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1
Introdution to intervalensored data and overview ofthe two parts of the thesis

Interval ensored data arises naturally in medial longitudinal follow-up stud-ies in whih the event of interest an not be easily observed, for instaneaner reurrene or the elevation of levels of a biomarker without notieablesymptoms. In these situations, the patients are usually examined at linialvisits that take plae only in ertain time intervals, and the event of interestmay then our between two onseutive linial visits. Then, one observesonly a ertain time interval [XL; XR℄ whih is known to inlude the truetime X of onset of the event of interest. This type of interval ensoring isalled interval ensoring ase II. As speial ases it inludes left ensoring andright ensoring for XL equal to zero and XR in�nity, respetively. Anothertype of interval ensoring ours when the event is only known to be smalleror larger than an observed monitoring time. This kind of data is referredto interval ensoring ase I, or urrent status data. Finally, one speaks ofdoubly ensored data if one observes min fmax fX;XLg ; XRg. For a moreextensive review of the di�erent types of interval ensored data see G�omez etal. (2001b). In this thesis, interval ensoring ase II will be onsidered andthe ensoring intervals will be taken to be losed on both sides in order toaount for exat observations.An example for interval ensored data is given in Betensky and Finkel-stein (1999) who introdue the AIDS linial trial group protool 181, anatural history substudy of a omparative trial of three anti-pneumoystisdrugs. The patients were monitored periodially for evidene of baterial andviral infetions, with the objetive of understanding the relationship betweenthese two events, and eventually the natural history of AIDS. Many patients



2missed several of the presheduled lini visits, and when they returned tothe hospital for examination, new laboratory indiations for the two eventswere found. Thus, their times until ourrene of the baterial or viral infe-tion were ensored into the time intervals between their last and their newlini visits.Another example is the AIDS linial trial group protool 359, a random-ized linial trial designed to ompare six di�erent anti-retroviral treatmentregimens for HIV-infeted persons who had previously failed on the proteaseinhibitor Indinavir (see Gulik et al., 2000). The patients were monitoredperiodially for their viral load levels with the aim to determine the timeperiod these levels remained below the threshold of 500 viral opies/ml. Ithappened that the viral load levels limbed above the threshold between twoonseutive lini visits so that the exat time below 500 opies/ml was in-terval ensored into the time interval [X1; X2℄, where X1 is the elapsed timebetween the �rst viral load observation below 500 opies/ml and the lastobservation before the viral load is subsequently observed to be above 500opies/ml. Similarly, X2 is the elapsed time between the visit prior to the�rst viral load observed below 500 opies/ml and the �rst visit that the viralload is subsequently observed to be above this threshold.Methods for interval ensored data have been strongly developed in thepast deades. An approah for the estimation of the distribution funtionwhen the data is interval ensored is found in the artile by Peto (1973).Turnbull in 1976 presented a theory for nonparametrially estimating thedistribution funtion of interval ensored variables, inorporating in the esti-mation proess the idea of self-onsisteny developed by Efron (1967). Turn-bull's work had a strong impat on the further development of all kind ofstatistial methods for interval ensored data, inluding the �eld of linearregression. The statistial properties of Turnbull's nonparametri maximumlikelihood estimator (NPMLE) have been studied very extensively. Conern-ing uniqueness, onsisteny and asymptoti properties see for example Gen-tleman and Geyer (1994), Yu, Shik, Li and Wong (1998), Pan and Chappell(1999) or Yu, Li and Wong (2000). Resulting from problems in developing adistribution theory of Turnbull's NPMLE, Groeneboom and Wellner (1992)haraterized the NPMLE using isotoni regression theory and thereof de-rived a distribution theory for it.Some researh has also been done on variane estimation of the estimated



3survival funtion for interval ensored data. Two methods for this problemare studied in Sun (2001). Sine the underlying survival funtion an be as-sumed to be smooth in many appliations, and the NPMLE as a step funtiondoes not eÆiently use this information, some proposals for smooth estima-tion of the survival funtion for interval ensored data have been made. Seefor example Li, Watkins and Yu (1997) or Pan (2000). Reently, an exten-sion of Turnbull's NPMLE to the ase of bivariate interval ensored data wasproposed by Betensky and Finkelstein (1999).Conerning parameter estimation in linear models with interval ensoreddata, Finkelstein and Wolfe in 1985 developed estimation theory for lin-ear models when the response is interval ensored. They proposed a semi-parametri approah using an EM algorithm for the maximization of thelikelihood funtion under di�erent parametri models for the ovariate dis-tribution, but without assuming a parametri form for the distribution ofthe response variable. Li and Pu (1999) applied a least squares approah tothe log-linear model with interval ensored response. For regression analysiswith an interval ensored ovariates, G�omez, Espinal and Lagakos (2002)proposed a semiparametri approah by maximizing the data likelihood un-der the assumption of a normal distribution for the response. The ovariatedistribution is estimated nonparametrially via Turnbull's (1976) method.Reently, Gil, L�opez-Gar��a, Lubiano and Montenegro (2001) onsidered lin-ear relations between two interval ensored variables by de�ning a metri forthe distane between the observed values of the response and those preditedfrom the model.The estimation of the regression parameters of a linear model is alsoonsidered in the �rst part of this thesis where a new estimation theory ispresented for models with both interval ensored response and ovariate. Un-like Gil et al. (2001), it does not use ertain distanes between the observedand predited data but is an extension of the method of G�omez et al. (2002)and onsiders a semiparametri maximum likelihood approah.Closely related to linear model estimation is the �eld of residual analysis.In regression theory, the analysis of residuals is an integrated tool neessary toomplete the proess of �tting linear models. However, in onnetion with in-terval ensored data, only very few researh has been done. For proportionalhazard models, Farrington (2000) derived interval ensored ounterparts tothe right ensored Cox-Snell, martingale, deviane, and Shoenfeld residuals.



4For linear models, G�omez et al. (2002) proposed an intuitive de�nition ofresiduals oming from linear models that inorporate interval ensored o-variates. The seond part of this thesis presents a new residual theory forregression analysis with interval ensored ovariates, whih is shown to besuperior to that proposed by G�omez et al. (2002).



5Introdution
The �rst part of this thesis deals with linear regression analysis when bothresponse and ovariate are interval ensored. Linear regression analysis is astatistial tehnique for investigating and modelling relationships betweendi�erent variables. A statistial relation between two random variables (Yand Z, say) is de�ned suh that one variable an be expressed in terms of amathematial funtion of the other variable, for example Y = f(Z) + ". Inthis ase, Y is alled the dependent variable or response, Z is the independentvariable or ovariate, and " is an error term. To examine the linear relation-ship between Y and Z (or some more Z), an appropriate model should behosen on the nature of the statistial relation and the variable types underonsideration.When saying a relationship between some variables is 'linear', this usu-ally refers to linearity in the parameters. In ontrast, the value of the highestpower of the independent variable in the model is alled the 'order' of themodel. For example, Y = �0 + �1Z + �2Z2 + " is a seond-order (in theovariate Z) linear (in the parameters �i, i = 0; 1; 2) regression model. The "are alled 'model errors' and are a random omponent reeting the inau-ray of the relationship between the variables whih an never be exat dueto e.g. measurement errors in the observations.The history of linear models an be traed bak to the early 19th enturywhere Legendre was the �rst to introdue a linear model. The priniple forthe determination of the unknown parameters �i, i = 0; 1; 2, was to mini-mize the sum of squares of the residuals e = Y � �0 � �1Z � �2Z2. Amongthe various approahes of performing regression, the least squares method isprobably the most widely used.Appliations of linear regression analysis are numerous and our in al-most every �eld, inluding engineering, physial sienes, eonomis, man-agement, life and biologial siene, and the soial sienes. In this thesis,



6the main fous is on variables oming from the �eld of mediine, and morespei�ally, the interest will be on variables that are interval ensored, thatis, the response Y and the ovariate Z are not observed diretly but onlyknown to lie in some interval [YL; YR℄ and [ZL; ZR℄, respetively.Chapter 1 of this part of the thesis presents the statistial methods ne-essary for the development of the new regression theory. It ontains anintrodution of the theory for nonparametrially estimating the distributionfuntion of interval ensored variables, both in the one-dimensional ase andthe two-dimensional ase. Furthermore, it introdues the regression methodof G�omez et al. (2002) who proposed an approah for parameter estimationin linear models with exatly observed response and interval ensored ovari-ates. Their method will be extended in Chapter 2 when developing a newregression theory for the ase that the response variable is interval ensoredas well. It uses a maximum likelihood approah for the estimation of theregression parameters while estimating at the same time the unknown distri-bution funtion of the interval ensored ovariate. The performane of theproposed method is assessed via a simulation study as desribed in Chapter3. Finally, Chapter 4 ontains a disussion of possible alternative approahesfor the estimation of the regression parameters in the given ontext.
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Chapter 1Methods for interval ensoredvariablesThis hapter gives an overview of the methods used in the development ofthe new regression theory for interval ensored data. It desribes density es-timation in the ontext of interval ensored random variables as introduedby Turnbull (1976) for the one-dimensional ase, and generalized by Beten-sky and Finkelstein (1999) for the two-dimensional ase. Furthermore, theregression theory for linear models with observed response and interval en-sored ovariate as proposed by G�omez et al. (2002) is presented. Theirmethod will be extended later to the ase that both ovariate and responseare interval ensored.1.1 Nonparametri estimation of the distri-bution of an interval ensored variableSuppose X to be a ontinuous, interval ensored random variable with distri-bution funtion F and realizations xi, i = 1; : : : ; n. Due to interval ensoring,the xi are not observed diretly but only their respetive ensoring intervals[xLi ; xRi ℄. These are known to inlude the true value xi with probability one.Turnbull (1976) proposed a maximum likelihood approah for determin-ing an estimate for the distribution funtion F . It is a maximum likelihoodapproah whih makes use of the equivalene between maximum likelihoodestimates and self-onsistent estimates as desribed in the following.9



