marc 

d’aquest doctorat s’han aplicat aquestes tècniques per millorar la definició dels hàbitats 

essencials de l’anfós i per identificar canvis en l’ús de l’hàbitat al llarg del seu 

desenvolupament ontogènic. La millora en la identificació dels hàbitats essencials de l’anfós a 

diferents etapes del seu desenvolupament ha proporcionat informació rellevant sobre la seva 

ecologia i criteris per al disseny d’àrees marines protegides més eficients quant a la 

conservació d’aquesta espècie. Els resultats obtinguts durant l’estudi dels hàbitats essencials 

de l’anfós i la millora en la caracterització de l’estructura dels hàbitats a través de l’aplicació de 

mesures de paisatge submarí han proporcionat la base per al desenvolupament d’una 

metodologia de disseny d’àrees marines protegides en el marc dels programes d’avaluació 

ràpida (RAPs per les seves sigles en anglès). En aquesta tesi doctoral es proposa un mètode per 

a l’avaluació ràpida d’àrees costaneres des d’un enfocament multidisciplinari. Aquest mètode 

proporciona eines per a la selecció, disseny i gestió d’àrees marines protegides costaneres 

quan el factor temps, el pressupost o l’acció humana, ja sigui individualment o combinats, crea 

una necessitat urgent de priorització. 

L’esquema conceptual aplicat en l’anàlisi de les relacions entre l’ecologia de l’anfós i els 

seus hàbitats essencials i la transferència d’aquesta informació a la millora en l’avaluació i 

gestió de l’espècie s’ha adaptat a l’ambient pelàgic. La transferència d’idees i tècniques de 

l’ecologia del paisatge marí a l’ambient pelàgic ha suposat un repte al llarg d’aquest doctorat. 

S’han proposat noves mètriques de paisatge marí pelàgic, que s’han aplicat en l’estudi dels 

hàbitats de reproducció de la tonyina vermella en el Mar Balear, la qual cosa ha permès 

avançar en el coneixement de l’ecologia d’aquesta espècie i d’altres de túnids. Aquests 

avanços han permès el desenvolupament d’un model de predicció de la localització de les 

zones de reproducció de la tonyina a les Balears, basats completament en l’aplicació de dades 

procedents de l’oceanografia operacional (teledetecció i models hidrodinàmics). Finalment, la 

monitorització dels estadis larvaris de la tonyina vermella i l’anàlisi dels seus hàbitats 

essencials han permès desenvolupar índexs d’abundància larvària, i demostrar que la 

informació sobre l’hàbitat millora significativament l’avaluació d’aquest índexs. Aquests índexs 

larvaris estàn permetent analitzar l’evolució de la fracció adulta de la població oriental de 

tonyina vermella de l’Atlàntic, que es reprodueix al Mediterrani.
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Resumen 
 

El estado actual de los recursos vivos y de los ecosistemas marinos supone un desafío 

constante para  la comunidad científica, obligando a un  progreso continuo que asegure, a 

largo plazo, su explotación sostenible y su conservación. Hoy en día los esfuerzos en la 

investigación se centran, en gran medida, en el desarrollo de técnicas y conceptos para 

mejorar la evaluación y gestión de estas poblaciones desde un punto de vista holístico en el 

marco de la gestión basada en el ecosistema (EBM por sus siglas en inglés). Mientras que los 

principios y objetivos de la EBM  han sido aceptados por la comunidad científica y los 

responsables de la gestión de la pesca y la conservación, no existe un consenso sobre cómo 

debe aplicarse. Una de las razones determinantes que obstaculizan su implementación es la 

complejidad asociada a la modelización de sistemas socio-ecológicos complejos, que abarca 

desde los efectos ambientales hasta aspectos sociales en la gestión de los recursos. La 

identificación de procesos clave en un ecosistema, tales como las relaciones entre la ecología 

de determinadas especies con sus hábitats esenciales, ofrece una posibilidad para avanzar 

hacia la aplicación de la EBM sin tener que alcanzar el desarrollo de modelos super-complejos 

que  aborden todos los procesos que ocurren en un  ecosistema. 

Los diferentes estudios desarrollados a lo largo de esta tesis doctoral tienen dos objetivos 

principales. En primer lugar, la aplicación de nuevas técnicas y conceptos para la mejora de la 

caracterización de los hábitats esenciales de dos especies marinas localizadas en los estados 

superiores de la cadena trófica, el mero (Epinephelus marginatus, Lowe 1834) y el atún rojo del 

Atlántico (Thunnus thynnus, Linnaeus 1758). En segundo lugar, el desarrollo de nuevas 

metodologías, basadas en la información obtenida sobre hábitats esenciales, que permitan 

mejorar la evaluación y la gestión de las poblaciones de estas especies. 

Hoy en día, la conservación de las poblaciones explotadas del mero y el atún rojo se 

abordan desde enfoques técnicos bien diferenciados, en base a sus características ecológicas.  

El mero es una especie altamente residente que habita en fondos rocosos de los ecosistemas 

costeros del Mediterráneo. La conservación de sus poblaciones explotadas mediante el 

establecimiento de reservas marinas ha dado buen resultado. El atún rojo del Atlántico es una 

especie pelágica con una amplia distribución geográfica a lo largo de las aguas del Atlántico, 

que realiza largas migraciones durante la primavera para llegar a las áreas de reproducción, 

entre las que se encuentra el Mar Balear. La gestión de esta especie se basa, principalmente, 
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en el establecimiento de tallas mínimas de captura y de cuotas de pesca a partir de la 

evaluación del estado de las poblaciones mediante la aplicación de modelos uni-específicos. 

En los últimos años la aplicación de técnicas procedentes de la ecología del paisaje 

terrestre (landscape ecology), en estudios de ecología en el medio costero ha dado lugar al 

inicio de la “ecología del paisaje marino”(seascape ecology). En los estudios desarrollados en el 

marco de este doctorado se han aplicado estas técnicas para mejorar la definición de los 

hábitats esenciales del mero y para identificar cambios en el uso del hábitat a lo largo de su 

desarrollo ontogénico. La mejora en la identificación de los hábitats esenciales del mero en 

diferentes etapas de desarrollo ha proporcionado información relevante sobre la ecología de 

esta especie y  criterios para el diseño de áreas marinas protegidas más eficientes en cuanto a 

su conservación. Los resultados obtenidos durante el estudio de los  hábitats esencial de mero, 

y la mejora en la caracterización de la estructura de los hábitats mediante la aplicación de 

medidas de paisaje marino, han proporcionado la base para el desarrollo de una metodología 

de diseño de áreas marinas protegidas en el marco de los programas de evaluación rápida 

(RAPs por sus siglas en ingles). En esta tesis doctoral se propone un método para la evaluación 

rápida de aéreas costeras desde un enfoque multidisciplinar. Este método proporciona 

herramientas para la selección, diseño y gestión de áreas marinas protegidas costeras cuando 

el factor  tiempo, el presupuesto o la acción humana, ya sea solos o en combinación, crea una 

necesidad urgente de priorización. 

El esquema conceptual aplicado en el análisis de las relaciones entre la ecología del mero y sus  

hábitats esenciales y la transferencia de esta información a la mejora en la evaluación y gestión 

de esta especie, se ha adaptado al ambiente pelágico. La transferencia de ideas y técnicas de la 

ecología de paisaje marino al ambiente pelágico ha supuesto un reto a lo largo de este 

doctorado. Se han propuesto nuevas métricas de paisaje marino pelágico, que se han aplicado 

en el estudio de los habitats de reproducción del Atún rojo en aguas del Mar Balear, lo que ha 

permitido avanzar en el conocimiento de la ecología de esta especie y otras especies de 

túnidos. Estos avances han permitido el desarrollo de un modelo de predicción de la 

localización de las zonas de reproducción del atún rojo en Baleares, basados enteramente en la 

aplicación de datos procedentes de la oceanografía operacional (teledetección y modelos 

hidrodinámicos). Finalmente, la monitorización  de los estadios larvarios del atún rojo y el 

análisis de sus hábitats esenciales han permitido desarrollar índices de abundancia larvaria, y 

demostrar que la información sobre hábitat mejora significativamente la evaluación de estos 

índices. Estos índices larvarios  están permitiendo analizar la evolución de la población adulta 

de la población oriental del atún rojo del Atlántico, que se reproduce en el Mediterráneo. 
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Acronyms and glossary terms 
The following table contains a list of acronyms most commonly used along the 

manuscript of this Doctoral thesis. Other acronyms, related to environmental variable names 

used in specific analyses are detailed along the manuscript. 

Acronyms 
AGRRA Atlantic and Gulf Rapid Reef Assessment. An international collaboration 

project for the assessment of the regional condition of reefs in the Western 
Atlantic and Gulf of Mexico. 

AIC Akaike Information Criterion.  A measure of the quality of various statistical 
models relative to each other.  It is used for model selection. 

AUC Area Under the Curve. Performance metric of a logistic regression. It is a 
commonly used evaluation metric for binary classification problems like 
predicting presence-absence individuals of the species. 

B60 Bongo 60. A plankton sampling gear with a 60 cm radius double mouth.  

B90 Bongo 90. A plankton sampling gear with a 90 cm radius double mouth  

BFT Atlantic Bluefin tuna (Thunnus thynnus, Linnaeus, 1758) 

BOE Boletin Oficial del Estado. Spanish government official gazette.  

CANP Cabrera Archipelago National Park. A terrestrial-maritime national park 
located in the Balearic Islands 

CPUE Capture per Unit Effort. Relation between the catch (e.g. weight, number of 
individuals) and the effort associated to the catch. It is commonly used as 
index of abundance 

 EBM Ecosystem Based Management. A management approach integrating the 
various elements and interactions composing an ecosystem, including human 
interactions.  

EXA Exposure estimates for fragmented Archipelagos. A technical approach to 
measure wave energy on coastal areas.  

GAM General Additive Model. A nonparametric statistical modeling approach 
where the response variable depends on explanatory variables through 
nonlinear link functions 

GCV Generalized Cross-Validation. Parameter informing about the quality of the 
statistical model. It is used for model selection within the same model family. 

GOM Gulf of Mexico. It is one of the main spawning areas of the western stock of 
Atlantic bluefin tuna.  

ICCAT International Commission for the Conservation of Atlantic Tuna. An 

http://www.agrra.org/
http://www.agrra.org/surveymap.htm
http://www.agrra.org/surveymap.htm
https://en.wikipedia.org/wiki/Model_selection
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international organization responsible of the Atlantic bluefin tuna assessment 
that sets the total allowable catch. 

 ICZM Integrated Coastal Zone Management. A management approach aiming at 
provide tools for planning, management and monitoring of coastal areas by 
integrating multidisciplinary information and involving all stakeholders 

IUCN International Union for Conservation of Nature 
MPA Marine Protected Area. A geographic area where human activities are 

restricted and regulated. 

MSFD Marine Strategy Framework Directive. A European legislative framework 
aiming at achieving or maintaining a good status of the European Marine 
environment by 2020. 

NOAA National Oceanic and Atmospheric Administration. The EEUU federal agency 
focused on understanding and predicting changes in climate, weather, oceans, 
and coasts as well as conserving and managing coastal and marine ecosystems 
and resources 

ODP Operational Data Products. Specific data products (e.g. sea surface 
temperature maps or salinity profiles for example) provided by the application 
of operational oceanography techniques 

SITIBSA Serveis d'Informacio Territorial de les Illes Balears. The Balearic islands 
territorial information service 

SSB Spawning Stock Biomass. Biomass (weight) of individuals of a particular fish 
species that are sexually mature 

TAC Total Allowable Catch. A catch limit set for a particular fishery during a fishing 
season (definition by the Organization for Economic Co-operation and 
Development) 

UVC Underwater Visual Census. A visual based technique for evaluating 
populations of nectobenthic species performing diving transects.  

VPA Virtual Population Analysis. A modeling approach based on cohort structure 
and evolution used in fisheries management  for analyzing historical fish 
abundances. 

WWF World Wildlife Fund. 

 
Glossary terms 
End to end model Modeling approach aiming at simulate ecosystem processes 

considering the dynamic effects of both the physical environment  
and the human activities, including all trophy levels 

Full ecosystem A group of techniques aiming to model the entire ecosystem by 
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approach modeling disentangling all the interrelationships among predator and preys. 
Opposite to minimum-realistic approach. 

Landscape ecology A scientific discipline focusing on the characterization of the 
landscape pattern structure, how it changes over time and how it 
affects ecological processes 

Landscape ecology 
metric 

A quantitative measure of  landscape structure pattern (e.g. 
fragmentation, core area, connectivity) 

Minimum-realistic 
approach modeling 

 Analytical ecosystem approach aiming to identify key aspects of an 
ecosystem that are affordable to be describe by realistic numerical 
modeling. 

Operational 
fisheries 
oceanography 

A scientific discipline that focuses on improving fisheries 
management by taking advantage of operational oceanography 
tools and data 

Operational 
oceanography 

Systematic and long-term routine measurements of the seas and 
oceans and atmosphere, and their rapid interpretation and 
dissemination (definition of EuroGOOS) 

Pelagic seascape 

ecology.  

A scientific discipline aiming at improving the understanding on 
how the structure patterns of pelagic habitats affects species 
ecology. 
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1.1 Motivation of the PhD thesis 

The conservation of threatened marine species and the long-lasting sustainable 

exploitation of living resources pose continuous challenges in the scientific community 

endeavors. Current efforts are framed in the Ecosystem Based Management (EBM), in which 

scientists mainly focus in the development of techniques and concepts to improve the 

assessment and management of populations from a holistic perspective. Eventhougth 

scientific community agrees in the general principles of EBM, there is not a clear consensus yet 

on how to implement it. One of the most important reasons is the high complexity of the 

socio-ecological systems, and its high degree of variation within a regional scale. This 

complexity covers from environmental drivers to social aspects of the management. This 

evidences the crucial importance of focusing in understanding and modeling key processes of 

marine ecosystems as the most effective avenue to ensure the implementation of EBM, rather 

than developing highly complex ecosystem models (Cury et al. 2008). In this sense, the 

relationships between key ecological processes of species and essential habitats are, without 

doubts, a main pillar for the future development and implantation of EBM. 

Recent advances in data acquisition of benthic and pelagic marine habitats offer today 

the possibility of analyzing habitat-ecology relationships that traditionally have been limited 

due to the lack of environmental information. The main motivation throughout this PhD thesis 

has been developing and progressing in techniques and concepts necessary to address the 

study of relationships between species ecology and essential habitats, and the application of 

that knowledge to the improvement of the assessment and management of marine 

exploited and threatened species. To do that, I framed the thesis on the development of the 

emerging “seascape ecology” discipline by transferring techniques and concepts from the 

“landscape ecology”, widely developed in the Earth's environmental science, to the marine 

environment. 

These issues have been approached for two emblematic species in the Balearic 

archipelago, Dusky grouper (Epinephelus marginatus, Lowe 1834), species characteristic of the 

coastal ecosystem and whose management is addressed mainly through marine protected 

areas (MPAs) and Atlantic bluefin tuna (Thunnus thynnus, Linnaeus 1758 ) a highly migratory 

pelagic species that has one of the most important spawning areas around the Balearic Islands. 

Developing specific products from science directly applicable in the improvement of species 

assessment and management was the original motivation of this PhD thesis. 
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1.2 Background 

1.2.1 General state of marine resources and ecosystem 

The steady increase over recent decades in the number of endangered marine species 

(Baillie et al. 2004), the evidence of overexploitation of fishery resources (Pauly et al. 1998; 

Jackson et al. 2001; Schiermeier 2002; Swan & Gréboval 2005) and the marine biodiversity loss 

(Sala & Knowlton 2006; Worm et al. 2006) are examples of the persistent deterioration of 

marine ecosystems and the services they provide for the society (Tegner & Dayton 1999; 

Steele & Schumacher 2000; Jackson et al. 2001; Worm et al. 2006). The human impacts on 

marine ecosystems affects the populations of key top predators, such as sharks (Baum et al. 

2003), mammals (Schipper et al. 2008), large migratory fish (Myers & Worm 2003; Allen 2010; 

MacKenzie & Mariani 2012) and other species even when they are not direct objective of 

fishing (Lewison et al. 2004). An overview on the temporal evolution of the status of fishery 

resources shows that along the last four decades the proportion of over-exploited fisheries has 

increased continuously to reach a level of 30%, being 60% of the fisheries in the limit of 

sustainability, whereas only 10% of fisheries are considered in good condition (FAO 2014). The 

situation may be worse if we consider that this information refers only to fisheries under some 

degree of control. Several studies suggest that much of the fishing effort is out of the statistics 

and has not been considered in these analyses, so the pressure over exploited species is most 

likely greater (Watson & Pauly 2001; Belhabib et al. 2014; Cressey 2015). 

1.2.2 Developments in the approaches applied to the assessment 

and management of marine resources 

Within the current context of overexploitation, continuous improvement in the strategies 

for the conservation of the species and marine ecosystems is a must that has promoted 

actions in the field of policy, assessment, management and science (Rice 2011).  Most efforts 

have focused on understanding the functioning of marine ecosystems, monitoring, and 

transferring the acquired knowledge to the processes of assessment and management, moving  

from a single-species to more holistic approaches (Caddy & Cochrane 2001). Single-species 

based approaches are still dominant in the assessment and management of many relevant 

fisheries worldwide (Pitcher et al. 2009). However, while single-species approach may be valid 

for many fisheries (Cowan Jr et al. 2012), current and forefront research in fisheries ecology is 

fostering the need of evaluating and managing marine resources from a broader perspective in 
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which the relationships of the species with their environment are considered. Ecosystem 

Based Fisheries Management (EBFM),  developed from the application of EBM to fisheries 

(Link 2002; García 2003; Pikitch et al. 2004; McLeod & Leslie 2009; Essington & Punt 2011),  

has been widely assimilated by countries and international agencies managing relevant 

fisheries (Rice 2011; Hilborn 2011). Nowadays, even broader perspectives of management are 

proposed, aiming to encompass all aspects involved in a socio-ecological system (Ostrom 

2009), and including adaptive management (Allen et al. 2011). The main objective of these 

approaches is to maintain marine ecosystems in a healthy, productive condition and optimum 

resilience, so that they can provide the necessary services for the society (Liquete et al. 2013).  

1.2.3 Lines of development within the ecosystem based 

management framework 

The assessment and management approaches of marine resources towards more holistic 

conceptual frameworks have evolved through different paths of technical development and 

implementation. One of these paths has been the development of procedures for the 

assessment of the status of populations through multi-species and ecosystem models (Fulton 

et al. 2003). These models consider the effect of many environmental and biological factors 

over a particular exploited resource, finally integrating the ecosystem effects in a wider 

modeling framework considering also the economic and sociological aspects of management 

(García & Cochrane 2005).  This approach (see figure 1.1), which is becoming the focus of new 

advances within relevant agencies, such as the International Council for the Exploration of the 

Seas (ICES), is highly complex and requires an enormous amount of information relating to the 

entire socio-ecological system. Practical implementation is still in progress with great effort 

(Fulton et al. 2003; Fulton et al. 2011; Dickey-Collas 2014). Although the need for the 

application of these concepts to management is accepted, there is still not a clear consensus 

about how to progress towards the  objectives proposed by the EBM (Essington & Punt 2011), 

and  implementation at present is still limited (Pitcher et al. 2009). Therefore, the application 

of end to end ecosystem models for assessing fisheries management may found reluctance 

among responsible fisheries due the over complexity associated with these techniques, 

causing political interferences in management of marine living resources (Cowan Jr et al. 

2012). The increase of uncertainty associated with this type of models has resulted in the 

assertion that it is preferable to deal with the analyses of the impacts on the marine 

environment and species through the combination of several simple but realistic models 

("minimum-realistic" approach) rather than using models trying to include all the possible 
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interrelations of all elements within an ecosystem ("full ecosystem" approach) (Fulton et al. 

2003; Cury et al. 2008).  

 

Figure 1.1: The North Sea ecosystem model. Relations between functional groups used to 

evaluate key food-web links, climate change and fishing pressure in the framework of the “ICES WG 

Integrated Assessments of the North Sea”. Adapted from SCICOM 2014. 

 

Another different approach for implementing EBM for fisheries and conservation in 

marine environments has been the development of Marine Protected Areas (MPAs) (Lauck et 

al. 1998; Roberts et al. 2001; Pauly et al. 2002; Fulton et al. 2003). The application of MPAs 

implies a significant conceptual change in the way that marine resources are managed, 

involving conservation of the diverse components of an ecosystem, the habitats and species 

and in consequence their interactions, as a whole, instead of focusing on discrete elements as 

a single species. MPAs can reverse important impacts on habitats and exploited species 

(García-Charton et al. 2008) and could serve as economic boost of local coastal villages (Sala et 

al. 2013). MPAs are considered appropriate management tools for coastal fisheries, with 

multiple examples in the Western Mediterranean (Pérez-Ruzafa et al. 2008). Nowadays, MPAs 

are being proposed for managing living resource in the pelagic environment as well (Game et 

al. 2009). Dynamic pelagic closure areas, where the geographic limits of the fisheries restricted 

domain is modified as a function of the local oceanography, have already applied been 
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successfully in eastern Australia (Hobday et al. 2010), maybe the only current example 

available of a pelagic dynamic MPA. 

1.2.4 Essential habitats as a key element for the improvement of 

assessment and management approaches 

The ecology of exploited and endangered species is strongly linked with their essential 

habitats (Valavanis 2009). Therefore, for the successful implementation of the two previously 

raised assessment and management approaches, ecosystem modeling and MPAs, 

consideration of the relationships between the species of interest and their essential habitats 

is paramount (Rosenberg et al. 2000).  

In the case of MPA, the success of protection measures will depend on many factors 

related to the MPA design (Claudet 2011), especially those linked to the adequacy of habitats 

protected (Roberts et al. 2003b). In the Mediterranean coastal MPAs, the carrying capacity of 

the fisheries targeted species depends on the essential habitats protected (Coll et al. 2012).  In 

the case of coastal artisanal fisheries assessed by trends of capture per unit effort (CPUE), 

strong uncertainties in fish population may appear if the total area of essential habitats 

sampled is not considered in the calculations (Stobart et al. 2012). In the pelagic environment, 

hydrographic and biogeochemical conditions associated to particular oceanographic processes, 

such as frontal zones, define essential habitats of many species (Shillinger et al. 2008; Hobday 

et al. 2010; Scales et al. 2014), and variability of the local or regional oceanography may also 

determine relevant ecological processes such as recruitment (Cury et al. 2008; Ruiz et al. 

2013). However, despite the information provided from the analysis of essential habitats could 

improve the assessment and management of many species, its direct application is still a 

pending issue.  

Identifying how essential habitats drive key ecological processes of species of interest will 

provide a way to integrate that information in the assessment and management, moving 

towards to EBM while maintaining the principle of "minimum-realistic" approach. For example, 

the identification of how essential habitats shape the spatial distribution of a species may be 

the main issue for zoning uses and activities within a MPA. The challenge is similar in the 

pelagic environment, in which improving the management through the identification of how 

oceanography drives key processes has been also proposed within the framework of the 

"ecosystems oceanography" (Cury et al. 2008). 
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1.2.5 Main scientific and technical challenges 

A first step to advance towards the development of new assessment and management 

approaches based on the knowledge on species-habitat relationships is the identification and 

evaluation of these relationships. Recently, several authors propose advancing in the study of 

essential habitats in marine species within the framework of the developing discipline of 

“seascape ecology” (Pittman et al. 2011). The development of concepts and techniques for the 

study of how essential habitats drive the ecology of the species on the terrestrial 

environments has been one of the main objectives of the "landscape ecology", a scientific 

discipline with already more than seven decades of history (Turner et al. 2001). Within 

landscape ecology, landscapes are defined as a geographic area in which the descriptor 

variables are heterogeneously distributed in space. For example, in a forest, the elements that 

configure the landscape may be defined by the mosaic of different tree species, rivers or 

meadows. Within a political landscape on a continental scale, these elements may be defined 

by the countries ranked by their growth domestic product (Ercan 2013). Landscape ecology 

researchers have developed tools for the analysis of landscapes by considering these elements 

as a mosaic of patches or polygons (figure 1.2). From here, multiple metrics were developed to 

quantify dispersion, aggregation, extension or level of interrelation (Gustafson 1998). Adapt 

techniques of landscape ecology to their application to the marine environment is the main 

challenge of the recent "seascape ecology" (Hinchey et al. 2008b; Pittman et al. 2011).  
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Figure 1.2: ·Example of landscape categorization using the patch mosaic concept of the 

landscape structure. Land cover classes are used to evaluate changes of landscape structure 

over time (adapted from Gökyer 2013).  

 

Over the last decade, seascape ecology has focused on the application of landscape 

ecology concepts to the study of benthic habitats in coastal areas, where detailed habitat maps 

are available (Bostrom et al. 2011). In coastal areas, rocky bottoms of different structural 

complexity, seagrass meadows or detritic bottoms can define a mosaic of different habitat 

patches. Therefore concepts and techniques of landscape ecology, like the mosaic based 

landscape metrics used to quantify habitat patterns (Turner 1991), are directly applicable. 

However, the transfer of concepts and techniques of the ecology of the landscape to the 

pelagic environment is not straightforward (Pittman et al. 2011). In the pelagic environment, 

the different elements that configure a particular essential habitat do not present clear 
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delimitations and most of them are ephemeral and highly dynamic (figure 1.3). Therefore, the 

traditional analysis for the parameterization of the landscape tools cannot be applied. Finding 

new approaches to analyze the pelagic seascapes in the way that concepts and questions from 

landscape ecology can be tackled, is today a challenge of the emerging “pelagic seascape 

ecology”.  

 

Figure 1.3: A-Patch mosaic benthic seascape of a coastal area at the North-East of 

Mallorca. Various bottom types are categorized and delimitated to study habitat structure 

patterns using traditional landscape ecology metrics. B- Spatial variability of sea surface salinity 

around the Balearic archipelago.  

 

One of the paramount questions of analysis in landscape ecology is how the spatial scale 

of the observations affects our ability to identify specific habitat patterns to properly 

characterize a key ecological process. The concept of spatial scale has great relevance also in 

seascape ecology. Multiscale hierarchical analysis show that spatial scale is a key factor for 

understanding how environmental forgings affects species abundances in coastal areas 

(Pittman et al. 2004) and pelagic communities assemblages (Álvarez et al. 2015). The analysis 

of seascapes at multi-scale levels have improved also the definition of essential fish habitat in 

benthic ecosystems (Kendall et al. 2011; Pittman & Brown 2011). The possibility of applying 
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multiscale seascape approaches may have also great relevance for the parameterization of 

pelagic habitats when trying to identify how oceanographic phenomena (e.g., fronts, eddies, 

filaments, turbulence) affects species ecology. If a particular ecological process is driven by 

oceanographic phenomena occurring at large spatial scales, such as the migration of 

leatherback (Dermochelys coriacea) in the Northwest Atlantic Northwest (Dodge et al. 2014), 

or the distribution of large migratory fish (Scales et al. 2014), the relation between the species-

ecology and the oceanographic variables (e.g. distribution of chlorophyll, surface temperature, 

frontal processes) will emerge only if the observation occurs at large spatial scales. Also, if the 

distribution of a species is determined by processes occurring at smaller scales, these relations 

not will emerge in the analysis if the scale of observation is too wide.  

In this PhD thesis these concepts of seascape ecology and spatial scale are applied to 

define the essential habitats at particular developmental stages of two species, the dusky 

grouper (Epinephelus marginatus), and the Atlantic bluefin tuna (Thunnus thynnus). The two 

species, relevant from the ecological and economical point of view, are top predators of the 

coastal and pelagic ecosystems respectively, as well as target species of important fisheries 

(Reñones et al. 1999; Fromentin & Powers 2005; Hinchey et al. 2008b).  Knowledge gained on 

habitat-species relationships of these two species is applied to improve current assessment 

methods applied nowadays within two management approaches: MPAs-related framework 

and population dynamics modeling.  

1.2.6 Geographic framework, species and assessment approaches 

analyzed in the thesis 

The Balearic Island provides a unique scenario to make advances on the study of species 

and essential habitat relationships, presenting in addition the potential for implementing this 

knowledge on assessment and management of fisheries. In this geographical area different 

management frameworks exist for different key species, habitat maps are available for existing 

MPAs (Posidonia-LIFE-Project 2001), and progress on the field of operational oceanography 

provides in situ, satellite and hydrodynamic data (Tintoré et al. 2013; Aparicio-González et al. 

2015).   

Within the Balearic Islands MPAs, the dusky grouper is a coastal species with a positive 

response to the protection (Reñones et al. 1999). The definition of dusky grouper essential 

habitats provides key information to evaluate the design of existing MPAs to protect this 

species and to assess new ones. Besides, novel approaches based on essential habitats 
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information allows assessing the status of exploited populations of this species in coastal areas 

(Coll et al. 2013b).  

Bluefin tuna (Thunnus thynnus) is a highly migratory top predator that sustain relevant 

fisheries (Fromentin & Powers 2005). During winter season this species is distributed along 

feeding areas in the Atlantic. During the spring, adult individuals migrate to reproductive areas 

in the Gulf of Mexico and the Mediterranean. Within the Mediterranean, the Balearic Sea is 

one of the most relevant spawning areas (Fromentin & Powers 2005; García et al. 2005a). In 

this area, reproductive ecology of this species is strongly affected by mesoscale oceanography 

(Reglero et al. 2012; Muhling et al. 2013), and therefore spatial location of spawning grounds 

may vary among years as a function of the inter-annual differences in the oceanographic 

scenario. Identifying how local mesoscale oceanography affects spawning habitats provides 

key information for improving adult stock evaluation from larval indexes. Larval index relate 

adult population with total larval abundance, and it is the unique method routinely available 

for assessing bluefin tuna stock status from fishery-independent data (Ingram et al. 2010). 

