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Applicability of

Deterministic Global Optimization

to the Short-Term Hydrothermal

Coordination Problem

TESI DOCTORAL

presentada per

Albert FERRER BIOSCA

a

LA UNIVERSITAT POLITÈCNICA DE CATALUNYA
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Generation Problem
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Nt number of time intervals

di
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j power hydrogeneration function of the jth reservoir into the

ith time interval
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s̄j
w tailwater elevation of the jth reservoir
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w − s̄j

w

s̃j equivalent head of the jth reservoir

svb basic coefficient in the relationship between the headwater

elevation and the volume stored

svl linear coefficient in the relationship between the headwater

elevation and the volume stored

svq quadratic coefficient in the relationship between the headwater

elevation and the volume stored

svc cubic coefficient in the relationship between the headwater

elevation and the volume stored

sdb basic coefficient in the relationship between the tailwater
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elevation and the water discharge
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i
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Vector spaces and polynomials
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Sets, functions and matrices

∅ empty set
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IR the set of the real numbers

IR the set of the extended real numbers; IR := IR ∪ {−∞,+∞}
IRn IRn := IR× IR× . . .× IR, n-times

IRn×m IRn×m := IRn × IRm
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cone(A) the cone generated by A (the smallest convex cone which contains A)
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D \ C difference of the sets D and C; D \ C := {x : x ∈ D, x 6∈ C}
ext C exterior of C; ext C := int (IRn \ C)

∂C the boundary of the set C; ∂C := cl C ∩ cl (IRn \ C)

projIRnD the projection of D on IRn
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argminf(S) the set of all global minimizers of the function f on the set S
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∂f(x) subdiferential of the function f at the point x;

DC(A) the class of d.c. functions on the set A ⊂ IRn
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M and N in IRn∗n





Preliminaries

Convex sets

A set A ⊂ IRn is called a convex set if it contains any line segment between a pair

of its points. The dimension of a convex set is the dimension of its affine hull (the

smallest affine set containing A). A convex set A ⊂ IRn is said to be of full dimension

if dim(A) = n. Let A, B be convex sets of IRn and let t ∈ IR. Then, the sets

• A ∩B,

• A+B := {z ∈ IRn : z = x+ y, x ∈ A, y ∈ B},

• tA := {z ∈ IRn : z = tx, x ∈ A, t ∈ IR},

are convex sets. Given a set X ⊂ IRn, the intersection of all convex sets which

contain X is called the convex hull of X and it is denoted by conv(X). The convex

hull of X coincides with all the convex combinations of its elements (
∑m

i=1 tixi with

xi ∈ X, ti ≥ 0,
∑m

i=1 ti = 1, m ∈ IN) and it is the smallest convex set containing X.

Let C ⊂ IRn be a nonempty closed convex set, and consider y 6∈ C. Then there

exists a hyperplane H :=
{
x ∈ IRn : ctx = b

}
, with b ∈ IR and non zero c ∈ IRn such

that

1. y 6∈ H+ (y ∈ int(H−)),

2. C ⊂ H+,

where H+ :=
{
x ∈ IRn : ctx ≥ b} and H− :=

{
x ∈ IRn : ctx ≤ b} are the closed

halfspaces defined by H. An immediate consequence of this property is that a

xv



xvi PRELIMINARIES

nonempty closed convex set C is the intersection of all closed halfspaces containing

C. In order to express C as the intersection of halfspaces, we only need hyperplanes

H which contain a boundary point of C (supporting hyperplanes of C), i.e., H∩C 6= ∅
and C ⊂ H+ or C ⊂ H− .

A set M ⊂ IRn is called a cone if tM ⊂ M for all t > 0. Consider a ∈ IR then,

C := a +M is called a cone with apex a. A cone which contains no line is said to

be pointed in this case, 0 and a are called the vertex of M and C, respectively.

A set M ⊂ IRn is a convex cone if and only if

1. tM ⊂M for all t > 0,

2. M +M ⊂M ,

which is equivalent to saying that the cone M contains all the positive linear com-

binations of its elements. Let A be a convex set of IRn. Denote by cone(A) the

smallest convex cone that contains A, which is said to be the cone generated by A.

We can see that cone(A) = ∪t>0(tA).

Convex functions

Let IR := IR ∪ {−∞,+∞} be the set of the extended real numbers with the well-

known rules of calculus with these new elements +∞ and −∞, and the meaningless

situations such that +∞−∞ and ±∞/±∞, among others, that must be avoided. A

function f : A→ IR on a set A ⊂ IRn, is said to be an extended real-valued function

on A. The sets

• dom(f) := {x ∈ A : f(x) < +∞} and

• epi(f) := {(x, t) ∈ A× IR : f(x) ≤ t} ⊂ IRn × IR

are named the effective domain and the epigraph of f , respectively. If dom(f) 6= ∅
and f(x) > −∞ for all x ∈ A, then f is said to be a proper function.

A function f : A ⊂ IRn → IR is said to be convex on A when epi(f) is a convex

set in IRn × IR. This is equivalent to say that A is a convex set in IRn and

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)
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for any x1, x2 ∈ A, 0 ≤ λ ≤ 1 and the right hand side is defined. If the inequality

is strict for x1 6= x2 and 0 < λ < 1, then the function is said to be strictly convex.

It can be proved that if f is convex on A then

f

(
m∑

i=1

λixi

)
≤

m∑

i=1

λif(xi),

where m ∈ IN , xi ∈ A, 0 ≤ λi ≤ 1, i = 1, . . . ,m and
∑m

i=1 λi = 1. Let A ⊂ IRn be

a convex set. A function f : A → IR is said to be concave (strictly concave) on A

when the function −f is convex (strictly convex) on A. Many properties of convex

functions can be deduced from corresponding properties of convex sets.

The following algebraic properties are a direct consequence of the definition of

a convex function. Let fi : A→ IR, i = 1, . . . ,m be proper convex functions on the

convex set A ⊂ IRn, then

• ∑m
i=1 αifi(x), αi ≥ 0, i = 1, . . . ,m is convex,

• max {fi(x), i = 1, . . . ,m} is convex,

• sup {f(x), f ∈ F}, where F is a family of proper convex functions on A, is

also a convex function.

Convex functions have interesting continuity and differentiability properties which

are very useful in optimization. Let A ⊂ IRn be a nonempty convex set of full

dimension n.

• A convex function f : A → IR is continuous at every interior point of A. If

A = IRn, then f is continuous everywhere. For A 6= IRn discontinuities can

only be found at the boundary of A.

• If f : A→ IR is differentiable on A, A open convex set, then f is convex if and

only if f(y) ≥ f(x) + (y − x)t∇f(x) for every x, y ∈ A. It is strictly convex if

and only if the inequality is strict for x 6= y.

• If f : A→ IR is twice-differentiable on A, A open convex set, then f is convex

if and only if its Hessian matrix H(x) is positive semidefinite for every x ∈ A,

i.e., ytH(x)y ≥ 0 for every x ∈ A and y ∈ IRn. If H(x) is positive definite for

every x ∈ A, then f is strictly convex.

Given a proper function f : A ⊂ IRn → IR. A vector p ∈ IRn is said to be a

subgradient of f at a point x ∈ A if f(y) ≥ f(x) + pt(y − x) for all y ∈ A. The set
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of all subgradients at the point x is said to be the subdifferential of the function f

at the point x, and it is denoted by ∂f(x). A function f is called subdifferentiable

at x if ∂f(x) 6= ∅.

Let f : A ⊂ IRn → IR be a proper convex function on A, A a convex set. For

any bounded set S ⊂ int(dom(f)) the set

⋃
∂f(x)

x ∈ S

is nonempty and bounded. In particular, ∂f(x) is nonempty and bounded at every

x ∈ int(dom(f)). If f is differentiable at x ∈ A then ∂f(x) = {∇f(x)}.

D.c. functions

Let f be a real valued function defined on a convex set A ⊂ IRn. The function f

is called a d.c. function on A if it can be expressed as a difference of two convex

functions on A, i.e., there exist convex functions f1 and f2 on A such that

f(x) = f1(x)− f2(x) ∀x ∈ A.

The pair of functions (f1, f2) is said to be a d.c. representation of f on A. Moreover,

the functions f1 and f2 are called the first component and the second component

respectively of the current d.c. representation of f on A. On the other hand, a

function f is said to be d.c. at a point x ∈ A if there exists a convex neighborhood

Ux of x such that f is d.c. on Ux ∩ A. If f is d.c. at every point of A, it is said to

be locally d.c. on A. Every locally d.c. function on A ⊂ IRn, A an open or closed

convex set, is d.c. on A (see Hartman [25]). Moreover, it can be proved that every

function f ∈ C2(A), A open or closed convex set, is a d.c. function on A (see Ellaia

[14]). The set of the d.c. functions on A, denoted by DC(A), is the vector space

generated by the cone of convex functions on A. Given f ∈ DC(A), it is evident

that there are infinitely d.c. representations of f . Denote by Df (A) the set

Df (A) := {(f1, f2) : f(x) = f1(x)− f2(x) ∀x ∈ A, f1, f2 convex on A}.

When a d.c. representation (f1, f2) of f is available, then we can always obtain a

new d.c. representation of f in the form (f1 + g, f2 + g), where both components

are strictly convex by adding a strictly convex function g(x) (a simple choice is

g(x) = t‖x‖2 with t > 0). DC(A) has some interesting properties with respect to

operations frequently encountered in optimization (see Hiriart-Urruty [27] or Horst

et al [32]).
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• Every linear combination of a finite number of d.c. functions is a d.c. func-

tion, which is a consequence of well known properties of convex and concave

functions.

• Let (pi, qi), i = 1, . . . ,m be d.c. representations of the functions fi, i =

1, . . . ,m. Then, max{f1(x), . . . , fm(x)} is a d.c. function because we can write

max{f1(x), . . . , fm(x)} = max



pi(x) +

m∑

j=1, j 6=i

qj(x), i = 1, . . . ,m



−

m∑

j=1

qj(x).

• min{f1(x), . . . , fm(x)} is a d.c. function because we know

min{f1(x), . . . , fm(x)} = −max{−f1(x), . . . ,−fm(x)}.

• Also, we can see that |f(x)| := max{f(x),−f(x)}, f+(x) := max{0, f(x)} and

f−(x) := min{0, f(x)} are d.c. functions.

• The product of a pair of nonnegative-valued convex functions q1 and q2 is a

d.c. function because we can write

q1(x)q2(x) =
1

2
(q1(x) + q2(x))

2 − 1

2
(q21(x) + q22(x)).

• Let f1 and f2 be d.c. functions on A, A open or closed convex set in IRn. Then,

f1(x)f2(x))) and, if for all x ∈ A, f2(x) 6= 0, the quotient f1(x)/f2(x))) are

d.c. functions on A (see Hartman [25]).

Some authors provide interesting theoretical d.c. representation results but no prac-

tical means to get them. D.c. functions were considered by Alexandrov [1] and

Landis [44]. Some time later Hartman [25] states that every locally d.c. function

on A ⊂ IRn, A open or closed convex set, is d.c. on A. Bougeard [6] proves that if

f ∈ C2(A) then there exists a d.c. representation (f1, f2) of f in which f1 ∈ C2(A)

and f2 ∈ C∞(A). Penot and Bougeard [50] establish a similar result with more global

assumptions. Indeed, let A be an open convex set of a finite dimensional normed

vector space, then any lower−C2 function f on A, in particular any f ∈ C2(A)),

can be written as f = f1 − f2 with f1 and f2 convex and f2 ∈ C∞(A). Moreover,

every lower−C2 function can be characterized by its (locally) decomposability as a

sum of a convex continuous and a concave quadratic function (see [77]).





Introduction

Motivation

A global optimization programming problem has the general form

minimize f(x)

subject to: x ∈ S,

where S is a set contained in IRn and the minimizer is understood in the global

sense, i.e., we are interested in points x∗ ∈ S satisfying

f(x∗) ≤ f(x) ∀x ∈ S.

The set of global minimizers is denoted by argminf(S) and, at each x∗ ∈ argminf(S),

the corresponding value f(x∗) is said to be the global minimum of the function f at

the point x∗ over the set S. On the other hand, a point xo ∈ S is said to be a local

minimizer of the function f over the set S, if there exists a neighborhood V of xo

satisfying

f(xo) ≤ f(x) ∀x ∈ S ∩ V.
The corresponding value f(xo) is said to be the local minimum of the function f at

the point xo over the set S. If the set S can be described as

S := {x : gi(x) ≤ 0, i = 1, . . . ,m}

and if all functions involved in the program are in C1(A), A an open set containing

S, the following Karush-Kuhn-Tucker (KKT ) conditions hold at xo ∈ S. There

exist λi ≥ 0, i = 1, . . . ,m, such that

1. λigi(x
o) = 0, i = 1, . . . ,m,

2. ∇f(xo) +
∑m

i=1 λi∇gi(x
o) = 0,

1
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provided that the constraints at the local minimizer xo are regular. When both the

objective function f and the feasible set S are convex the program is said to be

convex and, in this case, it is well known that every local minimizer is a global one.

Suppose that by using a standard local technique of nonlinear programming we

have obtained a Karush-Kuhn-Tucker point of the above program. We must then

stop the procedure because no local method can tell us whether the obtained point

is a global optimizer or not and, in the latter case, how to proceed to obtain a bet-

ter feasible point. It is this possibility of becoming trapped at a stationary point

that causes the failure of local methods and motivates the need to develop global

ones. In practice, direct problem formulations are not convenient, and it is thus

necessary to transform them into alternative ones that are more suitable for algo-

rithmic purposes. In any approach to global optimization methods it is essential

to understand the mathematical structure of the problem under consideration. A

careful analysis of this structure can provide insight into the most relevant prop-

erties of the problem and suggest efficient methods for solving it. In recent years,

some papers have described deterministic global optimization procedures to solve

problems whose objective function can directly be expressed as difference of convex

functions (d.c. function), and the feasible domain is a convex set. They are a spe-

cial class of global optimization programs named d.c. programs which are described

in Subsection 1.4.3. The Multisource Weber Problem, the Facility Location Prob-

lem with limited distances, the Stochastic Transportation-Location Problem and the

Stochastic Transportation Problem belong to this special class of d.c. programs. In

Pey-Chun Chen et al [51], both the Multisource Weber Problem and the Facility Lo-

cation Problem with limited distances are reformulated as a concave minimization

problem, which is the simplest class of global optimization problem. In K. Holm-

berg et al [30], the Stochastic Transportation-Location Problem and the Stochastic

Transportation Problem are reduced to d.c. optimization problems whose objective

functions are separable d.c. functions and the feasible domains are defined by the

transportation constraints. In this case, the procedure suggested in [30] takes advan-

tage of these two special structures so an efficient rectangular subdivision branching

method can be used to solve them.

This Thesis has been motivated by the interest in applying deterministic global

optimization procedures to problems in the real world with no special structure. We

have focused on the Short-Term Hydrothermal Coordination of Electricity Gener-

ation Problem (also named the Generation Problem in this Thesis) where the ob-

jective function and the nonlinear constraints are polynomials of degree up to four

(see [26]). Its solution has important economic and technical implications. In the
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Generation Problem neither a representation of the involved functions as difference

of convex functions is at hand nor we can take advantage of any special structure of

the problem. Hence, a very general problem such as

minimize f(x)

subject to: x ∈ S ⊂ IRn,

does not seem to have any mathematical structure conducive to computational im-

plementations. However, when f(x) is a continuous function and S is a nonempty

closed set the problem can be transformed into an equivalent problem expressed by

minimize l(z)

subject to: z ∈ D \ intC,

which is said to be a canonical d.c. program, where l(z) is a linear function and D

and C are closed convex sets (see Section 1.3 for details). Thus, we can see that every

continuous global optimization problem has a mathematical complementary convex

structure (D\intC) also called the d.c. structure. The mathematical complementary

convex structure is not always apparent and, even when it is explicit, a lot of work

still remains to be done to bring it into a form amenable to efficient computational

implementations. The attractive feature of the mathematical complementary convex

structure is that it involves convexity. Thus, we can use analytical tools from convex

analysis like subdifferential and supporting hyperplane. On the other hand, since

convexity is involved in the reverse convex property, these tools must be used in some

specific way and combined with combinatorial tools like cutting planes, branch and

bound and outer approximation.

Objectives

A program expressed by

minimize f(x)

subject to: hi(x) ≤ 0, i = 1, . . . ,m,

x ∈ S,

is said to be a d.c. program when S is a closed convex set into IRn and the functions

f(x) and hi(x), i = 1, . . . ,m are d.c. functions, i.e., they are expressed explicitly as

a difference of two convex functions on S. At the expense of introducing additional

variables, any d.c. program can be transformed to a program with a complementary

convex structure. While it is not too difficult to prove theoretically that a given
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function is a d.c. function, it is often very problematical to obtain an effective d.c.

representation of a d.c. function as a difference of convex functions. For this reason

our first objective is

O1.- how to write effectively a function as a difference of convex functions.

After that, our second objective is

O2.- to convert the Generation Problem into an equivalent reverse convex program-

ming problem (see Section 1.4 for details) and develop a deterministic global

optimization procedure to solve it.

Having solved the problem of finding a d.c. representation of a polynomial we then

come up against another even more complicated problem, that is, if the compu-

tational efficiency depends on the d.c. representation of the functions. Our third

objective is to answer the questions:

O3.- is there any d.c. representation that improves the computational efficiency? If

the answer to this question is affirmative, then what is the best d.c. represen-

tation of a d.c. function (optimal d.c. representation) from a computational

point of view and how can it be obtained?

Finally,

O4.- we want to compare, for the nonconvex Generation Problem, the solutions

obtained by applying the deterministic global optimization algorithm and the

solutions obtained with a local optimization package. This comparison will

shed light on two topics:

– how far the solutions obtained by the local optimization package are from

the global optimizer, and

– up to which problem size the global procedure developed can be applied

in practice.
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Contributions

In this Thesis, we have

O1a.- described a new method for obtaining a d.c. representation of polynomials

based on the fact that the set of mth powers of homogeneous polynomials of

degree 1 is a generating set for the vector space of homogeneous polynomials

of degree m,

O1b.- developed a procedure, using MAPLE Symbolic Calculator, which allows us

to search for bases and to obtain a d.c. representation of the homogeneous

components of a polynomial. Alternative bases in order to obtain a different

d.c. representation of a polynomial can be used,

O2a.- described and written out a procedure in FORTRAN to convert the Gen-

eration Problem into an equivalent reverse convex programming problem ex-

pressed by:

minimize f(x)− t
subject to: g(x)− t ≤ 0,

h(x)− t ≥ 0,

Ax ≤ b,

where A is a real m× n matrix, b ∈ IRm and f(x), g(x) and h(x) are convex

functions on IRn,

O2b.- described and written out an adapted algorithm in FORTRAN and in C by

modification of the combined outer approximation and cone splitting conical

algorithm for canonical d.c. programming from [74]. Since the above-mentioned

programming problem is unbounded we use prismatical subdivisions instead

of conical ones so that it is not necessary to find a subdivision vertex as in

the case of conical subdivisions in [74]. Moreover, the adapted algorithm uses

prismatic branch and select technique with polyhedral outer approximation

subdivisions, in such a way that only linear programming problems have to be

solved. To solve them, we have used the MINOS package in the case of the

algorithm in FORTRAN and the CPLEX callable library in the case of the

algorithm in C.

O2c.- established theoretically the convergence to a global optimizer of the adapted

algorithm,
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O3a.- applied the concept of least deviation decomposition from [46] to obtain an

optimal d.c. representation of a polynomial function in the normed space of the

polynomials with the Euclidean norm, in order to improve the computational

efficiency of our algorithm.

O3b.- described and written out an algorithm in FORTRAN by using an interior

point method to solve semi-infinite quadratic programming problems with lin-

ear constraints to obtain these optimal d.c. representation (see [11], [37] and

[78] for more details),

O4a.- used MINOS to check all gradients of the d.c. program instances,

O4b.- used MINOS as a local optimization package to compare its solutions with

the solutions of the adapted algorithm.

It should be pointed out that the adapted algorithm is more general than it seems

to be because it can be used to solve d.c. programming problems with convex con-

straints expressed by

minimize f(x)− g(x)
subject to: hi(x) ≤ 0, i = 1, . . . ,m,

which, by introducing an additional variable t, can be transformed into an equivalent

convex minimization problem subject to an additional reverse convex constraint in

the form
minimize f(x)− t

subject to: g(x)− t ≥ 0,

h(x) ≤ 0,

with h(x) = max{hi(x) :, i = 1, . . . ,m}. This is a different way of solving a d.c.

program with convex constraints than the algorithm proposed in [34] and [33] which

transforms it into an equivalent concave minimization problem and uses prismatic

branch and bound technique with polyhedral outer approximation subdivisions.

Contents

Chapter 1 begins with a brief historical note about optimization methods, in which

deterministic global optimization has a history of over thirty years. Then, we intro-

duce the common general mathematical complementary convex structure underlying

in global optimization problems. In this Thesis, this general mathematical comple-

mentary convex structure provides the foundation for reducing a nonconvex global
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optimization problem (for which a d.c. representation of both the objective func-

tion and constraints can be obtained) to a canonical form. Moreover, any global

optimization method must address, directly or indirectly, the question of how to

transcend a given feasible solution, which may be a local minimizer or an stationary

point. It is this possibility to be trapped at an stationary point which causes the

failure of local methods. Hence, various methods, which have been proposed to solve

global optimization problems, are briefly mentioned.

In Chapter 2 we describe the Generation Problem, whose functions are d.c.

functions because they are polynomials. Thus, by using the properties of the d.c.

functions (see [27] and [32]) and the flow balance equations at all nodes of the repli-

cated hydronetwork (which are the linear constraints of the Generation Problem),

we describe the Generation Problem as an equivalent canonical d.c. programming

problem of reduced size. It should be stressed that several transformations can be

used to obtain an equivalent reverse convex program. From the structure of the

functions in the Generation Problem, we rewrite it as a more suitable equivalent

reverse convex program in order to obtain an advantageous adaptation of the com-

bined outer approximation and cone splitting conical algorithm for d.c. programming

as described in [74].

Chapter 3 introduces the concepts and properties, which allow us to obtain an

explicit representation of a polynomial as a difference of convex polynomials (Corol-

lary 3.3.4), based on the fact that the set of mth powers of homogeneous polynomials

of degree 1 is a generating set for the vector space of homogeneous polynomials of

degree m (Proposition 3.3.2). Also, we compare our procedure to obtain a d.c.

representation of a polynomial with the procedure described by Konno, Thach and

Tuy [42], emphasizing its advantages and applying it to the polynomials of the

Generation Problem. Moreover, we present a procedure, using MAPLE Symbolic

Calculator, which allows us to search for bases and to obtain a d.c. representation

of the homogeneous components of a given polynomial.

Chapter 4 is devoted to describing the adapted global optimization algorithm and

its basic operations. Moreover, we prove the convergence of the adapted algorithm

by using a prismatical subdivision process together with an outer approximation

procedure. The adapted global optimization algorithm is an advantageous adapta-

tion of the combined outer approximation and cone splitting conical algorithm for

d.c. programming in [74]. Since our equivalent reverse convex program is unbounded

we use prismatical subdivisions instead of conical ones (as used in [74]). Hence, it is

not necessary to find any subdivision vertex as in the case of conical subdivisions.
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In Chapter 5, we announce the minimal norm problem by using the concept

of least deviation decomposition (LDD) described in Luc D.T. et al [46] in order

to obtain the optimal d.c. representation of a polynomial function, which allow us

more efficient implementations by reducing the number of iterations of the adapted

global optimization algorithm. The minimal norm problem can be transformed

into an equivalent semidefinite program or into an equivalent semi-infinite quadratic

programming problem with linear constraints. We discuss the suitability of use a

quadratic semi-infinite algorithm in place of a semidefinite one.

Chapter 6 is devoted to describing a quadratic semi-infinite algorithm, which is

an adaptation of the linear semi-infinite algorithm developed by J.Kaliski et al in [37],

and its basic operations. We propose a build-up and build-down strategy, introduced

by Den Hertog in [11] for standard linear programs that use a logarithmic barrier

method. It should be pointed out that Chapters 5 and 6 are closely connected. They

are presented separately for the sake of clarity.

Finally, in Chapter 7 computational results are given and conclusions are dis-

cussed.



Chapter 1

Overview and scope of global

optimization

1.1 Historical notes

Modern techniques of optimization constitute a scientific discipline whose origins can

be traced back to the birth of the digital computer. Optimization is concerned with

the analysis of solutions and the development of procedures for solving problems of

the form

minimize f(x)

subject to: gi(x) ≤ 0, i = 1, 2, . . . ,m

x ∈ X ⊂ IRn,

(1.1)

where f(x) and gi(x), i = 1, 2, . . . ,m, are real-valued functions defined on a domain

X ⊂ IRn. Hence, f(x) is the objective function which measures the quality of the

solution, S := {x ∈ X : gi(x) ≤ 0, i = 1, 2, . . . ,m} is the set of feasible points

(or feasible domain), and x ∈ S are said to be the decision variables. If m = 0

and S defines an hyperrectangle of IRn, the problem is said to be unconstrained;

if n = 1 the problem is univariate otherwise the problem is said to be multivari-

ate. Linear programming deals with optimization problems where f(x) is a linear

function and the feasible domain S is a set defined by linear inequalities. During

World War II, George B. Dantzig developed the simplex method for solving linear

programming models of logistics and operational military problems. At the same

time, and independently, Leonid V. Kantorovich developed the method of resolving

multipliers for linear programs and applied them to problems such as equipment

work distribution. The simplex method consists of the selection of an optimizer

9
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within the finite set of vertices of the convex polytope defined by the linear con-

straints. A programming problem is said to be combinatorial when an optimizer

must be sought within a finite set of candidate points. Integer programming im-

poses additional integrality constraints on some subsets of the decision variables.

Almost all combinatorial optimization problems can be modelled as integer pro-

grams. Methods such as cutting-plane, branch and bound, branch and cut, column

generation, decomposition techniques and polyhedral combinatorics have served as

powerful tools for solving integer programming problems. However, because of the

complexity (NP-hard, etc) of these problems, many instances cannot be solved ex-

actly in a polynomial time. Methods which find approximate optimizers (suboptimal

solutions) to these instances have been developed in recent times. Heuristics, such

as genetic algorithms by Holland in 1975 [29], simulated annealing by Kirkpatrick

et al. in 1983 [41], GRASP by Feo and Resende in 1995 [15], Tabu search by Glover

and Laguna in 1997 [22], find good quality approximate optimizers in reasonable

computational times. Network optimization is another important field of combina-

torial optimization. Many early network algorithms, such as minimum spanning tree

by Kruskal in 1956 [43], Prim in 1957 [54] and shortest-path programs by Dijkstra

in 1959 [12] are still used today. In 1962 the book Flows in networks by Ford and

Fulkerson [19] appeared. Recent data structure developments have contributed to

the use of network algorithms for solving large real-world optimization problems.

In nonlinear optimization the constraints, which define the feasible domain S,

and/or the objective function f(x) are nonlinear functions. In the early 1960’s, J.B.

Rosen published the gradient-projection method for nonlinear programming (see [58]

and [59]) which instigated further research into algorithms for nonlinear optimiza-

tion. The interplay between continuous nonlinear optimization and combinatorial

optimization motivated the development of new algorithmic techniques for large-

scale problems. For instance, the field of interior point methods uses nonlinear

programming for solving linear programs. In 1979 Leonid Khachiyan published the

ellipsoid method [39], the first polynomial time algorithm for solving linear programs

which come from nonlinear programming was published in 1970 by Shor ([67] and

[66]), and it is drastically different from most previous approaches to linear pro-

gramming. In 1984 Narendra Karmarkar published a polynomial time interior point

algorithm for linear programming [38], which is the origin of modern interior point

methods. Variants of interior point methods were shown to perform well in practice

and they extended the limits of the dimension of problems that could be solved.

When a problem is convex, it is well known that every local minimizer is global.

In many practical problems in which the convexity of the objective function or the
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Figure 1.1: f(x, y) := 3
100 (x2 + y2)− cos(x)cos(y)

constraints cannot be verified, it is reasonable to assume that the problems have

multiple local optimizers (multiextremal problems, see Figure 1.1). Global opti-

mization deals with the computation and characterization of global optimums of

multiextremal problems and it aims at solving the very general program (1.1). Any

global optimization method must address the question of how to transcend a given

feasible point, if there is one, or else how to produce evidence that the given point is

already globally optimal. Global optimization techniques are substantially different

from local ones and, among others, employ combinatorial tools such as cutting-plane,

branch and bound, branch and cut and so on. Most people considered until the mid

1980’s that heuristic and stochastic local searches were more practical and reliable

approaches for solving these inherently difficult classes of problems. In recent years,

despite the inherent difficulty of global optimization, remarkable developments in

this field have been made. The emergency of powerful workstations enabled one to

solve a number of small to medium size global optimization problems by general pur-

pose deterministic algorithms in a practical amount of time. They have been applied

to some important classes of problems such as concave minimization, reverse con-

vex programs, d.c. programs and Lipschitz optimization. Unfortunately we usually

observe a rapid increase in computation time as the size of the instance increases if

it has no special structure. The first textbook on this subject was published in 1990

by Horst and Tuy [32]. In this textbook the authors discussed the overall theoret-

ical framework and general purpose deterministic algorithms for locating a global

optimum of a multiextremal problem. The last years also witnessed the emergence

of the Journal of Global Optimization as well as the increase in research activities

with several specialized conferences on global optimization and applications.
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1.2 Classification of global optimization methods

As we have seen before any global optimization method must address the question

of how to transcend a given feasible point or else to produce evidence that the given

point is already globally optimal. Numerical methods that have been proposed

can be classified into three categories by distinguishing the available guarantees:

heuristic methods, approximation methods, and systematic methods, which include

deterministic methods.

1.2.1 Heuristic methods

Heuristic methods are used for solving global optimization problems whose structure

is difficult to analyze. They contain all methods in which no theoretical justification

can be established to find a global optimizer. In these methods, we have some

grounds for believing that the feasible point obtained is sufficiently near the optimum

or that there is a high probability of it being so. Among the most popular are:

• Multi-start methods which are intended to locate as many local minimizers

as possible by applying standard local optimization algorithms initiated at

multiple starting points which are generated stochastically.

• Simulated annealing methods which are intended to transcend a local solution

by using some probabilistic procedure which may accept a temporary increase

in the objective function.

• Genetic algorithms where the optimizer is searched by a procedure imitating

the natural genetic selection of the fittest individuals.

Also, heuristic algorithms of tabu search type have been used to solve global opti-

mization problems difficult to tackle otherwise. In contrast to deterministic methods,

heuristic methods offer almost no guarantee of global optimality for the obtained

solution and hardly provide any information about how far this solution could be

from the optimum.

1.2.2 Approximation methods

Approximation methods transform the original problem by means of suitable approx-

imations into a simpler global optimization problem that is more tractable. Solving
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the approximate problem yields an approximate solution for the original problem,

and local optimization from this approximate solution often gives the global opti-

mizer of the original problem provided that the approximation was good enough or a

good local minimizer otherwise. Of great practical importance is the approximation

by the mixed integer linear programs (MILP).

1.2.3 Systematic methods

When only black box function evaluation routines are available, we can use some kind

of systematic methods (black box methods) which will usually find a global optimizer

with certainty in a finite time, but we can never know when this is the case. Thus, for

systematic black box methods, stopping must be based on heuristic recipes. On the

other hand, deterministic methods contain all methods that theoretically guarantee

a global optimizer via a predictable amount of work. Predictable means relative

to known problem characteristics such as a d.c. structure, Lipschitz constants or

other global information needed for the convergence proof. These methods include,

among others, cutting plane, successive approximation and partitioning methods

together with concepts such as concavity cuts, outer approximation schemes and

branch and bound techniques. However, a weakness of these methods is that for

problems without any particular structure, they can only solve, in practice, problem

instances of limited size. The amount of work is usually exponential with respect

to the problem characteristics. Sometimes, heuristic and probabilistic choices also

play a role in systematic methods, mainly to provide cheaply a good local optimizer

which benefits the systematic search.

We list some systematic global optimization codes with short comments on scope

and method.

The codes listed use black box function evaluation routines, and have heuristic

stopping rules.

DIRECT (Divide Rectangles). It is a branching code in FORTRAN which

use function values only, by Gablonsky and Kelley (2001). DIRECT is

based on branching and a Pareto principle for box selection (see [20]).

http://www4.ncsu.edu/∼jmgablon/.

MCS (Multilevel Coordinate Search). A MATLAB program for bound con-

strained global optimization by Huyer and Neumaier (1999). MCS uses func-

tion values only and is based on branching and sequential quadratic program-
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ming (see [35]). http://solon.cma.univie.ac.at/∼neum/software/mcs/.

LGO (Lipschitz Global Optimization). An integrated development environ-

ment for global optimization with Lipschitz continuous objective function and

constraints by Janos Pintér (1996). LGO is based on branching and estimation

of Lipschitz constants, constraints other than simple bounds are handled by

L1 penalty terms and interior convex constraints by projection penalties (see

[52]). http://is.dal.ca/∼jdpinter/lgoide.html/.

The following codes use global information and stop in a finite time with the guar-

antee that the global minimizer is found. In difficult cases storage or time limits

may be exceeded, however, leading to appropriate error messages.

BARON (Branch and Reduce Optimization Navigator). A general purpose

solver for optimization problems with nonlinear constraints and/or integer

variables by Ryoo and Sahinidis (1996). BARON is based on branching and

box reduction using convex relaxation and Lagrange multiplier techniques (see

[62]). http://archimedes.scs.uiuc.edu/baron/baron.html.

αBB (alpha Branch and Bound). A branch and bound code for nonlinear

programs by Androulakis, Maranas and Floudas (1995). It is based on

branching and bound by convex underestimation using interval analysis

to write nonlinearities in difference of convex functions form (see [3]).

http://titan.princeton.edu/soft.html#abb. The site contains a description only,

no code.

Recently, the Cutting Angle Method of Andramonov, Rubinov et al. (see [2] and

[61]) has been developed for solving global optimization problems. A new version

of this method can be found in [5]. In this method the objective function f(x) is a

Lipschitz function and the feasible domain S is the unit simplex. Many problems

of unconstrained and constrained optimization can be reduced to this form by a

transformation of variables and penalization.

In this Thesis we are interested in deterministic global optimization methods

which rely on a d.c. structure of a d.c. program. These methods have been proved

to be particularly successful for analyzing and solving a variety of highly structured

problems (see [30] and [51]).
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1.3 General complementary convex mathematical

structure

A general problem such as (1.1) does not seem to have any mathematical structure

receptive to computational implementations. However, by taking into account the

fact that every point in IRn has a base of convex neighborhoods, when f(x) is a con-

tinuous function and S is a nonempty closed set the problem (1.1) can be transformed

into an equivalent problem with a linear objective function and a complementary

convex mathematical structure (or d.c. structure) expressed by

minimize l(z) subject to: z ∈ D \ int C, (1.2)

where l(z) is a linear function and D and C are closed convex sets. The program

(1.2) is said to be a canonical d.c. program. For the convenience of making the

exposition self-contained we quote some results with proofs from Tuy [74].

Proposition 1.3.1 Let S ⊂ IRn be a closed convex set. Then for every y ∈ IRn \S,

let B(y, δy) ⊂ IRn \ S be a ball with center y and radius δy > 0. The following

equalities are true:

S =
⋂

IRn \B(y, δy) = {x ∈ IRn : g(x) − ‖x‖2 ≤ 0},
y 6∈ S

where g(x) := sup {2xy − ‖y‖2 + δ2y , y 6∈ S} is a convex lower semi-continuous

function ( l.s.c.) (see [56]).

Proof: For all y 6∈ S there exists a ball B(y, δy) of radius δy > 0 satisfying

B(y, δy) ⊂ IRn \ S or equivalently S ⊂ IRn \B(y, δy). Then S ⊂ ∩y 6∈SIR
n \B(y, δy).

Moreover, if x ∈ ∩y 6∈SIR
n \B(y, δy) and x 6∈ S, then x 6∈ B(x, δx) which is a contra-

diction. So ∩y 6∈SIR
n \B(y, δy) ⊂ S.

