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Abstract 

Modern industrial processes are becoming more complex, and consequently monitoring them has 

become a challenging task. Fault Detection and Diagnosis (FDD) as a key element of process 

monitoring, needs to be investigated because of its essential role in decision making processes. 

Among available FDD methods, data driven approaches are currently receiving increasing 

attention because of their relative simplicity in implementation. Regardless of FDD types, one of 

the main traits of reliable FDD systems is their ability to be updated while new conditions that 

were not considered at their initial training appear in the process. These new conditions would 

emerge either gradually or abruptly, but they have the same level of importance as in both cases 

they lead to FDD poor performance. 

For addressing updating tasks, some methods have been proposed, but mainly not in research area 

of chemical engineering. They could be categorized to those that are dedicated to managing 

Concept Drift (CD) (that appear gradually), and those that deal with novel classes (that appear 

abruptly). The available methods, mainly, in addition to the lack of clear strategies for updating, 

suffer from performance weaknesses and inefficient required time of training, as reported.  

Accordingly, this thesis is mainly dedicated to data driven FDD updating in chemical processes. 

The proposed schemes for handling novel classes of faults are based on unsupervised methods, 

while for coping with CD both supervised and unsupervised updating frameworks have been 

investigated. Furthermore, for enhancing the functionality of FDD systems, some major methods 

of data processing, including imputation of missing values, feature selection, and feature extension 

have been investigated.  

The suggested algorithms and frameworks for FDD updating have been evaluated through 

different benchmarks and scenarios. As a part of the results, the suggested algorithms for 

supervised handling CD surpass the performance of the traditional incremental learning in regard 

to MGM score (defined dimensionless score based on weighted F1 score and training time) even 

up to 50% improvement. This improvement is achieved by proposed algorithms that detect and 

forget redundant information as well as properly adjusting the data window for timely updating 

and retraining the fault detection system. Moreover, the proposed unsupervised FDD updating 

framework for dealing with novel faults in static and dynamic process conditions achieves up to 
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90% in terms of the NPP score (defined dimensionless score based on number of the correct 

predicted class of samples). This result relies on an innovative framework that is able to assign 

samples either to new classes or to available classes by exploiting one class classification 

techniques and clustering approaches.  
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Resumen  

Los procesos industriales modernos son cada vez más complejos y, en consecuencia, su control se 

ha convertido en una tarea desafiante. La detección y el diagnóstico de fallos (FDD), como un 

elemento clave de la supervisión del proceso, deben ser investigados debido a su papel esencial en 

los procesos de toma de decisiones. Entre los métodos disponibles de FDD, los enfoques basados 

en datos están recibiendo una atención creciente debido a su relativa simplicidad en la 

implementación. Independientemente de los tipos de FDD, una de las principales características  

de los sistemas FDD confiables es su capacidad de actualización, mientras que las nuevas 

condiciones que no fueron consideradas en su entrenamiento inicial, ahora aparecen en el proceso. 

Estas nuevas condiciones pueden surgir de forma gradual o abrupta, pero tienen el mismo nivel de 

importancia ya que en ambos casos conducen al bajo rendimiento de FDD. 

Para abordar las tareas de actualización, se han propuesto algunos métodos, pero no 

mayoritariamente en el área de investigación de la ingeniería química. Podrían ser categorizados 

en los que están dedicados a manejar Concept Drift (CD) (que aparecen gradualmente), y a los que 

tratan con clases nuevas (que aparecen abruptamente). Los métodos disponibles, además de la falta 

de estrategias claras para la actualización, sufren debilidades en su funcionamiento y de un tiempo 

de capacitación ineficiente, como se ha referenciado. 

En consecuencia, esta tesis está dedicada principalmente a la actualización de FDD impulsada por 

datos en procesos químicos. Los esquemas propuestos para manejar nuevas clases de fallos se 

basan en métodos no supervisados, mientras que para hacer frente a la CD se han investigado los 

marcos de actualización supervisados y no supervisados. Además, para mejorar la funcionalidad 

de los sistemas FDD, se han investigado algunos de los principales métodos de procesamiento de 

datos, incluida la imputación de valores perdidos, la selección de características y la extensión de 

características. 

Los algoritmos y marcos sugeridos para la actualización de FDD han sido evaluados a través de 

diferentes puntos de referencia y escenarios. Como parte de los resultados, los algoritmos 

sugeridos para el CD de manejo supervisado superan el rendimiento del aprendizaje incremental 

tradicional con respecto al puntaje MGM (puntuación adimensional definida basada en el puntaje 

F1 ponderado y el tiempo de entrenamiento) hasta en un 50% de mejora. Esta mejora se logra 
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mediante los algoritmos propuestos que detectan y olvidan la información redundante, así como 

ajustan correctamente la ventana de datos para la actualización oportuna y el reciclaje del sistema 

de detección de fallas. Además, el marco de actualización FDD no supervisado propuesto para 

tratar fallas nuevas en condiciones de proceso estáticas y dinámicas logra hasta 90% en términos 

de la puntuación de NPP (puntuación adimensional definida basada en el número de la clase de 

muestras correcta predicha). Este resultado se basa en un marco innovador que puede asignar 

muestras a clases nuevas o a clases disponibles explotando una clase de técnicas de clasificación 

y enfoques de agrupamiento.  
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1.1 Outline 

Chemical processes must be monitored continuously for producing final chemical products with 

the desirable quality of the markets as well as safety purposes. Process monitoring systems assist 

plant operators for observing faults in the early time rather than uncover poor quality of the 

chemical products. Without process monitoring a manufacturing process cannot be successful. The 

process monitoring could be on any measurable feature in order to have timely reactions for fixing 

and removing the abnormality causes. This could prevent not only economic and environmental 

damages, but also provide safe work environment for the operators. Weighing up the importance 

and complexity of the process that is aimed to be controlled, type of the process monitoring 

approaches would be altered. Process monitoring could range from relatively simple statistical 

methods to complex sophisticated systems of advanced chemical plants. Considering the 

importance of the process monitoring systems, they have been studied profoundly. It is an 

interesting research topic in chemical, mechanical and electrical engineering as well as statistics, 

mathematics and data science; consequently, various algorithms and approaches have been 

investigated and presented. Process monitoring systems have crucial elements that interact with 

each other, and they may work simultaneously or sequentially. These main elements are Fault 

Detection and Diagnosis (FDD) systems, optimization system, and control system. Each of these 

elements is essential, and without them complete process monitoring task cannot be expected.  

Based on the FDD attributes, some main categories of them can be found, including data driven 

or model based approaches, and supervised or unsupervised methods; each of them has their 

relative strengths and weaknesses. Regardless of the FDD type, there are some desirable 

characteristics that FDD systems should ideally possess to be infallible [1]; early detection and 

diagnosis; isolability that is ability of the diagnostic system to discriminate between different 

failures; robustness to various noise and uncertainties; novelty identifiability; multiple fault 

identifiability; explanation facility that is providing explanations on how the fault originated and 

propagated to the current situation; adaptability; and reasonable computational requirement. 

None of the FDD methods individually has all the desirable features that one complete method 

must hold. In order to cover the weaknesses of individual methods and for having a robust FDD 
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system, combination of the methods would be a suitable avenue. In [2], advantages and 

disadvantages of different FDD methods are discussed, and it is concluded that hybrid systems 

could be a practical way for improving FDD performance. Even the hybrid systems may have 

some weaknesses in several aspects, but at least the optimum methods could be designated. 

FDD data driven approaches could be divided into two main categories, including supervised, and 

unsupervised methods [3] [4]. The combination and exploitation of both approaches in semi 

supervised methods have been investigated [5] [6]. The selection of each approach depends on the 

prior knowledge about the possible faults and their patterns in the process measurements; 

assumption of the supervised learning approaches is that the process data could be correctly labeled 

[7] [8]. However, labeling may be a quite difficult, costly, or even impossible task in many 

practical situations. The most popular supervised data driven methods are based on classification 

techniques that detect and classify normal or faulty conditions based on pattern recognition 

principles. On the other hand, unsupervised approaches are usually applied whereas there is no 

prior information about the fault types in the process output data (or it is difficult to obtain). In 

unsupervised approaches, such as clustering methods, required knowledge is provided from the 

available/historical data. 

FDD systems must possess an ability to handle a massive volume of data, and two main strategies 

could be taken to fit FDD to this attribute. First, applying several parallel FDD algorithms that 

work at the same time either doing the same tasks or different. Second, applying the incremental 

(gradual) learning algorithms that learn from data step by step [9]. It is worth mentioning the 

combination of these two strategies could be a solution, too.  

Because of the possible time constraints, and samples availability the learning algorithms may be 

divided to four general groups, including batch mode learning, Incremental Learning (IL), online 

learning, and any time learning [9]. In batch mode learning, all the samples in training dataset are 

available, and they are executed for model learning at once. In IL, receiving samples are integrated 

for training without the need for performing learning step from the scratch. In most of the IL 

algorithms, samples are read only once, and this assists reducing required computational time. In 

online learning, samples arrive continuously, and integration of them and learning step must be 

done with very low latency and computational time [10] [11]. The first and most important 

advantages of working online could be early detection in order to prevent possible malfunctions 
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that could be averted by doing timely appropriate reactions. In anytime learning, algorithm 

maximizes or minimizes evaluation criterion to enhance the quality of the model until an 

interruption. The conditions on which the FDD data driven methods are selected could have a wide 

range, but they basically depend on the state of the process that is batch or continuous, and scale 

of the plants [9].  

Drifting of samples in the machine learning terminology is summarized in terms of Concept Drift 

(CD) [12]. CD is a kind of drift that is gradual, in [13], CD is considered as a change in data 

distribution that can cause predictive performance of the classifiers to degrade over time. For 

handling CD several approaches such as incremental learning, decremental learning, adaptive 

algorithm etc. have been suggested [14] [15]. On the other hand, there are conditions/states that 

appear abruptly. Novelty Detection (ND) methods have been proposed [16] [17] for dealing with 

new process conditions that appear abruptly.  

As it mentioned, adaptability or ability of updating is a vital characteristic of reliable FDD systems, 

however, it is hardly addressed in academic research [7]. From industrial perspective, adaptability 

is quite important because process plants usually do not remain invariant. The process changes 

could have several causes such as adjusting operating policy, appearance of new/novel 

conditions/classes, etc. In the process that novel classes appear, adaptability is addressed by ability 

to use information of novel samples for retraining [16]. The FDD systems must be well adapted to 

these changes with minimal effort [7] [8]; otherwise, they will be invalided after a period in 

operation [18]. Therefore, in this thesis, FDD updating in supervised and unsupervised styles for 

dealing with CD and those classes that appear abruptly are investigated and discussed.  

In chapter 1, exploited methods and tools of FDD as well as applied benchmarks are reviewed. 

Chapter 2 is devoted to data processing, which has proved advantageous for enhancing 

classification and FDD performance. Data processing has an important role in FDD performance 

because datasets with noise, outlier, missing values and redundant information hinder efficient 

process monitoring [19]. Thus, application of regression approaches using machine learning 

techniques to regress the missing, noisy and outlier values have been studied. In addition, feature 

selection and feature extension methods for removing redundant features and providing new 

features, respectively, have been investigated.  
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Chapter 3 is about supervised updating of Fault Detection (FD) systems. In the first section, 

Dynamic Window (DW) algorithm for handling CD in the process is presented. DW exploits the 

last available samples to detect and forget redundant samples by using Auxiliary Classifier (AC). 

Moreover, in order to exploit advantageous of DW and IL, Incremental Learning Dynamic 

Window (ILDW) algorithm is proposed. In the second section, a framework is presented that 

implicitly traces changes in CD amount with clustering approaches and devised index, which is in 

accordance with the precision definition.  

Chapter 4 is dedicated to unsupervised FDD updating. In the first section, a framework for FDD 

updating while new conditions/faults abruptly appear in the process is presented. The hybrid FDD 

updating framework consists of automatic clustering and One Class Classifiers (OCC) while FDD 

performance is enhanced by an observer. In the second section, for unsupervised handling CD in 

the process, unsupervised ILDW algorithm is proposed; within this ILDW scheme, the needed 

labels for FD updating are predicted and then filtered.  

Finally, Chapter 5 is about the main conclusions and contributions of the thesis as well as future 

works and published contributions.  

1.2 Fault Detection and Diagnosis 

The term of fault is defined as a deviation from an acceptable range of an observed variable or a 

calculated parameter associated with a process [20]. Thus, a fault is defined as a process 

abnormality or symptom, such as high temperature in a reactor or low product quality and so on. 

The underlying cause(s) of this abnormality, such as a failure in a coolant pump or a controller, is 

(are) called the basic event(s) or the root cause(s) [20]. Four main procedures of process monitoring 

could be considered as following: Fault Detection (FD), fault identification, fault diagnosis,  

and process recovery [17].  

FD is the determination of whether a fault has occurred, and data processing could efficiently assist 

FD system for detecting faults. Hotellings T2 statistic and Q statistic (also called squared prediction 

errors) are common data processing approaches that are calculated from the principal component 

analysis. These two methods do FD based on monitoring variables, and not with classification 

task. FD of largescale processes because of the availability of enormous amount of features and 
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samples would be a challenging task. This problem is addressed in [21] for conducting dynamic 

largescale process, and also similar studies that deal with big data could be found in [22] [23].  

Fault diagnosis is to determine which fault occurred while fault identification is to identify the 

features most relevant to the fault. In [24], more specifically fault diagnosis is defined as 

determination of type, location, magnitude, and time of the fault. Fault isolation and fault diagnosis 

could be employed interchangeably; If the classification task is done with historical data, the 

method is fault diagnosis, otherwise, it is fault isolation [25].  

1.3 Methods and Tools  

In following sections and subsections, applied techniques and tools that are exploited in the next 

chapters are described, including classification, clustering and regression methods. All the 

calculation and reported CPU times are done with MSI-notebook Intel (R) Core (TM) i7-4710HQ 

CPU @ 2.5GHz 2.5 GHz Ram-16 GB.   

1.3.1 Classification Methods 

Diagnosis can be considered as classification problem [2]. The assignment of a sample to one of 

the available categories or classes is the problem addressed by pattern classification theory [26]. 

Commonly, the most popular supervised data driven FDD approaches are based on classification 

methods. Artificial Neural Networks (ANN), Support Vector Machines (SVM), Decision Trees 

(DT), and Gaussian Naïve Bayes (GNB), are among most common classification methods. 

Without requiring any explicit mathematical models, classifiers could be trained based on pattern 

recognition principles by historical data, including information about normal and different faulty 

situations [27]. The learning process, by optimization or adjustment of the parameters, enables 

these classifiers to extract knowledge from data. Then, the trained classifiers can be used for 

process supervision in order to detect and diagnose possible faults from the process outputs 

measurements [28]. Classifiers would be categorized into two groups: multiclass classifiers and 
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One Class Classifiers (OCC). Multiclass classifiers for training need at least two labeled classes 

of samples while OCCs need only one class for training. 

1.3.1.1 Multiclass Classifiers 

Classifiers such as SVM, basically, are designed for classifying two classes (binary classification). 

With the multiple classes two main strategies for training the binary classifiers could be hired; one-

versus-one and one-versus-all. With the C classes in one-versus-one strategy, 𝐶 (𝐶 − 1)/2  

classifiers must be trained whereas in one-versus-all C classifiers are required. Classification with 

one-versus-one strategy will be difficult, while number of the classes increase. This is mainly 

because of the number of the parameters that must be tuned [29]. In one-versus-all strategy, one 

of the classes is considered as positive and the rest of the classes are counted as negative. Binary 

classifiers with one-versus-all strategy, sometimes in the literature, are known as One Class 

Classifiers (OCC) [30]. Instead of creating several binary classifiers, a more natural way is to 

distinguish all the classes in one single optimization processing. Many algorithms are suggested 

for handling multiple classes in one step and only by one multiclass classifier [31] [32] [33]. 

Depending on the FDD purposes, any combination of the classifiers may be applied.  

1.3.1.1.1 Support Vector Machines (SVM) 

SVM is a method developed by Vapnik and co-workers [26], while Cauwenberghs et al. [34] 

proposed an algorithm for implementing SVM in online way for the first time. SVM have been 

applied for classification in different research areas [23] [27] [28]. SVM works based on 

maximizing the margin between the training patterns and the decision boundary [6].  Considering 

set of training samples {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝐼  in which 𝒙𝑖 is the vector and 𝑦𝑖 ∈ {+1,−1}, the classifier is 

based on two principal elements: a weight vector (function) “𝑤” and bias “𝑏” which is the distance 

of the hyperplane to the origin. Figure 1. 1 shows the simplest form of “𝑏” and “𝑤”. 
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Figure 1. 1. Parameters of the SVM. 

The result of the classification task for new samples, 𝒙𝑖
∗, will be 𝑓(𝒙𝑖

∗) = +1, when 

 𝑓 (𝒙𝑖
∗)  =  (𝒙𝑖

∗, 𝑤)  +  𝑏 ≥  0, otherwise 𝑓(𝒙𝑖
∗) =  −1. Based on the definition positive and 

negative samples close to the hyperplane are called Support Vectors (SV). Finding out (𝑤, 𝑏) could 

be solved as a convex Quadratic Problem (QP) [35] with the unique solution, 

 Equation (1. 1):   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ||𝑤||  𝑠. 𝑡.  𝑦𝑖(〈𝑤, 𝒙𝑖〉 + 𝑏) ≥ 1 1. 1 

The optimum amount of “𝑤” and “𝑏” are “𝑤∗”,“𝑏∗” respectively, and are calculated 

based on Equation (1. 2), and Equation (1. 3): 

𝑤∗ =∑𝑖𝑦𝑖𝒙𝑖

𝐼

𝑖=1

 

1. 2 

 

𝑏∗ = −
1

2
〈𝑤∗, 𝒙𝑟 , 𝒙𝑠〉 

1. 3 

Considering 𝒙𝑟 and 𝒙𝑠 are random SVs and 𝑖 is Lagrangian multipliers. Accordingly, 𝑓(𝑥) is 

calculated with Equation (1. 4): 
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𝑓(𝒙𝒊
∗) = 𝑠𝑔𝑛(〈𝑤∗, 𝒙𝒊

∗〉 + 𝑏∗) 1. 4 

Karush-Kuhn-Tucker (KKT) conditions, Equation (1. 5), are necessary and sufficient conditions 

for an optimal point of a QP.  

{

𝑖 = 0 
 
⇔𝑦𝑖𝑓(𝒙𝑖) ≥ 1

0 <𝑖 < 𝐶𝑖
 
⇔ 𝑦𝑖𝑓(𝒙𝑖) = 1

𝑖 = 𝐶𝑖 
 
⇔ 𝑦𝑖𝑓(𝒙𝑖) ≤ 1

 

1. 5 

 

In which Ci is a parameter that trades off between wide margins with a small number of margin 

failures. 

SVM could be applied both in online and in offline styles. The offline application is common, 

however for online application recently promising algorithms are proposed that have proved 

advantageous in accuracy and computational time [36] [37]. For applying SVM two issues must 

be considered; selecting kernel function and finding its best parameters, and selecting optimal 

features of training dataset [38]. The kernel function converts a nonlinear classification problem 

into a linear one in a high dimensional feature space [39] [40]. Some applicable kernel functions 

are polynomial, Radial Basis Function (RBF) and sigmoid kernel. The kernel parameters should 

be properly tuned in order to improve the classification performance. RBF is among the most 

applicable kernel functions, and for adjusting its parameter a common approach in the literature is 

the Grid algorithm [38].  

1.3.1.1.2 Decision Trees (DT) 

Ruled based methods consist of an antecedent part and a consequence part [5]. DT is a recursive 

approach for extracting diverse classification rules [41]. Low latency for prediction makes them a 

suitable choice for processing large amounts of data. Standard DT structures are CART, ID3, and 

C4.5 [42]. The advantage of CART and C4.5 algorithms is that they can handle multiclass cases 

[43]. C4.5 does not make strong distributional assumptions about the data while CART does. The 

C4.5 makes decision trees that contain sets of ordered rules based on information entropy [8] [9].  
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1.3.1.1.3 Gaussian Naïve Bayes (GNB) 

Naïve bayes classifier is based on strong independence assumptions between the features. It is 

highly competitive while few learning examples are available. For Gaussian Naïve Bayes (GNB) 

classifier the Gaussian distribution is assumed. In naïve bayes classifier because of the 

independency assumption, the classification process is very efficient in training and prediction 

time [44]. In some studies, naïve bayes classifiers because of its advantageous are implemented 

with other learning algorithms [45]. 

1.3.1.2 One Class Classifiers (OCC) 

The OCC algorithms determine the smallest hypersphere enclosing the training samples [46], and 

thus all samples lying outside would be classified as abnormal/novel. One class classification 

techniques usually are applied for detecting novel classes [47]. A particular advantage of the OCC 

algorithms is that in training phase only positive samples are required. OCC techniques are useful 

while positive samples are rich, and negative samples are either rare or their structures are unclear 

[48]. One Class Support vector machines (OCS) is an applicable algorithm of OCC; there are 

several kernel methods, such as RBF, that could be applied to it. Figure 1. 2 presents a simplified 

two-dimensional feature space for OCS with RBF kernel. 
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Figure 1. 2. Simplified OCS algorithm with RBF kernel for two-dimensional feature space. 
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1.3.2 Clustering Methods 

Clustering is an unsupervised task that consists in partitioning an unlabeled dataset into groups of 

similar objects based on extracted knowledge from the data. Each created group is called a 

“cluster” [49] [50], and the notion of similarity depends on the purpose of the clustering [51]. 

Among different methods of clustering, K-means, hierarchical clustering, expectation 

maximization, and density based clustering are considered among the most practical methods 

because of their flexibility and applicability in different areas [52].  

In the literature, clustering methods are divided into different groups. Based on the way of 

partitioning, they could be divided into hierarchical and partitional methods. Hierarchical methods 

rely on object similarity while partitional methods rely on the clustering criteria optimization [50]. 

From another perspective, clustering approaches could be divided into automatic and non-

automatic techniques. While for non-automatic clustering number of the clusters must be defined, 

in automatic clustering optimal number of the clusters are determined without any prior knowledge 

about the data. In other words, automatic clustering algorithms are able to determine the optimal 

number of clusters, and simultaneously assigning the data to these clusters.  

1.3.2.1 Non-Automatic Clustering 

One of the most applicable non-automatic clustering methods is K-means. It is an unsupervised 

clustering technique that needs number of clusters for partitioning task. It is based on dividing a 

dataset into the specific number of clusters by minimizing some metrics relative to the cluster 

centroids. The cluster shapes are affected by the selected metric for minimization and distance 

definition [53]. For partitioning dataset 𝑋 to 𝑘 clusters, and in order to minimize the sum-of-

squares criterion, 𝑘 centroids must be determined. Centroids are randomly selected, and then 

samples are assigned to the nearest clusters. By repetition of selecting random centroids and 

assigning samples to the nearest cluster, center and samples of each cluster are determined [49] 

[53] [54]. 
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1.3.2.2 Automatic Clustering 

It refers to any approach for automatically determining the optimal number of clusters in a dataset. 

In automatic clustering methods, validity indices refer to devised statistical–mathematical 

functions; these indices are applied in order to judge the quality of partitioning task. Validity 

indices are based on two concepts: cohesion and separation. Cohesion is aimed at keeping the 

patterns/objects of one cluster similar, as much as possible, while separation is aimed at keeping 

patterns/objects of one cluster different, as much as possible, from the patterns/objects of other 

clusters [49]. Among various validity indices, two indices, CS and DB, have been implemented in 

many studies because of their proven capabilities. These two indices seek clusters that have 

minimum within-cluster scatter and maximum between-cluster separation [55]; the optimum 

values of these indices must be found with the optimization techniques.  