Besides, spawning habitats mapping would provide the possibility of for applying new 

management concepts as the dynamic pelagic MPAs for tuna species conservation (Hobday et 

al. 2010).  

1.3 Objectives and structure of the PhD Thesis  

This PhD thesis has two general objectives, firstly, to develop concepts and analytical 

tools to advance in the study of species ecology and the essential habitat relationships, and 

secondly, to propose specific ways to apply that knowledge in the evaluation and management 

of two species in the littoral and pelagic ecosystem. These species, dusky grouper and Atlantic 

bluefin tuna, are the target of important fishing activities and are key elements in marine 

ecosystems. 

To reach these general objectives, the essential habitats of dusky grouper and Atlantic 

bluefin tuna are investigated transferring concepts and techniques from the discipline of 

seascape ecology. In the two cases, the effect that spatial scale has on our capability for 

defining these habitats has been investigated. Knowledge gained in these studies was applied 

for the development of techniques to improve current assessment and management of these 

species. 
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1.3.1 PhD Thesis structure 

The PhD thesis document has been structured in eight chapters to achieve the proposed 

objectives. Chapter one presents a general overview of the objectives and challenges that will 

be addressed along the following chapters. Chapters two and three focus on the study of 

dusky groupers and marine protected areas, as fisheries and conservation management tool, 

in coastal ecosystems. Chapters four, five and six are focused on the study of Atlantic bluefin 

tuna pelagic habitats and assessment. Chapter seven presents a general discussion for the 

PhD, and chapter eight provides the general conclusions. All studies were developed in the 

geographic framework of the Balearic Islands as study area. 

More specifically, chapter two investigates how rocky habitat structure and topography 

observed at different spatial scales provides information on the habitat definition for dusky 

grouper in to two ontogenetic states, juvenile and adult. This information, combined with 

fishing pressure and local hydrodynamics, is applied to get a habitat model from a multiscale 

seascape approach. Results are discussed in terms of species ecology and design and 

management of MPAs. 

In Chapter three, concepts of habitat, scale and stakeholder participation are applied to 

the development of a methodology for rapid assessment of coastal areas that facilitates the 

design of MPAs from a multidisciplinary point of view. This study analyzes the process of MPA 

design from an ecosystem approach framework, which combines both biological (e, g. spatial 

distribution of threatened species) and social aspects (e.g. the spatial distribution of uses and 

activities within the area). This methodology leads to the generation of specific end products 

that facilitate the processes of participation and decision-making during the design of a coastal 

MPA. 

Chapter four presents a methodological approach for the parameterization of the pelagic 

seascape. This approach allows addressing the issue of the scale of observation on the 

identification of bluefin tuna and bullet tuna (Auxis rochei rochei, Risso 1810) essential 

habitats, as it has been addressed previousy for the coastal ecosystem. New pelagic seascape 

metrics are proposed and tested for the improvement on the identification of spawning areas 

for the two species. The proposed seascape approach allowed identifying differences in the 

reproductive ecological strategies among highly migratory bluefin tuna and the smaller and 

more resident bullet tuna. 

Chapter five presents a methodology for predicting the location of bluefin tuna spawning 

areas in the Balearic Sea, based exclusively on environmental data from operational 
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oceanography (hydrodynamic models and remote sensing data). These models are intended to 

design dynamics marine protected areas in the pelagic environment and to improve the larval 

indices, a method for the assessment of spawning stock abundance of species from larval 

abundances. 

Chapter six presents the development of a new larval index for the Eastern stock of 

Atlantic bluefin tuna that reproduces in the Mediterranean. The new larval index accounts for 

errors in traditional larval index methods derived from changes in the spatial distribution of 

spawning habitats, applying the knowledge gained in the Chapters four and five. This new 

larval index improves current methodologies applied by the International Commission for the 

Conservation of Atlantic Tunas (ICCAT) to assess the trends of bluefin tuna adult stock 

abundances. 

Detailed discussions for the results obtained in each study are included in each chapter.  

Chapter seven summarizes the main findings and present how the previous chapters link 

together, analyzing the role that the habitat and environmental descriptors play in shaping 

dusky grouper and bluefin tuna essential habitats, and how the this information has been 

applied to improve assessment and management by developing new technical approaches.
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2.1 Introduction  

Littoral ecosystems have been deeply transformed over centuries (Pauly 1995; Jackson 

1997; Jackson 2001). Extinction or depletion of macrofauna makes top elements of the trophic 

chain to be just a glance of what they were in pristine ecosystems. In this framework, macro-

carnivores fish like groupers become the main top predators structuring littoral food webs 

(Sala 2004). Groupers’ populations have shown positive responds to protection in coral and 

rocky reefs environments in tropical (Polunin & Roberts 1993; Sluka et al. 1997; Dahlgren 

2014) and temperate ecosystems (Reñones et al. 1999; García-Rubies et al. 2013). These 

results confirm the potential of marine protected areas for recovering overfished populations, 

and to provide the appropriate sites for investigating the essential habitats of these species; a 

knowledge that otherwise would be sharply skewed due to effects of fishing pressure 

(Reñones et al. 1999; Reñones et al. 2007, Hereu et al. 2006).  

Among the different species of groupers that stand out within Mediterranean rocky fish 

assemblages it is the dusky grouper, Epinaphelus marginatus, the more frequent and abundant 

species. Analyses of dusky grouper essential habitats in well established MPAs provide key 

information for understanding species ecology and improving the design of MPAs. Most 

studies on dusky groupers have been conducted using underwater visual census (UVC), 

covering relative small spatial scales, from 2m2 (La Mesa et al. 2002) to 250 m2 (Louisy et al. 

2007; Vacchi et al. 2007). These studies found a relationship between the abundance of 

groupers and the habitat descriptors measured at small spatial scales (within the UVC 

transects), such as rocky habitat complexity and depth. Some of these studies found that 

essential habitats change along ontogeny (i.e. Harmelin & Harmelin-Vivien 1999). Juveniles are 

mainly located at shallow depths above 15 m associated to rocky bottoms with shelters 

generated by medium size rocky blocks, while adults occupy deeper depths than juveniles with 

a preference to rocky bottoms with steep slopes with large cryptic shelters. These 

environmental characteristics define requirements of habitat at different developmental 

stages stablishing thresholds of habitat variables defined at small spatial scales.  

Nevertheless, the habitat structure could be better defined when observed at multi-scale 

levels. The issue of spatial scale is paramount in ecology and it is one of core elements in 

“landscape ecology” research, a well established scientific discipline that is focused on how 

habitat patterns drive species ecological process (Turner et al. 1989; Dungan et al. 2002; 

Rietkerk et al. 2002). If a specific ecological process is driven by an environmental feature 

characterized at specific spatial scale, it will not be possible to identify the species-habitat 
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relationships if the analyses are developed at a different spatial scale (Turner et al. 1989). 

Furthermore, the issue of scale is even more complex, as an ecological phenomena may show 

variability in a range of spatial scales (Levin 1992).  Concepts and techniques developed in the 

framework of landscape ecology, like the application of habitat structure metrics, or the effect 

of scale on habitat identification, have started to be applied in marine environments initiating 

a new “seascape ecology” discipline (Hinchey et al. 2008a; Huntington et al. 2010; Pittman & 

Brown 2011; Pittman et al. 2011). Application of a multiscale seascape ecology approach to 

analyze the essential habitats of the dusky groupers at different developmental stages would 

provide new insights on dusky grouper ecology providing new key information for MPA design, 

and would serve as case study to advance in seascape ecology. 

In this study, we analyze the dusky grouper essential habitats at two different 

developmental stages, juvenile and adults, within a marine protected area. We compare how 

rocky habitat structure and topographic features measured at different spatial scales provide 

different information on the dusky grouper habitat requirements. We also identify the spatial 

scales at which essential habitat are best defined for the two developmental stages. Finally, we 

approach a multiscale seascape definition of the essential habitats for adult and juvenile 

individuals, combining the habitat descriptors at the different spatial scales providing 

complementary information with local hydrodynamics and fishing effort spatial distribution, 

factors that also affect spatial distribution of this species (Zabala et al. 1997; Reñones et al. 

1999; Álvarez Berastegui et al. 2010). This analytical framework allows identifying which 

environmental variables and which spatial scales better define the dusky grouper essential 

habitats. We discuss the results in terms of species ecology and MPA design and management. 

2.2 Methods 

2.2.1 Study area. 

The Cabrera Archipelago National Park (CANP) is located at the South East of Mallorca 

Island (Balearic Islands, Spain), in the Western Mediterranean (Figure 2.1). The archipelago 

was declared in 1991 (ley 14/1991, de 29 de abril de 1991, de creación del Parque nacional 

marítimo-terrestre del archipiélago de Cabrera, BOE, nº. 103, de 30 de abril de 1991). Activities 

within the park are regulated thougth various legislative documents  (Plan de Ordenación de 

los Recursos Naturales, Real Decreto 1431/1992, de 27 de noviembre; Plan Rector de Uso y 

Gestión Decreto 58/2006 de 1 de julio). The archipelago is composed by a group of islands 
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surrounded by a number of small islets. The park embraces a total area of 10.021 ha, from 

which 8.705 are marine, with a high variety of coastal morphologies, as high and low cliffs, 

coves and bays. Coverage of the archipelago from the North-West by the Mallorca Island and 

openness in other directions, produce a strong gradient of wave exposure along the coast 

(Álvarez Berastegui et al. 2010). The archipelago integrates diverse coastal benthic habitats, 

with rocky and sandy bottoms, seagrasses, underwater caves and detritic sea beds. A full 

cartography of marine bottoms can be found at 

http://lifeposidonia.caib.es/user/carto/PDFs/CABRERA.pdf. The archipelago also shows areas 

with different topographic characteristics, from the gentle bathymetric gradients in the North-

East to the steep bathymetry in the Southern area (see bathymetric isolines in Figure 2.1). The 

CANP was declared National Park, the highest protection level in Spain, in 1991. The marine 

zoning divides the park waters into integral reserves, restricted use and moderate use areas. 

Integral reserves and restricted use zones are no take areas while some professional artisanal 

fisheries occur in moderate use areas. Among them, bottom longlines are the main gear used 

to capture dusky grouper. Fishing is forbidden at depths above -20 meters and, at the time of 

this study there was a minimum length regulation from which individuals of dusky grouper 

below 45 cm cannot be retained on the fishing vessels.   

 

Figure 2.1 Location of CANP in Western Mediterranean. Red lines show limits of the 

integral reserves and restricted use areas where fishing is forbidden. Grey lines show a detailed 

bathymetry near the coast.  

http://lifeposidonia.caib.es/user/carto/PDFs/CABRERA.pdf
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2.2.2 Sampling design, population and habitat data collection 

A total of 301 Underwater Visual Census transects (UVC), covering a surface of 150 m2 (5 

m x 30 m), were conducted within the CANP in July 2008 over rocky bottoms from the surface 

to 40 m depth, covering the different coastal configuration and hydrodynamic regime 

conditions (Figure 2.2).  

The location of every UVC transect was georeferenced by setting small displayable buoys 

at the beginning of each sampling transect. The coordinates of these buoys were recorded 

with a GPS. The UVC were carried out by two divers, one annotated the length of dusky 

grouper individuals while other took information on habitat characteristics within the transect. 

The length distribution of dusky grouper was split into two categories, juvenile and adults. The 

threshold length for the splitting was 50 cm, length at which female reach sexual maturity in 

the CANP ( Reñones et al. 2012). 

The habitat variables collected within the area covered during the underwater visual 

census (150 m2) provided information about rocky habitat structure and depth, and were 

denoted as micro-scale habitat variables as they hold information at the highest spatial 

definition in this study. The micro-scale habitat variables selected for this study were mean 

depth, percentages of flat rocky area and blocks, percentages of blocks at three different size 

categories (small, medium and big), percentage of rocky subtract (sum of flat rocky areas and 

boulders) and the roughness index of the rocky subtract (Ordines et al. 2005). Acronyms, 

definition and value ranges of all variables used in this study are provided in table 2.1.  



 Chapter 2, Dusky grouper essential habitats 

28 

 

Figure 2.2. Distribution of underwater visual census samples around the Cabrera 

archipelago shown in yellow. No take areas where fishing is forbidden are shown in green.  

 

Habitat characteristics at spatial scales wider than the micro-scale transect level were 

calculated applying traditional landscape ecology metrics, using marine habitat and 

bathymetric maps (Wedding et al. 2011). These variables (see table 2.1), denoted as zone 

seascape variables were calculated in an area around the location of underwater visual census. 

Calulation was processed at various spatial scales (see Figure 2.3).  
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Figure 2.3: Buffers used for habitat zone seascape descriptors at various scales. At each 

scale areas within the buffer are the same at both locations. Examples centered at two 

different locations of underwater visual census sampling.  

 

Arround each UVC six buffers (denominated A,B,C,D,E,F) were calculated ranging from  

scale A=0.5 ha to scale F= 64 ha. These scales were calculated as different ratios of an area of 

80 m radius, relative to the mean home range proposed for this species in previous studies 

developed in the Mediterranean  (Lembo et al. 1999).   

Mean depth (zDepth) and slope (zSlope) informed about the topography in the area. 

Number of patches (zNumP), total surface (zSrock)  and mean roughness (ZrOUG), all of them 

referred to rocky bottoms, informed about the structure of habitat in the area. These metrics 

were processed with the Patch Analyst-grid 3.0 (Rempel et al. 2012). Original cartographies 

were provided by the local Government 

(http://lifeposidonia.caib.es/user/carto/PDFs/CABRERA.pdf).  

 Improvement of the cartographic topology in areas near the coast line were approached 

by adjusting the limits of the rocky bottoms and bathymetric isolines observed in the habitat 

maps to selected reference points identified in situ during the UVC. The adjustment of the 

original maps for matching these points was approached by nonlinear deformation of the 

http://lifeposidonia.caib.es/user/carto/PDFs/CABRERA.pdf
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vector layers in specific areas using the rubbersheeting tool of the ArcGIS software 

(Environmental Systems Research Institute, Inc.) (see Figure 2.4).  

 

Figure 2.4: Improvement of map georeference after the nonlinear deformation of habitat 

maps. The red line indicates the reference coast line. 

 

Standard GIS methods are prepared to create buffers of constant radius around the UVC, 

what derive in buffers of different area for one particular radius due to the proximity of land. 

Applying these types of algorithms strongly affects landscape metric calculations. To solve this 

limitation we applied a specific algorithm ensuring that buffers around all UVC at one 

particular scale had the same area, by adjusting the radius for each buffer. This algorithm to 

process buffers with equal area accounting for barriers (coastal lines) was provided by the ESRI 

software resources in avenue scripting language for Arcview 3.2. (http://forums.esri.com/ last 

access 2015/05/05).  

 

2.2.3 Coastal wave exposure characterization of the study area. 

Coastal wind derived exposure is a relevant environmental factor affecting 

geomorphology and  littoral benthic species ecology (Ekebom et al. 2003; Burrows et al. 2008),  

also in the CANP (Álvarez Berastegui et al. 2010). For evaluating if this parameter affects dusky 

grouper distribution, we considered the coastal exposure index. This parameter was calculated 

http://forums.esri.com/
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following the EXA method (EXposure estimates for fragmented Archipelagos) (Ekebom et al. 

2003), that informs about the average wave power in one particular location of the coastal 

area, and is mainly based on the mean fetch over a time period. Wave exposures were 

standardized from 0 to 100 within the archipelago. 

 

Table 2.1: List of habitat descriptors at micro-scale (A) and at zone level (b), hydrodynamic descriptor (c) 

and fishing effort descriptor (D).   

A-Microescale variables, collected during UVC. 

Variable name Definition Variable range, units 
mDepth Mean depth in the transect -3: -38 (meters) 
pmSrock Percentage of rock substrate 35:100  (%) 
pmflatrock Percentage of flat rocky bottoms 0:100 (%) 
pmAllblocks Percentage of rock blocks  (accounting for all 

sizes) 
0:100 (%) 

pmBblocks Percentage of big size blocks (>2) 0:90 (%) 
pmMblocks Percentage of medium size blocks (>1,<2) 0:60 (%) 
pmSblocks Percentage of small size blocks (<1m) 0:90 (%) 
mRoug Roughness index 1:3 (non dimensional) 
 
B- Zone seascape variables, measured from habitat maps at 6 different scales 
zDepth Mean depth in the area -2:-40 (meters) 
zSlope Mean slope in the area 4:40 (degrees) 
zNumP Number of rocky patches in the area 6:46 (n patches) 
zSrock Surface of rocky bottom in the area 0.52-8.1 (ha) 
zRoug Mean roughness of rocky bottoms in the area 15:40 (non 

dimensional) 
C- Hydrodynamic variables 
Exp Coastal exposure index 0:100 (%) 
D- Fishing effort 
Feffort Spatial distribution of bottom longline effort 0:2736 (n hooks/cell) 

 

 

2.2.4 Spatial distribution of fishing effort within the MPA 

The fishing effort of bottom long lines intended for groupers was estimated accounting 

for the number of hooks deployed within cells of 250 meters side, along two years of fisheries 

sampling (2003-2004). The fishing effort data set (see Figure 2.5) was developed in the 



 Chapter 2, Dusky grouper essential habitats 

32 

framework of the BIOMEX project (QLRT-2001-0891) in the study area (See Goñi et al. 2008 

and Planes 2005 for details). 

 

Figure 2.5: Spatial distribution of fishing effort of bottom long lines directed to dusky 

grouper in the Cabrera archipelago during 2003-2004. 

 

2.2.5 Identification of essential habitats from micro-scale habitat 

variables. 

The identification of the relevant micro-scale habitat variables shaping the essential 

habitats of dusky grouper was assessed using general additive models (Wood 2006).  This 

modeling approach has the advantage of allowing the exploration of non linear relationships 

between the response variable and the explanatory variable. To avoid over fitting, the number 

of knots associated to each covariate was limited to 3. Adult and juvenile densities (number of 
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individuals per 150 m2) within the underwater visual census transects were used as response 

variable in separate analyses for the juvenile and adult individuals.  Multicollinearity of the 

explanatory variables was assessed using the variance inflation factor, VIF (Zuur et al. 2010). 

The VIF values were calculated with all variables at micro-scale level and the variable with the 

highest VIF value was excluded from the data set. Then the VIF was recalculated. This process 

was run till all variables showed a VIF value below 3. Then, correlation among pairs of 

remaining variables was tested. When two variables showed correlation values above or equal 

to 0.60 one of them was removed, attending to their ecological meaning.  With the remaining 

variables a backward selection process based on AIC values was applied for retaining only 

significant variables (p<0.05). 

2.2.6 Identification of essential habitats from zone seascape 

variables. 

We identified which of the six scales used for calculation of the zone seascape variables 

provided more information for defining essential habitats of juvenile and adults. The seascape 

metrics provided information about topographic characteristics (zSlope and zDepth), and the 

habitat structure (NumP, zSrock, ZRoug) in the buffer area. The scales that provide the best 

information may be different for these two different set of variables. Therefore we computed 

two groups of GAMs at each scale, one with the topographic metrics and the other with the 

habitat structure metrics. The effect of the spatial scale on the model performance was 

assessed with scalograms showing how AIC values of computed models (used as model 

performance indicator) vary along scales. The best model at zone level was configured with the 

combination of the topographic and habitat structure variables at the spatial scales that 

minimized model AIC in the scalograms. The model configuration and variable selection 

process was similar to that applied in the previous section. Interaction terms were considered 

for the number of patches (NumP) and total area of rocky bottoms (zSrock) variables. The 

interaction of these two variables provides additional information about the structure of the 

rocky habitat fragmentation at zone level. AICs were used as criteria for including these 

variables as interactive or additive terms. 

2.2.7 Exploration of essential habitats at multiscale level. 

The effect of habitat at multiscale level was approached by combining the significant 

micro-scale habitat variables and zone seascape variables, together with coastal exposure and 

fishing effort variables. Variable selection and modeling approach followed similar process 
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than in previous sections. Variance inflation factors were used for multi collinearity exploration 

and correlation among pairs were tested. Effects on population were assessed with GAMs. This 

analysis allowed obtaining a multiscale seascape model for juveniles and adults separately 

providing information on how different environmental variables define dusky grouper 

essential habitat. 

2.3 Results. 

The results obtained from the analyses performed at the different spatial scales are 

presented in table 2.2, showing the habitat variables excluded due to VIF values over 3 or 

correlations over 0.6, the variables excluded during the backward selection approach, the 

variables selected for the GAMs and the explained deviances for each model. Correlations 

among all variables considered in each of the different analyses are provided s supporting 

information (see Tables S2.1-S2.5 at the end of this chapter) 

2.3.1 Analyses of the habitat at the micro-scale level. 

Five micro-scale habitat variables were included in the model for juveniles, mean depth, 

total rocky area surface, roughness index and percentages of medium and small size blocks. 

The percentage of total rocky blocks, flat rocky areas and big size blocks were excluded in the 

VIF and correlation analysis. Response plots showed a negative effect of depth (mDepth) on 

the density of juveniles (Figure 2.6) and positive effect of small and medium size blocks as well 

as the roughness index (pmSblocks, pmMblocks, mRoug respectively). 

Only depth and roughness index (mDepth and mRoug) were retained in the model for 

adults. Depth had a positive effect on densities which significantly increased til 25 meters 

depth (Figure 2.7). From 25 meters down to 40 meters, adult densities kept constant and over 

the mean. The Roughness index also showed a positive effect, but only substrata with high 

roughness (value 3) presented densities over the mean.  
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Table 2.2: Environmental covariates selection process (VIF analyses and non significant variables 

identification), descriptors included in the models and model performance.(N=301).  

Scale 
Response 
variable 

Excluded, 
1: VIF>3 or 
2: R2>=0.60 

Non 
significant 

included in the 
model (p<=0.05) 

% 
deviance AIC 

M
ic

ro
-s

ca
le

 

Number of  
juveniles 

PmAllblocks(1) 
Pmflatrock(1) 
pmBblocks(2) 

- 
mDepth ; pmSrock 

pmSblocks ; 
pmMblocks; mRoug 

21.0 930.7 

Number of  
adult 

PmAllblocks(1) 
Pmflatrock(1) 
pmBblocks(2) 

pmSrock 
pmSblock 
pmMblock 

mDepth; 
mRoug 22.2 731.8 

zo
ne

 

Number of  
juvenile s - zSlope.A 

zRUG.C 
zDepth.A 

(zNUMP.C-zSrock.C)* 16.7 948.8 

Number of  
adult - zRUG.F zDepth.A; zSlope.A 

(zNUMP.F-zSrock.F)* 20.3 752.9 

M
ul

ti 
sc

al
e Number of  

juvenile zDepth.A(1) zSrock.D 
Feffort 

mRoug; mDepth ; Exp 
zNUMP.D; pmSrock; 

pmSblocks ; 
pmMblocks; 

24.0 921.7 

Number of  
adult 

zDepth.A(1) 
;Exp(1) Feffort 

mDepth 
mRoug; zSlope.A 

(zNUMP.F-zSrock.F)* 
29.5 711.8 

*Habitat structure variables included in the model as interaction terms. 
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Figure 2.6: Response plots of the micro-scale habitat descriptors for juvenile individuals. 

 

 

 

Figure 2.7: Response plots of the micro-scale habitat descriptors for adult individuals. 
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2.3.2 Analyses of the habitat at the zone seascape level. 

Spatial scale at which zone seascape metrics were calculated affects to the performance 

of models. The scalograms processed with the topographic and habitat structure variables are 

presented in Figure 2.8. Trends of AIC values (the lower the better) for the topographyc 

variables (zDepth and zSlope) showed a decreasing model performance when the scales of 

observation becomes higher, for both adult (Figure 2.8.A) and juvenile individuals (Figure 

2.8.B). The highest spatial definition the better modeling result. The scalogram showing the 

results of the models with the habitat structure variables (NUMP, zSrock and zRUG) showed an 

opposite pattern. Model performance improved when scales increases, reaching lower AICs at 

scale D for juvenile and scale E-F for the adults (Figure 2.8.C and Figure 2.8.D respectively).  

 

Figure 2.8: Density models performance along zone scales, habitat structure and 

topographic variables 

The best model resulting from the combination of the topographic and habitat structure 

zone seascape variables (see table 2.2) retained the following variables: mean depth in the 

buffer A (zDepth.A), number of parches (zNUMP.D) and total rocky area in buffer D (zSrock.D).  

The model considering the interaction term of these variables (zNumP.D~ zSrock.D) presented 

lower AIC (better model performance) than the model considering the additive terms. The 

response plots of the model show a decrease of juveniles with depth, being constant in surface 
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waters above the 15 m (Figure 2.9.A). The plot of the interaction between NumP.D and 

zSrock.D shows lower juvenile densities in areas characterized by low total rocky surface and 

with small number of rocky patches Figure 2.9.B, blue area). Higher densities appear when 

surface of rocky areas or rocky patchiness is high  

When analyzing the adult population the selected variables were mean depth and mean 

slope in the buffer A (zDepth.A and zSlope.A), and the interaction term between number of 

patches and total rock surface at scale F (zNUMP.F~zSrock.F). Response plots of zDepth.A 

(Figure 2.10.A) show a positive effect of bathymetry and densities increase from surface down 

to 20 meters depth, from which densities remain constant. The effect of slope of the bottom 

substrata around the transect (zSlope.A) is positive and linear along all the range (Figure 

2.10.B). The structure of rocky habitats measured in the biggest buffer (buffer F) show higher 

densities in areas where the total rocky bottoms is lower than 13ha, and where number of 

patches is at intermediate values.  

 

 

Figure 2.9: response plots of zone seascape descriptors for juvenile individuals. A: Partial 

effect of depth at zonal level in the buffer “A”; B: Effect of the interaction term  
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Figure 2.10: response plots of zone seascape descriptors for adult individuals 
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2.3.3 Multiscale seascape analysis of the habitat 

The multi scale analyses for juveniles showed that the best model retained seven 

variables in total, five variables at micro-scale scale, one at zone level (number of patches at 

scale D, zNump.D) and the coastal exposure index (Exp)(see Table 2.2). The model considering 

interaction terms presented higher AICs (lower model performance) and therefore the number 

of patches was included as additive variable. Response plots (see Figure 2.11) confirm variable 

effects found previously during the analysis at micro-scale level: a negative effect of depth and 

a positive effect of rocky area in the transect and percentages of small and medium size blocks, 

and show the importance of rocky habitat fragmentation around the transect (zNumP.D). 

Wave exposure showed a negative effect and fishing effort was showed no effect on juvenile 

density distribution.  

 

Figure 2.11: response plots of multiscale analysis for juvenile individuals 

 

The GAM fitted for the adults retained five variables, three related to seascape habitat 

structure at two spatial scales (zSlope.A,zNumpF,zSrock.F), and two related to the habitat at 
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micro-scale level (mDepth,mRoug). The coastal exposure index was excluded in the VIF 

analysis and fishing effort was excluded due to low significance (p>0.05). Response plots 

(Figure 2.12) showed similar responses than the model developed previously at micro-scale 

and zone levels, indicating the capability of habitat descriptors at different scales for providing 

complementary sources of information. 

 

 

Figure 2.12: response plots of multiscale analysis for adult individuals 
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2.4 Discussion 

Multiscale seascape analyses improved the definition and delineation of dusky grouper 

essential habitats compared to the analysis performed at single scales, and allowed the 

identification of the main differences in habitat requirements between juveniles and adults. 

The strong effect of depth in shaping the spatial distribution of both stages was identified 

when analyzing habitats at both the micro-scale and the zonal level, but all other habitat 

descriptors where only identified at specific scales, demonstrating the need of combining 

information at different scales to define appropriately the dusky grouper essential habitats. 

The results show that the spatial scales that best define the essential habitats for each 

developmental stage are different. Essential habitats for juveniles were driven mainly by 

variables collected at the micro-scale level. Coastal exposure and variables at zone level 

provided additional information on juvenile essential habitat requirements improving the 

deviance explained and AIC of multiscale habitat models against single scale models.  For 

adults, both micro-scale and zonal models performed similarly and provided complementary 

information to the multiscale analyses that show a relevant improvement when compared to 

the single scale analysis. Differences on spatial scales that best defined adult and juvenile 

essential habitats were also identified in the scalogram analyses; the best buffer size to 

characterize adult rocky habitat structures was 4 times bigger than the buffer for juveniles. 

The strong effect of depth and rock complexity at the scale of visual census samplings on 

abundance and biomass of dusky grouper is well known from previous studies (Harmelin & 

Harmelin-Vivien 1999; La Mesa et al. 2002; Machado et al. 2003; Vacchi et al. 2007). Here we 

found juvenile and adult individuals all along the depth range analyzed (from 3 to 38 m), but 

general additive models allowed identifying non linear responses of the density distribution 

with depth for both developmental stages, showing a counter distribution along bathymetry. 

Juvenile individuals were homogeneously distributed from the surface til 15 meters depth 

from where densities drop linearly to 40 meters depth.  The abundance of adults increased 

linearly from the surface to 22 m depth, remaining constant between 22-40 m depth. 

Beyond the effect of depth, the multiscale analyses showed how the rocky structure at 

the small scale strongly affects distribution of juvenile individuals, that are associated to areas 

with high level of subtract roughness generated by high percentages of small and medium 

block sizes. The combination of this information together with the effect of coastal exposure, 

affecting negatively to juvenile densities, and the positive effect of the number of rocky 

patches around an area of 15 ha, offer a wide picture of dusky grouper juvenile habitat 
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requirements. The ecological traits behind these requirements may be influenced by a number 

of factors both from top-down and bottom-up control processes. In general, metabolic rates of 

juveniles fishes are higher than adults in order to maximize growth, therefore the higher 

temperatures in the shallow depths, where juveniles are found, compared to the bottom 

depths may be energetically adequate. Besides, in the Cabrera archipelago small to medium 

shelters associated to small rocky blocks, are more frequent in shallow areas right near the 

coast line than in deeper waters, ensuring refugee from other predators. On the other hand, 

feeding strategies of young individuals of E.marginatus differ from that in adults in the size of 

preys (Reñones 2002, Linde 2004), and depth strongly shapes size distributions of preys. 