On the other hand, x ∈ S ⇔ ‖y − x‖ ≥ δy, for all y 6∈ S. Then, we have

‖y − x‖2 = ‖y‖2 + ‖x‖2 − 2xy ≥ δ2y , for all y 6∈ S followed by

‖x‖2 ≥ 2xy − ‖y‖2 + δ2y , for all y 6∈ S and

‖x‖2 ≥ g(x) = sup {2xy − ‖y‖2 + δ2y , y 6∈ S},

where g(x) := sup {2xy − ‖y‖2 + δ2y , y 6∈ S} is the pointwise supremum of a family

of affine functions. Thus, x ∈ S ⇔ g(x)− ‖x‖2 ≤ 0.
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Proposition 1.3.2 Let S ⊂ IRn be a closed set. There exist closed convex sets D

and C into IRn+1 such that S is the projection of D \ int C on IRn, i.e.,

S = projIRn(D \ int C).

Proof: Using the results of the Proposition 1.3.1 we have that

g(x) − ‖x‖2 ≤ 0⇔ there exists t ∈ IR with g(x) − t ≤ 0 and ‖x‖2 − t ≥ 0.

Thus, D = {(x, t) ∈ IRn+1 : g(x) − t ≤ 0} and C = {(x, t) ∈ IRn+1 : ‖x‖2 − t ≤ 0}
are closed convex sets and verify S = projIRn(D \ int C).

Proposition 1.3.3 Problem (1.1), with continuous objective function and closed

feasible set, can be transformed into an equivalent canonical d.c. program expressed

by

minimize l(z) subject to: z ∈ D \ int C,

where l(z) is a linear function and D and C are closed convex sets.

Proof: The program (1.1) can be expressed by the equivalent programming prob-

lem

minimize t subject to: f(x)− t ≤ 0, x ∈ S, (1.3)

where {(x, t) ∈ IRn+1 : f(x)− t ≤ 0, x ∈ S} is a closed set. From Proposition 1.3.2

{(x, t) ∈ IRn+1 : f(x) − t ≤ 0, x ∈ S} = projIRn+1(D \ int C) with D and C closed

convex sets into IRn+2. We obtain the expression (1.2) by setting z = (x, t).

Hence, we can see that every continuous global optimization problem can be ex-

pressed by an equivalent canonical d.c. program.

A canonical d.c. program is said to be regular when the feasible set satisfies

the property D \ int C = cl (D \ C). Also, a canonical d.c. program is said to be

essentially nonconvex when it satisfies the inequality

min{l(x) : x ∈ D} < min{l(x) : x ∈ D \ int C}. (1.4)

Denote

D(γ) := {x ∈ D : l(x) ≤ γ} with γ ∈ IR.

Assume the problem (1.2) to be regular and essentially nonconvex. Let x̄ ∈ D \
int C be a feasible point and set γ̄ = l(x̄). Then, we can announce the propositions
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Proposition 1.3.4 If x̄ ∈ D\int C is a global optimizer of (1.2) then x̄ ∈ ∂C∩∂D.

Proof: Suppose that x̄ 6∈ ∂C, then x̄ 6∈ C and x̄ ∈ D \ C = D ∩ IRn \ C that is

an open set by the topology induced in D from the topology in IRn. Hence, there

exists a ball B(x̄, δ) such that B(x̄, δ) ∩D ⊂ D \ C and if 0 < t ≤ δ/‖x̄ − w‖ < 1.

From the convexity of the function l(x) every point z = (1− t)x̄+ tw satisfies

l(z) ≤ (1− t)l(x̄) + tl(w) = l(x̄) + t(l(w) − l(x̄)) < l(x̄),

which is a contradiction. On the other hand, suppose that x̄ 6∈ ∂D. From x̄ ∈ ∂C
every ball B(x̄, δ) satisfies

B(x̄, δ) ∩D(γ) ∩ int D 6= ∅ and B(x̄, δ) ∩D(γ) ∩ ext D 6= ∅.

Consider z0 ∈ B(x̄, δ) ∩ D(γ) ∩ ext D. Then every point z = (1 − t)z0 + tw with

0 ≤ t ≤ 1 satisfies

l(z) ≤ (1− t)l(z0) + tl(w) ≤ (1 − t)l(x̄) + tl(w) = l(x̄) + t(l(w) − l(x̄)) < l(x̄),

by using the convexity of the function l(x). Hence, as z0 ∈ D \ C and w ∈ D ∩ C
there exists z̃ ∈ ∂C ∩ [w, z0] satisfying l(z̃) < l(x̄) which is a contradiction.

Proposition 1.3.5 The following assertions are true:

i) if D(γ̄) \ C 6= ∅, then there exists a feasible point strictly better than x̄ lying

on ∂C ∩D,

ii) x̄ is a global optimizer of (1.2) ⇔ D(γ̄) \ C = ∅ (or D(γ̄) ⊂ C).

Proof: ii)

⇒(necessary)

Let x0 ∈ D(γ̄) \ C. Then, l(x0) = l(x̄) = γ̄ so that x0 is an optimal global solution

of (1.2). Thus, x0 ∈ ∂C (i.e. x0 ∈ C) is a contradiction.

⇐(sufficient)

Let x∗ ∈ D \ int C be a better feasible solution than x̄. Then, l(x∗) < l(x̄) and

we can find an open ball B := B(x∗, δ), of center x∗ and radius δ, such that for all

x ∈ B we have 1) l(x) < l(x̄). On the other hand, from x∗ ∈ D \ int C = cl(D \ C)

it follows that B ∩ (D \C) 6= ∅ so every point x ∈ B ∩ (D \C) verifies 2) x ∈ D and

x 6∈ C. Thus, from 1) and 2) we have x ∈ (D(γ̄) \ C) = ∅ which is a contradiction.
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1.4 Classes of nonconvex problems with a d.c. structure

In many classes of global optimization problems, convexity is present in a reverse

sense. In this circumstance we have minimization of concave functions subject to

convex constraints (concave minimization), minimization of convex functions on

feasible domains which are the intersection of convex sets and complements of convex

sets (reverse convex programming) and global optimization of functions which can

be expressed as a difference of two convex functions (d.c. programming).

1.4.1 Concave minimization

A program expressed by

minimize f(x) subject to: x ∈ S, (1.5)

where f(x) is a concave function on IRn and S ⊂ IRn is a nonempty closed convex

set, is said to be a concave minimization program. This is the simplest class of

global optimization problems with a d.c. structure. By defining the closed convex

sets D := {(x, t) ∈ IRn+1 : x ∈ S} and C := {(x, t) ∈ IRn+1 : f(x) ≤ t}, it is

equivalent to the canonical d.c. program expressed by

minimize t subject to : (x, t) ∈ D \ int C. (1.6)

1.4.2 Reverse convex programming

A program expressed by

minimize f(x) subject to: g(x) ≤ 0, h(x) ≥ 0 (1.7)

where f(x), g(x) and h(x) are convex functions on IRn is said to be a reverse convex

program. This differs from a convex program only by the presence of the constraint

h(x) ≥ 0, which is said to be a reverse convex constraint. The reverse convex

program (1.7) is equivalent to the canonical d.c. program expressed by

minimize t subject to: (x, t) ∈ D \ int C, (1.8)

where D and C are closed convex sets into IRn+1 defined by

D := {(x, t) ∈ IRn+1 : f(x)− t ≤ 0, g(x) ≤ 0} and C := {(x, t) ∈ IRn+1 : h(x) ≤ 0}.
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1.4.3 D.c. programming

A program expressed by

minimize f(x) subject to: x ∈ S, hi(x) ≤ 0, i = 1, . . . ,m, (1.9)

is said to be a d.c. program when S is a closed convex set into IRn and the functions

f(x), hi(x) ≤ 0, i = 1, . . . ,m are d.c. functions and they can be explicitly expressed

as a difference of two convex functions on IRn. By introducing the additional variable

t ∈ IR the program (1.9) can be transformed to the equivalent d.c. program

minimize t subject to: x ∈ S, f(x)− t ≤ 0, hi(x) ≤ 0, i = 1, . . . ,m, (1.10)

with linear objective function. Furthermore, the d.c. inequalities

f(x)− t ≤ 0, hi(x) ≤ 0, i = 1, . . . ,m,

can be replaced by a single d.c. inequality

r(x, t) := max {f(x)− t ≤ 0, hi(x) ≤ 0, i = 1, . . . ,m} ≤ 0.

Suppose that for each d.c. function f(x), hi(x) ≤ 0, i = 1, . . . ,m a d.c. representa-

tion is known. Then, by using the properties of the d.c. functions (see Preliminaries)

we can write r(x, t) = p(x, t)− q(x, t), where p(x, t) and q(x, t) are convex functions.

Hence, by introducing the new additional variable z ∈ IR, the d.c. inequality

r(x, t) = p(x, t)− q(x, t) ≤ 0

is equivalent to the system

p(x, t)− z ≤ 0, q(x, t)− z ≥ 0,

where the first inequality is convex and the second is said to be reverse convex.

Finally, setting

D := {(x, t, z) ∈ IRn+2 : p(x, t)− z ≤ 0, x ∈ S}

and

C := {(x, t, z) ∈ IRn+2 : q(x, t)− z ≤ 0},

we can see that the d.c. program (1.9) is equivalent to the canonical d.c. program

minimize t subject to: (x, t, z) ∈ D \ int C
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1.4.4 Continuous optimization

It has been proved in Proposition 1.3.3 that the problem of minimizing a continuous

function over a closed set can be reduced to a canonical d.c. program. This is a

theoretical result and, in any case, continuous optimization problems are the most

difficult to solve from the viewpoint of the complementary mathematical convex

structure.

As above-mentioned, in this Thesis we are interested in deterministic global

optimization methods which rely on a d.c. structure of a d.c. program. The main

question is how to find a good d.c. structure of a given d.c. program. We will solve

this problem when the functions of the d.c. program are polynomial functions.



Chapter 2

The Generation Problem and its

complementary convex structure

2.1 The short-term hydrothermal coordination of elec-

tricity generation problem

We want to apply deterministic global optimization procedures to the problem of

the short-term hydrothermal coordination of the electricity generation (Heredia and

Nabona [26]). Its importance stems from the economic and technical implications

that the solution to this problem has for electric utilities with a mixed, hydro and

thermal, generation system.

Given a short-term time period subdivided into time intervals the aim is to find

values of hydro and thermal generation for each time interval in the period so that

the demand of electricity is met for each time interval, a number of constraints are

satisfied, and the generation cost of thermal units is minimized. The model contains

the replicated hydronetwork through which the temporary evolution of the reservoir

system is represented (Figure 2.1 shows us the replicated hydronetwork with only two

reservoirs and where the time period has been subdivided into four time intervals).

We use Ne to indicate the number of reservoirs, Nt to indicate the number of time

intervals, j to indicate the jth reservoir, j = 1 . . . Ne and i to indicate the ith time

interval, i = 1 . . . Nt. It should be observed that,

• the variables are the water discharges di
j from reservoir j over the ith interval

and the volume stored vi
j in reservoir j at the end of the ith time interval,

21
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Figure 2.1: Four intervals and two reservoirs replicated hydronetwork

• in each time interval i, the water discharge from reservoir R1 to reservoir R2

establishes a link between the reservoirs,

• the volume stored at the end of the time interval i and the volume stored at

the beginning of the time interval i+1 are the same in each reservoir Rj, which

establishes a link between each reservoir from the time interval i to i+ 1,

• the volumes stored at the beginning and at the end of the time period, v0
j and

vNt

j , j = 1 . . . Ne respectively, are known (they are not variables). Acceptable

forecasts for electricity consumption li, i = 1 . . . Nt and for natural water inflow

wi
j, i = 1 . . . Nt, j = 1 . . . Ne into the reservoirs of the hydrogeneration system

must be available at each time interval,

• the electrical power generated at each reservoir j in each time interval i depends

on the initial and final volumes, vi−1
j and vi

j respectively, and the volume of

the water discharge di
j . This dependence will be expressed by the notation

hi
j(v

i−1
j , vi

j , d
i
j) and will be called the power hydrogeneration function of the

jth reservoir over the ith time interval.

2.1.1 The power hydrogeneration function in a reservoir

At each reservoir j the head sj depends on the headwater elevation sj
w and the

tailwater elevation s̄j
w. The latter varies as a function of the water discharge dj .
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Figure 2.2: Cross-section of a reservoir

For zero discharge, the downstream pool is flat and the head becomes equal to the

headwater elevation, so we can write

sj = sj
w − s̄j

w. (2.1)

The relationship between the headwater elevation sj
w and the volume stored vj can

be expressed approximately by the polynomial

sj
w = svb + svlvj + svqv

2
j + svcv

3
j , (2.2)

where svb, svl, svq and svc are the basic, linear, quadratic and cubic technological

coefficients respectively, which depend on each reservoir and need to be known. Also,

the relationship between the tailwater elevation s̄w and the water discharge dj can

be expressed in the form

s̄w = sdldj + sdqd
2
j , (2.3)

where sdl and sdq are technological coefficients similar to before. Hence, the head sj
depends on the volume stored vj and the water discharge dj , and it can be written

sj(vj , dj) = svb + svlvj + svqv
2
j + svcv

3
j − sdldj − sdqd

2
j . (2.4)

The relationship between the variation in potential energy dEp and the variation in

the water stored dvj can be expressed approximately by

dEp = gsj(vj , dj)dvj ,

where g is the gravity. Thus, the potential energy Ep in the ith time interval, corre-

sponding to the initial and final volumes vi−1
j and vi

j respectively, can be obtained
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by calculating

Ep =

∫ vi
j

vi−1
j

dEp = g

∫ vi
j

vi−1
j

sj(vj , dj)dvj . (2.5)

Define the equivalent head s̃j by the expression

Ep = s̃jg(vi
j − vi−1

j ). (2.6)

From the expressions (2.5) and (2.6) the equivalent head s̃j can be obtained in

function of the initial volume vi−1
j , the final volume vi

j and the volume of the water

discharge di
j , by evaluating the expression

s̃j =
1

vi
j − vi−1

j

∫ vi
j

vi−1
j

sj(vj , dj)dvj. (2.7)

Hence, after carrying out the necessary calculations we obtain

s̃j = svb + svl

2 (vi−1
j + vi

j) +
svq

3 (vi
j − vi−1

j )2 + svqv
i−1
j vi

j+

+ svc

4 ((vi−1
j )2 + (vi

j)
2)(vi−1

j + vi
j)− sdld

i
j − sdq(d

i
j)

2. (2.8)

The main feature of this formulation is that the power hydrogeneration function

is expressed approximately by a polynomial function. The power hydrogeneration

function hi
j of the jth reservoir in the ith time interval can be obtained by consider-

ing that the energy transferred to the turbine by the water discharge is approximately

equivalent to the potential energy of the weight of the water discharge di
j from the

equivalent head s̃j, i.e., the energy transferred is s̃jgd
i
j . Then, the power hydrogen-

eration function hi
j of the jth reservoir in the ith time interval can be expressed

by

hi
j = δρi

j

gdi
j s̃j

ti
, (2.9)

where δ is the unit conversion coefficient, 0 ≤ ρi
j ≤ 1 is the efficiency coefficient,

which is a concave function of the water discharge di
j (during the time interval ti)

and the equivalent head s̃j. Finally, after substituting (2.8) in (2.9) we have the new

expression of the power hydrogeneration function

hi
j(v

i−1
j , vi

j , d
i
j)
∼= ki

j

di
j

ti
[svb + svl

2 (vi−1
j + vi

j) +
svq

3 (vi
j − vi−1

j )2+

+svqv
i−1
j vi

j + svc

4 ((vi−1
j )2 + (vi

j)
2)(vi−1

j + vi
j)−

−sdld
i
j − sdq(d

i
j)

2],

(2.10)

where ki
j := δρi

jg is the efficiency and unit conversion coefficient.
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2.1.2 The Generation Problem

The objective function, which will be minimized, is the generation cost function of

thermal units,
Nt∑

i=1

ci


li −

Ne∑

j=1

hi
j(v

i−1
j , vi

j , d
i
j)


 , (2.11)

where li, i = 1, . . . , Nt, are the forecast for electricity consumption in the ith time

interval. The linear constraints are the flow balance equations at all nodes of the

network,

vi
j − vi−1

j − di
j−1 + di

j = wi
j j = 1, ...,Ne, i = 1, ...,Nt, (2.12)

the nonlinear constraints are the thermal production with generation bounds,

g ≤ li −
Ne∑

j=1

hi
j(v

i−1
j , vi

j , d
i
j) ≤ g i = 1, ...,Nt (2.13)

and there are positive bounds on all variables,

dj ≤ di
j ≤ dj j = 1, ...,Ne, i = 1, ...,Nt (2.14a)

vj ≤ vi
j ≤ vj j = 1, ...,Ne, i = 1, ...,Nt − 1. (2.14b)

Hence, the problem can be expressed by the program

minimize
∑Nt

i=1 c
i
(
li −∑Ne

j=1 h
i
j(v

i−1
j , vi

j , d
i
j)
)

subject to: g ≤ li −∑Ne

j=1 h
i
j(v

i−1
j , vi

j , d
i
j) ≤ g, i = 1, ...,Nt,

vi
j − vi−1

j − di
j−1 + di

j = wi
j, j = 1, ...,Ne,

i = 1, ...,Nt

dj ≤ di
j ≤ dj , j = 1, ...,Ne,

i = 1, ...,Nt

vj ≤ vi
j ≤ vj, j = 1, ...,Ne.

i = 1, ...,Nt − 1

(2.15)

2.2 The Generation Problem as a d.c. program

A polynomial is a d.c. function on IRn because every function whose second partial

derivatives are continuous on IRn is a d.c. function on IRn. Let

hi
j(v

i−1
j , vi

j , d
i
j) = f i

j(v
i−1
j , vi

j , d
i
j)− gi

j(v
i1
j , v

i
j , d

i
j), (2.16)
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be a d.c. representation of the power hydrogeneration function, where f i
j(v

i−1
j , vi

j , d
i
j)

and gi
j(v

i1
j , v

i
j , d

i
j) are convex functions defined on a convex set which contains the

feasible domain of the program (2.15). Then, by defining the convex functions

F i(. . . , vi−1
j , vi

j , d
i
j , . . .) = ci


li +

Ne∑

j=1

gi
j(v

i−1
j , vi

j , d
i
j)


 , i = 1, ...,Nt, (2.17)

Gi(. . . , vi−1
j , vi

j , d
i
j , . . .) = ci

Ne∑

j=1

f i
j(v

i−1
j , vi

j , d
i
j), i = 1, ...,Nt (2.18)

F (. . . , vi−1
j , vi

j, d
i
j , . . .) =

Nt∑

i=1

F i(. . . , vi−1
j , vi

j , d
i
j , . . .) (2.19)

and

G(. . . , vi−1
j , vi

j , d
i
j , . . .) =

Nt∑

i=1

Gi(. . . , vi−1
j , vi

j , d
i
j , . . .), (2.20)

a d.c. representation of all functions within (2.15) can be obtained.

2.2.1 D.c. representation of the nonlinear constraints

By using the expressions (2.17) and (2.18) in

li −
Ne∑

j=1

hi
j(v

i−1
j , vi

j , d
i
j) =


li +

Ne∑

j=1

gi
j(v

i−1
j , vi

j , d
i
j)


−

Ne∑

j=1

f i
j(v

i−1
j , vi

j , d
i
j), (2.21)

a d.c. representation of the nonlinear constraints of the program (2.15) can be ob-

tained:

cig ≤ F i(. . . , vi−1
j , vi

j, d
i
j , . . .)−Gi(. . . , vi−1

j , vi
j , d

i
j , . . .) ≤ cig, i = 1, . . . ,Nt. (2.22)

These constraints are equivalent to the 2Nt d.c. constraints:

Gi(. . . , vi−1
j , vi

j , d
i
j , . . .)− F i(. . . , vi−1

j , vi
j , d

i
j , . . .) + cig ≤ 0 i = 1, ...,Nt, (2.23)

F i(. . . , vi−1
j , vi

j , d
i
j , . . .)−Gi(. . . , vi−1

j , vi
j , d

i
j , . . .)− cig ≤ 0 i = 1, ...,Nt. (2.24)
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2.2.2 D.c. representation of the objective function

By using the expressions (2.19) and (2.20) in

Nt∑

i=1

ci



li −
Ne∑

j=1

hi
j(v

i−1
j , vi

j , d
i
j)



 =
Nt∑

i=1

F i(. . . , vi−1
j , vi

j , d
i
j , . . .)−

Nt∑

i=1

Gi(. . . , vi−1
j , vi

j , d
i
j , . . .),

a d.c. representation of the objective function of the program (2.15) can be obtained

Nt∑

i=1

ci


li −

Ne∑

j=1

hi
j(v

i−1
j , vi

j , d
i
j)


 = F (. . . , vi−1

j , vi
j , d

i
j , . . .)−G(. . . , vi−1

j , vi
j , d

i
j , . . .).

Defining n = Ne(2Nt − 1), m = NeNt and x = (. . . , vi−1
j , vi

j , d
i
j , . . .) ∈ IRn, and

by expressing the linear constraints in the form Ax = b the program (2.15) can be

rewritten as a d.c. program

minimize F (x)−G(x)

subject to: (Gi(x) + cig)− F i(x) ≤ 0, i = 1, ...,Nt,

F i(x)− (Gi(x) + cig) ≤ 0, i = 1, ...,Nt,

Ax = b,

x ≤ x ≤ x,
A ∈ IRm∗n, b ∈ IRm, x, x ∈ IRn,

(2.25)

which involves linear equality constraints.

2.2.3 The d.c. program of reduced size

The matrix A of the linear constraints in (2.25) can be written as A = [B,N ] where

B is a basic nonsingular square matrix. Let y and z be the basic and nonbasic

coordinates corresponding to the matrices B and N , respectively. Then, x = (y, z)

and y = B−1(b − Nz), so that it is possible to reduce the size of the d.c. program

(2.25) by defining the functions ϕ1(z) = F (x), ϕ2(z) = G(x), ϕi
1(z) = F i(x) and

ϕi
2(z) = Gi(x). By using these functions in (2.25) we have an equivalent d.c. program
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of reduced size expressed by

minimize ϕ1(z)− ϕ2(z)

subject to: (ϕi
2(z) + cig)− ϕi

1(z) ≤ 0, i = 1, ...,Nt,

ϕi
1(z)− (ϕi

2(z) + cig) ≤ 0, i = 1, ...,Nt,

b ≤Mz ≤ b,
z ≤ z ≤ z,

(2.26)

where M = B−1N , b = B−1b− y and b = B−1b− y.

2.3 Equivalent reverse convex programs

It should be stressed that by applying properties of the d.c. functions, several dif-

ferent transformations can be used to obtain an equivalent reverse convex program

to the d.c. program (2.26).

2.3.1 The equivalent canonical d.c. program

The d.c. program (2.26) can be transformed into an equivalent d.c. program with a

linear objective by adding the variable τ in the form:

minimize τ

subject to: ϕ1(z)− ϕ2(z)− τ ≤ 0,

(ϕi
2(z) + cig)− ϕi

1(z) ≤ 0, i = 1, ...,Nt,

ϕi
1(z)− (ϕi

2(z) + cig) ≤ 0, i = 1, ...,Nt,

b ≤Mz ≤ b,
z ≤ z ≤ z.

(2.27)

The nonlinear constraints in (2.27) can be expressed using a single constraint by

defining

r(z, τ) = max{ϕ1(z)−(ϕ2(z)+τ), (ϕi
2(z)+c

ig)−ϕi
1(z), ϕ

i
1(z)−(ϕi

2(z)+c
ig), i = 1, ...,Nt},

so that (2.27) can be written

minimize τ

subject to: r(z, τ) ≤ 0,

b ≤Mz ≤ b,
z ≤ z ≤ z.

(2.28)
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From the properties of the d.c. functions (see Preliminaries or [27] and [32] for more

information), a d.c. representation of r(z, τ) = p(z, τ) − q(z, τ) can be obtained by

using the convex functions

p(x, τ) = max






2ϕ1(z) + ϕ2(z) +Ntc
ig,

ϕ1(z) + 2ϕ2(z) + τ + (ϕi
2(z)− ϕi

1(z) + cig) +Ntc
ig i = 1, ...,Nt,

ϕ1(z) + 2ϕ2(z) + τ + (ϕi
1(z)− ϕi

2(z)− cig) +Ntc
ig i = 1, ...,Nt






and

q(z, τ) = ϕ1(z) + 2ϕ2(z) + τ +Ntc
ig.

A more suitable d.c. representation of r(z, τ) can be obtained by defining the convex

functions

p0(z, τ) = max





2ϕ1(z) − τ,
ϕ1(z) + ϕ2(z) + (ϕi

2(z)− ϕi
1(z) + cig) i = 1, ...,Nt,

ϕ1(z) + ϕ2(z) + (ϕi
1(z)− ϕi

2(z)− cig) i = 1, ...,Nt





and

q0(z, τ) = ϕ1(z) + ϕ2(z).

Then, we can write

p(z, τ) = ϕ2(z) + τ +Ntc
ig + p0(z, t) (2.29)

and

q(z, τ) = ϕ2(z) + τ +Ntc
ig + q0(z, t), (2.30)

so a new d.c. representation of r(z, t) can be obtained

r(z, τ) = p(z, τ)− q(z, τ) = p0(z, τ)− q0(z, τ). (2.31)

By introducing a new variable t, the constraint r(z, τ) ≤ 0, can be replaced by an

equivalent pair of convex and reverse convex constraints

p0(z, τ) − t ≤ 0,

q0(z, τ) − t ≥ 0,
(2.32)

respectively. Hence, by defining the closed convex sets

D = {(z, τ, t) : p0(z, τ) − t ≤ 0, b ≤Mz ≤ b, z ≤ z ≤ z}
and

C = {(z, τ, t) : q0(z, τ) − t ≤ 0}
the d.c. program (2.28) is equivalent to the canonical d.c. program

minimize τ

subject to: (z, τ, t) ∈ D \ intC.
(2.33)
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2.3.2 A more advantageous equivalent reverse convex program

To solve the program (2.33) we need to find a vertex to the conical subdivisions by

solving an initial convex program, and bound the closed convex sets of the resultant

complementary mathematical convex structure. In this section, the d.c. representa-

tion of the functions in the d.c. program are used to find a suitable equivalent reverse

convex program in order to obtain, by using a prismatical subdivision process (see

definition in Chapter 4 or see [33] and [34] for more information), an advantageous

adaptation of the combined outer approximation and cone splitting conical algorithm

for canonical d.c. programming as described in [74].

The pair of constraints (2.32) can be expressed by the 2Nt +1 convex constraints

2ϕ1(z)− τ − t ≤ 0,

ϕ1(z) + ϕ2(z) + (ϕi
2(z) − ϕi

1(z) + cig)− t ≤ 0 i = 1, ...,Nt,

ϕ1(z) + ϕ2(z) + (ϕi
1(z) − ϕi

2(z) − cig)− t ≤ 0 i = 1, ...,Nt

(2.34)

and the reverse convex constraint

ϕ1(z) + ϕ2(z) − t ≥ 0 (2.35)

Hence, by defining the closed convex sets

Ω =





(z, t) :

ϕ1(z) + ϕ2(z) + (ϕi
2(z)− ϕi

1(z) + cig)− t ≤ 0,

ϕ1(z) + ϕ2(z) + (ϕi
1(z)− ϕi

2(z)− cig)− t ≤ 0,

i = 1, ...,Nt,

b ≤Mz ≤ b,
z ≤ z ≤ z





and

∆ = {(z, t) : ϕ1(z) + ϕ2(z)− t ≤ 0},

and by using as objective function the convex function 2ϕ1(z) − t a new canonical

d.c. program equivalent to the d.c. program (2.26) can be written

minimize 2ϕ1(z)− t
subject to: (z, t) ∈ Ω \ int∆.

(2.36)
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Figure 2.3: The two basic models for obtaining the replicated hydronetwork of the

instances of the hydrogeneration systems.

Table 2.1: Characteristics of the hydrogeneration systems

Problem Nodes Intervals Dimension Linear const. Nonlinear const.

Ne Nt Ne(2Nt − 1) NeNt Nt

gp2e02i 2 2 6 4 2

gp2e03i 2 3 10 6 3

gp4e03i 4 3 20 12 3

gp4e04i 4 4 28 16 4

gp2e08i 2 8 30 16 8

2.4 Characteristics of the hydrogeneration systems

The characteristics of the instances of the hydrogeneration systems can be found in

Table 2.1, where we use Ne to indicate the number of reservoirs and Nt to indicate

the number of time intervals. The names of the hydrogeneration systems in Table

2.1 are denoted by gpnemi, where n = Ne, m = Nt. Figure 2.3 displays the two

basic models for obtaining the replicated hydronetwork of the instances of the hy-

drogeneration systems used in this Thesis. Model (a) corresponds with the instances

where n = 2, and model (b) with the instances where n = 4. In this point, we must

give some explanations about how the constants, the variables and the functions are

measured in the Generation Problem.
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• We know that the power hydrogeneration function hi
j over the ith interval at

the reservoir j is measured in Kw and it is approximated by a polynomial

function of fourth degree in the variables vi−1
j , vi

j and di
j , which are measured

in Hm3.

hi
j(v

i−1
j , vi

j , d
i
j) = ki

j

di
j

ti
[svb + svl

2 (vi−1
j + vi

j) +
svq

3 (vi
j − vi−1

j )2+

+svqv
i−1
j vi

j + svc

4 ((vi−1
j )2 + (vi

j)
2)(vi−1

j + vi
j)−

−sdld
i
j − sdq(d

i
j)

2].

• The coefficients svb(m), svl(m/Hm
3), svq(m/Hm

6), svc(m/Hm
9), sdl(m) and

sdq(m/Hm
3) are technological coefficients which depend on each reservoir.

• The time intervals ti, i = 1, . . . ,Nt and the time period tp =
∑Nt

i=1 ti are

measured in hours.

• The bounds for the water discharge are denoted by dj , for the minimum, and

by dj , for the maximum, and they are measured in Hm3/h for all j = 1, ...,Ne.

Hence, we must take into account the inequalities

tidj ≤ di
j ≤ tidj ,

for all i = 1, ..., Nt and j = 1, ...,Ne.

• The efficiency and unit conversion coefficient to maintain the coherence of the

measurement scale is

ki
j = 3.6 ∗ 10−6ρi

jg,

with ρi
j = ρ(vi−1

j , vi
j ,

di
j

ti
) verifying 0 ≤ ρi

j ≤ 1 and g = 9.8m/s2. The efficiency

coefficient of the turbine ρi
j depends on the variables vi−1

j , vi
j i di

j/ti but, for

the sake of simplicity, in our problem this coefficient is a concave polynomial

function of second degree, which only depends on the variable di
j/t

i as follows.

ρi
j := (kq)j

(
di

j

ti

)2

+ (kl)j

(
di

j

ti

)
,

with (kq)j measured in (Hm3/h)−2 and (kl)j measured in (Hm3/h)−1 for all

i = 1, ..., Nt and j = 1, ..., Ne.

• Also, the natural water inflows wj are measured in Hm3/h for all j = 1, ...,Ne

and wi
j = wjt

i, where wi
j are measured in Hm3 for all i = 1, ...,Nt and j =

1, ..., Ne.
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Table 2.2: The technological coefficients at each reservoir

Reservoir svb svl svq svc

R1 0.385835e + 2 0.191407e + 0 −.430230e − 4 0.485060e − 7

R2 0.114000e + 2 0.116999e + 0 −.193817e − 4 0.309579e − 7

R3 0.385835e + 2 0.191407e + 0 −.430230e − 4 0.485060e − 7

R4 0.114000e + 2 0.116999e + 0 −.193817e − 4 0.309579e − 7

sdl sdq kl kq

R1 0.581395e − 4 0.253515e − 6 0.355556e + 1 −.395062e + 1

R2 0.133333e − 3 0.133333e − 5 0.416667e + 1 −.578704e + 1

R3 0.581395e − 4 0.253515e − 6 0.355556e + 1 −.395062e + 1

R4 0.133333e − 3 0.133333e − 5 0.416667e + 1 −.578704e + 1

The generation bounds are g = 0.01 Kwh and g = 150 Kwh. The time period

has been established to tp = 24 for each instance of Table 2.1. The technological

coefficients and the coefficients of ρi
j, j = 1, ...,Ne of the reservoirs used in this

Thesis are described in Table 2.2. The bounds on the variables and the volumes

stored at the beginning and at the end of the time period are in Table 2.3, and they

are the same for all instances in Table 2.1.

Table 2.3: Bounds on the volumes (Hm3) and the water discharges (Hm3/h), and

the volumes stored at the beginning and at the end of the time period at each

reservoir (Hm3)

Reservoir v v d d vini vfin

R1 0.100e + 3 0.400e + 3 0.00e0 0.250e + 3 0.344e + 3 0.344e + 3

R2 0.500e + 2 0.200e + 3 0.00e0 0.200e + 3 0.150e + 3 0.150e + 3

R3 0.100e + 3 0.400e + 3 0.00e0 0.250e + 3 0.344e + 3 0.344e + 3

R4 0.500e + 2 0.200e + 3 0.00e0 0.200e + 3 0.150e + 3 0.150e + 3

Table 2.4 shows the forecasts for electricity consumption and the natural water

inflow, into the reservoirs of the hydrogeneration systems, at each time interval.



Table 2.4: Forecasts for electricity consumption (Kw) and the natural water inflow

(Hm3/h) at each time interval for the reservoirs of the instances of the hydrogener-

ation systems

gp2e02i t1 t2
l 0.16e5 0.13e4

w1 0.70e2 0.70e2

w2 0.40e2 0.40e2

gp2e03i t1 t2 t3

l 0.10e4 0.10e4 0.90e3

w1 0.70e2 0.70e2 0.70e2

w2 0.40e2 0.40e2 0.40e2

gp2e08i t1 t2 t3 t4 t5 t6 t7 t8
l 3.62e2 3.62e2 3.62e2 3.62e2 3.62e2 3.62e2 3.62e2 3.62e2

w1 0.7e2 0.7e2 0.7e2 0.7e2 0.7e2 0.7e2 0.7e2 0.7e2

w1 0.4e2 0.4e2 0.4e2 0.4e2 0.4e2 0.4e2 0.4e2 0.4e2

gp4e03i t1 t2 t3
l 0.200e3 0.135e3 0.110e3

w1 0.130e1 0.215e1 0.155e1

w2 0.100e1 0.200e1 0.150e1

w3 0.155e1 0.115e1 0.205e1

w4 0.125e1 0.150e1 0.125e1

gp4e04i t1 t2 t3 t4

l 0.150e3 0.185e3 0.160e3 0.150e3

w1 0.100e1 0.175e1 0.100e1 0.125e1

w2 0.750e0 0.100e1 0.175e1 0.100e1

w3 0.125e1 0.750e0 0.100e1 0.175e1

w4 0.100e1 0.100e1 0.750e1 0.100e1



Chapter 3

How to obtain a d.c. representation of

a polynomial

3.1 Introduction

The main problem i this Chapter is how to obtain a d.c. representation of a d.c.

function. While it is not too difficult to prove theoretically that a given function

is d.c. it is often problematic to obtain an effective d.c. representation of a d.c.

function. We are interested in d.c. representations of polynomials. The aim of this

Chapter is to provide a new procedure (see A.Ferrer [16]) to obtain an explicit rep-

resentation of a polynomial as a difference of convex polynomials (Corollary 3.3.4),

based on the fact that the set of mth powers of homogeneous polynomials of degree

1 is a generating set for the vector space of homogeneous polynomials of degree m

(Proposition 3.3.2). Also, we compare our procedure with the procedure described

by Konno, Thach and Tuy [42], emphasizing its advantages and applying it to the

polynomials of our problem.

3.2 Some relevant properties of polynomials and convex

functions

In this section some useful lemmas are stated and the references, where their proofs

can be found, are also given. Lemmas without specific references are proved.

Let IRm [x1, . . . , xn] be the vector space of polynomials of degree less than or

35
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equal to m and let Hi [x1, . . . , xn] be the vector space of homogeneous polynomials

of degree i (generated by monomials xt1
1 x

t2
2 . . . x

tn
n , with t1 + t2 + . . .+ tn = i, which

form a basis).

Lemma 3.2.1 (Lang [45]) The following properties hold:

(i) If i ≤ m then Hi [x1, . . . , xn] is a vector subspace of IRm [x1, . . . , xn]

(ii) si=dim Hi [x1, . . . , xn] = Ci
n+i−1 :=

(
n+ i− 1

i

)

(iii) IRm [x1, . . . , xn] =
⊕m

i=0Hi [x1, . . . , xn]

Let p(x1, . . . , xn) ∈ IRm [x1, . . . , xn]. Thus, we can write

p(x1, . . . , xn) =
m∑

i=0

qi(x1, . . . , xn),

where qi(x1, . . . , xn) ∈ Hi [x1, . . . , xn] i = 0, 1, . . . ,m.