1.3.2.2.1 DB 

Minimizing parameter of the validity index presented by Davies and Bouldin (DB) leads to find 

out natural clusters of datasets [56], Equation (1. 6) to Equation (1. 9) : 

For DB, 𝑅̅ is defined as:  

𝑅̅ ≡
1

𝑁
=∑𝑅𝑖

𝑁

𝑖=1

 
1. 6 

Where 𝑅𝑖 ≡ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑅𝑖𝑗 𝑖 ≠ 𝑗   

𝑅𝑖𝑗 is a function of 𝑆𝑖, 𝑆𝑗and 𝑀𝑖𝑗:    

𝑅𝑖𝑗 ≡
𝑆𝑖 + 𝑆𝑗

𝑀𝑖𝑗
 1. 7 

𝑆𝑖 and 𝑀𝑖𝑗 are defined with the Equation (1. 8) and Equation (1. 9) : 
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𝑆𝑖 = {
1

𝑇𝑖
 ∑|𝑋𝑗 − 𝐴𝑖|

𝑞

𝑇𝑖

𝑗=1

}

1
𝑞

 
1. 8 

By definition, 𝑆𝑖 is the 𝑞𝑡ℎ root of the 𝑞𝑡ℎ moment of the samples in cluster 𝑖 about their mean. 𝑇𝑖 

is number of the samples in cluster 𝑖, and 𝐴𝑖 is the centroid of cluster 𝑖.  

𝑀𝑖𝑗 = {∑|𝑎𝑘𝑖 − 𝑎𝑘𝑗|
𝑝

𝑁

𝑘=1

}

1
𝑝

 
1. 9 

𝑎𝑘𝑖 is the kth component of the n-dimensional vector 𝑎𝑖 that is the centroid of cluster 𝑖. 𝑞 and 𝑝 

could be selected independently [56]. In the present thesis, they are considered two. 

1.3.2.2.2 CS 

Chou and Su [55] proposed validity measure, CS; similar to DB index, by minimizing value of the 

CS index, optimal clusters would be founded. 

Consider 𝑍 = {𝑧𝑗;  𝑗 = 1, 2, . . . , 𝑁} in which N is number of the clusters obtained by recalculating 

cluster centers, Equation (1. 10): 

𝑣𝑖 =
1

|𝐴𝑖|
∑ 𝑥𝑗
𝑧𝑗∈𝐴𝑖

 1. 10 

Where 𝐴𝑖 is the set of the 𝑖𝑡ℎ cluster and |𝐴𝑖| is the number of samples in 𝐴𝑖. Accordingly, CS is 

calculated with Equation (1. 11): 

𝐶𝑆(𝑐) =

∑ {
1
|𝐴𝑖|

∑ max
𝑥𝑘∈𝐴𝑖

{𝑑(𝑧𝑗 , 𝑧𝑘)}𝑧𝑗∈𝐴𝑖
}𝑐

𝑖=1

∑ { min
𝑗∈𝑐,𝑗≠𝑖

{𝑑(𝑣𝑖 , 𝑣𝑗)}}
𝑐
𝑖=1

 1. 11 

𝑑 is a distance function that could be selected. In this thesis, d function is selected to be the 

Euclidean distance. 
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1.3.3 Regression Methods 

The regression methods, in this thesis, are applied in order to approximate the feature behavior, 

however they could be applied as observers, too. The models are used to predict the missing values 

together with the real values of the noise and outliers measurements. Among regression models, 

ANN due to its universal approximation and ability to model nonlinear systems has been widely 

applied. Nevertheless, it shows some drawbacks as the curse of dimensionality, and the difficulty 

of configuring the network structure (the number of hidden layers and the number of neurons in 

each layer). Ordinary Kriging (OK) and Multivariate Dynamic Kriging (MDK) models have been 

used in many surrogate based optimization studies in the chemical process engineering area, 

showing high accuracy and capability to model complex highly nonlinear systems with a relatively 

small number of training data.  

1.3.3.1 Ordinary Kriging (OK) 

Kriging models are originated in the areas of mining and geostatistics that involve spatially and 

temporally correlated data. Their unique characteristic stems from their ability to combine global 

and local modeling. Having a set of input-output training data (𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, . . 𝐼, the kriging 

assumes a general predictor 𝑦(𝑥) = 𝑃(𝑥) + 𝑄(𝑥), which is composed of a polynomial function of 

interest 𝑃(𝑥), that provides the global behavior or the main trend of the system to be approximated, 

and in many cases 𝑃(𝑥) is taken as a constant value. The second term 𝑄(𝑥) =  𝜎2ѱ, is a realization 

of a stochastic process, with a mean of zero value, variance 𝜎2, and a correlation function 

ѱ(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−∑ ω𝑙|𝑥𝑖,𝑙−𝑥𝑗,𝑙−|
2𝑘

𝑙=1 ) + 𝛿𝑖,𝑗 ξ between any two sample points of the training 

dataset. 𝜔𝑙 is the correlation parameter of the input variable, 𝛿𝑖𝑗 is the Kronecker delta, and 𝜉 is 

the regression constant that enables the kriging to smooth or regress noisy data. The final kriging 

predictor can be expressed as Equation (1. 12), where 𝛾 is the column vector of the correlations 

between the samples to be predicted 𝑥𝑃 and the training data points.  

𝑦(𝑥𝑝) = 𝑏 + γ𝑇ѱ−1(𝑌 − 1𝑏) 1. 12 
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1.3.3.2 Multivariate Dynamic Kriging (MDK) 

MDK is based on the construction and training of OK models that are trained to capture the 

incremental evolution of the system, i.e. the system future state/output variables over one time 

step. In more details, each OK model is trained to approximate the mapping between the future 

value of one state/output variable at the next time step as a function of the system previous state 

and control variable values [ 𝑋𝑡, 𝑋𝑡−1 , … 𝑋𝑡−𝑙,   𝑈𝑡, 𝑈𝑡−1 , … 𝑈𝑡−𝑙] considering a specific time lag 

or delay L. This is given by Equation (1. 13):  

𝑥̂1(𝑡 + 1)  = 𝑓1[𝑋̂(𝑡), . .  𝑋̂(𝑡 − 𝐿), 𝑈(𝑡), . . 𝑈(𝑡 − 𝐿)]

𝑥̂2(𝑡 + 1) = 𝑓2[𝑋̂(𝑡), . .  𝑋̂(𝑡 − 𝐿),  𝑈(𝑡), . . 𝑈(𝑡 − 𝐿)]
……

𝑥̂𝑖(𝑡 + 1) = 𝑓𝑖[𝑋̂(𝑡), . .  𝑋̂(𝑡 − 𝐿),  𝑈(𝑡), . . 𝑈(𝑡 − 𝐿)]
……… . .

𝑥̂𝑘𝑥(𝑡 + 1) = 𝑓𝑘𝑥[𝑋̂(𝑡), . .  𝑋̂(𝑡 − 𝐿),  𝑈(𝑡), . . 𝑈(𝑡 − 𝐿)] }
  
 

  
 

 

1. 13 

 

Where 𝑈(𝑡) ∈ 𝑅𝑘𝑢 represents the control/input variables, and 𝑋 ∈ 𝑅𝑘𝑥 corresponds to the 

state/output, which is recorded at discrete time instances of equal intervals 𝛥𝑡 between them. 𝑘𝑢 

and 𝑘𝑥 are the number of control and state variables, respectively. These sets of single step 

emulators are also considered as nonlinear autoregressive models with exogenous inputs, which 

are able to predict the system outputs over one time step ahead. Additionally, they can be also used 

via recursive interpolation to predict the outputs over several time steps. Thus, at each time step, 

the predicted values of the state variable are fed back to the model representing its input for the 

next time step estimation, together with the new value of the control variables. More details about 

the dynamic kriging models, multivariate dynamic prediction via recursive interpolation and their 

applications to other case studies could be found in [57] [58]. 

1.3.3.3 Artificial Neural Networks (ANN) 

ANN is a well-known efficient method that is used widely for modeling nonlinear system. 

Feedforward ANN are frequently used in engineering applications for system modeling and 

identification. In this thesis, Matlab ANN toolbox and the function “feedforwardnet” have been 

used to create a feed forward ANN. The number of neurons and layers (two hidden layers of nine 
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and three neurons), the training algorithm (“train”), and transfer functions (“default”) were 

selected to balance simplicity and accuracy. 

1.3.3.4 Polynomial Regression (PR) 

A widely used approximation method is the polynomial regression. Considering a set of input-

output training data, the predictor/estimator is assumed as a polynomial function of a certain 

degree. The polynomial coefficients (model parameters) are estimated through the least square 

fitting in which the sum of square errors (between the data and the model predictions) are 

minimized in order to find the best parameters or coefficients of this polynomial/functional shape. 

In the thesis, the Matlab function “polyfit” is used for fitting a polynomial of the 25th degree to the 

data.  

1.3.4 Optimization Methods 

For industrial processes, optimization is one of the key action both for operation and process 

monitoring tasks [8]. Optimization problems could appear in different aspects and steps of FDD 

as single or multiple objectives. For optimization task with the multiple objectives, maximization 

of one or more objectives conflict with minimization of other objectives thus multiple solutions 

may possible, each is better than the rest in at least one of the objectives. For FDD task, the 

optimization with the multiple objectives could appear for selecting those algorithms that must be 

applied at the same time in a framework; some algorithms have advantages in the accuracy, and 

other have advantages in the computational time.   

Optimization is the core of several supervised and unsupervised FDD algorithms therefore, 

regarding type of the exploited algorithms, FDD applications could be considered as an 

optimization problem [59] [29]. In SVM algorithm the optimization problem is to find out the 

optimum hyperplane that separates the classes [60]. In OCC algorithms separation of positive 

samples from negative samples is done with optimization task [61]. Furthermore, clustering task 

could be seen as a well-defined optimization problem [7].  
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For process monitoring a wide range of the optimization, techniques have been applied. In [62], 

particle swarm algorithm that is a heuristic optimization method is applied for improving 

performance of the independent components analysis. Derivative free optimization techniques 

have been widely used in many areas, mainly, due to their abilities to prevent challenges associated 

to the use of derivative based techniques [63].  

In this thesis, in order to explore optimum amounts of the clustering validity indices and selecting 

the optimum number of features (for data processing) optimization techniques are applied. Among 

available techniques, the Genetic Algorithm (GA) is one of the best candidates. GA has shown 

very high capabilities in accuracy and robustness among a wide range of derivative free 

optimization techniques (such as; swarm optimization, direct search techniques etc.). GA has been 

applied to a wide range of the engineering applications involving different types of optimization 

problems [64], and including linear and nonlinear objectives. The GA is stochastic search 

procedure whose search method mimics the genetic evolution of a species. The GA search 

mechanism starts with an initial set of potential solutions that are randomly selected in most cases. 

In the present thesis, the GA of the MATLAB optimization toolbox is used with its default 

configurations. 

1.3.5 Performance Indices  

Performance indices are applied for quantitative assessment of the different FDD approaches. 

Types of the performance indices that must be applied depend on the application of FDD either 

online for each sample or offline for each batch of samples. Furthermore, they rely on whether 

FDD type is supervised, unsupervised or semi supervised [9] [65]. 

Classification Assessment Scores (CAS) are those that applied for validating supervised 

classifiers. In [66], the CAS for diagnosis is defined as the ability of correctly identifying the root 

causes of abnormal behaviors. In [67], CAS is defined as a fraction of correct predicted samples 

in the test dataset. 
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 In the simplified condition with only two classes, the classifier could assign each sample to the 

set {𝑝, 𝑛} in which 𝑝 stands for positive class and 𝑛 stands for negative class, accordingly, four 

possibilities may happen. If the sample is truly positive and it is assigned to a positive class, then 

it is a True Positive (TP), but if it is assigned to a negative class, it is a False Negative (FN). If the 

sample is truly negative and it is classified as negative, it is a True Negative (TN), but if it is 

classified as positive, it is a False Positive (FP). Figure 1. 3 shows the confusion matrix of this 

classification [68]. 

 

Figure 1. 3. Confusion matrix for classification of two classes. 

Therefore, precision, recall, and accuracy could be defined with Equation (1. 14) to 

 Equation (1. 16): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

1. 14 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

1. 15 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

1. 16 

Precision measures the proportion of assigned samples to the positive class that are truly positives 

while recall measures the proportion of correctly classified samples of positive class [69]. 

Balanced accuracy index considers number of the samples in each class for calculating the 
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accuracy. The advantage of this index is that it prevents ignorance of the classifier poor 

performance for those classes that has few samples [9] [65].  

F1 score is a measure widely used to compare FDD systems. It is calculated as a weighted average 

of precision and recall as indicated in Equation (1. 17): 

F1 𝑠𝑐𝑜𝑟𝑒 =
2 × Precision × Recall

Precision + Recall
 

1. 17 

The F1 score ranges from 0.0 (worst value) to 1.0 (best value), and facilitates the comparison 

between methods and summarizing concepts. It obviously implies loss of information which may 

be relevant in particular situations in which precision and recall need to be discriminated or 

weighted to model the actual consequences of the misdiagnosis [28].  Other similar performance 

indicators that have specific application could be found in [70] [71] [72].  

In data stream problem, two ways for sampling methods are often applied: holdout and predictive 

sequential (prequential). In the holdout method, the samples are divided into training and holdout 

sets. The training set is used for adjusting the parameter of the classifier trained online, and the 

holdout set for testing the classifier at the regular time distance. Then by one of the performance 

indices, the accuracy of the classification task is reported. In the prequential method, each sample 

of the stream is tested, and then the error rate is computed by the accumulated sum of a loss 

function between the prediction and true values [73] [74]. 

For evaluating ND methods, various performance indices are applied. The effectiveness of ND 

techniques can be evaluated either with the number of novel samples that are correctly detected or 

with the number of non-novel samples that are wrongly classified as novel samples, which known 

as false alarm rate. Receiver operating characteristic curves are used to represent the trade-off 

between the detection rate of novel samples and the false alarm rate [68]. 

 In the next chapters, some algorithms for FDD updating and data processing are proposed; those 

algorithms must be quantitatively compared. Thus, indices are proposed that give weight to the 

goal of the algorithms (that is having more accuracy for classifying different classes) versus the 

cost of the meeting the goal (that is usually CPU time). Additionally, in chapter four for justifying 

performance of the automatic clustering algorithms and OCCs, new indices are proposed and 

applied. 
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1.4 Benchmark Case Studies 

The case studies that are employed in the next chapters are described in the following subsections: 

1.4.1 Continuous Stirred Tank Reactor (CSTR) 

The addressed case study is a Continuous Stirred Tank Reactor (CSTR) with a cooling jacket in 

which Cyclopentenol is produced from Cyclopentadiene by acid-catalysed electrophylic hydration 

in aqueous solution. This reactor was first described by Chen [75] and is reported in many research 

works [76] [77] [78]. The so-called Van der Vusse reactions are described by the following 

reactions, Equation (1. 18): 

𝐴
𝑘1
→𝐵

𝑘2
→ 𝐶

2𝐴
𝑘3
→𝐷

 1. 18 

In Equation (1. 18), the desired product of these reactions is cyclopentenol, B, while 

cyclopentanediol, C, is produced in an unwanted consecutive reaction, and dicyclopentadiene, D, 

is formed as a by-product of these reactions.  

Each dataset that is produced by simulation of this CSTR tank has four features; first feature is the 

concentration of the reactant, 𝐶𝐴; second feature is the concentration of the product, 𝐶𝐵; third 

feature is temperature of the reactor, 𝑇𝑅; and fourth one is temperature of the cooling jacket, 𝑇𝐽. 

The nonlinear differential equations, Equation (1. 20) to Equation (1. 23), are derived from 

component balances for substances A and B, and from energy balances of the reactor and cooling 

jacket. In the equations, 𝑉 is flow fed to the reactor that contains only reactant with the initial 

concentration of the 𝐶𝐴0 and initial temperature of 𝑇0. The 𝑇 is temperature inside the reactor and 

the reaction velocities 𝑘𝑖 are assumed to depend on the temperature via the Arrhenius law, on 

Equation (1. 19):  
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𝑘𝑖 = 𝑘𝑖0𝑒𝑥𝑝(
𝐸𝑖

𝑣
℃+ 273.15

)     𝑖 = 1,2,3, … 

1. 19 

 

𝜕𝐶𝐴
𝜕𝑡

=
1

𝑉𝑅

𝜕𝑉

𝜕𝑇
(𝐶𝐴0 − 𝐶𝐴) − 𝑘1(𝑇)𝐶𝐴 − 𝑘3(𝑇)𝐶𝐴

2 

1. 20 

 

𝜕𝐶𝐵
𝜕𝑡

=
−1

𝑉𝑅

𝜕𝑉

𝜕𝑇
𝐶𝐵 + 𝑘1(𝑇)𝐶𝐴 − 𝑘2(𝑇)𝐶𝐵

  

1. 21 

 

𝜕𝑇

𝜕𝑡
=
1

𝑉𝑅

𝜕𝑉

𝜕𝑇
(𝑇0 − 𝑇) −

1

𝜌𝐶𝑃
(𝑘1(𝑇)𝐶𝐴∆𝐻𝑅𝐴𝐵 + 𝑘2(𝑇)𝐶𝐵∆𝐻𝑅𝐵𝐶 + 𝑘3(𝑇)𝐶𝐴

2∆𝐻𝑅𝐴𝐷)

+
𝑘𝑤𝐴𝑅
𝜌𝐶𝑃𝑉𝑅

(𝑇𝐾−𝑇) 

1. 22 

 

𝜕𝑇𝐾
𝜕𝑡

=
1

𝑚𝑘𝐶𝑃𝐾
(
𝜕𝑄𝐾
𝜕𝑡

+ 𝑘𝑤𝐴𝑅(𝑇 − 𝑇𝐾)),   𝐶𝐴 ≥ 0, 𝐶𝐵 ≥ 0 

1. 23 

 

 

In Table 1. 1, applied terms in the Equation (1. 19) to Equation (1. 23) are described. 
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Table 1. 1. Names and values of the reaction parameters in CSTR. 

Name of the parameter Symbol Value of the parameter 

collision factor for reaction k1 𝑘10 (1.287± .004).1012h−1 

collision factor for reaction k2 𝑘20 (1.287± .04).1012h−1 

collision factor for reaction k3 𝑘30 (9.043±).109 1/𝑚𝑜𝑙𝐴. ℎ 

activation energy for reaction k1 𝐸1 -9758.3K 

activation energy for reaction k2 𝐸2 -9758.3K 

activation energy for reaction k3 𝐸3 (4.2 ±  2.36 )(𝑘𝐽/𝑚𝑜𝑙𝐴) 

enthalpies of reaction k1 ∆𝐻𝑅𝐴𝐵 −(11.0 ±  1.92 )(𝑘𝐽/𝑚𝑜𝑙𝐵) 

enthalpies of reaction k2 ∆𝐻𝑅𝐵𝐶 −(41.85 ±  1.41 )(𝑘𝐽/𝑚𝑜𝑙𝐴) 

enthalpies of reaction k3 ∆𝐻𝑅𝐴𝐷 (93.42 ±  4.10 − 4 )(𝑘𝐽/𝐿) 

heat capacity 𝐶𝑃 (3.01 ± .04) 𝑘𝐽/𝑘𝑔. 𝐾 

heat transfer coefficient for cooling jacket 𝑘𝑤 (4032 ±  120) (𝑘𝐽/ℎ.m2 𝐾) 

surface of cooling jacket 𝐴𝑅 0.215 𝑚2 

reactor volume 𝑉𝑅 0.01 𝑚2 

coolant mass 𝑚𝐾 5.0 𝑘𝑔 

heat capacity of coolant 𝐶𝑃𝐾 (2.0 ± .05) (𝑘𝐽/𝑘𝑔. 𝐾) 

  



Chapter 1: Introduction 

23 

1.4.2 Three Tanks 

The three tanks system, Figure 1. 4, could be described through a mathematical model and includes 

typical characteristics of tanks, pipelines, pumps networks, cooling water circuits of distillation 

columns and reactors [27]. The three tanks system has been widely used as a benchmark case study 

in monitoring, control and FDD studies [25] [79]. 

 

Figure 1. 4.  Three tanks benchmark system. 

The system consists of three identical cylindrical tanks of cross section area 𝐴 = 0.0154 𝑚2, 

which are serially interconnected by three cylindrical pipes of cross section area 𝑠13 = 𝑠23 = 𝑠0 =

0.005 𝑚2, and flow coefficients 𝑎13 =  0.6836, 𝑎23 =  0.4819,  𝑎0 =  0.4819. Two pumps are 

delivering the liquid to the system with flowrates 𝑄1, 𝑄2, where the maximum allowed flowrates 

limit is 0.003 𝑚3/𝑠. The process is described by the set of ordinary differential equations 

illustrated in Equation (1. 24). 

Addition to Normal (Nr) condition, the process is subjected to three faults: Fault 1 (F1) is the 

leaking in tank 1 (𝑄𝑓1 = −0.0007 𝑚3/𝑠), Fault 2 (F2) is the plugging in tank 2 (𝑄𝑓2 =

+0.0007 𝑚3/𝑠), and Fault 3 (F3) is the leaking in tank 3 (𝑄𝑓3 = −0.0007 𝑚
3/𝑠). These values 

have been selected to be between 10% and 25% of the inlet flow, based on the literature of this 

s13 s23 s0 h1 h3 h2 

Tank 1 Tank 3 Tank 2 

Qout(t) 

Q2in(t) 

 

Q1in(t) 
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case study. Gaussian error, representing the noise, introduced by the different sensors, is added to 

the model output 𝒩(𝜇 = 0, 𝜎 = 0.010). 

𝑑ℎ1
𝑑𝑡

=  −𝑎1 𝑠13 𝑠𝑔𝑛(ℎ1 − ℎ3 )√2𝑔|ℎ1 − ℎ3| + 𝑄1 + 𝑄𝑓1                                                  

𝑑ℎ2
𝑑𝑡

=  𝑎3 𝑠23 𝑠𝑔𝑛(ℎ3 − ℎ2 )√2𝑔|ℎ3 − ℎ2|  − 𝑎2𝑠0√2𝑔ℎ2 + 𝑄2 + 𝑄𝑓2                        

𝑑ℎ3
𝑑𝑡

=  𝑎1 𝑠13 𝑠𝑔𝑛(ℎ1 − ℎ3 )√2𝑔|ℎ1 − ℎ3| − 𝑎3𝑠23𝑠𝑔𝑛(ℎ3 − ℎ2)√2𝑔ℎ3 − ℎ2 + 𝑄𝑓3}
 
 

 
 

    1. 24 

 

 

1.4.3 Tennessee Eastman (TE)  

The Tennessee Eastman (TE) process has been widely used as a benchmark to compare various 

monitoring solutions [80] [81] [82]. The process is open loop unstable due to the process 

exothermic reactions. Besides the reactor, the process has four main unit operations, as shown in 

Figure 1. 5, including condenser, compressor, separator and stripper. The process produces two 

liquid products (G and H) and one by-product (F) from four gaseous reactants (A, C, D, E) and an 

inert (B), Equation (1. 25) to Equation (1. 28): 

𝐴(𝑔) + 𝐶(𝑔) + 𝐷(𝑔)
 
→ 𝐺(𝑙𝑖𝑞) Product 1 1. 25 

𝐴(𝑔) + 𝐶(𝑔) + 𝐸(𝑔)
 
→𝐻(𝑙𝑖𝑞) Product 2 1. 26 

𝐴(𝑔) + 𝐸(𝑔)
 
→ 𝐹(𝑙𝑖𝑞) By-Product 1. 27 

3𝐷(𝑔)  
 
→ 2𝐹(𝑙𝑖𝑞) By-Product 1. 28 

The original open loop FORTRAN code was provided by Downs and Voge [83]. Different 

monitoring techniques have been tested and reported for the TE [62] [84]. These techniques have 

shown different capabilities in detecting the faults assumed for the process. The process has 52 

process features and 20 faults or disturbances to be diagnosed. In regard to the process variables, 
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41 are measured (XMEAS in the original paper) and 11 are manipulated by valves (XMV in the 

original paper). 