Higher number of rocky patches at zone level may ensure a secure area for hunting while 

avoiding predation. Therefore, metabolic needs, predator avoidance and differences on 

feeding strategies between adults and juveniles may explain the responses found in the 

anlysis.  

The preference of adults for deep areas with  cliffs and complex rocky subtracts has been 

found in other studies (Zabala et al. 1997; Harmelin & Harmelin-Vivien 1999). As for juveniles, 

our non liner analyses allowed identifying the best habitat variables to describe the 

dependency with depth and exploring specific responses. Densities of adults increased linearly 

down to 20 m depth, from where densities remain constant, just the opposite to the observed 

trend in juveniles. While depth and rocky habitat complexity variables were better defined at 

micro-scale level for adults, preference for intermediate slopes was only identified from 

analysis at zone level (at scale of 0.5 ha). The analysis at the zone spatial scale (66 ha) showed 

that the adults prefer locations surrounded by a fragmented rocky habitat of patches at 

intermediate size (considering the patch size distribution in Cabrera archipelago). In contrast, 

low densities were associated to areas surrounded by a high number of small size patches or 

extensive continuous areas of rock with low number of patches. In the Cabrera archipelago, 

the combination of the habitat characteristics positively influencing the distribution of adults 

are mainly associated to the bottoms around the main capes and small islets. An interesting 

question emerge from this association since wave exposure are important in these areas 

(Álvarez Berastegui et al. 2010). However, the coastal exposure index was not retained in the 

multiscale model for adults in our study as it was excluded in the VIF analysis due to colinearity 

with depth, slope and number of patches.  

Studies in other MPAs in the Balearic Islands found that steep slope rocky bottoms with 

high coastal exposures are hotspots for rocky fish biomass (Coll et al. 2013b). In their work, 

these authors proposed ecological mechanisms driving biomass concentration around these 
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areas associated to the effect of the hydrodynamics and the presence of deep waters, 

generating higher levels of primary, secondary production and food availability for top 

predators. Besides, the effect of the coastal hydrodynamics on the spatial distribution of adults 

may ensure larval dispersal during reproduction, a relevant mechanism that has been 

proposed as driving the location of adults (Zabala et al. 1997). Therefore, coastal exposure 

index very likely have a positive effect on densities of adult dusky groupers. This relation could 

not be identified with the analysis here performed due to correlation among environmental 

covariates. This question could be of interest when designing MPAs or when redefining new 

zoning in existing ones. Further analysis from the data set here applied, blocking effects of 

correlated covariates could provide insights of the coastal exposure and coastal 

hydrodynamics on the ecology of dusky grouper.  

When analyzing the areas of the buffers that best explained the habitat characteristics at 

zone level, one may tend to associate these buffer areas with the species home range. Studies 

from acoustic telemetry have shown that dusky grouper is a highly resident species (Lembo et 

al. 1999), but mean home ranges around 1.3 km (=530 ha) (Afonso et al. 2011), is over eight 

times the area of the buffer “F” (66ha) used to characterize adult dusky groupers habitat. 

Besides, individuals may perform long displacements associated to various causes, as 

colonization of better vacant habitats derived from the effect fishing or natural mortality 

(Chauvet & Francour 1989), changes on habitat requirements along ontogeny (Afonso et al. 

2011) or small displacements during spawning seasons (Zabala et al. 1997; Koeck et al. 2014).  

These movements occur at higher spatial scales than the 66 ha of the buffer. The buffer size 

here identified for adults and juveniles inform about the minimum area necessary to identify 

rocky habitat structure patterns defining essential habitats at both stages for this species, but 

not home ranges.  Nevertheless, a relation between how individuals explore surrounding 

habitats at different developmental stages may affect both at home ranges and buffer sizes 

characterizing essential habitats. For example, the lower effect of predation on larger 

individuals may allow them exploiting more diverse habitats than smaller individuals, and 

therefore habitat structure would be only identified at bigger buffer sizes, independently that 

juvenile may perform longer displacements associated to ontogenetic changes. 

The results obtained in this study in relation to the buffer sizes that better defined habitat 

structure are specific for the Cabrera archipelago. This marine protected area show a particular 

coastal rocky bottoms habitat patterns, where capes and bays alternate providing alternated 

essential habitats for juvenile and adult stages. Other coastal geomorphologies may present 

other rocky habitat structure patterns that could be better defined from buffers at different 
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spatial scales. So this “characteristic buffer size” that better define habitat structure could be 

species-stage and site-specific.  Evaluating how characteristic buffer sizes changes among 

MPAs were populations of dusky groupers are well developed could provide a relevant step 

forward in seascape ecology. Especially interesting for this purpose would be to assess those 

questions in MPAs with integral reserves where rocky bottoms would be more extensive and 

more continuous as they are in the Cabrera archipelago, and where core areas of highly 

complex rocky patches would be bigger.  We believe that even “characteristic buffer size” may 

be different at different geographies; habitat patterns defining essential habitats may remain 

similar as they are in concordance with ecological requirements of the species at different 

stages.  

Dusky grouper has been classified as endangered species by Interantional Union for 

Conservation of Nature (IUCN) (http://www.iucnredlist.org/details/7859/0) and definition of 

dusky grouper essential habitats is a key information for multiple management purposes. In 

the Mediterranean Sea, this species responds well to protection (Reñones et al. 1999; Guidetti 

& Sala 2007; Harmelin et al. 2007) and MPAs are probably the best management option. 

Nevertheless marine zoning (spatial distribution of uses and activities within an MPA) is a key 

issue. The particular design of the no take zones in relation to the habitats they protect will 

determine whether an MPA will succeed or not (Roberts et al. 2003b). The results obtained in 

this study show a spatial segregation of this species due to differences in habitat requirements. 

Managers should not consider only the necessity of protecting rocky habitats in coastal MPAs, 

but also consider the structure of those habitats and their topographic characteristics. 

Considering that a well designed MPA should ensure protection of key ecosystem species at all 

stages and enclose an area bigger than the species home range, a proper design of an MPA in 

the Mediterranean should be designed to protect i) rocky habitats from surface down to 50 

meter, ii) extensive areas of shallow rocky bottoms above 20 m, ensuring representing depths 

of maximum juvenile density,  with low-intermediate coastal exposures and with high 

complexity derived from the accumulation of small and medium rocky blocks, iii) Areas of cliffs 

down to 30 m with intermediate slopes, ensuring depth of maximum adult densities, with 

important rocky falls providing a high level of habitat complexity from big size blocks, 

surrounded by sea beds of fragmented habitats and with relevant coastal hydrodynamics. The 

differences found in the essential habitat definition for juveniles and adults are derived from 

changes in the ecological traits along the dusky grouper development. Bottom up ecological 

traits, such as food requirements may be related to the preferences for cliffs with intermediate 

slopes with high hydrodynamic activities on adults, while top down ecological traits such as 

http://www.iucnredlist.org/details/7859/0
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predation on smaller individuals, could drive requirements of small and medium block 

presence for juvenile stages. Depth also shapes the population distribution and individuals 

colonize deeper areas as they growth. Due to the gradual evolution on habitat requirements 

along the dusky grouper ontogenetic development, an appropriate MPA design would require 

good connectivity among the different areas specified before.  An extensive no take area 

covering essential habitats for both stages would be the ideal design. These findings may be of 

interest to set the scientific basis for MPA design.  

Information of essential habitats in littoral ecosystems at a proper scale also allows 

predicting ecosystem carrying capacity and the time necessary to recover fish populations (Coll 

et al. 2013a; García-Rubies et al. 2013). Such predictions could be a key information for coastal 

resources assessment serving for reference base lines for the Good Environmental Status 

evaluations within the Marine Strategy Framework Directive (MSFD), (EU 2008). Therefore, an 

appropriate definition of dusky grouper essential habitat could provide the basis to evaluate 

carrying capacity of littoral ecosystems for this particular species. 

Finally, the study of MPA specific responses to protection, and the differences among 

areas of one single MPA, have been partially explained by differences in the habitat features 

within areas of 125 m2 to 250 m2 (the area of one sampling unit collected in visual census 

techniques), while a high percentage of deviance remain unexplained (García-Charton et al. 

2004; Coll et al. 2012; Sala et al. 2012). The results obtained here shows the relevance of 

describing the habitat at wider spatial scales than the micro-scale. Including seascape metrics 

at appropriate spatial scales in studies directed to understand which factors affects protection 

success could provide new insights into the MPA functioning.  
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Supporting information, tables S2.1-S2.5: Correlations among environmental variables. In bold, correlations equal or higher to (+,-) 0.60 
Table S2.1: Pearson correlations among selected variables for analysis of juvenile and adult individuals at micro-scale level 

 
mDepth mRoug Pmflatrock pmAllblocks PmSblocks PmMblocks PmBblocks PmSrock 

mDepth 1,00 
       mRoug 0,01 1,00 

      Pmflatrock 0,08 -0,58 1,00 
     pmAllblocks -0,10 0,67 -0,9 1,00 

    PmSblocks -0,02 -0,01 -0,30 0,32 1,00 
   PmMblocks -0,13 0,35 -0,54 0,60 0,05 1,00 

  PmBblocks -0,02 0,60 -0,51 0,60 -0,41 0,04 1,00 
 PmSrock -0,10 0,27 0,12 0,33 0,07 0,17 0,22 1,00 

 
Table S2.2: Pearson correlations among selected variables for analysis of juvenile individuals at zone level 

 
zDepth.A zSlope.A zNUMP.D zSrock.D zRug.D 

zDepth.A 1,00 
    zSlope.A 0,36 1,00 

   zNUMP.D -0,14 0,02 1,00 
  zSrock.D -0,36 -0,29 0,02 1,00 

 zRug.D -0,11 -0,24 0,03 -0,23 1,00 

 
Table S2.3: Pearson correlations among selected variables for analysis of adult individuals at zone level 

 
zDepth.a zSlope.a zNUMP.h zSrock.h zRug.h 

zDepth.A 1,00 
    zSlope.A 0,36 1,00 

   zNUMP.F -0,07 0,14 1,00 
  zSrock.F -0,21 -0,29 -0,01 1,00 

 Rug.F -0,04 -0,24 -0,23 0,06 1,00 
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Table S2.4: Pearson correlations among selected variables for analysis of juvenile individuals at multiscale level 

 
zDepth.A zNUMP.E mDepth mRoug PmSrock PmSblocks PmMblocks PmBblocks Exp Feffort 

zDepth.A 1,00 
         zNUMP.E -0,14 1,00 

        mDepth 0,93 -0,12 1,00 
       mRoug 0,04 -0,02 0,01 1,00 

      PmSrock -0,09 0,02 -0,10 0,27 1,00 
     PmSblocks -0,03 -0,02 -0,02 -0,01 0,07 1,00 

    PmMblocks -0,14 -0,04 -0,13 0,35 0,17 0,05 1,00 
   PmBblocks 0,01 -0,03 -0,02 0,60 0,22 -0,41 0,04 1,00 

  Exp 0,56 -0,14 0,54 0,04 0,14 0,07 -0,06 0,00 1,00 
 Feffort 0,19 -0,11 0,18 -0,12 0,19 0,08 -0,17 -0,08 0,52 1,00 

 
 
Table S2.5: Pearson correlations among selected variables for analysis of adult individuals at multiscale level 

 
zDepth.A zSlope.A zNUMP.F zSrock.F mDepth mRoug Exp Feffort 

zDepth.A 1,00 
       zSlope.A 0,36 1,00 

      zNUMP.F -0,07 0,14 1,00 
     zSrock.F -0,21 -0,29 -0,01 1,00 

    mDepth 0,93 0,26 -0,10 -0,23 1,00 
   mRoug 0,04 0,16 -0,06 -0,05 0,01 1,00 

  Exp 0,56 0,31 -0,31 -0,55 0,54 0,04 1,00 
 Feffort 0,19 0,34 0,18 -0,43 0,18 -0,12 0,52 1,00 



Chapter 3, Rapid assessment of coastal areas 

49 

 
 

CHAPTER 3 
 
 

3. Multidisciplinary rapid assessment of 

coastal areas as a tool for the design and 

management of marine protected areas  
 

 

 

 

 

  



Chapter 3, Rapid assessment of coastal areas 

50 

3.1 Introduction 

The management of coastal areas must integrate information from a multi-disciplinary 

perspective, including governance, human uses and activities, and ecological quality or status 

of habitats and their spatial distribution  (Agardy, 2010; Barragán Muñoz, 1997; Pomeroy et al., 

2004; Post et al., 1996). Related cartographic products are main tools used to support 

ecosystem based coastal zone management (Agardy, 2010; Nobre and Ferreira, 2009). Getting 

these maps can be challenging, however. The data collection for mapping parameters related 

to benthic habitats (Kenny et al., 2003; Sheehan et al., 2010), spatial distribution of human 

activities (Balaguer et al., 2011; Halpern et al., 2009), water quality or bio-physical indicators 

(See Pomeroy et al., 2004, for a review of indicators), may need specific, sometime costly, 

equipment and time-demanding post processing procedures. Additionally, field work in coastal 

areas is highly dependent on the sea conditions. These constraints must be considered when 

planning time and budget for data collection prior to developing a management plan for a 

coastal area. 

The collection of information in the field when time and budget is limited is what led to 

the emergence of Rapid Assessment Programs or RAPs (Alonso et al., 2011). These programs, 

originally designed for the conservation of the natural environment, formally came into being 

at the end of the 1980s with two different objectives in mind: 1) to quickly provide the 

minimum biological information needed to bring forward conservation proposals and actions; 

and 2) to improve biodiversity conservation in these areas through management measures 

implemented as a result of the assessments.  

So far, most RAPs programs in the marine environment focus on tropical environments 

(DeVantier et al., 1998; Dutra et al., 2006; Kramer, 2003; McKenna, 2011; Wilkinson et al., 

2006). There are very few examples of applications in the Mediterranean, mainly related to 

surveys of the biodiversity of Greek coastal lagoons (Arvanitidis et al., 2005), the monitoring of 

the Albanian coast for the loggerhead turtle and the monk seal (White et al., 2005), and the 

evaluation of oil spill effects in the sea during the 2006 Israeli-Lebanese conflict (Steiner, 

2006). In this geographical area, considered a biodiversity hot spot at a global level (Myers et 

al., 2000), Marine Protected Areas (MPAs) are an important management approach for 

conservation (Garcia-Charton et al., 2008).   

The percentage of Mediterranean littoral zone that has been scored from a 

comprehensive ecological perspective with conservation in mind is rather low, further 

complicating proper MPA design and implementation. Most of what has been already 
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surveyed is along the northern coast, particularly the sector located in the most developed 

countries, and in particular the European countries with a coastline affected by the obligations 

of Habitats Directive 49/92 in relation with the Natura 2000 network. Although rather 

complete in ecological terms, the selection of N2000 sites is based exclusively on habitats and 

gaps in knowledge about uses and impacts in the marine arena are still pervasive. Total MPA 

coverage is still minute in the Mediterranean Basin (De Juan et al., 2012) and basic knowledge 

of huge stretches of littoral from North Africa and the Eastern Mediterranean is still rather 

poor. Considering the present day situation in the context of global environmental initiatives, 

Objective 11 of the Nagoya conference –which encourages the Parties of the Convention on 

Biological Diversity to take actions in order to declare at least 10% of their territorial waters as 

MPAs, is far from being reached.  

Developing a RAP framework for Mediterranean coastal areas would be of interest for 

coastal planners and management agencies aiming to design MPAs, especially in areas where 

the existing information is poor and/or the resources or time available may restrict more 

expensive and time demanding sampling programs. Even in places where scientific information 

exists, efforts must be made in the development of comprehensive tools for connecting 

science and decision makers (Gregr and Chan, 2011), especially in complex Social Ecological 

Systems (SES) such as those that exists in most sites where MPAs are or will be designated 

(Pollnac et al., 2010). 

Although MPAs are best designed by thoroughly assessing community perceptions, socio-

economics, politics, and institutional weaknesses and strengths, a cost-effective RAP can 

provide the foundation for selecting target sites around which to begin such participatory 

planning processes. The information obtained from multidisciplinary RAP can also help harness 

the ecological science for the purposes of management, by highlighting which areas within the 

overall target area are most critical to protect, which human activities are sources of potential 

conflicts and which stakeholders will be affected by new regulations. 

Thus, there is an interest in developing specific assessment methodologies for coastal 

conservation purposes that adopt a systemic approach going far beyond the simple 

management of fishing resources or the protection of a particular habitat or species. 

Multidisciplinary coastal RAPs will facilitate ecosystem based marine management (Agardy, 

2010) serving as basis for implementing actions in zoning, management and regulation of 

coastal areas requiring protection. 
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In this work we propose a rapid assessment methodology for coastal marine areas, 

integrating information of human activities and bio-physical aspects of the area under study, 

selecting a set of indicators and integrating them in final products to support decision making 

process. These products are designed to be discussed openly, prior to MPA declaration, in 

order to grant the local stakeholders a relevant role in the decision taking procedures. 

To be rapid and cost effective, the method has been based on obtaining and merging 

existing information for the area, knowledge of local stakeholders, and an optimized design of 

in situ sampling. The main outputs consist of three cartographic products, giving information 

on: a) human pressure, b) marine environment quality and c) coastal environmental quality, as 

well as a matrix of conflicts among different human activities. 

The proposed methodology was tested in a coastal area of Mallorca Island (Balearic 

archipelago, NW Mediterranean) that comprises 26 linear km of coast, covering a total of 2013 

ha (1445 ha of marine surface and 568 ha of land) and including a main fishing and leisure boat 

harbor, Cala Ratjada (Figure 3.1). This study area was selected because it presents multiple 

human activities characteristic of the western Mediterranean coast, both on the terrestrial and 

the marine side as well as different levels of anthropogenic impacts.  

 

 

Figure 3.1: Mallorca Island, Baleares, Spain. Location of study site 
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3.2 Methods 

The information needed to address the multidisciplinary approach was identified from 

studies oriented to the selection of candidate sites for MPAs (Roberts et al., 2003), MPA 

evaluation and zonation (Kelleher, 1999; Pomeroy et al., 2004; Villa et al., 2002), general 

Integrated Coastal Zone Management (ICZM) (Barragán Muñoz, 1997), integration of 

information obtained from local stakeholders (Vella et al., 2009), and integrated management 

of Mediterranean MPAs (Ojeda-Martinez et al., 2009). The general framework to rank 

indicators and develop cartographies has been adapted from already proposed methodologies 

developed for terrestrial environment (Machado, 2004) and for coastal areas (Ballesteros et 

al., 2007). 

Based on these studies we adapted a number of available environmental and socio-

economic indicators. When different indicators provided information about a common subject 

they were grouped into indices facilitating data management and interpretation (Ebert & 

Welsch, 2004; Hargrave, 2002).  

The selection of indicators and their corresponding weighting factors have been obtained 

by a “nominal group technique of experts” (Stewart et al., 2007) that allows the capture of 

most of the knowledge flow among experts. For the application of this technique, experts on 

coastal conservation, marine protected areas monitoring and marine biology make an initial 

proposal of design of each index (identification of indicators and weighting factors), including a 

rationale of the proposal. Information is then shared among experts. After similar proposals 

were grouped or eliminated, an open discussion forum ends with a second proposal and 

ranking of solutions. 

The selection of indicators for the RAP was guided by the following criteria: a) easy to 

measure; b) data gathering without the need to install oceanographic equipment; c) adjustable 

to simple scales of measurement, and d) minimizing the need for data processing after 

sampling. Selected indicators were classified attending to their spatial scale and to the origin of 

the information. Indicators at macroscale (>1Km), mesoscale (100-500 m) and microscale 

(<100 m) levels were identified. Indicators were divided into two kinds: Class 1, derived from 

existing information or interviews to local stakeholders, and Class 2, based on in situ sampling. 

The complete list of indicators, the scales to which they belong and the variable about which it 

gives information about are presented in Table 3.1. 
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Human activities pressure indices (id. 2, table 3.1), Fisheries diversity index (id. 3, table 

3.1), Habitat mesoscale index (id. 13, table 3.1) and Habitat microscale index (id. 14, table 3.1) 

are related to human activities, fisheries diversity and habitats of interest found in the study 

area. Therefore the methodology has to be easily adapted to the local characteristics. Here we 

propose the generic methodologies for data collection, indicator calculation and ranking. 
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Table 3.1: List of indicators (*=information collected from questionaires). 

Class Scale Name Variable Id 

1 Macro Degree of exposure index Habitat quality for rocky  fish 
communities 

1 

Human activity  pressure 
indices 
(activity specific) 

One pressure index for each human 
activity identified  

2 

Fisheries diversity index Species and habitat richness 3 
Urban pressure index Human pressure in the coast 4 
Level of administrative 
protection 

Inclusion or non inclusion of Natura 
2000 sites, MPAs, etc 

5 

Meso Quality diving site index Habitat quality state 6 
Intensity of recreational diving Pressure by recreational scuba diving 7 
Biodiversity hotspots Habitat and fish community richness 8 
Habitat of interest Presence of habitats of community 

interest (Dir 43/92), threatened and/or 
legally protected 

9 

2 Naturalness index  Coastal  state of conservation.  10 
Water quality from coastal 
macro algae 

Coastal water quality 11 

Seabird index Degree of habitat conservation 12 
Habitat mesoscale index Quality of habitat  13 

Micro Habitat micro-scale index Quality of habitat  14 
Invasive algae Degree of wild state 15 
Singular species Degree of wild state 16 

 

Macroscale indicators were always Class 1 indicators as they inform of geographically 

wide areas. The method is designed to avoid having to complete in situ sampling along the 

entire study area, taking instead existing information and knowledge from local stakeholders 

and combining those with limited sampling. Mesoscale indicators were Class 1- when they 

were calculated from interviews or Class 2- when they were referred to habitat characteristics. 

Microscale indicators, giving information about environmental quality of particular habitats 

were always Class 2 indicators.  

Categorization of indicators is an advantage when different types of information have to 

be merged in “easy-to-use” products for managers (Hargrave, 2002). Following this approach 

local values of indicators presented in table 3.1, used for calculation of final products were 

standardized to simple scales  1 (very low), 2 (low), 3 (medium), 4 (high) and 5 (very high), 

interpretation of values are provided for each indicator along the methodology.  

A scheme of the three methodological phases and specific activities is presented in Table 3.2.  



Chapter 3, Rapid assessment of coastal areas 

56 

Table 3.2: Methodological phases and tasks. 

 

 

  

Phase Task Activities 
Phase 1 1.1-Compilation of 

existing information 
And GIS development 

Compilation of cartography, previous studies, main human activities in 
the area, identification of local experts. 
Setting up a GIS 

1.2-Structured 
interviews 

Development of questionnaires for the structured interviews. 
Carrying interviews to relevant stakeholder to collect information 
about:1)Fisheries, 2)Diving sites and biodiversity hot-spots, 3)Human 
activities and conflicts. 

1.3-GIS project & 
Drawing up 
descriptors base maps 

-Setting a GIS and the grid map for data integration. 
-Develop cartography of study area descriptors: 
Geomorphologic units, Homogeneous slope areas and main habitats. 
-Identification of target habitats for evaluation 

1.4- Calculation of 
class 1 indicators. 

Evaluate and standardize the class 1 indicators (table 3.1). 

Phase 2 2.1-In situ sampling 
indicators that do not 
require underwater 
techniques 

 I- Naturalness index for the terrestrial side of the coast (indicator 10 in 
Table 3.1). 
II- Water quality and the seabird index for the marine side of the coast 
(indicators 11 and12 in Table 3.1). 

2.2-Identification of 
mesoscale units and 
calculation of habitat 
mesoscale indices. 

For each habitat under evaluation:  
I-Identify relevant mesocale habitat specific indicators. 
II-Delimitation of areas where mesoscale habitat specific indicators. 
present homogeneous values. 
III-Sampling the mesoscale habitat specific indicators at each unit of 
analysis. 
IV-Process mesoscale index. 

2.3-Identification of 
microscale sampling 
locations and 
calculation of habitat 
microscale index  

For each habitat under evaluation : 
Delimitate areas of homogeneous mesoscale habitat specific indicators 
values. Sample microscale habitat specific  indicators at each area 
delimitated. 
 

Phase 3 3.1-Process final 
products 

I- Thematic map of marine environment quality. 
II- Thematic Map of terrestrial environmental quality.  
III- Human pressure thematic map. 
IV- Activities conflict matrix. 
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3.2.1 Phase 1. 

Task 1.1.Compilation of existing information. 

Several sources of spatial data for the study area, both for the terrestrial and marine 

environments, were explored among the different administrations at local, national and 

European levels as well as online public remote sensing data sources. Previous research 

studies on the marine environment, especially those related to local fisheries in the area, were 

also compiled. Key administrative bodies and other local stakeholders were identified. 

Task 1.2. Structured interviews 

The local stakeholders were guided thought structured interviews (Taylor and Bryan, 

2002) to complete predefined questionnaires. Three types of questionnaires were designed for 

the study area for collecting information proposed as relevant for evaluating management 

effectiveness of MPAs from local stakeholders (Vella et al. 2009): 

Questionnaire 1. Fisheries related information: Structured interviews to fishermen and 

fisheries technicians provided the identification of fishing tactics (gears) of professional and 

recreational fisheries, target species, fished habitats and other habitats of interest in the area, 

and the spatial distribution of fishing effort of each tactic. Spatial distribution of fishing effort 

was evaluated by stakeholders from 1 -areas supporting minimum fishing effort- to 5 -areas 

supporting maximum fishing effort. 

Questionnaire 2. Diving related information: Structured interviews to diving 

centers/clubs, responsible of marine monitoring and marine researchers provided information 

about: Scuba diving locations and relative diving pressure at site, their relative quality in terms 

of seascape and the locations of biodiversity hot spots and identification of habitats of interest 

in the area.  

Questionnaire 3. Human pressure related information: Structured interviews to 

stakeholders allowed identifying important human activities in the area, the relative intensity 

of its spatial distribution and the degree of conflicts among all activities.   

Parameters in questionnaires 2 and 3 were evaluated by stakeholders from 1 to 5 five 

following similar ranks that in questionnaire 1. 

Task 1.3. Setting up a GIS and development of seabed cartography. 

A GIS (ArcView 3.2, ESRI Inc.) was set up to manage all cartographic information from 

tasks 1.1 and 1.2. This information was used for delimitating marine habitats of interest and 
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designing a grid. Each cell of the grid acquired a value for each indicator (Figure 3.2). The grid 

cell size is chosen upon spatial information accuracy of maps obtained in task 1.1. When one of 

the habitat mesoscale or micro-scale index presented different values in one cell due to the 

presence of different habitats of interest, the maximum value was given to the cell.  

Cells located over an area affected by the presence of a harbor were flagged as harbor 

affected area and were excluded from the evaluation of any other indicator, ensuring that cells 

are easily identifiable in all final products. 

 

Figure 3.2: GIS scheme for integration of indicators and indices. 

 

The cartographic information integrated in the GIS was used to generate three base maps 

(herein referred as study area descriptors) used for the later calculation of environmental 

indices and identification of in situ sampling sites. The three base maps are:  

-Map of geomorphologic units: Delimitation of areas with similar geomorphologic 

structures. Different geomorphologic classes were adapted locally from information collected 

in task 1.1. 

-Homogeneous slope areas: Delimitation of areas with homogeneous values of 

bathymetric slopes calculated from bathymetric data obtained from task 1.1. The grid cells are 

ranked from 1 (very low slopes) to five (very high slopes) 

Map of marine habitats: Delimitation of main habitats identifiable in the areas from 

cartographic products collected in previous tasks. 

Habitats in the study area that will be evaluated during the assessment have to be 

selected with the information coming from tasks 1.1 and 1.2. Specific information to evaluate 
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the quality status of those habitats is based on a set of meso and micro-scale indicators, which 

are either selected or adapted from scientific literature.   

Task 1.4. Calculation of Class 1 Indicators. 

Degree of exposure index: Areas of the same habitat with similar slopes are delimitated. 

Ranks for each area are proposed as follows, based on the effect of slopes in the species 

richness of fish assemblage (Hamner et al. 1988; Harmelin 1988; Mcgehee 1994; Kiflawi & 

Genin 1997): (1) gently sloping coves and bays that connects without discontinuity with 

respect to adjacent shoreline, (2) straight, gently, sloping shoreline, (3) small caves, closed and 

shallow with bathymetric and habitat discontinuity with respect to the exterior, (4) islets or 

capes with even depths and habitat similar to those on the surrounding coast, straight 

shorelines with cliffs and sharp bathymetric drops, (5) islets or capes with sharp bathymetric 

drops that contrast with the surrounding coast. 

Human pressure indicators: Adapted from previous studies (Villa et al. 2002; Pomeroy et 

al. 2004; Vella et al. 2009). Questionnaires obtained in task 1.2 provided grid maps of activity 

pressure in the area. The final value of pressure index for each activity was calculated by 

means of the spatial distribution values obtained from the questionnaires.  

The fisheries diversity index informs about the species diversity and type of habitats. 

Values associated to fishing grounds were locally ranked from one- low diversity of target 

species being fished on low interest habitat-, to five- high diversity of species being fished over 

habitats of interest-. Local ranks were obtained through a nominal group technique who 

evaluated the fisheries operating at each fishing ground in the study area. The evaluation of 

fisheries data to obtain fishing ground indicators has been adapted from Mouillot et al. (2002). 