If {mj
i (x1, . . . , xn); j = 1, 2, . . . , si} is the usual monomial basis of the vector

space of homogeneous polynomials of degree i then

qi(x1, . . . , xn) =
si∑

j=1

λjm
j
i (x1, . . . , xn).

Lemma 3.2.2 (Avriel [4]) Let f : D ⊂ IRn −→ IR be a convex function in the

convex set D and let Ψ : B ⊂ IR −→ IR be a nondecreasing proper convex function

in the convex set B. If f(D) ⊂ B then Ψ ◦ f : D ⊂ IRn −→ IR is convex (where

Ψ ◦ f means the function (Ψ ◦ f)(x) = Ψ(f(x)) for all x ∈ D ).

Lemma 3.2.3 Let g(x) := (
∑n

i=1 aixi)
m be a function which is the mth power of a

linear function where m is a nonnegative integer. Define the closed half spaces:

H+
m =

{
(x1, . . . , xn) ∈ IRn :

n∑

i=1

aixi ≥ 0

}
(3.1a)

H−
m =

{
(x1, . . . , xn) ∈ IRn :

n∑

i=1

aixi ≤ 0

}
(3.1b)

The following results hold:
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i) If m is even then g(x) is a convex function on IRn.

ii) If m is odd then g(x) is convex on H+
m and concave on H−

m.

iii) All expressions of the form

h(x) =
s∑

j=1

λj

(
n∑

i=1

aj
ixi

)mj

, (3.2)

where λj > 0 and mj ∈ IN are convex functions on the convex set

D =

{
(x1, . . . , xn) ∈ IRn :

n∑

i=1

aj
ixi ≥ 0, for all j ∈ J

}
, (3.3)

where J = {j : mj is odd}.

Proof: Let Ψ(t) = tm be a nondecreasing proper convex function on IR+. By

applying Lemma 3.2.2 to the linear functions
∑n

i=1 aixi and −∑n
i=1 aixi on H+

m and

H−
m respectively we can prove i) and ii). As regards iii), consider, for all j = 1 . . . s,

the set D = ∩s
j=1Dj where Dj = H+

mj
when mj is odd, and Dj = IRn when mj is

even. It is easy to see that D is a convex subset of each convex set Dj , j = 1 . . . s.

Hence, each term
(∑n

i=1 a
j
ixi

)mj

is a convex function on D and since λj > 0, for all

j = 1 . . . s, it follows that h(x) is a convex function on D.

Lemma 3.2.4 (Cox et al [9]) Let q(x1, . . . , xn) ∈ IRm [x1, . . . , xn] be a polynomial

of degree m.

i) Let q =
∑m

i=0 qi be the expansion of q as the sum of its homogeneous compo-

nents where qi has total degree i. Then

q(x0, x1, . . . , xn) =
m∑

i=0

qi(x1, . . . , xn)xm−i
0 (3.4)

is homogeneous polynomial of total degree m in Hm [x0, x1, . . . , xn]. We will

call q the homogenization of q.

ii) The homogenization of q can be computed using the formula

q(x0, x1, . . . , xn) = xm
0 q

(
x1

x0
, . . . ,

xn

x0

)
. (3.5)

iii) Taking x0 = 1 we thus get q(x1, . . . , xn) = q(1, x1, . . . , xn). For this reason we

will call q the dehomogenization of the polynomial q.
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iv) Let F (x0, . . . , xn) be homogeneous polynomial and let xs
0 be the highest power

of x0 dividing F . If f(x1, . . . , xn) = F (1, x1, . . . , xn) is a dehomogenization of

F , then

F = xs
0f . (3.6)

(v) Let Φ be the function

Φ : IRm [x1, . . . , xn] 7−→ Hm [x0, x1, . . . , xn]

q 7−→ Φ(q) = q
(3.7)

then Φ is a real vector space isomorphism.

3.3 D.c. representation of a polynomial as a difference

of convex polynomials

In this section an explicit decomposition of a polynomial as a difference of convex

polynomials is given by using polynomials which are mth powers of homogeneous

polynomials of degree 1. These polynomials are a generating set for the vector space

of homogeneous polynomials of degree m.

The following lemma is well known. We include a proof for the sake of complete-

ness.

Lemma 3.3.1 Let α0, α1, . . . , αm be m+ 1 distinct elements of IR; then the family

of m+ 1 polynomials

B = {(x+ α0)
m , (x+ α1)

m , . . . , (x+ αm)m}

is a basis of the vector space IRm [x].

Proof: We know that the set

B0 =
{
1, x, x2, . . . , xm

}
(3.8)

is a basis of IRm [x]. Then, for all i = 0, 1, . . . ,m, we can write

(x+ αi)
m = xm + C1

mx
m−1αi + C2

mx
m−2α2

i + ...+ Ck
mx

m−kαk
i + ...+ αm

i (3.9)
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and calculate the determinant

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ... 1 ... 1

C1
mα0 ... C1

mαi ... C1
mαm

C2
mα

2
0 ... C2

mα
2
i ... C2

mα
2
m

... ... ... ... ...

Ck
mα

k
0 ... Ck

mα
k
i ... Ck

mα
k
m

... ... ... ... ...

Cm
mα

m
0 ... Cm

mα
m
i ... Cm

mα
m
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= C1
m...C

m
m

∣∣∣∣∣∣∣∣∣∣∣∣

1 ... 1 ... 1

α0 ... αi ... αm

α2
0 ... α2

i ... α2
m

... ... ... ... ...

αm
0 ... αm

i ... αm
m

∣∣∣∣∣∣∣∣∣∣∣∣

(3.10)

where the expression

∣∣∣∣∣∣∣∣∣∣∣∣

1 ... 1 ... 1

α0 ... αi ... αm

α2
0 ... α2

i ... α2
m

... ... ... ... ...

αm
0 ... αm

i ... αm
m

∣∣∣∣∣∣∣∣∣∣∣∣

=
m∏

i=0

m∏

j=i+1

(αi − αj) 6= 0 (3.11)

is the nonzero Vandermonde determinant which completes the proof.

Proposition 3.3.2 (Chambadal et al [7] Ex.111, p.498) Let Hm [x1, x2, . . . , xn] be

the vector space of the homogeneous polynomials of total degree m. Then the set

{pm : p ∈ H1 [x1, x2, . . . , xn]} of mth powers of homogeneous polynomials of degree

1 is a generating set for Hm [x0, x1, . . . , xn]. We have

Hm [x1, x2, . . . , xn] = 〈pm : p ∈ H1 [x1, x2, . . . , xn]〉 (3.12)

(the notation 〈. . .〉 means the span of the set it contains).

Proof: The proof is by induction on n. It is obvious for the case n = 1 because

Hm [x1] = 〈xm
1 〉. For the case n = 2, consider h ∈ Hm [x1, x2]. According the Lemma

3.2.4 Φ is an isomorphism, then there exists q ∈ IRm [x1, x2] where h = Φ(q). Let

α0, α1, . . . , αm ∈ IR be a collection of different numbers. From the Lemma 3.3.1

there exist λ0, λ1, . . . , λm ∈ IR such that q(x2) =
∑m

i=0 λi(x2 + αi)
m, whence

h(x1, x2) = xm
2 q

(
x1

x2

)
= xm

2

m∑

i=0

λi

(
x1

x2
+ αi

)m

=
m∑

i=0

λi(x1 + αix2)
m.

This proves that the polynomials (x1 +αix2)
m i = 0, 1, . . . ,m generate Hm [x1, x2].

Let us assume that our assertion holds for the case n− 1. We will now prove it for

the case n.
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Let h (x1, x2, . . . , xn−1, 1) ∈ IRm [x1, . . . , xn−1] be the dehomogenization of the poly-

nomial h (x1, x2, . . . , xn) ∈ Hm [x1, x2, . . . , xn] with respect to the variable xn. Then,

we can write

h (x1, x2, . . . , xn−1, 1) =
m∑

s=0

hs, with hs ∈ Hs [x1, x2, . . . , xn−1] , (3.13)

and by induction

hs (x1, x2, . . . , xn−1) =
∑

i

µs,i(Ps,i)
s (3.14)

with

Ps,i = as,i
1 x1 + ...+ as,i

n−1xn−1. (3.15)

Then, we have

h (x1, x2, . . . , xn) =
m∑

s=0

xm−s
n hs (x1, x2, . . . , xn−1) (3.16)

and using the expression (3.14) within (3.16) we can write

h (x1, x2, . . . , xn) =
m∑

s=0

xm−s
n

(
∑

i

µs,i(Ps,i)
s

)
=

∑

i, 0≤s≤m

µs,ix
m−s
n (Ps,i)

s. (3.17)

Every homogeneous polynomial xm−s
n (Ps,i)

s in the variables xn and Ps,i can be

expressed as a linear combination of mth powers (αs,i,jPs,i + βs,i,jxn)m

xm−s
n (Ps,i)

s =
∑

j

ρs,i,j (αs,i,jPs,i + βs,i,jxn)m . (3.18)

Combining (3.15) with (3.18) we obtain

xm−s
n (Ps,i)

s =
∑

j

ρs,i,j

(
αs,i,ja

s,i
1 x1 + ...+ αs,i,ja

s,i
n−1xn−1 + βs,i,jxn

)m
. (3.19)

Substituting the expression (3.19) in (3.17) we obtain h (x1, x2, . . . , xn) as a linear

combination of mth powers of homogeneous polynomials of total degree 1, which

proves the proposition.

Corollary 3.3.3 Let qi (x1, x2, . . . , xn) be an homogeneous polynomial of total de-

gree i. Then, there exist bases B(i) of ith powers of homogeneous polynomials of

total degree 1, B(i) =
{
(aj

1x1 + . . .+ aj
nxn)i, j = 1 . . . si

}
so that

qi (x1, x2, . . . , xn) =
si∑

j=1

µj(a
j
1x1 + . . .+ aj

nxn)i, (3.20)

with µj ∈ IR, j = 1, . . . , si. (Recall that si=dim Hi [x1, . . . , xn], see Lemma 3.2.1.)
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Corollary 3.3.4 Let I+ = {j;µj > 0} and I− = {j;µj < 0}. Then, in the con-

vex set Di =
{
(x1, . . . , xn) ∈ IRn :

∑n
k=1 a

j
kxk ≥ 0, j = 1 . . . si with µj 6= 0

}
if i is

even or Di = IRn if i is odd, we have

qi (x1, x2, . . . , xn) =
∑

j∈I+

µj

(
n∑

k=1

aj
kxk

)i

−
∑

j∈I−

(−µj)

(
n∑

k=1

aj
kxk

)i

, (3.21)

where both components are convex. Hence, each polynomial p(x) ∈ IRm [x1, . . . , xn],

p =
∑m

i=0 qi can be expressed as a d.c. function on the convex set D = ∩m
i=0Di.

Proof: This result follows from Corollary 3.3.3 and Lemma 3.2.3.

Corollaries 3.3.3 and 3.3.4 provide a procedure to get d.c. representations of poly-

nomials expressed in terms of suitable bases of ith powers (see Appendix A, where

a procedure by using MAPLE symbolic calculator has been described).

3.3.1 Alternative procedure to obtain a d.c. representation

It should be noted that the proof of Proposition 3.3.2 gives us an alternative

procedure, different from the search for bases, for obtaining d.c. representations

of polynomials. We only need to know d.c. representations of monomials in

Hi [x1, x2] , i = 2, . . . ,m. If we know that

xy =
1

4
(x+ y)2 − 1

4
(x− y)2 (3.22)

and

x2y2 =
1

12
(x+ y)4 +

1

12
(x− y)4 −

(
1

6
x4 +

1

6
y4
)

(3.23)

then, we can obtain a d.c. representation of xyz2 ∈ IR4 [x, y, z].

Using (3.22) we can write

xyz2 = (xy)z2 =

(
1

4
(x+ y)2 − 1

4
(x− y)2

)
z2 =

1

4
(x+ y)2z2 − 1

4
(x− y)2z2.

From (3.23) we have

(x+ y)2z2 =
1

12
(x+ y + z)4 +

1

12
(x+ y − z)4 −

(
1

6
(x+ y)4 +

1

6
z4
)

and

(x− y)2z2 =
1

12
(x− y + z)4 +

1

12
(x− y − z)4 −

(
1

6
(x− y)4 +

1

6
z4
)
,
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whence

xyz2 =
1

48
(x+ y + z)4 +

1

48
(x+ y − z)4 +

1

24
(x− y)4−

−
(

1

24
(x+ y)4 +

1

48
(x− y + z)4 +

1

48
(x− y − z)4

)
,

which is a d.c. representation of xyz2 on IR4[x, y, z].

To use this procedure we need to know the d.c. representations of monomials

in Hi [x1, x2] , i = 2, . . . ,m, which is not always possible. On the other hand,

we must take into account that using this procedure the ith powers of the linear

combination may be dependent, whence the importance of using bases of ith powers

of homogeneous polynomials of degree 1 to obtain d.c. representations.

3.4 Advantages of using i
th powers of homogeneous

polynomials of degree 1

The procedure described by Konno, Thach and Tuy [42] to obtain a d.c. represen-

tation of a polynomial uses the fact that the monomials xti
i , i = 1, . . . , n are convex

functions on IRn
+(positive orthant). Hence, by applying successively the property

φ1(x)φ2(x) =
1

2
(φ1(x) + φ2(x))

2 − 1

2
(φ1(x)

2 + φ2(x)
2), (3.24)

where φ1 and φ2 are convex functions on IRn
+, a d.c. representation of the monomials

xt1
1 x

t2
2 . . . x

tn
n , with t1 + t2 + . . .+ tn = i

on IRn
+ can be obtained.

Example 3.4.1

xyz3 = (xy)z3 =

(
1

4
(x+ y)2 − 1

4
(x− y)2

)
z3 =

1

4
(x+ y)2z3 − 1

4
(x− y)2z3.

Since z3 is convex on IR3
+ we can write

(x+ y)2z3 =
1

2
((x+ y)2 + z3)2 − 1

2
((x+ y)4 + z6)

and

(x− y)2z3 =
1

2
((x− y)2 + z3)2 − 1

2
((x− y)4 + z6).
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Hence,

xyz3 = p1(x, y, z)− p2(x, y, z),

is a d.c. representation of xyz3 ∈ IR5[x, y, z] on IR3
+, in which

p1(x, y, z) =
1

8
((x+ y)2 + z3)2 +

1

8
((x− y)4 + z6)

and

p2(x, y, z) =
1

8
((x+ y)4 + z6) +

1

8
((x− y)2 + z3)2

are convex polynomials in IR6[x, y, z] on IR3
+.

We have presented an alternative procedure which only requires a suitable basis

change of ith powers of homogeneous polynomials of degree 1 to obtain a d.c. rep-

resentation

qi (x1, . . . , xn) =
∑

j∈I+

µj

(
n∑

k=1

aj
kxk

)i

−
∑

j∈I−

(−µj)

(
n∑

k=1

aj
kxk

)i

, (3.25)

on suitable domains. The main advantages of using mth powers of homogeneous

polynomials of degree 1 are:

i) Solely basis changes within Hi [x1, . . . , xn] are used for obtaining a d.c. repre-

sentation of a polynomial (in place of individual d.c. representation for mono-

mials). Every polynomial p(x) can be expressed as a difference of convex poly-

nomials where both components are convex polynomials of the same degree as

p(x) (this fact is an essential difference compared to the d.c. representations

by Konno, Thach and Tuy [42], where this property is not true).

ii) To obtain different d.c. representations of a polynomial function we can use

different bases in our procedure (see Appendix A).

Hence, applications to real problems, which are described by using polynomial func-

tions, are possible.

3.5 D.c. representation of the power hydrogeneration

function

Ordering by increasing degrees the power hydrogeneration function (2.10) and sub-

stituting the coefficients a = ki
j , b = svb, c = 0.5svl, d = svq/3, e = 0.25svc, f = sdl
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and g = sdq and the variables x = di
j, y = vi−1

j and z = vi
j leads to

h (x, y, z) = abx+ acx (y + z)− afx2 + adx (z − y)2−
−agx3 + 3adxyz + aex

(
y2 + z2

)
(y + z) . (3.26)

If we obtain a d.c. representation of its nonlinear homogeneous components then

we can decompose it. Let h2, h3 and h4 be power hydrogeneration homogeneous

components of degree 2, 3 and 4 respectively. Hence, we have

h2 (x, y, z) = acx(y + z)− afx2, (3.27)

the homogeneous polynomial component of degree 2,

h3 (x, y, z) = adx (z − y)2 + 3adxyz − agx3, (3.28)

the homogeneous polynomial component of degree 3, and

h4 (x, y, z) = aex
(
y2 + z2

)
(y + z) , (3.29)

the homogeneous polynomial component of degree 4.

We get a suitable vector space basis using the MAPLE Symbolic Calculator

(see Appendix A)

3.5.1 D.c. representation of the homogeneous polynomial compo-

nent of degree 2

Let B2 be the initial basis in H2 [x, y, z] with

B2 =
{
x2, y2, z2, xy, xz, yz

}
. (3.30)

It is easy to prove that the set

B(2) :=
{
x2, y2, z2, (x+ y)2 , (x+ z)2 , (y + z)2

}
(3.31)

is another H2 [x, y, z] basis. Every polynomial of B(2) can be represented using

polynomials of B2, as we can see in Table 3.1.

Let C be the matrix which represents the change of coordinates from B(2) (co-

ordinates X) to B2 (coordinates Y ).

C =




1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2




. (3.32)
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Table 3.1: Change of basis in the space of the polynomials

B(2) representation in B2 Coordinates

x2 x2 (1, 0, 0, 0, 0, 0)

y2 y2 (0, 1, 0, 0, 0, 0)

z2 z2 (0, 0, 1, 0, 0, 0)

(x+ y)2 x2 + y2 + 2xy (1, 1, 0, 2, 0, 0)

(x+ z)2 x2 + z2 + 2xz (1, 0, 1, 0, 2, 0)

(y + z)2 y2 + z2 + 2yz (0, 1, 1, 0, 0, 2)

Then, using the expression X = C−1Y we obtain the d.c. representation of

h2 (x, y, z).

h2 (x, y, z) =
ac

2

[
(x+ y)2 + (x+ z)2

]
−
[
(ac+ af)x2 +

ac

2

(
y2 + z2

)]
(3.33)

Note that, in this case, another possible d.c. representation is via the diagonalization

of the symmetric matrix A such that h2(x) = XtAX. To simplify the expressions

we suppose a = 1, c = 2 and f = 1 in (3.27). Hence

A =



−1 1 1

1 0 0

1 0 0


 . (3.34)

The nonzero eigenvalues of A are 1 and −2. Moreover, the matrix C of the ortho-

normal eigenvectors corresponding to the eigenvalues of the matrix A is

C =




1√
3

−2√
6

0
1√
3

1√
6

−1√
2

1√
3

1√
6

1√
2


 . (3.35)

Thus, using (XtC)D(CtX), we obtain a shorter d.c. representation

h2(x, y, z) = 1(
x+ y + z√

3
)2 − 2(

−2x+ y + z√
6

)2. (3.36)
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3.5.2 D.c. representation of the homogeneous polynomial compo-

nent of degree 3

In this case, the initial basis is the set

B3 =
{
x3, y3, z3, x2y, x2z, xy2, xz2, y2z, yz2, xyz

}
(3.37)

and we can choose

B(3) :=
{
x3, y3, z3, (x+ 2y)3 , (x+ 2z)3 , (y + 2z)3 ,

(2x+ y)3 , (2x+ z)3 , (2y + z)3 , (x+ y + z)3
} (3.38)

as the new H3 [x, y, z] basis. Then, the representation of the polynomial h3 (x, y, z),

in the basis B(3) as a difference of convex polynomials is

h3 = a (d− g) x3 + ad
12 (x+ 2y)3 + ad

12 (x+ 2z)3 + ad
6 (x+ y + z)3−

−
(

ad
2

(
y3 + z3

)
+ ad

36 (y + 2z)3 + ad
12 (2x+ y)3 + ad

12 (2x+ z)3 + ad
36 (2y + z)3

)
.

(3.39)

It should be noted that in practice, we are interested in d.c. representations of a

polynomial only on the orthant x ≥ 0. Taking into account that the odd cases

lead to restrictions on the domain where the polynomial components are convex

(see Lemma 3.2.3), we can use linear expressions, into mth powers, with positive

coefficients to obtain d.c. representations, which hold on the orthant x ≥ 0.

3.5.3 D.c. representation of the homogeneous polynomial compo-

nent of degree 4

The initial basis is

B4 =
{
x4, y4, z4, x3y, x3z, xy3, xz3, y3z, yz3,

x2y2, x2z2, y2z2, x2yz, xy2z, xyz2
} (3.40)

and let

B(4) =
{
x4, y4, z4, (x+ y)4 , (x+ z)4 , (y + z)4 , (y − x)4 , (z − x)4

(y − z)4 , (x+ y + z)4 , (x+ y − z)4 , (x− y + z)4 ,

(x+ 2y + z)4 , (x+ y + 2z)4 , (x+ 2y + 3z)4
} (3.41)

be a vector space basis for H4 [x, y, z]. The representation of the polynomial

h4 (x, y, z) as a difference of convex polynomials is

h(4 = ae
24

(
4x4 + (y − z)4 + (x+ 2y + z)4 + (x+ y + 2z)4

)
−

−ae
24

(
8y4 + 8z4 + 5 (y + z)4 + (y − x)4 + (z − x)4 + 4 (x+ y + z)4

)
.

(3.42)



Chapter 4

The global optimization algorithm

4.1 Introduction

As was seen in Section 2.3.2, the following is one of the forms in which the Generation

Problem can be written as a reverse convex program.

minimize f(x)− t
subject to: g(x) − t ≤ 0,

h(x) − t ≥ 0,

Ax ≤ b,

(4.1)

where A is a real m × n matrix, b ∈ IRm and f(x), g(x) and h(x) are proper

convex functions on IRn. In this Chapter, it is our aim to present a deterministic

global optimization algorithm for solving reverse convex programming problems of

the above-mentioned form. We will use the following notation

D := {(x, t) ∈ IRn × IR : Ax ≤ b, g(x)− t ≤ 0},
C := {(x, t) ∈ IRn × IR : h(x)− t ≤ 0},
Cǫ := {(x, t) ∈ IRn × IR : h(x)− t+ ǫ ≤ 0}, ǫ > 0,

Dα := {(x, t) ∈ D : f(x)− t ≤ α}, α ∈ IR,

(4.2)

where D, C, Cǫ and Dα are closed convex sets. Hence, the programming problem

(4.1) can be rewritten in the form

minimize {f(x)− t : (x, t) ∈ D\int C}. (4.3)

Note that the sets D and C are not bounded but D \ int C is a compact set when

Ax ≤ b defines a polytope in IRn (see Figure 4.1). Algorithms for solving determin-

47
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Figure 4.1: Feasible set of the reverse convex program (4.3) and some level curves

of its objective function f(x)− t

istic reverse convex programs are described, for example, in [32] and [74]. All these

algorithms begin by obtaining an initial point by solving a convex program. Without

this point these algorithms cannot work because the point is the vertex of a conical

subdivision process. In contrast, our algorithm, though designed in a similar spirit

to algorithms used for solving reverse convex programs, has several differences and

advantages. Among others, we will use prismatical subdivisions in place of conical

ones so that it will not be necessary to solve an initial convex program.

In the next sections we will describe the basic operations of the algorithm which

combines a prismatical subdivision process with polyhedral outer approximation in

such a way that only linear programs have to be solved. Also, the convergence of

the algorithm will be proved.

4.2 Global optimal and global ǫ-optimal solutions

In the following we assume the programs (4.1) and (4.3) equivalent (i.e, (4.3) is a

different way to express (4.1)), D\C 6= ∅ and that for every feasible point (x0, t0)
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which verifies t0 = g(x0) = h(x0) we have

B(x0, ǫ) ∩ {x : Ax ≤ b, g(x) < h(x)} 6= ∅, (4.4)

for all ǫ > 0.

Lemma 4.2.1 All the global optimal solutions of the programming problem (4.3)

are in D ∩ ∂C.

Proof: Suppose that the assertion is false. Then, there exists a global optimal

solution (x∗, t∗) which satisfies h(x∗) − t∗ > 0. Let to > 0 be the real number in

such a way that h(x∗)− (t∗ + to) = 0. Then, the feasible point (x∗, t∗ + to) satisfies

f(x∗)− t∗ > f(x∗)− (t∗ + to) and (x∗, t∗) cannot be a global optimal solution.

Lemma 4.2.2 The programming problem (4.3) is regular, i.e.,

D\int C = cl (D\C).

Proof: We have D\int C ⊃ cl (D\C) because cl (D\C) is the smallest closed set

containing D\C and D\int C is a closed set in IRn × IR. On the other hand, let

(xo, to) ∈ D\int C. Thus, there exists a sequence {(xk, tk), k = 1, 2, . . .} of points

of D\C that converge to (xo, to). Indeed, three cases are possible:

1. Ax0 ≤ b and g(x0) ≤ t0 < h(x0). In this case (x0, t0) ∈ D\C,

2. Ax0 ≤ b and g(x0) < t0 = h(x0). In this case, the sequence

{(x0, t0 − (t0 − g(x0))/2
k), k = 1, 2, . . .}

of points of D\C converge to (xo, to),

3. Ax0 ≤ b and g(x0) = t0 = h(x0). By choosing

xk ∈ B(x0, 1/k) ∩ {x : Ax ≤ b, g(x) < h(x)} 6= ∅,

for every k = 1, 2, . . . , and taking tk = (h(xk) + g(xk))/2 we can see that the

sequence {(xk, tk), k = 1, 2, . . .} of points of D\C converge to (xo, to).

Hence, (xo, to) ∈ cl (D\C) in IRn × IR and D\int C ⊂ cl (D\C)), which proves the

lemma.
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Lemma 4.2.3 Let (x∗, t∗) be a feasible solution of a regular program (4.3) which

comes from the programming problem (4.1). The following assertions are equiva-

lences:

i) (x∗, t∗) is a global optimal solution,

ii) Dα∗ ⊂ C with α∗ = f(x∗)− t∗.

Proof: i) ⇒ ii)

Consider (x0, t0) ∈ Dα∗ with (x0, t0) 6∈ C. Then h(x0) − t0 > 0 and from f(x0) −
t0 = f(x∗) − t∗ = α∗ follows that (x0, t0) is an optimal global solution of (4.3) so

h(x0)− t0 = 0 which is a contradiction.

ii) ⇒ i)

Let (x̄, t̄) ∈ D \ intC be a better feasible solution than (x∗, t∗). Then f(x̄) − t̄ <
f(x∗)− t∗ and we can find an open ball B := B((x̄, t̄), r), of center (x̄, t̄) and radius

r, such that for all (x, t) ∈ B we have f(x)−t < f(x∗)−t∗. From (x̄, t̄) ∈ D\int C =

cl (D \C) follows that B∩ cl (D \C) 6= ∅ so every point (x, t) ∈ B∩ cl (D \C) verify

(x, t) ∈ D and (x, t) 6∈ C which is a contradiction.

In practice, we only need to find the global optimum within a prescribed tolerance.

Hence, the programming problem (4.3) can be considered solved when, given ǫ > 0 (a

nonnegative real number), a feasible solution (x∗ǫ , t
∗
ǫ) has been found which satisfies

f(x∗ǫ)− t∗ǫ − ǫ ≤ f(x)− t, for all (x, t) ∈ D\int C. (4.5)

Such a feasible solution is called a global ǫ-optimizer. By defining

α∗ := inf{f(x)− t : (x, t) ∈ D, h(x) − t > 0},

it is easily seen that the set Dα∗\int Cǫ coincides with the set of ǫ-optimizers of the

programming problem (4.3). The algorithm for solving the problem (4.3) that we

present in this Chapter, is an adaptation of the Combined OA/CS Conical Algorithm

for CDC as described in Tuy [74], which corresponds to the specific structure of this

program. In the next sections a branching process, in which every partition set

is a simplicial prism, will be elaborated, and an outer approximation process will

be described by means of a sequence of polyhedrons generated through suitable

piece-wise linear functions.
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Figure 4.2: The sets of the ǫ-global minimizers and global minimizers of a reverse

convex program as used by the modified algorithm

4.3 Subdivision processes

This section is devoted to study the properties of the prismatical subdivision

processes (introduced by Horst et al. [34] but without a systematic study of its prop-

erties). The basic prismatical subdivision property (see Proposition 4.3.6), which is

fundamental to prove the convergence of our global optimization algorithm, is enun-

ciated and proved. This study is carried out by using the simplicial subdivision

properties, which have been completely developed by Tuy [74].

4.3.1 Simplicial subdivision processes

In this subsection we enounce the properties of the simplicial subdivision processes

without proofs (see [74] for details).

Let v1, . . . , vn+1 be n + 1 points affinely independent, i.e., the n vectors v1 −
vn+1, . . . , vn − vn+1 are linearly independent. Then, the set

[v1, . . . , vn+1] :=

{
v =

n+1∑

i=1

λiv
i,

n+1∑

i=1

λi = 1, λi ≥ 0, i = 1, . . . , n+ 1

}
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is called the n-simplex of vertices v1, . . . , vn+1. It is clear that [v1, . . . , vn+1] =

conv{v1, . . . , vn+1}. Let Z = [v1, . . . , vn+1] be a n-simplex. Thus, if v ∈ Z and

v 6∈ {v1, . . . , vn+1} we can write

v =
n+1∑

i=1

λiv
i,

n+1∑

i=1

λi = 1, λi ≥ 0 and λi 6= 1, i = 1, . . . , n+ 1.

Consider the set I = {i : λi > 0}. From Z, we can obtain a new n-simplex Z(i, v)

by replacing (in Z) the vertex vi by v for each i ∈ I, i.e.,

Z(i, v) = [v1, . . . , vi−1, v, vi−1, . . . , vn+1], for each i ∈ I.

Hence, Z = ∪i∈IZ(i, v) and each pair Z(i, v), Z(j, v), i 6= j intersects at the most at

common boundaries and comprises a subdivision of Z. This subdivision is called a

radial subdivision of the simplex Z. Each n-simplex Z(i, v) is referred to as a child

of the n-simplex Z. A radial subdivision is said to be proper, if it consists of at

least two members. An important special case is when v = αvk + (1 − α)vh with

0 < α ≤ 1/2 is a point on the longest edge [vk, vh] of the simplex Z. Then, the

radial subdivision is called a bisection of the ratio α. When α = 1/2, the bisection

is said to be exact.

Consider an infinite sequence of nested simplices

Z0 ⊃ Z1, . . . ,⊃ Zk ⊃ . . .

such that Zk+1 is a child of Zk in a subdivision via vk ∈ Zk. Such a sequence is

called a filter and the simplex Z∞ := ∩∞j=0Zj is the limit of the filter. Let δ(D)

be the diameter of the set D as measured by the Euclidean distance. For instance,

for a simplex Z, δ(Z) is the length of the longest edge of Z. A filter is said to be

exhaustive if δ(Zi) −→ 0 when i −→∞, i.e., the filter shrinks to a single point.

Example 4.3.1 In Figure 4.3 the simplex Z0 := [v1, v2, v3] with v1 = (0, 0), v2 =

(1, 0) and v1 = (0, 1) occurs in both graphics (a) and (b). In case (a) we have

constructed a filter from Z0 by using exact bisections as follows:

Z0 ⊃ Z1 ⊃ Z2 ⊃ Z3 ⊃ . . .

where Z1 := [v1, v2, v4], Z2 := [v1, v5, v4], Z3 := [v6, v5, v4] and so on. The diame-

ter of Z0 is δ(Z0) =
√

2 and the diameter of each simplex satisfies the relationship

δ(Zi+1) = δ(Zi)/
√

2, i = 0, 1, 2, . . . so the filter obtained is exhaustive because

δ(Zi) =
√

2

(
1√
2

)i−1

−→ 0 ( by letting i −→∞).
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Figure 4.3: Exhaustive and nonexhaustive filters in a simplicial subdivision process

for an initial simplex Z0 = [v1, v2, v3]

In case (b) we have constructed a filter of Z0 in which each simplex Zi is subdivided

by using its barycenter wi in such a way that Zi = [wi, v2, v3], i = 1, 2, . . .. Then, the

diameter of each simplex is a constant with value δ(Zi) =
√

2, i = 0, 1, 2, . . .. From

the relationship

δ(Zi) =
√

2 −→
√

2 ( by letting i −→∞)

we see that the filter is nonexhaustive. Moreover, in this last case, the filter satisfies

the property ii) of the Lemma forthcoming 4.3.2 (by taking ρ =
√

5/3).

The next lemma describes the conditions under which a filter is exhaustive.

Lemma 4.3.2 Let Zk = [v1
k, . . . , v

n+1
k ], k ∈ IN be a filter of simplices such that any

Zk+1 is a child of Zk in a subdivision via vk ∈ Zk and we assume that,

i) for infinitely many k the subdivision of Zk is a bisection,

ii) there exists a constant 0 < ρ < 1 such that for every k ∈ IN ,

max{‖vk − vi
k‖, i = 1, . . . , n+ 1} ≤ ρδ(Zk). (4.6)

Then the filter is exhaustive.

The condition ii) is essential for exhaustiveness of the filter. It implies in particular

that the bisections in i) are bisections of ratio no less than 1− ρ > 0.
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Theorem 4.3.3 Let {Zk, k = 1, 2, . . .} be a filter of simplices and for each k let vk

be a point in Zk which is not a vertex of Zk. We assume that

i) for infinitely many k, Zk+1 is a child of Zk via a bisection of ratio no less than

a constant α > 0,

ii) for all other k, Zk+1 is a child of Zk in a subdivision via vk.

Then at least one accumulation point of the sequence {vk, k = 0, 1, 2, . . .} is a vertex

of Z∞ = ∩∞k=1Zk (note that Z∞ could be a p-simplex with 0 < p < n+ 1).

Corollary 4.3.4 A filter of simplices {Zk, k = 0, 1, 2, . . .}, where every Zk+1 is a

child of Zk via a bisection of ratio no less than a constant α ∈]0, 1/2], is exhaustive.

Let Ω be a set of IRn. A finite collection Θ of simplices covering Ω is referred to

as a simplicial net for Ω and a simplicial net for Ω is said to be a refinement of

another net if it is obtained by subdividing one or more members of the latter and

replacing them with their partitions. A simplicial subdivision process for Ω is a

sequence of nets Θ0,Θ1, . . . , each of which, except the first one, is a refinement of

its predecessor.

Proposition 4.3.5 An infinite simplicial subdivision process Θ0,Θ1, . . . , generates

at least one filter.

A simplicial subdivision process Θ0,Θ1, . . . , is exhaustive if every filter {Zk, k =

0, 1, 2, . . .} generated by the process is exhaustive. From Corollary 4.3.4 it follows

that a subdivision process consisting only of bisections of ratio at least α ∈]0, 1/2]

is exhaustive.

4.3.2 Prismatical subdivision processes

In this subsection the properties of the prismatical subdivision processes are carried

out (by using the simplicial subdivision properties above-mentioned), and the basic

prismatical subdivision property is stated and proved.

Let Z be an n-simplex in IRn. The set

T (Z) := {(x, t) ∈ IRn × IR : x ∈ Z}
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is referred to as a simplicial prism of base Z. All simplicial prisms have n+ 1 edges

that are parallel lines to the t-axis. Each edge passes through the n + 1 vertices of

Z. Then, each radial subdivision Z1, . . . , Zr, of the simplex Z via a point z ∈ Z

induces a prismatical subdivision of the prism T (Z) in subprisms, T (Z1), . . . , T (Zr),

via the line through z parallel to the t-axis. A prismatical subdivision for T (Z) is

said to be a bisection of ratio ρ if it is induced by a bisection of ratio ρ of Z. A filter

of simplices

Z1 ⊃ Z2 ⊃ . . . ⊃ Zk ⊃ . . .

induce a filter of prisms,

T1 ⊃ T2 ⊃ . . . ⊃ Tk ⊃ . . .

with Tk = T (Zk), k = 1, 2, . . .. Also, every Tk+1 is called a child of Tk. Moreover,

a filter of prisms is said to be exhaustive if it is induced by an exhaustive filter of

simplices, i.e., T∞ = ∩∞k=0Tk is a parallel line to the t-axis.