10 The onstrution of the likelihood for the data in the given ontext followsfrom the fat that the ontribution of eah individual i is F (xRi) � F (xLi),whih results from X being interval ensored. The omplete likelihood a-ounting for all individuals is therefore given byL(F ) = nYi=1 (F (xRi)� F (xLi)) :Maximizing this likelihood with respet to F would yield the maximum like-lihood estimate for the distribution funtion of X. Turnbull shows that thismaximization problem an be redued to a simpler one: After sorting allobserved interval endpoints xLi and xRi in asending order, one onstruts aset of disjoint intervals [q1; p1℄,: : :,[qm; pm℄ in the following way: Firstly, eah[qj; pj℄ must not ontain any other member xLi or xRi exept at their end-points, and seondly, it must hold that q1 � p1 < q2 � : : : < qm � pm. Anexample for the onstrution of the Turnbull intervals [qj; pj℄, j = 1; : : : ; m,is given in Figure 1.1. It shows six observed patient time intervals [0,1℄, [4,6℄,[2,6℄, [0,3℄, [2,4℄, [5,7℄ and the resulting Turnbull intervals [0,1℄, [2,3℄, [4,4℄,[5,6℄ obtained with the two onstrution rules given above.Figure 1.1: Illustration of the onstrution of Turnbull's intervals
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11Turnbull proved that:1. Any umulative distribution funtion whih inreases outside the setSmj=1[qj; pj℄ an not be a maximum likelihood estimate of F , and2. for �xed values of F (pj+) and F (qj�), the likelihood is independent ofthe behavior of F within eah interval [qj; pj℄.This means that it suÆes to onsider only those distribution funtions whihinrease in some or all of the intervals [qj; pj℄ and are onstant outside theseintervals. Furthermore, the behavior of the distribution funtion inside theseintervals is not de�ned but an be imagined to be arbitrary. Thus, theproblem of maximizing L(F ) redues to that of maximizingL(s1; : : : ; sm) = nYi=1 mXj=1 �ijsj;where sj = F (pj+) � F (qj�) with Pmj=1 sj = 1, and �ij = 1 if [qj; pj℄ �[xLi ; xRi ℄ and 0 otherwise. The meaning of the indiator �ij is that onlythose individuals ontribute to the likelihood, whose observed ensoring in-tervals ontain one or more Turnbull intervals. The estimate of the densityof X is given through the weight vetor s = (s1; : : : ; sm).In order to determine the maximum likelihood estimate of s, Turnbullproposed to apply an algorithm whih is based on the equivalene betweenthe maximum likelihood estimates and the self-onsistent estimates and isdesribed in the following. For details on the self-onsisteny equations seeEfron, 1967.De�ne Iij=1 if xi 2 [qj; pj℄ and 0 otherwise. Beause of ensoring thevalue of Iij is not known, but its expetation is given byEs(Iij) = �ijsj = �ij(s):That is, �ij(s) represents the probability that the i-th observation lies in[qj; pj℄. Furthermore, the proportion of observations in the interval [qj; pj℄ isnXi=1 �ij(s)=M(s) = �j(s);



12whereM(s) = nXi=1 mXj=1 �ij(s):The self-onsistent estimate of the sj is then de�ned to be any solutionof the simultaneous equationsj = �j(s1; : : : ; sm):Turnbull inorporates these formulas in an iterative proedure in orderto derive the nonparametri estimate for the sj:Step 1: Chose initial estimates s0j , j = 1; :::; m. This an be any set ofpositive numbers summing to unity, e.g. sj = 1m for all j.Step 2: Evaluate �ij(s0), M(s0) and �j(s0) using the formulas given above.Step 3: Obtain the improved estimates s1j by setting s1j = �j(s0).Step 4: Return to Step B replaing s0 by s1.Step 5: Stop when the values of s1 and s0 do not di�er anymore.Turnbull shows that the algorithm onverges monotonely for those initialvetors s0 that are lose to the true density vetor s. Gentleman and Geyer(1994) provide easily veri�able onditions for the self-onsistent estimator tobe a maximum likelihood estimator and for heking whether the maximumlikelihood estimate is unique.1.2 Nonparametri estimation of the distri-bution of two interval ensored variablesBetensky and Finkelstein (1999) generalized Turnbull's estimation proedureto bivariate disrete interval ensored data. Unlike Turnbull, the likelihoodfuntion is not maximized using a self-onsistent algorithm, but an extensionof the method of Gentleman and Geier (1994) is applied.



13In the bivariate ase, one observes for eah individual i, i = 1; : : : ; n, thedata retangle [xL1i ; xR1i ℄� [xL2i ; xR2i ℄ whih are known to ontain the real-izations of X1i and X2i. Denoting F (x1; x2) the joint umulative distributionfuntion of X1 and X2, the likelihood for the data in this setting isnYi=1 (F (xRi1+; xRi2+)� F (xRi1+; xLi2�)�F (xLi1�; xRi2+) + F (xLi1�; xLi2�)) :Similar to the one-dimensional ase, the support of the maximum likelihoodestimate of F is ontained in that set of retangles whih is formed by inter-seting the observed data retangles suh that no other retangle is ontainedwithin them. This mehanism is equivalent to the one used in the onstru-tion of the Turnbull intervals explained in the previous setion. Figure 1.2gives an illustration.Figure 1.2: Final retangles (thik lines), resulting from interseting theobserved regions (thin lines)

Denote the �nal retangles as [rj; sj℄ � [tj; uj℄, j = 1; :::; J . De�ne further-more the probability assoiated with retangle j to be pj = F (sj+; uj+) �F (sj+; tj�) � F (rj�; uj+) + F (rj�; tj�). Then, adopting the argumenta-tion of Turnbull (1976), the searh for the maximum likelihood estimate for Fan be restrited to those vetors p = (p1; :::; pJ) having stritly non-negativeomponents and summing to one. The maximum likelihood estimate even-



14tually results from maximizingL(p) = nYi=1 JXj=1 �ijpj;where �ij equals 1 if [rj; sj℄ � [xL1i ; xR1i ℄ and [tj; uj℄ � [xL2i ; xR2i ℄, and 0otherwise.Under the onstraints for the pj given above, the authors propose to max-imize the likelihood L(p) diretly by solving a onave programming problemwith linear onstraints as desribed in Gentleman and Geier (1994).1.3 Linear regression models with exatly ob-served response and interval ensored o-variateG�omez et al. (2002) proposed a theory for linear regression analysis withinterval ensored ovariates. The idea of their approah is to simultaneouslymaximize the data likelihood and estimate the unknown distribution fun-tion of the ovariate.The authors onsider a ontinuous response variable Y with exatly ob-served realizations yi, and a disrete and interval ensored ovariate Z whoserealizations zi are not observed but only the orresponding ovariate inter-vals [zLi ; zRi ℄, i = 1; : : : ; n. These intervals are known to inlude zi withprobability one. The model to be established isY = � + �Z + "; model 1where the error term " is said to be independent of Z and normally dis-tributed with expetation zero and variane �2. The aim is to estimate theparameter vetor � = (�; �; �2) from the observed data (yi; [zLi ; zRi℄).Sine Z is taken to be a disrete random variable, the authors supposethat it assigns positive mass wj to the points sj, j = 1; : : : ; m. From thenormality of the model errors follows that the onditional density f of the



15response Y given sj as a realization of Z is also normally distributed, withexpetation � + �sj and variane �2:f(yjsj; �) = 1p2��2 exp��(y � �� �sj)22�2 � :This density is used in the onstrution of the data likelihoodL(�; wj) = nYi=1 mXj=1 �ijwjf(yijsj; �);where�ij = � 1 : sj 2 [zLi ; zRi ℄0 : sj 62 [zLi ; zRi ℄ ; and wj = P (Z = sj):Due to the unknown ovariate distribution w = (w1; :::; wm), this like-lihood an not be maximized diretly to obtain the maximum likelihoodestimates for the model parameters. Therefore, the authors maximize L si-multaneously for � and w using a two-step algorithm whih �rst maximizesL with respet to w for �xed �, and then resolves the maximization problemfor � with w known. These two steps are desribed in detail below.1.3.1 Nonparametri estimation of w when � is knownAssuming that the value for � is known, the maximization of the likelihoodL redues to the problem of �nding a vetor w that maximizesL�(w) = nYi=1 mXj=1 �ijwjf(yijsj);subjet to the onstraints Pmj=1wj = 1 and wj � 0 for all j.The authors propose an algorithm for this maximization problem whihis similar to Turnbull's density estimation proedure desribed in Chapter1.1. It onsists of the following steps: First, the authors �x a value for � andhose start values for w. With these, they alulate the probability �ij thatthe ovariate of the i-th individual is equal to sj. This quantity is then usedto determine the expeted number �j of individuals with Zi = sj. Finally,



16�j is taken to be an improved estimate of the ovariate density w, and anlater be used to realulate �ij and �j. This proedure is repeated until theimproved estimate and the old estimate are suÆiently lose. The followingsheme illustrates this estimation proedure:Step 1a: Fix the value for � using �0 = (�0; �0; �20), where�0 = �y � �0n nXi=1 êi;�0 = Pni=1 (yi � �y)êiPni=1 (v̂2i � ê2i )� (1=n)(Pni=1 êi)2 ;n�20 = nXi=1 (yi � �0)2 � (�0)2 nXi=1 (v̂2i + ê2i );and êi = (xLi + xRi)=2; and v̂2i = ((xLi � êi)2 + (xRi � êi)2)=2:Step 1b: Chose initial estimates for the w0j , for instane take w0j = 1m .Step 1: Evaluate �ij(�;w0) de�ned as�ij := P (X = sjjyi; [xLi ; xRi℄) = �ijf(yijsj; �)wjPmk=1 �ikf(yijsk; �)wk ;replaing wj by w0j , and alulate�j(�;w0) = 1n nXi=1 �ij(�;w0):Step 1d: Obtain the improved estimate w1j by setting w1j = �j(�;w0).Step 1e: Return to step 1 replaing w0 by w1.Step 1f: Repeat steps 1 to 1e until the value of w1 does not hange any-more. Denote it by ŵ1.