The 20 faults of the process are listed in Table 1. 2. Some faults in the TE were not fully described 

by the authors in the original paper, as it is the case of the faults 16 to 20, reported as unknown. 

Faults 3 and 9 only differ on the type of disturbance whereas the first one is due to a step fault and 

the second one due to a random variation. Faults 14 and 15 are the only faults generated due to a 

stuck valve. In the literature, faults 3, 9 and 15 are usually reported as undetectable faults [81] [84] 

[6]. In Table 1. 2, IDV based on original paper [83], stands for “Vector of disturbance flags” that 

could be found in Figure 1. 5.  
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Figure 1. 5.Tennessee Eastman Flowsheet. 
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Table 1. 2.Faults of the TE Process. 

Fault Process variable Type 

IDV(1) A/C feed ratio, B composition constant (stream 4) Step 

IDV(2) B composition. A/C ratio constant stream 41 Step 

IDV(3) D feed temperature (stream 2) Step 

IDV(4) Reactor Cooling Water Inlet Temperature Step 

IDV(5) Condenser Cooling Water Inlet Temperature Step 

IDV(6) A Feed Loss (Stream 1) Step 

IDV(7) C Header Pres. Loss Reduced Availability (Stream 4) Step 

IDV(8) A, B, C, Feed Composition (Stream 4) Random Variation 

IDV(9) D Feed Temperature (Stream 2) Random Variation 

IDV(10) C Feed Temperature (Stream 4) Random Variation 

IDV(11) Reactor Cooling Water Inlet Temperature Random Variation 

IDV(12) Condenser Cooling Water Inlet Temperature Random Variation 

IDV(13) Reaction Kinetics Slow Drift 

IDV(14) Reactor Cooling Water Valve Sticking 

IDV(15) Condenser Cooling Water Valve Sticking 

IDV(16) Unknown Unknown 

IDV(17) Unknown Unknown 

IDV(18) Unknown Unknown 

IDV(19) Unknown Unknown 

IDV(20) Unknown Unknown 
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In literature an expression data pre-processing is used for addressing series of steps to transform 

raw dataset into a clean and tidy dataset prior to statistical analysis [23]. In this chapter, data 

processing refers to the same concept of data pre-processing. Comparing with the two main steps 

of process monitoring, data measurement and modeling, data processing that aims to connect these 

two steps has received less attention [85]. Data processing leads to performance improvement and 

reducing training time of the FDD [7].  

Main distinct steps of data processing could be grouped as data cleaning, data integration, data 

transformation, and data reduction [23]. Data cleaning is a step that deals with the missing data, 

noise and outliers; data integration step reorganizes various datasets into single dataset; data 

transformation unifies formats and unites of recorded data; and in data reduction redundant records 

and variables are removed [23]. The data processing is usually done in an iterative way. As an 

example, removing outliers and feature selection steps could be repeatedly applied until the dataset 

becomes appropriate for training and evaluation of the models [12] [86]. 

In this chapter, three methods and algorithms that are more practical for FDD are discussed. These 

methods may be implemented separately or integration of them, depending on FDD systems and 

plants that are monitored, could be applied. In the first section, imputation of missing values is 

disused; in the second section, the feature selection problem is investigated; and in the last section 

feature extension is studied. 

. 
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2.1 Imputation of Missing Values  

This section investigates the application of techniques for enhancing the quality of the data, 

through smoothing the noise, outliers and imputation of missing values that usually contaminate 

datasets. The information quality enhancements is aimed at improving the training datasets of data 

driven FDD. A simulation case study of CSTR is applied to produce datasets, and three techniques, 

including OK, ANN, and PR are applied. 
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2.1.1 Introduction 

Data driven classification techniques have gained wide popularity for FDD due to their flexibility 

and robustness. The efficiency of these techniques mainly depends on the quality of data by which 

these classifiers are trained. Modern chemical manufacturing plants are often instrumented with a 

sophisticated network of sensors that provide enormous amounts of samples. The stored samples 

must be analyzed for monitoring status of the plant. On the whole, the quality of the process data 

is corrupted because of several potential problems that commonly happen in different parts of the 

plant [87]. These problems may appear as noise, outliers, and missing values. 

In literature some techniques are proposed that could handle missing values without the need to 

data imputation [88] [89] [90]. Nevertheless, the main part of the data driven and statistical 

approaches cannot handle samples with missing values. Organizing missing values has become a 

fundamental requirement for classification approaches because unsuitable treatment of them may 

lead to misleading the classifiers [19]. In missing value problem, in some samples one or more 

features have values like ±∞, 0, ? or any other constants that do not reflect the real state of the 

physical measured quantity [12]. In order to deal with the missing values three possible ways may  

exist [23]. The samples that contain missing values could be ignored, that is not the effective way. 

The missing values could be determined and filled manually that is time consuming and prone to 

mistakes. As another option, missing values could be replaced by expected values. The expected 

values could be mean of the available data or could be obtained by prediction methods. Another 

family of approaches for dealing with the missing values are model based methods in which data 

distribution is modeled [19]. 

Regression methods and “hot and cold deck” approaches are two main groups of prediction 

methods for imputation of missing values. In regression methods missing values are filled in by 

the predicted values from a regression analysis [90]. One of the main advantages of the regression 

methods is that they keep the variance and covariance of the features with the missing values [19]. 

In hot and cold deck approaches, which has no parametric model, missing values are imputed with 

the values from a similar complete data vector [91]. These approaches have two steps for imputing 

the missing values. The first step is classification that the dataset is divided into disjoint clusters. 
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In the second step, for each incomplete sample the complete samples in its cluster are used for 

filling in missing values [92].  

Another prediction approaches for dealing with the missing values are those based on machine 

learning. K-nearest neighbor, self-organizing map, multi-layer perceptron, recurrent neural 

network and  auto-associative neural network are among most applicable ones [19].   

Three standard mechanisms for missing values would be considered. First, Missing Completely 

At Random (MCAR) in which the probability of an observation being missing depends only on 

itself. Second, Missing At Random (MAR) that the probability of a value being missing is related 

only to the type of observed value. Third, Not Missing At Random (NMAR) that the probability 

of a value being missing is related to its amount. An example for  NMAR is a sensor that does not 

detect temperatures below a certain threshold [87] [92]. 

Outlier detection and handling noise in datasets are part of the data cleaning which are very critical 

for data driven process modeling [86]. Even with a small portion of outliers great negative effects 

will appear on process model [93]. In [23], three ways of dealing with the noise and outliers are 

proposed that are binning methods, clustering and machine learning approaches. In binning 

methods, values around sample are applied for smoothing. In clustering methods, outliers are 

detected by grouping samples, and in machine learning methods data are smoothed by means of 

machine learning approaches. 

In this section, the prediction accuracy and smoothing capability of the OK, ANN and PR 

techniques as regression methods are compared through their application to CSTR simulation case 

study. The CSTR simulation model is used to produce different sets of training; each includes 

different amount/percentage of noise, outliers and missing values. 

2.1.2 Methodology  

Consider a process history raw dataset, 𝑋𝐼𝐽 , where 𝐼 is the number of samples, and 𝐽 is number of 

the features, Equation (2. 1): 
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𝑋 = (

𝑥11 ⋯ 𝑥1𝐽
⋮ 𝑥𝑖𝑗 ⋮
𝑥𝐼1 … 𝑥𝐼𝐽

)      i=1,2,3,⋯𝐼,        j=1,2,3, ⋯  𝐽  2. 1 

Assume missing values in the dataset, as well as a certain proportion of Gaussian noise and outliers. 

With each regression technique and for each feature a model, 𝑚̂𝑇𝑒𝑐,𝑗, with the available data 

(containing missing values, noise and outliers) for approximating the feature behavior is trained. 

The models are applied to predict all the samples and making recuperated dataset 𝑋̂𝑇𝑒𝑐,  

Equation (2. 2): 

 𝑀𝑜𝑑𝑒𝑙𝑇𝑒𝑐 = {𝑚̂𝑇𝑒𝑐,1, ⋯ 𝑚̂𝑇𝑒𝑐,𝑗. ⋯ , 𝑚̂𝑇𝑒𝑐,𝐽},    j = 1,2, … J    Tec ∈ {𝑂𝐾, 𝐴𝑁𝑁, 𝑃𝑅} 

𝑥̂𝑇𝑒𝑐,𝑖𝑗= 𝑚̂𝑇𝑒𝑐,𝑗(𝑥𝑖𝑗)  ∀ 𝑖, 𝑗 

𝑋̂𝑇𝑒𝑐={𝑥̂𝑇𝑒𝑐,𝑖𝑗} = {𝑚̂𝑇𝑒𝑐,𝑗(𝑥𝑖𝑗)} = (

𝑚̂𝑇𝑒𝑐,1(𝑥11) … 𝑚̂𝑇𝑒𝑐,𝐽(𝑥1𝐽)

⋮ 𝑚̂𝑇𝑒𝑐,𝑗(𝑥𝑖𝑗) ⋮

𝑚̂𝑇𝑒𝑐,1(𝑥𝐼1) … 𝑚̂𝑇𝑒𝑐,𝐽(𝑥𝐼𝐽)

) 

 

2. 2 

The accuracy of each model 𝑚̂𝑇𝑒𝑐,𝑗, is assessed by comparing predicted values of the model with 

provided values by related ideal model, 𝑚𝑗
°. The 𝑚𝑗

° returns samples free from noise, outliers and 

missing values. Root Mean Square Error (RMSE) is calculated as an index for comparing 

performance, Equation (2. 3): 

𝑟𝑚𝑠𝑒𝑇𝑒𝑐,𝑗 = 𝑅𝑀𝑆𝐸 (𝑚𝑗
°(𝑥𝑖𝑗), 𝑚̂𝑇𝑒𝑐,𝑗(𝑥𝑖𝑗)) ,         𝑗 = 1,2, … 𝐽     Te ∈ {𝑂𝐾, 𝐴𝑁𝑁, 𝑃𝑅} 2. 3 

Information quality enhancement achieved by each technique is evaluated through training of the 

classifier with the recuperated dataset 𝑋̂𝑇𝑒𝑐 , and then testing with the validation dataset that is free 

from noise, outliers and missing values.  

2.1.3 Case Study  

The CSTR simulation model is used to generate a dataset. The datasets are generated under both 

normal and faulty conditions while the fault is caused by a step change in inlet concentration of 
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the reactant from its initial value 5.11 𝑚𝑜𝑙/𝐿 to 5.13 𝑚𝑜𝑙/𝐿 along the process operation times. 

Nine datasets 𝑋2000,4 are made that include noise, outliers and missing values. The amount of 

added noise (𝒩(𝜇 = 0, 𝜎 = ±0.08)) for all samples in nine datasets is fixed. Moreover, the 

number of outliers (𝒩(𝜇 = 0, 𝜎 = ±0.17)) in all datasets are 10% of samples, which are selected 

randomly. Percentage of missing values, with MCAR standard, in training datasets are changed, 

including 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of the total number of samples. 

For evaluating the classifier testing dataset, 𝑋1000,4, is used that is free from noise, outliers and 

missing values.  

2.1.4 Results  

Figure 2. 1 compares the performance of exploited techniques whereas number of missing samples 

are 200 (2000 × 0.1). Figure 2. 1 shows the high ability of the techniques (especially OK and 

ANN) for capturing the process real behavior despite the fact that their training is accomplished 

with noise and outliers.  
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Figure 2. 1. Predictions of the OK, ANN and PR on training dataset with 10% of missing values. 

Figure 2. 2 presents the 𝑟𝑚𝑠𝑒𝑇𝑒𝑐,𝑗 of the applied techniques for smoothing and imputing four 

features of the nine training datasets. Figure 2. 2 illustrates that the models behave with high 

prediction accuracy even though 90% of samples in the training dataset are missed. Figure 2. 2 

presents that the OK has the best prediction. 
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Figure 2. 2. 𝑟𝑚𝑠𝑒𝑡𝑒𝑐,𝑗 for smoothing and imputation of nine datasets. 

The SVM is selected as the classifier, and Figure 2. 3 shows CAS of it whereas it is trained with 

each of the recuperated training datasets using the three imputation techniques. Additionally, for 

sake of comparison, a primitive way to impute the missing values that is replacement of them with 

the mean value of the measured features along the time is considered, too. In Figure 2. 3, “MEAN” 

refers to replacing missing values with the mean value of the features. With the OK as the 

imputation technique, and while percentage of missing values in training dataset change from 10% 

to 90%,  mean of the F1 score is 99.28%. This amount for PR, ANN and “MEAN” are 99.23%, 

98.57% and 89.01% respectively. 
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Figure 2. 3. Effects of missing values on classifier CAS. 

2.1.5 Conclusions 

This section presents techniques for enhancing data quality. Existing data driven classifiers usually 

require unspoiled data to achieve an efficient training. Nevertheless, real industrial process 

databases usually include high amounts of noise, outliers and missing values that seriously affect 

the quality of the data. Applications of exploited techniques to CSTR case study illustrate that the 

OK has higher prediction accuracy for predicting the missing values, and higher capability for 

smoothing noise and outlier values. The impact of these characteristics has been demonstrated by 

considerable enhancement in the classifier CAS while it is trained with the datasets treated by the 

proposed approaches.  
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2.2 Feature Selection 

Processing huge amounts of data recorded by modern monitoring systems may be confusing, 

complex and time consuming. Feature selection algorithms are seen as important data processing 

methods that have proved advantages for improving FDD performance. Feature selection as an 

optimization problem is advisable in order to determine the optimal subset of features for 

conducting statistical analysis and building a machine learning model.  In this section, two main 

approaches of feature selection algorithms including filter and wrapper methods are investigated. 
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2.2.1 Introduction 

FDD of industrial processes is a challenging task that demands effective and timely decision 

making procedures under extreme conditions of highly interrelated data, large number of inputs 

and complex interaction between the symptoms and faults. For data driven FDD methods, quantity 

of training data may affect quality of classification, therefore feature processing methods are 

designed to analyze quantity of training data. The aim of them is to improve classification task, 

and lessen computational effort, training time as well as testing time. 

There are three common ways of processing measured features, including feature extension, 

feature extraction and feature selection. Feature extension is about providing new features that are 

usually presented by some statistical and mathematical calculation based on available features. 

Feature extraction is about reducing number of features by transforming them into new space with 

the fewer dimensions [2], and feature selection reduces number of features by selecting important 

features among available measured features. 

It is common that some features are non-informative because they are either irrelevant or 

redundant. Hypothetically, more features should lead to more discriminating capacity, but actually 

with a limited amount of training data excessive features not only significantly slow down the 

learning process, but also cause the classifier to over-fit the training data [94].  Features are 

classified into three categories [95] that are strongly relevant, weakly relevant, and irrelevant 

features. Strong relevance of a feature proves that the feature is vital for optimal subsets, and 

ignoring it will prevent determining the optimal combination of features. Weak relevance means 

that the feature probably could be included in the optimal subset, and irrelevance means that the 

feature is not required at all.  

In feature selection, features that are relevant and not redundant must be selected. In  [96], the goal 

of the feature selection is declared as determination of the best feature subsets for building a 

machine learning model. In [97], advantageous of feature selection are considered the following: 

facilitating data visualization and data understanding; reducing the measurement and storage 

requirements; reducing training time; and improving prediction performance.  
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With the availability of the labels, feature selection methods could be divided into supervised, semi 

supervised and unsupervised approaches. The supervised feature selection methods select optimal 

features by the correlation between features and class labels. In unsupervised feature selection 

approaches, features are selected by the capability of keeping certain properties of the data such as 

variance [96] [98]. 

Among different features selection methods, wrapper models and the filter models are more 

common [99]. The wrapper models use the predictive accuracy of a predetermined learning 

algorithm to quantitatively assess the candidate subsets. Wrappers methods are often criticized 

because they need massive amounts of computation, but efficient search strategies could be 

devised to assist [97]. For wrapper methods there are three critical topics that must be considered. 

First, way of searching in the space of all possible feature subsets, second, selecting performance 

indicator to guide the search, and third selecting type of the classifier [97]. 

 The filter methods separate feature selection from classifier learning, and selects feature subsets 

independently of the learning algorithm [100] [94]. In filter methods the optimal subset of the 

features is selected based on relevancy and redundancy criteria.  Relevancy criteria determine how 

well a feature discriminates between the classes and it must be maximized. Redundancy criteria 

measure how similar the features are and it must be minimized. In other words, redundancy criteria 

imply how much adding a future to a given set of features contributes to prediction [101].  

In this section, wrapper and filter methods are compared through their application on TE 

benchmark. Selection of important features is done with optimization method based on the three 

combination criteria of relevancy and redundancy for filter methods and four criteria for wrapper 

methods. The comparison of methods is based on CAS and CPU time of training. A dimensionless 

score is suggested and applied for worth giving to classification performance and CPU time of 

training simultaneously while the classification performance has more weight.    

   . 
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2.2.2 Methodology 

During diagnosing dataset 𝑋, Equation (2. 4): 

𝑋 = (

𝑥11 ⋯ 𝑥1𝐽
⋮ ⋱ ⋮
𝑥𝐼1 … 𝑥𝐼𝐽

),       𝒙𝑗 = (𝑥1𝑗 , 𝑥2𝑗 …… . . 𝑥𝐼𝐽)   2. 4 

For having maximum CAS and minimum CPU time of training, some redundant features, 𝒙𝑗, must 

be removed, thus Main Classifier (MC) and Feature Selection Method (FSM) must be selected, 

Equation (2. 5): 

min(−𝐶𝐴𝑆 = 𝑓(𝑀𝐶𝑚, 𝑫), 𝐶𝑃𝑈 = 𝑓(𝑀𝐶𝑚, 𝑫))   

𝑠. 𝑡.   𝑀𝐶𝑚 ∈ {𝑀𝐶1, 𝑀𝐶2 , …𝑀𝐶𝑀} 

𝑫 = 𝑓(𝐹𝑆𝑀𝑢) 

𝐹𝑆𝑀𝑢 ∈ {𝐹𝑆𝑀1, 𝐹𝑆𝑀2, … 𝐹𝑆𝑀𝑈} 

 𝑫 ∈ {𝑑𝑗| 𝑑𝑗 ∈ {0,1} ∀𝑗 = 1,2, … 𝐽} 

2. 5 

MC is applied for training and testing with the final set of features. 𝑑𝑗 is the binary decision for 

selecting feature 𝒙𝑗 that could be 0 or 1, and 𝑫 is the vector of all 𝑑𝑗. Figure 2. 4 presents solution 

space for feature selection. 
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Figure 2. 4. Solution space. 

Accordingly, in dataset 𝑋, some features may be selected for making dataset 𝑋′, Equation (2. 6): 

𝑋′ = (

𝑥11
′ ⋯ 𝑥1𝐽′

′

⋮ ⋱ ⋮
𝑥𝐼1
′ … 𝑥I𝐽′

′
),   𝐽′ = |𝑫|, 𝐽′ < 𝐽   2. 6 
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In order to find the optimum features 𝑫 in solution space, the optimization algorithm is applied 

based on Figure 2. 5. The objective function for wrapper methods is based on the CAS of the 

Wrapper Method Classifiers (WMC). In the filter approaches 𝑫 is provided based on relation 

between features. So, the objective function of the filter methods calculated by dividing relevancy 

criteria by redundancy criteria, however difference between these two criteria could be  

another option [102]. 

After optimization task and determining 𝑫, dataset is divided into the training and testing datasets. 

The selected MC will be trained and then CAS and CPU time are calculated. In order to assess 

combination of MC with the provided 𝑫 by various FSM, the MGM score is defined 

Equation (2. 7): 

𝑀𝐺𝑀𝑀𝐶𝑚,𝐹𝑆𝑀𝑢 = 𝜔 ×
CAS𝑀𝐶𝑚,𝐹𝑆𝑀𝑢
CAS𝑀𝐶𝑚,𝑟𝑒𝑓

−
CPU𝑀𝐶𝑚,𝐹𝑆𝑀𝑢
CPU𝑀𝐶𝑚,𝑟𝑒𝑓

     

𝑀𝐶𝑚 ∈ {𝑀𝐶1, 𝑀𝐶2, …𝑀𝐶𝑀} 

𝐹𝑆𝑀𝑢 ∈ {𝐹𝑆𝑀1, 𝐹𝑆𝑀2, … 𝐹𝑆𝑀𝑈} 

𝑟𝑒𝑓 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒       

𝜔 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

2. 7 

MC and WMC are selected among four classifiers including SVM, DT, KNN and GNB. Reference 

in Equation (2. 7) is applying all the features. 

 Here, are a brief explanation for the applied relevancy and redundancy criteria in filter methods: 

 Max-Relevancy MR and Min-Redundancy (mR) [103]; MR is based on selecting the features with 

the highest relevance to the target classes, and it is based on mutual information values between 

individual features and classes. Mutual information is an indicator of relevance between two 

random features [104]. For 𝑚𝑅 mutual information between selected features must be minimized. 

Value Difference Metric VDM and Redundancy VDM (RVDM) [101]; they are based on this fact 

that conditional distributions of features must be distinct from each other. Fit Criterion (FC) and 

Redundancy FC (RFC) [101]; they use the average accuracy of the separation by the normalized 

distance from centers of distribution.  
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Figure 2. 5.  Feature selection algorithm. 
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2.2.3 Case Study 

In this section, a dataset is made with TE simulation that includes all 52 variables, and all faults 

with 5700 samples.  

2.2.4 Results 

Optimization algorithm, stopping condition and CAS are selected to be GA algorithm, number of 

the repetition, and F1 score, respectively. In addition, for MGM score 𝜔 is considered two. 

 Table 2. 1 and Table 2. 2 present the results of applying filter and wrapper methods. Based on 

Table 2. 1 with filter methods and for all the MCs, F1 scores decrease, and for all MCs except 

SVM the CPU time of training decreases.  

Based on Table 2. 2, for wrapper methods improvements in F1 score depend on both MCs and 

WMCs. Furthermore, with all the MCs and WMCs, CPU time of training decreases.  

In Table 2. 3 and Figure 2. 6 MGM scores for FSMs and MCs are reported.  
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Table 2. 1. Results of applying filter methods. 

Criteria of filter method 𝑀𝑅/𝑚𝑅 𝑉𝐷𝑀/𝑅𝑉𝐷𝑀 𝐹𝐶/𝑅𝐹𝐶 All features 

Number of selected features 

|𝑫| 
26 22 22 52 

𝑀𝐶 CAS (F1 score %) 

DT 74 71 74 79 

KNN 30 29 30 38 

SVM 40 43 44 56 

GNB 50 58 48 69 

𝑀𝐶 CPU time (s) 

DT 0.148 0.110 0.130 0.226 

KNN 0.007 0.006 0.007 0.013 

SVM 9.140 7.510 8.430 3.990 

GNB 0.008 0.008 0.008 0.016 
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Table 2. 2. Results of applying wrapper methods. 