Proposition 4.3.6 (The basic prismatical subdivision property) Consider

C := {(x, t) ∈ IRn × IR : h(x) − t ≤ 0)},

as defined in (4.2). Let {Tk, k = 0, 1, 2, . . .} be a filter of prisms (with n+ 1 edges)

and let zk, k = 0, 1, 2, . . . be the subdivision points in the simplex Zk, k = 0, 1, 2, . . ..

Let qk, k = 0, 1, 2, . . . be the points where the parallel line to the t-axis through the

points zk, k = 0, 1, 2, . . . meets the simplex spanned by the n+ 1 intersection points

of the edges of Tk with ∂C. We assume that:

i) For infinitely many k, Tk+1 is a child of Tk in a bisection of ratio no less than

a constant α > 0,

ii) For all other k, Tk+1 is a child of Tk in a subdivision via the parallel line to

the t-axis through the point zk ∈ Zk.

Then, at least one accumulation point q of the sequence {qk, k = 0, 1, 2, . . .} satisfies

q ∈ ∂C.

Proof: Let Zk be the n-simplex Zk = [v1
k, . . . , v

n+1
k ] and let qi

k be the point where

the parallel line to the t-axis through the point vi
k meets ∂C, so qk ∈ [q1k, . . . , q

n+1
k ].

Since Z1 is bounded, by taking a subsequence if necessary, we may assume that

{vi
ks
} → vi(s→∞), i = 1, . . . , n+ 1.
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We thus obtain Z∞ = conv{v1, . . . , vn+1}. Nevertheless, v1, . . . , vn+1 may not be

affinely independent, i.e., vert (Z∞) 6= {v1, . . . , vn+1}. There is no loss of generality

in assuming that Z∞ is a p − 1-simplex, 0 < p ≤ n + 1, which is expressed in the

form Z∞ = [v1, . . . , vp]. Hence, we can write

vp+j =
p∑

i=1

αj
iv

i, (4.7)

where
∑p

i=1 α
j
i = 1, αj

i ≥ 0, i = 1, . . . , p, for all j = 1, . . . , n − p + 1. On the other

hand, we know that

zks
=

n+1∑

i=1

λks

i v
i
ks
, (4.8)

with
∑n+1

i=1 λ
ks

i = 1 and λks

i ≥ 0, i = 1, . . . , n+ 1. From Theorem 4.3.3, at least one

accumulation point of the sequence {zk} is a vertex of Z∞. Suppose that {zks
} →

v1(s → ∞). By letting s → ∞, we obtain {λks

i } → λi, with
∑n+1

i=1 λi = 1 and

λi ≥ 0, i = 1, . . . , n + 1. Thus, we have

zks
=

n+1∑

i=1

λks

i v
i
ks
→ v1 =

n+1∑

i=1

λiv
i. (4.9)

Replacing the right hand side of the second equality in the expression (4.9) with

(4.7) we have

v1 = λ1v
1 + . . .+ λpv

p + λp+1

( p∑

k=1

α1
kv

k

)
+ . . . + λn+1

( p∑

k=1

αn−p+1
k vk

)
. (4.10)

By calculating and rearranging terms, we can rewrite (4.10) in the form

v1 = (λ1 + λp+1α
1
1 + . . . + λn+1α

n−p+1
1 )v1

+(λ2 + λp+1α
1
2 + . . .+ λn+1α

n−p+1
2 )v2

+ . . .

+(λp + λp+1α
1
p + . . . + λn+1α

n−p+1
p )vp.

(4.11)

In the second term of (4.11) we have the barycentric coordinates of the vertex v1 in

aff {v1, . . . , vp} (affine hull of the set {v1, . . . , vp}). Since a point is solely represented

by its barycentric coordinates, then we have

1 = λ1 + λp+1α
1
1 + . . . + λn+1α

n−p+1
1 ,

0 = λ2 + λp+1α
1
2 + . . . + λn+1α

n−p+1
2 ,

. . .

0 = λp + λp+1α
1
p + . . . + λn+1α

n−p+1
p .

(4.12)

We can see that each summand in the second term of the equalities in (4.12) is a

nonnegative number. Then, we can deduce the following:
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1. λs = 0, s = 2, . . . , p.

2. From λp+kα
k
s = 0, k = 1, . . . , n − p + 1, s = 2, . . . , p, and

∑p
s=1 α

k
s = 1, we

have

λp+k = λp+k

p∑

s=1

αk
s =

p∑

s=1

λp+kα
k
s = 0, k = 1, . . . , n− p+ 1.

3. As a consequence of 1 and 2 we have λ1 = 1.

Finally, we obtain

(
λks

1 , . . . , λ
ks
n+1

)
→ (1, 0, . . . , 0) by letting s→∞. (4.13)

On the other hand, from the expression

qks
=

n+1∑

i=1

λks

i

(
vi
ks
, h(vi

ks
)
)

=

(
n+1∑

i=1

λks

i v
i
ks
,
n+1∑

i=1

λks

i h(v
i
ks

)

)
=

(
zks
,
n+1∑

i=1

λks

i h(v
i
ks

)

)
,

(4.14)

we have

qks
=

(
zks
,
n+1∑

i=1

λks

i h(v
i
ks

)

)
→ q =

(
v1, h(v1)

)
by letting s→∞, (4.15)

which proves that q ∈ ∂C.

4.4 Outline of the method

A brief outline of the algorithm is given in this section. Properties which prove its

convergence will be demonstrated later (see Section 4.7).

At each iteration the procedure involves some basic operations as follows:

• Branching: a selected prism T (Z) is divided into a finite number of subprisms

by using a simplicial partition of Z.

• Outer approximation: a new polyhedral Pk is obtained by using a cutting plane

to cut off a part of Pk−1 in such a way that a sequence of convex polyhedral

P0, P1, . . . is constructed satisfying

P0 ⊃ P1 ⊃ . . . ⊃ Pk ⊃ . . . ⊃ Dα∗ ⊃ Dα∗\int C.
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• Delete rule: prisms are deleted which contain feasible solutions worse than the

best obtained so far.

The basic operations used in the algorithm are related to the optimum µ(T ) and

the optimizer (x(T ), t(T )) of the linear program

µ(T ) = maximize atx− t− ρ
subject to: (x, t) ∈ T ∩ P, (4.16)

where T := T (Z) is a prism with Z = [v1, . . . , vn+1], P is the current convex

polyhedral and atx − t − ρ is the unique hyperplane passing through the points

(vi, h(vi)), i = 1, . . . , n + 1. The optimizer of (4.16) is the point of the polyhedral

T ∩ P with the greatest distance to the hyperplane atx − t − ρ. When µ(T ) ≤ 0

then T (Z) is deleted because T ∩ P ⊂ C (see Lemma 4.6.2). On the other hand, if

a prism T is selected for division (see Remark 1 at the end of this section), which

is associated with the largest value max{µ(T ) : µ(T ) > 0}, a refined partition of T

is constructed and a new cut is added to the polyhedral P to obtain a new convex

polyhedral. From the solution (x(T ), t(T )) the new point (x̄, t̄) is obtained with

x̄ := x(T ) and t̄ := max{h(x(T )), g(x(T ))}. If h(x(T ))− t(T ) > 0, a new cut l(x, t)

is added through the point (x̄, t̄) to obtain a new convex polyhedral

P ∩ {(x, t) : l(x, t) ≤ 0}.

The cut l(x, t) := (x− x̄)T p− t+ c is defined as follows:

• if h(x(T )) ≥ g(x(T )), then p is a subgradient of the function f(x) at the point

x(T ) and c = h(x(T )),

• if h(x(T )) < g(x(T )), then p is a subgradient of the function g(x) at the point

x(T ) and c = g(x(T )).

The procedure continues until all generated prisms have been deleted. At this stage,

we have

i) a partition {Ti, i = 1, 2, . . .} of the initial prism T0 = ∪∞i=1Ti with µ(Ti) <

0, i = 1, 2, . . .

ii) a sequence of convex polyhedrons P0, P1, . . . such that

P0 ⊃ P1 ⊃ . . . ⊃ Dα∗ ⊃ Dα∗\int C,

where each polyhedral Pj , j = 1, 2 . . . is obtained by using a cutting plane to

cut off a part of Pj−1, j = 1, 2 . . .,
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iii) a bounded sequence of points {(x̄k, t̄k), k = 0, 1, . . .} so that there exists a

subsequence {ki} such that {(x̄ki
, t̄ki

)} → (x∗, t∗).

Hence, we have that for all i = 1, 2, . . . there exists an index k such that Ti∩Pk ⊂ C.

Since Ti ∩Dα∗ ⊂ Ti ∩ Pk ⊂ C for all i = 1, 2, . . . we can write

C ⊃ ∪∞i=1(Ti ∩Dα∗) = ∪∞i=1(Ti) ∩Dα∗ = T0 ∩Dα∗ = Dα∗ . (4.17)

On the other hand, the point (x∗, t∗) as defined in iii) satisfies

(x∗, t∗) ∈ Dα∗\int C and α∗ = f(x∗)− t∗. (4.18)

From the Lemma 4.2.3 we can deduce that the point (x∗, t∗) is a global minimizer.

4.5 Initialization of the algorithm

Consider T0 := T (Z0) an initial prism, with Z0 := [v1
0 , . . . , v

n+1
0 ] a n-simplex of

IRn which contains the polytop {x ∈ IRn : Ax ≤ b}. Let P0 be an initial convex

polyhedral

P0 := {(x, t) : Ax ≤ b, li(x, t) ≤ 0, i = 1, . . . , n+ 1},

with

li(x, t) := (x− vi
0)

T pi − t+ ci, i = 1, . . . , n+ 1

defined in the form:

• if h(vi
0) ≥ g(vi

0), then pi is a subgradient of the function f(x) at the vertex

vi
0 ∈ Z and ci = h(vi

0) (see the line AD in Figure 4.4 through the point

A = (v1, h(v1))),

• if h(vi
0) < g(vi

0), then pi is a subgradient of the function g(x) at the vertex

vi
0 ∈ Z and ci = g(vi

0) (see the line CD in Figure 4.4 through the point

C = (v2, g(v2))).

On the other hand, let H0 be the uniquely defined hyperplane through the points

(vi
0, h(v

i
0)), i = 1, 2, . . . , n+ 1 (see the line AB in Figure 4.4), i.e.,

H0 := {(x, t) ∈ IRn × IR : at
0x− t− ρ0 = 0},

with a0 ∈ IRn and ρ0 ∈ IR (note that at
0v

i
0 − h(vi

0)− ρ0 = 0, i = 1, 2, . . . , n+ 1).



60 CHAPTER 4. THE GLOBAL OPTIMIZATION ALGORITHM

Figure 4.4: In this graphic the segment [x1, x2] represents the linear constraints

Ax ≤ b. The line through the points A, B is the uniquely defined hyperplane through

the points (v1, h(v1)) and (v2, h(v2)). The space within the line in bold represents

the initial polyhedral P0. Point D is the optimizer for the program (4.16) with the

feasible set T0 ∩P0 with T0 = T (Z0) and Z0 := [v1, v2]. Point O is the desired global

optimizer.

Example 4.5.1 In Figure 4.4 the initial set T0 ∩ P0 is defined by the lines AB,

AD, BD and the vertical lines through the points x1 and x2 respectively. Moreover,

point D is the optimizer of the linear program (4.16). Since in Figure 4.4 we have

µ(T0) > 0 then we can subdivide the prism T0 by using point D. Hence, we have the

prismatical subdivision T0 = T (Z1)∪T (Z2) (see Figure 4.5 (a) for T (Z1) and Figure

4.5 (b) for T (Z2)). Thus, we can see that µ(T1) ≤ 0 and the subdivision T (Z1) can

be deleted, and that µ(T2) > 0 and T (Z2) can again be subdivided by using the new

point F (see Figure 4.5 (b)).

4.6 Outer approximation process

Let ψǫ(x) be the proper convex function defined as

ψǫ(x) := max {h(x) + ǫ, g(x)}, (4.19)
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Figure 4.5: The prismatic subdivision process of the prism T0 in subprisms T (Z1)

and T (Z2)

where, in this section, ǫ represents a nonnegative real number and ψ := ψ0.

Lemma 4.6.1 Consider M := {x1, . . . , xm} a finite set of points in IRn. Let pi be

a subgradient of the function f(x) at the point xi ∈ M if h(xi) + ǫ ≥ g(xi) or, else

let pi be a subgradient of the function g(x) at point xi ∈ M if h(xi) < g(xi). Thus,

the function

ψǫ
M (x) := max{(x− xi)

T pi + ψǫ(xi), i = 1, 2, . . . ,m} (4.20)

(see Figure 4.6) satisfies the following properties:

i) ψǫ
M (x) is piece-wise linear and proper convex function on IRn,

ii) PM := {(x, t) ∈ IRn × IR : ψǫ
M (x)− t ≤ 0} is a polyhedron.

If N is a finite set in IRn and M ⊆ N then

iii) ψǫ
M (x) ≤ ψǫ

N (x) ∀x ∈ IRn,

iv) PM ⊇ PN .
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Figure 4.6: The piece-wise linear and proper convex function ψǫ
M (x)

Proof: Obvious.

Consider the filter of prisms T0 ⊃ T1 ⊃ . . . ⊃ Tk ⊃ . . . where every Tk := T (Zk)

is a prism, which is induced by a radial subdivision of the simplex Zk−1 (where

Tk−1 = T (Zk−1)) via a suitable point of Zk−1 and let zk−1 ∈ Zk−1 be the point

zk−1 = x(Zk−1) obtained by solving the linear program (4.16). Let

Pk = {(x, t) ∈ IRn × IR : Ax ≤ b, ψǫ
Mk

(x)− t ≤ 0}

be the polyhedral generated from the set Mk, which contains the vertices of Z0 and

the points z0, z1, . . . , zk−1 generated in the subdivision process. Then, the sequence

of convex polyhedrons Pi, i = 0, 1, 2, . . . defined as before satisfies

P0 ⊃ P1 ⊃ . . . ⊃ Pk ⊃ . . . ⊃ Dα∗\int Cǫ.

In what follows, the function ψǫ
Mk

(x) will be denoted by ψǫ
k(x).

Lemma 4.6.2 Let (x(Tk), t(Tk)) and µ(Tk) be the optimizer and the optimum re-

spectively of the linear program

max {at
kx− t− ρk : (x, t) ∈ Tk ∩ Pk}, (4.21)
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where at
kx− t− ρk = 0 is the hyperplane passing through the points (vi

k, h(v
i
k)), i =

1, 2, . . . , n+ 1 with Zk = [v1
k, . . . , v

n+1
k ]. Thus, we have

i) if µ(Tk) > 0 then (x(Tk), t(Tk)) doesn’t lie on any edge of Tk,

ii) if µ(Tk) ≤ 0 then Tk ∩ Pk ⊂ C.

Proof:

i) Suppose that the optimizer of (4.21) lies on an edge of Tk. Hence, there exists

a vertex vi ∈ {v1
k, . . . , v

n+1
k } such that (vi, ti) satisfies µ(Tk) = at

kv
i− ti− ρk >

0. On the other hand, the vertex vi satisfies that ψǫ
k(v

i) ≥ ψ(vi) ≥ h(vi)

so ψǫ
k(v

i) − h(vi) ≥ 0 and at
kv

i − h(vi) − ρk = 0. Thus, h(vi) > ti and

ψǫ
k(v

i) − ti > ψǫ
k(v

i) − h(vi) ≥ 0 which implies that (vi, ti) 6∈ Pk, which is a

contradiction.

ii) Let (xo, to) ∈ Tk ∩ Pk be a feasible point of the linear program (4.21). Then,

from the hypothesis in ii), we deduce that at
kx

o − to − ρk ≤ µ(Tk) ≤ 0 so

that (xo, to) ∈ Tk ∩ Pk ∩ H+. From xo ∈ Zk we can write the expression

xo =
∑n+1

i=1 λ
o
i v

i with
∑n+1

i=1 λ
o
i = 1. From the convexity of the function h(x)

we obtain the inequality h(xo) = h(
∑n+1

i=1 λ
o
i v

i) ≤∑n+1
i=1 λ

o
ih(v

i). Finally, from

the definition of the hyperplane H we know that each point (vi, h(vi)), i =

1, . . . , n+ 1 verifies the equality at
kv

i − h(vi)− ρk = 0 so that we have h(vi) =

at
kv

i − ρk. Hence, we can write

h(xo)− to ≤
n+1∑

i=1

λo
ih(v

i)− to =
n+1∑

i=1

λo
i (a

t
kv

i − ρk)− to ≤

≤ at
k

n+1∑

i=1

λo
i v

i − ρk

n+1∑

i=1

λi − to = at
kx

o − ρk − to ≤ µ(Tk) ≤ 0,

which proves that (xo, to) ∈ C.

4.7 The algorithm and its convergence

In this section the algorithm will be described and its convergence will be proved.

In each iteration k of the algorithm, we denote by Φk the set of all the current

prismatical subdivisions, by Ψk the prismatical subdivisions of the prism associated

with the biggest value µ(Z∗) and by Γk the set of the prismatical subdivisions with

µ(Z) > 0.
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Initialization:

α0 ← +∞; Γ0 ← ∅; Φ0 ← ∅;
Determine a simplex Z0 ⊃ {x ∈ IRn : Ax ≤ b}, its vertex set V0 and the prism

T0 = T (Z0);

When one feasible solution (x̄, t̄) is at hand and it is the best, then α0 ← f(x̄)− t̄;
M0 ← V0 ∪ {x̄}; P0 ← {(x, t) ∈ IRn × IR : Ax ≤ b, ψǫ

0(x)− t ≤ 0};
Solve µ(T0) = max{at

0x − t − ρ0 : (x, t) ∈ T0 ∩ P0}, with (x(T0), t(T0)) a basic

optimizer;

if µ(T0) > 0 then Φ0 ← {T0}; Γ0 ← {T0}; T ∗
0 ← T0; Z

∗
0 ← Z0; end if

stop ← false; k ← 0;

while stop=false do

if Γk = ∅ then

if αk = +∞ then the problem is infeasible;

else (x̄, t̄) is an optimizer; end if

stop← true;

else

if h(x(T )) − t(T ) + ǫ > 0 for some T ∈ Γk then

Mk+1 ←Mk ∪ {x(T )};
Pk+1 ← {(x, t) ∈ IRn × IR : Ax ≤ b, ψǫ

k+1(x)− t ≤ 0};
if ψ(x(T )) = h(x(T )) and f(x(T ))− h(x(T )) < αk then

(x̄, t̄)← (x(T ), h(x(T )); αk+1 ← f(x̄)− t̄;
end if

end if

Split Z∗
k via the chosen normal rule (see remark 1) to obtain a partition

Tk1 , . . . , Tkr
of T ∗

k ; Ψk+1 ← {Tk1 , . . . , Tkr
};

For all prism Tki
∈ Ψk+1 solve the linear program:

µ(Tki
) = max{at

ki
x− t− ρki

: (x, t) ∈ Tki
∩ Pk+1},

with (x(Tki
), t(Tki

)) basic optimizer;

Φk+1 ← (Γk \ {T ∗
k }) ∪Ψk+1; Γk+1 ← {T ∈ Φk+1 : µ(T ) > 0};

Choose T ∗
k+1 ∈ argmax {µ(T ) : T ∈ Γk+1};

end if

k ← k + 1;

end while

Remark 1 From the property i) of Lemma 4.6.2 it seems natural to subdivide the

selected prism defined in the algorithm T (Z∗
k) via the point x(Z∗

k) ∈ Z∗
k . A subdivi-

sion of this kind for T (Z∗
k) will be referred to as an ω-subdivision and the strategy



4.7. THE ALGORITHM AND ITS CONVERGENCE 65

of choosing ω-subdivisions in all iterations is called ω-strategy. Until now, attempts

to prove the convergence of procedures using ω-strategy have been unsuccessful. This

situation has caused a shift to the use of the alternative bisection strategy which

is always convergent and takes the midpoint of a longest edge of selected simplex

Z∗
k to subdivide T (Z∗

k). Thus, as far as the choice of a subdivision strategy is con-

cerned, there is a conflict between convergence and efficiency. Although the subdivi-

sion strategy guarantees convergence it is usually slow. On taking into account the

Proposition 4.3.6 we find that the way out of this difficulty is to use a mixed strategy

which combines ω-subdivisions with infinite bisections. A subdivision process is said

to be normal if it involves bisections mixed between ω-subdivisions and the bisections

occur infinitely in every filter generated by the process. For instance, every N = 5

ω-subdivisions performed a bisection could be included (see [73] for additional infor-

mation). From here on we will always use a normal subdivision strategy, also known

as a normal rule.

4.7.1 Convergence of the algorithm

Let σ(x) be the proper convex function defined as

σ(x) := max {f(x)− α∗, g(x)}. (4.22)

Each generated point (x(Tk), t(Tk)) in the algorithm will be denoted by (xk, tk).

Thus, for each generated point (xk, tk) we can consider the cuts:

• rk(x, t) := pT
k (x− xk)− (t− σ(xk)) with pk a subgradient of the function σ(x)

at the point xk,

• sk(x, t) := pT
k (x−xk)−(t−ψǫ(xk)) with pk a subgradient as defined in Lemma

4.6.1.

Lemma 4.7.1 Let {(xk, tk)} be the sequence obtained in the algorithm by solving

the linear problems (4.21). Thus, we have that ψǫ(xk) ≤ σ(xk) and the sequences

{(xk, tk)}, {(xk, ψ
ǫ(xk))} and {(xk, σ(xk))} are bounded.

Proof: We have either ψǫ(xk) = g(xk) or ψǫ(xk) = h(xk)+ǫ. When ψǫ(xk) = g(xk)

then obviously ψǫ(xk) ≤ σ(xk). Otherwise t̄k = ψǫ(xk) = h(xk) + ǫ, so (xk, t̄k) is a

feasible point and f(xk)− t̄k ≥ α∗. Then we can write f(xk)− α∗ ≥ t̄k = h(xk) + ǫ

and also ψǫ(xk) ≤ σ(xk).
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On the other hand, the functions ψǫ(x) and σ(x) are continuous on the polytope

defined by Ax ≤ b (which is a compact set). From tk < ψǫ(xk) ≤ σ(xk) we can

deduce that the sequences {(xk, tk)}, {(xk, ψ
ǫ(xk))} and {(xk, σ(xk))} are bounded.

Lemma 4.7.2 The cuts sk(x, t) and rk(x, t) strictly separate each generated point

(xk, tk) (of the sequence {(xk, tk)} obtained in the algorithm) from Dα∗.

Proof: Obviously, for all (x, t) ∈ Dα∗ we have σ(x) − t ≤ 0. Then rk(x, t) =

pT
k (x− xk)− (t− t̄k) ≤ σ(x)− t ≤ 0 by using the convexity of the function σ(x)− t.

On the other hand, let t̄k = ψǫ(xk) and (x, t) ∈ Dα∗ . Then we can write

sk(x, t) = pT
k (x− xk)− (t− t̄k) ≤





g(x)− t ≤ 0

or

f(x)− α∗ − t ≤ 0.

(4.23)

Moreover, from tk < ψǫ(xk) ≤ σ(xk) we obtain

rk(xk, tk) = −(tk − σ(xk)) ≥ −(tk − ψǫ(xk)) = sk(xk, tk) > 0, (4.24)

which proves the lemma.

From Lemma 4.7.1 we know that the sequence {(xk, tk)} is bounded and that

there exits a subsequence {ki} such that {(xki
, tki

)} → (x∗, t∗).

Lemma 4.7.3 The following assertions are true:

i) rki
(xki

, tki
) = −(tki

− σ(xki
))→ 0 when i→ +∞ and σ(x∗) = t∗,

ii) ski
(xki

, tki
) = −(tki

− ψǫ(xki
))→ 0 when i→ +∞ and ψǫ(x∗) = t∗.

Proof: From (4.24) we have

lim rki
(xki

, tki
) ≥ 0.

i→ +∞ (4.25)

On the other hand, if k is fixed we have rk(xki
, tki

) ≤ 0 for all ki > k. Then,

from i→ +∞, we obtain rk(x
∗, t∗) ≤ 0. Otherwise, for all k, we can write rk(x, t) =

rk(x
∗, t∗) + pT

k (x− x∗)− (t− t∗). Hence, the relationship

rki
(xki

, tki
) ≤ pT

ki
(xki
− x∗)− (tki

− t∗) (4.26)
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can be obtained. Moreover, we know that {pk} is a bounded sequence (see [74]

Theorem 2.6). Then, letting i→ +∞ in (4.26) we obtain

lim rki
(xki

, tki
) ≤ 0.

i→ +∞ (4.27)

From (4.25) and (4.27) we can deduce that rki
(xki

, tki
) → 0 and as a direct conse-

quence we have σ(x∗) = t∗. The same proof holds true by using ski
(xki

, tki
) in place

of rki
(xki

, tki
), which proves the lemma.

From the preceding lemmas and by using the Proposition 4.3.6 we can enounce

the following result.

Proposition 4.7.4 The algorithm can only be infinite if ǫ = 0 and in this case any

accumulation point of the sequence {(xk, tk)} is an optimizer for the program (4.3).

Moreover, if ǫ > 0 then the algorithm is finite and an ǫ-approximate optimizer can

be obtained.

Proof: Let (x∗, t∗) be an accumulation point of the sequence {(xk, tk)}. From

h(xk) − tk > 0 we obtain h(x∗) − t∗ ≥ 0. On the other hand, we know that

h(x∗) − t∗ + ǫ = 0, which is a contradiction unless ǫ = 0. In this case, every point

(xo, to) ∈ Dα∗ satisfies g(xo) − to ≤ 0, f(xo) − to ≤ α∗ and Axo ≤ b. Suppose

that h(xo) − to > 0. This implies that f(xo) − to ≤ α∗ < f(xo) − to, which is a

contradiction. Thus, the point (xo, to) must satisfy h(xo)− to + ǫ ≤ 0 and therefore

(xo, to) ∈ C, i.e., Dα∗ ⊂ C. The optimality criterion, together with the regularity

assumption, implies that (x∗, t∗) is a global optimizer with optimum α∗.

4.8 Appropriate linear program routine by using

barycentric coordinates

From the point of view of implementation it is necessary to rewrite the linear program

(4.16) in a more suitable way by using barycentric coordinates. Consider Z =

[v1, . . . , vn+1] and (x, t) ∈ T (Z) ∩ P . Then, we have that x ∈ Z and we can write

x =
∑n+1

i=1 λiv
i with λi ≥ 0, i = 1, . . . , n + 1 and

∑n+1
i=1 λi = 1. Equivalently, we

can write x = V λ where V ∈ M(n, n + 1) has as columns the coordinates of the

vertices v1, . . . , vn+1 and λ = (λ1, . . . , λn+1)
t. By using the barycentric coordinates
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the objective function of the linear program (4.16) can be rewritten as follows.

atx− t− ρ = at(
∑n+1

i=1 λiv
i)− t− ρ =

=
∑n+1

i=1 λi(a
tvi)− t− ρ =

=
∑n+1

i=1 λi(h(v
i) + ρ)− t− ρ =

=
∑n+1

i=1 λih(v
i) + (

∑n+1
i=1 λi)ρ− t− ρ =

=
∑n+1

i=1 λih(v
i) + ρ− t− ρ =

∑n+1
i=1 λiti − t.

On the other hand, the polyhedral P can be expressed in the form

P := {(x, t) ∈ IRn × IR : Mx+ rt ≤ s}

with M ∈ M(m,n) and r, s ∈ IRm. Hence, we can rewrite the set of constraints

with the expression

Mx+ rt = MV λ+ rt ≤ s,

where
∑n+1

i=1 λi = 1 and λi ≥ 0, i = 1, . . . , n+1. Thus, the linear program (4.16) can

be expressed in a more suitable form as follows.

maximize
∑n+1

i=1 λiti − t
subject to: MV λ+ rt ≤ s,

∑n+1
i=1 λi = 1,

λi ≥ 0, i = 1, . . . , n+ 1.

(4.28)

The main advantage of the linear program (4.28) is the importance of the vertices

V = {v1, . . . , vn+1} (of the current subdivision) that permit a more efficient calculus

of the objective function and of the set of constraints. We can calculate the coeffi-

cients of the objective function by using the expression ti = h(vi), i = 1, . . . , n + 1.

Moreover, we can see that the matrix M and the vectors r and s (which define the

current polyhedral P ) have the same expression for every linear program. Hence,

the set of constraints only depends on the vertices V . Note that in an outer approx-

imation procedure cuts are always conjunctive, i.e., the polyhedron resulting from

the cuts is always the intersection of all the cuts performed.
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4.9 Differences between the algorithm put forward and

other existing algorithms

To conclude this Chapter it only remains to add that the adapted algorithm is more

general that it seems because it can be used to solve d.c. programming problems

with linear constraints of the form

minimize f(x)− h(x)
subject to: Ax ≤ b, (4.29)

where A is a real m × n matrix, b ∈ IRm and f(x) and h(x) are proper convex

functions on IRn. By introducing an additional variable t the program (4.29) can

be transformed into the equivalent convex minimization problem subject to an ad-

ditional reverse convex constraint

minimize f(x)− t
subject to: h(x) − t ≥ 0,

Ax ≤ b.
(4.30)

Hence, we can use our algorithm to solve (4.30) by taking g(x) := −∞ in (4.1).

Moreover, we can add convex constraints in a general sense to (4.29) and then we

can solve d.c. programming problems in the form

minimize f(x)− h(x)
subject to: ϕi(x) ≤ 0, i = 1, . . . ,m,

Ax ≤ b,
(4.31)

where ϕi(x), i = 1, . . . ,m are proper convex functions on IRn. As before, by in-

troducing an additional variable t the program (4.31) can be transformed into the

equivalent convex minimization problem subject to an additional reverse convex

constraint
minimize f(x)− t

subject to: h(x) − t ≥ 0,

ϕ(x) ≤ 0,

Ax ≤ b,

(4.32)

with ϕ(x) := max{ϕi(x), i = 1, . . . ,m}. When the point obtained by solving the

linear program is infeasible (which can only happen if ϕ(x(T )) > 0), we add the

constraint

l(x, t) := pt(x− x(T )) + ϕ(x(T )), (4.33)

where p is a subgradient of the function ϕ(x). This is a different way to solve (4.31)

comparing with the algorithm proposed in Horst R. et al. [34] and Horst R. et al.
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[33] which uses prismatical subdivisions but transforms (4.31) into an equivalent

concave minimization problem.

On the other hand, the reasoning behind adding a constraint in the form de-

scribed in (4.33) can also be applied to a programming problem expressed

minimize f(x)− t
subject to: g(x)− t ≤ 0,

h(x)− t ≥ 0,

ϕ(x) ≤ 0,

Ax ≤ b,

(4.34)

which is the result of adding a convex constraint ϕ(x) ≤ 0 to the set of constraints

of the program (4.1).



Chapter 5

How to improve a d.c. representation

of a polynomial

5.1 Introduction

Given a d.c. function there are infinitely many d.c. representations, which express

it as a difference of convex functions. From a computational point of view, what

should it mean that a d.c. representation is ”better” that another one?. Having

solved the problem of finding a d.c. representation of a polynomial we then come up

with another even more complicated problem, that is, if the computational efficiency

depends on the d.c. representation of the functions. Hence, interesting questions can

be formulated such as:

• Does exist a d.c. representation that improves the computational efficiency?

• If the answer to this question is affirmative, then what is the best d.c. repre-

sentation of a d.c. function from a computational point of view and how can

it be obtained?

This Chapter is devoted to introducing the necessary concepts for answering these

questions which cannot be answered directly. We have found that the simplest ap-

proach is to work backwards from theoretical concepts, formulating a problem in

such a way that a new d.c. representation of the polynomial functions can be ob-

tained by using the concept of minimal d.c. representation of a polynomial (which

will be explained below) in the normed space of the polynomials. In order to obtain

such a minimal d.c. representation of a polynomial function, we state, in section

71
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5.3, the minimal norm problem by using the concept of least deviation decomposi-

tion (LDD) described in Luc D.T. et al. [46]. After that, in Chapter 7, we will

describe how these new d.c. representation improve the computational efficiency of

the global optimization algorithm by reducing the number of iterations to find a

global optimal solution. Notice, that the question whether or not the given minimal

d.c. representation is the best d.c. representation from a computational viewpoint

(as it seems to be) cannot be completely answered.

5.2 The normed space of the polynomials

Let IRm [x1, ..., xn] and Hi [x1, ..., xn] , i = 0, 1, . . . ,m be the vector spaces of poly-

nomials of degree less than or equal to m and of homogeneous polynomials of de-

gree i respectively. Let Bm := {fi(x), i ∈ Im} and Bk := {fi(x), i ∈ Ik} be the

usual bases of the monomials in IRm [x1, ..., xn] and Hk [x1, ..., xn] index-linked by

the sets Im and Ik respectively. Hence, each polynomial z(x) ∈ IRm [x1, ..., xn]

can be written in the form z(x) =
∑

i∈Im aifi(x) (and the same for polynomials in

Hk [x1, ..., xn]). Both vector spaces can be defined as normed spaces by using the

p-norms ‖z(x)‖p := (
∑

i∈I | ai |p)1/p, p = 1, 2, . . .(for p = 2 we have the Euclidean

norm) and the ∞-norm ‖z(x)‖∞ := max{| ai |, i ∈ I}(Tchebychev norm). The no-

tation ‖z(x)‖(p,k) is used to indicate the p-norm in Hk [x1, ..., xn] for all p = 0, 1, 2, . . .

and p =∞.

Lemma 5.2.1 Set z(x) =
∑m

i=0 zi(x), where zi(x) ∈ Hi [x1, ..., xn] , i = 0, 1, . . . ,m.

Then, the following relationship between the norms can be deduced:

‖z(x)‖pp = ‖z0(x)‖p(p,0) + ‖z1(x)‖p(p,1) + . . .+ ‖zm(x)‖p(p,m) (5.1)

and

‖z‖∞ := max{‖z0(x)‖(∞,0), ‖z1(x)‖(∞,1), . . . , ‖zm(x)‖(∞,m)}. (5.2)

Proof: Obvious.

On the other hand, let C ⊂ IRn be a closed convex set and let Km(C) and Kk(C)

be the nonempty closed convex cones of the polynomials in IRm [x1, ..., xn] and

Hk [x1, ..., xn] respectively, which are convex on C.

In the following all the properties to be deduced can be applied to both normed

spaces. For simplicity, we use the character IE to denote indistinctly both normed
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spaces with K(C) the respective above-mentioned convex cones. Moreover, we de-

note by ‖z‖ any of the norms defined above where z denotes a polynomial in place

of z(x).

5.3 The Minimal Norm problem

Let (y1, y2), (w1, w2) ∈ K(C) × K(C) be a couple of d.c. representations of z on

C ⊂ IRn closed convex set. We define

(y1, y2) is better than (w1, w2) with respect to ‖.‖ ⇔ ‖y1 + y2‖ ≤ ‖w1 + w2‖.

A d.c. representation of z is minimal, if it is better that any other d.c. representation

of z. From the practical viewpoint of how to obtain the minimal d.c. representation

of z we will describe the minimal norm problem. Consider z ∈ IE and let (y1, y2) ∈
K(C)×K(C) such that z = y1− y2, i.e., a d.c. representation of z on C, and define

v := y1 +y2, which is a convex polynomial on C, i.e, v ∈ K(C). Hence, we can write

y1 =
z + v

2
and y2 =

v − z
2

, (5.3)

so v = −z+2y1 = z+2y2 and we have v ∈ {−z+2K(C)}∩{z+2K(C)}. Thus, the

minimal norm problem can be expressed as follows: given z ∈ IE we want to find

v ∈ {−z + 2K(C)} ∩ {z + 2K(C)} with minimal norm. The minimal norm problem

is equivalent to the programming problem

minimize {‖v‖ : v ∈ {−z + 2K(C)} ∩ {z + 2K(C)}}. (5.4)

Hence, by using the expressions in (5.3), the optimal solution v∗ of the problem (5.4)

give us an optimal d.c. representation for z = y∗1 − y∗2 where

y∗1 =
z + v∗

2
and y∗2 =

v∗ − z
2

.

Taking into account the definitions given in Luc D.T. et al. [46] the pair (y∗1, y
∗
2) is

called the least deviation decomposition (LDD) of the polynomial z on C.