The urban pressure index: Values were assigned as a function of buildings and roads 

density based on aerial photos and maps. Areas of similar density of urban development were 

grouped and values were assigned to the area from one (very low pressure: absence of 

buildings and/or roads in the cell, to five: very high dense urban development). 

The level of protection: Ranked from 1, areas not protected, to 5, maximum protection 

level for biodiversity conservation found inside the study area. Equivalent to a marine or 

terrestrial reserve, or a marine no entry/no take zone (Pomeroy et al. 2004). 

Mesoscale class 1 indicators: Quality diving site index, Biodiversity hotspots (id. 7, table 

3.1) and Habitat of interest, allows mapping locations of diving site highly prized both for 

divers and clubs, and already known by local divers. Pressure on these areas is measured with 

the Intensity of recreational diving value. The indicators were proposed, with slight 
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modifications from Vella et al. (2009). They are ranked from 1 to 5, from standardized means 

of the spatial distribution values obtained from the questionnaires in task 1.2. 

3.2.2 Phase 2. 

Task 2.1.Sampling of indicators that do not require underwater techniques  

Aerial pictures from task 1.1 and landscape photographs taken by the working team 

assessed the main habitats and state of conservation for the evaluation of the naturalness 

index (Machado 2004). 

The macroalgae indicator species was evaluated visually in the surf zone during surveys 

along the coast for the calculation of the water quality index. Surveys were conducted in spring 

- due to the seasonal growth of the algae considered for the calculation of this index - with an 

inflatable boat that allowed nearshore sampling (Ballesteros et al. 2007). Seabird values were 

obtained from the location of the seabird colonies of threatened species observed during 

these surveys.  

Task 2.2.Identification of units of analysis for the selection of mesoscale underwater 

sampling sites and calculation of habitat mesoscale index 

The set up of the site sampling selection procedure begins with the identification of 

homogeneous areas which have to be sampled at meso and micro-scale levels, herein referred 

as units of analysis, which are habitat specific. The identification of these areas starts with the 

selection of the main environmental variables that drive and control the development of that 

particular habitat. These environmental variables are expressed as indicators calculated from 

previous obtained information and ranked from 1 to 5. Areas with homogeneous values are 

delimited defining the units of analysis of that particular habitat. Each unit of analysis has to be 

sampled to obtain representative values of the mesoscale habitat specific indicators.  The 

number of samples per unit of analysis can be adjusted to the time and budget available.  This 

approach for sampling stratification allows maximizing the resources to ensure the collection 

of a spatially representative sample of mesoscale indicators.  

Once the selected sites have been sampled, mesoscale indicator values must be 

transferred to the cells in the grid map of the GIS. Other non sampled cells where that habitat 

is present take the value for each indicator from the closest sampled site in the same unit of 

analysis.  
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For each habitat, mesoscale indicators were grouped into the habitat specific mesoscale 

index designed by a nominal group technique. 

 

Task 2.3. Identification of micro-scale sampling locations and calculation of habitat 

micro-scale index. 

Samples of micro-scale habitat specific indicators have to be taken at representative sites 

for the mesoscale index homogeneous areas inside each unit of analysis of that habitat, and 

eventually at hot spots identified in Phase 1. If budget limitations affect micro-scale sampling 

regimes, sites must be selected to ensure data from units of analysis with the highest values of 

mesoscale index. 

 Micro-scale habitat specific indicators were grouped into the habitat micro-scale index, 

formulated specifically for each type of habitat following a nominal group technique. 

Additionally two more indicators were always evaluated:   

Invasive algae abundance index: Invasive algae present in the study area were identified 

in phase 1, percentage of coverage of the bottom was visually evaluated and final values were 

ranked from 1 to 5 (minimum and maximum coverage detected in the area).  

Singular species with indicator value: Species with value in terms of conservation, and 

potentially present in the study area identified in phase 1, were selected for evaluation. The 

presence of each individual was annotated. On each transect a final value of abundance for 

each species identified was obtained. Abundances in the transect were ranked from 1 to 5, 

corresponding to the minimum and maximum values in the area.  

3.2.3 Phase 3. 

This phase consists of data analysis and generation of the final outputs, integrating the 

information provided by the indicators from three different perspectives: (1) an ecosystemic 

evaluation reflected in the thematic map of marine environmental quality index and the 

thematic map of coastal environmental quality index, (2) the spatial distribution of the human 

pressure, reflected in the thematic map of human pressure index and (3) the synergies of 

different uses and activities reflected in the activities conflict matrix.  

Product 1: Thematic map of Marine Environmental Quality Index (MEI). The grid values 

are calculated from the sum of selected indicator classified in three levels according to the 

assigned weighing factors: indicators of the highest importance were assigned a weight factor 
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of 2; indicators of high importance were assigned a weight factor of 1.5 and finally indicators 

of medium importance were assigned a weight factor of 1.  

Final values obtained from each equation are ranked linearly from 1 (minimum value of 

the index in the study area)  to 5 (maximum value of the index in the study one area). 

Equation 1: 

MEI=  2 (mesoscale index +  degree of exposure index) +  1.5 (fisheries diversity index + the 

biodiversity hot-spots+  singular species+  micro-scale index) + 	(quality diving sites index - 

invasive algae +  quality index derived from coastal macro algae) 

Product 2: Thematic map of Coastal Environmental Quality Index (CEQI). Includes class I 

indicators for the terrestrial environment giving information on environmental quality. 

Equation 2: 

CEQI =  seabird index +  naturalness index - urban pressure index 

Product 3: Thematic map of Human Pressure Index (HPI). Each cell takes the sum value of 

the activity pressure intensity processed from information obtained by questionnaires in Phase 

1. 

Equation 3: 

HPI =  Anchoring Pressure index +  Navigation pressure index +  Professional fishing pressure 

index +  Recreational fishing pressure index 

Product 4: Activities conflict matrix. Assessing the present or potential conflicts among 

stakeholders is a key question to be considered for the management of an MPAs (Vella et al. 

2009). Here the evaluation is based on the matrix of conflicts, where activities and interests on 

the marine environment can eventually collide with each other in pairs (Barragán Muñoz 

1997). Conflicts among activities were evaluated by stakeholders during questionnaires used in 

Phase 1.  

3.3 Results. 

We field-tested the methodology by first identifying the relevant stakeholders, including: 

National Agency for Coastal Management, Balearic Government departments of fisheries and 

environment, local agency of cartographic data (SITIBSA), Administrative departments of Artá 

city, Spanish Oceanographic Institute and Mediterranean Institute for Advanced Studies, diving 

centers operating in the study area and local fishermen association.  

http://maps.google.es/local_url?dq=imedea&q=http://www.imedea.uib.es/&ct=onebox&cd=22&ei=V2vHUICMOMbaigasj4CIDA&s=ANYYN7lFxgtfxo6Zf3gTU-FEGubi0dHl7g
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The main sources of cartographic information gathered during Phase 1 included nautical 

charts, remote sensing images from SPOT satellite obtained from Google Earth and aerial 

photographs from the coast provided by local Government. The main source of information for 

identification of threatened species, indicator species, species of commercial interest and 

invasive species were found in inventories of fish communities in the Balearic archipelago 

(Riera et al. 1993), studies on invasive species (Boudouresque & Verlaque 2002), IUCN lists 

(Hilton-Taylor 2000) and local red lists (Mayol et al. 2011), 

The main human activities identified during tasks 1.1 and 1.2 were professional and 

recreational fishing, swimming and tourism, navigation and anchoring, diving, harbouring and 

urban development. The questionnaires developed for the structured interviews (n=14) in task 

1.2 allowed mapping the distribution of human pressure from these activities. This information 

also provided the spatial distribution of fishing tactics and identification of potential hotspots 

for biodiversity. The information related to local fisheries collected in task 1.1 and 1.2 allowed 

the setting up of the local ranks (Table 3.3) for the local fisheries diversity index.  

 

Table 3.3: Fisheries diversity index local ranks. 

Type of fisheries within each cell Indicator value 

Surface trolling line fishing area.  1.Very low. 

Fishing areas with a concurrence of surface troll lines, 
trolling lines and hand lines. 

2. Low. 

Fishing for red mullet and cuttlefish (trammel nets) 
associated with seagrass meadows zones where hand 
lines fisheries converge.  

3.Medium. 

Ancient semi pelagic long line fishing grounds where 
surface and bottom troll lines is also practiced. 

4. High. 

Ancient fishing grounds for semi pelagic longline fishing 
and spear fishing for target species that are indicators of 
the reserve effect, where trolling is practiced and with 
fishing areas where trammel nets are used for red mullet.  

5.Very high. 

 

Identified substrates and key habitat codes (Aguilar et al. 2006) in the study area were: 1-

Rocky reefs associated with submarine promontories, 2-Rocky reefs associated with limestone 
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islets, 3- P.oceanica meadows over rocky platforms or sandy bottoms, 4- Submarine caves and 

5- sandy beds. 

 

The Geomorphologic units base map descriptor were adapted from previous generic 

classification  (Bird 2008) and included for the experimental site 1) cliffs; 2) flat rocky shore 

without scree; 3) flat rocky shore alternating with small caves, and 4) beaches.  

The main habitats descriptor base map obtained in task 1.3 was compared with bionomic 

maps from high quality sampling techniques (side scan sonar and trawled video) to evaluate 

the level and quality of the information provided by free access data and local fisheries 

distribution (Figure 3.3).  

 

 

Figure 3.3: Bottom types identified in the study area. Data from Class 1 mesoscale indicators (left) and 

data from high resolution side scan sonar and trawled video. 

 

Based on this cartography, a grid cell size of 300 m was chosen, which represents six 

times the minimum mapping unit of the developed habitat map. This relation showed the best 

equilibrium between spatial definition required and spatial quality of available information. 

Class 1 indicators were calculated inside this grid. Cartography of fisheries diversity index, 
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naturalness index and human activity pressure index, calculated for boat traffic navigation are 

presented as examples of cartographic results (Figure 3.4). 

The habitats selected for evaluation were those associated to rocky bottoms and 

Posidonia meadows, while sandy bottoms were excluded. This selection was based on the 

higher abundance of fish species that can respond to protection in these types of bottoms. 

Submarine caves were evaluated as part of rocky bottoms and following the same techniques.  

 

Figure 3.4: Fisheries diversity index. (A), Naturalness index (B), Mesoscale index, each cell present values 

related to main habitat inside: rocky bottom or P. oceanica meadows (C), Micro-scale index over rocky 

bottoms. (D). 

 

Habitat specific indicators at mesoscale and micro-scale level for each habitat selected for 

evaluation in the study area are presented in table 3.4. Rationale for selection, techniques for 

sampling and ranks for these indicators are provided as supporting information (appendix A). 
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Habitat macroscale and micro-scale indices obtained through the nominal group technique to 

group that information are provided as supporting information (appendix B).  

 

Table 3.4: List of mesoscale and microscale habitat specific indicators  

Habitat Scale Name Variabled 
Rocky 

bottoms 

Meso Habitat heterogeneity Number of different habitat 1 

 Habitat connectivity Spatial structure and patchiness of 
different habitat 

2 

 Substrate roughness Number and structure of holes and 
cavities 

3 

 Underwater landscape value Habitat and fish community richness 4 

Micro Specific richness of vulnerable species Degree of conservation 5 

 Specific richness of threatened species Degree of conservation 6 

 Fish species biomass index  State of fish communities 7 

 Invasive algae Degree of wild state 8 

 Singular species Degree of wild state 9 

Posidonia 

meadows 

Meso Habitat heterogeneity Number of different habitat 10 

 Habitat connectivity Spatial structure and patchiness of 
different habitat 

11 

 Substrate roughness Number and structure of holes and 
cavities 

12 

 Underwater landscape value Habitat and fish community richness 13 

 P.oceanica meadow cover Percent of the coverage in sampled area 14 

 P.oceanica meadow landscape Habitat and fish community richness 15 

Micro Density of shoots and rhizomes  Quality state of the meadow 16 

 Demographic balance Quality state of the meadow 17 

 P.oceanica coverture Quality state of the meadow 18 

 Maximum depth of P.oceanica meadow Water transparency 19 

 Invasive algae Degree of wild state 20 

 Singular species Degree of wild state 21 
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Macroscale indicators (from table 3.1) and area descriptors selected for delimitation of 

the units of analysis (task 1.5) for rocky bottoms were: geomorphologic units, degree of 

exposure index and depth. These variables were selected according to its effect on the 

richness of associated fish communities (Harmelin 1988; García-Rubies 1997; Reñones et al. 

1997; García-Charton et al. 2000; Massuti & Reñones 2005), the dynamics of benthic 

communities (Wheeler 1980; Ballesteros 1989; Ballesteros 1991) and the richness of particular 

fish species (Hamner et al. 1988; Harmelin 1988; Mcgehee 1994; Kiflawi & Genin 1997).  

Seagrass meadows macroscale indicators considered for the delimitation of units of 

analysis were: The degree of urban pressure index (id. 4, table 3.1) and water quality derived 

from coastal macro algae. Both indicators are related to the introduction of organic elements 

and nutrients into the marine environment, which directly affects the state of health of 

meadows, particularly when these grow on sediments very rich in carbonates (Calleja et al. 

2007; Diaz-Almela et al. 2008).  

The sampling sites for application of mesoscale indicators were selected randomly in each 

unit of analysis.  Data were gathered at sites of special interest, and additional mesoscale 

samplings were conducted at seabeds with high diversity associated with scree areas along 

with edges, promontories, islands and biodiversity hot spots identify during task 1.2.  Nineteen 

sites were sampled in total.   

The spatial distribution of the mesoscale index inside each unit of analysis allowed the 

establishment of several criteria for micro-scale site selection:  

i- Areas of special interest (bottoms with high diversity associated with scree areas 

along with ledges, promontories, islands and submarine caves);  

ii- For each unit of analysis: representative rocky bottoms located at depths below 15 

meters with high roughness and high heterogeneity, representative rocky bottoms 

at depths greater than 15 meters with low roughness and low heterogeneity, and 

Posidonia meadows. 

Pinna nobilis (Linnaeus, 1758), was selected as a threatened species, although invasive 

algae species were not found during the sampling at the study site. 

With all the information collected final products were produced: Marine Environmental 

Quality Index (MEI, equation 1), Coastal Environmental Quality Index (CEQI, equation 2), 

Human Pressure Index (HPI equation 3) and the activities conflict matrix (table 3.5). Values of 

stress among human activities from this table allowed the identification of potential conflicts 
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in the area, which were: 1) professional fishing with diving and recreational fishing, 2) diving 

with anchoring and boating, and 3) protection of certain areas with anchoring and urban 

development.  

Maps of MEI and CEQI (Figure 3.5 B and D) showed four hot spots in the marine side 

(areas 1,2,3,4, in Figure 3.5.A) and two hot spots in the terrestrial area (areas 8 and 9, in Figure 

3.5.A). Area number 4 is located near a terrestrial area with the low-medium CEQI, while areas 

1 and 2 present the best connectivity between marine and terrestrial well conserved sites, as 

CEQI in nearby areas is high to very high. The area number 1 also present low to medium HPI 

wile areas 2, 3 and 4 presents high to very high HPI values. Area number 1 presents the best 

combination of the three indices with the highest environmental global value. 

Cartographies also allow identifying areas, 5 and 6 associated to sandy bottoms, with very 

low MEI. The area number 6 is located near the harbor. Finally it is also possible to identify 

areas (as number 7) with high HPI but low-medium values of MEI. 

 

Table 3.5: Activities conflict matrix (1: Low; 5: Very high).  
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Figure 3.5: Marine natural quality index (A), marine human pressure index (B), Terrestrial natural 

quality index (C).   
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3.4 Discussion 

Our work provides a step by step methodology to integrate indicators containing 

information related to different uses and activities as well as the quality of the coastal 

ecosystems, from a multidisciplinary approach. Final products have shown their capability to 

discriminate areas depending on the environmental quality of the marine and terrestrial 

coastline and the human pressure exerted on them. 

The identification of marine environmental hot spots connected with areas of high 

terrestrial environmental quality makes them candidates for no take zones or integral reserves 

in an eventual zoning of a MPA linked to the site. This information, combined with the human 

pressure index, suggest the best option among the candidate sites for maximum protection 

level, areas of public use, diving sites or other specific activities, thus making the final products 

a useful tool for the development of MPA management plan and its zoning. This type of 

information is relevant policy making criteria that precedes decision making procedures 

conducted by managers. The use of indices facilitates the discussion of these aspects with final 

users and even with stakeholders having limited experience in coastal zoning and 

conservation. 

The higher weighting factors assigned to bottom substrate roughness and habitat 

diversity for the rocky habitat mesoscale index (See Appendix B, equation B.1 ) reflects the fact 

that experts consulted during the nominal groups gave higher priority to the potential of the 

habitat to promote high biomass and diversity of Mediterranean littoral fish communities. 

Additionally the higher weighting factor of mesoscale index and degree of exposure index in 

the MEI final product against the micro-scale one (equation 1), also indicates that experts 

considered more relevant the capabilities of habitats to recover than the actual status of the 

habitat, shown by the micro-scale indicators like species assemblages or seagrass meadow 

growing capacity. 

The process to develop the methodology considered two premises: its adaptability in 

relation to the resources available for the survey and in relation to the different ecological 

characteristics within the study area. This explains the relevance given to Class 1 indicators, 

the interaction with local stakeholders to take advantage of all the existing information and 

the choice of techniques of nominal groups for index design instead of other multivariate 

analysis (DeVantier et al. 1998).  
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In order to be applicable in other areas the method has been designed to be flexible in 

relation to: 1) measuring different type of human activities, 2) including other type of habitats 

not considered during the study case and 3) applying other indicators for water quality.  In this 

work we proposed a generic approach for obtaining information from stakeholders about 

human activity pressures and conflicts through the structured interviews and to obtain 

indicators for different type of habitats following a generic scheme for the identification of 

units of analysis and design mesoscale and micro-scale habitat specific indicators. This implies 

the identification of macroscale environmental variables that drive important differences in 

the structure and state of that type of habitat, the mesoscale variables expressing real 

differences in the state of conservation/quality of that habitat, and the key indicators for 

micro-scale samples. Indicators for mapping coastal water quality have been based on 

methods based on Mediterranean algae species with indicator values and therefore the 

application to other geographical areas would require adapting these methods or follow 

guidelines to design new indicators of water quality (Beliaeff & Pelletier 2011).  

Researchers and managers responsible for assessment in other areas may have other 

interests or objectives for zoning an MPA that might require other set of indicators. New 

indicators could be included in the final products by assigning correspondent weighing factors. 

This flexibility also allows the incorporation of other type of ecosystem indices as PREI (Gobert 

et al. 2009) or POMI (Romero et al. 2007), proposed for P.oceanica in the Water Framework 

Directive of the European Union’s coastal areas evaluation.  

Limitations in use of expensive and time-consuming oceanographic equipment and the 

time required for post processing data analysis influences the selection of indicators and 

techniques. Once the in situ sampling procedure has started, data collected in each task drives 

the decisions for data collection at the following task. Increasing the time needed between 

tasks due to oceanographic equipment handling and data processing would increase the time 

and cost needed for the development of the final products.  

In the study case presented here diving based techniques have been selected to collect 

data at mesoscale and micro-scale level to provided information about habitat potential for 

recovering (habitat specific mesoscale indicators, Supporting information: appendix A) and 

habitat quality status (micro-scale habitat specific indicators, Supporting information: appendix 

A). Even though these techniques require a certain level of infrastructure and expertise, 

underwater visual census and other diving based approaches are some of the most used 

techniques in marine rapid assessment for the evaluation of ecosystem quality status 

(McKenna et al. 2002; McKenna 2011). They offer a good balance between quality data and 
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time required for post processing in comparison to other techniques giving information about 

similar variables (Stobart et al. 2007).  

If time and budget are not limitations the method can be enriched from the application of 

several other techniques, such as acoustic (Kenny et al. 2003) or combined acoustic/video for 

habitat mapping and classification (RODPer & Zimmermann 2007), trawled video for marine 

species evaluation (Sheehan et al. 2010); (Assis et al. 2007) or baited underwater video 

(Stobart et al. 2007; Colton & Swearer 2010). These techniques would improve the quality of 

final products as they could provide better spatial definition and they would also allow to scale 

up the area evaluated, limited in this study to shallow waters due to the dependence on diving 

sampling.  

The availability of existing data in the study area from oceanographic devices deployed 

for monitoring or operational oceanography could also improve significantly the quality of final 

products. For example the existence of previous cartographies of habitat from side scan sonar 

would improve the spatial definition and quality of final maps, or the access to meteorological 

buoys could provide better maps of coastal exposition (Ekebom et al. 2003).  

An important issue to consider for the application of existing oceanographic deployments 

to the RAP framework is the level and formats of the data provided. Products obtained from 

deployments must be available in an “end-user friendly format”; on the contrary, time for data 

formatting or post processing would prevent its application in the scope of the RAP.  

The methodology proposed here has been designed to take the most of the resources 

available, but running this method with very low number of in situ sampling may reduce the 

accuracy of marine quality index. We have recommended at least one sampling site at each 

identified hot spot and at each unit of analysis, but increasing the sampling effort will for sure 

improve the final products as spatial definition will be higher. 

The techniques used to rank the environmental and human pressure indices from 1 to 5 

allowed the separation of minimum and maximum values, thus increasing the spatial 

differences inside the study area to facilitate the marine zoning, but the use of the same 

relative indices in other geographic areas may be not feasible.  

In many cases the lack of information or resources available for carrying extensive 

surveillance restricts the possibility of developing comprehensive management plans. In other 

cases, even when this information exists there are limitations in the knowledge transfer from 

scientists to managers. RAPs provide cost effective tools to face data collection, but techniques 

have been developed and examples of their use have been published in relation with tropical 
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areas and particular studies, as is the ecological state of particular species or ecosystems, but 

not on the selection and design of MPAs so far. The methodology proposed here, and the final 

products obtained try to overlap these limitations and constrains, allowing the integration of 

anthropic activity indicators as well as the global environmental quality of the coastal 

ecosystems from a multidisciplinary approach.  

3.5 Conclusions 

The method described herein provides a way to collect and integrate information from 

multiple disciplines related to management of coastal areas as social ecological systems. The 

final results are designed to be easy to use tools for managers responsible for zoning and 

managing marine protected areas. The capacity to incorporate information from local 

stakeholders and previous studies, along with the feasibility for use in other geographical 

areas, makes the method a reasonable choice in a time of global budgetary constraints. This 

tool, with its reduction in costs and time needed to survey, the coordination of already existing 

but dispersed information, the extensive use of public and accessible resources, the 

applicability in different biogeographic regions with minor modifications and the maximization 

of results, can be useful when economic or time constraints run against the effective 

protection, even at a basic level, of the coastline under threat. 
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3.7 Supporting information. 

Appendix A: Mesoscale and microscale habitat specific 

indicators used in the case study area Artà. Rationale 

for selection, sampling techniques and ranking. 

3.7.1 Rocky bottoms specific indicators. 

3.7.1.1  Mesoscale rocky habitat indicators (indicators 1 to 4, table 3.4): 

These indicators are measured visually during underwater surveys. Large areas can be 

covered in as far as divers can be towed by a boat or use submarine scooters. The lengths 

surveyed can vary from 100 to 500 m depending on the size of the area to be sampled. 

Indicators are specific for each type of habitat. Values of four mesoscale indicators - habitat 

heterogeneity, habitat connectivity, substrate roughness and underwater landscape value-

were collected in the selected in situ sampling sites of rocky bottom zones for each unit of 

analysis:  

The habitat heterogeneity (Indicator 1, table 3.4) expresses the number and the relative 

extension of sub-habitats (rocky boulders, lifts, caves and flat areas) present in the area 

assessed. The rank values are higher when the number of sub-habitats and evenness is higher 

following the same concept of Shannon-Weaver (1948) diversity index. The values are scaled 

as (1) a single type of sub-habitat, or more than one type providing that 80% of the surface 

area corresponds to a single type, (2) two types of sub-habitat balanced in size, (3) more than 

2 types of sub-habitats that are not balanced in size, and (4) three or more types of sub-

habitats that are balanced in size.  

The habitat connectivity (Indicator 2, table 3.4) measures the continuity of a type of 

habitat both in depth and in extensiveness, scaling from (1) habitats in the sampling site that 

are separated by marked ecotones, (2) boundaries between habitats are patchy or interlocked, 

and (3) very interconnected habitats without boundaries. These values measures the influence 

of habitat continuity on the fish species biomass exportation/retention  (Gillanders et al., 2003; 

Palumbi, 2004; Forcada et al., 2009) giving higher rank to habitat structure promoting species 

movement. 
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The substrate roughness (Indicator 3, table 3.4) is a semi-quantitative measurement of 

the vertical relief and of the presence of dips. This index is derived from the semi-quantitative 

application and on a larger scale of the roughness concept (Luckhurst & Luckhurst, 1978) 

which has demonstrated important effects on Mediterranean littoral fish assemblages 

(Ordines et al., 2005; Mellin et al., 2007). Classification values are: (1) flat rock; (2) small 

boulders and/or scattered crevices or dips occupying less than 25% of the subzone’s surface 

area, and/or small scale cavities; (3) boulders of various sizes and/or crevices or dips occupying 

more than 50% of the surface are and (4) areas mostly occupied with scree and/or cavities of a 

certain size.  

Underwater landscape (Indicator 4, Table 3.4). Visual landscapes have shown to provide 

valuable information for the evaluation of landscape functions in terrestrial environments   

(Tveit et al., 2006). In this methodology indicator values for rocky habitat have been obtained 

by a nominal group of experts in MPA monitoring: (1) homogeneity of the seabed in terms of 

habitat type and bathymetry, (2) heterogeneous seabed with slight bathymetric variation, (3) 

heterogeneous seabed with a steep bathymetric gradient and (4) significant topographic and 

bathymetric heterogeneity, diversity of benthic communities and outstanding elements. 

3.7.1.2  Microscale rocky habitat indicators (indicators 5 to 7, table 3.4): 

In rocky habitats, microscale indicators were collected in transects of 5 minute-long track 

where 2.5 meters at each side of the center of the track were sampled following a visual fast 

count method (Kimmel 1985). These are carried out at low speed, swimming at a distance of 

about 1 m above the bottom. . 

Indicators are based on the evaluation of biomass and diversity of fish species as well as 

of the presence or absence of indicator species (algae, molluscs, crustaceans). Similar 

indicators are standard in RAP methods used in marine tropical environments (McKenna et al., 

2002; Atlantic and Gulf Rapid Reef Assessment AGRRA http://coral.aoml.noaa.gov/agra/) 

 In each transect, the fish species vulnerable to professional or recreational fishing 

(angling and spear fishing) belonging to spatial categories 3, 5 and 6 according to (Harmelin, 

1987) were counted and size estimated in 2 cm classes. For species from category 1 only 

presence/absence data were recorded. The indicators to be calculated for each transect are: 

Specific richness of vulnerable species (S) (Indicator 5, table 3.4). The species to consider 

as vulnerable are those littoral species over rocky substrates that are included in the  spatial 

categories 1, 3, 5 and 6 from the list of the target species in local fisheries  (Harmelin, 1987). 

The ranking is performed on data obtained in field work by splitting its distribution in four 

http://coral.aoml.noaa.gov/agra/
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classes considering the maximum values obtained in marine protected areas in the Balearic 

Islands (Coll et al., 2012). 

Specific richness of threatened species (Sa) (Indicator 6, table 3.4). The values are 

calculated as in previous indicator. The list of threatened species must be obtained for the area 

of study from local Red Lists, previous research or interviews. 

Fish species biomass index (Bv) (Indicator 7, table 3.4). It is Calculated from biometry, 

correlating fish size with weight (Morey et al., 2003) the values are ranked from 1 to 5 as in S. 

Minimum and maximum values where adjusted from marine protected areas in the western 

Mediterranean (Coll et al., 2012; García-Charton et al., 2004). 

3.7.2 Posidonia meadows specific indicators. 

3.7.2.1 Mesoscale Posidonia meadow indicators (indicators 10 to 15, table 3.4): 

For seagrass meadows four mesoscale indicators were selected, the habitat 

heterogeneity and connectivity, the meadow cover and the meadow landscape. The habitat 

heterogeneity and connectivity (indicators 10 to 11, table 3.4) following the same techniques 

as for rocky bottoms. During the transects two more indicators were collected 

Meadow cover (Indicator 14, Table 3.4). It expresses the percentage of the sampled area 

covered by the P.oceanica, in contrast to the percentage covered by other types of habitats 

(sandy bottoms, rocky without seagrass). The scale of values was: 1= less than 20% of the 

sampled area covered with seagrass meadows; 2= from 20 to 40%; 3= from 40 to 60% o; 4= 

from 60 to 80%; 5= more than 80% covered with seagrass meadows.  

Meadow landscape (Indicator 15, Table 3.4). Proposed following same methods than for 

indicator 23. This indicator enables a first comparison of the different meadows and is useful 

when it comes to determining the location of microscale sampling. Classification values are 1 

to 3 (low, medium, high) and evaluate the general aspect of the area in terms of density of the 

P.oceanica, species associated and presence of small and rich patchy habitats. Low: P.oceanica 

meadows patchy distributed in sand or flat rocky areas with a poor fish communities 

associated. Medium: continuous P.oceanica meadow with richer fish and indicator species 

communities associated. High: very wide P.oceanica meadows with high canopy and shoot 

density alternated with patches of rough rocky areas and presence of rich associated fish and 

invertebrate communities. 
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3.7.2.2 Microscale Posidonia meadow indicators (indicators 10 to 15, table 3.4): 

For selected sites of P. oceanica meadows, the sampling consisted on duplicated 20 meter 

transects marked with a tape, measured and fixed to the bottom with stakes. The indicators 

P.oceanica cover, shoot density and demographic balance (Ids 29-32, Table 3.1) were 

measured. Annual net population growth rate and demographic balance (µ) were calculated 

following methods of (Duarte et al., 1994) to provide information on the biological state of the 

meadows. The maximum depth of the meadow was calculated as it determines the quantity of 

light available at the bottom and therefore the lower limit to which the meadow can extend 

(Duarte et al. 1994) and the structure of the meadow, particularly the shoot density (Marba et 

al. 2002).  