171.3.2 Maximum likelihood estimation of � when w isknownWhen the ovariate density w is known, the maximization of the likelihoodL��(�) = nYi=1 mXj=1 �ijwjf(yij�)with respet to � an be ahieved via the usual maximum likelihood approah:The logarithm of L�� is derived with respet to �, � and �2, and thesederivations are set to zero and solved for the parameters. The authors showthat the solution of the maximum likelihood equations ��� logL��(�) = 0 is�̂ = �y� �n nXi=1 ei(�;w); (1)�̂ = Pni=1 (yi � �)ei(�;w)Pni=1 (vi(�;w) + e2i (�;w)) ; (2)n�̂2 = nXi=1 (yi � �)2��2 nXi=1 (vi(�;w) + e2i (�;w)); (3)whereei(�;w) = Pmk=1 �ikskwk 1p2�� exp f� 12�2 (yi � �� �sk)2gPmk=1 �ikwk 1p2�� exp f� 12�2 (yi � �� �sk)2g ; (4)andvi(�;w) = Pmk=1 �ik(sk � expi(�; w))2wk 1p2�� exp f� 12�2 (yi � �� �sk)2gPmk=1 �ikwk 1p2�� exp f� 12�2 (yi � �� �sk)2g : (5)The algorithm proposed by the authors maximizes L�� by �rst hoosinginitial values for equations (4) and (5), whih are then used to alulate theestimates given in (1) to (3). Afterwards, (4) and (5) are determined againusing the newly alulated estimates and the ovariate density vetor that re-sulted from the algorithm of the previous setion. This proedure is repeateduntil the values for �̂, �̂ and �̂2 stabilize. The following sheme illustratesthe estimation proess.



18Step 2a: Calulate �0 from formulas (1) to (3) by hoosing the initial valuesfor ei(�;w) and vi(�;w) to bee0i (�;w) = zLi + zRi2 andv0i (�;w) = (zLi � e0i )2 + (zRi � e0i )22 :Step 2b: Evaluate ei(�0; ŵ1) and vi(�0; ŵ1) using equations (4) and (5) em-ploying �0 and ŵ1 from step 1f above.Step 2: Obtain the improved estimate �1 from formulas (1) to (3), repla-ing ei(�;w) and vi(�;w) by ei(�0; ŵ1) and vi(�0; ŵ1).Step 2d: Return to step 2a replaing �0 by �1.Step 2e: Repeat steps 2a to 2 until the di�erene between �0 and �1 issuÆiently small. Denote the �nal estimate by �̂1.In total, the two-step algorithm for alulating simultaneously the den-sity w of the interval ensored ovariate and the estimator for the parametervetor �, results in the ombination of the two algorithms given above andis summarized in the following sheme:Step I: Exeute Step 1a up to Step 1f.Step II: Exeute Step 2a up to Step 2e.Step III: Return to Step 1 replaing �0 by �̂1 and w0 by ŵ1.Step IV: Repeat steps I to III until onvergene of � and w.



Chapter 2Linear regression with intervalensored response and ovariateThis hapter presents a new estimation theory for linear regression modelswhen both ovariate and response are interval ensored. It is an extension ofthe method of G�omez et al. (2002) introdued previously. The model to beonsidered here isYi = �+�Zi+"i; i = 1; : : : ; n model 2where the response Yi is ontinuous and ensored into the interval [YLi; YRi℄,and the ovariate Zi is disrete and ensored into the interval [ZLi ; ZRi℄. Themodel errors " are assumed to have a normal distribution with mean zeroand variane �2.Let sj be the possible values for Z with orresponding weights wj, j =1; : : : ; m, and denote the ovariate density and distribution funtion as wand W, respetively. From the errors' normal distribution follows that thedistribution of Y given sj as a value of Z is also normal with mean � + �sjand variane �2:f(yjsj; �) = 1p2��2 exp��(y � �� �sj)22�2 � :Here, � = (�; �; �2) is the vetor of the model parameters whih we want toestimate. 19



20 It will be assumed that the interval ensoring for the ovariate and the re-sponse ours noninformatively. If a variable X is subjet to noninformativeensoring, this means that for any given values x0, x1, x2, the onditionaldensity of this variable is the same as the density of the unensored variabletrunated into the observed ensoring interval:P (X = x0jXL = x1; XR = x2) = ( P (X=x0)P (X2[x1;x2℄) : x0 2 [x1; x2℄0 : otherwise :G�omez et al. (2001b) show that the ontribution to the likelihood of anunique individual with observed ensoring interval [xL; xR℄ whih inluds thetrue value of interest x, is proportional to R xRxL dW (x) where W = P (X � x).With this fat, the likelihood for the observed data of model 2 an be on-struted as given in the next setion.2.1 Estimation proedureThe observed data for model 2 onsists of n independent and identiallydistributed realizations of Y and Z. Sine these two variables are intervalensored, one observes the intervals ([yLi; yRi℄; [zLi; zRi ℄), i = 1; :::; n. In orderto obtain the estimates for the model parameters �, � and �2, a maximumlikelihood approah will be proposed as desribed in the following.The likelihood for the observed data an be onstruted by noting the fol-lowing fats: The ontribution of an arbitrary individual i to the likelihoodonsists of the ontribution of this individual with respet to both the ovari-ate and the response. Sine the ovariate Z is interval ensored, its densitymust be estimated with a method similar to the one given in Turnbull (1976),yielding as a result the weights wj (for more details on the method of Turn-bull see Chapter 1.1). Thus, the ontribution of individual i with respetto Z isPmj=1 �ijwj, where the indiator variable �ij spei�es whether or notthe ovariate value sj is ontained in the observed ovariate interval [zLi ; zRi℄.On the other hand, the ontribution of this individual with respet to theresponse Y given a �xed value of Z, is determined by the onditional densityf(yjsj; �). Sine the value of Y is not exatly observed but only its ensoringinterval [yLi ; yRi℄, the onditional density must be integrated over the rangeof this ensoring interval in order to obtain the respetive ontribution to the



21likelihood. The total ontribution of individual i to the likelihood is then theombination of these two single likelihood ontributions, and the ompletelikelihood aounting for all individuals is therefore given byL(�; wj) = nYi=1 P (Yi 2 [YLi ; YRi℄; Zi 2 [ZLi; ZRi ℄)= nYi=1 mXj=1 �ijwj Z YRiYLi f(yjsj; �)dy; (2.1)where �ij = � 1 : sj 2 [zLi ; zRi ℄0 : otherwise ;and wj = P (Z = sj) is the weight the ovariate assigns to the point sj.The estimation of the parameter vetor � will be ahieved through max-imizing L. Similar as in the ontext of the regression theory of G�omez et al.(2002), this maximization an not be arried out diretly beause of the un-known ovariate density funtion w = (w1; : : : ; wm). Thus, L is maximizedthrough an algorithm that iterates between maximizing L with respet to wwhile holding � �xed, and maximizing L with respet to � while holding w�xed. These two steps are desribed in detail below.Nonparametri estimation of w when � is knownFor a �xed value of �, the maximum likelihood estimate of the vetor w,given the onstraints Pmj=1 wj = 1 and wj � 0 for all j, is determined byusing a proedure based on the equivalene between the maximum likelihoodand the self-onsistent estimators as explained in Turnbull (1976): First, ini-tial values for the ovariate density weights wj, are hosen. With these, theonditional probabilities �ij that the ovariate Zi equals a given value sj arealulated. Summing these probabilities over all individuals i leads to theexpeted number �j of individuals with a ovariate value equal to sj. Thisexpeted number is then taken to be an improved estimate of the ovariatedensity w, and an be used to realulate �ij and �j. The whole proedureis repeated until the di�erene of the values of the improved and the oldestimate is suÆiently small. The following sheme gives a summary:



22Step A1 Take initial estimates for the w0j , for example w0j = 1m for j =1; : : : ; m. Denote w0 = (w01; :::; w0m).Step A2 Evaluate �ij(w0; �) and �j(w0; �) de�ned as�ij(w0; �) = P (Zi = sjj[zLi; zRi ℄; [yLi; yRi℄)= �ijw0j R yRiyLi f(yjsj; �)Pmj=1 �ijw0j R yRiyLi f(yjsj; �) ;�j(w0; �) = 1n nXi=1 �ij(w0; �):Step A3 Obtain the improved estimate w1 settingw1 = �j(w0; �):Step A4 Go to step A2 replaing w0 by w1 and repeat the whole proedureuntil their values are suÆiently lose.Maximum likelihood estimation of � when w is knownWhen the ovariate density is known, the maximization of the likelihood Lwith respet to � an be ahieved by solving the sore equation ��� logL = 0.The resulting estimates for �, � and �2 are derived in Appendix A. They arealulated to�̂ = �d� �a�b�� �b2 ; (2.2)�̂ = �a� �̂�b; (2.3)�̂2 = �e� 2�̂�a+ �̂2 � �̂2�; (2.4)where �a, �b, �, �d and �e is the average of ai, bi, i, di and ei, i = 1; :::; n,respetively, de�ned asai = E(Yij[ZLi; ZRi℄; [YLi; YRi℄);bi = E(Zij[ZLi; ZRi℄; [YLi; YRi℄);



23i = E(Z2i j[ZLi; ZRi℄; [YLi; YRi℄);di = E(ZiYij[ZLi; ZRi℄; [YLi; YRi℄);ei = E(Y 2i j[ZLi; ZRi℄; [YLi; YRi℄):The following propositions show that the estimates �̂, �̂ and �̂2 are similarto the maximum likelihood estimators in a simple linear model with exatlyobserved response and ovariate.Proposition 1It holds that �̂ as de�ned above onverges in probability to the value Cov(Z;Y )V ar(Z) .ProofApplying the law of large numbers, it holds that�a = 1n nXi=1 ai n!1�! E(ai) = E(E(Yij[ZLi; ZRi℄; [YLi; YRi℄)) = E(Yi);�b = 1n nXi=1 bi n!1�! E(bi) = E(E(Zij[ZLi; ZRi℄; [YLi; YRi℄)) = E(Zi);� = 1n nXi=1 i n!1�! E(i) = E(E(Z2i j[ZLi; ZRi℄; [YLi; YRi℄)) = E(Z2i );and �d = 1n nXi=1 di n!1�! E(di) = E(E(ZiYij[ZLi; ZRi℄; [YLi; YRi℄)) = E(ZiYi):Thus, it holds for the numerator of �̂ that�d� �a�b =n!1�! E(ZY )� E(Y )E(Z) = Cov(Z; Y );and for the denominator that�� �b2 n!1�! E(Z2)� E(Z)2 = V ar(Z; Y ):In total, this means that�̂ = �d� �a�b�� �b2 n!1�! Cov(Z; Y )V ar(Y ) : �



24Proposition 2It holds that �̂ as de�ned above onverges in probability to the value E(Y )��E(Z).ProofApplying the law of large numbers it holds that�a = 1n nXi=1 ai n!1�! E(ai) = E(E(Yij[ZLi; ZRi℄; [YLi; YRi℄)) = E(Yi)and �b = 1n nXi=1 bi n!1�! E(bi) = E(E(Zij[ZLi; ZRi℄; [YLi; YRi℄)) = E(Zi):Thus, together with Proposition 1, this means that�̂ = �a� �̂�b n!1�! E(Y )� �E(Z): �Proposition 3It holds that �̂2 as de�ned above onverges in probability to the value V ar(Y )��V ar(Z).ProofAgain, with the law of large numbers and Proposition 1, one obtains�̂2 n!1�! E(Y 2)� 2�̂E(Y ) + �̂2 � �2E(Z2)= E(Y 2)� 2 (E(Y )� �E(Z))E(Y )+ (E(Y )� �E(Z))2 � �2E(Z2)= E(Y 2)� E(Y )2 � �2 �E(Z2)� E(Z)2�= V ar(Y )� �2V ar(Z): �For the determination of the parameter estimates of model 2, a proedure isproposed that uses start values for �a to �e. It iterates between alulating �̂,�̂ and �̂2 and re-determining the values for �a to �e as explained in the shemegiven below.



25Step B1 Take initial estimates for ai, bi, i, di and ei, for examplea0i = yLi + yRi2 ;b0i = zLi + zRi2 ;0i = (zLi � b0i )2 + (zRi � b0i )22 ;d0i = (zLi � bi)(yLi � ai) + (zRi � bi)(yRi � ai)2 ;e0i = (yLi � a0i )2 + (yRi � a0i )22 :Step B2 Use these values in (2.2) to (2.4) to ompute the initial estimate�0 = (�̂0; �̂0; �̂20).Step B3 Re-evaluate ai up to ei with their theoretial formulas given inAppendix A by employing �0.Step B4 Obtain the improved estimate �1 by solving equations (2.2) to (2.4).Step B5 Go to step B3 substituting �0 by �1.Step B6 Cyle steps B3 to B5 until the di�erene between the values of �0and �1 is suÆiently small.The omplete algorithm to obtain the joint maximum likelihood estimatefor w and � follows from the ombination of the two onditional algorithmsgiven above. It has been implemented in the program semipara:pp and anbe found on the oppy dis. The riteria for onvergene of the estimateswas hosen to be the relative norm di�erenes of the estimates at iterationstage l:jjŵl�1 � ŵljjjjŵl�1jj and jj�̂l�1 � �̂ljjjj�̂l�1jj :The estimates were de�ned to onverge if the respetive relative norm dif-ferene was less than 0.001. A ow-hart of the struture of this program isgiven in Chapter 3.



262.2 Con�dene intervals for the model pa-rametersThe MAPLE program given in Appendix B an be used to onstrut ap-proximate on�dene intervals for the parameter estimates resulting fromthe newly proposed estimation proedure. It uses the observed informationmatrix and quantiles of the normal distribution, and the di�erent steps inthe alulation proess of the program are explained in the following:Consider a given data set whih onsists of values yLi and yRi for the ob-served response intervals, values sj for the disrete ovariate with respetivedensity weights wj, and the estimated regression parameters �̂, �̂ and �̂2. The�rst part of the program reads this data into variables. With these, the log-likelihood as de�ned in equation (2.1) is onstruted and its �rst and seondderivatives with respet to the regression parameters are alulated. Then,the Hessian matrix is formed from all seond derivatives and the observedinformation matrix is alulated by multiplying the Hessian with minus one.Eventually, the inversion of the observed information matrix provides an es-timate for the varianes of �̂, �̂ and �̂2. These estimated varianes are thenemployed in the onstrution of the approximate on�dene intervals.2.3 Multiple regressionThis setion extends the proposed regression theory to the ase that model 2additionally inorporates an exatly observed ovariate vetor. This means,the model now under onsideration isY = � + ~� 01 ~X + �2Z + ";where ~X = (X1; : : : ; Xp) is a vetor of exatly observed ovariates, ~� 01 is theorresponding p-dimensional parameter vetor, Y is the interval ensored re-sponse, Z is an interval ensored ovariate, and " is a ontinuous N(0; �2)random variable independent of ~X and Z.The observed data for individual i is then ~xi = (x1i ; : : : ; xpi)0, [zLi ; zRi℄and [yLi; yRi℄. By de�ning � = (�; ~� 01; �2; �2) and using the notation and



27assumptions of model 2, the likelihood funtion in the new ontext is givenas L�n(w; �) = nYi=1 mXj=1 �ijwj Z YRiYLi f(yj(~xi; sj); �)); (2.5)where w = (w1; : : : ; wm), wj = P (Z = sj), �ij = Ifsj 2 [zLi ; zRi℄g andf(yj(~xi; sj); �)) is the onditional density of Y given ( ~X = ~xi; Z = sj):f(yj(~xi; sj); �)) = 1p2��2 exp �(yi � �� ~� 01~xi � �2sj)22�2 !2 :The idea of the estimation proedure for the model parameters �, ~� 01, �2and �2 is the same as for model 2, only that the likelihood funtion is nowgiven by (2.5). This means, L� is maximized simultaneously for w and �by yling between steps A und B of the earlier proposed algorithm. In thepresent ontext, Step A now onsists of the same self-onsistent equations asgiven earlier but using the new expression for �ij(w; �), whih is�ij(w; �) = P (Zi = sjj[yLi; yRi℄; [zLi ; zRi℄; ~xi) = �ijwj R yRiyLi f(yj(~xi; sj); �)Pmj=1 �ijwj R yRiyLi f(yj(~xi; sj); �) :Step B is modi�ed in so far that it now inorporates the maximum likelihoodestimators resulting from the new ontext of the multiple regression. Theseare obtained from maximizing the logarithm of likelihood (2.5) for �xed wand are derived in Appendix C.2.4 Model errors oming from the exponen-tial family or Weibull distributionIn the previous setions, the regression parameters were estimated assumingthe model errors to be normally distributed with mean zero and variane �2.The normal distribution is known to be a member of the so-alled exponen-tial family of distributions, whih is de�ned in the following way:



28De�nitionLet X be a random variable with density funtion f determined by the pa-rameter vetor �. One says that f belongs to the exponential family of dis-tributions if it an be expressed asf(x; �) = h(x)(�)exp[Q(�)t(x)℄;where Q(�) and t(x) are vetors of ommon dimension k suh that Q(�)t(x) =Pki=1Qi(�)ti(x).For example, the N(0; �2)-distribution is obtained when taking h(x) = 1,(�) = (2��2)�1=2, Q(�) = (0; 12�2 ) and t(x) = (x;�x2). Other members ofthe exponential family are the gamma, binomial and Poisson distribution.In what follows it will be shown that the proposed regression theory stillholds when the model errors ome from any distribution whih is a memberof the exponential family. This means that the likelihood to be onsiderednow isL��(�; wj) = nYi=1 mXj=1 �ijwj Z YRiYLi f(yijsj; �)dy;wheref(yijsj; �) = h(yi � �� �sj)(�)exp[Q(�)t(yi � �� �sj)℄and � = (�; �; �).The proeeding for obtaining the maximum likelihood estimate for � inthe new ontext is the same as in the original setting, namely maximizing thelogarithm of L�� with respet to the parameters �, � and �. The resultingpartial derivatives are given in Appendix D. It an be shown that the solu-tions (F1)� (F3) of Appendix D inlude equations (E1)� (E3) for normallydistributed ":Corollary 1Equation (F1) redues to equation (E1) when the model errors are normal.ProofWhen the " are normally distributed, it holds that h("i) = 1, (�) = 1p2��2 ,



29Q(�) = � 12�2 and t("i) = (yi � � � �sj)2. With that, equation (F1) resultsto (F1) = nXi=1 0�Pmj=1 �ijwj R YRiYLi �h0("i)h("i) f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q(�)t0("i)℄dyCi(�) 1A= nXi=1 0�Pmj=1 �ijwj R YRiYLi �01f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[� 12�2 (�2)(yi � �� �sj)℄dyCi(�) 1A= Pmj=1 �ijwj R YRiYLi f(yijsj; �)[ 1�2 (yi � �� �sj)℄dyCi(�) = (E1) �Corollary 2Equation (F2) redues to equation (E2) when the model errors are normal.ProofWhen the " are normally distributed, it holds that h("i) = 1, (�) = 1p2��2 ,Q(�) = � 12�2 and t("i) = (yi � � � �sj)2. With that, equation (F2) resultsto (F2) = nXi=1 0�Pmj=1 �ijwj R YRiYLi � sjh0("i)h("i) f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q(�)sjt0("i)℄dyCi(�) 1A= nXi=1 0�Pmj=1 �ijwj R YRiYLi � sj01 f(yijsj; �)dyCi(�)



30 � Pmj=1 �ijwj R YRiYLi f(yijsj; �)[� 12�2 (�2)(yi � �� �sj)sj℄dyCi(�) 1A= Pmj=1 �ijwj R YRiYLi f(yijsj; �)[ 1�2 (yi � �� �sj)sj℄dyCi(�) = (E2) �Corollary 3Equation (F3) redues to equation (E3) when the model errors are normal.ProofWhen the " are normally distributed, it holds that h("i) = 1, (�) = 1p2��2 ,Q(�) = � 12�2 and t("i) = (yi � � � �sj)2. With that, equation (F3) resultsto (F3) = nXi=1 0�Pmj=1 �ijwj R YRiYLi � 0(�)(�) f(yijsj; �)dyCi(�)+ Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q0(�)t("i)℄dyCi(�) 1A= nXi=1 Pmj=1 �ijwj R YRiYLi �� 0(�)(�) + [Q0(�)t("i)℄� f(yijsj; �)dyCi(�)= nXi=1 Pmj=1 �ijwj R YRiYLi �� 1�2 + [ 1�4 (yi � �� �sj)2℄� f(yijsj; �)dyCi(�) = (E3)�2.4.1 Weibull distributionThe proposed regression theory an also be applied when the model errorsome from the Weibull distribution, as will be shown in the following. Thelikelihood of the data in this ontext isL���(�; wj) = nYi=1 mXj=1 �ijwj Z YRiYLi f(yijsj; �)dy;



31wheref(yijsj; �) = ��s��1j exp���s�j �and � = (�; �).Setting the partial derivatives of l��� = log L��� to zero and solving for � and� yields the maximum likelihood estimates given in Appendix E.
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Chapter 3SimulationsSine theoretial results for the goodness of the proposed estimates are dif-�ult to obtain, their performane is heked through a simulation study.It involves di�erent data senarios for model 2 with the aim to assess towhat extend the proposed parameter estimates are able to reet these datasituations. Table 3.1 shows the simulation senarios used in the study.Table 3.1: Senarios for the simulation studynumber of observations 200 and 500ovariate distributions Exp(18), Weib(16 ; 32), N(6; 4)perentage of ensoring 0.3 and 0.7value for � 4values for � 2 and 5value for �2 1The simulations are arried out by the program semipara:pp on the oppydis, and a short summary of how this program works is given now: Themodel errors " are generated from a N(0; 1)-distribution, and the values forthe ovariate Z are simulated from the exponential, Weibull or normal dis-tribution. These values are used to onstrut the ovariate intervals [ZL; ZR℄after the following sheme: Depending on the ovariate distribution, thereis a ertain number of values j, j = 1; : : : ; k, whih the ovariate an takeon. An indiator variable Æij determines with a given probability p, whetheror not the ovariate for individual i is observed at value j. Then, one looksat eah value zi and goes bak to the nearest observed value j and takes33



34it as the value for zLi . Similarly, zRi is that observed value j oming �rstafter zi. The orresponding response intervals [yLi; yRi℄ result from the for-mulas yLi = �+ �zLi + "i and yRi = �+ �zRi + "i. Eventually, the two-stepalgorithm desribed in Chapter 2 is applied to the generated response andovariate intervals for the estimation of the model parameters �, � and �2.The following ow-hart illustrates the simulation proess of the programsemipara:pp. The steps of the program are written inside the boxes and thearrows indiate whih step enters in the alulation of another step. As mostalulations are exeuted by proedures within the program, their names arewritten outside the orresponding box whih will make it easier to �nd one'sway when looking at the ode of the program.ovariate values exponweibnormSSSw values for Æ�����=ovariate intervalsCCCCCCCCCW
SSSw model errors����=response intervals Resp���/parameter estimation viathe two-step algorithm StepsOther proedures used in this program are listed below together with a shortdesription of their usage:FileOpen: opens all �les needed for reading and writing.Spallo: alloates memory for the vetors and matries.ran2: generates random uniform variates.Simpson: integrates an user-de�ned funtion applying Simpson's method.



35The last mentioned proedure Simpson is used for the alulation of dif-ferent integrals over the onditional density f(yjsj; �) whih is needed amongothers in the alulation of the onditional means ai to ei given in Chapter 2.As these integrals annot be alulated analytially in C, a numerial approx-imation applying Simpson's method is used. The idea of Simpson's methodis to approximate the area under a given graph by a sequene of quadratis.That is, the range of the upper and lower interval limit is divided into aneven number of subintervals and their width is alulated. Then, the fun-tion value at the left endpoints of the �rst three subintervals in alulated aswell as the area of the parabola through these three points. This proess isrepeated moving two subintervals to the right. Simpson's method is said tobe the most exat among those existing for numerial integration. Though,it is obviously not as exat as the analytial form. This must be taken intoonsideration when assessing the simulation results of the estimates.The performane of the program semipara:pp with respet to speed andonvergene is highly satisfying. Running it on a 400 megahertz PentiumII proessor with 128 MB RAM main memory using the SUSE LINUX 7.1operating system yielded onvergene of the parameter estimates after 5 to30 iterations depending on the number of observations and the level of en-soring. The time needed for the alulations varied between 5 and 60 seonds.3.1 Simulation theoryThe simulation study involves the generation of data oming from di�erentstatistial distributions. The theory applied for the generation of these dis-tributions is given now (for referenes see Box and M�uller, 1958, or Morgan,1984).Uniform distributionFor the generation of a Uniform(0,1) random variable, aCongruential Pseudo-Random Number Generator is used. By applying the reursion formulaxn�1 = axn + b mod m with seed x0 and a, b, m given numbers, a sequeneof integers will be obtained, eah of whih lies between 0 and m � 1. Anapproximation to Uniform(0,1) random variables ui an then be ahieved bysetting ui = xi=m.



36Exponential and Weibull distributionAs the Exponential and Weibull distributions are ontinuous, one an makeuse of the Inversion Method to generate their distribution funtions. Sup-pose one wishes to simulate a ontinuous random variableX with distributionfuntion F (x) = P (X � x), and suppose further that the inverse funtionF�1(u) is well-de�ned for u 2 [0; 1℄. Then, it is well known that if U is a(0; 1)-Uniform random variable, X = F�1(U) has the required distribution.Normal distributionFor the simulation of the Normal distribution, the Polar Marsagliar Methodis applied: If U is a Uniform(0,1) random variable, then V = 2U � 1 is aUniform(-1,1) random variable. By seleting two independent Uniform(-1,1)random variables V1 and V2, a random point in the square [�1; 1℄�[�1; 1℄ anbe spei�ed whih has polar oordinates ( ~R;�) given by ~R2 = V 21 + V 22 andtan(�) = V2=V1. The repeated seletion of suh points provides a randomsatter of points inside this square, and rejetion of points outside the unit-irle produes a uniform random satter of points within this irle. Forany of these points, the polar oordinates ~R and � are independent randomvariables, � is a Uniform(0,2�) random variable and ~R2 is a Uniform(0,1)random variable. One an writesin(�) = V2~R = V2pV 21 + V 22 ; os(�) = V1pV 21 + V 22 :Eventually, a pair of independent N(0; 1)-variables is obtained by de�ningM1 and M2 asM1 =q�2log( ~R2) V2pV 21 + V 22 ; M2 =q�2log( ~R2) V1pV 21 + V 22 :3.2 Results of the simulationsTable 3.2 and 3.3 show the results of the simulation study for model 2 underthe di�erent senarios given in Table 3.1 above. Eah olumn gives themedian and mean value [standard deviation℄ alulated using 500 repliatesfor the estimated model parameters.