Example 5.3.1 (Homogeneous polynomials of degree 1) Let z(x, y) = 2−3x+4y be

a polynomial in IR1 [x, y] = H0 [x, y]⊕H1 [x, y] (note that H0 [x, y] = IR). We want

to obtain the LDD of z on the convex compact set C ⊂ IR2. In this example we have

K1(C) = IR1 [x, y]. Then, we can see that the polynomial v∗(x, y) = 0 solves the
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programming problem (5.4) and the pair (y∗1(x, y), y
∗
2(x, y)), with y∗1(x, y) = z(x, y)/2

and y∗2(x, y) = −z(x, y)/2, is the LDD of z(x, y) on C. Thus, we can write

z(x, y) = y∗1(x, y)− y∗2(x, y) = (1− 3

2
x+ 2y)− (−1 +

3

2
x− 2y).

This is a general procedure so if we have the polynomial z(x1, x2, . . . , xn) ∈
H1 [x1, x2, . . . , xn], i.e., z(x1, x2, . . . , xn) =

∑n
i=1 aixi then we obtain the LDD of

the convex polynomial z(x1, x2, . . . , xn) by using the following d.c. representation

z(x1, x2, . . . , xn) =
n∑

i=1

ai

2
xi −

n∑

i=1

−ai

2
xi.

Notice that the d.c. representation

z(x1, x2, . . . , xn) =
n∑

i=1

aixi − 0

is not the LDD of the polynomial.

Example 5.3.2 (Nonconvex polynomials with one variable) Let z(x) = 5x3 be a

polynomial in H3 [x]. We want to obtain the LDD of z on the convex compact set

C = [−r, r] ⊂ IR with r > 0. Consider v(x) = ax3 then, we can write (v + z)(x) =

(a+ 5)x3 and (v − z)(x) = (a− 5)x3 so that, from the convexity of the polynomials

(v + z)(x) and (v − z)(x), we can deduce:

i) (v + z)
′′

(x) = 6(a+ 5)x ≥ 0 and when





x > 0 then a > −5

x < 0 then a < −5

x = 0 then a ∈ IR

ii) (v − z)′′(x) = 6(a− 5)x ≥ 0 and when





x > 0 then a > 5

x < 0 then a < 5

x = 0 then a ∈ IR

Hence, if x ≥ 0 then a ≥ 5 so that the minimal norm is obtained for a = 5. Thus,

v(x) = 5x3 and the pair (5x3, 0) is a LDD of z = 5x3 − 0 on [0,r]. On the other

hand, if x < 0 then a < −5 and the minimal norm is obtained for a = −5 as above.

Thus, v(x) = −5x3 and the pair (0,−5x3) is a LDD of z = 0 − (−5x3) on [−r, 0],
and we can write the following d.c. representation

5x3 = max{5x3, 0} −max{−5x3, 0} on C = [−r, r],

where max{5x3, 0} and max{−5x3, 0} are convex functions on IR.
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Example 5.3.3 (Convex polynomials with one variable) Let z = 3x4 be a poly-

nomial in H4 [x]. We want to obtain the LDD of z on the convex compact set

C = [−r, r] ⊂ IR with r > 0. Consider v(x) = ax4. As in the previous example

i) from (v+z)
′′

(x) = 12(a+3)x2 ≥ 0, we deduce that if

{
x 6= 0 then a > −3

x = 0 then a ∈ IR

ii) from (v− z)′′(x) = 12(a− 3)x2 ≥ 0, we deduce that if

{
x 6= 0 then a > 3

x = 0 then a ∈ IR

Hence, for all x ∈ [−r, r] we have that a ≥ 3 so that the minimal norm is obtained

for a = 3. Thus, v(x) = 3x4 and the pair (3x4, 0) is a LDD of z = 3x4−0 on [-r,r].

Then, we can write

3x4 = 3x4 − 0 on C = [−r, r].

When the LDD of a polynomial z is difficult to obtain then, the relationship between

IRm [x1, ..., xn] and Hk [x1, ..., xn] , k = 0, 1, . . . ,m,

IRm [x1, . . . , xn] =
m⊕

k=0

Hk [x1, . . . , xn] , (5.5)

allows us to obtain an alternative d.c. representation of the polynomial z by using the

LDD of its homogeneous summands. This new d.c. representation of z, generally,

will not be the optimal but it will improve the initial d.c. representation.

Proposition 5.3.4 (The decomposition property) Let C ⊂ IRn be a closed convex

set, let z =
∑m

k=0 zk be a polynomial with zk ∈ Hk [x1, ..., xn] for each k = 0, 1, . . . ,m,

and consider (yo
1,k, y

o
2,k) the LDD of zk on C for each k = 0, 1, . . . ,m. Then, the

pair (yo
1, y

o
2) where yo

1 =
∑m

k=0 y
o
1,k and yo

2 =
∑m

k=0 y
o
2,k is a d.c. representation of z

on C with

‖ vo ‖p ≥ ‖ v∗ ‖p for all p = 0, 1, 2, . . . and p =∞. (5.6)

Moreover, if 5t ha–ens that y∗1 =
∑m

k=0 y
∗
1,k and y∗2 =

∑m
k=0 y

∗
2,k with y∗1,k and y∗2,k

are polynomials in Kk(C) (which is not always true), for all k = 0, 1, . . . ,m, then

‖ vo ‖p = ‖ v∗ ‖p for all p = 0, 1, 2, . . . and p =∞. (5.7)

Proof: Let (y∗1 , y
∗
2) be a LDD of z on C so the polynomial v∗ = y∗1 + y∗2 solve the

minimal norm program. Hence, we can write

‖ vo ‖p ≥ ‖ v∗ ‖p for all p = 0, 1, 2, . . . and p =∞. (5.8)
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where vo = yo
1 + yo

2. On the other hand, if we can write y∗1 =
∑m

k=0 y
∗
1,k and

y∗2 =
∑m

k=0 y
∗
2,k where y∗1,k and y∗2,k are polynomials in Kk(C), for all k = 0, 1, . . . ,m

thus, v∗k = y∗1,k + y∗2,k satisfies ‖ v∗k ‖
p
(k,p) ≥ ‖ vo

k ‖
p
(k,p) and ‖ v∗k ‖∞ ≥ ‖ vo

k ‖∞,

for all k = 0, 1, . . . ,m because the pair (yo
1,k, y

o
2,k) is the LDD of zk on C, for all

k = 0, 1, . . . ,m. Hence, we can write

‖ v∗ ‖pp =
m∑

k=0

‖ v∗k ‖p(k,p) ≥
m∑

k=0

‖ vo
k ‖p(k,p) = ‖ vo ‖pp (5.9)

and

‖ v∗ ‖∞ = max{‖ v∗k ‖(k,∞)}k=0,1,...,m ≥ max{‖ vo
k ‖(k,∞)}k=0,1,...,m = ‖ vo ‖∞,

(5.10)

which proves the proposition.

The minimal norm problem can be transformed into an equivalent semi-definite

program or into an equivalent semi-infinite quadratic programming problem with

linear constraints.

5.4 Relationships between semidefinite and semi-

infinite programming

Let M be a matrix M ∈ IRn∗n. The inequality M � 0 means that the matrix M is

positive semidefinite. The linear matrix inequality of the form

M(x) := M0 + x1M1 + . . . + xmMm � 0 (5.11)

is a convex inequality in the variable x = (x1, . . . , xm) ∈ IRm, where the matrices

Mi ∈ IRn∗n satisfy M t
i = Mi. We can immediately see that (5.11) is equivalent to

an infinite set of linear inequalities

λtM(x)λ := λtM0λ+ x1(λ
tM1λ) + . . .+ xm(λtMmλ) ≥ 0 (5.12)

for all λ in the compact set Sn := {λ ∈ IRn : ‖ λ ‖= 1}. A convex quadratic

inequality in the form (Qx+ b)t(Qx+ b) + ctx+ d ≤ 0, where x ∈ IRn, can also be

written in matrix form as
[

I Qx+ b

(Qx+ b)t −(ctx+ d)

]
� 0. (5.13)
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This can be expressed as an affine combination of symmetric matrices

[
I Qx+ b

(Qx+ b)t −(ctx+ d)

]
:= M0 + x1M1 + . . .+ xnMn � 0, (5.14)

where

M0 =

[
I b

bt −d

]
, Mi =

[
0 qi
qt
i −ci

]
, for all i = 1, . . . , n

with Q = [q1, . . . , qn].

In semidefinite programming (SDP ) a linear function is minimized subject to a

constraint where an affine combination of symmetric matrices is positive semidefi-

nite:
minimize ctx

subject to: M(x) := M0 + x1M1 + . . .+ xmMm � 0,

M t
i = Mi, i = 0, 1, . . . ,m.

(5.15)

The dual problem of (5.15) is

maximize −TrM0Z

subject to: TrMiZ = ci, i = 1, . . . ,m,

Z � 0.

(5.16)

Applying duality results we know that the optimal values of (5.15) and (5.16) are

equal if at least one of the problems is strictly feasible.

A general convex quadratically constrained quadratic program (QCQP)

minimize (Q0x+ b)t(Q0x+ b) + ct0x+ d0

subject to: (Qix+ bi)
t(Qix+ bi) + ctix+ di ≤ 0, i = 1, . . . , r

(5.17)

can be written, by adding a new variable t, in the form

minimize t

subject to:

[
I Q0x+ b

(Q0x+ b)t −(ct0x+ d0 − t)

]
� 0,

[
I Qix+ bi

(Qix+ bi)
t −(ctix+ di)

]
� 0, i = 1, . . . , r,

(5.18)

which is a semidefinite program with variables x ∈ IRm and t ∈ IR. Moreover, the

linear program (LP)

minimize ctx

subject to: Ax+ b ≥ 0
(5.19)
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can be expressed as a semidefinite program by defining M(x) := diag (Ax + b) i.e.

M0 = diag (b) and Mi = diag (ai), i = 1, . . . ,m, where A = [ai, . . . , am] ∈ IRn∗m.

Semidefinite programming unifies, among others, the standard problems of linear

and quadratic programming and can be regarded as an extension of linear program-

ming where the componentwise inequalities between vectors are replaced by matrix

inequalities or, equivalently, the first orthant is replaced by the cone of semidefi-

nite matrices. Consequently, most interior-point methods for linear programming

have been generalized to semidefinite programs. As in linear programming, these

methods have polynomial worst-case complexity. While it is interesting to note that

QCQPs can be represented as semidefinite programming problems, it may not be

a good idea algorithmically. The semidefinite programming formulation will be less

efficient, especially when the matrices Qi have high rank. A more efficient interior-

point method for QCQP ’s can be developed by using Nesterov and Nemirovsky’s

formulation as a problem over the second-order cone (see Nesterov et al.[49]).

By using the expression (5.12) equivalent to (5.11) we can express the SDP

(5.15) as the following semi-infinite linear program

minimize ctx

subject to: λtM(x)λ ≥ 0 for all λ ∈ Sn.
(5.20)

5.5 The equivalent semi-infinite and semidefinite pro-

grams for solving the Minimal Norm problem

A peculiarity of the minimal norm problem (5.4) is that, in the case of the Euclidean

norm, it can be transformed into an equivalent semi-infinite quadratic programming

problem with linear constraints. The feasible set of the problem (5.4) can be de-

scribed by the expression (v± z)(x) ∈ K(C) i.e. (v± z)(x) are convex polynomials,

which means that the Hessian matrices ∇2(v ± z)(x) =
∑

i∈I(vi ± ai)∇2fi(x) are

positive semidefinite. Hence, we can write

λt∇2(v ± z)(x)λ ≥ 0 ∀λ ∈ Sn, ∀x ∈ C ⊂ IRn, (5.21)

where Sn = {x ∈ IRn : ‖x‖ = 1}, or equivalently

λt
∑

i∈I

(vi ± ai)∇2fi(x)λ ≥ 0 ∀λ ∈ Sn ,∀x ∈ C ⊂ IRn. (5.22)

By substituting the constraint set of (5.4) by the equivalent constraint set (5.22),

the problem (5.4) can be transformed into the equivalent semi-infinite quadratic
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programming problem






minimize ‖v‖2 =
∑

i∈I v
2
i

subject to: λt∑
i∈I(vi ± ai)∇2fi(x)λ ≥ 0,

∀λ ∈ Sn ,∀x ∈ C ⊂ IRn,

(5.23)

which depends on a family of parameters x and λ, or into the equivalent semidefinite

quadratic programming problem





minimize ‖v‖2 =
∑

i∈I v
2
i

subject to:
∑

i∈I(vi ± ai)∇2fi(x) � 0,

∀x ∈ C ⊂ IRn,

(5.24)

which depends solely on the parameter x. The set C will usually be a convex compact

set in the form C =
∏n

i=1[ri, ti].

5.6 Example to compare the semi-infinite and semidef-

inite procedures

In this section we present an example to compare the semi-infinite and semidefinite

procedures in order to obtain the LDD of a polynomial. Let z(x, y) = xy+ 3x2y be

a polynomial in H2 [x, y]⊕H3 [x, y] ⊂ IR3 [x, y]. In this example, in order to compare

the results, we will obtain the LDD of the polynomial z(x, y) on the convex compact

set C = [5, 20] × [5, 20] ⊂ IR2 and the LDD of the polynomials xy and 3x2y in two

different ways. Firstly, by using the semi-infinite algorithm described in Chapter 6,

which solves the semi-infinite problem (5.23). Secondly, by using the semidefinite

algorithm obtained from [64], which solves the semidefinite problem (5.24).

The constraint set of this example: In order to determine the constraint set of

this example consider the set of homogeneous polynomials of degree 2

B2 := {f1(x, y) := x2, f2(x, y) := xy, f3(x, y) := y2},

and the set of homogeneous polynomials of degree 3

B3 := {f4(x, y) := x3, f5(x, y) := x2y, f6(x, y) := xy2, f7(x, y) := y3},
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which are the monomials of the usual bases in H2 [x, y] and H3 [x, y] respectively.

Moreover, the set B = B2 ∪ B3 is a new base for H2 [x, y] ⊕ H3 [x, y]. Hence, the

coordinates of the polynomial z(x, y) can be written z(x, y) ≡ (0, 1, 0, 0, 3, 0, 0).

For the sake of simplicity, we denote the coordinates of a given polynomial v(x, y) ∈
H3 [x, y]⊕H2 [x, y] by using the first seven letters of the alphabet in the expression

(a, b, c, d, e, f, g). As we know how to calculate the Hessian of each monomial

function fi(x, y), i = 1, 2, . . . , 7, e.g. the Hessian of the monomial f5(x, y) = x2y is

∇2f5(x, y) =

[
2y 2x

2x 0

]
,

then by using the expression ∇2(v±z)(x, y) =
∑7

i=1(vi±zi)∇2fi(x, y), we can obtain

the Hessians ∇2(v ± z)(x, y) of the convex functions (v ± z)(x, y) in the form

[
6dx+ 2(e± 3)y + 2a 2(e± 3)x+ 2fy + (b± 1)

2(e± 3)x+ 2fy + (b± 1) 2fx+ 6gy + 2c

]
, (5.25)

which are positive-semidefinite matrices where the values a, b, c, d, e, f and g

are the variables, and x, y are the parameters which satisfy the property (x, y) ∈
[0, 25] × [0, 25]. On the other hand, a positive-semidefinite matrix must satisfy

[λ1, λ2]

[
6dx+ 2(e± 3)y + 2a 2(e± 3)x+ 2fy + (b± 1)

2(e± 3)x+ 2fy + (b± 1) 2fx+ 6gy + 2c

] [
λ1

λ2

]
≥ 0,

with λ2
1 + λ2

2 = 1, which allows the linear constraints of the semi-infinite program

(5.23) to be written as follows:

(2λ2
1)a+ (2λ1λ2)b+ (2λ2

2)c+ (6xλ2
1)d+ 2(yλ2

1 + 2xλ1λ2)e+

+2(xλ2
2 + 2yλ1λ2)f + (6yλ2

2)g ± (6yλ2
1 + 12xλ1λ2 + 2λ1λ2) ≥ 0,

(5.26)

where the values a, b, c, d, e, f and g are the variables, and x, y, λ1 and λ2 are

the parameters which satisfy the properties (x, y) ∈ [0, 25]× [0, 25] and λ2
1 + λ2

2 = 1.

Dividing the inequality (5.26) by 2 and substituting the term ±(6yλ2
1 + 12xλ1λ2 +

2λ1λ2) by its absolute value we can write the new equivalent constraint set

λ2
1a+ λ1λ2b+ λ2

2c+ 3xλ2
1d+ (yλ2

1 + 2xλ1λ2)e+

+(xλ2
2 + 2yλ1λ2)f + 3yλ2

2g− | 3yλ2
1 + 6xλ1λ2 + λ1λ2 |≥ 0.

(5.27)

The parameters λ1 and λ2 are linked via the relation λ2
1+λ2

2 = 1, so for fixed x and y

the pairs (λ1, λ2) and (−λ1,−λ2) define the same constraint. To avoid this repetition

we can consider the new parameter ω ∈ [0, π] in such a way that λ1 = cos ω and

λ2 = sin ω.
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Remark 2 In general, the relation λ2
1 + λ2

2 + . . . + λ2
n = 1 between the parame-

ters λ1, λ2, . . . , λn can be described by using spherical coordinates. Indeed, con-

sider the usual base {e1, e2, . . . , en} of the vectors of IRn. Let ~OP be the vector

position of the point (λ1, λ2, . . . , λn) and define ωn−1 = ang( ~OP , en) (angle be-

tween the vectors ~OP and en), ωn−2 = ang( ~OPn−1, en−1) where ~OPn−1 is the

projection of the vector ~OP on 0+ < e1, e2, . . . , en−1 > parallel to the direction

< en >, . . ., ωi = ang( ~OP i+1, ei+1) where ~OP i+1 is the projection of the vec-

tor ~OP on 0+ < e1, e2, . . . , ei+1 > parallel to the direction < ei+2, . . . , en >, . . .,

ω1 = ang( ~OP 2, e2) where ~OP 2 is the projection of the vector ~OP on 0+ < e1, e2 >

parallel to the direction < e3, . . . , en >. Then we can write




λ1 = sinω1 sinω2 . . . sinωn−2 sinωn−1,

λ2 = cosω1 sinω2 . . . sinωn−2 sinωn−1,

. . . . . . ........... ,

λn−2 = cosωn−3 sinωn−2 sinωn−1,

λn−1 = cosωn−2 sinωn−1,

λn = cosωn−1,

(5.28)

where ω1 ∈ [0, 2π[ and ωi ∈ [0, π], i = 2, n− 1.

An initial strictly interior feasible point for this example: The algorithm of

semi-infinite programming which solves the program (5.23) needs an initial feasible

point strictly interior to the constraint set (5.26). In the following we explain how

to obtain it. We know that the set of homogeneous polynomials of degree 2

U2 := {g1 := x2, g2 := (x+ y)2, g3 := y2},

and the set of homogeneous polynomials of degree 3

U3 := {g4 := x3, g5 := (x+ y)3, g6 := (2x+ y)3, g7 := y3}

are new bases for H2 [x, y] and H3 [x, y] respectively. Moreover, the set U = U2 ∪U3

is a new base for H2 [x, y] ⊕ H3 [x, y]. The change from the coordinates XU of a

polynomial in the base U to the coordinates XB in the base B can be expressed by

using the matrix

C :=




1 1 0 0 0 0 0

0 2 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 8 0

0 0 0 0 3 12 0

0 0 0 0 3 6 0

0 0 0 0 1 1 1




,
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in the form XB = CXU . The columns of the matrix C are the components of the

polynomials in the new base U expressed in the usual base B. Therefore, the change

from the coordinates XB in the base B to the coordinates XU in the base U can be

obtained by the inverse transformation XU = C−1XB i.e.




−0.5

0.5

−0.5

−3.0

−1.0

0.5

0.5




U

=




1 1 0 0 0 0 0

0 2 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 8 0

0 0 0 0 3 12 0

0 0 0 0 3 6 0

0 0 0 0 1 1 1




−1 


0

1

0

0

3

0

0




B

.

Also, we can see that the matrices

C1 :=




1 1 0

0 2 0

0 1 1


 and C2 :=




1 1 8 0

0 3 12 0

0 3 6 0

0 1 1 1




give us the change from the coordinates XU2 and XU3 in the bases U2 and U3 to

the coordinates XB2 and XB3 in the usual bases B2 and B3 of the homogeneous

components xy and 3x2y respectively. As before, we can write XBi
= CiXUi

for

i = 2, 3 i.e. 

−0.5

0.5

−0.5




U2

=




1 1 0

0 2 0

0 1 1




−1 


0

1

0




B2

and 


−3.0

−1.0

0.5

0.5




U3

=




1 1 8 0

0 3 12 0

0 3 6 0

0 1 1 1




−1 


0

3

0

0




B3

.

Thus, we can obtain a d.c. representation of both terms of the polynomial z(x, y) =

xy + 3x2y in the forms

xy = 0.5(x+ y)2 − 0.5(x2 + y2)

and

3x2y = 0.5(2x + y)3 + 0.5y3 − (3x3 + (x+ y)3).

Hence, by using the convex polynomials

y1(x, y) = 0.5(x + y)2 + 0.5(2x + y)3 + 0.5y3
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and

y2(x, y) = 0.5(x2 + y2) + 3x3 + (x+ y)3,

which can be expanded to obtain the expressions

y1(x, y) = 0.5x2 + xy + 0.5y2 + 4x3 + 6x2y + 3xy2 + y3

and

y2(x, y) = 0.5x2 + 0.5y2 + 4x3 + 3x2y + 3xy2 + y3,

we can write

z(x, y) = y1(x, y)− y2(x, y).

Thus, the polynomial y1(x, y)+y2(x, y), which has the coordinates (1, 1, 1, 8, 9, 6, 2),

is a feasible point of the constraint set (5.26).

To make sure that we have an strictly interior feasible point to the constraint

set we can add the convex polynomial q(x, y) = x2 +y2 to both terms of the current

d.c. representation of z(x, y) so a suitable new d.c. representation of the polynomial

can be obtained by the expression

z(x, y) = (y1(x, y) + q(x, y))− (y2(x, y) + q(x, y)).

Then, the polynomial v(x, y) := y1(x, y) + y2(x, y) + 2q(x, y) has the coordinates

(3, 1, 3, 8, 9, 2, 6, 2), which represent a feasible point strictly interior to the constraint

set (5.26).

The optimal solutions and the objective values for this example: By using

a SIP algorithm we have obtained the optimal solution

v∗ = .0932x2−.0110xy+.0611y2+2.6291x3+1.0286x2y+.6860xy2+1.7550y3 (5.29)

with the objective value ‖v∗‖2 = 11.534 for the polynomial xy+3x2y. Moreover, by

using the same procedure as mentioned above, we can obtain the optimal solutions

of the components xy and 3x2y, respectively

v∗1(x, y) = 0.5492x2 + 0.0xy + 0.4551y2 (5.30)

with the objective value ‖v∗1‖2 = 0.509 and

v∗2(x, y) = 2.6247x3 + 1.0377x2y + 0.6745xy2 + 1.7551y3 (5.31)

with the objective value ‖v∗2‖2 = 11.501.
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We have also used a SDP algorithm, obtained from Wu, P. et al.[64], to solve

the same problems. Then, the optimal solutions are

v∗ = 0.1684x2−1.1498xy−1.2717y2 +3.0977x3 +1.0297x2y+1.4457xy2 +0.6469y3,

(5.32)

with the objective value ‖v∗‖2 = 14.094,

v∗1(x, y) = 0.5x2 + 0.0xy + 0.5y2, (5.33)

with the objective value ‖v∗1‖2 = 0.5, and

v∗2(x, y) = 2.7835x3 + 0.9420x2y + 0.8661xy2 + 1.3150y3, (5.34)

with the objective value ‖v∗2‖2 = 11.115.

Remark 3 We can see that for the polynomials xy and 3x2y the solutions obtained

by using SDP are better than the solutions obtained by using SIP (although still

very similar). Moreover, it must be noted that for the polynomials xy, 3x2y and

xy + 3x2y the optimal solutions obtained by using SIP satisfy the decomposition

property (see Proposition 5.3.4)

11.534 = ‖v∗‖2 ≤ ‖v∗1‖2 + ‖v∗2‖2 = 12.01

but, for the optimal solutions obtained by using SDP this is not true

14.094 = ‖v∗‖2 ≥ ‖v∗1‖2 + ‖v∗2‖2 = 11.615.

For this reason, as described in Chapter 6, we have chosen the semi-infinite formu-

lation to obtain the LDD of a polynomial function, so an interior point algorithm,

for solving semi-infinite quadratic programming problems with linear constraints,

has been implemented by following the semi-infinite linear programming procedures

described in Kaliski J. et al. [37] and in Zhi-Quan et al. [78].

The LDD for the functions in this example: By using the best optimal so-

lutions found, and the expressions(5.3) we can obtain the LDD of the polynomials

xy + 3x2y, 3x2y and xy on the convex compact set C = [5, 20] × [5, 20] ⊂ IR2 as

follows.

First, we use the solution (5.29) to obtain the LDD of the polynomial xy+3x2y

y∗1 = .0466x2 + .4945xy + .03055y2 + 1.31455x3 + 2.0143x2y + .3430xy2 + .8775y3,

y∗2 = .0466x2 − .5055xy + .03055y2 + 1.31455x3 − .9857x2y + .3430xy2 + .8775y3.
(5.35)
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and we can write

xy + 3x2y = y∗1(x, y) − y∗2(x, y). (5.36)

Then, by using the best solution (5.34) we obtain the LDD of 3x2y

y∗1(x, y) = 1.31235x3 + 2.0188x2y + .33725xy2 + .87755y3,

y∗2(x, y) = 1.31235x3 − .9811x2y + .33725xy2 + .87755y3.
(5.37)

and

3x2y = y∗1(x, y)− y∗2(x, y). (5.38)

Finally, by using the best solution (5.33) we obtain the LDD of xy

y∗1(x, y) = .25x2 + .5xy + .25y2 = 1
4 (x+ y)2,

y∗2(x, y) = .25x2 − .5xy + .25y2 = 1
4 (x− y)2, (5.39)

and

xy =
1

4
(x+ y)2 − 1

4
(x− y)2. (5.40)

Remark 4 This last result (5.40) is interesting because, in this example, we can

express the quadratic function xy in the form

xy = [x, y]

[
0 .5

.5 0

] [
x

y

]
, (5.41)

where the symmetric matrix in (5.41) has the eigenvalues −.5 and .5 and the matrix

of its eigenvectors is

C :=

[ √
2/2 −

√
2/2

−
√

2/2 −
√

2/2

]
. (5.42)

We have the following relationship between the above-mentioned matrices
[

0 .5

.5 0

]
= Ct

[
−.5 0

0 .5

]
C. (5.43)

Substituting the expression (5.43) in (5.41) we obtain

xy = [x, y]

[ √
2/2 −

√
2/2

−
√

2/2 −
√

2/2

] [
−.5 0

0 .5

] [ √
2/2 −

√
2/2

−
√

2/2 −
√

2/2

] [
x

y

]
=

= [
√

2
2 x−

√
2

2 y,−
√

2
2 x−

√
2

2 y]

[
−.5 0

0 .5

] [ √
2

2 x−
√

2
2 y

−
√

2
2 x−

√
2

2 y

]
=

= −.5
(√

2
2 x−

√
2

2 y
)2

+ .5
(√

2
2 x+

√
2

2 y
)2
.

(5.44)
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Hence, we can see that xy is equal to the linear combination of the homogenous

polynomials of degree 2 obtained from the linear equations which serve to obtain the

new eigenvector bases of the symmetric matrix in (5.41) where the coefficients are

the eigenvalues of this matrix. By expanding the expression (5.44) we obtain

xy = 1
4 (x+ y)2 − 1

4 (x− y)2 ,

which is the LDD of the polynomial xy obtained in a different way.

Had this procedure always given similar results we would have been able to use it

to obtain the LDD of a quadratic function analytically. Also, we would have been

able to use it to verify whether a quadratic function is convex. The example 5.6.1

shows that this analytical procedure is not useful in some cases.

Example 5.6.1 Let z(x, y) := (x− y)2 = x2 − 2xy + y2 be a convex polynomial in

H2 [x, y]. Since z(x, y) is convex, we can consider z(x, y) = y1(x, y) − y2(x, y) as

the initial d.c. representation of the polynomial with y1(x, y) = x2 − 2xy + y2 and

y2(x, y) = 0. Then, the polynomial v(x, y) = y1(x, y)+y2(x, y) satisfies ‖v(x, y)‖2 =

6.0. Note that this initial d.c. representation of the polynomial z(x, y) is not the

LDD in this example. Indeed, by using the algorithm of semi-infinite programming

described in Chapter 6 to solve the program (5.23), we came to the optimal solution

v∗(x, y) = 1.4354x2 − 1.2596xy + 1.3148y2 with the objective value ‖v∗‖2 = 5.375.

Hence, by using the expressions (5.3) we obtain the polynomials

y∗1(x, y) = 1.2177x2 − 1.6298xy + 1.1574y2,

y∗2(x, y) = .2177x2 + .3702xy + .1574y2.

so the LDD of x2 − 2xy + y2 can be written

x2 − 2xy + y2 = y∗1(x, y)− y∗2(x, y).

It should be observed that if we calculate the determinant of the Hessians of both

functions

∇2(y∗1) =

[
2.4354 −1.6298

−1.6298 2.3148

]
and ∇2(y∗2) =

[
.4354 .3702

.3702 .3148

]
,

we obtain Det (∇2y∗1) = 2.981 and Det (∇2y∗2) = .358 ∗ 10−7, which is additional

proof that y∗1(x, y) and y∗2(x, y) are convex polynomials.
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Figure 5.1: Graphics (a) and (b) are respectively the graphics of the convex poly-

nomials y∗1(x, y) and y∗2(x, y), which define the LDD of the polynomial (x− y)2.

In Figure (5.1) we can see the graphics of the convex functions y∗1(x, y) and

y∗2(x, y).





Chapter 6

Solving semi-infinite quadratic

programs. Numerical results

6.1 Introduction

The problem under consideration is a semi-infinite quadratic programming problem

with infinitely many linear constraints (SIQP ). Let T ⊂ IRs be an infinite compact

set of parameters, and let t → at and t → bt be continuous functions on T with

at ∈ IRn and bt ∈ IR. By defining

G := {x ∈ IRn : atx+ st = bt, ‖ at ‖ = 1, st ≥ 0, t ∈ T }, (6.1)

the semi-infinite quadratic programming problem can be expressed by

minimize

{
1

2
xtQx+ ctx : x ∈ G

}
. (6.2)

The standard methods of optimization solve problems with a finite number of vari-

ables and constraints. Nevertheless, semi-infinite quadratic programming problems

have infinite constraints. In order to overcome this difficulty we will use Reemtsen’s

straightforward generalization (see [55]) of a theorem evolved by Gustafson in [23]

on the computational equivalence of a semi-infinite linear program and a standard

linear program, as follows.

Theorem 6.1.1 Given a nonlinear semi-infinite programming problem

maximize {ctx : ft(x) ≤ 0, t ∈ T }, (6.3)

89
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where T is a compact set of parameters, ft(x) are continuous on T and the feasible

set F = {x ∈ IRn| ft(x) ≤ 0, t ∈ T } is convex and compact. Then, there exists a

finite set N ⊂ T such that the semi-infinite program (6.3) and the convex program

maximize {ctx : ft(x) ≤ 0, t ∈ N} (6.4)

are computationally equivalent (which means that we cannot find any difference

between the feasible sets of both problems within a given computational precision).

Notice that this result does not imply that the optimal solutions to both programs

are close to each other, but it does mean that the optimal values are identical within

the given computational precision. To obtain the computational equivalence the

number of constraints indexed by N must be extremely large and this is still a

drawback.

In this chapter we propose a build-up and down strategy, introduced by Den

Hertog in [11], for standard linear programs that use the logarithmic barrier method.

The algorithm which will be described is an adaptation of the linear semi-infinite

algorithm developed by Kaliski, J. et al. in [37] to the case of a convex quadratic

objective function. To enable us to understand the build-up and down strategy, we

analyze in Section 6.7 the effect of adding a constraint and in Section 6.8 the effect

of deleting a constraint on the distance to the central path respectively. We also

prove the finite convergence (finite number of steps) of the algorithm, which depends

on the desired accuracy, the radius of the largest Euclidean ball contained in the

feasible set and the problem dimension.

6.2 Build-up and build-down strategies

Let T be an s dimensional convex compact set of parameters in the form

T =
s∏

i=1

[ui, vi],

with ui, vi ∈ IR and [ui, vi] := {ti ∈ IR : ui ≤ ti ≤ vi}, i = 1, . . . , s. The key in

determining the accuracy and speed of the algorithm is the discretization strategy

applied to the set of parameters T .

An initial strategy, called the static mesh technique, can be defined by taking

a sufficiently large grid of ki points for each ith dimension of the parameter space

Ii := {ui + (j − 1)(vi − ui)/ki, j = 1, . . . , ki}.
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Thus, a grid of mesh points N :=
∏s

i=1 Ii ⊂ T can be obtained, and the discretized

problem defined by this finite grid of mesh points will be solved. While theoreti-

cally sufficient the static mesh technique has significant numerical impediments in

practice, because when the dimension of the parameter space increases the number

of constraints is tremendously high.

The procedure described by Den Hertog [11] begins with a small finite subset

Q ⊂ N i.e. the procedure begins with the problem

minimize

{
1

2
xtQx+ ctx : atx+ st = bt, ‖ at ‖ = 1, st ≥ 0, t ∈ Q

}
(6.5)

instead of problem (6.4). The procedure follows the central path until the current

iterate violates a constraint in N which is not in Q. Then, this violated constraint

is added (build-up) to the current system of constraints and returns to the previous

iterate to continue the process. On the other hand, if the slack value of a constraint

in the current iterate is large enough i.e. it is nonbinding in an optimal solution, we

remove it (build-down) from the current system of constraints and recenter when

necessary. Consequently, all iterates are feasible for the computationally equivalent

problem with the constraints in N . This process is repeated until the iterate is close

to the optimal solution.

Otherwise, the build-up and down strategy employed by Kaliski, J. et al. [37],

which is called the dynamic mesh strategy, uses a variable mesh which automat-

ically self-adjusts to achieve machine level precision within the local area with the

highest probability of finding an infeasible (or near infeasible) point for the proposed

solution. The procedure starts with the problem (6.5), the mesh position t0 ∈ Q
with the lowest slack st0 and a relatively coarse mesh N0 around the position t0,

N0 =
s∏

i=1

I0
i ,

where I0
i := {u0

i + (j − 1)(v0
i − u0

i )/ki, j = 1, . . . , ki + 1} with u0
i = ui, v

0
i = vi,

i = 1, . . . , s. N0 is the initial coarse grid of mesh points where ki, i = 1, . . . , s are

big enough. If, while checking the initial mesh, a constraint is found to be violated

at the current iterate i.e. st ≤ 0, t ∈ N0, then the procedure returns this mesh

position t, and Q = Q ∪ {t}. If no violation is found, the mesh position t where

there is a constraint with the lowest slack st, is checked more closely by building a

new submesh N1 around the position t,

N1 =
s∏

i=1

I1
i .
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As before, I1
i := {u1

i + (j − 1)(v1
i − u1

i )/ki, j = 1, . . . , ki + 1} and u0
i < u1

i , v
0
i > v1

i ,

i = 1, . . . , s. The new submesh N1 is then checked for feasibility. We continue the

procedure by generating additional submesh

Nk =
s∏

i=1

Ik
i ,

where Ik
i := {uk

i + (j − 1)(vk
i − uk

i )/ki, j = 1, . . . , ki + 1} and uk−1
i < uk

i , v
k
i >

vk−1
i , i = 1, . . . , s, until an infeasibility is found or the local mesh precision τmsh is

exceeded, i.e.,

max

{
vk
i − uk

i

ki
, i = 1, . . . , s

}
≤ τmsh.

The nearest located constraint position is returned, if any constraint is found to be

violated.

Table 6.1: Dynamic mesh procedure for SIQP

Procedure: Dynamic Mesh

Input:

the mesh position t ∈ Q with the lowest slack st > 0;

the initial coarse grid of mesh points N0 around the position t, where

τc(i) := (vi − ui)/ki is the initial mesh precision for the ith parameter, i = 1, . . . , s;

x is the current iterate to be evaluated;

τmsh is the mesh precision locally considered;

Output:

t is the mesh position for the most (nearly) violated constraint;

st is the constraint slack value for the most (nearly) violated constraint;

begin

while τc(i) > τmsh do

let t be the position in the current mesh with the smallest st;

if st ≤ 0 then

return t, st;

else

τc(i) := τc(i)/ki;

enmesh
∏s

i=1 ki points with τc(i) spacing around t;

end if

end while

return t, st;

end
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For the sake of simplicity, we consider that G contains the constraints 0 ≤ xi ≤
1, i = 1, . . . , n, whose index set will be denoted as J0. In addition to this index set

a small subset J ⊂ T \J0 is chosen to form the initial discretization Q := J0 ∪ J
of the set constraints. In Table 6.1 we can see the dynamic mesh algorithm which

describe the dynamic mesh strategy.

6.3 Some relevant properties of linear varieties, projec-

tors and convex programs

In this section some useful lemmas, which will be used in the next sections, are

enunciated. In the following, the vector space of vectors in IRn is denoted by IEn.

6.3.1 Distance between a point and a linear variety

Geometric interpretation

Let V be a linear variety of IRn expressed by V := {x ∈ IRn : Ax = b}, with the

matrix A ∈ M(m,n) of full rank i.e. rank(A) = m ≤ n, and where b ∈ IRm. We

want to obtain an expression to calculate the distance between a point p ∈ IRn and

a linear variety V which will be denoted by d(p, V ). We know that

d(p, V ) := min {d(p, x) : x ∈ V } ,

or equivalently

d(p, V ) = min {‖x− p‖ : Ax = b} .

Lemma 6.3.1 If the matrix A ∈ M(m,n) has full rank there exist the matrices

(AtA)−1 ∈M(m) and (AAt)−1 ∈M(n).

Lemma 6.3.2 Consider the following vector subspaces of IEn

F := {u ∈ IEn : Au = 0} and G := {v ∈ IEn : v = Atλ, λ ∈ IRm},

with the matrix A ∈ M(m,n) of full rank. Thus, the linear varieties W := p + G

and V := {x ∈ IRn : Ax = b} are perpendicular and IEn = F ⊕G.
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Figure 6.1: The distance from the point p to the linear variety Ax = b can be

calculated by using d(p, q) = ‖At(AAt)−1(b −Ap)‖, where q is the point in Ax = b

which satisfies the equation x = p+Atλ

.

Proof: Consider u ∈ F and v ∈ G. Then we can write

utv = vtu = (Atλ)tu = λtAu = λt(Au) = 0

so we can see that F and G are orthogonal and F∩G = {0}. Moreover, we know that

F +G ⊂ IEn, dim(F ) = n−m and dim(G) = m (because rank(A) = rank(At) = m).

From the relationship

dim(F +G) = dim(F ) + dim(G) − dim(F ∩G) = n,

we have that IEn = F + G and, together with the property F ∩ G = {0}, we can

deduce IEn = F ⊕G, which is the desired conclusion.

To calculate d(p, V ) we only need to obtain the point q ∈ V ∩W i.e. q = p + Atλ

verifying Aq = b (see Figure 6.3.1) and then calculate d(p, q). From the relationship

Aq = b we can write

A(p +Atλ) = b

and by expanding this expression we have

Ap+AAtλ = b,
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so we can calculate λ in the form

λ = (AAt)−1(b−Ap)

and q = p+At(AAt)−1(b−Ap). Hence,

d(p, V ) = d(p, q) = ‖At(AAt)−1(b−Ap)‖ (6.6)

which is an analytical expression for calculating the distance between a point and a

linear variety.

Interpretation within the field of optimization

The problem can be written as

minimize ‖p − x‖2
subject to: Ax = b.

Then, the optimal solution of this program can be obtained directly by using the

multiplier rule of the Kuhn-Tucker theorem. Solving the system
{

∂L
∂x = 2(x− p) +Atλ = 0,
∂L
∂λ = Ax− b = 0,

which derives from the Lagrange function L(x, λ) = ‖p− x‖2 + λt(Ax− b), we have

the solution x = p− 1
2A

tλ where λ = 2(AAt)−1(Ap − b). Thus, the distance is

‖p− x‖ = ‖At(AAt)−1(b−Ap)‖,

as before.

6.3.2 Projectors

A matrix P ∈ M(n, n) is said to be a projector when P 2 = P . Therefore P t is

also a projector because (P t)2 = P t. Let Z be the matrix which verifies PZ = 0.

Consider the vector subspaces of IEn

F := {u ∈ IEn : u = Zλ, λ ∈ IRn}

known as the null space of P and

G := {v ∈ IEn : v = Pλ, λ ∈ IRn}

said to be the range space (or column space) of P .
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Lemma 6.3.3 When P is a projector then we have that IEn = F ⊕G. In this case,

the rank space G is said to be the projection of P parallel to F .

Proof: Let u be a vector u ∈ F ∩ G. Then, from u ∈ G we have u = Pλ so

Pu = P 2λ = Pλ = u. From u ∈ F we have u = Zλ0 so Pu = PZλ0 = 0. Hence, we

obtain u = Pu = 0 and we can deduce that F ∩G = {0}. On the other hand, each

vector u ∈ IEn can be written u = (u− Pu) + Pu with u− Pu ∈ F and Pu ∈ G so

IEn = F +G and the lemma is proved.

Lemma 6.3.4 The eigenvalues of a projector P are 0 or 1.

Proof: In effect, if we consider u an eigenvector of P then Pu = tu, t ∈ IR, so we

have

Pu = P 2u = tPu = t2u

and we can deduce that tu = t2u or equivalently 0 = t(t − 1)u, which means that

t = 0 or t = 1.

Example 6.3.5 Consider Ax+s = b, s > 0 with the matrix A of full rank and s :=

(s1, s2, . . . , sm). By defining In as the identity matrix and S := diag(s1, s2, . . . , sm),

then we can see that the matrix

P := S−1A(AtS−2A)−1AtS−1

is a projector of IEn i.e. P 2 = P . In this example we also have that P t = P .

Moreover, the vectors subspaces F and G are

F := {u ∈ IEn : u = (P − In)λ, λ ∈ IRn},

given that P (P − In) = 0, and

G := {v ∈ IEn : v = Pλ, λ ∈ IRn}.

Because of the linear system (AtS−2A)λ̄ = AtS−1λ is always determinate for each

λ ∈ IRn the subspace G can be rewritten

G = {v ∈ IEn : v = S−1Aλ̄, λ̄ ∈ IRn}

where λ̄ = (AtS−2A)−1AtS−1)λ. In this example F and G are orthogonal subspaces.

Let u ∈ F be with u = (P − In)λ1 and let v ∈ G be with v = Pλ2 then we have

vtu = λt
2P (P − In)λ1 = λt

2(P
2 − P )λ1 = λt

2(P − P )λ1 = 0.
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P is said to be an orthogonal projector and G the orthogonal projection of P parallel

to F . Hence,

‖Pu‖ ≤ ‖u‖

because ‖Pu‖2 = utP tPu = utPPu = utP 2u = utPu ≤ ‖u‖‖Pu‖, therefore

‖Pu‖(‖Pu‖ − ‖u‖) ≤ 0, which proves the last inequality. As a consequence of this

inequality and by assumption that v 6∈ F , ‖v‖ = 1 and vtPv = 1 we have

(v 6∈ F, ‖v‖ = 1 and vtPv = 1)⇒ (‖Pv‖2 = 1 and v ∈ G),

because if v 6∈ G then vt(Pv−v) 6= 0 (since Pv−v ∈ F ) and vtPv−vtv = 1−vtv 6= 0

i.e. ‖v‖2 6= 1 which would be a contradiction.

6.3.3 General properties of dual programming problems

Consider the programming problem

minimize f(x)

subject to: g(x) ≤ 0,

x ∈ U ⊂ IRn,

(6.7)

where f : IRn → IR and g : IRn → IRm. The Lagrangian function of (6.7) is

L(x, y) := f(x) + ytg(x), (6.8)

while y ∈ IRm
+ are referred to as Lagrange multipliers. We define the dual function

as

Φ(y) := inf {L(x, y) : x ∈ U}, (6.9)

with the domain D := {y ∈ IRm
+ and Φ(y) exists }. This function is concave on each

convex subset of D. Hence, the dual program of (6.7) can be defined

maximize Φ(y)

subject to: y ∈ D. (6.10)

From (6.7) and (6.10) it is easy to see that for all x feasible for (6.7) and for all y

feasible for (6.10) we have

Φ(y) ≤ f(x).

Hence, we have

sup {Φ(y) : y ∈ D} ≤ inf {f(x) : g(x) ≤ 0, x ∈ U ⊂ IRn}.
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As a consequence, we can deduce that if one of the programs (6.7) or (6.10) is

unbounded then the other program is infeasible. When the program (6.7) is convex

then we have the equality

sup {Φ(y) : y ∈ D} = inf {f(x) : g(x) ≤ 0, x ∈ U ⊂ IRn},

whenever a suitable constraint qualification holds.

6.4 Analysis of the discretized problems

Suppose {1, 2, . . . ,m} ⊂ T . Let

minimize f(x) = 1
2x

tQx+ ctx

subject to: aix+ si = bi, si ≥ 0, i = 1, 2, . . . ,m,
(6.11)

be a discretized problem of (6.2) which has a strictly feasible solution and the feasible

set of constraints is bounded. Consider b := (b1, b2, . . . , bm)t and

A =




a1
1 a2

1 . . . ai
1 . . . an

1

a1
2 a2

2 . . . ai
2 . . . an

2

. . . . . . . . . . . . . . . . . .

a1
j a2

j . . . ai
j . . . an

j

. . . . . . . . . . . . . . . . . .

a1
m a2

m . . . ai
m . . . an

m




, (6.12)

which can be assumed of full rank. From (6.8), the Lagrangian function of the

program (6.11) is

L(x, y) =
1

2
xtQx+ ctx+ yt(Ax− b),

where y ∈ IRm
+ . From (6.9), the dual function of the program (6.11) is

Φ(y) = min {L(x, y) : x ∈ IRn}.

Since, in this case, L(x, y) is a positive definite quadratic function in the variable x,

we have that Φ(y) exist for all y and it can be obtained by solving the system

∂L(x, y)

∂x
= Qx+ c+Aty = 0⇔ x = −Q−1(c+Aty).

We have Φ(y) = L(−Q−1(c + Aty), y). Thus, the dual program of (6.11) can be

written
maximize Φ(y) = L(−Q−1(c+Aty), y)

subject to: y ∈ IRm
+ .
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By substituting x = −Q−1(c+Aty) in the terms of the expression

Φ(y) = 1
2x

tQx+ ctx+ yt(Ax− b),

we can write

1
2x

tQx = 1
2c

tQ−1c+ 1
2y

tAQ−1c+ 1
2c

tQ−1Aty + 1
2y

tAQ−1Aty,

ctx = −ctQ−1c− ctQ−1Aty,

yt(Ax− b) = −ytAQ−1c− ytAQ−1Aty − ytb,

so

Φ(y) = −1
2c

tQ−1c− 1
2y

tAQ−1Aty − ytAQ−1c− ytb

= −1
2(ctQ−1c+ ytAQ−1c)− 1

2(ytAQ−1Aty + ytAQ−1c)− ytb

= −1
2(ct + ytA)Q−1c− 1

2(ytAQ−1(Aty + c)− ytb

= −1
2(−xtQ)Q−1c− 1

2(ytAQ−1(−Qx)− ytb

= −1
2x

tc+ 1
2y

tAx− ytb

= −1
2x

tc+ 1
2(−Qx− c)t − ytb

= −1
2x

tQx− ytb.

Thus, the dual problem of (6.11) can be rewritten

maximize h(x, y) = −1
2x

tQx− ytb

subject to: Qx+ c+Aty = 0,

y ≥ 0.

(6.13)

When the primal and dual feasible points are x and (x, y) respectively we know that

the gap between the objective function of (6.11) and (6.13) is

1

2
xtQx+ ctx− (−1

2
xtQx− ytb) = yts. (6.14)

On the other hand, a barrier function for (6.11) is

Fµ(x) =
xtQx/2 + ctx

µ
−

m∑

i=1

ln si, (6.15)

with si = bi − at
ix > 0, i = 1, 2, . . . ,m, and where µ > 0 indicates the parameter of

barrier. The gradient ∇Fµ(x) and the Hessian H(x, µ) of the barrier function (6.15)

can be expressed by

∇Fµ(x) =
1

µ
(xtQ+ ct) +AtS−1e (6.16)

and

H(x, µ) =
1

µ
Q+AtS−2A. (6.17)
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The barrier function is a convex function with only one global minimum, which

is an interior point of the feasible domain of the problem (6.11). The necessary

and sufficient first order optimality conditions for the optimal point of the barrier

function are:
∂Fµ(x)

∂x
=

1

µ
(Qx+ c) +AtS−1e = 0 (6.18)

where s ≥ 0 and e := (1, 1, . . . , 1)t. By using y := µS−1e ≥ 0 in the expression

(6.18) the first order optimality conditions can be rewritten

Ax+ s = b, s ≥ 0,

Qx+ c+Aty = 0, y ≥ 0,

Sy = µe.

(6.19)

Notice, that when µ = 0 the first order optimality conditions (6.19) are the first

order optimality conditions for the primal and the dual programs (6.11) and (6.13)

respectively. The solution (x(µ), y(µ), s(µ)) of the system (6.19) defines the central

paths x(µ) and (x(µ), y(µ)) of the primal and dual problems respectively. From the

third equality in (6.19) we can deduce that the duality gap in this solution satisfies

y(µ)ts(µ) = s(µ)ty(µ) = µm. (6.20)

It is well-known (see Den Hertog [11]) that x(µ) and y(µ) are continuously differ-

entiable. From (6.14) and (6.20) it can be seen that x(µ) and (x(µ), y(µ)) converge

to the optimal primal and optimal dual solutions respectively when µ converges to

0. The next lemma proves that along the primal path the objective function of the

primal problem is decreasing and along the dual path the objective function of the

dual problem is increasing.

Lemma 6.4.1 Let (x(µ), y(µ), s(µ)) be the solution of the system (6.19), which

defines the central paths x(µ) and (x(µ), y(µ)) of the primal and dual problems re-

spectively. The function f(x(µ)) where f(x) is the objective function of the primal

problem (6.11) is monotonically decreasing and the function h(x(µ), y(µ)) where

h(x, y) is the objective function of the dual problem (6.13) is monotonically increas-

ing, as µ decreases.

Proof: Consider µ1 < µ2. Since x(µ1) and x(µ2) minimize Fµ1(x) and Fµ2(x)

respectively we have

Fµ1(x(µ1)) ≤ Fµ1(x(µ2))

and

Fµ2(x(µ2)) ≤ Fµ2(x(µ1)).
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Thus, we can write the equivalent expressions

f(x(µ1))

µ1
−

m∑

i=1

ln si(µ1) ≤
f(x(µ2))

µ1
−

m∑

i=1

ln si(µ2)

and
f(x(µ2))

µ2
−

m∑

i=1

ln si(µ2) ≤
f(x(µ1))

µ2
−

m∑

i=1

ln si(µ1).

By adding these two inequalities we obtain

f(x(µ1))

µ1
− f(x(µ2))

µ1
≤ f(x(µ1))

µ2
− f(x(µ2))

µ2
,

or equivalently (
1

µ1
− 1

µ2

)
(f(x(µ1))− f(x(µ2))) ≤ 0.

As µ1 < µ2, we have that 1
µ1
> 1

µ2
and f(x(µ1)) ≤ f(x(µ2)) so the first part of the

lemma follows.

The second part of the lemma can be proved in a similar way by using the dual

logarithmic barrier function

Gµ(x, y) := −h(x, y)
µ

−
m∑

i=1

ln yi, with Qx+ c+Aty = 0.

As before, we have

−h(x(µ1), y(µ1))

µ1
−

m∑

i=1

ln yi(µ1) ≤ −
h(x(µ2), y(µ2))

µ1
−

m∑

i=1

ln yi(µ2)

and

−h(x(µ2), y(µ2))

µ2
−

m∑

i=1

ln yi(µ2) ≤ −
h(x(µ1), y(µ1))

µ2
−

m∑

i=1

ln yi(µ1).

Then, by adding the two inequalities we obtain

−h(x(µ1), y(µ1)) + h(x(µ2), y(µ2))

µ1
≤ −h(x(µ1), y(µ1)) + h(x(µ2), y(µ2))

µ2
,

or equivalently
(

1

µ1
− 1

µ2

)
(h(x(µ2), y(µ2))− h(x(µ1), y(µ1)))) ≤ 0,

so h(x(µ2), y(µ2)) ≤ h(x(µ1), y(µ1)) when µ1 < µ2, which proves the second part of

the lemma.
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6.5 Distance from a noncentered point to the central

path

A noncentered point of the primal program (6.11) is a feasible point which does not

satisfy the system (6.19). To calculate the distance from the noncentered points to

the central path, several measures can be introduced. The first is analogous to the

Roos and Vial measure for linear programming (see for instance Den Hertog [11] or

Zhi-Quan Luo et al. [78]). For each interior point x we define the measure

δ1(x, µ) := min y

{∥∥∥∥
Sy

µ
− e

∥∥∥∥ : Qx+ c+Aty = 0

}
, (6.21)

which can be considered as the distance to the central path. The unique solution to

the problem (6.21) is denoted by y(x, µ).

Lemma 6.5.1 For the distance δ1(x, µ) we have the following properties:

i) if x is an interior point of the feasible domain of the problem (6.11) then

δ1(x, µ) = 0⇔ x = x(µ),

and moreover

δ1(x, µ) = 0⇒ y(x, µ) = y(µ).

ii) By using the vector v1(x, µ) satisfying

(AtS−2A)v1(x, µ) = −∇Fµ(x)t, (6.22)

we can obtain the expression

δ1(x, µ) = ‖S−1Av1(x, µ)‖. (6.23)

Proof: The property i) can easily be verified. To verify ii) we define t := Sy
µ which

is equivalent to y = µS−1t. Hence (6.21) can be rewritten

δ1(x, µ) = mint

{
‖t− e‖ : (AtS−1)t = −Qx+ c

µ

}
,

where the right hand side of the equality is the distance from the point e to the

linear variety defined by (AtS−1)t = −Qx+c
µ . By taking into account the expression

(6.6) (which calculates the distance between a point and a linear variety) we obtain

δ1(x, µ) =
∥∥∥(S−1A)v1(x, µ)

∥∥∥ ,
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where using (6.16) v1(x, µ) satisfies

(AtS−2A)v1(x, µ) = −Qx+ c

µ
−AtS−1e = −∇Fµ(x)t,

which completes the proof.

Another measure for the distance to the central path can be obtained by using the

norm defined by the Hessian H(x, µ) defined in (6.17), because the Hessian of a

convex function is positive definite. Hence, we can define the new measure

δ2(x, µ) = ‖v2(x, µ)‖H :=
√
v2(x, µ)tH(x, µ)v2(x, µ), (6.24)

where v2(x, µ) is the Newton step for the barrier function from the point x, i.e., the

solution to the linear system

H(x, µ)v2(x, µ) = −∇Fµ(x)t = −Qx+ c

µ
−AtS−1e. (6.25)

In this case, we also have that if x is an interior point of the feasible domain of the

problem (6.11), then

δ2(x, µ) = 0⇔ x = x(µ).

As demonstrated in Den Hertog [11] there exists a close connection between both

measures. Let µ be a nonnegative real number and let x be a feasible point of (6.11)

with y(x, µ) the optimal solution to the problem (6.21). Then, we have

δ22(x, µ) = −v2(x, µ)t∇Fµ(x)t ≤ δ21(x, µ). (6.26)

6.6 Relationship between the solutions to the semi-

infinite and the discretized problems

The following lemmas are needed to relate the approximate solutions to (6.11) and

(6.2).

Lemma 6.6.1 Let x be a feasible point of (6.11) and let y(x, µ) be the optimal

solution to the problem (6.21) such that δ1(x, µ) ≤ 1. Then, y(x, µ) is dual feasible

and µ(m− δ1(x, µ)
√
m) ≤ sty(x, µ) ≤ µ(m+ δ1(x, µ)

√
m).

Proof: The last of the following equivalences

δ1(x, µ) =

∥∥∥∥
Sy(x, µ)

µ
− e

∥∥∥∥ ≤ 1⇔ −e ≤ Sy(x, µ)

µ
− e ≤ e⇔



104 CHAPTER 6. SOLVING SEMI-INFINITE QUADRATIC PROGRAMS. NUMERICAL RESULTS

⇔ 0 ≤ Sy(x, µ)

µ
≤ 2e⇔ 0 ≤ y(x, µ) ≤ 2µS−1e,

shows that y(x, µ) ≥ 0 which together the property that y(x, µ) is the optimal

solution to the problem (6.21) proves that it is dual feasible. On the other hand,

from the Cauchy Schwarz inequality we have

δ1(x, µ)
√
m =

∥∥∥∥
Sy(x, µ)

µ
− e

∥∥∥∥ ‖e‖ ≥
∣∣∣∣∣
sty(x, µ)

µ
−m

∣∣∣∣∣ .

Then, by using the properties of the absolute value we obtain the following inequal-

ities

m− δ1(x, µ)
√
m ≤ sty(x, µ)

µ
≤ m+ δ1(x, µ)

√
m.

Multiplying all the terms of the above inequalities by µ we can deduce

µ(m− δ1(x, µ)
√
m) ≤ sty(x, µ) ≤ µ(m+ δ1(x, µ)

√
m), (6.27)

which proves the lemma.

Lemma 6.6.1 shows that if we can find a feasible point x of (6.11) making y(x, µ)

the optimal solution to the problem (6.21) and such that δ1(x, µ) ≤ 1 and µ ≤
ǫ/(m+

√
m) then x is an ǫ-minimizer of (6.11) because from (6.27) we can write

1

2
xtQx+ ctx− q∗ ≤ sty(x, µ) ≤ µ(m+ δ1(x, µ)

√
m) ≤ µ(m+

√
m) ≤ ǫ,

where q∗ is the optimal value of (6.11) or (6.13).

The next lemma shows that x is an ǫ-minimizer of (6.2) when it satisfies the

additional condition of being feasible for (6.2).

Lemma 6.6.2 Let T be a compact set of IRs and let N be a finite subset of T .

Suppose that the mappings t→ at and t→ bt are continuous functions on T (where

atx − bt ≤ 0, t ∈ T define the set constraints of (6.2)). If x ∈ G and satisfies

δ1(x, µ) ≤ 1 with µ ≤ ǫ/(m+
√
m), then x is an ǫ-minimizer of (6.2).

Proof: Let Q be a finite set satisfying N ⊂ Q ⊂ T . In that follows Ā will denote

the matrix associated with the set Q. Then, the variable ȳt := (y(x, µ), 0) is a dual

feasible solution to the problem

q∗r := min

{
1

2
xtQx+ ctx : atx− bt ≤ 0, t ∈ Q

}
,
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because Qx + c + Ātȳ = Qx + c + Aty = 0 and ȳ ≥ 0 (with r := card (Q)).

Furthermore, the duality gap s̄tȳ = sty remains unchanged. Hence, by using Lemma

6.6.1 we obtain the inequality

1

2
xtQx+ ctx− q∗r ≤ s̄tȳ = sty ≤ µ(m+ δ1(x, µ)

√
m) ≤ ǫ. (6.28)

Now, by applying Reemtsen’s generalization of the Gustafson Theorem (see [55]),

which takes into account the compactness of T and the continuity of the functions

t → at and t → bt, the values q∗r converge to the minimum q∗ of the problem (6.2)

(for certain sequences of index sets Q with increasing cardinality). Hence, letting

r→ +∞ in the inequality (6.28), we obtain

1

2
xtQx+ ctx− q∗ ≤ ǫ,

which shows that x is indeed an ǫ-minimizer of (6.2).

6.7 The effect of adding a constraint

In the following we denote by (AtS−2A)Q the matrix whose columns are in the index

set Q and we assume that it has full rank. Moreover, we define

‖a‖Q :=
√
at(AtS−2A)−1

Q a (6.29)

where a ∈ IRn. Sometimes, the index set Q will be referred to as {1, 2, . . . ,m} and

χi :=
si

‖ai‖Q
, i = 1, 2, . . . ,m

can be interpreted as the distance to the ith constraint in a certain metric.

Suppose that a new constraint at
m+1x ≤ bm+1 is added with sm+1 > 0 the

corresponding slack variable. The next lemma shows that if the new constraint is

far enough away from the current iterate then adding the constraint hardly influences

the distance δ1(x, µ). Otherwise, we have a bound for the new distance δ̄1(x, µ).

Lemma 6.7.1 The new distance δ̄1(x, µ) is bounded in the form

δ̄1(x, µ) ≤





1+δ1χm+1√
1+χ2

m+1

if χm+1 > δ1,

1 + δ21 if χm+1 ≤ δ1.
(6.30)
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Notice that if χm+1 is large then adding the new constraint at
m+1x ≤ bm+1 hardly

influences the new distance δ̄1(x, µ).

Proof: From the definition (6.21) we have

δ̄1(x, µ)2 = min(ȳ,ξ)





∥∥∥∥∥
1

µ

(
Sȳ

sm+1ξ

)
−
(
e

1

)∥∥∥∥∥

2

: Qx+ c+Atȳ + ξam+1 = 0





that can be written

δ̄1(x, µ)2 = min(ȳ,ξ)

{∥∥∥∥
Sȳ

µ
− e

∥∥∥∥
2

+

(
sm+1ξ

µ
− 1

)2

: Qx+ c+Atȳ + ξam+1 = 0

}
.

Consider △y := ȳ − y(x, µ), where y(x, µ) solves the problem (6.21). Hence,

δ̄1(x, µ)2 = min(△y,ξ)

{∥∥∥∥
Sy(x, µ)

µ
− e+

S△y
µ

∥∥∥∥
2

+

(
sm+1ξ

µ
− 1

)2

: At△y + ξam+1 = 0

}
.

From the relationship

∥∥∥∥
Sy(x, µ)

µ
− e+

S△y
µ

∥∥∥∥
2

≤
(∥∥∥∥
Sy(x, µ)

µ
− e

∥∥∥∥+

∥∥∥∥
S△y
µ

∥∥∥∥
)2

=

(
δ1 +

∥∥∥∥
S△y
µ

∥∥∥∥
)2

we can write

δ̄1(x, µ)2 ≤ min(△y,ξ)

{(
δ1 +

∥∥∥∥
S△y
µ

∥∥∥∥
)2

+

(
sm+1ξ

µ
− 1

)2

: At△y + ξam+1 = 0

}
.

The objective value of the program in the second term of this expression can be

substituted by 1

min(△y,ξ)

{
(δ1 + ‖S△y‖)2 + (sm+1ξ − 1)2 : At△y + ξam+1 = 0

}

so we can write

δ̄1(x, µ)2 ≤ min(△y,ξ)

{
(δ1 + ‖S△y‖)2 + (sm+1ξ − 1)2 : At△y + ξam+1 = 0

}
.

1Let k be a nonzero real number. It is clear that the programming problems

(x∗ − a)2 + (y∗ − b)2 = min
(x,y)

{(x − a)2 + (y − b)2 : tx + sy = 0}

and

(
x̄

k
− a)2 + (

ȳ

k
− b)2 = min

(x,y)
{(

x

k
− a)2 + (

y

k
− b)2 : tx + sy = 0}

have the same objective value because both points (kx∗, ky∗) and ( x̄
k
, ȳ

k
) are feasible points for these

programs.
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By using the expression (6.6), which calculates the distance from a point to a lin-

ear variety, we have that △y = −ξS−2A(AtS−2A)−1am+1 minimizes ‖S△y‖ over

At△y + ξam+1 = 0. Then,

‖S△y‖2 = ξ2at
m+1(AS

−2At)−1am+1 = ξ2‖am+1‖2Q

and

‖S△y‖ = |ξ|‖am+1‖Q
so we can write

δ̄1(x, µ)2 ≤ minξ

{
(δ1 + |ξ|‖am+1‖Q)2 + (sm+1ξ − 1)2

}
.

Defining the function

ψ(ξ) := (δ1 + |ξ|‖am+1‖Q)2 + (sm+1ξ − 1)2 ,

its optimal values must be found among the values

ξ =
sm+1 − δ1‖am+1‖Q
‖am+1‖2Q + s2m+1

and ξ =
sm+1 + δ1‖am+1‖Q
‖am+1‖2Q + s2m+1

,

which have been obtained by solving the equation ψ
′

(ξ) = 0 i.e.

2‖am+1‖Q (δ1 + ξ‖am+1‖Q) + 2sm+1 (sm+1ξ − 1) = 0

when |ξ| = ξ or

−2‖am+1‖Q (δ1 − ξ‖am+1‖Q) + 2sm+1 (sm+1ξ − 1) = 0

when |ξ| = −ξ. By substituting these values in the function ψ(ξ) we can see that it

is minimal for

ξ =
sm+1 − δ1‖am+1‖Q
‖am+1‖2Q + s2m+1

=
χm+1 − δ1

‖am+1‖Q(1 + χ2
m+1)

with the objective value

ψ

(
sm+1 − δ1‖am+1‖Q
‖am+1‖2Q + s2m+1

)
=

(1 + δ1χm+1)
2

1 + χ2
m+1

.

If χm+1 > δ1, then

δ̄21(x, µ) ≤ (1 + δ1χm+1)
2

1 + χ2
m+1

,
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or else χm+1 ≤ δ1 and we can write

δ̄21(x, µ) ≤ (1 + δ1χm+1)
2

1 + χ2
m+1

≤ (1 + δ21)2

1 + χ2
m+1

≤ (1 + δ21)
2,

which proves the lemma.

Let x(µ) be the center for the barrier function Fµ(x), and let x̄(µ) be the new

center for the barrier function F̄µ(x) which has been obtained after adding the new

constraint at
m+1x ≤ bm+1 to the set constrains of the programming problem (6.11).

Denote by s̄m+1(µ) := bm+1− at
m+1x̄(µ) and sm+1(µ) := bm+1− at

m+1x(µ) the slack

variables for the new and the old centers respectively. The next lemma states the

relationship between s̄m+1(µ) and sm+1(µ).

Lemma 6.7.2 Let at
m+1x ≤ bm+1 be the constraint to be added. Then,

s̄m+1(µ) ≥ sm+1(µ).

Proof: If sm+1(µ) ≤ 0 the lemma is true because s̄m+1(µ) > 0. Otherwise, we

can suppose that both centers x(µ) and x̄(µ) are feasible points for the old and the

new feasible sets. Then, using 6.15, we have Fµ(x(µ)) ≤ F̄µ(x(µ)) and F̄µ(x̄(µ)) ≤
Fµ(x̄(µ)) and we can write

ln(sm+1(µ)) = Fµ(x(µ))− F̄µ(x(µ)) ≤ Fµ(x(µ)) − F̄µ(x̄(µ))

≤ Fµ(x(µ))− F̄µ(x̄(µ)) ≤ Fµ(x̄(µ)) − F̄µ(x̄(µ)) = ln(s̄m+1(µ)).

which prove the lemma.

The next lemma gives us an upper bound for the barrier function value of the new

center after adding a constraint. In the following we refer to the barrier function

after adding a new cut as Fm+1
µ (x), and to the new center as xm+1(µ). Moreover,

we denote

‖at‖m := ‖at‖Q (6.31)

and

Gm := {x ∈ IRn : atx+ st = bt, ‖ at ‖= 1, st ≥ 0, t ∈ Q}, (6.32)

where Q = {1, 2, . . . ,m}.

Lemma 6.7.3 Suppose that a new cut at
m+1x ≤ bm+1 is added to the set Gm to

obtain Gm+1. Let x be an interior point of Gm with δ1(x, µ) ≤ 0.25 and the current
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slack value sm+1 = bm+1 − at
m+1x > 0. Then

Fm+1
µ (x)− Fm+1

µ (xm+1(µ)) ≤ 1

3
+ max

{
0, ln

4

χm+1

}

where χm+1 = sm+1/‖am+1‖m.

Proof: Consider χm+1 ≥ 4. According to Lemma 6.7.1 and taking into account

that t√
1+t2

≤ 1 we can write the inequalities

δ̄1(x, µ) ≤ 1 + δ1χm+1√
1 + χ2

m+1

≤ δ1 +
1√

1 + χ2
m+1

≤ 1

4
+

1√
1 + 16

≤ 1

2
.

From the property (see Den Hertog [11] pag 41)

Fµ(x)− Fµ(x(µ)) ≤ δ21(x, µ)

1− δ21(x, µ)
.

when δ1(x, µ) < 1, we can write

Fm+1
µ (x)− Fm+1

µ (xm+1(µ)) ≤ δ̄21
1− δ̄21

≤ 1/4

1− 1/4
=

1

3
. (6.33)

On the other hand, suppose χm+1 < 4. In this case we add an auxiliary constraint

in the form at
0x+ s0 = b0 with χ0 = s0/‖a0‖0 = 4. Hence, we can write

Fm+1
µ (x)− Fm+1

µ (xm+1(µ)) = F 0
µ(x0(µ))− Fm+1

µ (xm+1(µ))

+ F 0
µ(x)− F 0

µ(x0(µ))

+ Fm+1
µ (x)− F 0

µ(x).

(6.34)

The first term is smaller than or equal to 0, since the barrier function in the center

increases after shifting a constraint (see Den Hertog [11]). For the second term, the

property (6.33) gives us again the inequality

F 0
µ(x)− F 0

µ(x0(µ)) ≤ 1

3
.

Finally, for the third term

Fm+1
µ (x)− F 0

µ(x) = ln s0 − ln sm+1 = ln
4‖a0‖0
sm+1

= ln
4

χm+1
.

Substituting this expressions into (6.34) we obtain

Fm+1
µ (x)− Fm+1

µ (xm+1(µ)) ≤ 1

3
+ ln

4

χm+1
. (6.35)

The expressions (6.33) and (6.35) prove the lemma.

The following corollary estimates the variation in the barrier function after a new

cut is added.
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Corollary 6.7.4 The hypotheses are the same as above. If χm+1 ≤ 4 then

Fm
µ (x)− Fm+1

µ (xm+1(µ)) ≤ 1

3
+ ln(4‖am+1‖m).

Proof: From χm+1 ≤ 4 we have

Fm+1
µ (x)− Fm+1

µ (xm+1(µ)) ≤ 1

3
+ ln

4

χm+1
.

or equivalently

Fm
µ (x)− Fm+1

µ (xm+1(µ)) ≤ 1

3
+ ln

4‖am+1‖m
sm+1

+ ln sm+1 =
1

3
+ ln(4‖am+1‖m),

which proves the corollary.

Table 6.2: Center and add constrains procedure for SIQP

Procedure: Center and Add constraints

Input:

0 < ζ < 1 is a centering parameter;

Q = J0 ∪ I is the index set of current constraints;

x is the current iterate;

Output:

Q is the new set of current constraints;

x is the centered solution from Q;

begin

while δ(x, µ) > ζ do

x̃ := x;

compute v := v(x, µ) by using (6.22);

λ̃ := arg min λ>0{Fµ(x+ λv) : st > 0, t ∈ Q};
x := x+ λ̃v;

if ∃t 6∈ Q : st ≤ 0 (by using the Dynamic Mesh procedure) then

x := x̃;

Q := Q∪ {t};
end if

end while

end

To complete the analysis, it is necessary to bound the maximum number of cuts

generated as well as the number of iterations required to recenter the iterate after a

new cut is introduced. The next lemma provides an upper bound for Fm
µ (xm(µ)).
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Lemma 6.7.5 We assume that the feasible set G (defined in (6.1)) contains an

Euclidean ball of radius ν0 centered at x̃. Then, for all m ≥ 2n there exists a

constant M such that

Fm
µ (xm(µ)) ≤ M

√
n

µ
−m ln ν0. (6.36)

Proof: Consider the inequality

Fm
µ (xm(µ)) ≤ Fm

µ (x̃) =
1
2 x̃

tQx̃+ ctx̃

µ
−

m∑

i=1

ln si(x̃).

We have that ‖x̃‖∞ ≤ 1. By defining M := ‖1
2Qx̃ + c‖, the Cauchy-Schwartz

inequality implies ∣∣∣∣x̃
t
(

1

2
Qx̃+ c

)∣∣∣∣ ≤M
√
n,

or equivalently

−M√n ≤ x̃t
(

1

2
Qx̃+ c

)
≤M√n. (6.37)

Taking into account that si(x̃) ≥ ν0, i = 1, . . . ,m the lemma is proved.

Notice, that we have assumed that the feasible set G contains an Euclidean ball

of radius ν0 centered at x̃ (which is an interior point of G). Moreover, we have

G ⊂ Gm ⊂ [0, 1]n. Hence, there exists an Euclidean ball of radius ν1 centered at x̃

which contains [0, 1]n and the following relationship can be written.

B(x̃, ν0) ⊂ G ⊂ Gm ⊂ [0, 1]n ⊂ B(x̃, ν1). (6.38)

Now, we will obtain simple bounds for the slack variables si, i = 1, . . . ,m.

Lemma 6.7.6 Let Gj, j = 1, . . . ,m be as defined in (6.32). Then, we have

i) 0 ≤ sj ≤ 1, j = 1, . . . , 2n,

ii) 0 ≤ sj ≤
√
n+ ν1, j = 2n+ 1, . . . ,m.

Proof:

i) From 0 ≤ xj ≤ 1, j = 1, . . . , n, the slack variables sj = 1 − xj and sn+j = xj,

j = 1, . . . , n satisfy 0 ≤ sj ≤ 1, j = 1, . . . , 2n.
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ii) For all j = 2n+ 1, . . . ,m, we have

0 < sj = bj − at
jx

= sj(x̃) + at
j x̃− at

jx

≤ ν1 + ‖aj‖‖x̃− x‖
≤ ν1 + ‖x̃− x‖ ( from ‖aj‖ = 1)

≤ ν1 +
√
n ( from G ⊂ [0, 1]n).

Lemma 6.7.7 Let zj = (zj
1, . . . , z

j
n) be the iterate after adding the jth cut to Gj−1,

j = 2n+ 1, . . . ,m and the centering is performed. Then, we have

i) Z−2
n + (I − Zn)−2 � diag (8, . . . , 8), where Zn = diag (zj

1, . . . , z
j
n), j = 2n +

1, . . . ,m,

ii) ‖aj‖2j−1 ≤ 1
8 , j = 2n + 1, . . . ,m.

Proof:

i) From 1
t2 + 1

1−t2 ≥ 8, t ∈]0, 1[, so 1

(zj
i
)2

+ 1

(1−zj
i
)2
≥ 8, i = 1, . . . , n. Thus,

Z−2
n + (I − Zn)−2 � diag (8, . . . , 8).

ii) From the definitions (6.29) and (6.31) we can write

‖aj‖2j−1 = at
j

(∑j−1
i=1

aiat
i

s2
i
(zj)

)−1

aj

≤ at
j

(∑2n
i=1

aiat
i

s2
i
(zj)

)−1

aj (from Sherman-Morrison)

= at
j

(∑n
i=1

(
aia

t
i

(zj
i
)2

+
aia

t
i

(1−zj
i
)2

))−1

aj

= at
j

(
Z−2

n + (I − Zn)−2
)−1

aj (Zn = diag(zj
1, . . . , z

j
n))

≤ 1
8a

t
jaj = 1

8 ( from ‖aj‖ = 1).

The following lemma uses a construction developed by Nesterov [48] which bounds

the Hessian and is necessary in order to prove finite convergence.
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Lemma 6.7.8 Let m ≥ 2n and let s be s = sm(x) with x ∈ Gm. Define

B2n := 8I, Bm+1 := Bm +
am+1a

t
m+1

(ν1 +
√
n)2

.

Then,

At
mS

−2
m Am � Bm.

Proof:

At
mS

−2
m Am = Z−2

n + (I − Zn)−2 +
∑m

i=2n+1
aia

t
i

s2
i

� Z−2
n + (I − Zn)−2 + 1

(ν1+
√

n)2
∑m

i=2n+1 aia
t
i

� 8I + 1
(ν1+

√
n)2
∑m

i=2n+1 aia
t
i

= Bm.

By defining (ωm)2 := at
m+1(B

m)−1am+1 we obtain

(ωm)2 ≥ at
m+1(A

t
mS

−2
m Am)−1am+1 = ‖am+1‖2m. (6.39)

Lemma 6.7.9

m∑

j=2n+1

(ωm)2 ≤ 2n(ν1 +
√
n)2 ln

(
1 +

m+ 1− 2n

8n(ν1 +
√
n)2

)
.

Proof: By using the identity

det (Q+ qqt) = det (Q)(1 + qtQ−1q), for all Q � 0, q ∈ IRn,

we have
det Bm+1 = det

(
Bm + 1

(ν1+
√

n)2
am+1a

t
m+1

)

= det Bm
(
1 + (ωm)2

(ν1+
√

n)2

)
.

Hence,

ln det Bm+1 = ln det Bm + ln

(
1 +

(ωm)2

(ν1 +
√
n)2

)
.

From the inequality ln(1 + t) ≥ t/2, t ∈ [0, 1] we obtain

ln det Bm+1 ≥ ln det Bm + (ωm)2/
(
2(ν1 +

√
n)2
)

≥ ln det B2n +
∑m

j=2n+1(ω
j)2/

(
2(ν1 +

√
n)2
)

≥ n ln 8 +
∑m

j=2n+1(ω
j)2/

(
2(ν1 +

√
n)2
)
.
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The geometric inequality 2 implies

1

n
ln det Bm+1 ≤ ln

trace Bm+1

n
= ln

(
8 +

m+ 1− 2n

n(ν1 +
√
n)2

)
,

so we can write
m∑

j=2n+1

(ωj)2

2(ν1 +
√
n)2
≤ n ln

(
8 +

m+ 1− 2n

n(ν1 +
√
n)2

)
− n ln 8

or
m∑

j=2n+1

(ωj)2 ≤ 2n(ν1 +
√
n)2 ln

(
1 +

m+ 1− 2n

8n(ν1 +
√
n)2

)
.

Remark 5 As an additional information, remember that given a n × n matrix A

both the determinant and the trace are coefficients of its polynomial characteristic.

Moreover, when the matrix A is symmetric then all its eigenvalues are real numbers.

The arithmetic-geometric mean inequality is then satisfied by using the eigenvalues

of the matrix A. Hence, the inequality

1

n
ln det A ≤ ln

trace A

n

can be deduced from the invariance of the determinant and the trace of A.

The next proposition proves that the number of cuts which can be generated by

the procedure Center and add constrains is finite because the value Fm
µ (xm(µ))

decreases slower than a linear function of m, which is a upper bound of Fm
µ (xm(µ))

(see (6.36)).

Proposition 6.7.10 Fix µ. A feasible solution is found the first time that m satis-

fies

−(M + M̄ )
√
n

(m+ 1)µ
+ ln ν0 −

m+ 1− 2n

m+ 1
α ≥ 1

2
ln
n+ 2n(ν1 +

√
n)2 ln

(
1 + m+1−2n

8n(ν1+
√

n)2

)

m+ 1

with α = 1
3 + ln 4.

2For any two positive vectors u, v ∈ IRn,

n∏

j=1

(
uj

vj

)vj

≤

(∑n

j=1
uj∑n

j=1
vj

)∑n

j=1
vj

.

When v is the all-one vector e the geometric inequality reduces to the arithmetic-geometric mean

inequality (we refer to [24] for a proof).
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Proof: Consider x2n(µ) := (x2n
1 (µ), . . . , x2n

n (µ)). From (6.37) we can write

F 2n
µ (x2n(µ)) =

x2n(µ)tQx2n(µ)/2 + ctx2n(µ)

µ
−

n∑

j=1

(lnx2n
j (µ) + ln(1− x2n

j (µ))).

Using the concavity of ln t we obtain

F 2n
µ (x2n(µ)) ≥ x2n(µ)tQx2n(µ)/2 + ctx2n(µ)

µ
− n ln

1

2
.

Define M̄ = min
{
‖Qx/2 + c‖2 : x ∈ [0, 1]n

}
. Hence, by using the Cauchy-Schwartz

inequality (as in expression (6.37)) and remembering that G ⊂ Gm ⊂ [0, 1]n we

deduce

F 2n
µ (x2n(µ)) ≥ −M̄

√
n

µ
− n ln

1

2
. (6.40)

From the Corollary 6.7.4 we can deduce the inequality

F 2n
µ (x2n(µ))− Fm+1

µ (xm+1(µ)) ≤ (m+ 1− 2n)α+
1

2

m+1∑

j=2n+1

ln ‖aj‖2j−1. (6.41)

Substituting (6.40) in (6.41) and rearranging terms we obtain

Fm+1
µ (xm+1(µ)) ≥ −M̄

√
n

µ
− n ln

1

2
− (m+ 1− 2n)α− 1

2

m+1∑

j=2n+1

ln ‖aj‖2j−1.

By using (6.36) we have

M
√
n

µ
− (m+ 1) ln ν0 ≥ −

M̄
√
n

µ
− n ln

1

2
− (m+ 1− 2n)α− 1

2

m+1∑

j=2n+1

ln ‖aj‖2j−1,

or equivalently

(M + M̄)
√
n

µ
+ n ln

1

2
− (m+ 1) ln ν0 ≥ −(m+ 1− 2n)α− 1

2

m+1∑

j=2n+1

ln ‖aj‖2j−1.

Rearranging terms and dividing by m+ 1 we obtain

−(M + M̄)
√
n

(m+ 1)µ
+ ln ν0 −

m+ 1− 2n

m+ 1
α ≤ 1

2(m+ 1)



2n ln
1

2
+

m+1∑

j=2n+1

ln ‖aj‖2j−1



 .

From the concavity of ln t we can write

1

2(m+ 1)



2n ln
1

2
+

m+1∑

j=2n+1

ln ‖aj‖2j−1



 ≤ 1

2
ln
n+

∑m+1
j=2n+1 ‖aj‖2j−1

m+ 1
.
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From the expression (6.39) we deduce

1

2
ln
n+

∑m+1
j=2n+1 ‖aj‖2j−1

m+ 1
≤ 1

2
ln
n+

∑m+1
j=2n+1(ω

j)2

m+ 1
.

From the lemma (6.7.9) we have

1

2
ln
n+

∑m+1
j=2n+1(ω

j)2

m+ 1
≤ 1

2
ln
n+ 2n(ν1 +

√
n)2

(
1 + m+1−2n

8n(ν1+
√

n)2

)

m+ 1
.

Finally, the inequality

−(M + M̄ )
√
n

(m+ 1)µ
+ ln ν0 −

m+ 1− 2n

m+ 1
α ≤ 1

2
ln
n+ 2n(ν1 +

√
n)2 ln

(
1 + m+1−2n

8n(ν1+
√

n)2

)

m+ 1

can be written.

Notice that the left hand side of the above inequality is equivalent to a constant

of the order ln ν0 and the right hand side decreases to −∞ when m increases. Hence,

the value of m increases until the left hand side is greater than the right hand side,

the inequality changes, and a suitable feasible solution is found. This process is

always finite so the number of cuts generated must also be finite.

6.8 The effect of deleting a constraint

Suppose that the constraint at
kx + sk = bk, k ∈ Q is removed from the given

problem, while assuming that the remaining constraint matrix still has full rank.

Denote Q̄ := Q \ {k} and χ̄k = sk/‖ak‖Q̄. Ā denotes the matrix obtained from A

by removing the kth-row. Hence, we have the relationship

ĀtS̄−2Ā = AtS−2A− aka
t
k

s2k
.

Since ĀtS̄−2Ā is invertible, from Sherman-Morrison’s formula we obtain the rela-

tionship between the inverses

(ĀtS̄−2Ā)−1 = (AtS−2A)−1 +
(AtS−2A)−1aka

t
k(A

tS−2A)−1

s2k − at
k(A

tS−2A)−1ak
,

which will be used in the next lemma.



6.8. THE EFFECT OF DELETING A CONSTRAINT 117

Lemma 6.8.1 Let k ∈ Q be the index of the removed constraint for the given prob-

lem, with sk = bk − at
kx the slack value. We assume that the remaining constraint

matrix still has full rank. Then,

χk > 1 and χ̄k =
√
χ2

k − 1.

Proof: Multiplying Sherman- Morrison’s formula from the left by at
k and from the

right by ak we obtain

at
k(Ā

tS̄−2Ā)−1ak = at
k(A

tS−2A)−1ak +
at

k(A
tS−2A)−1aka

t
k(A

tS−2A)−1ak

s2k − at
k(A

tS−2A)−1ak
,

which can be expressed in the form

‖ak‖2Q̄ = ‖ak‖2Q +
‖ak‖4Q

s2k − ‖ak‖2Q
=

s2k‖ak‖2Q
s2k − ‖ak‖2Q

,

or equivalently
1

‖ak‖2Q̄
=
s2k − ‖ak‖2Q
s2k‖ak‖2Q

=
1

‖ak‖2Q
− 1

s2k
.

Hence, by multiplying both terms of this equality by the value s2k we obtain

s2k
‖ak‖2Q̄

=
s2k
‖ak‖2Q

− 1,

or equivalently

0 ≤ χ̄2
k = χ2

k − 1.

Suppose that χ2
k = 1 and define P := S−1A(AtS−2A)−1AtS−1, which is an orthog-

onal projector. It is clear that the following assertions are equivalents

i) χ2
k = 1,

ii) at
k(A

tS−2A)−1ak = s2k,

iii) etkS
−1A(AtS−2A)−1AtS−1ek = etkPek = 1.

From ‖ek‖ = 1 and etkPek = 1, by using the properties explained in the example

6.3.5, we can deduce that ek = S−1Atλ or equivalently ske
t
k = λtA. This means that

if Ax = 0 then xk = 0 i.e. the kth-column of A does not have linear dependence on

the other columns of the matrix A. Hence, A decreases in rank when the kth-row of

A is removed. This is a contradiction because we have assumed that the new matrix

Ā has full rank. Therefore, χ2
k > 1, which proves the lemma.
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Lemma 6.8.2 Suppose that the constraint at
kx + sk = bk, k ∈ Q is deleted. The

new distance δ̄1(x, µ) is bounded in the form

δ̄1(x, µ) ≤ δ1(x, µ) +
1 + δ1(x, µ)

χ̄k
.

Proof: After removing the constraint at
kx + sk = bk, k ∈ Q we have the new

matrices Ā and S̄. Hence, we can write

δ̄1(x, µ) = minȳ

{∥∥∥∥∥
S̄ȳ

µ
− e

∥∥∥∥∥ : Qx+ c+ Ātȳ = 0

}
. (6.42)

The point y(x, µ) which solves the minimization problem for δ1(x, µ) can be rewritten

in the form

y(x, µ) =

(
η

ȳ(x, µ)

)

and, in this case, the set constraints of the program (6.42) can be rewritten as

Qx+ c+ Ātȳ(x, µ) + ηak = 0.

Thus,

δ21(x, µ) =

∥∥∥∥
Sy(x, µ)

µ
− e

∥∥∥∥
2

=

∥∥∥∥∥
S̄ȳ(x, µ)

µ
− e

∥∥∥∥∥

2

+

(
skη

µ
− 1

)2

and we can deduce

δ1(x, µ) ≥
∥∥∥∥∥
S̄ȳ(x, µ)

µ
− e

∥∥∥∥∥ (6.43)

and

δ1(x, µ) ≥
∣∣∣∣
skη

µ
− 1

∣∣∣∣ .

From the last inequality we obtain

δ1(x, µ)− 1 ≤ skη

µ
≤ δ1(x, µ) + 1,

which is equivalent to

−δ1(x, µ) + 1

sk
≤ δ1(x, µ)− 1

sk
≤ η

µ
≤ δ1(x, µ) + 1

sk

so we have ∣∣∣∣
η

µ

∣∣∣∣ ≤
δ1(x, µ) + 1

sk
. (6.44)

By defining △y := ȳ − ȳ(x, µ) we can rewrite (6.42) in the form

δ̄1(x, µ) = min△y

{∥∥∥∥∥
S̄ȳ(x, µ)

µ
− e+

S̄△y
µ

∥∥∥∥∥ : Āt△y = ηak

}
.
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Hence, we obtain

δ̄1(x, µ) ≤ min△y

{∥∥∥ S̄ȳ(x,µ)
µ − e

∥∥∥+
∥∥∥ S̄△y

µ

∥∥∥ : Āt△y = ηak

}

≤ δ1(x, µ) + min△y

{
1
µ

∥∥S̄△y
∥∥ : Āt△y = ηak

}

= δ1(x, µ) + η
µ ‖ak‖Q̄

≤ δ1(x, µ) + 1+δ1(x,µ)
sk

‖ak‖Q̄ ,

where the inequalities are deduced from (6.43) and (6.44) respectively, and the equal-

ity is deduced by using the expression (6.6), which calculates the distance from a

point to a linear variety. Hence, we have that

△y = ηS̄−2Āt(ĀS̄−2Āt)−1ak = ηS−2
Q̄ At

Q̄(AQ̄S
−2
Q̄ At

Q̄)−1ak

minimizes
∥∥S̄△y

∥∥ on Āt△y = ηak. By using χ̄k = sk/‖ak‖Q̄ we can write

δ̄1(x, µ) ≤ δ1(x, µ) +
1 + δ1(x, µ)

χ̄k
,

which proves the lemma.

To analyze the complexity in this case we suppose that sm = bm − at
km ≥ 4 in

an iterate near the path. Lemma 6.8.2 gives

δ̄1(x, µ) ≤ δ1(x, µ) +
(1 + δ1(x, µ))‖ak‖m−1

sm
=

1

4
+

1 + 1/4

4

1√
2
<

1

2
.

From this point we have to recenter, and only a finite number of constraints can be

added.

6.9 The build-up and down quadratic semi-infinite log-

arithmic barrier algorithm

The algorithm approximately follows the central path, which leads to an optimal

solution to the problem. This is accomplished by repeated reduction of the barrier

parameter µ. When an iterate becomes infeasible or near infeasible (Dynamic Mesh

procedure), a new cut is added by using the Center and Add constraints procedure

(build-up), and the algorithm attempts to move to a new central point. When a
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Table 6.3: Delete constraints procedure for SIQP

Procedure: Delete constraints

Input:

αd is a deleting parameter value;

Q = J0 ∪ I is the index set of the current constraints;

x is the current iterate;

Output:

Q is the new set of current constraints;

x is the centered for the index set Q;

begin

for t ∈ Q\J0 do

if ∃t ∈ Q\J0 : st ≥ αd then

Q := Q\{t};
if δ(x, µ) > ζ then Center and Add constraints;

end if

end for

end

constraint is nonbinding in an optimal solution it will be removed by using the

Delete constraints procedure (build-down) from our current system. Then, we re-

center as necessary with respect to the updated constraint subset and by using the

current barrier parameter µ. The main difficulty is to guarantee that µ can be suc-

cessfully reduced in such a way that the algorithm terminates finitely. Because of

difficulties with numeric stability the slack variables must be checked. The algorithm

finishes when the smallest slack value is smaller than a threshold value, which can

be set, for instance, at machine precision (or another suitable value). The details of

the method are given below.

Proposition 6.9.1 Let µ0 be the initial barrier parameter and let ǫ be a positive

number. The algorithm ends with a gap sty(x, µ) ≤ ǫ after at most

1

θ
ln

(m+
√
m)µ0

ǫ

iterations.

Proof: The algorithm stop when µk = (1 − θ)kµ0 ≤ ǫ/(m +
√
m). Indeed, taking

logarithms

k ln(1− θ) ≤ ln
ǫ

(m+
√
m)µ0
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Table 6.4: Logarithmic barrier algorithm for SIQP

The build-up and build-down algorithm

Input:

µ = µ0 is the initial barrier parameter value;

µ̄ is the machine precision or another suitable stopping parameter;

ǫ > 0 is the accuracy of the final solution;

0 < θ < 1 is the reduction parameter to the barrier parameter µ;

0 < ζ < 1 is a centering parameter;

Q is the initial subset of constraints with | Q |= m ≥ 2n;

x := x0 is a given interior point with y(x, µ) the solution

to the problem (6.21) and such that δ(x, µ) < ζ;

Output:

x is an ǫ-minimizer of (6.2);

begin

while µ > ǫ/(m+
√
m) do

Delete constraints;

µ := (1− θ)µ;

Center and Add constraints;

end while

end

or equivalently

−k ln(1− θ) ≥ ln
(m+

√
m)µ0

ǫ
.

From θ ≤ − ln(1 − θ), we can write

k ≥ 1

θ
ln

(m+
√
m)µ0

ǫ
.

From Lemma 6.6.1, if δ1(x, µ) ≤ 1 then

sty(x, µ) ≤ µk(m+
√
m) ≤ ǫ

(m+
√
m)

(m+
√
m) = ǫ.
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6.10 Semi-infinite quadratic test problem and numeri-

cal results

Consider

G =
{
(x1, x2, x3) : (x1 − a)2 + (x2 − b)2 + (x3 − c)2 ≤ r2

}
.

The solution of the quadratic problem

min
{
‖(x1, x2, x3)‖2 : (x1, x2, x3) ∈ G

}
, (6.45)

can be obtained directly (see Table 6.5 ) by using the expression

(
1− r√

a2 + b2 + c2

)
(a, b, c).

On the other hand, by using the polar coordinates (r, θ1, θ2) with 0 ≤ θ1 ≤ 2π and

0 ≤ θ2 ≤ π, the tangent hyperplanes to ∂G can be expressed in the form

3∑

i=1

ai(θ1, θ2)xi = d(θ1, θ2),

where
a1(θ1, θ2) = cos θ1 sin θ2,

a2(θ1, θ2) = sin θ1 sin θ2,

a3(θ1, θ2) = cos θ2,

d(θ1, θ2) = r + a cos θ1 sin θ2 + b sin θ1 sin θ2 + c cos θ2.

Thus, we have

G = {(x1, x2, x3) :
3∑

i=1

ai(θ1, θ2)xi ≤ d(θ1, θ2), (θ1, θ2) ∈ [0, 2π] × [0, π]}

and the problem (6.45) can be rewritten as the semi-infinite quadratic programming

problem
minimize ‖(x1, x2, x3)‖2

subject to:
∑3

i=1 ai(θ1, θ2)xi ≤ d(θ1, θ2),
0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ π.

(6.46)

This example is used to illustrate the concepts which are dealt with in this chapter,

in order to directly obtain the solution for the problem (6.46). Then, we compare it

with the solution calculated by using the semi-infinite algorithm. In Table 6.5, it can

be seen the characteristics and exact solutions of the problem (6.46). In Table 6.6, it

can be seen the solution calculated from the semi-infinite algorithm, where iter means
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the number of total iterations, fact indicates the number of matrix factorizations,

cons are the number of total constraints used, obj.val. is the objective value and

time is the CPU time in seconds. For all instances, the number of subdivisions

for both parameter intervals [0, 2π] and [0, π] is 512, the initial µ is 1000 and the

precision 10e − 5. Moreover, the number of initial constraints, which define the

initial bounded polytope, is 6 for instances of dimension 2, and 8 for instances of

dimension 3. Notice, that the initial polytope include the constrains that are simple

bounds on the variables as it can be seen, for example, in Figure 6.2.

Table 6.5: Characteristics and exact instance solutions of the semi-infinite quadratic

test problem

Instance a b c radius distance

c001d2 2.0 2.0 0.0 1.75 1.0784

c002d2 2.0 3.0 0.0 1.75 1.8556

c003d2 4.0 2.0 0.0 1.75 2.7221

c004d2 10.0 15.0 0.0 9.00 9.0278

c005d2 4.0 4.0 0.0 4.00 1.6568

c006d2 4.0 4.0 0.0 6.00 0.0000

c001d3 2.0 2.0 2.0 1.75 1.7141

c002d3 2.0 3.0 3.0 1.75 2.9404

c003d3 4.0 2.0 3.0 1.75 3.6351

c004d3 10.0 15.0 20.0 9.00 17.9258

c005d3 4.0 4.0 4.0 4.00 2.9282

c006d3 3.0 3.0 3.0 6.00 0.0000

6.11 Graphical description and numerical results of the

instance c003d2

In the Figure 6.2 we have a graphical description for computational results of the

instance c003d2, in which we can see how the added constraints are concentrated

around the optimal solution. The numerical results directly obtained, by application

of the SIQP algorithm to the instance c003d2, are included in Appendix B.



124 CHAPTER 6. SOLVING SEMI-INFINITE QUADRATIC PROGRAMS. NUMERICAL RESULTS

Table 6.6: Instance solutions of the semi-infinite quadratic test problem by using

semi-infinite algorithm

Instance iter fact cons obj.val. time

c001d2 16 56 12 1.0784 14.23

c002d2 16 50 12 1.8855 12.41

c003d2 16 62 15 2.7221 15.60

c004d2 16 57 15 9.0277 15.65

c005d2 16 55 12 1.6568 17.13

c006d2 15 29 6 0.0000 5.99

c001d3 16 70 21 1.7141 232.06

c002d3 16 66 20 2.9404 215.80

c003d3 16 77 24 3.6351 268.09

c004d3 16 74 26 17.9258 239.03

c005d3 16 69 18 2.9282 262.88

c006d3 15 26 6 0.0000 4.72

–1

0

1

2

3

4

5

y

2 4 6x

Figure 6.2: Description of the instance c003d2 by using semi-infinite algorithm. We

can see how the added constraints are concentrated around the optimal solution.

6.12 Optimal d.c. representation of the power hydro-

generation functions

In Tables 6.7, 6.8, 6.9 and 6.10, z(x) represents the coefficients of the power hydro-

generation function, the pair (f(x), g(x)) is a suitable d.c. representation of z(x)
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(z(x) = f(x) − g(x)) and v(x) = f(x) + g(x). In Tables 6.7 and 6.8 we describe

the original d.c. representation of the power hydrogeneration function for every

reservoir in the hydrogeneration systems. On the other hand, the optimal d.c. rep-

resentation of the power hydrogeneration functions are described in Tables 6.9 and

6.10. From the optimal d.c. representation of the power hydrogeneration functions

we can obtain a more efficient d.c. representation of the whole functions in the

problem (2.15), but notice, that they are not the optimal d.c. representation for the

whole functions in the problem, which would have required to solve a very difficult

semi-infinite programming problem to obtain them.
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Table 6.7: Initial d.c. representation of the power hydrogeneration function for the

reservoirs R1 and R3

n Basis z(x) f(x) g(x) v(x)

1 x2 −.581395E − 04 0.957033E − 01 0.957614E − 01 0.191465E + 00

2 y2 0.000000E + 00 0.478517E − 01 0.478517E − 01 0.957033E − 01

3 z2 0.000000E + 00 0.478517E − 01 0.478517E − 01 0.957033E − 01

4 xy 0.957033E − 01 0.957033E − 01 0.000000E + 00 0.957033E − 01

5 xz 0.957033E − 01 0.957033E − 01 0.000000E + 00 0.957033E − 01

6 yz 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00

norm 0.270731E+00

7 x3 −.380000E − 11 0.191214E − 03 0.191214E − 03 0.382427E − 03

8 y3 −.540000E − 11 0.119509E − 03 0.119509E − 03 0.239017E − 03

9 z3 −.540000E − 11 0.119509E − 03 0.119509E − 03 0.239017E − 03

10 x2y −.170000E − 11 0.143410E − 03 0.143410E − 03 0.286821E − 03

11 x2z −.170000E − 11 0.143410E − 03 0.143410E − 03 0.286821E − 03

12 xy2 −.143410E − 03 0.717051E − 04 0.215115E − 03 0.286821E − 03

13 xz2 −.143410E − 03 0.717051E − 04 0.215115E − 03 0.286821E − 03

14 y2z −.161000E − 11 0.717051E − 04 0.717051E − 04 0.143410E − 03

15 yz2 −.161000E − 11 0.717051E − 04 0.717051E − 04 0.143410E − 03

16 xyz −.143410E − 03 0.000000E + 00 0.143410E − 03 0.143410E − 03

norm 0.807015E-03

17 x4 −.450000E − 15 0.303163E − 07 0.303163E − 07 0.606326E − 07

18 y4 0.181000E − 14 0.909488E − 07 0.909488E − 07 0.181898E − 06

19 z4 −.497000E − 14 0.909488E − 07 0.909488E − 07 0.181898E − 06

20 x3y 0.000000E + 00 0.606326E − 07 0.606326E − 07 0.121265E − 06

21 x3z −.181000E − 14 0.606325E − 07 0.606326E − 07 0.121265E − 06

22 xy3 0.121265E − 06 0.181898E − 06 0.606326E − 07 0.242530E − 06

23 y3z 0.360000E − 14 0.181898E − 06 0.181898E − 06 0.363795E − 06

24 xz3 0.121265E − 06 0.181898E − 06 0.606326E − 07 0.242530E − 06

25 yz3 −.720000E − 14 0.181898E − 06 0.181898E − 06 0.363795E − 06

26 x2yz 0.000000E + 00 0.242530E − 06 0.242530E − 06 0.485060E − 06

27 xy2z 0.121265E − 06 0.363795E − 06 0.242530E − 06 0.606325E − 06

28 xyz2 0.121265E − 06 0.363795E − 06 0.242530E − 06 0.606325E − 06

29 x2y2 0.000000E + 00 0.151581E − 06 0.151581E − 06 0.303163E − 06

30 x2z2 −.810000E − 14 0.151581E − 06 0.151581E − 06 0.303163E − 06

31 y2z2 −.540000E − 14 0.272846E − 06 0.272846E − 06 0.545693E − 06

norm 0.139059E-05
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Table 6.8: Initial d.c. representation of the power hydrogeneration function for the

reservoirs R2 and R4

n Basis z(x) f(x) g(x) v(x)

1 x2 0.000000E + 00 0.584999E − 01 0.584999E − 01 0.117000E + 00

2 y2 0.000000E + 00 0.292500E − 01 0.292500E − 01 0.584999E − 01

3 z2 0.000000E + 00 0.292500E − 01 0.292500E − 01 0.584999E − 01

4 xy 0.584999E − 01 0.584999E − 01 0.000000E + 00 0.584999E − 01

5 xz 0.584999E − 01 0.584999E − 01 0.000000E + 00 0.584999E − 01

6 yz 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00

norm 0.165463E + 00

7 x3 −.169000E − 11 0.861410E − 04 0.861410E − 04 0.172282E − 03

8 y3 −.240000E − 11 0.538381E − 04 0.538381E − 04 0.107676E − 03

9 z3 −.240000E − 11 0.538381E − 04 0.538381E − 04 0.107676E − 03

10 x2y −.720000E − 12 0.646058E − 04 0.646058E − 04 0.129212E − 03

11 x2z −.720000E − 12 0.646058E − 04 0.646058E − 04 0.129212E − 03

12 xy2 −.646058E − 04 0.323029E − 04 0.969087E − 04 0.129212E − 03

13 xz2 −.646058E − 04 0.323029E − 04 0.969087E − 04 0.129212E − 03

14 y2z −.720000E − 12 0.323029E − 04 0.323029E − 04 0.646058E − 04

15 yz2 −.720000E − 12 0.323029E − 04 0.323029E − 04 0.646058E − 04

16 xyz −.646058E − 04 0.000000E + 00 0.646058E − 04 0.646058E − 04

norm 0.363557E − 03

17 x4 −.290000E − 15 0.193487E − 07 0.193487E − 07 0.386973E − 07

18 y4 0.115000E − 14 0.580460E − 07 0.580460E − 07 0.116092E − 06

19 z4 −.317000E − 14 0.580460E − 07 0.580460E − 07 0.116092E − 06

20 x3y 0.000000E + 00 0.386973E − 07 0.386973E − 07 0.773946E − 07

21 x3z −.115000E − 14 0.386973E − 07 0.386973E − 07 0.773946E − 07

22 xy3 0.773947E − 07 0.116092E − 06 0.386973E − 07 0.154789E − 06

23 y3z 0.230000E − 14 0.116092E − 06 0.116092E − 06 0.232184E − 06

24 xz3 0.773946E − 07 0.116092E − 06 0.386973E − 07 0.154789E − 06

25 yz3 −.460000E − 14 0.116092E − 06 0.116092E − 06 0.232184E − 06

26 x2yz 0.000000E + 00 0.154789E − 06 0.154789E − 06 0.309579E − 06

27 xy2z 0.773947E − 07 0.232184E − 06 0.154789E − 06 0.386973E − 06

28 xyz2 0.773946E − 07 0.232184E − 06 0.154789E − 06 0.386973E − 06

29 x2y2 0.000000E + 00 0.967433E − 07 0.967433E − 07 0.193487E − 06

30 x2z2 −.519000E − 14 0.967433E − 07 0.967433E − 07 0.193487E − 06

31 y2z2 −.350000E − 14 0.174138E − 06 0.174138E − 06 0.348276E − 06

norm 0.887511E − 06
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Table 6.9: Optimal d.c. representation of the power hydrogeneration function for

the reservoirs R1 and R3 obtained by using the semi-infinite algorithm

n Basis z(x) f(x) g(x) v(x)

1 x2 −.581395E − 04 0.324835E − 01 0.325416E − 01 0.650251E − 01

2 y2 0.000000E + 00 0.336645E − 01 0.336645E − 01 0.673291E − 01

3 z2 0.000000E + 00 0.208359E − 01 0.208359E − 01 0.416718E − 01

4 xy 0.957033E − 01 0.562928E − 01 −.394105E − 01 0.168823E − 01

5 xz 0.957033E − 01 0.440984E − 01 −.516049E − 01 −.750651E − 02

6 yz 0.000000E + 00 0.218007E − 01 0.218007E − 01 0.436015E − 01

norm 0.112874E + 00

7 x3 −.253515E − 06 0.103109E − 04 0.105644E − 04 0.208753E − 04

8 y3 0.000000E + 00 0.363911E − 04 0.363911E − 04 0.727822E − 04

9 z3 0.000000E + 00 0.373155E − 04 0.373155E − 04 0.746311E − 04

10 x2y 0.000000E + 00 0.516392E − 04 0.516392E − 04 0.103278E − 03

11 x2z 0.000000E + 00 0.509149E − 04 0.509149E − 04 0.101830E − 03

12 xy2 −.143410E − 03 −.709266E − 04 0.724837E − 04 0.155707E − 05

13 xz2 −.143410E − 03 −.726222E − 04 0.707881E − 04 −.183406E − 05

14 y2z 0.000000E + 00 0.404350E − 04 0.404350E − 04 0.808701E − 04

15 yz2 0.000000E + 00 0.390559E − 04 0.390559E − 04 0.781119E − 04

16 xyz −.143410E − 03 −.728244E − 04 0.705858E − 04 −.223860E − 05

norm 0.212110E − 03

17 x4 0.000000E + 00 0.137176E − 08 0.137176E − 08 0.274351E − 08

18 y4 0.000000E + 00 0.604150E − 07 0.604150E − 07 0.120830E − 06

19 z4 0.000000E + 00 0.472810E − 07 0.472810E − 07 0.945619E − 07

20 x3y 0.000000E + 00 0.492811E − 08 0.492811E − 08 0.985621E − 08

21 x3z 0.000000E + 00 0.466677E − 08 0.466677E − 08 0.933354E − 08

22 xy3 0.121265E − 06 0.669363E − 07 −.543288E − 07 0.126076E − 07

23 y3z 0.000000E + 00 0.408544E − 07 0.408544E − 07 0.817089E − 07

24 xz3 0.121265E − 06 0.540632E − 07 −.672019E − 07 −.131386E − 07

25 yz3 0.000000E + 00 0.357566E − 07 0.357566E − 07 0.715132E − 07

26 x2yz 0.000000E + 00 0.465939E − 07 0.465939E − 07 0.931878E − 07

27 xy2z 0.121265E − 06 0.588472E − 07 −.624179E − 07 −.357080E − 08

28 xyz2 0.121265E − 06 0.581846E − 07 −.630805E − 07 −.489580E − 08

29 x2y2 0.000000E + 00 0.649961E − 07 0.649961E − 07 0.129992E − 06

30 x2z2 0.000000E + 00 0.553756E − 07 0.553756E − 07 0.110751E − 06

31 y2z2 0.000000E + 00 0.360574E − 07 0.360574E − 07 0.721147E − 07

norm 0.280964E − 06
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Table 6.10: Optimal d.c. representation of the power hydrogeneration function for

the reservoirs R2 and R4 obtained by using the semi-infinite algorithm

n Basis z(x) f(x) g(x) v(x)

1 x2 0.000000E + 00 0.224546E − 01 0.224546E − 01 0.449092E − 01

2 y2 0.000000E + 00 0.123096E − 01 0.123096E − 01 0.246192E − 01

3 z2 0.000000E + 00 0.130552E − 01 0.130552E − 01 0.261103E − 01

4 xy 0.584999E − 01 0.293609E − 01 −.291390E − 01 0.221824E − 03

5 xz 0.584999E − 01 0.293687E − 01 −.291312E − 01 0.237497E − 03

6 yz 0.000000E + 00 0.130665E − 01 0.130665E − 01 0.261330E − 01

norm 0.631485E − 01

7 x3 0.000000E + 00 0.615022E − 05 0.615022E − 05 0.123004E − 04

8 y3 0.000000E + 00 0.171830E − 04 0.171830E − 04 0.343659E − 04

9 z3 0.000000E + 00 0.168556E − 04 0.168556E − 04 0.337111E − 04

10 x2y 0.000000E + 00 0.228710E − 04 0.228710E − 04 0.457420E − 04

11 x2z 0.000000E + 00 0.232906E − 04 0.232906E − 04 0.465811E − 04

12 xy2 −.646058E − 04 −.322440E − 04 0.323618E − 04 0.117836E − 06

13 xz2 −.646058E − 04 −.326406E − 04 0.319652E − 04 −.675366E − 06

14 y2z 0.000000E + 00 0.171015E − 04 0.171015E − 04 0.342030E − 04

15 yz2 0.000000E + 00 0.169891E − 04 0.169891E − 04 0.339782E − 04

16 xyz −.646058E − 04 −.323943E − 04 0.322115E − 04 −.182802E − 06

norm 0.951617E − 04

17 x4 0.000000E + 00 0.229213E − 09 0.229213E − 09 0.458427E − 09

18 y4 0.000000E + 00 0.523446E − 07 0.523446E − 07 0.104689E − 06

19 z4 0.000000E + 00 0.424769E − 07 0.424769E − 07 0.849539E − 07

20 x3y 0.000000E + 00 0.999162E − 09 0.999162E − 09 0.199832E − 08

21 x3z 0.000000E + 00 0.515736E − 08 0.515736E − 08 0.103147E − 07

22 xy3 0.773946E − 07 0.446634E − 07 −.327313E − 07 0.119321E − 07

23 y3z 0.000000E + 00 0.730828E − 07 0.730828E − 07 0.146166E − 06

24 xz3 0.773946E − 07 0.367809E − 07 −.406137E − 07 −.383276E − 08

25 yz3 0.000000E + 00 0.147884E − 07 0.147884E − 07 0.295768E − 07

26 x2yz 0.000000E + 00 0.291790E − 07 0.291790E − 07 0.583579E − 07

27 xy2z 0.773946E − 07 0.415851E − 07 −.358095E − 07 0.577556E − 08

28 xyz2 0.773946E − 07 0.378847E − 07 −.395099E − 07 −.162520E − 08

29 x2y2 0.000000E + 00 0.829985E − 08 0.829985E − 08 0.165997E − 07

30 x2z2 0.000000E + 00 0.193607E − 06 0.193607E − 06 0.387214E − 06

31 y2z2 0.000000E + 00 0.174353E − 06 0.174353E − 06 0.348705E − 06

norm 0.562078E − 06





Chapter 7

Numerical results and conclusions

7.1 Introduction

The modified algorithm discussed in Chapter 4 has been implemented and run for

four different test problems, which are used to illustrate all the different possible

situations where deterministic global optimization algorithms can be applied. We

remark on good results and also point out some case instances where performance

is poor.

All instances of the test problems are of the same size, but when we use different

d.c. representations of the objective function, their behavior is very different as

regards the number of iterations and subdivisions used by the modified algorithm.

This is a relevant result of the Thesis. For this reason, when there is a possible

choice of d.c. representation of the objective function, great care must be taken in

its selection. On the other hand, in all cases the modified algorithm detects a good

feasible point in a neighborhood of a global optimizer very quickly, even if it is not

necessarily the final solution, and this can be considered a positive result.

By using the method developed in Chapter 3 we can convert the Generation

Problem into an equivalent reverse convex programming problem in such a way that

the modified algorithm can be applied. From the optimal d.c. representation of the

power hydrogeneration functions we can obtain a more efficient d.c. representation of

the whole functions in the Generation Problem, but note that they are not the opti-

mal d.c. representation for the whole functions in the Generation Problem. MINOS

5.5 has been used to solve all problem instances and also to check all gradients of the

functions in the instances of the Generation Problem. Numerical results and CPU

131
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requirements of instances solved of the Generation Problem are given and explained

in this Chapter.

All required CPU times reported refer to the compute used NETSERVER

LC2000 U3 of Hewlett Packard with 4 GB of RAM and 2 CPU of 1000 MHz Pentium

III. Moreover, to compare different speeds of solution, instances of the Generation

Problem have been solved with a computer Compaq AlphaServer HPC320: 8 nodes

ES40 (4 EV68, 833 MHz, 64 KB/8 MB), 20 GB of main memory, 1.128 GB on disk

and top speed of 53.31 Gflop/s, connected with Memory Channel II de 100 MB/s.

By using this high performance computer the CPU time can be reduced to one third.

7.2 Global optimization test problems and numerical

results

The algorithm discussed in Chapter 4 has been implemented and run for four dif-

ferent instances, which are described in this section. In Tables 7.2, 7.3, 7.4 and 7.5

Case is the number of the case instance, ǫ is the precision, D.c.(K) is a nonnegative

real number k such that f(x)+ k
(∑n

j=1 x
2
j

)
is a convex function, in which the func-

tion f(x) represents the nonconvex objective function of the current instance, Iter

indicates the number of iterations required, Msdv indicates the maximum number of

subdivisions that have been simultaneously active, Tsdv indicates the total number

of subdivisions performed by the modified algorithm, Mdepht indicates the maxi-

mum depth reached for the subdivision procedure, Obj.Val indicates the optimum

obtained by the modified algorithm and Time is the CPU time in seconds.

7.2.1 The class of test problems HPTnXmY

The following class of test problems can be found in [33] and they turn out to be

rich enough to produce typical numerical results. We seek an ǫ-solution in the sense

mentioned in Chapter 4 of

minimize −∑m
i=1 1/

(‖x− ai‖2 + ci
)

subject to x ∈ IRn, 0 ≤ xj ≤ 10, j = 1, . . . , n
(7.1)
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where ai ∈ {x ∈ IRn : 0 ≤ xj ≤ 10, 1 ≤ j ≤ n} and ci > 0. The initial simplex S0

for this class of test problems is

S0 =



x ∈ IR

n
+ :

n∑

j=1

xj ≤ 10n



 .

By using the convex function k
(∑n

j=1 x
2
j

)
with k > 0, we can obtain a d.c. repre-

sentation of the objective function in (7.1) as follows. Consider f(x) =
∑m

i=1 fi(x),

with fi(x) := 1/
(‖x− ai‖2 + ci

)
and x ∈ IRn. Hence, we can write

f(x) =


f(x) + k

n∑

j=1

x2
j


−


k

n∑

j=1

x2
j


 , (7.2)

with k a real number such that f(x)+ k
∑n

j=1 x
2
j is a convex function. The different

instances of the test problem 7.1 are denoted by HPTnXmY where X represents

the dimension and Y means the number of local optimal solutions of the instance.

In Table 7.2 we consider the instance HPTn2m10 with the parameters ci, a
i
j , i =

1, . . . , 10, j = 1, 2 from the Table 7.1. Figure 7.1 shows a plot of this instance. Table

7.2 displays relevant results on the computational effort required to minimize the

function f(x) by means of our algorithm with different d.c. representations of the

objective function, which are defined by the values k = 0.5, k = 5 and k = 50, and

the precisions ǫi = 10−i, i = 1, 2, 3.

Table 7.1: Parameters for the test problem HPTnXmY

i 1 2 3 4 5 6 7 8 9 10

ci 0.70 0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97

ai
1 4.0 2.5 7.5 8.0 2.0 2.0 4.5 8.0 9.5 5.0

7.2.2 The class of test problems TnXrY

Let x ∈ IRn be x = (x1, . . . , xn). A reduced version of the test problem

minimize f(x) = Πn
i=1(x

2
i + cixi)

subject to Ax ≤ b,
di ≤ xi ≤ ei, i = 1, . . . , n,

(7.3)

where A ∈ IRm∗n and b ∈ IRm, can be found in [74]. The names of the different

instances of the test problem 7.3 are denoted by TnXrY , where X is the dimension
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Figure 7.1: Plot of the objective function in (7.1) for the instance HPTn2m10

Table 7.2: Computational results for the instance HPTn2m10

Case ǫ D.c.(K) Iter Msdv Tsdv Mdepht Obj.val. T ime

1 ǫ1 0.5 312 55 645 23 −2.1423 2.39

2 ǫ2 0.5 354 55 732 28 −2.1423 3.17

3 ǫ3 0.5 403 55 832 31 −2.1423 3.85

4 ǫ1 5 371 55 762 26 −2.1424 3.34

5 ǫ2 5 408 55 840 31 −2.1424 3.93

6 ǫ3 5 449 55 925 33 −2.1424 4.50

7 ǫ1 50 335 55 694 26 −2.1411 2.82

8 ǫ2 50 342 55 708 26 −2.1411 2.91

9 ǫ3 50 451 55 936 37 −2.1411 4.84

and Y means the number of linear constraints of the instance. Figure 7.2 shows

a plot of the objective function of the instance Tn2r0, where di = −1, ei = 1,

i = 1, . . . , n and the coefficients of the objective function in (7.3) are c1 = 0.09 and

c2 = 0.1. For numerical tests, we have chosen the instance Tn2r4 with the same

parameters c1 = 0.09 and c2 = 0.1 for the objective function in (7.3) and the feasible

domain defined as follows.

{(x1, x2) : Ax ≤ b,−2 ≤ xi ≤ 1, i = 1, 2},

where

A =




1 −1

−1 1

1 1

−1 −1



, b =




1

2.5

1

3.5



.
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As before, by using the convex function k
(∑n

j=1 x
2
j

)
many different d.c. represen-

tations of the objective function can be obtained in the form

f(x) =


f(x) + k

n∑

j=1

x2
j


−


k

n∑

j=1

x2
j


 .

Table 7.3 displays the numerical results for the instance Tn2r4 with different d.c.

representations of the objective function, which are defined by the values k = 7.5,

k = 8 and k = 8.5, and the precisions ǫi = 10−i, i = 1, 2, 3.

Figure 7.2: Plot of the objective function for the instance Tn2r4

Table 7.3: Computational results for the instance Tn2r4

Case eps D.c.(K) Iter Msdv Tsdv Mdepht Obj.val T ime

1 ǫ1 7.5 706 247 1547 12 −8.3882 9

2 ǫ2 7.5 5304 1999 11395 16 −8.3882 650

3 ǫ3 7.5 20000 14020 43560 19 −8.3882 16099

4 ǫ1 8.0 867 312 1901 11 −8.3882 16

5 ǫ2 8.0 6305 2424 13518 15 −8.3882 970

6 ǫ3 8.0 20000 16384 43504 18 −8.3882 15855

7 ǫ1 8.5 989 355 2175 12 −8.3882 22

8 ǫ2 8.5 7332 2736 15708 15 −8.3882 1371

9 ǫ3 8.5 20000 17653 43343 18 −8.3882 15711
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7.2.3 The instance HPBr1

The instance

minimize xy = 1
4(x+ y)2 − 1

4 (x− y)2
subject to: x− y ≤ 5.7,

−2 ≤ x ≤ 3,

−3 ≤ y ≤ 4,

(7.4)

which will be denoted by HPBr1, is a nonconvex programming problem with the

optimal solution on x−y = 5.7. The objective function ofHPBr1 is an homogeneous

polynomial of degree two with two variables (in this case it is a hyperbole). From

Section 5.6 we know that the d.c. representation of xy in (7.4) is the optimal.

Alternative d.c. representations of xy, which are not optimal, are

(1) xy = 1
2 (x+ y)2 − 1

2(x2 + y2), and

(2) xy = 1
2 (x2 + y2)− 1

2 (x− y)2.

Table 7.4 displays the results of minimizing the function xy with these different d.c.

representations of the objective function xy, and the precisions ǫi = 10−i, i = 1, 2, 3.

Table 7.4: Computational results for the instance HPBr1

Case ǫ D.c. Iter Msdv Tsdv Mdepht Obj.val. T ime

1 ǫ1 opt 15 3 32 7 −8.1184 0.02

2 ǫ2 opt 26 4 57 11 −8.1220 0.06

3 ǫ3 opt 32 6 69 11 −8.1220 0.07

4 ǫ1 (1) 24 6 51 8 −8.1159 0.05

5 ǫ2 (1) 34 6 73 11 −8.1188 0.07

6 ǫ3 (1) 54 8 113 13 −8.1225 0.12

7 ǫ1 (2) 51 13 108 9 −8.1048 0.14

8 ǫ2 (2) 104 22 226 12 −8.1223 0.39

9 ǫ3 (2) 163 32 354 14 −8.1224 0.77
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7.2.4 The instance COSr0

The instance

minimize f(x, y) := 0.03(x2 + y2)− cos(x) ∗ cos(y)
subject to: −6 ≤ x ≤ 4,

−5 ≤ y ≤ 2,

(7.5)

which will be denoted by COSr0, is a multiextremal programming problem with

minimizer (0, 0) and minimum −1, as we can see in Figure 1.1 (Chapter 1). The

function k(x2 + y2), k > 0 allows us to obtain many different d.c. representations of

the objective function f(x, y) in (7.5), as follows.

f(x, y) = (f(x, y) + k(x2 + y2))− k(x2 + y2).

Table 7.5 displays the results of minimizing the function f(x, y) with different d.c.

representations of the objective function, which are defined by the values k = 0.5,

k = 1 and k = 1.5, and the precisions ǫi = 10−i, i = 1, 2, 3.

Table 7.5: Computational results for the instance COSr0

Case ǫ D.c.(K) Iter Msdv Tsdv Mdepht Obj.val. T ime

1 ǫ1 0.5 532 180 1144 12 −0.9920 7

2 ǫ2 0.5 1163 312 2478 15 −0.9999 29

3 ǫ3 0.5 1948 344 4157 18 −0.9999 86

4 ǫ1 1.0 1335 481 2905 13 −0.9981 41

5 ǫ2 1.0 3579 1040 7678 16 −0.9998 362

6 ǫ3 1.0 6230 1330 13369 19 −0.9999 1297

7 ǫ1 1.5 2184 804 4747 13 −0.9964 122

8 ǫ2 1.5 6858 2120 14702 17 −0.9997 1692

9 ǫ3 1.5 12675 2745 27289 20 −0.9999 6535

7.3 Characteristics of the generation systems and nu-

merical results

The characteristics of the reservoirs in the generation systems are in Table 2.2 and

the characteristics of the generation systems can be found in Table 2.1. Table 7.6

displays the numerical results and CPU requirements of solved instances of the
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Figure 7.3: Incumbent and subdivisions at the iteration 18 for the case number 2 in

Table 7.5

Figure 7.4: Incumbent and subdivisions at the iteration 677 for the case number 2

in Table 7.5. Notice that the incumbent, which has been found at this iteration, is

already the global ǫ-solution.

Generation Problem. The names of the different instances in Table 7.6 are denoted

by Cgpnemi, when ki, in (2.10), is a constant or Vgpnemi, when ki depends
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Figure 7.5: Incumbent and subdivisions at the iteration 976 for the case number 2

in Table 7.5. Notice that the optimal solution (0, 0) is an isolated point because it

doesn’t belong to any active subdivision. Moreover, no active subdivision contains a

feasible point better than the incumbent. Hence, we can deduce that the algorithm,

from the current iteration, cannot further improve the incumbent.

on water discharges. Both Cgpnemi and Vgpnemi are related to the generation

system cnemi. In column D.c. of the Table 7.6 we write Opt when the instance is

solved using the optimal d.c. representation of the power hydrogeneration functions,

or Ini when the original d.c. representation is used. Moreover, as before, Iter

indicates the number of iterations required, Msdv indicates the maximum number of

subdivisions that have been simultaneously active, Tsdv indicates the total number

of subdivisions performed by the modified algorithm, MINOS indicates the optimal

value of the solution obtained by MINOS, Obj.Val indicates the optimum obtained

by the modified algorithm and Time is the CPU time in seconds. The maximum

number of iterations allowed in the algorithm is 10000 and the bound for Mdepth

has been established at 20. In all problem instances the precision used is ǫ = 0.01.
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Table 7.6: Results and CPU requirements of the instances of the Generation Problem

solved
Num Instance D.c. Iter Msdv Tsdv MINOS Obj.Val Time

1 Cgp2e02i Ini 245 81 524 2806.26 2806.26 3

2 Opt 100 28 217 2806.26 1

3 Cgp2e03i Ini 4697 237 8067 2759.39 2759.39 570

4 Opt 4315 320 7363 2759.39 464

5 Cgp4e03i Ini 10000 2064 14226 3304.17 3304.23 4466

6 Opt 10000 1180 12787 3304.23 3046

7 Cgp4e04i Ini 10000 2340 12861 3205.41 3205.60 6933

8 Opt 10000 2345 12803 3205.71 5029

9 Cgp2e08i Ini 10000 9737 19873 2524.82 2525.57 14126

10 Opt 10000 8703 18979 2525.65 10188

11 V gp2e02i Ini 10000 2829 11127 2778.10 2778.10 1408

12 Opt 10000 2092 10109 2778.10 1363

13 V gp2e03i Ini 10000 1898 16205 2723.88 2724.26 2105

14 Opt 7243 902 12060 2724.75 1222

15 V gp4e03i Ini 10000 8142 19673 3277.84 3278.17 6169

16 Opt 10000 4329 14651 3278.23 5056

17 V gp4e04i Ini 10000 3463 13264 3152.37 3152.40 5214

18 Opt 10000 3796 13597 3152.85 7311

7.4 Conclusions

From a computational point of view we must point out the following.

1. On observing the numerical results, we can deduce that the required compu-

tational time is related to both the number of iterations and the performed

subdivisions, which depend on the desired precision, the size of the instance

and the d.c. representation of the functions. This last result is new and has

never before been described. In the case of polynomial functions special atten-

tion must be paid to this last result, because of the concept of Least Deviation

Decomposition, which can be applied to improve the d.c. representation of a

polynomial from a computational view-point. The better the d.c. representa-

tion is, the less iterations and subdivisions are needed to find an ǫ-solution, as

can be seen in Tables 7.4 and 7.6. When d.c. functions which are not poly-

nomials are used, a similar result is observed by using the convex function

k
(∑n

j=1 x
2
j

)
. The higher the constant k is, the more iterations are needed, as
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we can see in Tables 7.2, 7.3 and 7.5. Nevertheless, we must point out excep-

tions to this rule for the case instances 7, 8 and 9 in Table 7.2. Actually, for

d.c. functions in general, no concept of optimal d.c. representation has been

defined which explains the above-mentioned exceptions.

2. By using the modified algorithm, a good feasible point is often detected very

quickly and most of the computational effort is devoted to verifying its opti-

mality. Although the optima obtained in various instances of every problem

remains within the required precision, many more iterations are required to

create small nested subdivisions in a neighborhood of an optimal solution if

high precision is needed.

3. During the execution of the algorithm we can arrive at an iteration, in which

the optimal solution of the problem is an isolated point because it doesn’t

belong to any active subdivision. Moreover, no active subdivision contains

a feasible point better than the incumbent, which is already an ǫ-optimal

solution. Hence, we can deduce that the algorithm, from the current iteration,

can’t improve the incumbent. All this can be seen in Figures 7.3, 7.4 and 7.5.

4. Although the algorithm is unable to improve the incumbent, the number of

subdivisions can keep on increasing, and this situation gets worse depending

on the size of the instance. This fact also explains the limitation represented

by the size of the instances with regards to the computational time for deter-

ministic algorithms that use outer approximation and subdivision procedures

(mainly, when the instance has no special structure). It should be noted

that cuts are always conjunctive in the outer approximation procedure, i.e.,

the polyhedron resulting from the cuts is the intersection of all the cuts per-

formed. Hence, the number of constraints increases at each iteration as well

as the complexity of the sublinear programs that are to be solved.

5. Other devices could have been used, such as the combination of global opti-

mization tools with standard nonlinear local optimization, but we have pre-

ferred to study the behavior of the global optimization tools working on their

own in the modified algorithm. Sometimes, to facilitate the procedure, sub-

divisions can be deleted when they have reached sufficient depth, i.e., they

are sufficiently small. Other strategies must be taken into account to solve

instances of larger dimensions efficiently.

The method developed in Chapter 3 has show itself to be very useful for obtaining a

d.c. representation of a polynomial function. By using this method we can convert
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the Generation Problem into an equivalent reverse convex programming problem in

such a way that the adapted algorithm can be applied. As can be seen in table 7.6,

the instances with a constant coefficient of efficiency and unit conversion (Cgpnemi)

seem to work well, and we can find good values for the optimal. On the other hand,

instances with a variable coefficient of efficiency (Vgpnemi) have worse optimal

values for the objective functions, but all solutions are very near to the solution

found by MINOS. Of course, this is not an ideal situation but it is not as bad as

we might suppose.

The interior point algorithm developed for semi-infinite quadratic programming

problems with linear constraints, together with the concept of Least Deviation De-

composition, allows us to obtain a better d.c. representation of each polynomial

function of the Generation Problem, in such a way that the computational efficiency

of the adapted algorithm is improved. From a computational standpoint and on ob-

serving Table 7.6, the efficiency of using the optimal d.c. representation of the power

hydrogeneration functions is obvious. Observe in Table 7.6 that for instances with

Opt in column D.c., i.e., those with optimized d.c. representation of the hydrogener-

ation functions, there is an overall decrease of the computation time with respect to

the computation time of case instances with Ini in column D.c., i.e., those with the

initial d.c. representation of the power hydrogeneration functions. It is obvious that

for purposes of speed, global optimization depends on the use of high performance

computers and parallel computation. Nevertheless, I am sure that there exist a lot

of available mathematical results (such as the concept of Least Deviation Decom-

position) which could be used in order to obtain more efficient implementations for

problems, both with and without any specific structure.

7.5 Publications originated by this Thesis

• Ferrer, A., Representation of a polynomial function as a difference of convex

polynomials, with an application. Lectures Notes in Economics and Mathe-

matical Systems vol. 502, pgs. 189 −−207. Springer-Verlag, Berlin. 2001

• Ferrer, A., Applying global optimization to a problem in short-term hydrother-

mal scheduling. Accepted for publication in the Proceedings of the 7th In-

ternational Symposium on Generalized Convexity and Monotonicity held in

Hanoi, Vietnam from the 27th to the 31st of August 2002. The edited book

will be published by Kluwer Academic Publishers.
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7.6 Topics for further research

Further research will be geared towards both the mathematical theory of global

optimization and software development. The following topics are mid-term projects.

• The study of the behavior of the different optimal d.c. representations of a

polynomial by using the different norms within the normed space of the poly-

nomials.

• The extension of the concept of optimal d.c. representation from the polyno-

mials functions to d.c. functions.

• The search for deterministic strategies to obtain more efficient implementation

for problems of larger dimensions, either with or without any specific structure.

• The use of high performance computers and parallel computation to speed up

global optimization.

• The development of a web of public domain with test problems and a software

library for the performance of global optimization analysis.





Appendix A

In this appendix a procedure is described using the MAPLE Symbolic Calculator to

search for bases and to obtain d.c. representations of each homogeneous component

of a polynomial. The inputs are: number of variables n, degree of homogeneous

polynomial m, a base of mth powers and the homogeneous polynomial f for which

we want to obtain a d.c. representation. The procedure gives us several outputs.

The outputs f1 and f2 are the d.c. components of the homogeneous polynomial f .

The output f = f1 + f2 is to verify that the final solution is correct. If a set of

mth powers is not a base then the procedure stops and it shows an error message of

error. Thus, we must search for alternative base of mth powers. We show how to

obtain a d.c. representation of the homogeneous polynomial

x1(x3 − x2)
2 − x3

1 + 5x1x2x3,

using the base (3.38), as an example of application of this procedure.

> restart:

with(linalg):

——————————————————————————-

Input variables (n), degree of homogeneous polynomial (m):

——————————————————————————-

n:=3:

m:=3:

——————————————————————————-

d:=binomial(n+m-1, m):

u:=[seq(0,k=1..d)]:

xx:=[seq(x[k],k=1..n)]:

aa:=[seq(1,k=1..n)]:

xxx:=(evade(aa &* xx))^m:

H:=[op(expand(xxx))]:

145
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M:=[seq(H[k]/coeffs(H[k]),k=1..d)]:

M := [x1
3, x1

2 x2, x1
2 x3, x1 x2

2, x1 x2 x3, x1 x3
2, x2

3, x2
2 x3, x2 x3

2, x3
3]

a := array(1..d):

——————————————————————————-

Input base of mth powers:

——————————————————————————-

a[1]:=xx[1]^3:

a[2]:=xx[2]^3:

a[3]:=xx[3]^3:

a[4]:=(xx[1]+2*xx[2])^3:

a[5]:=(xx[1]+2*xx[3])^3:

a[6]:=(xx[2]+2*xx[3])^3:

a[7]:=(2*xx[1]+xx[2])^3:

a[8]:=(2*xx[1]+xx[3])^3:

a[9]:=(2*xx[2]+xx[3])^3:

a[10]:=(xx[1]+xx[2]+xx[3])^3:

——————————————————————————-

Input polynomial from which we want to obtain a d.c. representation

——————————————————————————-

yyy:=xx[1]*(xx[3]-xx[2])^2-xx[1]^3+5*xx[1]*xx[2]*xx[3];

——————————————————————————-

expand(yyy):

HH:=[op(expand(yyy))]:

nn:=nops(expand(yyy)):

yyy := x1 (x3 − x2)
2 − x1

3 + 5x1 x2 x3

x1 x3
2 + 3x1 x2 x3 + x1 x2

2 − x1
3

for i from 1 by 1 to nn

do

for k from 1 by 1 to d

do

if (member(M[k], {HH[i]/coeffs(HH[i])})) then

u[k]:=coeffs(HH[i]):

fi:

od:
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od:

print(u);

[−1, 0, 0, 1, 3, 1, 0, 0, 0, 0]

v:= array(1..d,1..d):for j from 1 by 1 to d

do

for i from 1 by 1 to d

do

v[j,i]:=0

od;

od;

for j from 1 by 1 to d

do

if (j<n+1) then

L:=[expand(a[j])]:

nn:=1

else

L:=[op(expand(a[j]))]:

nn:=nops(expand(a[j])):

fi:

for i from 1 by 1 to nn

do

for k from 1 by 1 to d

do

if (member(M[k], {L[i]/coeffs(L[i])})) then

v[k,j]:=coeffs(L[i]):

fi:

od:

od:

od:

C:=evalm(v^(-1)):

ff:=evalm(C &* u):

ff1 := array(1..d):

ff2 := array(1..d):

for i from 1 by 1 to d

do

if (ff[i]>0) then

ff1[i]:=ff[i]:
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ff2[i]:=0:

else

ff2[i]:=-ff[i]:

ff1[i]:= 0:

fi;

od:

f1:=evalm(a &* ff1);

f2:=evalm(a &* ff2);

f:=expand(f1-f2);

f1 :=
2

3
x1

3 +
1

6
x2

3 +
1

6
x3

3 +
1

36
(x1 + 2x2)

3 +
1

36
(x1 + 2x3)

3 +
1

2
(x1 + x2 + x3)

3

f2 :=
1

12
(x2 + 2x3)

3 +
5

36
(2x1 + x2)

3 +
5

36
(2x1 + x3)

3 +
1

12
(2x2 + x3)

3

f := 3x1 x2 x3 + x1 x2
2 + x1 x3

2 − x1
3
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In this appendix we show the file results obtained by the application of the semi-

infinite quadratic algorithm to the instance c004d2, where ncons is the number of

added constrains, iter1 indicates the number of iterations of the algorithm, iter2 is

the number of inner iterations of the algorithm to close the current point x to the

central path until the distance (δ(x, µ)) is small enough. The procedure continues

until the barrier parameter µ verifies µ ≤ ǫ/(ncons +
√
ncons), with ǫ the required

precision. This is accomplished by repeated reduction of µ. The algorithm perfor-

mances for each major iterations (iter1) a series of minor iterations (iter2) in order

to get closer to the central path and center the current feasible point. For example,

if we observe the sixth major iteration in the file results, four minor iterations have

been performed to obtain a point close and close to the central path, i.e., the dis-

tance value is less than the stipulated bound (0.25). Moreover, a new constraint is

added (ncons= 10), although, as can be seen in the first major iteration, this is not

always the case. Also, it can be observed that the values of the parameters µ and

eps (precision) are reduced at each major iteration. The procedure ends when eps

becomes smaller then µ.

---------------------------------------------------------------------------

SEMI-INFINITE QUADRATIC ALGORITHM

---------------------------------------------------------------------------

n 2

ncons0 6

eps 1.000000000000000E-005

toler 1.000000000000000E-005

mu 1000.00000000000

reduc_par 0.750000000000000

cent_par 0.250000000000000

add_par 1.000000000000000E-009

149
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alfa0: 0.0 beta0: 6.283184

ksdv: 512

initial point:0.1000000E+020.1500000E+02

---------------------------------------------------------------------------

|ncons|iter1|iter2| mu | distance | obj.val. | eps |

---------------------------------------------------------------------------

| 6| 1| 1|0.2500000E+03|0.2447255E+00|0.1363662E+02| |

---------------------------------------------------------------------------

| 6| 1| 1|0.2500000E+03|0.2447255E+00|0.1363662E+02|0.2112372E+04|

---------------------------------------------------------------------------

| 6| 2| 1|0.6250000E+02|0.2171031E+00|0.1030750E+02| |

---------------------------------------------------------------------------

| 6| 2| 1|0.6250000E+02|0.2171031E+00|0.1030750E+02|0.5280931E+03|

---------------------------------------------------------------------------

| 7| 3| 1|0.1562500E+02|0.8338529E+00|0.1030750E+02| |

| 7| 3| 2|0.1562500E+02|0.2904390E+00|0.9188550E+01| |

| 7| 3| 3|0.1562500E+02|0.2443715E+00|0.9713749E+01| |

---------------------------------------------------------------------------

| 7| 3| 3|0.1562500E+02|0.2443715E+00|0.9713749E+01|0.1507149E+03|

---------------------------------------------------------------------------

| 8| 4| 1|0.3906250E+01|0.1674584E+01|0.9713749E+01| |

| 8| 4| 2|0.3906250E+01|0.3608236E+00|0.9303694E+01| |

| 8| 4| 3|0.3906250E+01|0.2328531E-01|0.9198383E+01| |

---------------------------------------------------------------------------

| 8| 4| 3|0.3906250E+01|0.2328531E-01|0.9198383E+01|0.4229854E+02|

---------------------------------------------------------------------------

| 9| 5| 1|0.9765625E+00|0.1076663E+01|0.9198383E+01| |

| 9| 5| 2|0.9765625E+00|0.2271900E+00|0.9109379E+01| |

---------------------------------------------------------------------------

| 9| 5| 2|0.9765625E+00|0.2271900E+00|0.9109379E+01|0.1171875E+02|

---------------------------------------------------------------------------

| 9| 6| 1|0.2441406E+00|0.1556006E+01|0.9071785E+01| |

| 9| 6| 2|0.2441406E+00|0.5326418E+00|0.9049502E+01| |

| 9| 6| 3|0.2441406E+00|0.3482103E+00|0.9040308E+01| |

| 9| 6| 4|0.2441406E+00|0.1779073E+00|0.9044921E+01| |

---------------------------------------------------------------------------

| 9| 6| 4|0.2441406E+00|0.1779073E+00|0.9044921E+01|0.2929688E+01|

---------------------------------------------------------------------------



Appendix B 151

| 10| 7| 1|0.6103516E-01|0.2215039E+01|0.9044921E+01| |

| 10| 7| 2|0.6103516E-01|0.5846586E+00|0.9034330E+01| |

| 10| 7| 3|0.6103516E-01|0.1282503E+00|0.9032929E+01| |

---------------------------------------------------------------------------

| 10| 7| 3|0.6103516E-01|0.1282503E+00|0.9032929E+01|0.8033617E+00|

---------------------------------------------------------------------------

| 10| 8| 1|0.1525879E-01|0.1533907E+01|0.9029887E+01| |

| 10| 8| 2|0.1525879E-01|0.2326075E+00|0.9028341E+01| |

---------------------------------------------------------------------------

| 10| 8| 2|0.1525879E-01|0.2326075E+00|0.9028341E+01|0.2008404E+00|

---------------------------------------------------------------------------

| 11| 9| 1|0.3814697E-02|0.1101192E+01|0.9028341E+01| |

| 11| 9| 2|0.3814697E-02|0.4377216E-01|0.9028044E+01| |

---------------------------------------------------------------------------

| 11| 9| 2|0.3814697E-02|0.4377216E-01|0.9028044E+01|0.5461359E-01|

---------------------------------------------------------------------------

| 11| 10| 1|0.9536743E-03|0.1595118E+01|0.9027896E+01| |

| 11| 10| 2|0.9536743E-03|0.3036814E+00|0.9027821E+01| |

| 11| 10| 3|0.9536743E-03|0.2829643E-01|0.9027802E+01| |

---------------------------------------------------------------------------

| 11| 10| 3|0.9536743E-03|0.2829643E-01|0.9027802E+01|0.1365340E-01|

---------------------------------------------------------------------------

| 11| 11| 1|0.2384186E-03|0.1073689E+01|0.9027775E+01| |

| 12| 11| 2|0.2384186E-03|0.6726161E+00|0.9027775E+01| |

| 12| 11| 3|0.2384186E-03|0.4269529E+00|0.9027781E+01| |

| 12| 11| 4|0.2384186E-03|0.1444421E+00|0.9027780E+01| |

---------------------------------------------------------------------------

| 12| 11| 4|0.2384186E-03|0.1444421E+00|0.9027780E+01|0.3686929E-02|

---------------------------------------------------------------------------

| 12| 12| 1|0.5960464E-04|0.1687946E+01|0.9027769E+01| |

| 12| 12| 2|0.5960464E-04|0.4530882E+00|0.9027763E+01| |

| 12| 12| 3|0.5960464E-04|0.9430605E-01|0.9027760E+01| |

---------------------------------------------------------------------------

| 12| 12| 3|0.5960464E-04|0.9430605E-01|0.9027760E+01|0.9217323E-03|

---------------------------------------------------------------------------

| 12| 13| 1|0.1490116E-04|0.1326261E+01|0.9027758E+01| |

| 13| 13| 2|0.1490116E-04|0.9634092E+00|0.9027758E+01| |

| 13| 13| 3|0.1490116E-04|0.1769063E+00|0.9027758E+01| |

---------------------------------------------------------------------------
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| 13| 13| 3|0.1490116E-04|0.1769063E+00|0.9027758E+01|0.2474420E-03|

---------------------------------------------------------------------------

| 13| 14| 1|0.3725290E-05|0.1537173E+01|0.9027757E+01| |

| 13| 14| 2|0.3725290E-05|0.3129436E+00|0.9027757E+01| |

| 13| 14| 3|0.3725290E-05|0.1378576E+00|0.9027757E+01| |

---------------------------------------------------------------------------

| 13| 14| 3|0.3725290E-05|0.1378576E+00|0.9027757E+01|0.6186050E-04|

---------------------------------------------------------------------------

| 13| 15| 1|0.9313226E-06|0.1584843E+01|0.9027756E+01| |

| 13| 15| 2|0.9313226E-06|0.2455574E+00|0.9027756E+01| |

---------------------------------------------------------------------------

| 13| 15| 2|0.9313226E-06|0.2455574E+00|0.9027756E+01|0.1546512E-04|

---------------------------------------------------------------------------

| 14| 16| 1|0.2328306E-06|0.1566053E+01|0.9027756E+01| |

| 15| 16| 2|0.2328306E-06|0.3535572E+00|0.9027756E+01| |

---------------------------------------------------------------------------

| 15| 16| 3|0.2328306E-06|0.3535572E+00|0.9027756E+01|0.4394209E-05|

---------------------------------------------------------------------------

Final results

--------------

total fact := 57

mu := 2.328306436538696E-007

obj.val. := 9.02775639915243

optimal solution:(0.5007750E+01, 0.7511513E+01)

CPU time := 15.65

--------------
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thesis, Université de Paris IX, Paris, 1978.

[7] Chambadal, L. and Ovaert, J. L. Algèbre Linéaire et Algèbre Tensorielle. Dunod
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