WMCs DT KNN SVM GNB All features 

Number of selected features 

|𝑫| 
27 29 35 27 52 

𝑀𝐶 CAS (F1 score %) 

DT 88 79 77 87 79 

KNN 52 64 57 68 38 

SVM 64 69 72 75 56 

GNB 63 68 69 72 69 

𝑀𝐶 CPU time (s) 

DT 0.130 0.120 0.140 0.110 0.226 

KNN 0.009 0.007 0.009 0.008 0.013 

SVM 0.700 0.690 0.990 0.800 3.990 

GNB 0.010 0.010 0.010 0.009 0.016 

 

 

Table 2. 3. MGM scores for applied MCs and FSMs. 

 
𝑀𝐺𝑀 

Filter Methods Wrapper Methods  

𝑀𝐶 𝑀𝑅/𝑚𝑅 𝑉𝐷𝑀/𝑅𝑉𝐷𝑀 𝐹𝐶/𝑅𝐹𝐶 
𝑊𝑀𝐶 All 

features DT KNN SVM GNB 

DT 1.219 1.311 1.298 1.653 1.469 1.330 1.716 1.000 

KNN 1.040 1.065 1.040 2.045 2.830 2.308 2.964 1.000 

SVM -0.862 -0.346 -0.541 2.110 2.291 2.323 2.478 1.000 

GNB 0.949 1.181 0.891 1.201 1.346 1.375 1.524 1.000 
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Figure 2. 6. MGM scores for the applied FCMs. 

2.2.5 Conclusions 

In order to improve performance of the FDD, several methods and criteria as feature selection 

approaches have been implemented. The best CAS in terms of F1 score (88%) is achieved with 

the wrapper method while MC and WMC are DT, and 27 of features are selected. However, 

applying DT as MC and WMC is not the most efficient solution in regard to MGM score. For all 

the wrapper methods while GNB is applied as WMC the greatest values for MGM score are 

achieved. Accordingly, the most efficient solution, based on MGM score, is provided by wrapper 

method in which KNN is applied as MC, and GNB is employed as WMC. 

 For most of the offline FDD applications difference of CPU time between various methods could 

be affordable. Reducing CPU time of training, in general, is an inferiority goal comparing with the 

accuracy of the classification task, but in online classification, advantages of features selection 

could be more vital for FDD. 

  



Chapter 2: Data Processing 

50 

2.3 Feature Extension  

In this section, with aim of improving performance of the data driven FDD system, feature 

extension technique with an observer is investigated. The observer produces new error features 

that would be applied in two different styles; error features together with measured features could 

be exploited as extended features, or they could be replaced by the measured features. Both styles 

with various fault patterns and dynamic profiles of the process are studied. 
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2.3.1 Introduction 

Other methods of feature processing are feature extension approaches that are applied in order to 

assist FDD system to have better performance. They are exploited for information improvement 

by adding (or replacing) new features to the measured features. They are required for adding more 

useful information of the process, and finding statistic attributes that describe behavior of the 

process [6]. However, they have few applications in FDD because it is more frequent to reduce 

features rather than extend them [105]. The new features are usually made by statistical or 

mathematical analyses of the measured features that are not explicitly included in the process 

measurements. In [6], standard deviations of the process variables are considered as extended 

features. Adding new features imply increasing CPU time of training, nevertheless this task has 

proved advantages for improving FDD performance [6].  

The common way of producing new features is to exploit observers [28]. Observers have been 

widely used to assist FDD system [106] [107] [2]. Observers by identifying the real underlying 

behavior of the measured features provide the error features. The error features indicate the extent 

of the process malfunctioning; they should be close to zero while there is no fault in the process, 

and they have considerable values when the process is affected by the faults. In order to detect and 

diagnose the faults the error features could be compared with the threshold values, or they could 

be processed by statistical approaches [108]. 

Several studies for observer based FDD of nonlinear processes are addressed that are usually done 

by model based approaches [109] [110]. Although, in [111] a hybrid data driven framework is 

proposed in which MDK is applied as an observer in order to enhance performance of the 

unsupervised FDD for nonlinear dynamic conditions of the process. In the proposed framework, 

automatic and non-automatic clustering techniques are applied in order to estimate type of faults 

that may affect the process. Performances of the exploited FDD approaches are compared whereas 

they are trained and tested with measured features or error features. The results prove that 

employing only error features significantly assist the clustering techniques to prevent them from 

confusing the classes in dynamic conditions of the process.  
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In this section, data processing is done by feature extension approach in which an observer provide 

error features. FDD task is executed by training and testing classifiers with three scenarios: Using 

only measured features, together using measured features and error features, and using only error 

features. These scenarios are tested with various fault patterns and dynamic profiles of the three 

tanks benchmark. 

2.3.2 Methodology 

Error features, 𝐸, are generated by comparing estimated outputs by an observer, MDK, and the 

actual outputs [28], Figure 2. 7: 

Process 

(simulation)

Observer

-

+

 

Figure 2. 7. Making error features with an observer. 

Three different datasets, including dataset 𝑋 (with measured features, 𝒙𝑗), dataset 𝐸 (with error 

features, 𝒆𝑗), and dataset 𝑋𝐸   as union of the 𝑋 and 𝐸 (with measured and error features, 𝒙𝒆𝑗) are 

provided, Equation (2. 8) to Equation (2. 10): 

𝑋 = (

𝑥11 ⋯ 𝑥1𝐽
⋮ ⋱ ⋮
𝑥𝐼1 … 𝑥𝐼𝐽

) , 𝑋 = (𝒙1, 𝒙2, … , 𝒙𝐽), 𝒙𝑗 = (𝑥1𝑗, 𝑥2𝑗 …… . . 𝑥𝐼𝐽)   
2. 8 

𝐸 = (

𝑒11 ⋯ 𝑒1𝐽′

⋮ ⋱ ⋮
𝑒𝐼1 … 𝑒𝐼𝐽′

) , 𝐸 = (𝒆1, 𝒆2, … , 𝒆𝐽′), 𝒆𝑗 = (𝑒1𝑗, 𝑒2𝑗 …… . . 𝑒𝐼𝑗) 
2. 9 
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{
 
 
 

 
 
 
𝑋𝐸 = 𝑋 ∪ 𝐸,        𝑋𝐸 = (

𝑥11 ⋯ 𝑥1𝐽
⋮ ⋱ ⋮
𝑥𝐼1 … 𝑥𝐼𝐽

𝑒11 ⋯ 𝑒1𝐽′

⋮ ⋱ ⋮
𝑒𝐼1 … 𝑒𝐼𝐽′

)

𝑋𝐸 = (

𝑥𝑒11 ⋯ 𝑥𝑒1𝐽
⋮ ⋱ ⋮

𝑥𝑒𝐼1 … 𝑥𝑒𝐼𝐽

 ⋯ 𝑥𝑒1𝐽′′

 ⋱ ⋮
 … 𝑥𝑒𝐼𝐽′′

),       𝐽′′ = 𝐽 + 𝐽′

𝑋𝐸 = (𝒙𝒆1, 𝒙𝒆2, … , 𝒙𝒆𝐽′′), 𝒙𝒆𝑗 = (𝑥𝑒1𝑗, 𝑥𝑒2𝑗 …… . . 𝑥𝑒𝐼𝑗)

 2. 10 

Then performance of the three classifiers SMV, GNB and DT with these datases are investigated  

2.3.3 Case Study 

The method is applied to three tanks benchmark case study, with the all described conditions in 

the section 1.4.2. The training dataset has 𝐼 = 1800 samples, and each test dataset has 𝐼 = 400 

samples. 

2.3.4 Results  

In this section, first training and validating the applied classifiers are discussed, and then by 

providing various dynamic profiles of the process robustness of the FDD is investigated. Finally, 

in the last subsection, FDD performance under different faulty scenarios is studied. 

2.3.4.1 Training and Validation  

Process data including inlets (𝑄1(𝑡), 𝑄2(𝑡)) and levels of the tanks (ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡)) are 

collected with different process conditions that contain normal and different faults. 

 Figure 2. 8–up shows inlet profiles, and Figure 2. 8-down shows fault scenario. In Figure 2. 8 the 

same sequences of the faults are repeated with different dynamic inlet profiles; sinusoidal, linear 

decreasing and linear increasing profiles.  
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Figure 2. 8. Training and validation of the classifiers: inlet profiles (up), fault scenarios (down).  

Table 2. 4 presents CAS of the classifiers in terms of F1 score while they are trained and validated 

using 𝒙𝑗, 𝒙𝒆𝑗 and 𝒆𝑗. As illustrated in Figure 2. 9, applying only error features for SVM and DT 

lead to better results. However, for GNB classifier the performances have not changed, 

significantly.  
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Table 2. 4. Validation of the classifiers. 

CAS (F1 score %) 

Measured Features, 𝒙𝑗 

Classifier Nr F1 F2 F3 Overall 

SVM 11.2 63.2 56.3 39.3 43.1 

GNB 87.5 79.3 91.5 79.2 84.4 

DT 79.0 74.5 81.8 81.8 79.2 

Measured and Error Features, 𝒙𝒆𝑗 

SVM 94.5 93.8 97.2 91.6 94.3 

GNB 95.2 75.0 96.4 67.4 83.5 

DT 97.0 88.5 97.8 86.1 92.3 

Error Features, 𝒆𝑗 

SVM 96.6 93.9 97.8 91.1 94.9 

GNB 95.2 75.3 97.4 65.2 83.3 

DT 97.9 89.3 98.0 88.5 93.4 

 

 

Figure 2. 9. Effects of the feature types on classifier CAS. 
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2.3.4.2 Robustness against Changes in the Dynamic Profiles of the 

Process Inlets  

Test 1 involves a simple scenario in which both inlets are assumed constant, Figure 2. 10, while 

different faults occur, Figure 2. 11. More tests (test 2 to test 5) are carried out each one including 

different inlet profiles while the fault scenario is kept fixed; the inlet profiles present increasing 

complexity from test 2 to test 5. CAS of the classifiers with the F1 score are reported in 

 Table 2. 5. 

 

 

Figure 2. 10. Different inlet scenarios. 

0 100 200 300 400
2.6

2.8

3

x 10
-3

Q
1
,Q

2
(m

3
/S

)

 

 

Q
1

Q
2

0 100 200 300 400
1

2

3
x 10

-3

0 100 200 300 400
1

2

3
x 10

-3

Q
1
,Q

2
(m

3
/S

)

0 100 200 300 400
1

2

3
x 10

-3

0 100 200 300 400
1

2

3

4
x 10

-3

Time (S)

Q
1
,Q

2
(m

3
/S

)

0 100 200 300 400
1.5

2

2.5

3
x 10

-3

Time (S)

Test 1 Test 2

Test 3 Test 4

Test 5 Test 6, Test 7, Test 8



Chapter 2: Data Processing 

57 

 

Figure 2. 11. Fault scenarios. 

Results in Table 2. 5 reveal that, for all the classifiers, attained CAS by the 𝒆𝑗 is usually higher. In 

Figure 2. 12, this trend for test 1 to test 5 for applied classifiers is presented.  
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Table 2. 5. CAS of the classifiers with different inlet scenarios. 

 

CAS (F1 score %) 

Measured 

(X) 

Measured and 

Error 

(XE) 

Error 

(E) 

SVM GNB DT SVM GNB DT SVM GNB DT 

Test 1 

Nr 92.5 62.0 3.8 91.3 94.6 98.0 97.5 96.0 98.9 

F1 0.0 0.0 0.0 68.7 0.0 0 94.7 15.5 52.1 

F2 66.0 3.2 64.7 94.7 93.8 96.4 95.3 94.4 96.4 

F3 84.7 0.0 59.9 77.7 61.2 63.3 93.1 62.8 93.1 

Overall 60.8 16.3 32.0 83.1 62.4 64.4 95.2 67.2 80.2 

Test 2 

Nr 92.9 40.0 82.4 92.1 92.0 97.5 95.2 92.7 92.9 

F1 84.6 71.3 86.5 96.9 85.6 100 96.9 86.6 87.8 

F2 84.2 63.5 83.3 96.3 93.7 99.0 96.3 94.8 96.9 

F3 94.7 72.6 95.3 95.8 78.4 97.4 94.4 80.2 78.7 

Overall 89.1 61.8 86.9 95.3 87.4 98.4 95.7 88.6 89.1 

Test 3 

Nr 62.5 0.0 94.1 93.4 95.0 94.0 96.1 96.1 95.8 

F1 47.7 33.3 64.7 93.8 47.2 59.1 95.4 48.6 70.1 

F2 76.3 58.2 94.6 93.6 95.3 92.6 95.8 95.3 92.2 

F3 79.5 47.3 54.9 94.0 32.0 64.8 94.4 33.1 71.8 

Overall 66.5 34.7 77.1 93.7 67.3 77.6 95.4 68.3 82.5 

Test 4 

Nr 51.3 0.0 60.5 92.1 93.9 97.5 94.7 95.6 98.4 

F1 36.1 36.5 48.3 86.3 57.3 58.3 88.2 61.4 84.1 

F2 61.7 39.3 66.9 97.4 95.9 98.5 96.4 95.9 94.6 

F3 56.0 19.0 37.8 83.9 33.4 62.2 87.5 34.4 83.5 

Overall 51.3 23.7 53.4 89.9 70.1 79.1 91.7 71.8 90.2 

Test 5 

Nr 0.0 17.2 92.6 92.4 95.1 94.1 95.6 95.6 90.9 

F1 3.9 56.1 14.8 97.4 90.1 89.1 98.0 85.0 89.5 

F2 32.1 43.2 68.0 95.3 95.1 98 95.9 94.9 91.5 

F3 96.9 0.0 91.1 96.9 91.6 97.4 96.4 80.0 87.0 

Overall 33.2 29.1 66.6 95.5 92.9 94.6 96.5 88.8 89.7 
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Figure 2. 12. CAS of the classifiers with different inlet scenarios. 

2.3.4.3 FDD Performance under Different Faulty Scenarios 

In order to analyze effects of more complex sequence of faults on the diagnosis capabilities, 

different fault scenarios have been incorporated with the same inlet profiles. Figure 2. 10 and 

Figure 2. 11  present fault and inlet scenarios of test 6, test 7 and test 8. Based on 

 Table 2. 6, for the applied classifiers using 𝒆𝑗 leads to higher CAS. 

 Figure 2. 13 shows the effects of the applying error feature on performance improvement of the 

classifiers.  
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Table 2. 6.  CAS of the classifiers with different fault scenarios. 

 CAS (F1 score %) 

 

Measured 

(X) 

Measured and Error 

(XE) 

Error 

(E) 

SVM GNB DT SVM GNB DT SVM GNB DT 

Test 6 

Nr 31.2 14.2 29.7 94.3 95.2 92.0 96.1 95.6 96.4 

F1 70.4 64.5 45.4 78.4 65.7 64.2 93.0 65.2 84.7 

F2 63.3 63.0 63.2 97.9 96.9 92.8 97.4 96.9 96.5 

F3 42.3   5.5 17.6 65.8 9.0 24.8 90.1 80.8 79.7 

Overall 51.8 36.8 39.0 84.1 66.7 68.4 94.2 66.6 89.3 

Test 7 

Nr 30.1   9.5 12.5 96.0 93.6 68.4 95.3 93.6 79.2 

F1 76.0 66.2 50.2 98.0 68.7 73.5 97.5 69.4 96.0 

F2 63.2 69.4 60.7 98.0 94.7 82.1 96.6 94.7 89.2 

F3 50.6   3.6 16.7 95.8 14.8 60.1 96.3 19.8 90.7 

Overall 55.0 37.1 35.0 96.9 68.0 71.0 96.4 69.4 88.8 

Test 8 

Nr 32.4 05.7 23.3 96.4 95.8 93.6 97.4 95.8 95.2 

F1 73.0 65.3 48.6 91.7 68.5 62.8 98.0 68.5 78.5 

F2 59.2 70.4 61.9 98.4 99.0 98.4 99.5 99.0 98.0 

F3 52.8 10.8 26.4 92.4 17.0 47.3 96.0 20.0 73.2 

Overall 54.4 38.0 40.1 94.7 70.1 75.5 97.7 70.8 86.2 

 

 

Figure 2. 13. CAS of the classifiers with different fault scenarios. 
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2.3.5 Conclusions 

In this section, feature extension by means of the observer is addressed. The observer produces 

error features that assist better identification of the process state by the classifiers. The main 

advantage of the provided error features is that they compensate the effects of the manipulated 

inputs on the process outputs [28]. The obtained results in supervised FDD prove that replacing 

measured features by error features improve CAS of the classifiers. These results are validated 

with various fault patterns and dynamic profiles of the process. It is worth mentioning that as 

number of samples in all the test scenarios are only 400, required CPU time with 𝒙𝑗, 𝒙𝒆𝑗 or 𝒆𝑗 is 

trivial and almost same; it changes between 0.001 to 0.0009 second. Accordingly, they are not 

reported and for selecting the best features only CASs of the classifiers are applied.  

In chapter 4, advantageous of the replacing error features by measured features for unsupervised 

FDD (clustering) will be discussed. 
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3.1 Supervised FD Updating: Handling Concept Drift   

The usual FDD approaches are inadequate for dealing with a rapid increase of data volume that is 

provided in the data stream. Therefore, available approaches must be modified or alternative ones 

must be exploited. The choice of FDD system highly depends on the demanded task and the need 

for interpreting the models [9]. The process industry operations are often affected by hidden 

contexts (such as fouling, aging etc.) result in CD, and thus FD systems need to be regularly 

updated. Methods based on different criteria have been developed and reported that mostly 

grouped as classification and sample selection approaches.  

IL is a common adaptive approach that its efficiency for updating by the time reduces because it 

does not forget redundant information (old samples). On the other hand, Fixed sliding Window 

(FW), which is a usual sample selection algorithm for updating, forgets samples as they exceed a 

given time limit. Accordingly, some non-redundant information (samples) can be missed. This 

chapter addresses these limitations by proposing Dynamic sliding Window (DW). The DW as a 

sample selection algorithm forgets samples after an automatically adjustable time interval. The 

DW provides data windows, for training the FD, that are most relevant to the current concepts of 

the process. Furthermore, by combining the classification and sample selection approaches, the 

Incremental Learning Dynamic Window (ILDW) algorithm is proposed and implemented. The 

ILDW is intended to learn incrementally from the seen samples and to forget redundant 

information based on the DW algorithm. 
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3.1.1 Introduction 

The data stream problem was introduced by Henzinger [15] in 1998, and it consists of monitoring 

arriving data at high rate. It has become an essential part of the knowledge discovery especially in 

the presence of the CD. In general, the concept could be defined as joint probability between 

sample 𝒙𝑖 and assigned labeled to it 𝑦𝑖 by the model, P (𝒙𝑖, 𝑦𝑖) = P (𝒙𝑖)P (𝑦𝑖|𝒙𝑖). The concept to 

be learned is not always constant over time, sometimes it changes, this phenomenon is called CD 

[9]. The CD is defined as a change of the target concept due to changes in some hidden contexts 

[112]. The target concept is considered as recorded data from the process including all the classes 

[65] while hidden context is anything that has an influence on the process [113]. The hidden 

context in the process industries could be fouling, abrasion of mechanic components, catalyst 

activity changes, etc. [113]. Gama [114] identifies two drift categories in the concepts: when drift 

is gradual, and when drift is abrupt. These two types of drift correspond to a change in the 

conditional distribution over time. 

For doing FDD tasks, accessing ways to the samples could vary, including all in a dataset, all in 

memory, partially in memory, and one by one in a stream; for each accessing mood different 

algorithms exist [9]. The usual accessing way to data is loading the completely training dataset 

and then process the data. In this way, two main steps of FDD including model learning and 

deploying the model to predict new samples are done subsequently. This may arise difficulties 

because of either the memory limitation or lack of accessing to all data in training step. The usual 

solution for dealing with the memory limitation is to divide the training dataset into several datasets 

and using parallelization techniques [9] [45]. Commonly, IL methods are required in the following 

circumstances: Time-dependent situations, obtaining data in batches, and large data comparing 

with the capacity of available memory [39]. There are two main approaches for implementing the 

IL, including online and batch methods. In online approach samples are added and analyzed one 

by one while in batch approach subset of samples are used [39]. In [115], type of supervised IL 

algorithm is developed that could learn from data, even if they belong to the new classes. Suggested 

algorithm is able to serve with different classifiers in addition to deal with fine-tuning and 

overfitting problems, efficiently.  
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While data is available in the stream, the learning model must be executed incrementally and 

gradually with low latency. In data stream, the main problem is to deal with large amounts of 

available data that are produced continuously by modern data acquisition systems. This is a critical 

issue because required information as well as models and patterns must be extracted from data 

streams for process monitoring purposes [15] [116] [117]. IL techniques are possible solutions to 

the scalability problems and large amounts of data. In [73], it is stated that the IL is based on 

receiving and integrating new samples without the need to learn from scratch. IL strategy could be 

executed with various classification algorithms such as DT [118] [119], SVM [120], rule based 

system [121] [112], Naïve Bayes [122] etc.  

In [123], differentness between the data stream and other conventional models are recognized with 

four characteristics: Availability of data in online manner, lack of control over the order of the 

arriving data, unbounded size of data, and difficulty with retrieving data [123]. In [117], core 

difference of normal data mining and stream data mining is clarified by addressing online mining 

of changes in the stream data mining. For data stream mining suggested frameworks or algorithms 

must have some characteristic: Dealing with continuously unbounded arriving/new data, and 

tackling changes in data distribution (CD) [124]. 

By the time, the existing classes may drift or novel classes could appear. Variety of ND methods 

have been proposed to cope with the occurrence of new process faults/conditions [16] [17]. On the 

other hand, for managing CD another family of approaches, including IL, decremental learning, 

adaptive algorithm etc. have been suggested [14] [15]. Only in few studies appearance of new 

classes and drifting of the existing classes are addressed at the same time [125] [126].  

For monitoring stream of data that contains CD, the challenging task is to recognize parts of the 

training data that are different from the current concepts of the process. Those data must be 

replaced with recently recorded data that address available concepts of the process. One common 

possible solution is discarding or forgetting those data after they become so-called old. The 

criterion for considering data as an old data is to apply predefined Time Interval (TI) [117]. For 

selecting appropriate TI, it must be considered that long TI will lead to keeping old data whereas 

short TI could head to overfitting [117]. 

Developed methods for dealing with CD in the data stream are categorized by three [15]: Single 

and integrated classification algorithms, implicit and explicit detection methods, and sample based 
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approaches; each mentioned approaches could be grouped into more groups. The difference 

between implicit and explicit methods is based on using some CD detection approaches in explicit 

methods while there is no CD detection approach for the implicit methods [15] [127]. CD detection 

approaches could work with monitoring changes in the probability distribution, changes in 

relevance characteristics, features of the classification models, or accuracy 

 of the classifiers [15].  

 For the classification algorithm family approaches, the classifier must adopt the latest available 

concepts of the process. In [127], for dealing with CD in the data stream ensemble of classification 

methods are applied. In the model, classifiers are weighted based on prediction accuracy of the 

currently available data. For updating OCS coping with the CD, a method is proposed that forgets 

some parts of the data whereas the latest data have highest weights [128]. In [129], a method for 

improving training phase of the classification algorithm, which has the ability to update with the 

changes, is developed. In the model, the classifier is updated with the specific time window, and 

it could handle online classification of the stream data. 

The proposed algorithms and methods in the literature for CD detection could be categorized by 

supervised and unsupervised groups. In the supervised CD detection methods, some performance 

indices are monitored and reducing them along the time imply the existence of the CD in the 

process. In the unsupervised CD detection methods, some statistical properties of the features are 

monitored [13]. In [13], an algorithm is proposed that tracks the number of samples in the 

uncertainty region of a classifier as a metric to detect CD. In [130], for detecting CD with few 

numbers of samples statistical tests have been applied; the method is validated by various CD 

scenarios and results prove that it could handle various types of CD rapidly and accurately. In 

[131], for CD detection an algorithm is developed that is effective for problems with well separated 

and balanced classes. It is based on the drift degree that is calculated by comparing samples of two 

consecutive datasets. 