37Table 3.2: Estimated regression parameters when � = 4, � = 2 and �2 = 1Median Mean [Std℄ Median Mean [Std℄ Median Mean [Std℄for � for � for �2Exponential( 18 )n=200,p=0.3 3.801 3.799 [0.228℄ 2.011 2.011 [0.032℄ 1.193 1.192 [0.130℄n=500,p=0.3 3.827 3.823 [0.141℄ 2.007 2.007 [0.032℄ 1.199 1.201 [0.084℄n=200,p=0.7 3.971 3.972 [0.159℄ 1.997 1.997 [0.021℄ 0.994 1.100 [0.111℄n=500,p=0.7 3.974 3.977 [0.099℄ 1.997 1.997 [0.013℄ 1.005 1.010 [0.068℄Weibull( 16 , 32 )n=200,p=0.3 4.030 4.028 [0.246℄ 1.973 1.972 [0.069℄ 1.309 1.317 [0.134℄n=500,p=0.3 4.043 4.033 [0.163℄ 1.971 1.973 [0.044℄ 1.330 1.327 [0.091℄n=200,p=0.7 3.977 3.979 [0.183℄ 1.999 1.999 [0.049℄ 0.958 0.961 [0.101℄n=500,p=0.7 3.981 3.981 [0.117℄ 2.001 2.000 [0.032℄ 0.978 0.980 [0.071℄Normal(6,4)n=200,p=0.3 4.219 4.215 [0.497℄ 1.937 1.940 [0.085℄ 0.950 0.945 [0.118℄n=500,p=0.3 4.213 4.223 [0.303℄ 1.939 1.938 [0.052℄ 0.948 0.952 [0.069℄n=200,p=0.7 4.055 4.033 [0.358℄ 1.983 1.984 [0.059℄ 0.930 0.933 [0.105℄n=500,p=0.7 4.059 4.058 [0.222℄ 1.980 1.981 [0.037℄ 0.931 0.938 [0.069℄Table 3.3: Estimated regression parameters when � = 4, � = 5 and �2 = 1Median Mean [Std℄ Median Mean [Std℄ Median Mean [Std℄for � for � for �2Exponential( 18 )n=200,p=0.3 3.531 3.510 [0.288℄ 5.062 5.064 [0.045℄ 1.882 1.879 [0.235℄n=500,p=0.3 3.559 3.549 [0.180℄ 5.056 5.058 [0.028℄ 1.866 1.885 [0.138℄n=200,p=0.7 3.944 3.939 [0.168℄ 5.004 5.003 [0.022℄ 1.093 1.093 [0.123℄n=500,p=0.7 3.952 3.951 [0.100℄ 5.003 5.002 [0.012℄ 1.106 1.105 [0.072℄Weibull( 16 , 32 )n=200,p=0.3 3.817 3.817 [0.306℄ 5.040 5.043 [0.090℄ 2.233 2.253 [0.303℄n=500,p=0.3 3.836 3.833 [0.193℄ 5.038 5.039 [0.056℄ 2.267 2.258 [0.203℄n=200,p=0.7 3.970 3.974 [0.198℄ 5.005 5.004 [0.053℄ 1.042 1.042 [0.110℄n=500,p=0.7 3.972 3.974 [0.118℄ 5.004 5.005 [0.032℄ 1.078 1.076 [0.071℄



38 Normal(6,4)n=200,p=0.3 4.423 4.409 [0.568℄ 4.921 4.920 [0.100℄ 1.283 1.294 [0.166℄n=500,p=0.3 4.436 4.433 [0.347℄ 4.918 4.917 [0.060℄ 1.277 1.282 [0.100℄n=200,p=0.7 4.107 4.125 [0.378℄ 4.971 4.969 [0.063℄ 0.960 0.970 [0.110℄n=500,p=0.7 4.124 4.124 [0.232℄ 4.970 4.970 [0.039℄ 0.984 0.984 [0.075℄Both tables show that the values of the median and the mean do not di�ermuh within the simulation senarios. For � = 2, the estimation results forthe parameter � are best when the ovariate distribution is Weibull. For anexponential ovariate distribution, this parameter is slightly underestimated,and for a normal distribution it is slightly overestimated. It an be also no-tied that the standard deviation is twofold when the ovariate distribution isnormal. The estimation of the parameter � is very aurate for all ovariatedistributions and the standard deviations are also smaller than those for theparameter �. The results for the estimation of the error variane �2 is mostsatisfying for an exponential and Weibull ovariate distribution with a lowlevel of ensoring (p = 0:7). At a high ensoring level, the value of the errorvariane is overestimated. The results for a normally distributed ovariateare similar for both low and high ensoring levels but generally underesti-mate the error variane.For � = 5, the estimation results for the parameter � are most satisfy-ing when the perentage of ensored data is low, regardless of the ovari-ate distribution. When the perentage of ensoring is high, the value of �is underestimated in ase of the exponential and Weibull distribution, andoverestimated in ase of the normal distribution. Among these three o-variate distributions, the Weibull performs best. With respet to the modelparameter �, the simulation results show that the estimation proedure per-forms well for all three ovariate distributions and estimates lose to the trueparameter value are obtained. The error variane �2 is estimated most sat-isfatorily for a low ensoring level, otherwise it is overestimated. The valueof the slope � has obviously an e�et in the estimation of the error varianebeause the overestimation was not that high for � = 2.It an be also notied that the number of observations a�ets the valueof the standard deviation of the estimates in so far that it gets smaller if the



39number of observations gets larger.Table 3.4 gives a summary of those simulation senarios for whih theparameter estimates perform best.Table 3.4: Summary of the simulation resultsbest performane for � = 2 best performane for � = 5�̂ Weib, exp/norm and p=0.7 exp/norm/Weib and p=0.7�̂ all senarios all senarios�̂2 exp/Weib and p=0.7 exp/norm/Weib and p=0.7
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Chapter 4Disussion of other approahesTwo other approahes for the estimation problem of model 2 were investi-gated in addition to the semiparametri approah desribed in Chapter 2.The �rst approah is an empirial one with the idea of adapting the well-known unensored regression estimators to the ontext of interval ensoreddata. The seond approah imitates the least squares method of unen-sored regression analysis and transfers it to the interval ensored setting.The following setions summarize the problems enountered in the proessof examining these approahes.4.1 Empirial approahConsider the linear model Y = �+ �Z + " where Y is the response variableand Z the ovariate, both unensored. It is known from regression theorythat for this model the least squares estimates�̂ = ^ov(Y; Z)^var(Z) and �̂ = Ê(Y )� �̂Ê(Z) (�)are unbiased and have minimum variane when the onditions of the Gauss-Markov theorem are met.When Y and Z are interval ensored, one ould think in trying to estimatethe involved ovariane, variane and expeted values through the ommondensity funtion of Z and Y , whih an be alulated with the method devel-oped by Betensky and Finkelstein (1999) desribed in Chapter 1.2. From the41



42estimated ommon density ĥ, say, one ould then alulate the marginal den-sities f̂ and ĝ, say, of Y and Z, respetively. From these three distributionfuntions one ould �nally estimate the ovariane, variane and expetedvalues fromÊ(Z) = Z ZRiZLi zg(z)dz; Ê(Y ) = Z YRiYLi yf(y)dz;^var(Z) = Z ZRiZLi (z � Ê(Z))2g(z)dz;^ov(Y; Z) = Z ZRiZLi Z YRiYLi (z � Ê(Z))(y � Ê(Y ))h(y; z)dydz;and alulate the estimators �̂ and �̂ with the formulas given in (�).Simulations using the same simulation senarios as in the semiparametriapproah showed that the estimates for � resulting from the empirial ap-proah are not very aurate. Table 4.1 below gives the means [mean squarederrors℄ of �̂ and �̂, alulated from 1000 repliations of eah setting.Table 4.1: Simulation results for the empirial approah where � = 4 and � = 2distribution parameters �̂ [MSE℄ �̂ [MSE℄Exponential( 18 ) n=100, p=0.3 4.390 [0.41℄ 2.086 [0.02℄n=500,p=0.3 4.329 [0.41℄ 2.086 [0.02℄n=100,p=0.7 4.547 [0.40℄ 2.022 [<0.01℄n=500,p=0.7 4.478 [0.25℄ 2.024 [<0.01℄Weibull( 16 , 32 ) n=100,p=0.3 4.611 [0.52℄ 1.984 [0.03℄n=500,p=0.3 4.662 [0.47℄ 1.939 [<0.01℄n=100,p=0.7 4.593 [0.42℄ 1.995 [<0.01℄n=500,p=0.7 4.559 [0.33℄ 1.976 [<0.01℄Normal(6,4) n=100,p=0.3 4.145 [0.98℄ 2.112 [0.05℄n=500,p=0.3 4.099 [0.20℄ 2.103 [0.02℄n=100,p=0.7 4.168 [0.48℄ 2.111 [0.03℄n=500,p=0.7 4.091 [0.10℄ 2.103 [0.01℄