 

Appendix B: Habitat macroscale and microscale indices 

obtained through the nominal group technique for 

habitats selected in the study area. 

The rocky bottom mesoscale index (RBmeso). (Equation B.1) 

RBmeso =2xsubstrate roughness +2xhabitat heterogeneity +1.5xunderwater landscape value+ 

habitat connectivity.  

Rocky bottom microscale index (RBmicro). (Equation B.2) 

RBmicro=1.5xBiomass of threatened species value+ Specific richness of threatened species 

valueP. oceanica mesoscale index (Pmeso). (Equation B.3) 

Pmeso= (Habitat heterogeneity value + habitat connectivity value) + meadow cover 

value+2xmeadow landscape value.  

P.oceanica meadow microscale index (Pmicro). (Equation B.4) 
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Estimated values for Pmicro were ranked from 1 to 5 considering 1 as very low 

(significantly receding), 2 as low (in recession), 3 as normal or stable, 4 as high (in 

expansion) and 5 as very high (significantly expanding). 
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4. Spatial scale, means and gradients of 

hydrographic variables define pelagic 

seascapes of bluefin (Thunnus thynnus, 

Linnaeus 1758) and bullet tuna (Auxis 

rochei rochei, Risso 1810) spawning 

distribution 
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4.1 Introduction 

Seascape ecology represents an emerging field in the study of how the habitat structure 

shapes the spatial distribution of marine species and influences key ecological processes 

(Hinchey et al. 2008a; Pittman et al. 2011). This discipline initiated applying techniques and 

metrics from the traditional landscape ecology to characterize and quantify spatial structure of 

benthic habitats, observed as a mosaic of patches of different habitat classes (Hinchey et al. 

2008a; Pittman et al. 2004; Boström et al. 2011). Nevertheless, there is still a gap in the 

development of concepts and techniques providing metrics to characterize the spatial 

structure of the seascape in the pelagic environments, where there are no clear boundaries 

delimitating different habitats (Pittman et al. 2011; Wedding et al. 2011). In the framework of 

landscape ecology spatial gradients have been recently proposed as more appropriated metric 

than traditional categorical patch mosaic based metrics to characterize continuous habitats 

(Cushman et al. 2010). Accordingly, a location in a pelagic seascape would be better 

characterized by the combination of the value of a particular hydrographic variable and its 

spatial gradient.   

Several studies have applied gradients of hydrographic parameters to characterize the 

spatial distribution of marine species during various life history stages, as nursery, foraging or 

spawning (Mannocci et al. 2013; Worm et al. 2005; Druon et al. 2011; Louzao et al. 2011; 

Hidalgo et al. 2012). It is likely that the scale at which an individual perceive a change in the 

environment (i.e., a gradient) varies according to life history, ontogeny and to the 

hydrographic variable in exam. For instance, while large-scale gradients associated with the 

North Pacific transition zone drive the location of many pelagic predators including albacore 

tuna (Thunnus alalunga) during their feeding migratory stages (Block et al. 2011), once off the 

west coast of the US, albacore tuna distribution is associated with smaller scale features linked 

to upwelling fronts (Phillips et al. 2014). In the Mediterranean Sea during spawning, bluefin 

tuna distribution is regulated by oceanographic variables that can change at relatively small 

scales (Alemany et al. 2010; Reglero et al. 2012). In spite of the expected importance of 

gradient scales, to our knowledge there are no studies that have evaluated the effect of 

changing the spatial scales at which environmental gradients are calculated to model the 

spatial distribution of fish. The goal of our study is to examine the distribution of large pelagic 

predators during spawning by explicitly considering mean, gradients and scale of gradients of 

hydrographic variables. Atlantic bluefin tuna (Thunnus thynnus) and bullet tuna (Auxis rochei 

rochei) are two species of pelagic predators showing different spawning strategies. We target 
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these species in the Balearic Sea, known as a recurrent spawning area for large pelagic species 

in the Western Mediterranean (Torres et al. 2011). Bluefin tuna is a highly migratory species; 

the Eastern population enters in the Mediterranean Sea from the North Atlantic at the end of 

spring and early summer (Block et al. 2005; Rooker et al. 2008). Their spawning activity at the 

Balearic Sea is linked to the regional oceanography with spawning grounds located in the 

vicinity of frontal structures formed when the recent Atlantic water mass encounters the more 

saline resident surface Atlantic waters (Alemany et al. 2010). The area is characterized by 

highly dynamic processes that trigger a seascape shaped by filaments, fronts and eddies whose 

location varies between years (La Violette et al. 1990; Balbín et al. 2014). Bullet tuna, by 

contrast, is smaller and more frequent in near coastal areas (Sabatés & Recasens 2001). The 

spawning of bullet tuna is associated with the geography. Young larvae are found mainly in 

coastal areas and with little influence of the local oceanography in comparison with bluefin 

(Reglero et al. 2012).  

We expect that, when selecting spawning locations, a large-bodied and long-distance 

migratory pelagic fish, such bluefin tuna explore their environment at larger spatial scales than 

bullet tuna, a small-bodied and non-migratory pelagic fish. Therefore, we expect that pelagic 

seascape metrics based on the combination of hydrographic parameter values and their 

gradients calculated at appropriate spatial scales provide relevant information for bluefin tuna 

but not for bullet, where we expect a greater reliance on geographic and hydrographic 

parameters, calculated at comparatively small-scale. 

In this work we analyze the influence of the pelagic environment by depicting the spatial 

scales at which gradients of hydrographic variables are linked to the spawning ecology of these 

tuna species. We investigate the two most relevant hydrographic variables describing their 

spawning spatial distribution: salinity and geostrophic currents velocity (Reglero et al. 2012), 

already determined in previous studies. Our analytical approach has two steps. Firstly, we 

identify the scale at which each hydrographic variable (see Figure 1) maximizes the 

performance of a model fitted to larval distribution. Second, we evaluate whether components 

of the seascape (i.e., mean and gradients of oceanographic variables) are interactively 

affecting the spatial distribution of tuna larvae. By performing this analysis on two species we 

evaluate how fish with contrasting life history strategies perceive their environments when 

deciding for spawning locations.  
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Figure 4.1: Sea surface salinity field in 2003. Spatial means of sea surface salinity processed at two 

different scales A) 0.15 degrees and B) 0.75 degrees. Spatial means were interpolated following an 

objective analysis onto a regular grid by using minimum error variance methods (Bretherton, 1976). The 

squares in each figure show the polygons used for the calculation of the spatial gradients at the two 

scales at station X. 

 

4.2 Materials and Methods 

4.2.1 Data acquisition 

Bluefin and bullet tuna larvae were collected during ichthyoplankton surveys using Bongo 

nets from 2001 to 2005.  The surveys were conducted by the Instituto Español de Oceanografia 

(www.ieo.es), an Spanish Government marine research institution, using oceanographic 

vessels belonging to the Spanish Government. The sampling scheme was communicated and 

approved by the Spanish Directorate of Fisheries before the sampling was conducted. No 

http://www.ieo.es/
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specific ethical approval was required and the survey of biological data was conducted using 

Bongo nets ,which are accepted humane standard techniques for this type of surveys, used 

worldwide for the collection of plankton samples, including billfish and tuna larvae (Alemany et 

al. 2010; Torres et al. 2011; Muhling et al. 2010; Rooker et al. 2012). The nets were towed at 

low speeds, around 2 knots, during 8-10 minutes, and plankton samples were immediately 

fixed with 4% formalin buffered with borax onboard. These surveys are needed to provide 

scientific knowledge about tuna species and contribute to the understanding of interactions 

among species and the processes involved in their recruitment, therefore, conservation and 

survival.  

Around 200 stations were sampled every year, in a regular sampling grid of 10x10 nm 

located between 37.85⁰- 40.35⁰ N and 0.77⁰ -4.91⁰ E, covering a total area of 101360 km2 

(=280x362km) around the Balearic archipelago (Figure 4.2). The sampling was conducted 

during June-July coinciding with the spawning period of bullet and bluefin tuna (see (Alemany 

et al. 2010) for details of the sampling procedures). Tuna larvae were identified to the species 

level and measured in standard length. All larvae identified as yolk sac and preflexion stages 

(<4.5 mm) were classified as “stage 1”. This stage has been defined to get a proxy of spawning 

locations (Reglero et al. 2011). 

 

Figure 4.2: Location of the Balearic Islands, Western Mediterranean. 

 

Vertical profiles of conductivity, temperature and pressure data were recorded at all 

stations, by means of Sbe911 CTD. Sea surface salinity at each station (SAL) was calculated as 

the mean salinity over the mixed layer depth. Geostrophic velocities (GVEL) were calculated at 

sea surface from the first-derivative of the sea surface height  between adjacent points, which 
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was obtained by vertical integration of the specific volume, using 600 m as the level of no 

motion (Balbín et al. 2014). 

These two variables (SAL and GVEL) were selected, since they have been demonstrated to 

be the two most relevant environmental variables describing the spawning spatial distribution 

of tuna (Reglero et al. 2012). Sea surface temperature was also included in the models since in 

this area it is a secondary but relevant variable mainly related to the phenology of the 

spawning process (Blank et al. 2004). However, the spatial gradient was not explored because 

sea surface  temperature during the summer changes relatively fast due to solar irradiance 

(Balbín et al. 2014). 

4.2.2 Processing of spatial gradients along continuous spatial 

scales 

Spatial gradients from the sea surface salinity field (gSAL) and geostrophic velocity field 

(gGVEL) within the sampled region were calculated at six spatial scales, from 0.15º to 0.90º 

with a spatial increment of 0.15º. The minimum (0.15º) and the maximum scale (0.90º) were in 

the range of the smallest (from 0.13º to 0.27º) and largest (up to 0.92º) mesoscale 

oceanographic structures in the area (Balbín et al. 2014). For the computation of the gradients, 

nine square polygons at every scale were delimitated around each sampling position (see 

examples for scale 0.15º and 0.75º in Figure 4.1A-B respectively). The gradient was then 

computed as the maximum absolute difference between the mean hydrographic variable at 

the center polygon and each of the eight surrounding polygons standardized to distance 

(Worm et al. 2005). The software for the spatial processing was developed in R language 

(RDevelopment 2011). 

4.2.3 Identification of spatial scales 

Comparison of how models perform along scales allowed identifying the spatial scales at 

which information provided by gradients is maximized. The effect of gGVEL and gSAL at each 

scale on the abundance of bullet and bluefin tuna larvae was assessed using nonparametric 

regression statistical models (generalized additive models, GAMs, (Wood 2006). A base model 

was formulated to describe inter-annual variability (variable YEAR), sampling location (latitude 

and longitude variables), and the hour of the day on the catch of tuna larvae.  Over-dispersed 

Poisson distribution family and a natural-log link were selected to model larval data. The 

volume of water filtered was included as an offset (after natural log transformation), to 
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account for the effort expanded in catching the sample (Equation 1). The effects of these 

variables on the base model have been already analyzed in previous studies (Reglero et al. 

2012).  Here, the base model represented the null hypothesis of no gradient effect on tuna 

larvae distribution, against which all other more complex formulations will be compared.  

Equation 1: Base model 

Larvae abundance = offset(log(vol)) + factor(year) + s1(long, lat) + s2(hour)  

vol= volume filtered by the bongo nets (m3); long=longitude; lat=latitude; hour=hour of 

the day expressed from 0 to 1, s1 and s2 the smoothing functions 

At each spatial scale a GAM model was processed including the gradient of one 

hydrographic variable (gSAL, gGVEL) as a new additive term (s3) in the standardization model. 

The number of knots for the new smoother was always set to a maximum of three (i.e. two 

degrees of freedom) in order to avoid over fitting in the responses.  

The identification of characteristic spatial scales (cgSAL, cgGVEL) was assessed with 

scalogram where the scale of the covariate is plotted against a measure of the model goodness 

of fit, which in our case were represented by the adjusted R-squared (Rsq, the higher the 

better), and the Generalized Cross Validation (GCV, the lower the better) (Wood 2006). We 

selected the scale that maximize Rsq and minimize the GCV. Results of the base model (when a 

seascape covariate was not included) were presented in the same graphics. Note that due to 

the greater complexity of the gradient model higher Rsq values do not necessarily imply an 

improvement in relation to the base model, while they do represent a better performance 

when compared to other gradient models.  

Significant differences of Rsq values between models, or GCVs, were obtained from t-test 

of these parameters obtained from 500 iterations where 10% of the data was excluded. For all 

cases, alternative hypothesis (difference in means is not equal to 0) was accepted only if the P 

value were lower than 0.001, with a confidence level of 0.99.  When one variable presented 

similar Rsq and GCV values at various scales, selection was assessed by inspection of the plot 

showing the response of the abundance in relation to the gradient processed at those scales.  

Once the characteristic scale of the gradients was identified, we tackled the questions of 

whether the information provided by the gradients is different and complementary to the 

information provided by the hydrographic variables from which they were calculated, and in 

that case, how the information from these two variables (spatial mean and gradient) should be 

combined to maximize the goodness of fit of the models and the ecological information they 
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provide.  To assess these questions we analyzed the performance of models with different 

complexity: 

i) The base model from equation 1. 

 ii) Hydrographic models combining the sea surface salinity, geostrophic velocity and sea 

surface temperature at the sampling station (stSAL, stGVEL, stSST).  

iii) Seascape models combining the gradients at characteristic scales (cgSAL, cgGVEL) and 

the hydrographic variable at the sampling location (stSAL, stGVEL, stSST). Different seascape 

models were constructed including the two components of the seascape (values at stations 

and gradients) as additive and interactive terms. An interaction may be ecologically meaningful 

when a species is selecting its spawning habitat on a specific side of a frontal region, for 

example. In such case, it is the combination of both the gradient and the mean that provide 

the suitable conditions for spawning. The performance of different model configurations for 

each species was assessed by the delta AIC (ΔAIC), calculated as the difference between model 

AICs and the base model AIC. The AIC in this case is best suited for model comparisons because 

each model had different number of variables (Burnham & Anderson 2002). Rsq, GCV and 

explained deviances were used to compare how models perform between the two species, as 

AIC values among models with different dependent variables are not comparable. 

4.3 Results 

4.3.1 Identification of characteristic spatial scales 

In all years considered, the recent Atlantic water masses encountered the more saline 

resident water masses forming an oceanic frontal zone inside the study area. The size of such 

frontal zone was bigger than other oceanography phenomena as small eddies and meanders 

derived from the instabilities along the haline front and the effect of strong bathymetric 

changes (See Figures S4.3-S4.4 showing the sea surface salinities and geostrophic currents in 

the area during the five years analyzed). 

The scalogram of gGVEL for bluefin showed that Rsq values gradually improve as the 

spatial scales increased to a maximum at 0.6º (Rsq= 0.44, Figure 4.3A), which was chosen as 

the geostrophic velocity gradient characteristic scale for bluefin tuna. Values of GCV showed a 

similar pattern of model improvement, being significantly better than the base model at 0.6 

degrees (Figure 4.3B). At this characteristic scale the response of the larvae abundance is 

positively related to the gradient of geostrophic velocity (Figure 4.3C). 
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The scalograms of gSAL for bluefin tuna showed also an increment of Rsq with higher 

values at 0.6º and 0.75º that also coincide with lower values of GCV (Figure 4.3D-4.3E). 

Differences of R-sq between these two scales (0.6º and 0.75º) were not significant. The 

characteristic scale for gSAL was chosen at 0.6º as the model response at this scale presented a 

less ambiguous effect on larval abundance (Figure 4.3F). The gSAL at 0.75º spatial gradients 

displays a dome-shaped response with a less clear ecological interpretation (Figure S4.1). At 

this scale GCV was lower than the base model. 

 

 

Figure 4.3: Rsq and GCV Scalograms of bluefin tuna larva abundance models along spatial scales, 

standard deviations. Horizontal grey lines indicate statistics from the base model (Straight line=mean, 

dashed line= Sd). Black dots show scales at which values are significantly different from the 

standardization model. Red arrows indicate the selected characteristic scale.  

 

 

In contrast to the results obtained for salinity, the gradients of geostrophic velocities 

(gGVEL) did not show any single scale that maximize R-square and minimize GCV (Figure 4.4A-

4.4B). The Rsq scalogram showed a flat trend with the highest value at 0.15 degrees. The Rsq 

value at this scale (= 0.18) showed similar values than other scales (values between 0.170 and 

0.173) or when compared to the base model (=0.166). On the contrary the GCV scalogram 

showed significant lower values than the base model at 0.45 and 0.6 degrees, scales at which 
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Rsq were not even significantly higher than the base model. Therefore, the contradictory 

response of the model performance indicators, the flat trend of Rsq scalogram and their very 

low values (despite the higher complexity of the gradient models in relation to the base 

model), may indicate that the spatial gradient of geostrophic velocity is not a valid seascape 

metric for the spawning locations of bullet tuna. Consequentially, gGVEL was excluded from 

further analysis in relation to this species. 

 

 

Figure 4.4: Rsq and GCV scalograms of bullet tuna larva abundance models along spatial scales, 

standard deviations. Horizontal grey lines indicate statistics from the standarization model (Strait 

line=mean, dashed line= Sd). Black dots show scales at which values are significantly different from the 

standardization model. Red arrows indicate selected characteristic scale. 

 

The gSAL scalogram of bullet tuna showed a moderate effect of the scale at which 

gradients were calculated. Shape of the scalogram did not show a peak scale at which model 

performs better (Figure 4.4C). Scales from 0.45º, 0.6º and 0.75º for gSAL seemed to maximize 

Rsq, but not being different of each other. In this case GCV-scalograms showed the lowest at 

0.75º (Figure 4.4D), being significantly lower than the base model, which was selected as 

characteristic scale. The Rsq at this scale was higher (=0.21) than that of the base model 

(Rsq=0.16). At this scale, gradients displayed a negative effect on the bullet tuna larvae 
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abundance (Figure 4.4E) showing that bullet tuna spawning locations are found with more 

probability in areas where salinity is spatially homogeneous– a result that contrasted to that 

obtained for bluefin tuna.  

4.3.2 Species-specific seascape characterization 

The best model for each species included a gradient and a mean term (Tables 4.1 and 

4.2). Note however that the hydrographic model already represents an improvement respect 

to the standardization model (Tables 1 and 2). For bluefin tuna the best seascape model had 

an improvement of 186% of the Rsq when compared to the base model (Rsq base mode=0.23; 

Rsq best seascape model=0.66, Table 4.1). The improvement for bullet was 68%, considerably 

lower compared to bluefin (Rsq base mode=0.16; Rsq best seascape model=0.27, Table 4.2). 

 

Table 4.1: Summary of gam models of larvae abundance for Atlantic bluefin tuna (Thunnus thynnus). 

Interaction terms included in parenthesis.  

Model 
group 

Model variables R2 Dev(%) GCV AIC 
delta 
AIC 

Base model 
(latitude, longitude) + filtered volume+ 

hour 0.232 40.8 4,596 3985,54 0 

One 
additive 
variable 
models 

base model + stGVEL0.15 0,271 43,4 4,412 3827,79 157,75 

 base model + gGVEL0.6 0,39 49,4 3,947 3465,03 520,50 
 base model + stSAL0.15 0,222 41,8 4,534 3924,70 60,84 
 base model + gSAL0.6 0,301 45,1 4,275 3723,53 262,01 

Hydrographi
c model 

base model + stGVEL + stSAL + stTEMP 0,472 51,6 3,814 3338,62 646,92 

GVEL 
seascape 
models 

Hydrogrqaphyc model + stGVEL +  
gGVEL0.6 0,53 55,8 3,500 3087,14 898,40 

 Hydrograhyc model + (stGVEL,gGVEL0.6 ) 0,666 59,3 3,251 2881,29 1104,25 

SAL 
seascape 
models 

Hydrogrqaphyc model + stSAL + gSAL0.6 0,506 54,8 3,571 3145,80 839,74 

 Hydrograhyc model +( stSAL,gSAL0.6) 0,533 57,1 3,417 3009,58 975,96 
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Pearson correlation coefficients between hydrographical variables and their gradients at 

characteristic scales were in all cases below 0.50 and pair plots showed no clear tendencies on 

the correlations (Figure S4.2), indicating that selected gradients provided complementary 

information to that of the hydrographical variable. Models showed a better performance (i.e. 

lower GCV and higher ΔAIC; Tables 1 and 2) in all the cases when the gradient and the 

hydrographic value were considered as an interaction term, suggesting dependence in their 

effect on larvae abundance rather than an additive response. However, larvae abundance of 

each species responded differently to the interaction of seascape components (Figure 

4.5A,B,C) 

 

Table 4.2: Summary of gam models of larvae abundance for bullet tuna (Auxis rochei rochei). Interaction 

terms included in parenthesis.  

Model 
group Model variables R2 Dev(%) GCV AIC delta AIC 

Base model 
(latitude, longitude) + filtered 

volume+ hour 
0,158 32,8 9,615 8857,17 0 

One 
additive 
variable 
models 

base model + GVEL st0.15 0,177 35,3 9,281 8572,91 284,26 

 base model + stSAL0.15 0,16 36,5 9,130 8440,06 417,11 
 base model + gSAL0.75 0,207 39,6 8,741 8098,28 758,89 

Hydrographi
c model 

base model + stGVEL + stSAL + 
stTEMP 

0,192 38,8 8,847 8183,39 673,78 

SAL 
seascape 
models 

Hydrogrqaphyc model + stSAL + 
gSAL0.75 

0,215 40,6 8,617 7984,18 872,99 

 
Hydrograhyc model + 

(stSAL,gSAL0.75) 
0,255 43,1 8,327 7708,82 1148,35 
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Figure 4.5: The effect of the interactions of the seascape components on the larval abundance as 

estimated from the seascape generalized additive model. The effects are shown for bluefin tuna (A-B) 

and bullet tuna (C). For bluefin tuna: A)the effect of the gGVEL and st_GVEL interaction. B) the effect f 

the gSAL and st_SAL interaction . Fo rbullet tuna C) the effect of the gSAL and st_SAL interaction. . 

Isolines indicate larval abundances predicted by the model. Peak of abundances are indicated in pink-

yellow. Low and very low abundances are indicated in green and blue, respectively. 

 

For bluefin tuna, higher probability of spawning was associated to higher values of 

geostrophic velocity gradients, but where velocities at station may present either high or low 

values (Figure 4.5A). Considering that a gradient is characterized by an area with high current 

speed near an area of low current speed, this result indicates that spawning locations were not 

associated to a particular side of the gradient, but in an area around the location where 

maximum velocities occurs. The extension of this area would be around a circle of 0.6 degrees 

of radius (aprox. 65 km in the study area), the characteristic scale at which the gradients were 

more relevant. In contrast, the interaction of the salinity seascape variables showed high 

larvae abundances in areas with high salinity gradients and intermediate-high salinity levels 

(Figure 4.5B), indicating an effect of the location of the main haline front and a preference for 

spawning at the high salinity values of that front. The characteristic correlation scale of local 

oceanographic structures in the area is around 18 nmi (0.15 nm) (Balbín et al. 2014) and 

therefore smaller spatial scales surface oceanographic structures are ephemeral. At higher 

spatial scales as those found relevant for bluefin tuna, structures are more permanent and 

related to processes as the Med-Atlantic salinity front.  

The functional form of the interaction terms was different for bullet tuna. The relation 

between the bullet tuna larvae abundance and the interaction of spatial distribution of sea 

surface salinity and its gradients is presented in Figure 4.5. Spawning locations were associated 

to areas where the salinity at the station were lower and gradients presented intermediate 

values, but the interaction plot revealed that spawning also appears in areas of higher 
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salinities associated to very low gradients. Areas defined by this twofold combination were 

located at both sides of the front avoiding more mixed waters. This spatial distribution was 

more evident in years 2001, 2003 and 2005 (Figures S4.9 and S4.10) 

4.4 Discussion 

We have found that the combination of sea surface current velocities, salinities and their 

gradients calculated at characteristic spatial scales are relevant for the parameterization of the 

pelagic seascape affecting a key ecological process of bluefin tuna. For bullet tuna only salinity 

and their gradient provided a valid seascape metric not being relevant the gradients of sea 

surface current velocities. In agreement with our expectations, the importance of these 

metrics was much higher for bluefin, a large-bodied, long distance migratory and more 

dependent on local oceanography than were for bullet a smaller coastal species with shorter 

migration distance.  

Previous studies have documented the links between the frontal activity and the 

spawning of bluefin tuna (Alemany et al. 2010; Reglero et al. 2012; Muhling et al. 2013). In this 

study we add to these results by examining the effect of gradients and their interactions with 

hydrographic mean. These metrics improved our understanding of the conditions for bluefin 

and bullet tuna spawning when compared to models using just the hydrographical values but 

not the gradients. Furthermore the identification of characteristic scales of gradients provided 

a new source of information for the interpretation of how local oceanography determines the 

selection of the site to spawn.  

For bluefin tuna larvae, the characteristics spatial scale of both salinity and geostrophic 

velocity gradients was at 0.6 degrees. The higher abundance of bluefin tuna larvae in areas 

with intermediate to high salinities and with high gradients of velocity is consistent among 

years. Higher abundance occurs around the location of the main frontal area, at the side of 

higher salinity of the front and where current speed present high values. Higher salinity water 

likely has higher resident time near the islands than the less saline water, which may run along 

the front towards east getting farther from the archipelago. Spawning at the higher salinity 

side may favor spatial overlap with other larval species that are also located in this water mass 

(Torres et al. 2011; Rodriguez et al. 2013).  

Results for bullet tuna showed that pelagic seascape metrics are not as relevant to 

explain the spawning distribution as they are for bluefin. In the western Mediterranean, 

spawning of bullet tuna have been associated to near coastal areas (Sabatés & Recasens 2001), 
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being less influenced by the local oceanography than bluefin tuna (Reglero et al. 2012), which 

is consistent with our results.  

Despite the lower importance of bullet tuna the seascape metrics, the inclusion of salinity 

gradients provided additional information for the identification of spawning sites. The analysis 

indicated that bullet tuna spawning areas are mostly found in areas where salinity gradients 

are low. Bullet tuna was found at both sides of the front but avoiding more mixed waters, 

located closer to the front. This was verified when observing the spatial distribution of larvae 

in relation to the salinity seascapes among the different years. For instance, in 2001, 2003 and 

2005 high larvae abundances were observed North of the archipelago (high salinity waters 

with very low gradients), but intermediate abundances, indicating spawning, also occurs in 

Southern areas (low salinities and intermediate gradients). In 2002 and 2004 higher 

abundances were linked to low salinity and intermediate gradients shown in the south of the 

archipelago (Fig S.9 and S.10). These results reinforce the theory of bullet tuna spawning 

occurs in widespread geographic areas, and not only close to the coast and suggest that the 

location of the main haline front negatively affects the spawning of this species.  

Overall results related to bullet tuna point to the fact that besides the avoidance of area 

near strong surface haline gradients other factors not considered in this study may also be 

relevant for the site selection for the spawning of this species. It is also relevant that the 

spatial pattern in relation to the salinity is the opposite to that shown by bluefin tuna, located 

in areas near the front, suggesting possible avoidance of predators by bullet spawners (Bakun 

2013). 

The application of seascape metrics derived from salinity and geostrophic currents to 

characterize the spawning habitat provides new descriptors for environmental variables that 

improve model quality and predictions. This improvement allows a more precise identification 

of the relationships between the spatial location of the spawning grounds and the local 

oceanographic processes.  Moreover, our study demonstrates that seascapes must be 

characterized at specific spatial scales to provide useful information as proposed in previous 

studies (Steele 1989) and supporting results on terrestrial landscapes (Wiens 1989; Wu & Li 

2006) and bottom seascapes (Bostrom et al. 2011). Therefore, the relations between the 

location of spawning sites and the mesoscale oceanographic processes may show to be non 

significant if seascape metrics are not processed at the right spatial scales. 

Seascape ecology is an emerging field generally being applied for the analysis of how 

benthic habitats pattern in coastal areas drives different aspects of marine species ecology 
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(Bostrom et al. 2011).  Techniques are applied following categorical approach where the 

seascape is composed by a number of patches of different type of habitats (Forman 1995; 

Cushman et al. 2010). However, very little attention had been placed on the techniques and 

concepts to investigate pelagic seascape ecology due to the complex spatiotemporal dynamics 

of this system (Pittman et al. 2011). Thus, the work here presented sheds new light to 

modeling spatial distribution and investigating key ecological processes of species highly 

dependent on the variability of the pelagic environment, as spawning ecology of many of the 

big tuna species are (Reglero et al. 2014). In areas as the Balearic Sea, for which new 

operational oceanography platforms provides near real time data of hydrography (Tintore et 

al. 2013) and also in combination with remote sensing data (e.g. altimetry, Pascual et al. 2013) 

and modeling (Juza et al. 2013) these metrics will improve the species spatial distribution 

forecast that yet has demonstrated to be effective information for management (Hobday & 

Hartmann 2006). 