In another aspect, data driven approaches for dealing with CD could be divided into two groups, 

including sample weight, and sample selection [15]. Sample weight approaches are based on this 

rule that weight and importance of each sample by the time reduces [15] [132]. Sample selection 

methods are more applicable, and sliding data window in them could be fixed or dynamic/moving 

[15] [112] [133] [134] [135]. Adaptive window approach in [136] uses a sliding window with 
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variable size. In the method, size of the window is adjusted with the rate of observed CD thus the 

algorithm dynamically alters the window size.  

In some CD detection methods an AC is applied; AC monitors samples to assign them to one of 

the available classes, and with monitoring CAS of them the CD in the arriving samples could be 

traced [135]. In [137], proposed algorithm for handling CD has two classifiers: A stable and a 

reactive one. The stable learner predicts based on all of the seen samples while the reactive one 

predicts based on a window of recent samples. By monitoring difference in accuracy between the 

two learners over the window, the CD is traced and the stable classifier is replaced by the reactive 

classifier.  

In this chapter, DW algorithm is proposed that is a supervised algorithm of sample selection family 

methods for FD updating. It dynamically tunes the sliding window size considering current 

concepts of the process. DW is suggested for covering weakness of FW (sequence-based window) 

that possibly forgets the samples that are not redundant yet, and a flaw of IL algorithm that keeps 

all the redundant samples (information). Furthermore, in order to exploit advantageous of the IL 

and DW, simultaneously, ILDW algorithm is suggested. ILDW learns incrementally from seen 

samples, and after a TI, the classifier is retrained in order to forget redundant samples. The 

proposed algorithms, DW and ILDW, are compared with the FW, IL, Non-Updated Classifier 

(NUC) and Non-Incremental Learning (NIL) algorithms. NUC refers to the algorithm in which the 

classifier is trained initially, and it is applied for classifying new arriving samples without any 

updating. In NIL algorithm, all the samples are applied for retraining the classifier after a 

predefined TI. In order to compare various algorithms in terms of accuracy and CPU time of 

training dimensionless score, called MGM, is defined; the greater assigned MGM score is the more 

efficient algorithm is.  

3.1.2 Methodology 

It is supposed that samples arrive as a batch of dataset, 𝑋𝑘; “k” is counter of TI and each dataset 

contains fixed number of samples, 𝐼, that is a collection of 𝑗 = 1,2, … . . 𝐽 features, Equation (3. 1): 
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𝑋𝑘 = (

𝑥𝑘11 ⋯ 𝑥𝑘1𝐽
⋮ ⋱ ⋮
𝑥𝑘𝐼1 … 𝑥𝑘𝐼𝐽

) , k = 1,2, … . . . K, i = 1,2, …… . I, j = 1,2, …… . J 3. 1 

For IL approaches, the updating problem is to select specific samples in each batch of dataset, 𝑋𝑘, 

while for sample based approaches the updating problem is efficiently selecting data window, 𝑊𝐼𝑘, 

in each TI, Equation (3. 2): 

𝑊𝐼𝑘 = [𝑋𝑘−𝑟 , … . 𝑋𝑘−1, 𝑋𝑘]  ∀𝑘, 𝑟 ∈ ℕ   𝛿 𝑘 − 𝑟 ≥ 1  

𝑟 = 𝑐𝑎𝑟𝑑 (𝑊𝐼𝑘) − 1 

3. 2 

In which ℕ is the sign of natural numbers, and card stands for cardinality. 

In order to compare different updating methods, MGM score that is dimensionless is defined, 

Equation (3. 3): 

𝑀𝐺𝑀𝑢 = 𝜔 ×
𝐶𝐴𝑆̅̅ ̅̅ ̅

𝑢

𝐶𝐴𝑆̅̅ ̅̅ ̅
𝑟𝑒𝑓

−
𝐶𝑃𝑈̅̅ ̅̅ ̅̅

𝑢

𝐶𝑃𝑈̅̅ ̅̅ ̅̅
𝑟𝑒𝑓

     

𝑢 ∈ {𝐹𝐷 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑜𝑑𝑠:𝑁𝐼𝐿, 𝑁𝑈𝐶, 𝐼𝐿, 𝐷𝑊, 𝐼𝐿𝐷𝑊} , 

 𝑟𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑒𝑡ℎ𝑜𝑑       

3. 3 

In which 𝐶𝐴𝑆̅̅ ̅̅ ̅ and  𝐶𝑃𝑈̅̅ ̅̅ ̅̅  are average of CAS and average of CPU time; CAS is considered F1 

score. Value of 𝜔 must be tuned for giving weight to CAS against CPU time.  

Among developed classifiers, SVM appropriately fits for incremental learning because of its 

theoretical foundations [034] [035] thus it is selected as the classifier. The following sections 

explain the applied FD updating approaches, data preparation as well as hidden context scenarios 

and results. 

3.1.3 Updating Fault Detection System with Classification 

Techniques: 

For assessment and comparative purposes, three updating methods are studied that are NIL, NUC 

and IL while the classifier in all is SVM.  
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3.1.3.1 Non-Incremental Learning (NIL): 

This is a typical and simple way of training and updating the classifiers with arriving 

samples/datasets. In the algorithm new dataset, 𝑋𝑘, is integrated with the seen datasets and  

learning phase with the 𝑊𝐼𝑘 must be done from scratch, Equation (3. 4): 

𝑊𝐼𝑘 = {𝑋1, … . . 𝑋𝐾−2, 𝑋𝐾−1, 𝑋𝑘} 
3. 4 

In this algorithm, all samples have the same weight and there is no strategy for discarding and 

forgetting some parts of them for reducing CPU time of training [138]; the purpose of assessing 

this algorithm is to determine a reference approach of updating. 

3.1.3.2 Non-Updated Classifier (NUC): 

For the NUC the classifier is trained initially with the first dataset, 𝑋1, and it monitors samples of 

new datasets without updating. The purpose of assessing this approach is to determine a reference 

for not updated classifier as well as comparing other updating approaches with this algorithm. 

3.1.3.3 Incremental Learning (IL): 

In IL algorithm, at each step of updating only a subset of the data is considered. Syed et al. [139] 

for the first time proposed an algorithm for IL with SVM. In the algorithm, new incoming samples 

are combined with original support vectors if they violate the KTT conditions. New samples 

satisfying KKT conditions are supposed to have no influence over updating the hyperplane. 

Accordingly, support vectors are chosen among original support vectors and new samples that 

violate KTT [32] thus a specific set of samples from each dataset are selected. In order to improve 

performance of the IL algorithm for updating SVM in [140] a promising approach is presented. In 

the presented algorithm, specific samples are discarded while the classification accuracy is kept 

within an acceptable range and training speed is improved. Hyperplane-distance SVM is an 

algorithm developed in [138] for improving the performance of the IL. In this algorithm, in the 

final training set there are three groups of samples. The first group of samples are support vectors 
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of the classifier, the second group of samples are those in the newly available dataset that violate 

the KKT conditions, and the third group of samples are those that are between the center of each 

class and the hyperplane.  

3.1.4 Updating Fault Detection System with Sample Based 

Approaches 

Two sample based approaches are also applied for updating the FD: FW and DW, which are 

explained in the following subsections. 

3.1.4.1 Dynamic Sliding Window (DW): 

The DW algorithm uses a MC and an AC. The latest arriving dataset is benefitted for two purposes; 

it is attached to the WIK as the last element, and it is exploited for retraining the AC. In the DW 

algorithm a Threshold (Tr) is defined that is applied for adjusting the cardinality of the 𝑊𝐼𝑘. The 

Tr is the minimum accuracy of the AC on the tested dataset that must be met and it is tuned 

experimentally. 

In the kth TI, the dataset 𝑋𝑘 is applied for retraining the AC; then the AC is employed for classifying 

and testing the first dataset of the 𝑊𝐼𝑘, which is 𝑋𝑘−𝑟. If the Tr is met no more action is required, 

otherwise 𝑋𝑘−𝑟  will be discarded from 𝑊𝐼𝑘 and the next subsequent dataset, 𝑋𝑘−𝑟+1, will be 

classified. If the accuracy of AC on 𝑋𝑘−𝑟+1satisfies the Tr, it is kept in the 𝑊𝐼𝑘 and the MC will 

be retrained. Datasets that remain in the 𝑊𝐼𝑘 are supposed to be equally important and they will 

be used for (re)training and updating the MC.  

3.1.4.2 Fixed Sliding Window (FW): 

Another type of the sample based approaches is FW. In this type of sliding window algorithm, 

Adjusted Cardinality (ACr) parameter is fixed and it must be tuned, experimentally. In the 
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algorithm at the kth TI by adding 𝑋𝑘to the 𝑊𝐼𝑘  as the last dataset, the first dataset in 𝑊𝐼𝑘 will be 

removed and the MC will be retrained with the 𝑊𝐼𝑘, Equation (3. 5): 

𝑊𝐼𝑘 = {𝑋𝑘−𝐴𝐶𝑟+1, … . . 𝑋𝑘−2, 𝑋𝑘−1, 𝑋𝑘} 
3. 5 

3.1.5 Updating Fault Detection System with Combination of 

Sample Based Approaches and Classification Techniques 

3.1.5.1 Incremental Learning Dynamic Window (ILDW) 

Incremental Learning Dynamic Window (ILDW) is a hybrid of IL and DW methods in order to 

exploit advantages of both. The ILDW algorithm is similar to DW, but between two retraining 

tasks of the MC, it is adjusted based on IL algorithm. Figure 3. 1 shows all the applied algorithms 

for FD updating.  
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Figure 3. 1 Applied algorithms for the supervised FD updating. 

3.1.6 Hidden Context Scenarios and Datasets 

Six hidden context scenarios are considered for simulating CD in the process. In scenario 1 and 

scenario 3, the hidden context changes linearly while in the rest of the scenarios the hidden context 

has nonlinear profiles. Scenario 1 and scenario 2, Figure 3. 2, are employed for tuning parameters 

of the updating methods while the rest of the scenarios, Figure 3. 3, are applied for testing and 

validating.  
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Figure 3. 2. Hidden context scenarios for tuning parameters of FD updating methods.  

 

Figure 3. 3. Hidden context scenarios for testing FD updating methods. 
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For all these hidden context scenarios, 50 datasets are prepared. Each dataset contains 1000 normal 

and faulty samples, and each dataset has four features. The fault is a step change in the inlet 

concentration of the reactant. The normal inlet concentration of the reactant CA equals to 5.1+vo 

mol/L whereas vo is a Gaussian noise; 𝑣𝑜 ≈ 𝒩(𝜇 = 0, 𝜎 = 0.045 𝑚𝑜𝑙/𝐿), and in the faulty 

condition CA changes to 5.13+vo mol/L. 

3.1.7 Results 

In the following sections, first, parameters of the updating algorithms are tuned, and then they are 

validated and compared. 

3.1.7.1 Model Tuning 

Scenario 1 and scenario 2 are applied for tuning parameters of the FD updating algorithms for 

having maximum MGM score. For calculating MGM score, 𝜔 and reference method are 

considered two and NIL, respectively. 

3.1.7.2 Classification Based Techniques 

 

Table 3. 1 shows results of scenario 1 and scenario 2 on three classification based techniques.  

These approaches do not have a parameter for tuning, but their performances are compared based 

on average F1 score, 𝐹1̅̅̅̅ , average CPU time (s), 𝐶𝑃𝑈̅̅ ̅̅ ̅̅ , average Number of the Support Vectors 

(NSV), 𝑁𝑆𝑉̅̅ ̅̅ ̅̅ , and MGM score. Figure 3. 4 compares performance of the three techniques; based 

on MGM score NUC is more efficient than the rest because required CPU time in NIL and IL is 

inefficiently high. 
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Table 3. 1.  Performance of the classification based FD updating techniques for scenario 1 and scenario 2. 

 Scenario 1 Scenario 2 

 NIL NUC IL NIL NUC IL 

𝐹1̅̅̅̅  (%) 80.31 69.7 79.95 77.95 67.69 77.61 

𝐶𝑃𝑈̅̅ ̅̅ ̅̅  (𝑠) 24.52 0.03 15.42 25.84 0.03 17.45 

𝑁𝑆𝑉̅̅ ̅̅ ̅̅  20231.08 1000 19358.72 21336.94 1000 20369.64 

MGM Score 1.00 1.73 1.36 1.00 1.74 1.32 

 

 

Figure 3. 4. Performance of the classification based FD updating techniques for scenario 1 and scenario 2. 

3.1.7.3 Dynamic Sliding Window (DW): 

For investigating effects of Tr on the DW algorithm eight different Trs, 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80% with scenario 1 and scenario 2 are applied, Table 3. 2. The maximum tested 

value for Tr in both scenarios is 70% because accuracies have not passed this amount. With the Tr 
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of  70% the maximum MGM scores for both scenarios are attained, Table 3. 2 thus 70% is selected 

as the value of Tr. In Table 3. 2, 𝑐𝑎𝑟𝑑̅̅ ̅̅ ̅̅  refers to mean length of the window, and by increasing Tr 

it decreases. Figure 3. 5 presents effects of the Tr on MGM score, average scaled F1 score, and 

average CPU time. Average scaled F1 score and CPU time are calculated with the Equation (3. 6), 

in which reference method is considered NIL: 

. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑠𝑐𝑎𝑙𝑒𝑑 𝐹1̅̅̅̅ 𝑢 =
𝐹1̅̅̅̅ 𝑢

𝐹1̅̅̅̅ 𝑟𝑒𝑓
   

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑠𝑐𝑎𝑙𝑒𝑑 𝐶𝑃𝑈̅̅ ̅̅ ̅̅
𝑢 =

𝐶𝑃𝑈̅̅ ̅̅ ̅̅
𝑢

𝐶𝑃𝑈̅̅ ̅̅ ̅̅
𝑟𝑒𝑓

       

𝑢 ∈ {𝐹𝐷 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑜𝑑𝑠} , 𝑟𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑒𝑡ℎ𝑜𝑑       

3. 6 
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Table 3. 2 Effects of Tr on MGM score, average scaled F1 score and CPU time in DW algorithm. 

Tr (%) 𝑐𝑎𝑟𝑑̅̅ ̅̅ ̅̅  𝐹1̅̅̅̅  (%) 𝐶𝑃𝑈̅̅ ̅̅ ̅̅  (s) 𝑁𝑆𝑉̅̅ ̅̅ ̅̅  MGM Score 

Scenario 1 

10 0.40 79.05 12.19 15068.0 1.47 

20 0.40 79.05 12.04 15025.83 1.48 

30 0.38 78.98 11.54 14707.83 1.50 

40 0.37 78.56 10.81 14306.97 1.52 

50 0.37 78.28 10.16 13907.79 1.54 

60 0.29 76.79 6.06 11011.46 1.67 

70 0.03 71.79 0.03 1000.00 1.79 

80 N/A N/A N/A N/A N/A 

Scenario 2 

10 0.29 77.68 6.22 10869.48 1.75 

20 0.28 77.48 5.94 10585.79 1.76 

30 0.27 77.45 5.88 10481.65 1.76 

40 0.26 77.26 5.78 10303.61 1.76 

50 0.26 77.41 5.27 9869.77 1.78 

60 0.20 77.17 3.2 7779.0 1.86 

70 0.03 72.70 0.03 1000.0 1.86 

80 N/A N/A N/A N/A N/A 
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Figure 3. 5. Effects of Tr on MGM score, average scaled F1 score and CPU time in DW algorithm. 

3.1.7.4 Fixed Sliding Window (FW): 

In the FW algorithm, the cardinality of the 𝑊𝐼𝑘 is a critical issue therefore effects of the cardinality 

with eight different values for ACr with scenario1 and scenario 2 is studied, Table 3. 3.  Maximum 

MGM scores for scenario 1 and scenario 2 are reached while ACr is three and four, respectively. 

Figure 3. 6 presents effects of the ACr on MGM score, average scaled F1 score, and CPU time 

that are calculated by Equation (3. 6). 
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Table 3. 3. Effects of ACr on MGM score, average scaled F1 score and CPU time in FW algorithm. 

ACr 𝐹1̅̅̅̅  (%) 𝐶𝑃𝑈̅̅ ̅̅ ̅̅  (s) 𝑁𝑆𝑉̅̅ ̅̅ ̅̅  MGM Score 

Scenario 1 

1 67.03 0.12 1977.55 1.66 

2 69.85 0.29 2936.77 1.73 

3 73.77 0.50 3875.59 1.82 

4 73.97 0.85 4790.77 1.81 

5 74.57 1.16 5551.91 1.81 

10 75.40 2.93 8020.18 1.76 

15 76.18 5.65 10600.22 1.67 

20 77.09 8.44 12824.77 1.58 

Scenario 2 

1 67.55 0.12 1977.55 1.73 

2 71.13 0.30 2936.77 1.81 

3 74.59 0.51 3874.81 1.89 

4 75.50 0.83 4748.89 1.91 

5 75.94 1.17 5500.89 1.90 

10 76.82 2.98 7964.67 1.86 

15 78.07 5.70 10635.18 1.78 

20 78.58 8.66 13025.71 1.68 
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Figure 3. 6. Effects of ACr on MGM score, average scaled F1 score and CPU time in FW algorithm. 

3.1.7.5 Incremental Learning Dynamic Window (ILDW) 

Table 3. 4 presents performance of the ILDW with different Trs for scenario 1 and scenario 2. The 

maximum MGM scores for both scenarios are attained while Tr is tuned on 70%. Figure 3. 7 

presents effects of the Tr on average MGM score, average scaled F1 score and average scaled CPU 

time that are calculated by Equation (3. 6). 
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Table 3. 4. Effects of Tr on MGM score, average scaled F1 score and CPU time in ILDW algorithm. 

Tr (%) 𝑐𝑎𝑟𝑑̅̅ ̅̅ ̅̅  𝐹1̅̅̅̅  (%) 𝐶𝑃𝑈̅̅ ̅̅ ̅̅  (s) 𝑁𝑆𝑉̅̅ ̅̅ ̅̅  MGM Score 

Scenario 1 

10 0.398 78.30 8.81 14609.80 1.59 

20 0.397 78.30 8.76 14596.08 1.59 

30 0.390 78.26 8.49 14357.36 1.60 

40 0.382 78.05 8.10 14071.08 1.61 

50 0.373 77.85 7.78 13757.88 1.62 

60 0.291 76.63 4.90 11035.16 1.71 

70 0.041 75.26 1.49 5707.60 1.81 

80 0.039 80.26 15.63 19358.72 1.36 

90 0.039 80.26 15.64 19357.26 1.36 

Scenario 2 

10 0.286 78.58 4.97 10804.6 1.82 

20 0.278 78.43 4.76 10540.32 1.83 

30 0.275 78.42 4.58 10438.68 1.83 

40 0.270 78.29 4.55 10270.16 1.83 

50 0.260 77.83 4.31 9924.2 1.83 

60 0.204 77.36 2.90 8009.16 1.87 

70 0.042 74.75 1.01 4720.28 1.88 

80 0.039 78.32 17.34 20369.64 1.34 

90 0.039 78.32 17.35 20369.46 1.34 
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Figure 3. 7. Effects of Tr on MGM score, average scaled F1 score and CPU time in ILDW algorithm. 

3.1.8 Result for Scenario 3, 4, 5, 6 

In order to maximize MGM score, the optimum value of parameters for each algorithm are 

implemented. For FW algorithm, ACr is tuned to be three and for DW and ILDW the Tr is adjusted 

on 70%. FD updating algorithms are compared by four scenarios, Table 3. 5 presents the results 

of six updating algorithms with these scenarios. 

 For scenario 3 and scenario 4 ILDW has better performance in terms of MGM score, by 1.88 and 

1.99, respectively. In the scenario 3, the assigned MGM score to the NUC is 1.74. This implies 

that for scenario 2 updating algorithms that their assigned MGM scores are less than 1.74 are not 

efficient algorithms, and this could be generalized for the rest of the scenarios. In scenario 3, 

although the 𝐹1̅̅̅̅  score for the IL is 79.07%, its 𝐶𝑃𝑈̅̅ ̅̅ ̅̅  time of training has a large value, 16.72 s, 

which makes IL an inefficient algorithm. In scenario 2, minimum  𝑁𝑆𝑉̅̅ ̅̅ ̅̅  is related to NUC and then 

DW while in the scenario 4 the simplest (minimum 𝑁𝑆𝑉)̅̅ ̅̅ ̅̅ ̅ model after NUC is FW.  
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In scenario 4, ILDW not only has the highest MGM score, but also it achieves to the highest 𝐹1̅̅̅̅  

score. For the scenario 5 and 6 assigned MGM scores to DW have the greatest values. In the 

scenario 5 the highest 𝐹1̅̅̅̅  score is obtained by IL, but consumed 𝐶𝑃𝑈̅̅ ̅̅ ̅̅  time of training, 17.99 s, 

puts it far from an efficient algorithm. In the scenario 5, assigned MGM score to the FW algorithm 

is less than NUC that implies weakness of FW while hidden context scenario has unpredictable 

profiles with the sharp changes.  

 In the scenario 6, similar to other scenarios the highest 𝐹1̅̅̅̅  score is achieved by IL with the highest 

𝐶𝑃𝑈̅̅ ̅̅ ̅̅  time of training. Figure 3. 8 compares presented FD updating algorithms in terms of MGM 

score, average scaled F1 score, and average CPU time, calculated by Equation (3. 6). 
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Table 3. 5. Comparison of six FD updating algorithms by four scenarios. 

Scenario 3 

 𝐹1̅̅̅̅  (%) 𝐶𝑃𝑈̅̅ ̅̅ ̅̅  (s) 𝑁𝑆𝑉̅̅ ̅̅ ̅̅  MGM Score 

NIL 78.42 25.45 21185.32 1.00 

NUC 68.27 0.04 1000 1.74 

IL 79.07 16.72 20105.84 1.36 

FW(3) 74.29 0.52 3875.18 1.87 

DW 71.49 0.049 1183.67 1.82 

ILDW 75.08 0.85 4412.3 1.88 

Scenario 4 

NIL 76.74 26.35 21812.0 1.00 

NUC 67.34 0.03 1000 1.75 

IL 77.29 17.83 20885.96 1.34 

FW(3) 76.17 0.51 3867.10 1.97 

DW 77.50 0.98 4686.36 1.98 

ILDW 77.80 0.91 4670.16 1.99 

Scenario 5 

NIL 78.39 25.71 21640.56 1.00 

NUC 67.76 0.03 1000 1.73 

IL 79.00 17.99 20797.02 1.32 

FW(3) 68.17 0.51 3845.18 1.72 

DW 77.18 0.30 2895.87 1.96 

ILDW 74.10 0.34 3107.2 1.88 

Scenario 6 

NIL 76.37 25.92 22121.58 1.00 

NUC 67.11 0.03 1000 1.76 

IL 77.95 18.75 21208.4 1.32 

FW(3) 70.40 0.51 3839.38 1.82 

DW 76.5 0.38 2953.02 1.99 

ILDW 74.92 0.47 3322.72 1.94 
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Figure 3. 8. Comparison of six FD updating algorithms by four scenarios. 
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3.1.9 Conclusions 

Two types of FD updating algorithms, classification based and sample based, for handling CD in 

the process are investigated. Moreover, in one of the proposed updating algorithm, ILDW, these 

two approaches are simultaneously employed. The aim of the proposed algorithms, DW and 

ILDW, is providing data window for, dynamically and efficiently, updating the FD system. For 

comparing FD updating methods, MGM score is defined based on weighted F1 score and CPU 

time of training. Six FD updating algorithms, including IL, NIL, NUC, FW, DW and ILDW are 

analyzed with four scenarios of hidden contexts. In all the scenarios, DW and ILDW have higher 

MGM score in comparison with the other algorithms. The results prove the efficiency of the 

suggested algorithms for forgetting redundant information and FD updating. 
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3.2 Characterizing the Concept Drift 

In this section, a methodology for implicit quantification of the change in CD amount is provided. 

The method consists of an incremental learned classifier and non-automatic clustering methods. 

The proposed algorithm would provide information for updating either by adjusting or by 

retraining.  
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3.2.1 Introduction 

Existence of the CD could lead to the deterioration of the FDD performance thus various methods 

have been developed for FDD updating in order to manage CD. Although most of the methods 

available for FDD updating are able to update it and keep FDD accuracy in the acceptable range, 

they usually do not provide information about changes in CD amount (magnitude). The estimation 

of changes in amount of the CD in the process is of essential importance because the continuous 

FDD updating, disregarding magnitude of the CD, could easily drive the process to unsafe 

operating conditions.  

 In the explicit FDD updating methods, some statistical characteristics of the samples for CD 

detection are traced. Among them DDM [135], EDDM [141] and STEPD [130] methods are more 

common [15] [142]. DDM detects CD by analyzing the error rate in classification; EDDM is 

similar, but uses the distance between two classification errors rather than the error rate; STEPD 

monitors the predictions, and it has two thresholds for significance levels of the CD detection and 

warning about CD. Classification accuracy is among widely used CD indicators especially by 

integrated classification algorithms. The classification accuracy could be calculated with any of 

the performance indices that are applied in the literature [15] [143].  

 In [144], for monitoring changes in CD amount, two transformation functions, Hotelling’s 𝑇2and 

Q statistic, are applied. In the proposed framework, the arriving datasets are initially classified by 

incremental learned classifiers. Then, samples are transformed into new space with the 

transforming functions. The transforming functions are provided for each class with samples of 

the reference dataset, which is an arbitrary dataset. Next, samples of the reference dataset and 

arriving dataset for each class, in new space, are compared based on RMSE. For the applied 

scenarios, results show that the proposed framework could detect the CD in the process even for 

considerably trivial of it. 

This section presents a methodology for supervised tracing of changes in the CD amount. In regard 

to “precision” definition a new index is suggested that could provide information about changes 

in the CD amount. In the methodology, after classifying arriving datasets, and with the aid of non-

automatic clustering samples of each class are compared to the related class of reference dataset. 
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The proposed framework is tested on CSTR case study while reducing value of heat transfer 

coefficient is a cause of the CD. 

.  

3.2.2 Methodology 

Assume datasets arrive in the fixed TI, Equation (3. 7): 

𝑋𝑘 = (

𝑥𝑘11 ⋯ 𝑥𝑘1𝐽
⋮ ⋱ ⋮

𝑥𝐾𝐼1 … 𝑥𝑘𝐼𝐽
) , 𝒙𝑘𝑖 = (𝑥𝑘𝑖1, 𝑥𝑘𝑖2…… . . 𝑥𝑘𝑖𝐽) 

3. 7 

The proposed framework is considered supervised thus there is a function such as L that assigns 

each sample to one class, Equation (3. 8): 

𝐿(𝒙𝑘𝑖) = 𝑐  , 𝑐 ∈ {0,1, … . 𝐶}     ∀ 𝒙𝑘𝑖 
3. 8 

In which, 0 is label of normal class. 

Accordingly, each dataset 𝑋𝑘 could be classified into different classes, Equation (3. 9): 

𝑋𝑘 =⋃𝛤𝑘𝑐
∀𝑐

= {𝛤𝑘0, 𝛤𝑘1, … . . 𝛤𝑘𝐶} 3. 9 

In which 𝛤𝑘𝑐 is defined by Equation (3. 10): 

𝛤𝑘𝑐 = {𝒙𝑘𝑖|𝐿(𝒙𝑘𝑖) = 𝑐} 
3. 10 

Each 𝛤𝑘𝑐 could have a different number of samples, Equation (3. 11): 

𝛤𝑘𝑐 = (

𝑥𝑘11 … 𝑥𝑘1𝐽
⋮ ⋱ ⋮

𝑥𝑘𝑎1 … 𝑥𝑘𝑎𝐽
)  3. 11 
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An arbitrary dataset as reference dataset 𝑋𝑘∗ must be selected, Equation (3. 12): 

𝑋𝑘∗ = (

𝑥𝑘∗11 ⋯ 𝑥𝑘∗1𝐽
⋮ ⋱ ⋮

𝑥𝑘∗𝐼1 … 𝑥𝑘∗𝐼𝐽
) , 𝑋𝑘∗ =⋃𝛤𝑘∗𝑐

∀𝑐

= {𝛤𝑘∗0, 𝛤𝑘∗1, … . 𝛤𝑘∗𝐶},

𝛤𝑘∗𝑐 = (

𝑥𝑘∗11 ⋯ 𝑥𝑘∗1𝐽
⋮ ⋱ ⋮

𝑥𝑘∗𝑏1 … 𝑥𝑘∗𝑏𝐽
)   

3. 12 

In the proposed framework, for each class of each dataset the Augmented Dataset (AG) must be 

made, Equation (3. 13): 

𝐴𝐺𝑘𝑐 = 𝛤𝑘∗𝑐 ∪  𝛤𝑘𝑐 =

(

 
 
 
 

𝑥𝑘∗,1,1 ⋯ 𝑥𝑘∗,1,𝐽
⋮ ⋱ ⋮

𝑥𝑘∗,𝑏,1 … 𝑥𝑘∗,𝑏,𝐽
𝑥𝑘,𝑏+1,1 … 𝑥𝑘,𝑏+1,𝐽

⋮ ⋱ ⋮
𝑥𝑘,𝑏+𝑎,1 … 𝑥𝑘,𝑏+𝑎,𝐽)

 
 
 
,

𝐴𝑘 =⋃𝐴𝑘𝑐 =

∀𝑐

{𝐴𝐺𝑘0 , 𝐴𝐺𝑘1, ……𝐴𝐺𝑘𝐶 } 

3. 13 

In the next step, the 𝐴𝐺𝑘𝑐 must be processed with the Non Automatic Clustering Function (NACF), 

Equation (3. 14): 

(𝑚𝑘𝑐, 𝑛𝑘𝑐) = 𝑁𝐴𝐶𝐹(𝐴𝐺𝑘𝑐) 
3. 14 

In which 𝑚𝑘𝑐, 𝑛𝑘𝑐 are made with non-automatic clustering of 𝐴𝐺𝑘𝑐 for having two clusters, 𝐴𝐺1𝑘𝑐 

and 𝐴𝐺2𝑘𝑐, Equation (3. 15): 

𝐴𝐺1𝑘𝑐 = (

𝑥𝑘11 … 𝑥𝑘1𝐽
⋮ ⋱ ⋮

𝑥𝑘𝑚1 … 𝑥𝑘𝑚𝐽
) , 𝐴𝐺2𝑘𝑐 = (

𝑥𝑘11 … 𝑥𝑘1𝐽
⋮ ⋱ ⋮

𝑥𝑘𝑛1 … 𝑥𝑘𝑛𝐽
), 

 𝑚 > 𝑛 →  𝑚𝑘𝑐 = 𝑚,    𝑛𝑘𝑐 = 𝑛  

 

3. 15 

Value of 𝑛𝑘𝑐 implies number of samples in each class that are clustered differently from the rest 

of samples. Accordingly, changes in Concept Drift Amount (𝑐𝑑𝑎) for each class of each dataset 

could be calculated by Equation (3. 16): 
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𝑐𝑑𝑎𝑘𝑐 =
𝑛𝑘𝑐

𝑚𝑘𝑐 + 𝑛𝑘𝑐
 3. 16 

 Regarding the definition of the precision, Equation (3. 17): 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 3. 17 

In which 𝑡𝑝 is TP and 𝑓𝑝 is FP. So  𝑃𝑘𝑐 would be defined with  

Equation (3. 18): 

𝑃𝑘𝑐 = 
𝑚𝑘𝑐

𝑚𝑘𝑐 + 𝑛𝑘𝑐
 3. 18 

Reformulating Equation (3. 16) results in Equation (3. 19): 

𝑐𝑑𝑎𝑘𝑐 = 1 − 𝑃𝑘𝑐 
3. 19 

The 𝑐𝑑𝑎𝑘𝑐 for each class could changes between zero to one. If there is no CD in 𝛤𝑘𝑐, the assigned 

value is zero, and if samples of 𝛤𝑘𝑐 are completely different from 𝛤𝑘∗𝑐, its value will be one. 𝐶𝐷𝐴𝑘 

is defined as a set of all 𝑐𝑑𝑎𝑘𝑐, Equation (3. 20): 

𝐶𝐷𝐴𝑘 = {𝑐𝑑𝑎𝑘0, 𝑐𝑑𝑎𝑘1, … 𝑐𝑑𝑎𝑘𝐶} 
3. 20 

Values in 𝐶𝐷𝐴𝑘 indicate the FD system must be either adjusted for trivial changes or retrained for 

significant changes. Figure 3. 9 summarize Equation (3.7) to Equation (3. 20) in which AV is 

Adjusting Value and RV is Retraining Value. AV and RV should be tuned, experimentally.  
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Figure 3. 9. Framework of monitoring changes in CD amount. 
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3.2.3 Case Study 

The applied case study is CSTR; the normal inlet concentration of the reactant is 5.1+vo 𝑚𝑜𝑙/𝐿, 

and  𝑣𝑜 ≈ 𝒩(𝜇 = 0, 𝜎 = 0.045 𝑚𝑜𝑙/𝐿) is Gaussian noise. Fault is defined as step change of the 

inlet concentration from its normal value to 5.13+vo 𝑚𝑜𝑙/𝐿. Heat transfer coefficient (𝐻0 =

4032 𝑘𝐽/ℎ.𝑚2. 𝐾) is designed to linearly decrease to reach 095*𝐻0 at the end of the operating 

time as the source of the CD. 12 datasets are collected each contains 4000 samples, and the first 

dataset is selected as the reference dataset, 𝑋1∗. 

3.2.4 Results 

 Figure 3. 10 presents 𝑐𝑑𝑎𝑘𝑐 of 12 datasets; they are calculated for normal (c=0) and faulty (c=1) 

samples, separately. Figure 3. 10 shows the proposed algorithm is able to trace CD changes in the 

process over the time. For normal samples, the 𝑐𝑑𝑎𝑘𝑐 increases from 0 in the first dataset (k=1) to 

0.16 in the last dataset (k=12) while for the faulty samples the 𝑐𝑑𝑎𝑘𝑐 increases from 0 in the first 

dataset (k=1) to 0.32 in the last dataset (k=12). 
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Figure 3. 10. Concept drift amount for normal (up) and fault 1 (down) 

3.2.5 Conclusions 

Existing methods of supervised FDD updating usually do not provide information about changes 

in CD amount. Therefore, in this section this necessity is addressed. The results through a 

benchmark case study illustrate the capabilities of the proposed framework for tracking changes 

of the CD amount. The framework is able to provide information along the operating time that can 

be used to prevent the process to reach unsafe operating conditions. As it is explained in the 

previous section, DW and ILDW algorithms use accuracy of the AC for deciding about retraining 

or adjusting the FD system. The provided framework for tracing the CD amount could be an 

alternative index that could assist DW and ILDW algorithms deciding about retraining or adjusting 

the FD system. 
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4.1 Unsupervised FDD Updating: Handling new Faults 

FDD systems for chemical processes have been studied profoundly in the literature mostly with 

the assumption of prior knowledge of condition labels (supervised learning). Among FDD 

methods, those that concentrate on the advent of novel conditions have received less attention. 

This problem has been commonly undertaken by ND methods with supervised approaches that are 

mainly developed to detect novel samples without a clear and general strategy for updating the 

FDD with them. This section addresses this problem by developing a hybrid automatic 

unsupervised data driven framework for FDD updating. It is composed of ND with OCCs to detect 

samples following novel patterns and automatic clustering to diagnose them according to novel 

clusters. An observer is incorporated for data processing and enhancing the FDD robustness. The 

FDD updating is performed by modifying the existing clusters and detecting new clusters for 

assembling models to predict them in an unsupervised automatic mode.  
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4.1.1 Introduction 

Managing abnormal situations have received great attention in recent years mainly because of its 

crucial role in preventing losses and safety issues. As process plants become more modern and 

complicated, it is essential to continuously update FDD methods in order to keep up with them 

[145]. The FDD approaches require all information about the classes to diagnose normal and faulty 

operation modes. However, some unknown classes to FDD may exist (due to the high complexity 

of the monitored process), or new operation modes and classes may appear [18]. Therefore, FDD 

systems must be equipped with methods that make them able to detect novel classes, timely. None 

of the ND methods could be seen as the best one as their abilities depend on statistical properties 

of data [16]. A reliable ND should have a tightly closed decision boundary on available samples, 

and its decision boundary should update over time based on the current concepts [146].  

In the literature, three terms, including ND, anomaly detection and outlier detection are used 

frequently; they must be clearly distinguished as they could be confused. The similarity of these 

three terms is that they are related to find out patterns that are different from learned patterns [74]. 

ND could be defined as recognition of the novel concepts that may refer to the following: 

Appearance of new concepts, changes in the current concepts, and presence of the noise in the 

current concepts [114]. In [147] and [148], ND is defined as recognition of input that differs in 

some respects from previous inputs. In [149], ND is defined as identification of abnormal 

behaviors from one regime to another. In [47], ND is addressed as a problem of identifying new 

patterns that are previously unseen. 

Anomaly and outlier are two terms used sometimes interchangeably [148]. In [150], anomaly 

detection is described as a task of finding samples that violate expected patterns, but they are not 

necessarily novel. Additionally, in contrast to anomaly detection approaches, those detected 

samples by ND methods could be incorporated into the FDD models. In [151], outliers are defined 

as those samples that are not consistent with the majority of the samples, and in [86] they are 

mentioned as a type of the data abnormality. In [152], outliers are defined as samples that appear 

to deviate noticeably from other samples. Outlier detection methods try to find out samples that 
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violate the normal behavior while ND methods seek for a set of samples that describe the new 

concepts [74]. 

ND approaches could be grouped as online and offline methods. For the offline ND methods three 

aspects are involved, including number of the classes associated with the known concepts, number 

of the classifiers, and supervised or unsupervised way of ND [74]. Considering number of classes, 

the known concept could be assumed that is made by only one class [153] or more classes [154]. 

Considering number of classifiers, they would be made by one classifier [155] or set of classifiers 

[156]. In unsupervised approaches, training phase requires only positive samples, and they could 

be categorized by [146]: SVM based [157], nearest neighbors based [158], clustering based [159], 

and probability density based [160] methods. 

One quite common method for ND is applying SVM based approaches; they make decision 

hyperplane boundary that encloses majority of training samples. New samples that fall outside the 

hyperplane are considered as novel samples [146] [161]. Nearest neighbors based techniques are 

founded on this assumption that positive samples lie near their neighborhoods while novel samples 

lie far away from their neighbors [146] [162]. In clustering based methods, training samples are 

grouped to some clusters, then new samples are checked as if they belong to existing clusters or 

not. The new samples are considered as novel samples if they do not belong to available samples 

[163].  

Probability density based approaches generate a simplified model of the training dataset 

distribution. In these approaches, type of the ND depends on linear or nonlinear distribution of 

data [48] [164]. Statistical approaches of ND are based on modeling data in consideration of its 

statistical properties, and estimating whether the test samples belong to the same distribution or 

not [16]. Statistical approaches of ND do density modeling with the training dataset and detect test 

samples as novel if they are in regions of low density. ND with the statistical approaches is grouped 

into two, including parametric and non-parametric approaches. The main difference between these 

two is that in non-parametric approaches there is no assumption on the statistical properties of data 

whereas in parametric approaches the default assumption is the Gaussian distribution of data [16]. 

However, for modeling more complex form of data distribution, other approaches must be applied 

[165] [166]. 
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Neural network based approaches are among those common methods that are applied for the ND. 

The advantage of these approaches is that few parameters need to be optimized for training 

networks, and no prior assumptions on the properties of data are made. A consideration of these 

approaches is that they cannot be retrained efficiently comparing with statistical models [17]. 

These approaches are useful if its architecture is selected correctly; a small network will have 

difficulties in learning while a large network may lead to overfitting and poor performance [148] 

[17]. 

 In online ND as samples arrive continuously, three tasks must be executed: Classification, ND 

and updating. The classification task assigns new samples to the defined classes or novel class 

[74]. Some approaches label the arriving samples as novel samples if the models consider them as 

new [167], but in another group of approaches first they are labeled as unknown, and then they are 

kept for more analysis [168]. In [74], the updating approaches for ND in data stream have been 

categorized with three criteria: First, as if the updating task is done with or without feedback; 

second, number of the classifiers; and third, type of the forgetting mechanism. The assumption for 

the methods that use the feedback is that the true labels for all samples are available. The style of 

updating with the different number of classifiers is different; whereas with one classifier the 

updating is usually based on incrementally learning approaches [167], with several classifiers the 

updating is based on training a new classifier and removing the old one [154].  

The FDD systems must learn and update with new classes or concepts that appear in the process. 

However, if they only learn without forgetting any so-called old or redundant information, their 

efficiency will decrease by the time. The importance of the forgetting strategies increases while 

there are many classes, and FDD monitors the process for a long time. Nevertheless, another 

problem sometimes appears in which the concepts or classes that are disappeared and forgotten by 

FDD appear again. This issue in the literature is addressed by recurring context. Obviously, when 

a class or concept reappears it is effort wasting if the FDD system takes them as a novel class and 

learn again from the scratch. Thus, in those ND approaches that forget the disappeared classes this 

problem must be considered in order to reduce false alarm rate, computational effort etc. [74]. This 

problem is quite common, but few works have addressed it [74] [169] [170] [171]. 

This section presents a hybrid data driven FDD framework based on OCCs and automatic 

clustering allowing novelty detection and FDD updating in an unsupervised manner. Most of the 
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researches in ND are only dedicated to detecting new classes, but not to the exploitation of this 

new knowledge. In order to address this issue, the proposed FDD framework automatically updates 

the FDD after diagnosing new class(es) by a set of OCCs and unsupervised automatic clustering. 

Moreover, MDK is incorporated as an observer that provides error features. The suggested FDD 

framework is implemented and validated with three tanks benchmark. 

4.1.2 Methodology 

In the following two subsections, first, the proposed unsupervised FDD updating framework is 

described then data processing with an observer is explained. 

4.1.2.1 Problem Definition and Proposed Framework 

The first part of the problem consists of a preliminary offline unsupervised classification 

(clustering) of the historical dataset into a collection of statistically different C process conditions 

(normal and faulty). Based on these C labels, unsupervised classification models, OCCs, need to 

be developed for efficiently classifying arriving samples. The problem is comprised of periodically 

updating the classification models to learn new process faults automatically.  

Consider an initial dataset, 𝑋, Equation (4. 1): 

𝑋 = (

𝑥11 ⋯ 𝑥1𝐽
⋮ ⋱ ⋮
𝑥𝐼1 … 𝑥𝐼𝐽

) 4. 1 

In which 𝒙𝑖 is, Equation (4. 2): 

𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2…… . . 𝑥𝑖𝐽) 
4. 2 

Assume no simultaneous faults so that this initial dataset 𝑋 may be automatically clustered into C 

disjoint subsets by a clustering function, 𝐶𝑙(𝑋, 𝛽). A cluster threshold parameter (𝛽) needs to be 

tuned as a minimum size for each subset, Equation (4. 3): 
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𝐶𝑙(𝑋, 𝛽)
 
⇒

{
 
 

 
 𝐴𝑐 𝑋      ∀𝑐 ∶  𝐴𝑐 ∩ 𝐴𝑞≠𝑐 = ∅  |𝐴𝑐| ≥  𝛽

 𝐵 = 𝑋\𝐴    (𝐴 ≡∪ 𝐴𝑐)

𝐶̅(𝒙𝑖) = 𝑐      ∀𝒙𝑖 ∈ 𝐴𝑐
𝐶̅(𝒙𝑖) = −1    ∀𝒙𝑖 ∈ 𝐵

 4. 3 

The function 𝐶̅(𝒙𝑖) provides the label for each sample 𝒙𝑖. Therefore, the labeled sets 𝐴𝑐, and 

consequently the complementary set B are determined. 

If the true label of each sample, 𝐿 (𝒙𝑖), was a priori known, the Clustering Accuracy (CA) of each 

subset could be assessed by means of Equation (4. 4), in which ⊻ is XOR and ¬ ⊻  is the negation 

of it. As an example, Table 4. 1 illustrates the accuracy by clustering a collection of samples into 

arbitrary set A2.  

𝐶𝐴𝑐 =
∑ ¬ ⊻ {𝐶̅(𝒙𝑖), 𝐿 (𝒙𝑖)}𝒙𝑖∈𝐴𝑐

|𝐴𝑐|
  ∀𝑐 

4. 4 

 

Table 4. 1. Assigned labels, true labels, XOR and negation of XOR for samples of arbitrary cluster, A2. 

𝐶̅(𝒙𝑖) 𝐿 (𝒙𝑖) ⊻ {𝐶̅(𝒙𝑖), 𝐿 (𝒙𝑖)} ¬ ⊻ {𝐶̅(𝒙𝑖), 𝐿 (𝒙𝑖)} 

2 4 1 0 

2 2 0 1 

2 3 1 0 

2 2 0 1 

2 2 0 1 

2 2 0 1 

   

Thus, four of six samples are predicted correctly and 𝐶𝐴2 = 4/6 = 0.66.  

Given the 𝐴𝑐 clusters, unsupervised classifiers are developed, accordingly. In order to set up the 

OCCs, each cluster is randomly divided into two disjoint subsets, including training subset, 𝐴𝑐
𝑇, 

and validation subset, 𝐴𝑐
𝑉, Equation (4. 5): 
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𝐴𝑐
𝑇 ∪ 𝐴𝑐

𝑉 = 𝐴𝑐   ,   𝐴𝑐
𝑇 ∩ 𝐴𝑐

𝑉 = ∅   ,   𝑏𝑒𝑖𝑛𝑔   |𝐴𝑐
𝑇| = 𝛼|𝐴𝑐|  𝑎𝑛𝑑   |𝐴𝑐

𝑉| = (1 − 𝛼)|𝐴𝑐|  
4. 5 

In which, 𝛼 must be selected.   

The prediction of each OCC for each sample, ℎ𝑐(𝒙𝑖) is set to meet the conditions in 

 Equation (4. 6): 

ℎ𝑐(𝒙𝑖) = {
1  𝑖𝑓 𝒙𝑖𝐴𝑐
0  𝑖𝑓 𝒙𝑖𝐴𝑐

   ∀ 𝒙𝑖   ↔  
∑ ℎ𝑐(𝒙𝑖)𝒙𝑖𝜖𝐴𝑐

𝑇

|𝐴𝑐
𝑇
|

= 1  ∀𝑐 4. 6 

Validation Prediction Performance (VPP) of each OCC can be calculated with respect to each 

validation set, Equation (4. 7), as well as an Overall Validation Prediction Performance (OVPP) 

of each OCC with respect to the whole set of validation data , Equation (4. 8): 

𝑉𝑃𝑃𝑐𝑞 =
∑ ℎ𝑐(𝒙𝑖)𝒙𝑖𝜖𝐴𝑞

𝑉

|𝐴𝑞
𝑉|

 ≤ 1   ∀𝑐, 𝑞 
4. 7 

𝑂𝑉𝑃𝑃𝑐 =
∑ ℎ𝑐(𝒙𝑖)𝒙𝑖𝜖∪𝐴𝑞

𝑉

|∪ 𝐴𝑞
𝑉|

≤ 1   ∀𝑐 
4. 8 

Given the set of OCCs and provided an acceptable performance for the historical/ initial dataset 

𝑋, the next step is using them for the classification of a new dataset 𝑋∗, Equation (4. 9): 

𝑋∗ = (

𝑥11
∗ ⋯ 𝑥1𝐽

∗

⋮ ⋱ ⋮
𝑥𝐼′1
∗ … 𝑥𝐼′𝐽

∗
) 4. 9 

Assume again the availability of the true label for each sample, 𝐿 (𝒙𝑖
∗), the Individual Prediction 

Performance (IPP) of each OCC could be estimated using Equation (4. 10):  

𝐼𝑃𝑃𝑐 =
∑ ¬ ⊻ {ℎ𝑐(𝒙𝑖

∗),𝐿 (𝒙𝑖
∗)}𝒙𝑖

∗∈𝑋∗

|𝑋∗|
  ∀𝑐, |𝑋∗| = 𝐼′  

4. 10 

The assumption of no simultaneous faults allows defining a net prediction given by the whole set 

of OCCs for each new sample, 𝐻(𝒙𝑖
∗), that assigns the new sample 𝒙𝑖

∗ to the A or B subsets. This 

is given by Equation (4. 11) and illustrated in Table 4. 2.  
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𝐻(𝒙𝑖
∗) =  {

c                         if  ⊻ {ℎ𝒄(𝒙𝑖
∗), ∀𝑐} 

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ¬ ⊻ {ℎ𝑐(𝒙𝑖
∗), ∀𝑐}

 4. 11 

 

Table 4. 2. Assigning 𝒙𝑖
∗ to the possible subsets. 

ℎ1(𝒙𝑖
∗) ℎ2(𝒙𝑖

∗) ℎ3(𝒙𝑖
∗) ⊻ {ℎ𝒄(𝒙𝑖

∗), ∀𝑐} ¬ ⊻ {ℎ𝑐(𝒙𝑖
∗), ∀𝑐} 𝐻(𝒙𝑖

∗) Cluster 

1 0 0 1 0 1 𝐴1 

0 1 0 1 0 2 𝐴2 

0 0 1 1 0 3 𝐴3 

0 0 0 0 1 0 𝐵 

1 1 1 0 1 0 𝐵 

1 1 0 0 1 0 𝐵 

1 0 1 0 1 0 B 

0 1 1 0 1 0 B 

 

Finally, the Net Prediction Performance (NPP) for the dataset 𝑋∗can be calculated based on 

Equation (4. 12): 

𝑁𝑃𝑃 =
∑ ¬ ⊻ {𝐻(𝒙𝑖

∗),𝐿 (𝒙𝑖
∗)}𝒙𝑖

∗∈𝑋∗

|𝑋∗|
 , |𝑋∗| = 𝐼′  

4. 12 

Following this scheme, the assignment of new samples to the unlabeled set B allows a quantitative 

criterion for updating the models once the size of B exceeds an Updating Threshold (UT), 

 ( |𝐵| ≥ 𝑈𝑇).  

The implementation of this scheme is done with the proposed framework that is presented in 

 Figure 4. 1 and Figure 4. 4 and has two main modules: The Offline Model Updating (OMU) 

module, Figure 4. 1, and the Online Monitoring (OM) module, Figure 4. 4. 

 The initial dataset, 𝑋, must be processed by the OMU module in order to determine the “cluster 

dataset” A, the classification models (OCCs), the UT value, and the unlabeled dataset, B. UT is 
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successively updated by the summation of the Updating Threshold Parameter (UTP) and the 

number of samples in the current dataset B ( 𝑈𝑇 ← 𝑈𝑇𝑃 + |B| ).  

 

Input 

Dataset

Class threshold 

parameter ( )

Automatic 

clustering

Clusters

filtering  

Cluster 

Dataset

A

Unlabeled 

Dataset

B

Training 

OCCs

Classification 

models

UT=|B|+UTP 

Offline Model Updating (OMU) 

 

Figure 4. 1. Proposed framework: OMU module. 

In Figure 4. 1 there are two black boxes corresponding to the functionality of the automatic 

clustering and OCCs. The type of implemented tools in these two black boxes could be replaced 

by other standard tools.  

The automatic clustering may deal with two types of changes. In the first type, arriving samples 

lead to extension or modification of existing clusters, Figure 4. 2  whereas in the second type, 

arriving samples make new clusters that are completely different from existing clusters, 

 Figure 4. 3. 
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Figure 4. 2. Extension of the existing cluster. 
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Figure 4. 3. Appearance of a new cluster. 

In the OM module, Figure 4. 4, the online samples are initially processed and then are classified 

by a set of classifiers, Equation (4. 11). The online samples that are diagnosed as elements of 

𝐴𝑐 subsets are discarded while those not clearly belonging to any of them are kept and assigned to 

𝐵∗dataset; 𝐵∗ is the unlabeled dataset in OM for online samples. The reason is based on this fact 

that while the OCCs could assign the online samples to the predefined clusters those samples do 

not have any new information for updating the border of the predefined cluster. On the other hand, 

assigned samples to the 𝐵∗ possibly could update the borders of the predefined cluster/subsets or 

make new cluster thus they are saved [46]. 

After adding each sample to the unlabeled dataset, 𝐵∗, in online monitoring module, a condition 

must be checked: “Do number of samples in the unlabeled dataset, B*, meet the UT?”, 

 Equation (4. 13):  

𝑖𝑓 |𝐵∗| ≥ 𝑈𝑇 4. 13 

Furthermore, for practical implementation another condition must be checked: “it is not updating?” 

that implies OMU is on progressing or not. If answers of both conditions are “Yes” then OMU 
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will be triggered by OM. The inlet dataset of OMU, 𝑋∗, is made with the union of the cluster 

dataset, A, and  𝐵∗ based on Equation (4. 15): 

𝐴 = (

𝑥11 ⋯ 𝑥1𝐽
⋮ ⋱ ⋮

𝑥𝐼′′1 … 𝑥𝐼′′𝐽
), 𝐵∗ = (

𝑥11
∗ ⋯ 𝑥1𝐽

∗

⋮ ⋱ ⋮
𝑥𝐼′′′1
∗ … 𝑥𝐼′′′𝐽

∗
) , 𝑋∗ = 𝐴 ∪ 𝐵∗  

𝑋∗=

(

 
 
 
 

𝑥1,1
⋮

…
𝑥1,𝐽
⋮

𝑥𝐼′′,1
𝑥(𝐼′′+1),1
∗ ⋱

𝑥𝐼′′,𝐽
𝑥(𝐼′′+1),𝐽
∗

⋮
𝑥(𝐼′′+𝐼′′′),1
∗ …

⋮
𝑥(𝐼′′+𝐼′′′),𝐽
∗

)

 
 
 
 

= (

𝑥11
∗ ⋯ 𝑥1𝐽

∗

⋮ ⋱ ⋮
𝑥𝐼′1
∗ … 𝑥𝐼′𝐽

∗
)  

4. 14 
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Figure 4. 4. Proposed framework: OM module. 
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By calling OMU, a new round of automatic clustering with the updated dataset, 𝑋∗, must be done. 

The automatic clustering could be performed with the combination of cluster dataset, A, and 

unlabeled dataset, 𝐵∗ as 𝑋∗ and with one round of automatic clustering, based on Equation (4. 3). 

Although increasing number of the clusters, could result in increasing the possibility of confusing 

the clusters. Therefore, an alternative method is suggested and implemented.  

An alternative and more reliable way is to merge the unlabeled dataset 𝐵∗ with only one existing 

cluster 𝐴𝑐, and with the rest at subsequent updating steps. First updating step produces the clusters 

𝐴0 
𝑢  and 𝐵∗1 by processing the dataset 𝑋∗ = 𝐴0 ∪ 𝐵

∗0 in which 𝐵∗0 = 𝐵∗. Second updating step 

produces clusters 𝐴1 
𝑢  and 𝐵∗2 by processing the dataset 𝑋∗ = 𝐴1 ∪ 𝐵

∗1 and so on, 

 Equation (4. 15): 

𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝐴0        𝐶𝑙((𝐴0 ∪ 𝐵
∗0), 𝛽) 

 
⇒   𝐴0 

𝑢 , 𝐵∗1

𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝐴1        𝐶𝑙((𝐴1 ∪ 𝐵∗1), 𝛽) 
 
⇒  𝐴1 

𝑢 , 𝐵∗2

⋮
𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝐴𝑐     𝐶𝑙((𝐴𝑐 ∪ 𝐵∗𝑐), 𝛽)  

 
⇒ 𝐴𝑐 

𝑢 , 𝐵∗(𝑐+1)

 4. 15 

Thus, some samples of 𝐵∗𝑐 may be clustered with 𝐴𝑐 and vice versa. Those samples of 𝐴𝑐 that are 

clustered into 𝐵∗𝑐are removed because they may confuse the clustering function 𝐶𝑙 in the next 

updating rounds. Of course, the outcomes of this scheme are sequence dependent, but tests have 

been run proving that different updating sequences produce the same outcomes within 1%  

changes in CA and CPU time. 

4.1.3 Data Processing 

The MDK predictor of the three tanks includes the construction and the training of three dynamic 

models. Each MDK predictor approximates the future value of each tank level as a function of the 

previous values of the system inlets 𝑄1(𝑡), 𝑄2(𝑡) and the levels ℎ1(t), ℎ2(t), ℎ3(t). As a first 

modeling trail and in the same time in order to keep the dynamic structure of the models as simple 

as possible, the process is assumed to have no significant delay, Equation (4. 16): 
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ℎ̂1(𝑡 + 1) = 𝑓1[ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡), 𝑄1(𝑡), 𝑄2(𝑡) ]

ℎ̂2(𝑡 + 1) = 𝑓2[ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡), 𝑄1(𝑡), 𝑄2(𝑡)]

ℎ̂3(𝑡 + 1) = 𝑓3[ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡), 𝑄1(𝑡), 𝑄2(𝑡)]

} 4. 16 

A fault free random signal of the process input variables has been used for training the MDKs 

predictor that will be used to estimate the process outputs (tank levels). The observer is validated 

and its performance assessed; Figure 4. 5-left shows the validation inlet scenarios while 

 Figure 4. 5-right shows the predicted tank levels (dotted red lines) compared to the exact outputs 

(solid black lines) and the process measured outputs (solid blue lines). The results illustrate the 

very high prediction accuracy of the observer, and its efficient ability to identify the real underlying 

behavior of the outputs. The observer achieves a very small normalized root mean square error of 

1.05%, 1.1%, 1.02 % for each model respectively. The results also emphasize the high capabilities 

of the MDK observer to predict a multivariate behavior over a relatively large time horizon. 

 By applying the observer for feature extension, instead of processing dataset 𝑋,  

Equation (4. 17), all the tasks that described in previous sections will be done by error set, E, 

Equation (4. 18): 

𝑋 = (

𝑥11 ⋯ 𝑥1𝐽
⋮ ⋱ ⋮
𝑥𝐼1 … 𝑥𝐼𝐽

) , 𝑋 = (𝒙1, 𝒙2, … , 𝒙𝐽), 𝒙𝑗 = (𝑥1𝑗, 𝑥2𝑗 …… . . 𝑥𝐼𝐽)   
4. 17 

𝐸 = (

𝑒11 ⋯ 𝑒1𝐽′

⋮ ⋱ ⋮
𝑒𝐼1 … 𝑒𝐼𝐽′

) , 𝐸 = (𝒆1, 𝒆2, … , 𝒆𝐽′), 𝒆𝑗 = (𝑒1𝑗, 𝑒2𝑗 …… . . 𝑒𝐼𝑗) 
4. 18 
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Figure 4. 5. Input-output signal for the MDKs observer validation. 
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4.1.4 Results 

The proposed FDD framework is validated and assessed with the fault pattern given in 

 Figure 4. 6. The initial dataset, 𝑋, is assumed to have two clusters: Nr and F1. During the time 

horizon (1000 s), two new faults, F2 and F3, appear while the fault pattern switches between 

different conditions/clusters. The complete time horizon is studied in four equal time intervals (250 

s). The results from this fault pattern are next organized in figures showing the net 

prediction (𝐻(𝒙𝑖
∗)), comparative tables presenting prediction performance (𝐼𝑃𝑃𝑐 and NPP), 

clustering accuracy (𝐶𝐴𝑐), and a table of classification validation (𝑉𝑃𝑃𝑐𝑞 and 𝑂𝑉𝑃𝑃𝑐).  

Initial Dataset

(100 Nr,120 F1)

Time (S)

1 250 500 750

100 s Nr

50 s F2

100 s F1

100 s Nr

100 s F1

50 s F2

100 s Nr

100 s F2

50 s F3

100 s F3

100 s F1

50 s F2

1000

Figure 4. 6. Fault pattern. 

The OMU module is executed for the first time on the initial dataset to produce: The “cluster 

dataset”, A; the classification models; the updating threshold, UT; and the unlabeled dataset, B. 

Next, during the first 250 s of the time horizon, 50 samples of F2 appear in the fault scheme. Then 

they increase to 100 samples during the second period (250 s to 500 s). Since F2 samples do not 

exist in the initial dataset, the framework must subsequently detect them as novel samples.  

As UTP is regulated to be 80 samples, and initially there is no sample in B, it is expected at 480 s 

for the first time OMU is called. Regarding that UTP is tuned experimentally it could have different 

values from its adjusted amount, 80 samples. If the UTP value is too small, the number of calling 

the OMU will increase as well as the computational effort. On the other hand, if it is too large, the 

framework cannot timely detect the new clusters.  

The cluster threshold parameter, 𝛽, is set on 30 samples. If number of samples in each newly 

created cluster is greater than 𝛽, a new OCC will be trained based on it. Similar to UTP, there are 

two extreme limits for 𝛽. If it is too small, the trained OCCs will be weak, and if it is too large, the 

OCCs of the new conditions will be developed too late for timely diagnosis. 
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4.1.5 Running the Framework 

The fault pattern, Figure 4. 6, is assessed and discussed with two different inlet flowrate scenarios, 

Figure 4. 7. In scenario1, Figure 4. 7-left, both inlet flowrates are steady and fixed at 𝑄1(𝑡) =

3 10 − 3 𝑚3/𝑠 𝑎𝑛𝑑 𝑄2(𝑡) = 2.5 10 − 3 𝑚3/𝑠. In scenario 2, Figure 4. 7-right, the two inlet 

flowrates oscillating between 1 to 3 10-3 m3/s (𝑄1 =  𝑠𝑖𝑛 (3 · 𝑡), 𝑄2 =  𝑐𝑜𝑠 (1.5 · 𝑡)). Scenario 1 

could be regarded as simpler one while scenario 2 is characterized by an extreme dynamic profile.  

Figure 4. 7. Scenario 1 (left) and Scenario 2 (right) of the inlet flowrates. 

Figure 4. 8 and Figure 4. 9 illustrate the results for these two scenarios with the same fault pattern. 

Figure 4. 8 presents the net prediction, 𝐻(𝒙𝑖
∗), of the OCSs for scenario 1. OMU is called twice 

and each update takes 16 s, approximately. In the first 250 s, NPP is 95.2%. After detecting 80 

new samples, the first call of OMU starts at time 475 s, and OCS_F2 becomes available 

 since 491 s. From 501 s to 750 s, the NPP of the three classifiers (OCS_Nr, OCS_F1 and OCS_F2) 

is 89.6%, resulting from 26 wrong predictions out of 250. The second OMU call starts from 

 760 s, and then from 776 s the OCS_F3 starts monitoring the process. Figure 4. 8 shows how 

before 776 s F3 samples are labeled as 𝐵∗and after that, they are diagnosed as F3. For the last 

interval (750 s to 1000 s) NPP involves all four OCSs and its value is 94%. The overall NPP value 

for the whole time horizon (1 s to 1000 s) is 93.1%. In Figure 4. 8, the thin striped rectangle in 

front of the F2 from 1 s to 491 s indicates during that time interval F2 samples are not diagnosed 

as a defined class. For F3 samples the thin striped rectangle is drawn till 776 s and after that they 
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are diagnosed as the defined class. The thin striped rectangles in Figure 4. 9 for samples of F2 and 

F3 have the same meaning. 

 

Figure 4. 8. Framework performance with scenario 1. 

Figure 4. 9 presents net predictions, 𝐻(𝒙𝑖
∗) of the OCSs for scenario 2. The same fault pattern 

causes two OMU calls, again each one takes 16 s, approximately. The first updating starts at 

 470 s and the OCS_F2 is added at 486 s.  The second update starts at 819 s and then at the 835 s 

the OCS_F3 is incorporated into the FDD system. Among wrong diagnosed samples no one is 

confused with F2 while there is only one sample that is confused with F3.  

.  
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Figure 4. 9. Framework performance with scenario 2. 

Table 4. 3 presents the performance assessment, NPP and 𝐼𝑃𝑃𝑐values, for all OCSs in all the time 

intervals. For scenario1 and scenario 2, in the first time interval, there is quite high NPP with two 

OCSs and there are only 12 and 11 wrong predictions, respectively. This confirms that the OMU 

on the initial dataset is executed successfully. In the second time interval, 251 s to 500 s, in scenario 

1 there are 16 wrong predictions while in scenario 2 there are 15 wrong predictions. In this time 

interval, OCS_F2 is added; in scenario 1 it predicts nine samples that two of them are diagnosed 

wrongly, and in scenario 2 it has seven correct predictions and seven incorrect predictions.  

In the third time interval, 501 s to 750 s, NPP based on three OCSs for scenario1 is 89.6%, and for 

scenario 2 is 88%. In this time interval for both scenarios, newly updated OCSs, including OCS_Nr 

and OCS_F1, and added OCS, OCS_F2, have quite high IPPs. This proves that the first call of 

OMU is performed effectively. Then, in the last time interval for both scenarios, by the second call 

of the OMU the new OCS, OCS_F3, is added, and it has quite high IPP. In this time interval in the 

scenario 1, IPP of the OCSs and NPP prove the second call of the OMU is done suitably, too. But 

in the scenario 2, IPP of the OCS_F1 is 67.6% and consequently NPP is relatively low, 55.6%. 

The OCS_F1 confuses F1 with F3; this could arise from either OMU tasks such as clustering and 
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training of the OCS or defects in the OCS algorithm. In the next section details of the clustering 

and classification of the OMU is discussed.   

Table 4. 3. IPP and NPP of the classifiers for two scenarios. 

 Scenario 1 Scenario 2 

1 s  t  250 s Correct Incorrect IPP/NPP (%) Correct Incorrect IPP/NPP (%) 

OCS_Nr 241 9 96.4 240 10 96.0 

OCS_F1 239 11 95.6 239 11 95.6 

H (Net prediction) 238 12 95.2 239 11 95.6 

251 s  t  500 s Correct Incorrect IPP/NPP (%) Correct Incorrect IPP/NPP (%) 

OCS_Nr 239 11 95.6 246 4 98.4 

OCS_F1 242 8 96.8 244 6 97.6 

OCS_F2 7 2 77.7 7 7 50.0 

H (Net prediction) 234 16 93.6 235 15 94.0 

501 s  t  750 s Correct Incorrect IPP/NPP (%) Correct Incorrect IPP/NPP (%) 

OCS_Nr 237 13 94.8 242 8 96.4 

OCS_F1 250 0 100.0 237 13 94.8 

OCS_F2 235 15 94.0 238 12 95.2 

H (Net prediction) 224 26 89.6 220 30 88.0 

750 s  t  1000 s Correct Incorrect IPP/NPP (%) Correct Incorrect IPP/NPP (%) 

OCS_Nr 246 4 98.4 245 5 98.0 

OCS_F1 249 1 99.6 169 81 67.6 

OCS_F2 236 14 94.4 235 15 94.0 

OCS_F3 224 0 100.0 148 15 90.7 

H (Net prediction) 235 15 94.0 139 111 55.6 

1 s  t  1000 s Correct Incorrect IPP/NPP (%) Correct Incorrect IPP/NPP (%) 

OCS_Nr 964 36 96.4 973 27 97.3 

OCS_F1 980 20 98.0 889 111 88.9 

OCS_F2 478 31 93.9 480 34 93.3 

OCS_F3 224 0 100.0 148 15 90.7 

H (Net prediction) 931 69 93.1 835 165 83.5 
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4.1.6 Evaluation of the Automatic Model Updating: Clustering 

and Validation of the Classifiers 

In this section, details of the OMU performance on the initial dataset, and online datasets is 

discussed. CPU time of clustering refers to the required time for partitioning the input dataset into 

clusters while CPU time of classification refers to the required time of training. After diagnosing 

the clusters by automatic clustering, 𝛼 in Equation (4. 5) is selected to be 0.8.  

Table 4. 4 presents results of the clustering tasks for both scenarios based on CA, CPU time and 

percentage of the removed samples. For both scenarios, all the clustering tasks are reported with 

the high CAs. Clustering tasks of the first and second OMU calls are done by applying 

 Equation (4. 15); reasonable CAs prove the consistency of it. For both scenarios, in the second 

OMU call, although new cluster is added, CPU time of the clustering comparing with the first 

OMU call does not meaningfully change.  

After clustering task, the provided subsets are divided into training and validation sets. Table 4. 5 

presents the 𝑉𝑃𝑃𝑐𝑞, and 𝑂𝑉𝑃𝑃𝑐 for the initial dataset and two OMU calls. In the first OMU call, 

performance of the OCS_F2 for detecting F1 samples, as negative samples, is 𝑉𝑃𝑃21 = 52.6% 

while in scenario 2 is 63.1%. In the second OMU call for both scenarios 𝑉𝑃𝑃21 improve to 100% 

that implies effectiveness of second OMU call for updating OCS_F2.  

In scenario 2 and for both OMU calls, F1 samples are well clustered, Table 4. 4; this proves that 

low performance of the OCS_F1 in the last time interval of the scenario 2 (reported in Table 4. 3) 

is not because of the clustering task. On the other hand, OVPPs of the OCS_F1 in scenario 2 for 

both OMU calls are 98.1% and 94.2%, respectively. These imply that the poor performance of the 

OCS_F1 in the last time interval of the scenario 2 is not because of the training task of the classifier. 

Thus, the relatively poor performance of the OCS_F1 in the last time interval of the scenario 2 is 

because of the OCS algorithm. Advanced kernel functions for the OCS or replacing OCS with 

better OCC could be an effective way, but studying them is beyond scope of this section. 
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Table 4. 4. Clustering performance for scenario 1 and scenario 2.  

 

  

 Scenario 1 Scenario 2 

 Initial Dataset 

Cluster 
Consisting of (%) Consisting of (%) 

Nr F1 F2 F3 Nr F1 F2 F3 

Nr 98 2 - - 97 3 - - 

F1 0 100 - - 0 100 - - 

F2 - - - - - -  - 

F3 - - - - - - - - 

𝐶𝐴 (%) 99 98.5 

CPU time (s) 3.2 3.2 

Removed samples (%) 0 0 

 First OMU 

Cluster 
Consisting of (%) Consisting of (%) 

Nr F1 F2 F3 Nr F1 F2 F3 

Nr 92.9 3.9 3.2 - 92.1 0 7.9 - 

F1 0 100 0 - 0 100 0 - 

F2 0 3 97 - 0 3.1 96.9 - 

F3 - - - - - - - - 

CA (%) 95.0 95.3 

CPU time (s) 15.7 15.8 

Removed samples (%) 1 0.7 

 Second OMU 

Cluster 
Consisting of (%) Consisting of (%) 

Nr F1 F2 F3 Nr F1 F2 F3 

Nr 94.2 3.3 2.5 0 89.3 3.5 6.1 1.1 

F1 0 97 1 2 0 98 0 2 

F2 0 1.9 98.1 - 0 1.4 98.6 0 

F3 0 0 1.2 98.8 0 1.5 0 98.5 

CA (%) 95.2 94.1 

CPU time (s) 15.7 15.5 

Removed samples (%) 1.4 1.6 
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Table 4. 5. Validation of the classifiers. 