43It an be seen that the value of � is strongly overestimated when theovariate distribution is exponential or Weibull. Only in ase of a normallydistributed ovariate, this estimate is near the true value. The mean squarederror is quite high for all three ovariate distributions, so it must be on-luded that the values of the estimator di�er onsiderately within the 1000repliations. With respet to the parameter �, the simulation results showthat the estimates are quite aurate and the mean squared errors are small.One ould onlude from Table 4.1 that the estimation results for a nor-mally distributed ovariate are not too bad, but this onlusion is not veryappropriate due to the high mean squared errors for �̂. Furthermore, the es-timation results are only stable when the number of observation is very high(n = 500), whih does indiate a poor performane on small data sets. Also,the perentage of ensoring e�ets the value of the mean squared error, butthe inuene seems not to be as high as that of the number of observations,espeially in the ase of a normally distributed ovariate.The main disadvantage, though, of the empirial approah is that it doesnot provide an estimate for the model error variane �2. In the unensoreddata setting, �̂2 is alulated from the formula�̂2 = 1n� 1 nXi=1 (yi � �̂� �̂zi)2;whih has no proper equivalent in the interval ensored data setting. Themethod of replaing the unobserved values yi and zi by the midpoints of theirobserved ensoring intervals is generally known to lead to onsiderable biasesin the estimators and is also not a methodologially orret approah.4.2 Least squares approahThe least squares method in unensored regression analysis ahieves param-eter estimation by minimizing the sum of squaresnXi=1 (yi � �� �zi)2;that is, the vertial distanes between the observed data points and the �ttedline. One ould think in applying this method to the interval ensored data



44setting by minimizing the distanes between the observed data retanglesand the �tted line. To avoid the de�nition of suh a distane, one oulddiretly try to minimizenXi=1 E �(yi � �� �zi)2jzi 2 [zLi ; zRi℄; yi 2 [yLi; yRi℄� ;whih is the expeted sum of squares onditioned on the observed data ret-angles [zLi ; zRi℄� [yLi ; yRi℄. This would be equivalent to minimizingnXi=1 Z zRizLi Z yRiyLi (y����z)2hi(z; y)dydz; (��)where hi(z; y) is the joint density of Z and Y trunated into the retangle[zLi ; zRi℄� [yLi; yRi℄.The solution of this equations would require the alulation of the den-sity hi, whih an be ahieved with the method of Betensky and Finkelstein(1999), as well as the mathematial minimization of the given sum withrespet to the parameters � and �, whih ould be arried out by a math-ematial software like MAPLE. For the purpose of running simulations inorder to assess the performane of the estimators, the problem ourrs howto onnet these two steps so that they an be exeuted onseutively by theomputer without interferene from the outside. This problem ould not besolved until now beause of two fats: The MAPLE software is too ineÆ-ient to alulate the ommon density hi, and the C language an not beused to solve minimization problems. Trying to alulate �rst hi in C andthen solving the minimization problem in MAPLE fails beause it does notseem to exist a ommand that automatially starts a MAPLE program fromthe C interfae. Theoretial alulations of the properties of the parameterestimates resulting from minimizing (��) are quite omplex and diÆult tointerpret.



Chapter 5OutlookFor the purpose of assessing the goodness of the estimatedmodel 2, a residualtheory should be developed in the future to omplete the proposed regressiontheory. It is not suÆient to onsider an ad-ho approah like G�omez et al.(2002) did, beause it ould be seen from the results of the simulation studyin Chapter 3 that these residuals perform quite unsatisfatorily in most ofthe onsidered data situations. It is rather desirable to extend the onept ofthe residual theory given in Part II of this thesis to the ase that the responsevariable is interval ensored as well.
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Appendix ADerivation of the ML equationswhen the errors are normallydistributedConsider the likelihood funtionL = nYi=1 mXj=1 �ij Z YRiYLi f(yjsj; �)wjdy = nYi=1 mXj=1 �ijwj Z YRiYLi f(yjsj; �)dy;where �ij equals one if sj 2 [zLi ; zRi℄ and zero elsewhere. � = (�; �; �2) isthe parameter vetor to be estimated, and f(yjsj; �) is given byf(yjsj; �) = 1p2��2 exp(� 12�2 (y � �� �sj)2):De�neL := nYi=1 Ci(�);where Ci(�) is the ontribution of the i-th individual to the likelihood L.Then,logL = nXi=1 logCi(�): 47



48In order to get the ML-estimators of �, the ML equations are solved:(E1) �logL�� = 0;(E2) �logL�� = 0;(E3) �logL��2 = 0:Consider the quantities ai, bi, i, di and ei de�ned asai := E(Y j[ZLi; ZRi℄; [YLi; YRi℄) = Pmj=1 �ijwj R YRiYLi yf(yjsj; �)dyCi(�) ;bi := E(Zj[ZLi; ZRi℄; [YLi; YRi℄) = Pmj=1 sj�ijwj R YRiYLi f(yjsj; �)dyCi(�) ;i := E(Z2j[ZLi; ZRi ℄; [YLi; YRi℄) = Pmj=1 s2j�ijwj R YRiYLi f(yjsj; �)dyCi(�) ;di := E(ZY j[ZLi; ZRi℄; [YLi; YRi℄) = Pmj=1 sj�ijwj R YRiYLi yf(yjsj; �)dyCi(�) ;ei := E(Y 2j[ZLi; ZRi℄; [YLi; YRi℄) = Pmj=1 �ijwj R YRiYLi y2f(yjsj; �)dyCi(�) :Then, solving equation (E1) leads to(E1), nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi y � �� �sj�2 f(yjsj; �)dy = 0, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi yf(yjsj; �)dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (� + �sj)f(yjsj; �)dy



49, nXi=1 ai = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (�+ �sj)f(yjsj; �)dy, nXi=1 ai = � nXi=1 Pmj=1 �ijwj R YRiYLi f(yjsj; �)dyCi(�)+� nXi=1 Pmj=1 sj�ijwj R YRiYLi f(yjsj; �)dyCi(�), nXi=1 ai = n� + � nXi=1 bi , n� = nXi=1 ai � � nXi=1 bi) �̂ = 1n nXi=1 ai � �̂ 1n nXi=1 bi = �a� �̂�b:Equally, solving equation (E2) results in(E2), nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi y � �� �sj�2 sjf(yjsj; �)dy = 0, nXi=1 1Ci(�) mXj=1 �ijwjsj Z YRiYLi (y � �)f(yjsj; �)dy= nXi=1 1Ci(�) mXj=1 �ijwj�s2j Z YRiYLi f(yjsj; �)dy, nXi=1 1Ci(�) mXj=1 �ijwjsj Z YRiYLi (y � �)f(yjsj; �)dy = � nXi=1 i, nXi=1 1Ci(�)  mXj=1 �ijwjsj Z YRiYLi yf(yjsj; �)dy � � mXj=1 �ijwjsj Z YRiYLi f(yjsj; �)dy!= � nXi=1 i, nXi=1 1Ci(�) mXj=1 �ijwjsj Z YRiYLi yf(yjsj; �)dy � � nXi=1 bi = � nXi=1 i



50 , nXi=1 di � � nXi=1 bi = � nXi=1 i, �d� ��b = ��, � = �d� ��b� ;and replaing � by its estimate �̂ from (E1) results that�̂ = �d� �a�b�� �b2 :Finally, from equation (E3) one obtains(E3), nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yjsj; �)��12�2 + (y � �� �sj)22�4 � dy = 0, 1�4 nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yjsj; �)(y � �� �sj)2dy= 1�2 nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yjsj; �)dy, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yjsj; �)(y � �� �sj)2dy = n�2:Noting that (y � �� �sj)2 = (y � �)2 + �2s2j � 2�sj(y � �), this is equal tonXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y��)2f(yjsj; �)dy = n�2��2 nXi=1 i+2�2 nXi=1 i, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y � �)2f(yjsj; �)dy = n�2 + �2 nXi=1 i, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y2� 2�y+�2)f(yjsj; �)dy = n�2+�2 nXi=1 i, nXi=1 1Ci(�)( mXj=1 �ijwj Z YRiYLi y2f(yjsj; �)dy�2� mXj=1 �ijwj Z YRiYLi yf(yjsj; �)dy



51+�2 mXj=1 �ijwj Z YRiYLi f(yjsj; �)dy = n�2 + �2 nXi=1 i, nXi=1 ei � 2� nXi=1 ai + n�2 = n�2 + �2 nXi=1 i, nXi=1 ei � 2� nXi=1 ai + n�2 � �2 nXi=1 i = n�2) �̂2 = �e� 2�̂�a + �̂2 � �̂2�:
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Appendix BMaple program for thealulation of approximateon�dene intervals> with(LinearAlgebra):Speifying the number of observations n and the number ofexaminations m> n:=2; m:=6;Reading the data> data:=matrix(9,6,readdata(`A:\\data.txt`,9));Assigning the variables needed in the loglikelihood> ID:=matrix(n,m);> for i from 1 to n do for j from 1 to m doID[i,j℄:=data[i,j℄ end do end do;> for j from 1 to m do w[j℄:=data[3,j℄ end do;> for j from 1 to m do s[j℄:=data[4,j℄ end do;> for i from 1 to n do yl[i℄:=data[5,i℄ end do;> for i from 1 to n do yr[i℄:=data[6,i℄ end do;> alphahat:=data[7,1℄; 53