In contrast to seascapes, landscape metrics have a long history in terrestrial ecology, and 

over time have improved. For instance, the effect caused on the habitat analysis derived from 

the spatial definition of the input habitat maps or the  extent of the study area are common 

studied topics ,(Cushman et al. 2008),(Wu 2013). Likewise, calculation of seascape metrics and 

the final results from their application in ecological studies may be affected by different issues, 

like the different ways of computing the hydrographic variables and their gradients, or the 

origin of the input data source as from in situ measurements, remote sensing or hydrodynamic 

models, each with different sources of uncertainty. A relevant question is how seascapes can 

provide information for other type of species and ecological processes. Addressing all these 

challenges and developing comparative studies between different data sources, processing 

methods, species and ecological processes will allow advancing towards the understanding of 

how seascape metrics can provide information about how ecological processes and 

oceanography are linked together.  

In summary, pelagic seascapes based on gradients and characteristic scales allows 

improving spatial distribution models and the identification of essential fish habitat of pelagic 

species. They also provide a tool for analyzing the links between particular ecological processes 

and local oceanography going far beyond than stochastic models based on just hydrographic 

parameters as salinity, temperature or geostrophic velocities. As a consequence these metrics 

will provide an improvement in all the management approaches and tools pending on the 

capability of models to identify essential habitats as near real-time spatial management based 

on habitat predictions (Hobday & Hartmann 2006),(Druon et al. 2011), pelagic species 
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distribution from deterministic models (Lehodey et al. 2008) or the standardization of larvae 

indices to assess adult stock (Ingram et al. 2008),(Muhling et al. 2011). 
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Figure S4.1. Model response of bluefin tuna in relation to salinity gradient processed at 0.75 

degrees. Fitted line (solid line) and 95% confidence intervals (grey shaded areas) are shown. Whiskers on 

the x-axis show the locations of measurements. 
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Figure S4.2. Correlation between the gradients at the characteristic scales and the hydrographical 

variables at the sampled station. A) Current velocity and B) salinity for Atlantic bluefin tuna. C) Salinity 

for Bullet tuna. 

Figure S4.3. Sea surface salinity fields in 2001 to 2005 
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Figure S4.4. Geostrophic velocity at surface in 2001-2005 

 

 
 

Figure S4.5. Spatial distribution of  bluefin tuna (Thunnus thynnus) larvae in relation to the salinity 

mean calculated at its characteristic scale (0.6 degrees). Relative stage-1 larval abundances are shown in 

the maps as dots. 
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Figure S4.6. Spatial distribution of  bluefin tuna (Thunnus thynnus) larvae in relation to the salinity 

gradient calculated at 0.6 degrees.  Relative stage-1 larval abundances are shown in the maps as dots. 

 

 
Figure S4.7. Spatial distribution of  bluefin tuna (Thunnus thynnus) larvae in relation to the 

geostrophic velocity mean calculated at its characteristic scale (0.6 degrees). . Relative stage-1 larval 

abundances are shown in the maps as dots. 
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Figure S4.8. Spatial distribution of  bluefin tuna (Thunnus thynnus) larvae in relation to the 

geostrophic velocity gradient calculated at the characteristic scale (0.6 degrees). Relative stage-1 larval 

abundances are shown in the maps as dots. 

 

 

 
Figure S4.9. Spatial distribution of bullet tuna (Auxis rochei rochei) in relation to the salinity mean 

calculated at 0.75 degrees. Relative stage-1 larval abundances are shown in the maps as dots. 
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Figure S4.10. Spatial distribution of bullet tuna (Auxis rochei rochei) in relation to the salinity 

gradient calculated at 0.75 degrees. Relative stage-1 larval abundances are shown in the maps as dots. 
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5.1 Introduction 

Essential habitats of pelagic species are strongly linked to dynamic oceanographic 

processes such as fronts and eddies which vary in space and time (Shillinger et al. 2008; 

Reglero et al. 2014; Scales et al. 2014). To define these habitats, it is necessary to design 

environmental descriptors specific to  the dynamic component of the oceanographic scenario 

in areas where the species occur or where relevant processes such as feeding or spawning take 

place. For example, various studies have used gradients of hydrographic variables to identify 

the presence of frontal processes (Worm et al. 2005; Druon 2010; Louzao et al. 2011; 

Mannocci et al. 2013). Recently, Alvarez-Berastegui et al. (2014) proposed to define the pelagic 

seascapes as the combination of means and gradients of particular hydrographic parameters, 

evaluating how the spatial scale of observation affects our capability to capture important 

hydrodynamic processes influencing the spawning ecology of two different tuna species. These 

examples reveal the important role that pelagic seascape ecology plays to understand how the 

environment affects pelagic species ecology, providing new ways to characterize the spatio-

temporal dynamics of pelagic environments. 

Operational oceanography is a key tool for advancing towards species habitat modeling 

with applications to management (Manderson et al. 2011; Hobday and Hartog 2014). Modern 

ocean observing systems combining in situ observations, satellite and modeling data are able 

to provide realistic characterizations of physical oceanographic processes (Rayner 2010; 

Pascual et al. 2013; Tintoré et al. 2013a). In this sense, seascape metrics are of special interest 

when working with remote sensing and hydrodynamic models that offer continuous data at 

broad extent in space and time. Spatial and temporal resolution provided by these data 

sources occurs at adequate scales to describe the dynamics of fluid properties at which the 

marine top predators interact with their habitat. Environmental scenarios obtained from 

operational data sources can provide baseline information to produce long-term and near real-

time forecast of pelagic essential habitats of paramount interest in fisheries management 

(Hobday and Hartmann 2006) and conservation (Game et al. 2009).  

The monitoring of bluefin tuna spawning habitats provides a good opportunity to study 

how the application of operational oceanography and seascape metrics can be relevant to 

improve current assessment and management of pelagic species. Bluefin tuna is an iconic top 

predator with a relevant role in pelagic ecosystems (Mather et al. 1995; Fromentin and Powers 

2005), and supports important fisheries in the Mediterranean and along the North East and 

West Atlantic coasts (Fromentin 2009). Mounting evidence shows that the spawning ecology 
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and habitat of this species are strongly linked to mesoscale oceanographic processes (Reglero 

et al. 2012; Muhling et al. 2013, Alemany et al. 2010, Alvarez-Berastegui et al. 2014), and 

therefore, operational oceanography provides a new potential tool to characterize and track 

these habitats. Spawning habitat models inferred from in situ data have improved the 

standardization of spawning biomass estimates of bluefin tuna based on larval abundance 

indices (Ingram et al. 2013). Thus, characterizing and monitoring spawning habitats from 

operational oceanography products would provide near real time information for larval 

sampling design and for larval abundance indices calculation. Besides, this type of information 

would facilitate the application of new management approaches based on spatial restrictions 

that could reduce bluefin tuna bycatch in the Mediterranean, such as those measures recently 

adopted in the Gulf of Mexico (US-DOC/NOAA/NMFS 2014). Moreover, dynamic habitat 

mapping could be used to manage pelagic marine protected areas within an adaptive 

framework, where spatial limits of closure areas may change (Hobday et al. 2010). 

In this study, we applied a pelagic seascape approach based exclusively on operational 

oceanographic information to model the spawning habitats of Atlantic bluefin tuna in the 

Western Mediterranean Sea. Densities of early larval stages of bluefin tuna, collected in 

proximity to a principal spawning region in the Balearic Sea, were used as a proxy for spawning 

locations (Mather et al. 1995; García et al. 2005a). Seascape metrics, used as input in the 

modeling process, were selected and included on the basisof known dependencies of the 

bluefin tuna spawning ecology with local mesoscale oceanography from previous studies. The 

results will allow predicting the spatial location of bluefin tuna spawning areas and  provide 

insights about the spawning ecology of this species. 

We develop a specific cross-validation approach to assess the predictive capability of the 

habitat models. We also propose specific techniques to address possible biases in the 

predictions derived from displacements of the oceanographic features identified from 

hydrodynamic models or remote sensing. This work aims to develop and provide operational 

fisheries oceanography products that directly apply to current assessment and conservation of 

Atlantic bluefin tuna and other pelagic marine species of interest. 
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5.2 Methods 

5.2.1 In situ data acquisition  

Atlantic bluefin tuna (BFT) larvae were collected during five systematic oceanographic 

campaigns carried on in June-July of 2001-2005. A regular grid of 10 x 10 nautical mile were 

sampled each year covering the area between 37.85⁰- 40.35⁰ N and 0.77⁰ -4.91⁰ E, (280x362 

km). At each sampling location, BFT larvae were collected with a bongo net of 60 cm mouth 

diameter, towed till a depth of 70 m, or from 5 m above the bottom at coastal stations, to the 

surface maintaining the vessel speed at 2 knots. An average of 162 stations were sampled 

yearly around the Balearic archipelago (Figure 5.1), additional information about field 

campaigns is provided in supporting information (Table S5.1). The volume of water filtered was 

measured with flow-meters located at the center of the net. Plankton samples were preserved 

with 4% formalin buffered with borax. Further, tuna larvae were identified to the species level 

and measured in standard length. 

 

Figure 5.1. Geographic location of the Balearic Sea and location of sampling area (dashed line). 

 

Number of bluefin tuna larvae belonging to the yolk sac and preflexion stages (< 4.5 mm) 

were calculated and used as proxy of spawning locations as in previous research in the study 

area (Reglero et al. 2012; Alvarez-Berastegui et al. 2014). The mean and maximum age of 

larvae below 4.5 mm are 6 and 11 days old respectively, calculated considering bluefin tuna 

larval growth rates (F.de la Gándara et al. 2013) and hatching times (Gordoa and Carreras 

2014). Considering the mean age of 6 days, drift distances from the actual spawning location 
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are below 25 kilometers (around 1.4 times the sampling station distance), and for the 

maximum age, the drift distances are around 46 kilometers (around 2.6 times the sampling 

station distances). These values have been calculated following methods in Reglero et al. 

(2013).  

 

5.2.2 Identification of operational oceanography data sources 

Potential explanatory variables providing information on the location of BFT spawning 

habitats were identified from previous studies in the western Mediterranean. These studies 

found that sea surface temperature (SST), salinity (SSS) and surface current velocities are the 

main hydrographic variables driving location of spawning areas (Alemany et al. 2010; Reglero 

et al. 2012). In addition, BFT spawning mostly occur in areas with low chlorophyll a (CHL) 

(Muhling et al. 2011; Muhling et al. 2013). A more recent study shows that spatial gradients of 

hydrographic variables capture the location of oceanographic processes at mesoscale level, 

such as fronts, and significantly improves the identification of BFT spawning locations (Álvarez-

Berastegui et al. 2014). Therefore, we selected potential operational oceanography data 

products (ODPs) providing information related to temperature, salinity, chlorophyll-a and 

currents, to compute pelagic seascape metrics (i.e. environmental covariates). Acronyms and 

additional information about selected ODPs datasets are provided in supporting infomration 

(Table S5.2). Additional considerations for the selection of operational products include: 

I. Being freely accessible. 

II. Having historical data for the sampling periods.  

III. Having near real-time data accessible online. 

IV. Having a similar or better spatial resolution than the in situ data set (18x18 km2 for the 

BLT survey in the Balearic Sea). 

V. Having a minimum temporal resolution of a week, in relation to the temporal 

persistence of mesoscale structure in the area (Bouffard et al. 2014) 

VI. Availability of data product quality information for the study area.  

5.2.3 Processing environmental explanatory variables from 

selected ODPs 

A total of six seascape metrics were processed from the different ODPs datasets (see 

Table 5.1 for seascape metric names, groups, acronyms and spatial and temporal resolution). 



Chapter 5. Operational fisheries oceanography 

106 

All metrics were estimated at the sea surface layers, where spawning occurs (Aranda et al. 

2013) and larvae are found (Torres et al. 2011). The SST  from the Mediterranean Forecasting 

System hydrodynamic model dataset (ODP data set MFS-SST;  (Tonani M. et al. 2014)) was 

selected rather than satellite data (ODP data set MODIS-SST) for the computation of the 

temperature descriptors. MFS-SST presents the advantage of being cloud-free compared to 

MODIS-SST. Moreover, MFS-SST provide very realistic estimates of the SST over the Western 

Mediterranean Sea  (Juza et al. 2015). Two SST seascape metrics were computed from this 

model data set: i) the spatial averaged SST (SSTa, Table 5.1) providing information about the 

mean sea surface water temperature within an area of 0.5x0.5 degrees around the sampling 

location and, ii) the spatial averaged SST increment during the previous 15 days (iSSTa, Table 

5.1). Kinetic energy (KE, Table 5.1) derived from sea surface height from satellite altimetry data  

(Pascual et al. 2007) was selected as proxy for sea surface currents (ODP data set AVISO-SSA). 

A Mediterranean specific mean dynamic topography (Rio et al. 2014) was used for the 

calculation of the absolute sea surface height from the satellite observed anomalies. A KE 

frontal index seascape (KEfi, table 5.1), providing information about the spatial variation of KE 

and the potential location of sea surface current front, was calculated as the rate of change 

(computed as the slope) of the KE at sampling locations using a spatial window of 0.6x0.6 

degrees. This spatial scale filters was proposed in previous analyses in the area (Álvarez-

Berastegui et al. 2014). 

 

Table 5.1: Seascape metrics (environmental covariates) processed from operational data sources 

Variable group Variable name Variable 
acronym 

Spatial 
resolution 

(degree/km) 

Temporal 
Resolution 

(days) 

SST related variables 
Spatial averaged sea surface temperature SSTa 0.5 / 55 1 
Spatial averaged increment of sea surface 

in the 15 previous   days iSSTa 0.5 / 55 15 

KE related variables Kinetic energy KE 0.125 / 12.5 1 
Kinetic energy frontal index KEfi 0.5 / 55 1 

CHLa related 
variables 

Spatial averaged sea surface 
chlorophyll_a CHLa 0.5 / 55 7 

Chlorophyll-a frontal index CHLafiCHLafi 0.5 / 55 7 
 

Daily images of chlorophyll-a data from multisatellite images (ODP data set RS-CHL)  

processed with a Mediterranean specific ocean color algorithms (Volpe et al. 2007) were used 

to compute temporal composites over 7- day periods to reduce the percentage of pixels with 

no data due to clouds. The spatial averaged sea surface chlorophyll-a seascape (CHLa, Table 

5.1) was calculated as the averaged value of weekly-composite RS-CHL in an area of 0.5 
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degrees around each sampling station. Composites were also used to compute the frontal 

index at 0.5 degrees as a proxy of the location of well-established chlorophyll-a fronts (CHLafi, 

Table 5.1) as for KE. Note that SSS from the ODP data set MFS-SSS (Table S5.2) was excluded 

for analyses because recent research demonstrated that this parameter was not properly 

represented by the model in the study area (Juza et al. 2015). 

Examples of the pelagic seascape metrics used as environmental descriptors processed 

from the operational data sources are provided in Figure 5.2. 

 

 

Figure 5.2. Examples of operational data products and seascape metrics for a specific date 

(2014/05/29) of original products (top row), spatially averaged derived seascapes (middle row) and 

heterogeneity estimate (bottom row). Sea surface temperature from hydrodynamic model (SST), 

derived zonal sea surface temperature (SSTa) and its increment in 15 days (iSSTa) (left column). Sea 

surface anomaly, derived Kinetic energy (KE) and kinetic energy frontal index (KEfi) (middle column). Sea 

surface chlorophyll-a, derived spatially averaged chlorophyll-a (CHLa) and the frontal index (CHLafi) 

(right column). 
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5.2.4 Modeling larvae abundances 

The relationship between environmental covariates and larval abundances  collected 

along the five years was modeled using nonparametric regression (generalized additive 

models, GAMs, Wood 2006). All GAMs included a bivariate smoother combining latitude and 

longitude in the formulation, the year factor accounting for the inter-annual effect in the 

abundances and the diurnal variation effect in the catchability.  Four different model 

configurations were compared to test the larval abundance: 

I) A model with no environmental covariates (equation 1), referred as reference model 

Equation 1 : LA= offset(log(m3))+factor(year) +sm1(long,lat)+sm2(hour); 

Where LA=larvae abundances below 4.5 mm; sm= Smoothing functions;  

II) A model where all environmental variables were included as additive (equation 2). 

Equation 2:  LA = offset(log(m3))+factor(year) 

+sm1(long,lat)+sm2(hour)+sm3(SSTa)+sm4(iSSTa)+sm5(KE)+sm6(KEfi)+sm7(CHLa)+sm8(CHLafi) 

III) A model with all variables from the same group included as interactive (see equation 

4). 

Equation 3:  LA = offset(log(m3))+factor(year) 

+sm1(long,lat)+sm2(hour)+sm3(SSTa,iSSTa)+sm4(KE,KEfi)+sm5(CHLa,CHLafi) 

IV) A model resulting from the combination of ii) and iii) (one or two groups included as 

interactive while other groups are included as additive).  

For all possible combinations (nine in total, see Table 5.2), a backward selection process 

was applied to remove variables with no significant effect (p>0.05).  In order to restrict 

potential over fitting in the models the number of knots for each environmental covariate was 

limited up to 3, for univariate additive terms, and up to 9, for bivariate (interactive) terms. 

Exploration of the model performance after non-significant variable removal was based 

on the maximization of the explained deviances and minimization of the Akaike Criterion Index   

(AIC, (Akaike 1981). The AIC parameter is a trade-off between the model goodness of fit and 

the model complexity. AIC values from different models were compared by calculation of the 

delta AIC (∆AIC), which is the difference between model AIC and minimum AIC found among all 

models. A value of ∆AIC equal to 2.5 was selected as threshold for no relevant model 

differences. Therefore, models with ∆AIC lower than this threshold were considered to be of 
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equal quality (Hilbe 2011) and selected as potential candidates for calculation of the Spawning 

Habitat Quality. 

 

5.2.5 Definition and calculation of the Spawning habitat quality 

(SHQ) 

The position of mesoscale oceanographic features, such as fronts, deduced from  remote 

sensing images or modeling techniques is often found to be inaccurate when compared to the 

in situ observed positions  (Bouffard et al. 2014; Bricheno et al. 2014). In these cases, the 

correlation coefficients between observed and predicted maps of larval distributions in 

relation to oceanographic features would be low, even if the models were able to identify 

spawning areas at coarse spatial resolution. To solve this limitation, each predicted map of 

larval abundances obtained from the GAMs was spatially smoothed at the spatial scale that 

optimized the correlation between observed and predicted values. The larval abundances at 

the optimal spatial scale were defined as the SHQ. The best spatial scale for the smoothing 

process was assessed with scalogram plots that showed the correlation between observed and 

predicted SHQ calculated at 9 different spatial scales (i.e. from 7 to 75 km radius area). The 

Spearman coefficients were computed between the maps of observed SHQ and the predicted 

SHQ smoothed at each of these 9 spatial scales. Predicted SHQ was computed with all different 

candidate GAM models. All computations were coded in R software (R Development Core 

Team 2008), the raster processing functions were computed with the raster package (Hijmans 

& van Etten 2012). A methodological graphical scheme showing the SHQ calculation is 

provided as supporting infomration (Figure S5.1). 

5.2.6 Evaluating the SHQ predictions through an inter-annual 

cross-validation approach and model selection 

Maps of SHQ obtained from models fitted with all the five years available from all 

candidate models (thereafter ‘fitted SHQ’) were compared to the observed SHQ using 

Spearman correlations. Both fitted and observed SHQ were computed at the same spatial 

resolution depicted from the scalograms. This correlation provided information of the SHQ on 

a yearly basis.  

To assess the capability of different models to predict the SHQ, we performed an inter-

annual cross-validation by splitting the data into a validation and training datasets. The former 
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was composed by one-year data extracted from the five years available and the training 

dataset was composed by the four remaining years. Candidate GAMs were adjusted with the 

training dataset. SHQ were predicted with these models (thereafter ‘predicted SHQ’) and 

compared with observed SHQ values. This process runs for each year available and, therefore, 

five predictions were estimated for each candidate model. 

 

5.3 Results 

5.3.1 Performance of the different processed models 

General additive models presented better performance indicators (explained deviances 

and AICs) when environmental covariates, either as a combination of additive or interactive 

terms, were included in the model design (see model outputs in Table 5.2). All these models 

showed similar values for the two performance indicators. The model including only additive 

variables (Madd in table 5.2) showed the lowest AIC. During the variable selection process this 

model retained iSSTa, KEfi and CHLa, while SSTa, KE and CHLafi were not significant. These 

results demonstrated the high relevance of environmental parameters related to the spatio-

temporal variability of SST and KE. However, AIC of Madd did not differ from the other models 

and, thus, models with a ∆AIC below 2.5 (models Madd, comb 1, comb 2, comb 4, comb 5, 

comb 6 in Table 5.2), including different interactions among covariates, were selected as 

potential model candidates for calculation of the SHQ.  Therefore, scalograms were computed 

for each model in order to depict the spatial scale at which the cross-validation should be 

processed. 

5.3.2 Scalogram processing and spatial scale selection for SHQ 

definition 

The correlations between observed and fitted SHQ (adjusted from models including the 

five years available) show similar trends among the six models selected. That is, correlations 

increased with increasing spatial scales (Figure 5.3). The scale at which the correlation curve 

became asymptotic is related to the spatial lag between observed and modeled spawning 

areas. The lowest is the scale the closer the modeled and observed spawning locations are. 

Selecting high spatial scales improved the correlations between observed and modeled data 

but reduced the spatial resolution of the final products. After examination of the processed 
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scalograms, we selected 31.5 km as the best radius distance for the spatial smoothing defining 

the SHQ computation from now onwards. At this spatial scale the slope of the correlograms 

decreased for all years except 2003 and the curve became asymptotic for 2004 and 2005 

(Figure 5.3).  

 

 

Figure 5.3.  Scalograms computed for each selected model and year. See Table 5.2  for model 

name and structure definition. 
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Table 5.2: Processed models, environmental variables included and performance indicators. 

Model 
ID 

Model 
characteristics 

Model formulation 
N=805 

Deviance 
explained(%) AIC ∆AIC 

M1 

No 
environmental 

covariates 
included 

(long, lat) + (hour) 
+year 40.7 1047.71 51.4 

Madd 

All 
environmental 

variables as 
additive 

iSSTa+KEfi+CHLa 52.4 995.60 0 

Mint 
Environmental 

variables as 
interactive 

(SSTa,iSSTa)+ 
(KE,KEfi)+ 

(CHLa,CHLafi) 
52.6 998.88 3.2 

Comb 1 

Chla variables 
as additive, 

SST and KE as 
interactive 

(SSTa,,iSSTa)+ 
(KE,KEfi)+ CHLa 52.6 997.59 1.9 

Comb 2 

KE variables as 
additive, SST 
and CHLA as 
interactive 

(SSTa,,iSSTa)+ 
KEfi+ (CHLa,CHLafi) 52.7 997.04 1.4 

Comb 3 

SST variables 
as additive, KE 
and CHLA as 
interactive 

iSSTa+ 
(KE,KEfi)+ 

(CHLa,CHLafi) 
52.6 998.32 2.7 

Comb 4 

SST and KE 
variables as 

additive, CHLA 
as interactive 

iSSTa+ 
KEfi+ (CHLa,CHLafi) 52.6 996.39 0.8 

Comb 5 

SST and Chla 
variables as 

additive, KE as 
interactive 

iSSTa+ 
(KE,KEfi)+ CHLa 52.5 997.52 1.9 

Comb 6 

SST variables 
as interactive, 
KE and CHLA 
as additive 

(SSTa,iSSTa)+ 
KEfi+ CHLa 52.7 995.73 0.1 
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5.3.3 Best operational model selection 

The correlations between observed and fitted SHQ varied among years (see table 5.3) but 

they presented similar values among models, with correlation values above 0.5. For all models 

the year 2005 presented the best correlation and 2003 the worst (i.e. maximum correlation 

coefficient of 0.8 and minimum 0.55 respectively). Results from the evaluation of the real 

prediction capabilities through the cross-validation approach are presented in table 5.4. 

Correlation coefficients between observed and predicted SHQ from all selected models 

performed significantly better than the M1 model (model with no environmental covariates, 

Table 5.4).  This result demonstrated the relevance of the proposed seascapes for predicting 

spawning habitats. Although all candidate models showed similar cross-correlation 

coefficients, the model containing interactive terms for SST and KE related variables and 

additive for CHLa showed best predictive capabilities with correlation values above 0.5 for four 

out of five years predicted (model combined-1 in Table 5.4).  Therefore, the processing scheme 

that provided the best predictive performance was defined as the model “combined 1” and 

spatially smoothed in the radius distance of 31.5 km as previously depicted. 

 

Table 5.3: Spearman correlation of observed and fitted SHQ. 

Year M1 All additive Comb.1 Comb.2 Comb.4 Comb.5 Comb.6 
2001 0.62 0.64 0.63 0.63 0.62 0.63 0.64 
2002 0.57 0.73 0.74 0.75 0.74 0.73 0.74 
2003 0.50 0.56 0.56 0.56 0.56 0.55 0.55 
2004 0.51 0.74 0.75 0.73 0.72 0.74 0.74 
2005 0.51 0.78 0.79 0.80 0.79 0.78 0.79 

 

Table 5.4: Spearman correlation of observed and predicted SHQ. 

Year M1 All additive Comb.1 Comb.2 Comb.4 Comb.5 Comb.6 
2001 0.42 0.47 0.51 0.44 0.43 0.47 0.48 
2002 0.25 0.62 0.62 0.63 0.63 0.62 0.63 
2003 0.18 0.28 0.26 0.26 0.26 0.27 0.27 
2004 0.40 0.70 0.69 0.69 0.68 0.69 0.70 
2005 0.28 0.67 0.73 0.74 0.67 0.66 0.73 
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5.3.4 Relation between spawning habitat quality and 

environmental information  

The effect of each covariate on the SHQ analyzed from the predictive model (model 

combined 1) is shown in Figure 5.4. The latitude-longitude map displays the mean spatial 

distribution along the five years with the lowest values found at the South-East of the study 

area (Figure 5.4.A). The main spawning habitats were located South-West Ibiza Island and 

West of the archipelago (Figure 5.4.A). The bivariate plot of the interactive effects of SSTa-

iSSTa indicates a positive effect of both variables (Figure 5.4B).   

For the response of the KE-KEfi interaction, the bivariate plot indicates a positive effect of 

KEfi and a low effect of KE (Figure 5.4.C). The partial effect for the diurnal variation shows 

changes in catchability along the day, with maximum values at midnight and noon (Figure 

5.4.D). The effect associated to CHLa presents a negative trend, indicating higher probability of 

finding spawning events in areas of low CHLa values (Figure 5.4.E). 

Responses obtained for the five models processed during the cross-validation process 

(Figure S5.2) showed that the patterns associated to the latitude-longitude, hour and CHLa are 

consistent throughout the years. The effect of the interaction SSTa-iSSTa was also consistent, 

with exception of the cross-validation on removing 2003. By contrast, the low effect of the KE 

covariate in the interaction term KE-KEfi may change when one particular year is removed 

from the training dataset. This suggests that the interaction terms may play a relevant role in 

explained deviances for years with particular conditions.  
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Figure 5.4. Environmental covariate response plots for the selected general additive model. 

Isolines indicate partial effect on the larval abundances. Pink-yellow colors indicate higher abundances 

and green-blue indicate lower abundances. 

5.3.5 Comparison of ‘observed’, ‘fitted’ and ‘predicted’ Spawning 

Habitat Quality (SHQ) 

Spatial distribution observed, fitted and predicted SHQ for the five years of analyses are 

presented in Figure 5.5. The SHQ computed from observed data (observed SHQ) shows a 

patchy pattern. In general, obsereved spawning areas were mainly located at the East and 

South-West of the archipelago (Figures 5A, from 2001 to 2005).  The most intense spawning 

habitats for each year, excluding 2003, occurred in the western part of the study area. The 

survey in 2005 shows the patchiest distributions, with spawning habitats distributed along the 
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southern area of the archipelago and no spawning habitats at the north (Figure 5.4.A for the 

year 2005). The spatial distribution of fitted and predicted SHQ are similar, and they both were 

able to identify the patchy distribution and the persistence of the spawning in the western part 

of the archipelago (Figures 5.B, 5.C years 2001-2005). Predictions obtained from the cross-

validations located high values of SHQ within a distance range of 60 km from observed 

maximums for all years except for 2005 (Figure 5.5.C of 2005). For 2005, maximum values of 

SHQ were predicted at the South of Ibiza Island, that was an important spawning area for that 

year, but maximum observed SHQ values occurred at South-East. Graphical outputs and 

correlation coefficients from Tables 3 and 4 demonstrated that GAM fitted from operational 

data sources were able to model and predict spatial patterns of spawning areas. 

5.4 Discussion 

This study shows how pelagic seascapes from operational oceanography data sources can 

provide new insights on the environmental cues driving the spatial distribution of bluefin tuna 

spawning areas. Modeling and predicting the spatial distribution of spawning areas was 

possible by applying pelagic seascape descriptors that provided information on the spatio-

temporal variability of sea surface temperature, geostrophic velocities and chlorophyll-a. Thus, 

our results provide new avenues of applied research, particularly in the emerging field of 

operational fisheries oceanography in which near-real time operational products from 

integrated ocean observing systems will serve as tools for the 21st century fisheries 

management (Berx et al. 2011; Manderson et al. 2011; Hobday et al. 2014). 

Previous studies have already shown that mesoscale oceanography affects spawning of 

bluefin tuna around the Balearic Sea (Alemany et al. 2010; Reglero et al. 2012; Muhling et al. 

2013). In this study, we found that the temporal evolution of sea surface temperature and the 

spatial variability of kinetic energy were more relevant to identify patterns in larval distribution 

than just the absolute values. These findings confirm previous studies investigating how the 

combination of means and gradients of a oceanographic variable improves our capability to 

investigate species-environment relationships (Alvarez-Berastegui et al. 2014) and highlight 

the importance of designing proper pelagic seascape metrics holding information about the 

dynamic behavior of the oceanographic processes. Sea surface temperature during the 

beginning of the spawning season is associated to the fast development of adult gonads, which 

are still undeveloped when entering in the Mediterranean (Medina et al. 2002). High means of 

sea surface temperature is also a requisite for eggs and larval growth and survival. These two 
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processes have driven evolutionary constrains for the location of spawning areas (Ciannelli et 

al. 2015). The combination of the mean and increment of sea surface temperature measured 

from operational data sources provides a good proxy for capturing complementary ecological 

and physiological processes affecting habitat preference of bluefin tuna. 

 

Figure 5.5. Yearly spatial distribution of  observed (left), modeled (center) and cross-predicted 

(right) Spawning Habitat Quality (SHQ) from 2001 to 2005 (from first to fifth row) 

 

The location of hot-spots of larval abundances (yolk sac and preflexion stages) used as 

proxy for spawning habitats, also depends on the interaction of kinetic energy and its spatial 

variability used as proxy of frontal processes. The main frontal area is formed when recent 

Atlantic waters enter in the Mediterranean through the strait of Gibraltar and reach the 
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Balearic Sea, mixing with saltier resident waters (Balbín et al. 2014). Previous studies show that 

the spawning occurs near this front (Alemany et al. 2010; Reglero et al. 2012). Nevertheless, 

the fact that higher larval abundances are associated with low-medium kinetic energy values 

near the front may indicate the retention role of the front rather than a spawning area. Recent 

studies analyzing the spatial distribution of eggs, identified from genetic analysis, also found a 

relation between the eggs abundances and the location of the main salinity front (Reglero P., 

personal communication). This result, along with the relative short drifts trajectories found for 

yolk sac and preflexion larval stages support the hypothesis that spawning is associated to 

mesoscale activity in the area.  

The location of spawning areas has been also associated to salinity values associated to 

the frontal areas. Salinity is one of the most relevant environmental variable explaining the 

spatial distribution of bluefin tuna larvae in the Balearic Sea (Alemany et al. 2010; Reglero et 

al. 2012). This relation has been found also in other areas in the Mediterranean (Koched et al. 

2013) and in the Gulf of Mexico (Muhling et al. 2010; Muhling et al. 2013). Nevertheless, 

whether bluefin tuna adults detect salinity gradients or whether they detect other processes 

associated to the front is not resolved. Improving hydrodynamic models to reach required 

quality of sea surface salinity projections will give the possibility of developing new relevant 

environmental descriptors for the spawning habitat forecast and to disentangle different 

causes associated to the dependency of the spawning ecology with the mesoscale activity. This 

is an important challenge for operational oceanography in the Mediterranean Sea (Juza et al. 

2015).  

The fact that chlorophyll-a from satellite plays an important role in the models developed 

in this study may be also associated to the lack of environmental variables providing 

information about the different water masses, such as salinity. Within the study area and for 

some of the studied years, lower values of chlorophyll-a were associated to the fresher recent 

Atlantic Water mass (Balbín et al. 2012). Thus, chlorophyll-a could be acting as a proxy of water 

masses. On the other hand, previous studies proposed that low chlorophyll-a values could 

affect spawning of bluefin tuna that select very low productivity areas in order to avoid 

predation during the very first developmental stages (Reglero et al. 2011). Whether the effect 

of chlorophyll-a on the spawning locations is direct or indirect associated to water masses 

needs further investigation.  
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5.4.1 Model selection and validation 

One of the most relevant results from this study emerges from the cross-validation 

approach developed. Responses of spawning habitat quality to the different variables could be 

strongly driven by particular years (i.e. year-specific oceanographic scenarios). By processing 

the cross-validation approach, we tested whether the response variables were stable among 

different years, which is of paramount importance to provide projections of potential spatial 

distributions with appropriate certainty. All variables were consistent along the five years 

predicted, but small differences allowed identifying factors that had more relevance in some 

years than others.  

Our models were able to reproduce the spatial distribution of yolk sac and preflexion 

stages of bluefin tuna larvae, used as proxy for spawning locations. However, absolute values 

of spawning habitat quality from observed and modeled data differ. This suggests that 

including additional variables of biological or oceanographic processes not considered in this 

study would improve the modeling results. For example, considering the inter-annual 

variability of the total abundance of the bluefin spawning stock or approaching the habitat 

quality definition by standardizing the spawning habitat quality among years are aspects to 

explore in the future.  

5.4.2 Applications and further research 

Predictive modeling of spawning habitats could serve as an operational tool for designing 

dynamic spatial management approaches (Hobday et al. 2010; Hobday et al. 2014), and for 

improving current larvae habitat models used in spawning stock biomass calculations (Ingram 

et al. 2013). Identification of relevant seascape metrics may also be applicable when predicting 

pelagic essential habitats under other methodological frameworks applied to larger spatial 

scales (Druon et al. 2011).  

Nevertheless, in order to take the most of the ‘pelagic seascape ecology’ to advance 

towards the emerging field of ‘operational fisheries oceanography’ some analytical 

developments are required. Here, we number those we believe are the most relevant ones: i) 

the accessibility to long time series and near-real time predictions of key environmental 

variables in common data formats, ii) well validated environmental data products from remote 

sensing and hydrodynamic models (long term simulations and forecasts), iii) the appropriate 

knowledge about the oceanographic drivers on ecological processes of species, iv) the design 

of appropriated pelagic seascape metrics capturing the dynamic processes affecting the 
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species ecology, and v) identification of the specific needs in terms assessment and 

management.  

In relation to these challenges, data from remote sensing and hydrodynamic models are 

available at global, regional and local scales from multiple operational oceanography data 

providers. However, standardization in data formats would be appreciated as well as software 

libraries for operational oceanography data handling in open source software packages such 

“R” (R Development Core Team 2008), what is also claimed by other researchers in the field 

(Hobday et al. 2014). Furthermore, software drivers for old data formats, as some hierarchical 

data formats (HDF), may not be available or easy to handle with new operating systems. In 

addition, specific calibration and validation of the operational oceanography products in 

specific areas of interest is a key issue for succeeding in the application and development of 

pelagic seascape ecology. This needs dedicated efforts at regional and local scales to develop 

data-assimilative high resolution hydrodynamic models combining data from multiple sampling 

platforms (Tintoré et al. 2013b).  

Along this study we have referred to “pelagic seascape ecology” as a particular field 

within the emerging “seascape ecology”. Research in the field of seascape ecology differs 

when applied to the analysis of benthic habitats or to the pelagic habitats. The benthic is based 

on the analysis of habitats considered as a mixture of categorical habitat patches. In that case, 

techniques to quantify habitat patterns are mainly the same than those applied in the 

traditional landscape ecology (Wedding et al. 2011), which provides valuable information for 

the study of how benthic habitat patterns affects nectobenthic species (Pittman et al. 2011). 

However, pelagic seascapes are highly dynamic and do not present clear boundaries. 

Therefore, metrics based on the patch concept are not valid and different techniques and 

concepts are necessary to investigate species-habitat relationships. Pelagic seascape ecology is 

strongly linked to satellite remote sensing, hydrodynamic models and the development of 

algorithms for identification of specific oceanographic processes such frontal areas (i.e. 

Hobday and Hartog, 2014), while benthic seascape ecology is linked to categorical benthic 

habitat and topographic maps (i.e. Bostrom et al. 2011). Seascape ecology can be applied to 

study ecological processes regarding, for example, how benthic habitat fragmentation affects 

population distribution (techniques from benthic seascapes), or how oceanographic processes 

such as chlorophyll-a blooms in the area, affects their growth (techniques from pelagic 

seascapes). Adequate analysis for particular species may consider both pelagic and benthic 

seascape techniques incorporating different processes. 
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Operational fisheries oceanography must provide solutions to actual limitations in 

fisheries science, therefore the questions addressed in studies of seascape ecology must be 

focused on what fisheries assessment and management require. Here, we focused on the 

spawning habitat models, with direct applications to current assessment methods. However, 

assessments of fish stock status are implemented in various ways for different species and 

geographical areas. In addition, different management approaches are applied for 

conservation of exploited and endangered species. Therefore, this evidence the necessity to 

create multidisciplinary groups for assessment and management purposes that embrace 

expertise on seascape ecology, operational fisheries oceanography and classic assessment 

methods.  

5.4.3 Conclusions. 

Previous studies evidence that the location of bluefin tuna spawning areas around the 

Balearic Sea is dependent on the oceanographic scenarios that may change among years. This 

dependency responds to specific ecological requirements of the bluefin tuna adults and larvae, 

and provides the scientific basis to model the distribution of spawning areas. The present 

study achieves that objective using exclusively operational oceanography products, such as 

remote sensing altimetry, chlorophyll-a and sea surface temperatures from hydrodynamic 

models. Further processing of these products, as the temporal evolution of the sea surface 

temperature or the spatial variability of kinetic energy, provided pelagic seascape metrics that 

had better capture the dynamic processes affecting bluefin tuna spawning ecology. These 

metrics allowed developing a predictive approach of the spatial distribution of spawning 

locations in a near real time, which opens a new generation of assessment and management 

tools. Improving prediction capabilities of the bluefin tuna spawning habitats in a broad variety 

of oceanographic scenarios has a direct effect in assessment and management. These 

capabilities will provide robust basis to design pelagic dynamic marine protected areas and to 

adjust larval indices used in the evaluation of the spawning stock biomass.  
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5.6 Supporting information. 

Table S5.1: Number of stations sampled, geographical coverage and dates of the sampling campaigns 

Year 
N stations 
sampled 

Max lat Min lat Max long Min long 
Start and end 

day/month 

2001 135 40.333 38.333 4.600 0.600 16/06 - 9/07 

2002 173 40.336 37.997 4.911 0.777 07/06 - 30/06 

2003 176 40.334 37.832 4.692 0.780 03/07 - 30/07 

2004 160 40.333 38.158 4.698 0.773 18/06 - 10/07 

2005 164 40.338 37.999 4.923 0.775 27/06 - 23/07 

 

Table S5.2: Operational oceanography data sources. 

Data 
set 

source data 
Environmental 

Parameter 
Temporal 
resolution 

Spatial 
resolution 

Data 
provider 

AVISO-

SSA 

Remote sensing 

Altimetry 

Maps of sea level 

anomaly 
1 day 12.5km AVISO* 

MODIS-

SST 

Remote sensing 

spectroradiometer 

Maps of Sea 

surface 

temperature 

8 day 4 km NASA* 

MFS-

SST 

Hydrodynamic 

modeling 

Maps of Sea 

surface 

temperature 

1 day 6.5 km 
MY 

OCEAN* 

MFS-

SS 

Hydrodynamic 

modeling 

Maps of Sea 

surface salinity 
1 day 6.5 km 

MY 

OCEAN* 

RS-

CHL 

Remote sensing 

spectroradiometer 

Sea surface 

chlorophyll-a 

concentration 

1 day 4 km 
MY 

OCEAN* 

 

*AVISO: http://www.aviso.altimetry.fr/en/services/partners.html 
*NASA: http://oceancolor.gsfc.nasa.gov/cms/ 
*MY OCEAN:  http://www.myocean.eu/   
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Figure S5.1. Methodological scheme of SHQ calculation from larval abundances and operational 

data products. 
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Figure S5.2. Partial effects of environmental covariate plots for the five models obtained from the cross-validation process. 
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6.1 Introduction 

Managers became concerned of the status of Atlantic bluefin tuna (Thunnus thynnus) stocks in 

the late 1960’s. During recent years, international stock assessments of Atlantic bluefin tuna (BFT 

hereafter) have been conducted at least biannually by the ICCAT (International Commission for the 

Conservation of Atlantic Tunas). Management of BFT is accomplished using two differentiated stocks 

(the Eastern Stock, spawning in the Mediterranean and the Western Stock, spawning in the Gulf of 

Mexico), by establishing total allowable catches (TAC) and other complementary measurements, as 

temporal closures for specific fishing grounds or minimum size restrictions (Fromentin & Powers 

2005). Virtual Population Analysis (VPA, eg. Butterworth & Rademeyer 2008) serves as technical 

basis for defining TAC under different fisheries scenarios (ICCAT 2013). Traditionally, results from 

virtual population analysis have been contrasted and calibrated with other complementary 

abundance indices, primarily based on fisheries-dependent data. For the Eastern stock, fisheries on 

juvenile BFT in the Gulf of Vizcaya provided information on recruitment rates; and Southern Spanish 

traps, targeting individuals during their reproductive migratory routes into the Mediterranean (Ortiz 

de Urbina et al. 2007), provided information on adult stock status. During the last decade the TAC of 

the Eastern stock has been reduced and minimum legal sizes for juvenile BFT changed, affecting 

these two fisheries and associated indices, which may negatively affect future index availability 

(ICCAT 2013) , thus, possibly affecting the quality of final VPA results. 

The possibility of developing indices of BFT stock status from fishery-independent data, based 

on the abundance of bluefin tuna larvae collected during dedicated ichthyoplankton surveys of 

NOAA Fisheries, was proposed in the beginning of the 1990s (Scott et al. 1993) for the Western 

stock.  Recently, (Ingram et al. 2010) updated these indices using standardization via delta-lognormal 

models. 

During recent decades, ichthyoplankton surveys targeting BFT larvae were conducted in several 

areas of the Mediterranean Sea. However, the surveys employed heterogeneous sampling strategies 

and methodologies, without any temporal continuity (Dicenta 1977; Dicenta & Piccinetti 1978; 

Piccinetti 1994; Piccinetti et al. 1997; Piccinetti et al. 1999; Oray & Karakulak 2005). In 2001 the IEO 

(www.ieo.es) started a series of standardized ichthyoplankton surveys, named TUNIBAL, around the 

Balearic Islands, recognized as one of the main spawning areas of BFT within the Mediterranean 

(García et al. 2005b; Alemany et al. 2010), with the aim of characterizing the spawning habitat of this 

species and deepen in the knowledge of its larval ecology, assessing the influence of environmental 

factors on larval distribution and abundance. These surveys followed an adaptive sampling strategy, 

combining intensive sampling of high density larval patches with quantitative sampling over a 

http://www.ieo.es/
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systematic grid of stations. Similar surveys were carried out in 2012 and 2013, following the same 

sampling strategy, within the framework of a joint agreement between IEO and the Balearic Islands 

Coastal and Forecasting System (SOCIB,www.socib.es) under the framework of the project BLUEFIN 

TUNA and the ATAME Spanish I+D  National Plan competitive project . 

The results from these surveys have shown that spatial location of spawning habitats of BFT are 

strongly influenced by mesoscale oceanographic processes in the Balearic sea (Alemany et al. 2010; 

Reglero et al. 2012; Muhling et al. 2013; Álvarez-Berastegui et al. 2014), which has been also 

demonstrated in the Gulf of Mexico (Lindo-Atichati et al. 2012; Muhling et al. 2013). Therefore, 

larval index values may be influenced by the type of habitat sampled among years. Improving the 

knowledge of how habitat information can increase the performance of larvae index models is of 

paramount importance to the advancement of stock evaluation methodologies independent from 

fisheries data. Previous larval index calculations (Ingram et al. 2013) have included salinity and 

temperature as environmental linear covariates, but other recent studies (Reglero et al. 2012) have 

demonstrated that their effect on the larval habitat characterization may not present a linear 

response. 

The BFT larval abundance data gathered during these surveys are useful for developing an 

index of abundance, which would represent the second fishery-independent index of abundance of 

BFT in the world, and currently the only fishery-independent index concerning the eastern Atlantic 

stock. Therefore, the objective of this study is to present abundance indices of BFT larvae collected 

around the Balearic Islands based on delta-lognormal models and evaluate its adequacy as indicator 

of the temporal trend of spawning stock biomass. We also evaluated if considering environmental 

spatial variability into the larvae indices, accounting for differences in the percentage of larval 

habitat sampled each year, improves the quality of the larvae indices calculations. To reach these 

objectives different larval index models are compared between each other and also with adult 

spawning stock abundances obtained from the BFT stock assessment of ICCAT (ICCAT 2013). 

6.2 Methods  

6.2.1 Field sampling. 

The sampling methodologies for the period 2001-2005 are described in detail in Alemany et al. 

(2010). BFT larvae were collected by oblique tows performed down to 70 meters in the open sea or 

down to 5 m above the sea floor in shallower stations, using a 333 µm mesh fitted to 60 cm mouth 

opening Bongo nets. In addition, subsurface tows between 5 m deep and surface were carried out at 

http://www.socib.es/
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the same stations in 2004 and 2005 by means of a Bongo 90 net equipped with a 500 µm mesh. Also, 

in 2012 and 2013, BFT larvae were collected by oblique tows performed down to the thermocline 

(~30 m), using a 500 µm mesh fitted to a Bongo 90. In each of those years around 200 stations, 

located over the nodes of a regular grid of 10 x 10 nautical miles, covering most of the known BFT 

spawning areas in this region (from 37.85⁰ to 40.35⁰ N and from  0.77⁰ to 4.91⁰ E), were sampled 

during June and July, the spawning peak of the species in the Western Mediterranean. The exact 

number of sampled stations per gear and the dates of the surveys are shown in Table 6.1. Stations 

where adaptive sampling was performed, or otherwise were not strictly part of the survey grid, were 

not included in the dataset for analysis (Figure 6.1). In all haul-types, flowmeters were fitted to the 

net mouths for determination of the volume of water filtered. Plankton samples were fixed on board 

with 4% formaldehyde in seawater. In the laboratory, all fish larvae were sorted under a 

stereoscopic microscope. Tuna larvae were then identified to species level and BFT larvae standard 

length were measured by means on an Image Analysis System. In addition, at each station, a vertical 

profile of temperature, salinity, oxygen, turbidity, fluorescence and pressure was obtained using a 

CTD probe SBE911.  

 
Figure 6.1. Distribution of survey sampling effort. 
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Table 6.1. Survey years, dates and number of stations of larval index dataset. 

Gear Haul Type Survey Year Number of 
Stations  

Start 
Date End Date 

B60 deep oblique 2001 162 16-jun-01 07-jul-01 
B60 deep oblique 2002 171 07-jun-02 28-jun-02 
B60 deep oblique 2003 198 03-jul-03 29-jul-03 
B60 deep oblique 2004 166 18-jun-04 08-jul-04 
B60 deep oblique 2005 186 27-jun-05 23-jul-05 

            
B90 subsurface 2004 166 18-jun-04 08-jul-04 
B90 subsurface 2005 186 27-jun-05 23-jul-05 

            

B90 mixed layer oblique 2012 153 21-jun-12 08-jul-12 

B90 mixed layer oblique 2013 124 20-jun-13 10-jul-13 

 

6.2.2 Calculation of larval abundances, response variable of larval 

index models. 

Relative Larval abundances at 2mm was used as response variable in larval index models. To 

calculate this parameter the numbers of specimens collected at a station were adjusted to the 

number of 2-mm larvae, using the decay in numbers at size, derived from a length-based catch curve 

for each gear-type (Figure 6.2). Due to the decreased selectivity in both gears for 2-mm larvae a 

coefficient was also used for adjustment: 1.022 for Bongo 60 and 2.199 for Bongo 90. For years 2004 

and 2005, the Bongo 90 larval catches were not measured. Therefore, in order to adjust these 

numbers as the others, the length distribution of the 2004-2005, Bongo 90 was assumed to be that 

summarized from 2012 and 2013 surveys Bongo 90 length data. Finally, larval density was calculated 

by dividing the adjusted catch numbers by the volume filtered by the gear. Larval abundance was 

calculated by multiplying the density by the tow depth.  
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Figure 6.2. Decay curves used to back-calculate the number of 2-mm larvae. The equation for the bongo-

60 (B60) curve is N = 1352.74 e-0.5372(length), where N is numbers of larvae and length is in mm, and the 

equation for the bongo-90 (B90) curve is N = 20763.24e- 0.7194(length). 

6.2.3 Habitat adjusted larval index models. 

Larval index models provide the relative abundances of larvae at each station. From this 

models, inter annual variability on relative abundances are calculated and scaled to a mean of one to  

provide the “scaled larval index”, that is used as indicator of annual trends of spawning stock 

biomass.  

Three different larval indexes were computed in order to evaluate how accounting for 

environmental information improves the performance of the models. The first model, denoted as 

“basic larval index” (BLI), included no environmental variables in its formation. The second model, 

denoted as “standard larval index” (SLI), included salinity and sea surface temperature to evaluate if 

there were any linear effects of these environmental variable, following previous versions of the 

larval index in the Balearic Sea (Ingram et al. 2013). The third model, denoted as “habitat corrected 

larval index” (HLI) included a “potential larval habitat” covariable. This new covariable provides, for 

each station, a rank value (from 0 to 1) of the habitat quality as a function of environmental 

information. Details of modeling approaches are provided in following sections. 

6.2.4 Model configuration of the “Basic Larval Index” (BLI) 

The BLI predicted relative larval abundances using a delta-lognormal model. Delta-lognormal 

models are a specific approach applied to deal with zero-inflated distributions by combining two 

“submodels”, the predictions probabilities of a presence/absence model, and the prediction 

probabilities of only presence data after logarithmic transformation. Application of delta-lognormal 

index for fisheries was proposed by Lo (1992). Similar covariates were tested for inclusion for both 

submodels to develop the BLI: time of day (three categories: night, day, and crepuscular), month, 
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area (survey area divided into subareas of ½ degree latitude and longitude), and year. A backward 

selection procedure was used to determine which variables were to be included into each submodel 

based on type 3 analyses with a level of significance for inclusion of α = 0.05. If year was not 

significant then it was forced into each submodel in order to estimate least-squares means for each 

year that provides the interannual variability of larvae abundances. The GLIMMIX and MIXED 

procedures in SAS (v. 9.1, 2004) was used for the computation of the delta-lognormal model.  

The fit of each of the submodels were evaluated using AIC, residual analysis for the lognormal 

submodel, and the area under a receiver operating curve (AUC) for the binomial submodel (Fielding 

& Bell 1997). 

6.2.5 Model configuration of the “Standard Larval Index” (SLI) 

SLI was similar to the previous model but additional covariates were tested for inclusion in both 

submodels to develop abundance: geostrophic velocity (calculated at 5 meters depth from CTD 

profiles at the bongo fishing stations), the average salinity and temperature in the mixed layer. The 

model building procedure and evaluation was the same as described for the SLI. 

6.2.6 Model configuration of the “Habitat corrected Larval Index” 

(HLI). 

Model design was the same as that for the SLI with one modification; a “potential habitat” 

(PHAB) variable, ranking the potential larval habitat quality, was included as additional covariate in 

the binomial submodel and the lognormal submodel.  

For estimating the potential habitat quality indicator (PHAB) associated to each sampled station 

of a given year, the dataset (seven years of data), was split into two datasets, the prediction data set 

and the fitting dataset. The first one containing data from the considered year and the second one 

with data from the other five years. Using the fitting data set, a quasibinomial general additive 

model (GAM, Wood 2006) was designed to fit the larvae presence/absence to the following 

candidate explanatory variables: latitude, longitude, gear type, sea surface salinity, day of the year, 

geostrophic velocity   and residual sea surface temperature. A backward stepwise model selection 

process was applied. Covariates significance was set at p<0.05 and model performance 

improvement was evaluated by their AUC. rSST was defined as the residual of SST against the day 

of the year, as both variables were strongly correlated.  This variable accounted for stations where 

the temperatures were above or below the average for a specific time in the year. rSST was defined 

as the residual of SST against the day of the year, as both variables were strongly correlated.  This 
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interannual cross-prediction approach provided the probability of larvae presences from the 

environmental information accounting for non linear relationships. This cross prediction approach is 

similar to that developed for the prediction of spawning areas in chapter 5. These predictions were 

used as the potential habitat quality indicator. This process was applied for each sampling campaign, 

so predictions of PHAB for each year were always based on data from the other six years. All 

calculations related to the PHAB were processed with the R software using the MGCV package 

(Wood 2006). 

6.2.7 Comparison of larval index models and spawning stock biomass. 

In order to have an independent reference for evaluating the adequacy of the larval index as 

indicator of the SSB trends and which of the three larval index models could be a better estimator, 

results from the BLI,SLI and HLI models were compared against estimates of spawning stock biomass 

(SSB) obtained from the VPA of the ICCAT stock assessment in 2013 (ICCAT 2013). Time series of 

larval index from the three models and SSB from 2001 to 2005 and 2012 to 2013 were plotted to 

visualize trend patterns. Kendall and Spearman tau coefficients were calculated as indicators of 

correlation between larval index models and SSB.  

It is well recognized that values of SSB obtained from VPA present high deviances for the most 

recent years, for that reason we run the same analysis with only the 2001-2005 period, for which 

VPA results can be considered more robust. 

6.3 Results 

6.3.1 Data Summary 

Sizes of larvae collected in the Bongo-60 gear ranged from 1.39 to 8.5 mm and those from 

Bongo-90 between 1.74 and 11.49 mm (table 6.2). Length data for the Bongo-90 gear from 2004 and 

2005 surveys are currently unavailable. 
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Table 6.2. Summary of data used in these analyses.  B60 and B90 gear type indicate bongo-60 and bongo-90 

gear, respectively. 

Gear Haul Type Survey Year Number of 
Specimens 

Mean 
Length 
(mm) 

Size Range (mm) 

B60 deep oblique 2001 121 3.56 2.0 - 5.5 
B60 deep oblique 2002 135 3.09 1.39 - 8.0 
B60 deep oblique 2003 211 3.31 1.63 - 8.5 
B60 deep oblique 2004 263 3.51 1.63 - 8.0 
B60 deep oblique 2005 182 3.33 1.63 - 8.0 

            
B90 subsurface 2004 3174 NA NA 
B90 subsurface 2005 831 NA NA 

            

B90 mixed layer oblique 2012 28761 3.83 2.06 – 8.74 

B90 mixed layer oblique 2013 24728 3.66 1.74 - 11.49 

 

6.3.2 PHAB model performance. 

All covariates resulted significant for the model providing the PHAB. The PROC curve used for 

model validation is shown in figure 6.3. AUC was equal to 0.805, what shows a good model 

performance. 

 

Figure 6.3: PROC curve of the PHAB presence/absence model. 
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6.3.3 Variable selection process for the BLI, SLI and HLI 

The variable selection process of each of the three models analyzed is summarized in Table 6.3. 

The year variable was retained in each submodel in order to estimate least-squares means for each 

year to ensure the development of annual indices. For the BLI model with no environmental 

covariates included, the “survey area” was retained, but this variable was dropped when 

environmental variables were considered, showing that salinity and temperature accounted for 

much of the spatial deviance of the larval occurrence. For the BLI and SLI lognormal submodels, only 

the year variable was retained, while PHAB covariate was retained for the HLI lognormal submodel.   

Graphical outputs of the BLI, SLI and HLI models are presented in Figure 6.4. All models 

predicted a relevant increase in larval abundance from 2005 to 2012 and a drop in 2013. However, 

the three models showed different patterns for the 2001-2005 time series. The BLI showed a 

constant decrease on the larvae index values during these years, while the SLI presented a small 

increase in larvae index till 2002, then dropped till 2005; and the HLI increased till 2003, then 

dropped till 2005.  

Table 6.3: Summary of the variable selection process for each model and submodel. 

Model Submodel Variables excluded Variables included AUC AIC 

BLI Binomial Time of the day Year, month , geographic 
area 0.795 7172.7 

BLI Log-normal 
Time of the day , 

month , geographic 
area 

Year -- 1508.4 

SLI Binomial Time of the day , 
geographic area 

Year, month, salinity 
temperature 0.797 7423.6 

SLI Log-normal 

Time of the day, 
geographic area, 
month, salinity 
temperature 

Year -- 1605.4 

HLI Binomial geographic area Year, month, time of the 
day, PHAB 0.791 7294.7 

HLI Log-normal 
Time of the day , 

month , geographic 
area 

Year, PHAB -- 1594.8 
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Figure 6.4. Relative abundances of BFT larvae scaled to the mean of one (green line) and 95% of 

confidence limits (black lines). Results from the three indexes, A: Basic larval indices (BLI); B: Standard larval 

index (SLI); C: Habitat adjusted larval index (HLI)  
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A: Basic Larval index (BLI) 
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B: Standard Larval index (SLI)
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C: Habitat Adjusted Larval index (HLI)
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6.3.4 Comparison between larval indices and SSB. 

Comparison between the three larval index models and values of SSB are presented in 

figure 6.5. The three larval indices follow the same general trend of the SSB, with higher values 

of larvae abundances in the period 2012-2013 than in the 2001-2005 years (Figure 6.5A-6.5B). 

Both correlation coefficients (Spearman and Kendall, Table 6.4) values show that the three 

models are well correlated with SSB trends. The HLI presented the highest coefficients. When 

we compared data from years 2001-2005 (see figure 6.5C-6.5D), the two correlations 

coefficients for the BLI and SLI were low while the correlation between larvae abundances 

from the HLI model and the SSB from VPA gets the higher value. 

 

Table 6.4: Kendall and Spearman correlation coefficients for the three larval index models (BLI,SLI,HLI), 

against the spawning stock biomass (SSB). Correlations calculated for the 2001-2013 period (7 years of 

analysis), and for the 2001-2005 period, with more robust SSB data  (5 years of analysis). 

Kendall's coefficient Spearman’s coefficient 

2001-2013 analysis (n=7) 2001-2013 analysis (n=7) 

Model Kendall's p-value Model Spearman's p-value 

BLI 0.523 0.1361 BLI 0.785 0.0480 

SLI 0.523 0.1361 SLI 0.678 0.1095 

HLI 0.904 0.0028 HLI 0.964 0.0028 

 
2001-2005 analysis (n=5) 2001-2005 analysis (n=5) 

Model Kendall's p-value Model Spearman's p-value 

BLI 0.200 0.8167 BLI 0.500 0.4500 

SLI 0.200 0.8167 SLI 0.200 0.7830 

HLI 0.999 0.1667 HLI 0.999 0.0167 
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Figure 6.5. Comparisons between index values (BLI, SLI, and HLI) and spawning stock biomass (SSB) 

estimates from the 2013 stock assessment model. 

6.4 Discussion 

Larval index models analyzed in this study provided a time series of bluefin tuna larval 

relative abundances in the Western Mediterranean, based on three approaches: the basic 

larval index, standard larval index and the habitat-corrected larval index. Larval index trends 

followed a pattern similar to that of the spawning stock biomass, estimated using the virtual 

population analysis (VPA) from the previous ICCAT stock assessment model based primarily on 

fisheries-dependent data (ICCAT 2013). 

Spawning stock biomass from VPA presented a strong increase when comparing the 

2001-2005 and the 2012-2013 periods. This trend was well identified from the three larval 

index models, suggesting that sampling design, centered at the most relevant spawning areas, 

together with the modeling approach are able to capture significant changes in the spawning 

stock biomass. The model holding information about the spawning habitat quality sampled 

(HLI), presented significantly higher correlation coefficients with SSB data than the two other 

models (BLI and SLI). For the period 2001-2005, for which SSB data are more robust, but for 

which inter-annual variations on the SSB were lower, the HLI larval index was able to 
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accurately capture time series variations, while the BLI and SLI presented low correlation 

values. This result suggest that including larval habitat information in the models is crucial for 

identifying accurately SSB changes when inter-annual variability of spawning stock biomass is 

not very high.  

Spatial distribution of larvae of BFT and other tuna species around the Balearic 

archipelago is tightly linked to mesoscale dynamic processes (Reglero et al. 2012; Muhling et 

al. 2013), as have been also observed in the GOM (Lindo-Atichatti et al. 2012, Muhling et al. 

2013) . These mesoscale oceanographic processes, associated to the mixing of lower saline 

Atlantic waters incoming by the strait of Gibraltar with the resident surface waters, generate 

different oceanographic scenarios that vary among years (Mason & Pascual 2013; Balbín et al. 

2014). For this reason, inter-annual variability of larvae abundances collected on a 

geographically systematic survey will be affected by this variability in hydrographic conditions, 

as the percentage of appropriated larval essential habitat sampled, that may vary among 

years. Results of this study confirm the need of weighting the results of larval abundances 

taking into account the spatial distribution of sampling stations in relation to that of the 

potential larval habitat in a given year. The latter can be only done, as this study shows, 

through sound knowledge about the environmental cues that drive the relation between 

larvae spatial distribution and hydrography, allowing the incorporation of hydrographic 

scenario inter-annual variability into the calculation of larval index. Summing up, the better the 

knowledge about which environmental descriptors provide more information on larvae 

distributions, the better the environmental standardization of the larval indices will be. 

A significant increase of larvae abundances from the first years of the study (2001-2005) 

to the latest (2012-2013) was observed. Part of this increase could be attributable to the 

improvement of sampling methodologies (Bongo 90 fitted with 500 microns meshes vs BG 60 

fitted with 333 microns meshes), but the results of the larval index calculations, which take 

into account the effect of the sampling gear, showed that this was mostly a reflect of the 

higher numbers of larvae at sea. Moreover, not only the BFT larval abundance changed 

between both periods, but their relative abundance in relation to the rest of tuna larva, since it 

was around 20% in the period 2001-2005 and higher that 95% for the period 2012-2013, 

suggesting an important shift in the structure of adult tuna populations in this region.  This 

increase in BFT larval abundances confirms the improvement of the spawning stock biomass 

that has already been reported by the scientific commission on research and statistics of ICCAT 

(ICCAT 2013). This positive increase in larvae abundances along the study period was 

coterminous with the establishment of strong fisheries limitation and control measures by the 
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Countries members of ICCAT.  Although bluefin tuna fisheries restrictions have been proposed 

since the 1990’s for recovering the spawning stock in the Mediterranean, it was not till 2006 

when a multiyear recovery plan was established, with strong limitations for the total allowable 

catch and minimum sizes regulations; and it was not till 2008 when this plan started to be fully 

implemented (ICCAT 2010). The results of our study suggest that measures taken started to 

take effect along the years 2008 to 2012. Continuous reductions in total allowable catches 

prevented the collapse predicted in 2009 in the case where no strong measures were taken 

(MacKenzie & Mariani 2012). However, this rapid recovery of the stock has been probably 

supported also by an extraordinary recruitment in 2003 resulting from higher larval survival 

rates associated to abnormally high sea surface temperatures (García et al. 2005a), which  

have been detected following the evolution of the age structure of BFT population in Spanish 

baitboat  fleet catches (Rodriguez-Marin et al. 2013). 

Apart from the increasing abundances between the two studied periods, deduced from 

the three different larval indices developed, it is relevant to highlight that all three models also 

showed a decrease in mean abundances in the year 2013 in relation to the abundances in 

2012.  This result could be showing a decrease or stabilization of the spawning stock biomass 

in the year 2013. This trend should be analyzed by extending the larval index time series along 

the following years, as differences among 2012 and 2013 are within the uncertainty limits of 

the model. It is worth to point out that larval index variation from 2012 to 2013 do not follow 

same pattern than spawning stock biomass obtained from virtual population models provided 

by ICCAT (ICCAT 2013) which indicated an increase from 2012 to 2013. However, the 

uncertainty associated to SSB values from the VPA for those years is very high  (ICCAT 2013). In 

fact, to interpret properly the changes in BFT SSB from the first years of XXI century to those 

corresponding to the years 2012 and 2013, it must be taken into account that they do not 

represent a progressive and steady increase within an equilibrium situation, but they are 

mostly the direct consequence of an abrupt change in the exploitation pattern of the species. 

Only once a new equilibrium will reached the real trends in the temporal evolution of SSB, 

resulting from the combination of the new exploitation pattern and future environmental 

scenarios conditioning recruitment success and natural mortality, will become evident. 

Clarifying these aspects may be decisive for establishing the total allowable catches in 

following years. Some of the ICCAT integrating countries have already demanded an increase 

in TACs due to the strong pressure of the local fisheries sectors. Assignment of TACs became a 

political issue in 2013 and 2014. During 2013 ICCAT meeting, contracting countries showed 

different opinions about keeping or increasing fishing quota. Finally, ICCAT followed the 
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Standing Committee on Research and Statistics advice, keeping the same restrictions for 

fisheries as in years before.  

In 2014 a new meeting of the ICCAT commission was held to establish TACs along 

following years. Conservationist groups had demanded keeping the TAC as years before (13500 

tn), or at least not to increase it more than 10% per year, up to 20000 t along the next 5 years 

(WWF 2014). The SCRS reported a increasing trend of BFT population, but recommended to 

maintain the TAC of 2013, or to increase the catches moderately, but did not provide an 

specific value of what this rate of increase should be, due to uncertainties associated to the 

assessment, in part coming from the lack of stability of VPA results (Anonymous 2015b).  

Finally the ICCAT Commission decided a 20% of increase in annual TACs till 2017 (from 13500 

tn in 2014 to 23500 in 2017, (Anonymous 2015a).  

Improving accuracy and reducing uncertainties in stock assessment is paramount for the 

appropriate management of bluefin tuna populations. Within this framework, the time series 

of larval abundance indexes are of interest for BFT stock assessment (Anonymous 2015b), as it 

provided the unique already available fishery independent indicator of SSB. Unfortunately, 

field sampling campaigns for the collection of larvae abundance data is currently achieved by 

Spanish national funded research projects, and hence neither the continuity in the annual data 

collection nor appropriated spatial coverage can be guaranteed for the forthcoming years. 

Therefore, to keep the time series of larval abundance indexes, it is necessary to establish an 

internationally agreed larval monitoring program with and standardized sampling design for 

ensuring  a reliable larval index calculation.  

Going further, advances in the techniques for the larval index calculations could also 

provide an improvement in the assessment of spawning stock biomass. The application of this 

type of index in the Gulf of Mexico for the evaluation of trends in the SSB of the Western 

Atlantic BFT Stock demonstrated that the application of delta-lognormal models are an 

appropriate technique when larval CPUE data present an over dispersed, zero-inflated 

distribution (Ingram et al. 2010). This modeling technique was selected for developing the 

Balearic sea larval index. Nevertheless, future improvements on larval index calculations 

should consider that the best model, among the tree tested, was the one including an habitat 

parameter obtained from a nonparametric regression (Wood 2006) accounting for non linear 

relations between larvae abundances and environmental covariates. Techniques accounting 

for these effects or/and redefinition of covariates within the linear models could be explored 

to improve larval indices. Besides, here we used environmental covariates describing the 

hydrographic habitat conditions from vertical profiles of temperature and conductivity 
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collected in situ. Larval habitat parameterization could be improved by considering pelagic 

habitat seascape descriptors holding information about the dynamic nature of the pelagic 

realm.  Seascapes derived from remote sensing or hydrodynamic models could provide 

additional information relevant for characterizing the pelagic habitat (Hobday & Hartog 2014), 

providing additional information for modeling larval habitat (Á-lvarez-Berastegui et al. 2014). 

Moreover, new operational oceanography platforms (Tintore et al. 2013) presently offer near 

real time information on the studied spawning area BFT, that may be applied for monitoring of 

these habitats, which could potentially aid in designing field sampling campaigns and 

improving larval index calculation.  
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The results presented throughout this thesis represent an improvement of the 

characterization of fish essential habitats by applying seascape ecology techniques and 

concepts, as well as the transference of this knowledge to the current assessments and 

management for the conservation of exploited populations.  

The objective of the following general discussion is twofold. It first underlines the main 

findings derived from the studies presented in chapters 2 to 7 and, second, it shows how these 

chapters link together setting an integrative research among the fields of seascape ecology, 

fish essential habitats and ecosystem based management. The selection of dusky grouper 

(Epinephelus marginatus) and Atlantic bluefin tuna (Thunnus thynnus) as study cases is related 

to the strong differences in their biology, ecology and management.  

The initial motivation of this thesis raised from the findings obtained in the BIOMEX 

project. The results from this project showed how exploited fish abundances decline with 

distances to marine protected areas providing robust evidences of a gradient of fish biomass 

from marine protected areas (BIOMEX project, Planes 2005). The analytical tools used at that 

time were not appropriate to analyze the essential habitats of local fish species and how 

habitat distribution and exploitation patterns affect the spatial variability in the catch. Analyses 

of the temporal and/or spatial trends of Capture Per Unit Effort (CPUE) of low mobile coastal 

species such as dusky grouper needed to improve to incorporate appropriate information 

about their essential habitats, that could be defined as “those waters and substrate necessary 

to fish for spawning, breeding, feeding or growth to maturity” (NOAA, 1996).  A very relevant 

part of the observation patterns that one cannot explain is often related to the uncertainty 

associated to the spatial variability of essential habitats of these species (Coll et al. 2013, 

Stobart et al, 2011). This analytical challenge and its impact on assessment and management 

was, in essence, the trigger motivation for the research performed in this PhD. 

Preliminary research of this thesis was performed on the different possibilities to try to 

get measurable parameters providing information about habitat characterization from 

bionomic and topographic maps. In 2008 Hinnchey et al. published the first review providing a 

rigorous evaluation of the potential of applying traditional landscape ecology concepts and 

techniques to the marine environment. From these studies, I developed integrative analytical 

tools to incorporate habitat information on to the current assessment and management 

approaches currently applied in two characteristic species from the coastal and pelagic 

ecosystems. 

https://en.wikipedia.org/wiki/Substrate_%28marine_biology%29
https://en.wikipedia.org/wiki/Fish
https://en.wikipedia.org/wiki/Spawning
https://en.wikipedia.org/wiki/Animal_husbandry
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Dusky grouper was the first candidate, and actually a perfect one, as it is a highly resident 

species strongly linked to rocky habitats (Harmelin & Harmelin-Vivien 1999). The EPIMHAR 

project funded by the National Park’s Network (Spanish Ministry of Environment, Maritime 

and Rural Affairs), had the objective of characterizing groupers essential habitats within the 

Cabrera Archipelago National Park to improve their conservation. Traditionally, characteristics 

of grouper essential habitats have been studied from data collected with underwater visual 

census, using information on habitat structure at small spatial scales (Harmelin & Harmelin-

Vivien 1999; La Mesa et al. 2002; Vacchi et al. 2007). One of the main topics in landscape 

ecology is how the scale of observation affects our capability to recognize a habitat pattern 

affecting key ecological processes of a species under study (Turner, 1989). This is also a key 

issue in seascape ecology (Pittman & Brown, 2011; Wedding et al., 2011). As a part of the team 

involved in the EPIMHAR project, I designed a way to use landscape ecology techniques, 

recently applied in coastal areas, to improve the definition of grouper essential habitats. To do 

that, I used habitat maps taking into account the spatial scales that provided the best 

information about how rocky habitat fragmentation patterns drives the distribution of the 

dusky groupers populations in the National Park. 

During this study I faced strong limitations on the quality of the data available (mainly 

topographic and bionomic maps from various sources) and on the geographic information 

tools implemented in common software packages. For instance, all data cartographies had 

been developed using different geo-referenced systems (easy to correct) and different 

reference coastal lines (almost impossible to standardize). Methodological challenges such as 

this one forced investing time and resources in developing an appropriate technical framework 

for the study coastal marine habitats, and forced jumping from GUI software based tools (like 

ArcVIEW for example), to open source and programmable tools (as “R”).   

The combination of these advances, with the participation of a multidisciplinary team of 

researchers with strong knowledge on grouper biology and ecology from the field, allowed 

tackling the seascape multiscale analyses of dusky grouper essential habitats presented in 

chapter 2. The results contribute to improve the definition of dusky grouper habitats using 

seascape ecology metrics (Wedding et al. 2011), showing that habitat structure and 

topographic variables measured at different scales provides complementary sources of 

information to describe the essential habitats of this species. In addition, this study provides 

evidence of different scaled-drivers at different ontogenetic stages. Essential habitats of 

juvenile individuals are defined mainly by habitat descriptors providing information about 

rocky bottom complexity measured at small spatial scales. Rocky habitat patterns measured at 
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wider spatial scales and information about coastal dynamics provided additional information 

on juvenile habitat requirements. For adult individuals, both rock complexity at small scales 

and rocky structure patterns at wider spatial scales were highly relevant. Specific responses of 

densities of juvenile and adult individuals to each of the habitat descriptors analyzed helped to 

propose the ecological traits behind these relationships and to provide relevant information 

for MPAs design to protect this species, that should enclose: i) rocky habitats from surface 

down to 60 meters, ii) extensive areas of shallow rocky bottoms above 20 m with low-

intermediate coastal exposures and with high complexity derived from the accumulation of 

small and medium rocky blocks, iii) cliffs with areas of intermediate slopes down to 30 meters 

with important rocky falls and high level of habitat complexity derived from big size blocks and 

surrounded by sea beds of fragmented habitats with relevant coastal hydrodynamics. 

While main objective of this thesis was not to provide recommendations about how 

MPAs should be designed, I do aimed at providing effective analytical tools that were in 

addition able to link with and improve assessment and management procedures. If the 

identification of essential habitats can be structured starting from information at wide spatial 

scales to end with improved information at small scales, it would be possible to design an 

approach to assess habitat locations starting from map analysis and finishing with in situ data 

collection. Therefore, findings from the study of dusky grouper essential habitat and the 

improvement on habitat definition by using seascape metrics (from chapter 2) were applied to 

develop new methods for MPA design in the framework of Rapid Assessment Programs 

(Alonso et al. 2011). This idea allowed designing a novel method for rapid multidisciplinary 

environmental assessment of coastal areas of direct application for the design and 

management of Marine Protected Areas (chapter 3), providing tools for the selection design 

and management of coastal MPAs when time, budget or potential human pressures, create an 

urgent need for prioritization. The methodology developed allows maximizing results and 

minimizing cost by re-evaluating existing information on the study area, integrating physical, 

environmental and socioeconomic indicators, and generating outputs in the form of thematic 

maps to support managers. The final products obtained inform planners and managers about 

the study areas across multiple aspects that all need to be considered in integrated coastal 

management, complementing the approach of other existing rapid assessment techniques 

(Kramer 2003; Romero et al. 2007; Ballesteros et al. 2007). Although originally proposed for 

widespread use in the Mediterranean, this methodology can be flexibly adapted, with 

modifications in the selection of indicators, for its use in other regions. The results show its 

potential for merging and synthesizing information not only as a tool in Rapid Assessment 
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Programs but also as a tool for facing management of wide coastal areas integrating aspects of 

the complex coastal socio-ecological systems. 

The challenge successfully faced in finding how habitats segregate spatially different 

developmental stages of a species, and applying that concept to improve MPA design (Chapter 

3), demonstrated that identifying key ecological processes strongly dependent on the essential 

habitats could provide a path to advance on ecosystem base management without the need of 

setting extremely complex end-to-end ecosystem models. Assimilating this concept and seeing 

the potential for its application to improve the conservation of many other exploited species is 

a transversal conceptual and analytical approach that can be applied to different marine 

ecosystems, from the benthic to the pelagic realm. The pelagic ecosystems have obviously 

differences to the benthic systems, both in the habitat modeling and on the way resources are 

assessed and managed. Tackling with these differences to adapt the application of essential 

habitats into the conservation of an emblematic pelagic species, Atlantic bluefin tuna (Thunnus 

thynnus), is the focus of the chapters 4, 5 and 6. 

This thesis evidences how pelagic seascapes can be applied to improve studies on the 

ecology of Atlantic bluefin tuna, a highly migratory pelagic species with a wide geographical 

distribution along the Atlantic waters. This species travels long distances to reach the 

Mediterranean and Gulf of Mexico during the reproductive season. Management of Atlantic 

bluefin tuna is approached mainly by minimum weight regulation and limitations in the total 

allowable catches (TACs), established as a function of the status of the adult stock populations 

calculated from virtual population analysis  (Fromentin & Powers 2005). These management 

approaches completely differs from those applied for groupers in coastal areas. However, the 

same concept of improving conservation through the analysis of essential habitats can be 

applied for this species (Chapters 4, 5 and 6). 

Nevertheless,  techniques developed from landscape ecology, already applied for coastal 

seascape ecology, could not solve the characterization of the pelagic realm, where there are 

no clear boundaries delimitating habitats (Bostrom et al. 2011; Pittman et al. 2011). Besides 

the spatial scale is also a key issue when trying to identify dependencies of pelagic species at 

particular developmental stages with oceanographic conditions (Álvarez, 2015). Therefore, I 

propose a technical framework to parameterize the species surrounding habitat patterns and 

allowing investigating the effect of the spatial scale of observation by changing the “grain” 

(spatial definition) of the input habitat data (Chapter 4). Results show that pelagic seascape 

metrics, defined as a combination of hydrographic variables and their spatial gradients 

calculated at an appropriate spatial scale, improve our ability to model pelagic fish distribution. 
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These pelagic seascape metrics have been applied to study the spawning locations of the 

Atlantic bluefin tuna, showing that the quality of habitat models incorporating the proposed 

seascape metrics increases significantly when compared with models that do not consider 

these metrics. These results suggest that seascape techniques developed in the present thesis 

are relevant for the study of essential habitats of species whose ecology is dependent on 

highly variable local oceanographic scenarios as it is the case of bluefin tuna. The study shows 

general consistency with previous studies on spawning habitat on tuna specie (Alemany et al. 

2010; Reglero et al. 2012; Muhling et al. 2013) while providing considerable advances on the 

understanding of how species perceive their habitat.   

This study has been a first step in the application of seascape ecology to the pelagic realm 

and evidences that pelagic seascape ecology differs enough from coastal seascape ecology. It is 

very likely that they will both evolve along two different but complementary field of research 

in marine ecology. This is why I used the term “pelagic seascape ecology”. Pelagic seascape 

ecology is strongly linked to satellite remote sensing, hydrodynamic models and the 

development of algorithms for identification of specific oceanographic processes such frontal 

areas (i.e. Hobday and Hartog, 2014), while coastal seascape ecology is linked to high quality 

benthic habitat and topographic maps (i.e. Bostrom et al., 2011).  

The results from Chapter 4 showing how pelagic seascape ecology provided relevant 

information on spawning habitats of bluefin tuna around the Balearic Islands, establishing the 

basis for the improvement of the current management of this species (Chapters 5 and 6). The 

possibility of establishing closure areas as management approach in the open sea to protect 

pelagic species has been hanging over the scientific literature for a while (Game et al. 2009). 

Indeed, dynamic pelagic marine protected areas, which adapt to the location of dynamic 

essential spawning habitat of the southern bluefin tuna (Thunnus maccoyii), are already a 

reality in eastern Australia (Hobday et al. 2011). The main objective of these pelagic MPAs is to 

avoid the bycatch of bluefin tuna in long lines targeting other species. Non dynamic closure 

areas (fixed in space), with the same objective, have been established in the Gulf of Mexico the 

past year (US DOC/NOAA/NMFS 2014). In 2002, closure areas were also declared for the 

management of small pelagic species in the Mediterranean (BOE Num 313, 2012). These 

examples show that the approach of the spatial management, widely applied in coastal MPAs, 

is arriving to the institutions managing pelagic fisheries. In this framework, predicting location 

of spawning areas of bluefin tuna could be a very valuable tool for management, as could 

provide the scientific basis for designing closure areas to reduce bluefin tuna mortality in other 

fisheries than those with TACs assigned.  
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The prediction of spawning areas has been developed along this thesis (Chapter 5) 

following-up the techniques and concepts analyzed in Chapter 4. Chapter 5 provides strong  

evidences of modeling and predicting capabilities of spawning habitats of bluefin tuna in the 

Western Mediterranean. The bluefin tuna spawning habitats were characterized using only 

operational oceanography data from remote sensing and hydrodynamic models. The output of 

this study provides high quality spawning habitat maps around the Balearic Islands, 

complementing other techniques based on adult presences, as a tool for bluefin tuna 

assessment and management (Druon et al. 2011). These predictions provide the scientific basis 

to establish potential closure areas and the following and logical question is how to use this 

tool to manage fisheries. The bluefin tuna fisheries is strongly regulated and purse seiners 

directly targets the spawning aggregations during fishing, so closure areas are not appropriate 

to manage this type of fishing, while onboard observers may be the best control in that case. 

Nevertheless, it is worth noticing that no reported mortality of bluefin tuna by-catches exists. 

When a bluefin tuna is caught accidentally (in recreational or professional fisheries), the 

capture cannot “officially” be retained and, therefore, the capture will never be reported. 

While there is not information about the relevance that non-reported catch may have in the 

current assessment performed by the International Commission for the Conservation of 

Atlantic Tunas (ICCAT), I suggest that it would be relevant to have these estimates. Total 

numbers could be surprisingly high and the need of tackling the problem of accidental by catch 

will emerge. In that case, closure areas will be a relevant management tool.  

In addition to assess closure areas, identification of spawning locations provides initial 

conditions for evaluating Atlantic bluefin tuna larval survival, that is strongly dependent on 

environmental conditions (Reglero et al. 2011). Coupling spawning ecology with survival 

models and environmental forcing to assess inter-annual variability on recruitment is one of 

the more relevant potential of the spawning habitat models, and it has been proposed as one 

of the mechanisms to implement modern “ecosystem fisheries oceanography” (Cury et al. 

2008). 

In addition to the development of tools allowing the application of new approaches for 

assessment and management of bluefin tuna, I investigated how essential habitat information 

could play an active role in improving techniques applied at present within ICCAT. Currently, 

the National Oceanography and Atmospheric Administration (NOAA, EEUU) applies larval 

abundance indices (Ingram et al, 2010) to contrast and validate the results from the virtual 

population analysis, used to assess the status of the western population of Atlantic bluefin 

tuna. In recent assessments, the western stock larval index has been improved by including 



Chapter 7, General Discussion 

150 

environmental information on the modeling approach. If the spatial distribution of larvae is 

dependent upon a specific water masses and this water masses can be tracked, larval index 

models will improve substantially. Thus, techniques developed in Chapters 4 and 5 can be used 

to improve important assessment estimates of this species.  This thesis presents a larval index 

for the evaluation of the eastern population of Atlantic bluefin tuna, which reproduces in the 

Mediterranean. The improvement of the larval index by incorporating information on essential 

habitats is presented in Chapter 6. Larval index models for the Mediterranean have still 

considerable room for improvements. However, first results provide robust steps to move 

forward in the assessment of this species incorporating essential habitat information (ICCAT, 

2014).  

The results obtained along the different research tasks presented from chapter 2 to 6 

demonstrate that understanding the relationships among species and essential habitats 

provides key information for understanding species ecology, and allowing new techniques for 

improving species assessment and management. Here, I focused on two top predator species 

as study cases, but same principles and techniques could be applied to other species of 

interest across contrasting marine ecosystems. Seascape metrics of benthic habitats could 

provide valuable information for the study and conservation of many species in marine 

protected areas in the Balearic sea, and could improve the performance of novel techniques 

based on essential habitat information used for assessing the status of exploited populations in 

coastal areas (Coll et al. 2013). The pelagic environment around the Balearic islands is an 

important spawning area for many species and the hydrographic scenario determine relevant 

ecological processes during the larval stages of fishes (Torres et al. 2011; Rodriguez et al. 2013; 

Álvarez et al. 2015), crustaceans (Carbonell et al. 2014; Mallol et al. 2014) or cephalopods 

(Zaragoza et al. 2015) that in general affects the whole larval community (Hidalgo et al. 2014; 

Hidalgo et al. 2015). Therefore, the techniques and concepts applied for the analysis of pelagic 

seascapes in this thesis could also improve the identification of the links between 

oceanography and their ecological processes. Finding how this information needs to be 

ultimately transferred to management, as it has been done here, will require further 

investigation involving multidisciplinary groups of research. 

 



Chapter 8, General Conclusions 

151 

 
 

CHAPTER 8 
 

8. General Conclusions 
 

  



Chapter 8, General Conclusions 

152 

1- Essential habitats of dusky grouper (Epinephelus marginatus) were defined by merging 

variables providing information about rocky habitat structure collected at small spatial 

scales from visual censuses and variables calculated at wider spatial scales from 

habitat maps. This multiscale approach increased the deviance explained in abundance 

models when compared to single scale approaches. 

 

2- Essential habitats of dusky grouper change along the species ontogeny. Both, the 

variables and the spatial scales that best  described the essential habitats were 

different for juvenile and adult individuals 

 

3- Metrics traditionally applied in landscape ecology can be used in benthic coastal areas 

to define habitat structure patterns.  Nevertheless, the application of these metrics in 

the marine environment needs to tackle specific issues. The inappropriate calculation 

of metrics that do not considerthe effect of the terrestrial-marine border and the 

quality of the habitat georreferenciation derive in misidentification of dusky grouper 

essential habitats.  

 

4- The spatial scale is a key issue in benthic coastal seascape ecology, as it is in traditional 

landscape ecology. In our case, the selection of appropriate spatial scales allowed to 

identify environmental variables influencing the distribution of adult and juvenile 

dusky groupers that otherwise would have not been considered as relevant.  

 

5- Rapid assessment programs can be developed to assist marine protected areas design 

and management when information and/or budget are limited. Evaluation of coastal 

areas within a rapid assessment framework was possible by i) taking the most of 

already existing information in the area, ii) following a specific in situ sampling design, 

iii) involving local stakeholders, and iv) involving local experts in the data 

interpretation. These four requirements were essential to ensure the adequacy of the 

final output products for managers. 

 

6- The traditional landscape ecology metrics, based on the patch mosaic concept and 

successfully applied in coastal areas, are not valid to parameterize dynamic processes 

in the pelagic realm. Thus, a new approach was developed based on the application of 

the gradient concept of seascape structure, combining means, gradients and spatial 

scales. This new approach was useful for describing the spatio-temporal dynamics of 
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the pelagic environment, allowing to identify the relation between bluefin tuna 

spawning habitats and frontal processes in the Balearic Sea. 

 

7- The reproductive ecology of Atlantic bluefin tuna in the Balearic Sea is highly 

dependent on the local mesoscale oceanographic processes characterized by spatial 

gradients of surface salinities and geostrophic velocities. On the contrary, the bullet 

tuna (Auxis rochei), a resident species smaller in size than bluefin, is less dependent on 

these processes and functional responses are opposite to that showed by bluefin. 

 

8- The relationships between the ecology of tuna species and the dynamic oceanographic 

processes only emerged when seascapes were observed, measured and parameterized 

at the appropriate spatial scales. The effect of the extent of the geographical area 

covered and the grain or spatial definition of the input data is a key issue in pelagic 

seascape ecology as it is in benthic coastal ecology and in terrestrial ecology. 

 

9- Regarding the relation between bluefin tuna spawning ecology and the local 

mesoscale oceanography, operational oceanography data sources provided the 

possibility of monitoring and forecasting the location of reproductive areas of this 

species, through the development of models based exclusively on operational 

products. The spatial distribution of the bluefin spawning areas off the Balearic islands 

varies among years depending on the oceanographic scenarios. 

 

10- Monitoring larval abundances in the Balearic Sea allowed developing larval indices 

providing information about the status of the Eastern population of Atlantic bluefin 

tuna. Incorporating information about essential spawning habitat in the larval indices 

calculations improved the correlation between such indices and the spawning stock 

biomass estimated from fishery data based population dynamics models. 

 

11- The analyses developed to determine how marine habitats affects key ecological 

processes of a littoral resident species such as dusky grouper, and a highly migratory 

pelagic species such as bluefin tuna, allowed the improvement of the current 

approaches used for their management and assessment by applying a “minimum-

realistic” approach. This approach was based on the combination of several simple but 

realistic models within the framework of the ecosystem based management. 
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