 
Initial Dataset 

Scenario 1 Scenario 2 

Classifier 

𝑉𝑃𝑃𝑐𝑞(%) 

𝑂𝑉𝑃𝑃𝑐 (%) 

𝑉𝑃𝑃𝑐𝑞 (%) 

𝑂𝑉𝑃𝑃𝑐 (%) 
Nr 

(q =0) 

F1 

(q =1) 

F2 

(q =2) 

F3 

(q=4) 

Nr 

(q =0) 

F1 

(q =1) 

F2 

(q =2) 

F3 

(q =3) 

OCS_Nr (c=0) 100 100 - - 100 95 100 - - 97.4 

OCS_F1 (c=1) 100 94.7 - - 97.4 100 94.7 - - 97.4 

OCS_F2 (c=2) - - - - - - - - - - 

OCS_F3 (c=3) - - - - - - - - - - 

CPU time (s) 0.1 0.1 

 First OMU 

 

𝑉𝑃𝑃𝑐𝑞 (%) 

𝑂𝑉𝑃𝑃𝑐 (%) 

𝑉𝑃𝑃𝑐𝑞 (%) 

𝑂𝑉𝑃𝑃𝑐 (%) 
Nr 

(q =0) 

F1 

(q =1) 

F2 

(q =2) 

F3 

(q=4) 

Nr 

(q =0) 

F1 

(q =1) 

F2 

(q =2) 

F3 

(q=4) 

OCS_Nr (c=0) 96.1 100 100 - 98.1 90.9 100 100 - 96.2 

OCS_F1 (c=1) 100 89.4 100 - 96.3 100 94.7 100 - 98.1 

OCS_F2 (c=2) 100 52.6 80 - 80 100 63.1 91.6 - 84.9 

OCS_F3 (c=3) - - - - - - - - - - 

CPU time (s) 0.1 0.1 

 Second OMU 

 

𝑉𝑃𝑃𝑐𝑞 (%) 

𝑂𝑉𝑃𝑃𝑐 (%) 

𝑉𝑃𝑃𝑐𝑞 (%) 

𝑂𝑉𝑃𝑃𝑐 (%) 
Nr 

(q =0) 

F1 

(q =1) 

F2 

(q =2) 

F3 

(q=4) 

Nr 

(q =0) 

F1 

(q =1) 

F2 

(q =2) 

F3 

(q=4) 

OCS_Nr (c=0) 100 95 100 100 98.6 87.5 100 100 100 95.6 

OCS_F1 (c=1) 96.1 95 100 87.5 94.4 100 85 100 92.3 94.2 

OCS_F2 (c=2) 96.1 100 100 100 98.6 95.8 100 100 100 98.5 

OCS_F3 (c=3) 100 100 100 100 100 100 90 100 69.2 91.3 

CPU time (s) 0.1 0.1 
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4.1.8 Conclusions 

Updating ability is an essential necessity to any FDD system, especially if it is intended to perform 

in an unsupervised manner. Although the ND methods are reported in the literature, the strategy 

for updating the FDD with the detected novel samples is hardly addressed. Thus, this section 

presents a hybrid framework for unsupervised automatic updating of data driven FDD. 

Modules have developed for assigning samples to either existing clusters or new clusters. The 

modified clusters, by adding or removing samples, are applied for retraining the OCCs aimed at 

updating them. Therefore, the successive updating procedure contributes to an enhanced learning 

strategy. With the proposed strategy, instead of inefficiently managing all historical records, the 

significant number of samples are always kept to model the different process patterns. The 

framework is validated by benchmark using two inlet flowrate scenarios and a fault scheme in 

which two new clusters appear in the process. Moreover, the proposed framework is evaluated by 

three main performance indices, including NPP, CA and OVPP. For both scenarios, the reported 

results imply that the framework could perform appointed tasks of unsupervised automatic FDD 

updating.  
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4.2 Unsupervised FD Updating: Handling Concept Drift  

In chapter 3, ILDW algorithm for dealing with CD in the supervised manner have been proposed, 

in this section ILDW algorithm in an unsupervised style is presented and compared with the 

supervised IL. 

.   
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4.2.1 Introduction 

Unsupervised CD detection techniques are commonly unreliable because they produce a large 

number of false alarms [13]; one common cause of this could be mislabeling. Recently, some new 

unsupervised algorithm for CD detection is proposed that have promising results [13] [172]. In 

[13], the number of samples in a classifier’s uncertainty region is applied as a metric for detecting 

drift and the results show high detection rate, high prediction performance, and low false alarm 

rate.  

In supervised FD approaches, the classifiers are trained with the labeled samples, and the 

assumption is that they are correct and reliable. For real practice that is usually unsupervised or 

semi supervised, assigning labels to samples is a challenging task that needs efforts and 

examinations. Accordingly, mislabeling may occur because of the several possible reasons such 

as expert errors, lack of information etc. [173] [174]. Mislabeling the training samples is an 

unavoidable problem that destroys learning procedure. Addressing this, in [175] a semi supervised 

algorithm is proposed that has encouraging results. Many other methods for preventing, detecting, 

and cleaning mislabeled samples could be found in the literature [176].  

In process monitoring, Mahalanobis and Euclidean distances have lots of applications [82] [177] 

[7]. Mahalanobis distance can be considered as a general case of the Euclidean distance, and 

samples with the same Mahalanobis distance have the same probability [178]. In [173], 

Mahalanobis distance is applied for handling uncertain and missing labels, and in [179] it is applied 

for comparison of CD detection methods. In [180], based on the Euclidean distance a classifier is 

applied, and in [17] it is exploited for ND. In [49], for measuring the similarity between samples 

the Euclidean distance is applied.  

In this section, a framework is proposed in order to update the FD model in an unsupervised style. 

The goal of the proposed framework is to provide a strategy for unsupervised handling CD for FD 

updating rather than offer new tools for updating. Therefore, in the framework, arriving datasets 

are initially classified by MC, and then samples of each class are filtered based on Euclidean 
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distance in order to discard possible wrong labeled samples by MC. The reason for filtering is that 

the provided labeled samples by MC are used for training the AC. In the framework, adjusting or 

retraining the MC, and training the AC are similar to ILDW algorithm that are explained in section 

3.1. The framework is validated by CSTR with two different hidden context scenarios and the 

results are compared with supervised IL. 

. 

4.2.2 Methodology 

Assume samples arrive in dataset, 𝑋𝑘, Equation (4. 19): 

𝑋𝑘 = (

𝑥𝑘11 ⋯ 𝑥𝑘1𝐽
⋮ ⋱ ⋮
𝑥𝑘𝐼1 … 𝑥𝑘𝐼𝐽

) , k = 1,2, … . . . K, i = 1,2, …… . I, j = 1,2, …… . J 

𝒙𝑘𝑖 = (𝑥𝑘𝑖1, 𝑥𝑘𝑖2…… . . 𝑥𝑘𝑖𝐽) 

4. 19 

k is counter of TI. The first main step in the proposed unsupervised algorithm is diagnosing 𝑋𝑘 to 

the classes by MC, Equation (4. 20): 

𝑀𝐶(𝑋𝑘) = {𝛤𝑘0, 𝛤𝑘1, ⋯𝛤𝑘c… . . 𝛤𝑘𝐶},    𝑐 = 0,1, … . 𝐶 4. 20 

In which, Equation (4. 21): 

𝛤𝑘𝑐 = (

𝑥𝑘11 … 𝑥𝑘1𝐽
⋮ ⋱ ⋮

𝑥𝑘𝑎1 … 𝑥𝑘𝑎𝐽
) , 𝛤𝑘𝑐 = {𝒙𝑘𝑖|𝑀𝐶(𝒙𝑘𝑖) = 𝑐}  4. 21 

Because of the unavoidable MC mislabelling, a filtering step is required; so, one parameter, 

Removing Percentage (RP), is defined. RP is applied for filtering all the 𝛤𝑘𝑐, and it indicates the 

percentage of the samples in each class that must be removed in order to maximally reduce the 

number of wrong diagnosed samples; the RP must be tuned, experimentally. Removed samples 

are selected among those that are farther, in regard to Euclidean distance, from the center of each 
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class. Thus, error spreading reduces in the next steps of training. After filtering, each 𝛤𝑘𝑐 are 

modified, Equation (4. 22): 

𝛤𝑘𝑐
′ = (

𝑥𝑘11 … 𝑥𝑘1𝐽
⋮ ⋱ ⋮

𝑥𝑘𝑎′1 … 𝑥𝑘𝑎′𝐽
) , 𝑎 > 𝑎′ 4. 22 

Then the 𝑋𝑘
′  will be, Equation (4. 23): 

⋃𝛤𝑘𝑐
′

∀𝑐

= {𝛤𝑘0
′ , 𝛤𝑘1

′ , … . . 𝛤𝑘𝐶
′ } = 𝑋𝑘

′  4. 23 

In the unsupervised proposed algorithm, the aim is to select efficiently a window of dataset, 𝑊𝐼𝑘, 

at each time interval, k, as shown in Equation (4. 24): 

𝑊𝐼𝑘 = [𝑋𝑘−𝑟
′ , … . 𝑋𝑘−1

′ , 𝑋𝑘
′ ]  ∀𝑘, 𝑟 ∈ ℕ 𝛿 𝑘 − 𝑟 ≥ 1  

𝑟 = 𝑐𝑎𝑟𝑑 (𝑊𝐼𝑘) − 1 
4. 24 

In which, ℕ is the sign of natural numbers. In the unsupervised algorithm a Threshold (Tr) is 

defined. Tr is the minimum accuracy of the AC on 𝑋𝑘−𝑟
′  that must be met, and it is tuned 

experimentally. If the Tr is satisfied, no extra action is required. If obtained accuracy does not 

satisfy the Tr, then the 𝑋𝑘−𝑟 is discarded and the next sequenced dataset, 𝑋𝑘−𝑟+1
′ , in 𝑊𝐼𝑘will be 

tested and so on. After meeting the Tr, the MC may be retrained or adjusted. Figure 4. 10 presents 

the proposed unsupervised FD updating algorithm. 

In addition, unsupervised ILDW and supervised IL are compared by MGM score, Equation (4. 25)  

𝑀𝐺𝑀𝑢 = 𝜔 ×
𝐶𝐴𝑆̅̅ ̅̅ ̅

𝑢

𝐶𝐴𝑆̅̅ ̅̅ ̅
𝑟𝑒𝑓

−
𝐶𝑃𝑈̅̅ ̅̅ ̅̅

𝑢

𝐶𝑃𝑈̅̅ ̅̅ ̅̅
𝑟𝑒𝑓

     

𝑢 ∈ {𝐹𝐷 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑜𝑑𝑠: 𝑈𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 𝐼𝐿𝐷𝑊, 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 𝐼𝐿} , 

 𝑟𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑒𝑡ℎ𝑜𝑑       

4. 25 

 

In which, CAS, 𝜔 and reference method are considered F1 score, two and supervised IL, 

respectively. 
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Figure 4. 10. Proposed framework of unsupervised ILDW algorithm for FD updating. 
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4.2.3 Case Study, Data Preparation and Hidden Context 

Scenarios 

The applied case study is CSTR, and for each scenario 50 datasets are prepared. Each dataset 

contains 1000 samples of normal and faulty. The normal inlet concentration of the reactant 𝐶𝐴 

equals to 5.1 + 𝑣0  𝑚𝑜𝑙/𝐿, where 𝑣0 is a Gaussian noise; 𝑣0  ≈ 𝑁 (𝜇 =  0, 𝜎 =  0.045 𝑚𝑜𝑙/𝐿). 

A fault is expected to affect the process that is defined as a step change in the inlet concentration 

of the reactant, 𝐶𝐴, from its normal value to 5.13 + 𝑣0 𝑚𝑜𝑙/𝐿. 

Two hidden context scenarios are considered, Figure 4. 11 and Figure 4. 12. In the first scenario, 

Figure 4. 11, heat transfer coefficient from the first to 25th dataset drops to 95% of its initial value, 

𝐻0(4032 𝑘𝐽/ℎ.𝑚2. 𝐾), then till 50th dataset it drops to 85% of  𝐻0. In the second scenario, 

 Figure 4. 12, heat transfer coefficient during 26 datasets drops to 90% of  𝐻0 while in the 27th 

dataset it increases to 99% of  𝐻0, then it decreases to 90% of  𝐻0 until the last dataset. 

 

Figure 4. 11. First scenario of hidden context. 
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Figure 4. 12. Second scenario of hidden context. 

4.2.4 Results 

In the ILDW algorithm, GNB is employed as AC while the MC is selected to be SVM, and Tr and 

RP are set to be 60% and 2%, respectively. For initial training of the MC, the first dataset, 𝑋1, is 

clustered with the CS automatic clustering method; the results for both scenarios are reported in 

Table 4. 6.   

Table 4. 7 compares unsupervised ILDW and supervised IL for scenario1 and scenario 2. In 

scenario 1, 𝐹1̅̅̅̅  of the ILDW is 0.34% less than IL, but 𝐶𝑃𝑈̅̅ ̅̅ ̅̅  is improved up to 69.8% that result in 

69% enhancement in regard to MGM score. Moreover, 𝑁𝑆𝑉̅̅ ̅̅ ̅̅  in ILDW is improved up to 50.2%. 

In the scenario 2, 𝐹1̅̅̅̅  of ILDW is 0.7 %less than IL, and 𝐶𝑃𝑈̅̅ ̅̅ ̅̅  is improved up to 75% that imply 

73% enhancement in MGM score. In addition, in ILDW algorithm 𝑁𝑆𝑉̅̅ ̅̅ ̅̅  59.53% is reduced. 
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Figure 4. 13, Figure 4. 14 and Figure 4. 15 compare performance of the IL and ILDW, for both 

scenarios, based on F1 score, CPU time, and NSV, respectively. Figure 4. 16 presents 𝑊𝐼𝑘 and its 

cardinality for ILDW algorithm in two applied scenarios. 

 

Table 4. 6. Performance of the CS as unsupervised automatic clustering method. 

 Scenario 1 Scenario 2 

Initial Dataset 

Cluster 
Consisting of (%) Consisting of (%) 

Nr F1 Nr F1 

Nr 98.3 1.7 97.3 2.7 

F1 3.8 96.2 1.8 98.2 

CA (%) 97.5 97.7 

CPU time (s) 2.8 2.7 

 

 

 

 

Table 4. 7. Performance comparison of the supervised IL algorithm and unsupervised ILDW algorithm. 

 

 

 

 

 

Scenario Method 𝐅𝟏̅̅̅̅  (%) 
𝑪𝑷𝑼̅̅ ̅̅ ̅̅  

(s) 

MGM score 
𝐍𝐒𝐕̅̅ ̅̅ ̅̅  

1 
Supervised IL 99.32 0.053 1 418.38 

Unsupervised ILDW 98.98 0.016 1.69 208.12 

2 
Supervised IL 98.30 0.036 1 532.68 

Unsupervised ILDW 97.56 0.009 1.73 215.56 
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Figure 4. 13. Comparison of F1 score between supervised IL and unsupervised ILDW in scenario 1 (up) and 

scenario 2 (down). 

 

Figure 4. 14. Comparison of CPU time between supervised IL and unsupervised ILDW in scenario 1 (up) and 

scenario 2 (down). 
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Figure 4. 15. Comparison of NSV between supervised IL and unsupervised ILDW in scenario 1 (up) and scenario 2 

(down). 

 

Figure 4. 16. 𝑊𝐼𝑘  and its cardinality for unsupervised ILDW in scenario 1 (up) and scenario 2 (down). 
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4.2.5 Conclusions 

In order to address unsupervised FD updating for handling CD, ILDW algorithm in an 

unsupervised style is proposed. Results of updating for two hidden context scenarios prove that 

unsupervised ILDW algorithm by MGM score and NSV significantly surpasses the standard 

supervised IL procedures. For training supervised IL algorithm, completely correct labels are 

applied, but for unsupervised ILDW all the labels are provided by the proposed filtering algorithm. 

Thus, the supervised IL algorithm presents slight better performance in terms of F1 score. The F1 

score reductions for unsupervised ILDW algorithm, in both applied scenarios, comparing with 

supervised IL, are less than 1%, and it is justifiable because of its filtering method that may keep 

some wrong labeled samples and remove some correct labeled samples.  
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5.1 Conclusions and Contributions 

By non stop condition monitoring, amount of available information gradually increases, and the 

new failure modes may appear. These failure modes could develop either as drift in existing classes 

or as new classes; therefore, those monitoring systems are required that can be updated, 

automatically and incrementally.  

For FDD updating because of the new classes, the first step is to detect new failures, but typical 

FDD systems only recognize the failure modes that exist in the initial training phase. Moreover, 

suggested models that address ND are about only identifying new failures rather than present clear 

strategies for FDD updating. 

For FDD updating because of the CD, primitive updating approaches integrate arriving and 

original samples and retrain FDD system. Updating with these traditional methods set off rapid 

growth of FDD model complexity and required CPU time. In order to cure these weaknesses,  some 

promising studies have been reported although their performances need to be improved [179]. 

Furthermore, these methods address their applications, mainly, not for chemical engineering 

problems, but in text mining, video and image analysis, etc. 

Therefore, this thesis develops supervised and unsupervised FDD updating frameworks for dealing 

with new classes/faults and CD while it is aimed for three objects. First, providing applicable 

frameworks that are efficient for meeting the goal (keeping the accuracy high) and cost (CPU time) 

of the FDD updating. Second, making information about CD magnitude to assist operators for 

decision making. Third, exploring data processing methods in order to improve FDD performance. 

In chapter 2, and prior to studying FDD updating frameworks, data processing with three families 

of approaches, including imputation of missing values, feature selection, and feature extension are 

investigated. The purposes of the applied techniques are to improve the characteristics of data in 

different aspects. In the first family of approaches, application of three data driven techniques for 

dealing with noise, outliers and missing values are studied. Comparing with the other techniques, 

OK shows its reliability in tested scenarios while it assists classifier (SVM) to achieve even higher 

than 99.0 % accuracy in terms of F1 score. For feature selection, functionalities of the filter and 

wrapper methods with various criteria in FDD field are studied. The results confirm their influence 
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over increasing FDD accuracy and reducing required CPU time, taking it into account that wrapper 

methods have better performance. For TE case study, the optimal features, which are selected by 

the best wrapper method, contrast with using all features improve FDD performance up to 196% 

on the scale of MGM score. For feature extension, the applicability of the error features, which are 

made by an observer, in the various scenarios of the process is investigated. The results prove that 

replacing the error features by the measured features enhance the FDD performance. As part of 

the results, replacing error features by measured features enhance 𝐶𝐴𝑆 ̅̅ ̅̅ ̅̅ (𝐹1̅̅̅̅ score) of the three 

classifiers, including SVM, GNB and DT up to 57.7%, 132.3% and 36.6%, respectively.  

In chapter 3, supervised FD updating for coming up against CD in the process is studied. In the 

first section, DW algorithm is suggested; DW algorithm exploits the last available samples for 

providing data window whereas it has a strategy for forgetting redundant (old) samples in 

comparison with current concepts of the process. Furthermore, ILDW algorithm is proposed that 

is a hybrid approach combining the merits of the DW and IL algorithms. In four hidden context 

scenarios of CSTR benchmark, DW and ILDW outdo the IL in regard to MGM score, on average, 

by 44.5% and 43.6%, respectively. In the next section of the chapter, for tracing amount of CD in 

the process although implicitly, a framework is presented. It is based on non-automatic clustering, 

and it offers cda index with regard to “precision” definition in order to monitor CD amount changes 

in each class, separately. In the tested scenario, the framework detects 5% changes of hidden 

context during the operational time as 16% changes in 𝑐𝑑𝑎𝑘0 (index of normal class), and 32% 

changes in 𝑐𝑑𝑎𝑘1 (index of fault 1 class).  

In chapter 4, unsupervised FDD updating is investigated. In the first section, an FDD updating 

framework versus novel faults is presented; the hybrid FDD updating framework is made up of 

automatic clustering and OCCs while FDD performance is enhanced by means of an observer.  For 

the assessed static and dynamic scenarios through three tanks benchmark, results indicate 93.1% 

and 83.1% of success based on NPP for detecting samples in addition to performing FDD updating 

tasks, efficiently. In the next section of the chapter, and for unsupervised FD updating for handling 

CD, the ILDW algorithm is proposed in a different style. With the new ILDW scheme, the label 

of samples are predicted in an unsupervised way, and a strategy for filtering wrong labeled samples 

are applied. The applicability of this algorithm is verified by two scenarios in which ILDW 

comparing with the supervised IL algorithm improves MGM score up to 70.0%, in average. 
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5.2 Future Works 

Considering thesis researches, it is found that the following topics have received less attention and 

deserved to be investigated. Here are summaries of them: 

Integration of FDD with other process operations: 

 The majority of the studies in FDD are performed by ignoring the interactions of it with control 

and optimization systems. Obviously, these conditions make the applicability of the FDD methods 

far from real implementation. Designing the FDD framework while the roles and effects of control 

and optimization systems are considered is a topic that needs to be studied, deeply [7]. 

Designing advanced FDD updating system:  

Most of the studies, which have addressed FDD updating problem, are developed to handle either 

new faults or CD. Studying a framework that could update the FDD whereas both types of new 

conditions occur in the process is a topic that must be explored [181] [111]. 

Improving implementation and algorithms of OCC:  

OCCs are useful type of classifiers that have ND usages in FDD. In this thesis OCCs are applied, 

and based on the results, in the dynamic conditions of the process they have relatively unreliable 

performance. This weakness should be investigated in two lines; first, a new scheme for applying 

them just as tools that could compensate dynamic states of the process, and second improving their 

algorithms and kernel functions [69] [157]. 

5.3 Published Contributions 

During the development of the thesis, the following contributions have been peer-reviewed and 

accepted for presentation and/or publication in different international journals and conference 

proceedings: 

1) Shokry, M. H. Ardakani, G. Escudero, M. Graells, and A. Espuña, “Dynamic kriging 

based fault detection and diagnosis approach for nonlinear noisy dynamic processes,” 
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Computer. Chem. Eng., vol. 106, pp. 758–776, Nov. 2016. DOI: 

https://doi.org/10.1016/B978-0-444-63428-3.50014-X 

2) M. H. Ardakani, G. Escudero, M. Graells, and A. Espuña, “Incremental Learning Fault 

Detection Algorithm Based on Hyperplane-Distance,” Computer Aided Chemical 

Engineering, vol. 38, 2016, pp. 1105–1110. DOI: https://doi.org/10.1016/B978-0-444-

63428-3.50189-2  

3) M. H Ardakani, M. Askarian, A. Shokry, G. Escudero, M. Graells, and A. Espuña, 

“Optimal Feature Selection for Designing a Fault Diagnosis System,” Computer Aided 

Chemical Engineering, vol. 38, pp. 1111–1116, 2016. DOI: https://doi.org/10.1016/B978-
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4) M. H Ardakani, A. Shokry, G. Saki, G. Escudero, M. Graells, and A. Espuña, “Imputation 
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