54> betahat:=data[8,1℄;> sigma2hat:=data[9,1℄;Definition of the log-likelihood> i:='i'; j:='j';> for j from 1 to m dof[j℄:=(1/(sqrt(2*Pi*sigma^2)))*exp(-((y-alpha-beta*s[j℄)^2)/(2*sigma^2)) end do;> loglike:=sum('log(sum('ID[i,j℄*w[j℄*int(f[j℄,y=yl[i℄..yr[i℄)','j'=1..6))','i'=1..n);Calulation of the sore funtion of loglike> i:='i'; j:='j';> der11:=diff(loglike,alpha);> der12:=diff(loglike,beta);> der13a:=algsubs(sigma^2=V,loglike);> der13b:=subs(sigma=sqrt(V),der13a);> der13:=diff(der13b,V);> der13:=subs(V=sigma^2,der13);Calulation of the seond derivatives of loglike> der111:=diff(der11,alpha);> der112:=diff(der11,beta);> der113a:=algsubs(sigma^2=V,der11);> der113b:=subs(sigma=sqrt(V),der113a);> der113:=diff(der113b,V);> der113:=subs(V=sigma^2,der113);>> der122:=diff(der12,beta);> der123a:=algsubs(sigma^2=V,der12);> der123b:=subs(sigma=sqrt(V),der123a);> der123:=diff(der123b,V);> der123:=subs(V=sigma^2,der123);>> der133a:=algsubs(sigma^2=V,der13);



55> der133b:=subs(sigma=sqrt(V),der133a);> der133:=diff(der133b,V);> der133:=subs(V=sigma^2,der133);Constrution of the Hessian matrix> matt:=Matrix(1..3,1..3,[[der111,der112,der113℄,[der112,der122,der123℄,[der113,der123,der133℄℄);>Calulating the observed information matrix> alpha:=alphahat;beta:=betahat;sigma:=sqrt(sigma2hat);> evalf(matt);> fish:=evalf(-1*matt);Inverting the observed information matrix whih is an estimatefor the variane of \hat{alpha}, \hat{beta} and \hat{sigma}^2> variane:=MatrixInverse(fish);Construting the onfidene intervals for theregression parameters> alpha:='alpha';beta:='beta';sigma:='sigma';> CI(alpha):=[alphahat-1.96*sqrt(variane[1,1℄)/sqrt(n),alphahat+1.96*sqrt(variane[1,1℄)/sqrt(n)℄;> CI(beta):=[betahat-1.96*sqrt(variane[2,2℄)/sqrt(n),betahat+1.96*sqrt(variane[2,2℄)/sqrt(n)℄;> CI(sigma):=[sigma2hat-1.96*sqrt(variane[3,3℄)/sqrt(n),sigma2hat+1.96*sqrt(variane[3,3℄)/sqrt(n)℄;
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Appendix CDerivation of the MLE for themultiple regression settingWith the notations given in Appendix A, setting the partial derivations ofthe likelihood to zero and solving for the parameters, one yields the followingsolutions:For the parameter � it holds that�logL��� = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi y � �� ~� 01~xi � �2sj�2 f(yj(~xi; sj); �)dy != 0, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi yf(yj(~xi; sj); �)dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (� + ~� 01~xi + �2sj)f(yj(~xi; sj); �)dy, nXi=1 ai = n�+ nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi ~� 01~xif(yj(~xi; sj); �)dy+�2 nXi=1 bi, nXi=1 ai � pXl=1 �1l nXi=1 xli � �2 nXi=1 bi = n�:
57



58For the parameter ~�1 it holds that�logL��~� 01 = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi ~xi(y � �� ~� 01~xi � �2sj)�2 f(yj(~xi; sj); �)dy!= 0, nXi=1 xkiai = � nXi=1 xki + pXl=1 �1l nXi=1 xlixki + �2 nXi=1 xkibi;, nXi=1 xkiai � � nXi=1 xki � �2 nXi=1 xkibi = pXl=1 �1l nXi=1 xlixki;for k = 1; : : : ; p:For the parameter �2 it holds that�logL���2 = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi sj(y � �� ~� 01~xi � �2sj)�2 f(yj(~xi; sj); �)dy!= 0, nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi �2s2jf(yj(~xi; sj); �)dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi sj(y � �� ~� 01~xi)f(yj(~xi; sj); �)dy, �2 nXi=1 i = nXi=1 di � � nXi=1 bi � pXl=1 �1l nXi=1 xlibi:For the parameter �2 it holds that�logL���2 = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi  � 12�2 + 2(y � �� ~� 01~xi � �2sj)24�4 !
f(yj(~xi; sj); �)dy != 0, 12�2 nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yj(~xi; sj); �)dy



59= 12�4 nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y���~� 01~xi��2sj)2f(yj(~xi; sj); �)dy: (�)Noting that (y � �� ~� 01~xi � �2sj)2 is equivalent to (y � �� ~� 01~xi)2 + �22s2j �2�2sj(y � �� ~� 01~xi), it holds that(�), n�2 � �2 nXi=1 i + 2�2 nXi=1 i= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi (y � �� ~� 01~xi)2f(yj(~xi; sj); �)dy, n�2 + �2 nXi=1 i = nXi=1 ei � 2� nXi=1 ai � 2 pXl=1 �1l nXi=1 xliai�2� pXl=1 �1l nXi=1 xli + n�2 + pXl=1 �21l nXi=1 x2li:
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Appendix DDerivation of the MLE whenthe errors ome from theexponential familySetting logL�� to zero and solving for the parameters yields the followingmaximum likelihood estimates:With respet to � one gets�logL���� = nXi=1 0�Pmj=1 �ijwj R YRiYLi �h(yi����sj)�� (�)exp[Q(�)t(yi � �� �sj)℄Ci(�)+Pmj=1 �ijwj R YRiYLi f(yijsj; �) hQ(�)�t(yi����sj)�� i dyCi(�) 1A
= nXi=1 0�Pmj=1 �ijwj R YRiYLi �h0("i)h("i) f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q(�)t0("i)℄dyCi(�) 1A = (F1):61



62With respet to � one gets�logL���� = nXi=1 0�Pmj=1 �ijwj R YRiYLi �h(yi����sj)�� (�)exp[Q(�)t(yi � �� �sj)℄Ci(�)+Pmj=1 �ijwj R YRiYLi f(yijsj; �) hQ(�)�t(yi����sj)�� i dyCi(�) 1A= nXi=1 0�Pmj=1 �ijwj R YRiYLi � sjh0("i)h("i) f(yijsj; �)dyCi(�)� Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q(�)sjt0("i)℄dyCi(�) 1A = (F2):With respet to � one gets�logL���� = nXi=1 0�Pmj=1 �ijwj R YRiYLi h(yi � �� �sj)0(�)exp[Q(�)t(yi � �� �sj)℄Ci(�)+Pmj=1 �ijwj R YRiYLi f(yijsj; �) [Q0(�)t(yi � �� �sj)℄ dyCi(�) 1A= nXi=1 0�Pmj=1 �ijwj R YRiYLi � 0(�)(�) f(yijsj; �)dyCi(�)+ Pmj=1 �ijwj R YRiYLi f(yijsj; �)[Q0(�)t("i)℄dyCi(�) 1A = (F3):



63Setting these equations to zero and solving for the parameters one obtainsthe maximum likelihood equationsnXi=1 hi = �Q(�) nXi=1 t0i;nXi=1 zhi = �Q(�) nXi=1 zt0i;nXi=1 n0(�)(�) = �Q0(�) nXi=1 ti;whereti = E (t(")j[yLi; yRi℄; [xLi ; xRi℄) ;t0i = E (t0(")j[yLi; yRi℄; [xLi ; xRi ℄) ;zt0i = E (Zt0(")j[yLi; yRi℄; [xLi ; xRi℄) ;hi = E �h0(")h(") k[yLi; yRi℄; [xLi ; xRi ℄� ;zhi = E �Zh0(")h(") j[yLi; yRi℄; [xLi ; xRi℄� :



64



Appendix EDerivation of the MLE whenthe errors ome from theWeibull distributionSetting l��� to zero and solving for the parameters yields the following solu-tions:For the parameters �̂ it holds that�l����� = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi �s��1j exp���s�j ����s��1j exp ���s�j � s�j dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yijsj; �)� 1� � s�j� dy != 0, n� = nXi=1 fi ) �̂ = n= nXi=1 fi:For the parameters �̂ it holds that�l����� = nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi ��s��1j + ��(� � 1)s��2j � exp ���s�j �+��s��1j exp ���s�j �����s��1j � dy= nXi=1 1Ci(�) mXj=1 �ijwj Z YRiYLi f(yijsj; �)� 1� + (� � 1)sj � ��s��1j � dy != 065



66 , n� + (� � 1) nXi=1 bi = �� nXi=1 gi, n� + � nXi=1 bi � �� nXi=1 gi = nXi=1 bi:In these expressions, the following onditional expeted values are used:1Ci(�) mXj=1 �ijwj Z YRiYLi s�j f(yijsj; �)dy = E(Z�j[yLi; yRi℄; [zLi ; zRi ℄) = fiand 1Ci(�) mXj=1 �ijwj Z YRiYLi s��1j f(yijsj; �)dy = E(Z��1j[yLi; yRi℄; [zLi ; zRi℄) = gi:


