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Abstract

Switching power converters are known to be appropriate solutions to supply energy
to electronic devices owing to their high efficiency and low cost. Their extensive
use in the last decades has motivated researches to improve their designs and to go
deeply into the comprehension of their behavior which, like most power electronic
devices, exhibit nonlinear dynamics. More recently, electronic equipments containing
multiple loads have been arisen such as PDA, mobile phones, MP3... These appli-
cations frequently require multiple supplies with different polarities. Single-Inductor
Multiple-Input Multiple-Output (SIMIMO) switching dc-dc converters are becoming
as solutions to supply low power devices as LCD displays and to charge batteries due
to the significant reduction of size because the use of a single inductor.

The inherent switching nature of these systems classifies their dynamics into the field of
Variable Structure Systems (VSS), which are also known as Piecewise-Smooth (PWS)
systems. Due to the fact that their dynamics cannot be completely explained with the
classical smooth theory, in the last years a lot of effort has been addressed towards
the research on a theory of non-smooth dynamics motivated by different fields of
application.

This dissertation deals with the dynamical characterization of SIMIMO converters,
which can help us to prove their viability. Two strategies of control, both of them
based on the widely used Pulse Width Modulation (PWM) control, are discussed. In
the first alternative, the control is used to regulate a Two-Input Two-Output (SITITO)
converter with opposite polarity. The two required modulating signals are generated
synchronizely. This strategy of PWM control is called in this work Single Phase
Control (SPC) in contrast to a second strategy, which is noted here as Interleaved
Control (IC), capable of driving a generalized single inductor multiple-input multiple-
output converters. This control is based on the use of various modulating signals,
equal to the number of outputs, which are progressively time delayed.
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The dynamics of the SIMIMO converters, just like of the basic dc-dc converters,
presents a rich variety of nonlinear phenomena, which covers from smooth bifurca-
tions, such as period-doubling, Saddle-Node or Hopf bifurcations, to non-smooth bi-
furcations. After proving the existence of stable dynamics if appropriate parameters
are selected, this dissertation will deal with the investigation of models to analyze the
complex dynamics of the converter in a wide range of parameters. Several models are
proposed and analyzed in this work. Averaged models, from which slow scale instability
condition can be determined, and discrete-time models, able to prove fast scale insta-
bilities, are used in a complementary way. Besides this, several approaches of these
models will be established and validated. Their usefulness will be proved not only
in the prediction of the stability, but also in the characterization of the non-smooth
bifurcations presents in this converter. It will be shown that simple one-dimensional
Piecewise-Linear (PWL) models provide analytical expressions for the existence and
stability conditions of fixed points of the discrete-time models. Furthermore, higher
dimensional maps are developed to improve the accuracy of the predictions obtained
by means of one-dimensional maps and averaged models.

The discrete-time analysis of a SITITO converter driven by each of the two strategies
of control has revealed that its dynamics can be modeled by a PWL map with three
trams in a specific range of parameters. To our best knowledge, the literature on
PWL maps includes continuous and discontinuous maps but is limited to two trams.
Therefore, this dissertation is a contribution in the field of non-smooth dynamics in
base to the unfolding of specific dynamics of three-piece maps.

Concerning the IC control, a generalized analysis of the stability is obtained for a
SIMIMO converter with a generic number of loads. The stability analysis of the one-
dimensional model has revealed the existence of a type of non-smooth bifurcation,
which has been classified in this dissertation as a non-smooth pitchfork owing to the
appearance of two new fixed points after undergoing the bifurcation. Detailed analysis
in higher dimensional maps associates this bifurcation to a Neimark-Sacker, whose
existence cannot be predicted by averaged models.

This dissertation also includes some experimental results obtained with a SITITO
dc-dc converter prototype, to validate some of the scenarios found in the analysis.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, switching power converters are widely used in electronic devices as power
supplies, motor controls, light controls, etc. Their benefits rely in their high efficiency,
in contrast to linear amplifiers, jointly with their small size and low cost. This fact has
motivated the research of different strategies of control and the study of the dynam-
ics of the switching converters in different forms of energy transformation: AC/AC,

AC/DC, DC/AC and DC/DC.

The simplest configurations of de-dc switching converters are based on the transference
of energy from an unregulated source to an inductor and from this to the load. The
buck, boost and buck-boost are illustrations of these simple switching regulators (see
Fig. 1.1). The buck or step-down converter reduces the output voltage regarding
to the source while the boost or step-up converter increases this voltage. The buck-
boost permits the regulation of lower and higher voltages, although in the simplest
configuration the output voltage is inverted. They permit the conversion of the energy
from one level to another avoiding, theoretically, losses in their components. Thus,
the aim of the regulation is to force the averaged output voltage to a desired value in
presence of external disturbances. This conversion can carry an increase or decrease
in the input source, including a feasible inversion of its polarity. The regulation is
achieved by alternating suitably the operation of the converter between two topologies,
by means of a controlled switch S (ON or OFF). In addition, the presence of diodes in
the circuitry of the converters forces the inductor current to be positive. Hence,
the converter operates in Discontinuous Conduction Mode (DCM) when the inductor



2 CHAPTER 1. INTRODUCTION

S \ LI Lo D
el a'a"a'at ~
/ Dt
T
Vin DR vl =C R Vin S \> vl =C R
X X
(a) Buck (b) Boost
S D
o/\ <t
J 1
Vin %L vl =C § R

(c) Buck-Boost

Figure 1.1. Schematics of the three basic power dc-dc converters.

current drops to 0 during the switching cycle. Otherwise, the converter is said to be
operating in Continuous Conduction Mode (CCM).

The most extended strategy of control used in the literature is the Pulse Width Modu-
lation (PWM) [64, 69, 83], whose structure includes the following elements: an external
clock fixing the switching period, a sawtooth signal synchronized with the clock, an
output voltage error obtained as a linear combination of the capacitor voltage and
the inductor current and a comparator, whose inputs are the voltage error and the
sawtooth signal. The resulting control signal of this comparator determines the duty
cycle of the controlled switch S, which is defined as the ratio of the ON state to the
period of an external modulated signal T'.

Two approaches of PWM control are commonly used in de-dc converters: Voltage
Mode Control (VMC) and Current Mode Control (CMC). In the first case, the regula-
tion is reached directly as the result of the comparison between the voltage error and
the sawtooth signals, which will establish the state ON or OFF of the switch. Conversely,
in CMC the inductor current is added to the feedback thus forcing the addition of a
bistable flip-flop to avoid sliding dynamics.
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Besides the basic dc-dc switching regulators, converters including more complex con-
figurations have been emerged, which include multiple active components [19, 54, 36,
53, 12]. Converters composed by multiple cells (multi-cell converters) can supply high
voltages regarding to the input source [42, 99]. There exists another group of con-
verters composed by parallel connections of the same elemental converter, which allow
supply high current in the loads [60, 59]. In most applications, only a single stabilized
output is required. Nevertheless, recent applications as mobile phones, MP3 players
PDA and GPS often include several loads as LCD displays, memories, universal series
bus (USB) or hard drives, whose operation require different voltages. These require-
ments could be solved by using several independent dc-dc converters, which lead to
an increment in the number of magnetic components and switches.

Conversely, in the range of lower power applications a new structure that uses a single
inductor shared by several outputs is now emerging. These Single-Inductor Multiple-
Input Multiple-Output (SIMIMO, also known as SIMO in the literature) converters
are useful when multiple outputs must be regulated and, despite the management of
low power, a high efficiency is also required. From 2001, there exist some different
registered patents of dc-dc converters using a single inductor. Moreover, some in-
tegrators using this kind of converter have been commercialized: Texas Instruments
(TPS65136), which are used in AMOLED displays of mobile phones or SmartPhone
devices, and Maxim (MAX685) for components of digital cameras, camcorder and
notebooks. Different topologies of SIMIMO converters exist depending on the combi-
nation of elemental converters and control [75, 67, 100, 95, 104]. Concerning the reg-
ulation of the converter, the simplest strategy is based on time multiplexing [79, 80|,
which assigns an active interval for each channel. Nevertheless, in order to guaran-
tee the stability and avoid the regulation interference among channels, the converter
must operate partially in DCM in the time interval associated to every channel. As
a result, each output is independently controlled despite sharing the inductor. A
pseudo-continuous conduction mode is proposed in [78], which uses a constant value
for the inductor current to operate in CCM. Besides the analog controls mentioned,
in [103] a digital control is proposed to regulate the converter is CCM which reduces
the cross-regulation problem.

Finally, the control proposed in [15], based in PWM, allows the operation in CCM
and permits the generalization of the control to regulate a SIMIMO converter with an
arbitrary number of outputs. This thesis deals with the study of the viability of this
type of converters jointly with the analysis of their dynamical behavior.



4 CHAPTER 1. INTRODUCTION

1.2 Nonlinear phenomena in power electronic con-

verters

The dynamics of power electronics systems is known to be highly nonlinear [43]. A
rich variety of phenomena, for instance subharmonics, quasiperiodicity and chaotic
dynamics, has been reported in systems that include switches, saturations or even
hysteresis. In particular, the operation of the switching regulators is characterized by
transitions between different topologies, which classifies these systems into the group
of Variable Structure Systems (VSS) also known as Piecewise-Smooth (PWS) systems.
Consequently, despite the fact that each topology can be described by means of a set
of smooth equations, the existence of boundaries increases the complexity of their
behavior. Actually, it is known that PWS dynamics cannot be analyzed by using the
well-known theory of smooth systems. Apart from the bifurcations characteristic of
smooth systems, PWS systems can exhibit bifurcations which are exclusive of them. As
an example, we can mention the border-collision bifurcations. There exists an extensive
literature reporting the nonlinear phenomena in power electronics, including some
relevant books [107, 11, 34]. A more specific literature about non-smooth phenomena
can be found in Chapter 3.

Let us now present a brief review of the earlier works dealing with nonlinear phenomena
in power electronics. The first focussing in power electronic converters appeared at
the beginning of the Eighties. In 1980, Baillieul proved in [6] the existence of chaotic
dynamics in power electronic circuits. Few years later, Brockett and Wood showed
in [16] the existence of chaos in a de-dc converter. Chua, in a special issue in [24],
presents a study of chaos in power electronics.

A first analysis of these nonlinear phenomena was presented in 1988 by Hamill and
Jefferies [56]. Herein, the authors showed, by means of a one-dimensional discrete-time
map, the existence of subharmonics, bifurcation and chaos dynamics in a first-order
PWM voltage control converter. Later, Jefferies in [63] shows that a RL-diode circuit
can exhibit a great variety of nonlinear scenarios despite being characterized by simple
systems. In 1989, Krein and Bass proved analytically and experimentally the existence
of multiple limit cycles [70] and later the same authors reported in [71] three types
of instability in dc-dc power electronic converters: unboudness, chattering and chaos.
The phenomenon of hysteresis is also mentioned in the work.

In [26, 27], Deane and Hamill proved experimentally the existence of chaos in a Buck
converter. Fossas and Olivar in [49] analyzed the stability by means of characteristic
multipliers of the one and two-periodic orbits in the Buck converter, in which an
strange attractor is shown as dynamics. In 1998 di Bernardo [32] introduces a new
discrete-time map related to the asynchronous switching to identify the presence of
periodic orbits and bifurcations in the basic switching regulators. The nonlinearity has
also been proved in converters with sliding mode control. Calvente in 1996, showed



1.2. NONLINEAR PHENOMENA IN POWER ELECTRONIC CONVERTERS 5

in [20] the existence of subharmonics and chaotic behavior in a Boost converter using
this control. Later, El Aroudi in [39] included a deep analysis of the period-two orbit.
The occurrence of nonlinear phenomena and chaos in switching regulators operating
in DCM was reported by Tse in 1994 for buck [105] and boost [106] converters.

Concerning the non-smooth phenomena, in 1998 Yuan demonstrated in a work fo-
cussed in the Buck converter [111], that most bifurcations which were produced in
dc-dc converters are due to a border-collision bifurcations. Since then, non-smooth
phenomena in power electronics has attracted the attention of many researches. We
can mention the works published in this decade by Banerjee in [10], where a one-
dimensional discrete-time analysis is used to study the border-collision bifurcations
in Buck and Boost converters. In [94], Parui presented these bifurcations in PWS
maps which are two-dimensional in one side of the boundary and one-dimensional in
the other. Zhusubaliyev [113] detailed the quasiperiodicity and border-collisions in a
two-side PWM buck converter. We finally mention the works in [23, 13, 38, 2].

More recently, in 2008, Giaouris in [51] have reported a Filippov’s method to analyze
the dynamics of the switching converters, which is useful when the Poincaré map
cannot be determined.

The study of the nonlinear phenomena has not been restricted to the elemental convert-
ers. This behavior has also been reported by Iu in parallel-connected buck converters
[60] and parallel-connected boost converters using averaged models [61], which was
also studied by Mazumder in [81]. Finally, more recently, Robert analyzes multi-cell
dec-dc converters in [99].

The modelling of switching converters has evolved from two methods: averaged and
discrete-time models. The averaging approach for modelling switching converters was
developed in 1976 by Milddlebrok and Cuk [82] and has been commonly used in the
stability analysis of switching regulators because it provides simple expressions and
makes the analysis easier. Nevertheless, it only contains information about the slow-
frequency or slow-scale dynamics and thus, it is unable to predict many non-smooth
phenomena. To deal with them, discrete-time models are employed to explain higher
periodic orbits, quasiperiodicity or chaotic dynamics, including both existence and
stability properties [35]. When the continuous time system uses a fixed frequency
modulating signal, the stroboscopic or Poincaré map arises as a practical tool, retain-
ing accurately the information of the dynamical properties of the original continuous
system.
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1.3 Organization and contribution of this disserta-
tion

Taking into consideration that part of the analysis is focused in the non-smooth phe-
nomenon, Chapter 2 presents an overview of the piecewise-smooth dynamics including
the analysis of the dynamics of a piecewise continuous linear maps with two pieces.
This chapter includes also a brief review of the basic concepts and bifurcations in
smooth dynamical systems. Some relevant literature dealing with non-smooth sys-
tems is also provided in this chapter. The nomenclature which will be used in the
following chapters is introduced here.

As it will be proved in Chapters 4 and 5, the discrete-time model which describes
the dynamics of the converter is composed by three pieces in certain range of the
parameters. In order to understand the possible scenarios given in this map, a three-
piece piecewise-linear map is analyzed in a restricted set of parameters in Chapter
3. This contribution can be understood as an extension of the analysis of the two-
piece map, which has been published in English literature in [31]. Expressions for the
existence and stability of the one and two-periodic orbits will be obtained in order to
determine the possible patterns of bifurcation. This work was partly realized in the
University Federico I in Naples, under the supervision of professor Mario di Bernardo.
The results obtained have been presented in the Spanish conference [87] and a report
is still on preparation.

In Chapter 4, a Single-Inductor Two-Input Two-Output (SITITO) power electronic dc-
dc converter is introduced jointly with the first strategy of control SPC. The converter
is governed by means of a pulse width modulation (PWM) with a double voltage
feedback, which includes a Proportional Integral (PI) term. Its dynamics is analyzed
by using averaged models [14]. Moreover, several discrete-time models, one and five-
dimensional, have been developed in order to understand the bifurcations produced by
fast dynamics. Some relevant results will be discussed concerning the discrete analysis.
Finally, the scenarios found are compared with the results obtained in Chapter 3.
Part of the study developed in this chapter has been published in the international
conferences [84] and [85], and the report [88].

Chapter 5 deals with the second strategy of control, which will be named Interleaved
Control (IC). This control is able to drive a SIMIMO dc-dc converter which was firstly
proposed in [15] and analyzed by means of averaging techniques. My contribution
in this chapter includes the development of a generalized discrete-time model with
different degrees of approach jointly with a generalized existence and stability analysis
of the main mode of operation. The one-dimensional analysis reveals an uncommon
bifurcation, which has been called non-smooth pitchfork bifurcation. Moreover, the
higher dimensional map has also revealed a significant deviation in the prediction of
some bifurcations. The results obtained in this chapter have been reported in the
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international conferences [40] and the reports [41] and [86]. This last report is still on
preparation.

In Chapter 6, several experimental measurements are provided. A prototype of SIM-
IMO converter has been built in the laboratory, whose control board permits the
programming of different strategies of control without the needed of any change in the
power stage. This prototype has allowed us to prove the nonlinear dynamics of both
controls analyzed in this dissertation.

Finally, conclusions and future works will be given in Chapter 7.






Chapter 2

Piecewise-smooth dynamical systems

The main objective of this chapter is to provide an overview of the
theory of piecewise-smooth dynamical systems. Our discussion begins
with a brief introduction of the basic concepts of the well-developed
smooth theory, connecting then with the piecewise-smooth theory. The
last part of this chapter concerns with the study and classification
of the nmon-smooth bifurcations, which undergo in one-dimensional
piecewise-linear maps.

2.1 Brief review of smooth dynamical systems

The classical theory of dynamical systems helps us to understand the behavior of dy-
namical systems in many areas such as physics, biology, engineering and economics.
There exists a well established theory for dynamical systems sufficiently smooth re-
ported in diverse reports and books. For instance, we can mention the books of
Kuznetsov [74] and Wiggins [109]. The objective of this section is to introduce some
basic nonlinear concepts and notation for the two classes of dynamical systems: flows
(continuous-time) and maps (discrete-time).

Let us consider the following vector field or flow in the form of an ordinary differential
equation

T = f(l',t,/l,),

9
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where z € D C R", t € R', 4 € V C RP, t stands for the independent variable time,
x is the vector of state variables or phases, the subset D is called phase space, being
commonly D = R"” and p is the vector of parameters or fixed coefficients of the system.

A system that does not depend explicitly on time will be called autonomous.

A trajectory ®(xo,t) is said to be a solution of the flow with given initial condition
xo. A phase portrait refers to the set of trajectories of the flow in the phase state.

Similarly, let us consider also the following map or discrete-time system

x = g(x, ),

where z € D C R™ and p € V C RP.

A map is a dynamical system where time is discrete. They are also known as dif-
ference equations or iterated maps. Maps are used to model natural or technical
phenomena such as electronics, economist and population dynamics. Nevertheless,
discrete-time models can also arise from analyzing differential equations through the
so-called Poincaré maps. Let us consider the following flow

& = f(x),

where £ € R™. Let us also consider the (n — 1)-dimensional surface S, which is
transversal to all trajectories of f. Then, we can define the Poincaré map (see Fig.
2.1) as follows

P:S5S—S8S,

where
x +— P(x).

Despite the difficulty in finding an explicit expression of P, Poincaré maps can turn
difficult problems in differential equations into easier problems. The analysis of exis-
tence and stability of limit cycles of flows is given by the study of fixed points in the
Poincaré map, which is demonstrated to be equivalent.

2.1.1 Invariant sets

An invariant set can be defined as a set that evolves to itself under the dynamics.
We can also define an attractor of a dynamical system as a subset of the state space
to which orbits tend as time increases. When more than one attractor coexists in
the phase space, the basin of attraction can be defined as the set of initial conditions
leading to long-time behavior that approaches that attractor. The following list shows
most important attractors in continuous-time dynamical systems:
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Figure 2.1. Poincaré mapping.

e Equilibrium points: z* is said to be an equilibrium point of f if f(z*) = 0.

e Limit cycles: A limit cycle corresponds to a periodic orbit with period T that
satisfies ®(xg, T) = x0, being x the initial condition and T the smallest time for
which the condition is fulfilled. In the phase space, the limit cycle corresponds
to a closed curve.

e Invariant tori or quasiperiodic orbit: This attractor contains a finite number
of incommensurable frequencies. The trajectories move on the surfaces of a torus.

e Chaos: This behavior is characterized by having an aperiodic and, apparently,
random trajectory, which is unpredictable in the long term due to its sensitivity
to initial conditions.

We can mention also other invariant set as such homoclinic or heteroclinic orbits which
connect a single equilibrium point with itself or two equilibrium points respectively.
These invariant sets are involved in the boundary of basins of attraction.

Concerning discrete-time models, the feasible invariant sets are:
e Fixed point: z* is said to be a fixed point of f if f(z*) = z*. This invariant
set corresponds to a closed orbit of a flow.
e Periodic orbit: (z},z3,...,2}) is a k-periodic orbit, being k > 0, of the map f
if f*(z3) = x3. In fact, a n-periodic orbit is a fixed point of the nth-iteration of
the map.

e Invariant cycle: The corresponding invariant set in flows of a torus.

e Chaos
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It is important to remark that another advantage of the use of Poincaré maps is
that the corresponding invariant sets in maps are simpler than in the continuous-time
model.

2.1.2 Stability of fixed points

In order to deal with the stability of fixed points, we will consider nonlinear au-
tonomous systems or maps sufficiently smooth. The stability is proven to be equiva-
lent to the stability of a linearization of the system in the neighborhood of the fixed
point.

Let us consider the map
x+— P(x),

where x € R™ with z* as a fixed point of the map and then z* = P(z*). Let us also
consider the perturbation

r=z"+e

Then, for small €, the map can be approached in the neighborhood of the fixed point
* by the first term of its Taylor expansion in x*. Therefore,

v* +¢ = P(a" +€) = P(z") + [DP(2")]e + O([lel|*),

where DP is the Jacobian matrix of P at the fixed point z*. The element ij of the

DP matrix is defined as
OF;

ij'

DP;; =

Then, we obtain
¢ ~ [DP(x")]e.

The set of multipliers {\;, j = 1..n} of a fixed point z* refers to the eigenvalues of
the Jacobian matrix DP of the linearized map P associated at this point. The local
stability of this fixed point z* is guarantied so long as

Al <1 Vjell,n].
Similar analysis can be developed to determine the stability condition of an equilibrium

point z* of a flow. In this case, due to the solutions of the linearized system can be
expressed as a composition of exponential functions, the stability of z* is fulfilled if

Re \j <0 Vje[l,n].
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2.1.3 Bifurcations of the fixed points

A bifurcation is said to occur when a topological change in the phase portrait is
produced under variation of some parameters of the system. The set of parameter
values at which a bifurcation appears is called a bifurcation point.

We must also introduce the concept of codimension of a bifurcation, which corresponds
to the number of the independent parameters which determine the bifurcation.

Many kind of bifurcations can occur in smooth systems and an extended classification
can be found in [74]. In what follows, we will focus on the codimension-one bifurcations
of the fixed points for both flows and maps. Concerning discrete-time models, the
bifurcations are yielded when one of the multipliers becomes nonhyperbolic, namely,
it is placed in the unit cycle. This situation can be reached when D P has an eigenvalue
equal to 1, —1, or a complex conjugate pair with unit modulus since the remaining
eigenvalues have moduli not equal to 1 (see Fig. 2.2). Otherwise, the bifurcations
in flows occur when the real part of the greatest eigenvalue becomes 0, being real or
complex. The main bifurcations are listed below:

e Saddle-Node bifurcation: Several bifurcations can appear in maps when a
real eigenvalue becomes 1. In the Saddle-Node or Fold bifurcation, one multiplier
of two fixed points (a pair of stable and unstable fixed points) tends to 1 as one
parameters is varied reaching the nonhyperbolicity simultaneously at the critical
point, where these points collide and disappear (see Fig. 2.2a). This phenomenon
can also occur in flows when two equilibria (one stable and one unstable) have
real eigenvalues which simultaneously tend to 0.

e Transcritical bifurcation: In contrast to the fold bifurcation, in the transcrit-
ical bifurcation a pair of stable and unstable fixed points collides at the critical
bifurcation point but not disappear. After the bifurcation, both fixed point exist
but with the stability interchanged.

e Pitchfork bifurcation: This bifurcation is also detected when a real eigenvalue
of a fixed point «* becomes 1 while the remainder of eigenvalues are inside
the unit cycle. There exist two kinds of bifurcations. In the subcritical case,
two unstable fixed points which coexist together with the stable fixed point x*
collapse at the critical bifurcation point, when z* becomes unstable. Similarly,
in the supercritical case a pair of stable fixed point appear after the critical point
and coexists with the unstable z*.

Both transcritical and pitchfork bifurcations can also be given for equilibrium

points in flows.

e Neimark-Sacker/Hopf bifurcation: In the Neimark-Sacker bifurcation, a
pair of complex conjugate eigenvalues crosses the unit cycle and their module
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becomes greater than 1 (see Fig. 2.2b). Around the bifurcation, an invariant
cycle appears, which can be stable (supercritical case) or unstable (subcritical
case). This bifurcation can only appear in maps with dimension greater than 1.
Notice that this bifurcation can be produced in a Poincaré map of a limit cycle,
generating a two-dimensional torus in its corresponding continuous-time system.

The Hopf bifurcation is the analog of this bifurcation in flows, thus involving
the appearance of a limit cycle at the time that an equilibrium point with com-
plex eigenvalue becomes unstable. Similarly, only continuous-time systems with
dimension greater than 1 can present a Hopf bifurcation.

Flip or period-doubling bifurcation: This bifurcation is given when one real
eigenvalue crosses the unit cycle becoming less than —1. This bifurcation has

Im(\) Im()\)

e R =L Re()

-1 1 _1 1
R 214
(a) Saddle-Node (b) Flip
Im()\) Im(})
1+ L

f —+ Re(\) ——— e Re())

(c) Neimark-Sacker (d) Pitchfork and Transcritical

Figure 2.2. Possible bifurcations of the fixed point in maps.
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associated a Pitchfork bifurcation in the second order map P?(z, i1). In contrast
to the mentioned bifurcations, the flip bifurcation does not have analogy with
bifurcation of equilibrium points of flows.

2.2 Piecewise-smooth systems

Though the smooth theory is well established and explains properly low dimension
nonlinear smooth systems, many applications in engineering or biological systems ex-
hibit diverse bifurcation phenomena which are inexplicable in the frame of the classic
smooth bifurcation theory. We can mention, for instance, electronics circuits contain-
ing diodes or transistors [11], mechanical systems involving impacts, stick-slip motion
in oscillators with friction and hybrid dynamics in control systems. These systems are
governed by smooth flows which are interrupted when some event is produced. There-
fore, these processes cannot be described by means of simple systems of differential
equations and require different mathematical formalisms as piecewise-smooth systems.

The non-smooth systems are known to exhibit a rich variety of bifurcations which
has attracted the attention of many researchers; their results have been reported in
an extensive literature. The earliest works in which the non-smooth phenomena were
reported were published in Russian. We refer to the works of Andronov [1] in equi-
librium bifurcations and Feigin [44, 45, 46] in the classification of C-bifurcations. In
English literature, we must mention the work of Brogliato [17, 18] in mechanical sys-
tems, Zhusubaliyev & Mosekilde [112] in control and electronics systems, Tse [107],
Leine [76], Kunke [72], Banerjee [7] and Peterka [96] in impacting systems, where
the description of examples exhibiting non-smooth dynamics can be found. More
recently, di Bernardo et al. presents in [29] general technics for analyzing the bi-
furcations which are unique in piecewise-smooth dynamical systems (also known as
discontinuity-induced bifurcations).

Alternatively, the dynamical behavior of these systems has also been studied by using
other formalisms, such as differential inclusions [62, 28] or complementary systems
[57], which have been useful to describe mechanical systems and a mature analytical
theory can be found in [17].

This section deals with the classification of the different non-smooth phenomena. We
will provide some of the most relevant results found in the bibliography, mainly in
discrete-time models. Similarly to the smooth theory, this section does not provide
formal definitions and classification of non-smooth systems, which can be found in the
references given. Nevertheless, a detailed analysis of piecewise-linear maps with two
pieces will be developed here, which will be extended for three-piece piecewise-linear
maps in Chapter 3.
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(a) PWS Flows (b) PWS Maps (c) Hybrid PWS

Figure 2.3. Trajectories of the state variable in different classes of piecewise-smooth systems.

2.2.1 Classification of the piecewise-smooth systems

We can describe a piecewise-smooth (PWS) system as a dynamical system composed
by a set of ordinary differential equations or maps, which are associated to a different
regions in the phase space.

Figure 2.3 shows the evolution of a state variable both for flows (see Fig. 2.3a) and
for PWS maps (see Fig. 2.3b). Besides these, there exist systems whose dynamics
needs to be modelled by using both formalisms: flows and maps. These processes will
be called hybrid systems (see Fig. 2.3c). The discontinuity boundary X;; is defined as
the intersection between two sets, S; and S;. 3;; is also known as discontinuity set or
switching manifold (flows) or border (maps).

The PWS systems can be classified depending on their degree of non-smoothness across
the boundary. The discontinuity can be found in the state, vector field or higher
derivatives, distinguishing the systems in PWS continuous, Filippov, or impacting
systems:

¢ Piecewise-smooth continuous systems

In the first class considered, the vector field characterizing the dynamics of the
systems is continuous at the boundary (see Fig. 2.4a) whereas higher derivatives
are discontinuous. Consequently, the boundary cannot act as an attractor or
repeller in both sides at the same time which avoids the sliding dynamics.

¢ Filippov systems

This class covers those PWS systems whose discontinuity is given in the vector
field. Due to the normal component of the vector field can have opposite sign
in the neighborhood of the boundary, these systems can permit the sliding dy-
namics. The sliding motion appears when the trajectories hit the boundary but
are forced to continue their evolution in part of the switching manifold, which
can become part of a periodic solution of the system. The complexity of this
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(a) PWS Continuous (b) Filippov systems (c) Impacting systems

Figure 2.4. Classification of PWS flows depending on their degree of non-smoothness.

phenomenon is given by the loss of information on the initial conditions and their
dynamics can be studied by using Filippov’s convex [48] or Utkin’s equivalent
control [108] methods.

One of the examples of Filippov systems are the switching dc-dc converters [11]
analyzed in this thesis. Besides these, Filippov systems arise in oscillators with
dry friction or relay-feedback systems.

¢ Impacting systems

In impacting systems, the switching manifold acts as a hard boundary as the
region S; in the phase space is forbidden (see Fig. 2.4c). Therefore, the dynamics
of the impacting systems can be described by a smooth flow and a map which
modifies the trajectory instantaneously when the trajectory hits the boundary.

A great variety of examples can be found in mechanical systems as such the
impacts oscillators, whose state variables are the position and velocity and the
impact implies a change in the sign of the velocity. This phenomenon has drawn
the attention of many researchers in the last decades since the early work of
Peterka [96].

PWS maps can also be classified depending on their non-smoothness. Figure 2.5
illustrates the diagrams of three one-dimensional piecewise-smooth maps with different
discontinuity degrees. In Fig. 2.5a, and Fig. 2.5b piecewise-linear continuous and
discontinuous maps have been depicted respectively. The first map has a discontinuous
derivative whereas in the second case the map presents a jump in the state. Another
example of PWS maps is illustrated in Fig. 2.5¢, which presents a fractional degree of
discontinuity [29].

The non-smooth theory for one and two-dimensional smooth continuous maps began
with the works developed by Feigin [44, 45, 46]. An English review of these works
were translated into English by di Bernardo in 1999 [31]. It must also be mentioned
the works of Nusse and Yorke in [89, 91, 90].
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Tn41 Tn41 Tn41

Ln Ln L

(a) PWL continuous (b) PWL discontinuous (c¢) Square-root PWS

Figure 2.5. Examples of one-dimensional piecewise-smooth maps.

Discontinuous maps arise from Poincaré maps applied to systems involving impact
oscillators with multiple impacts. More examples can be found in the modelling of
irregular heartbeats [66], other biological systems and switching dc-de converters [93].
The works of Lo Faro [77] and Qu et al. [97] show the existence of period-adding sce-
nario and multiple devil’s staircases in these systems respectively are proved. Avrutin
studied a quadratic map with a gap in [3, 4, 5]. Regarding the development of theory
for discontinuous maps, this is still in the first stage. Some results in one-dimensional
maps can be found in [65, 93, 68]. Recently, Hogan et al. in [58] developed a classifica-
tion strategy of the piecewise-linear discontinuous map as extension for discontinuous
maps of the classification done by Feigin. The work is continued by Dutta et al. in
[37].

2.2.2 Bifurcations in PWS systems

Non-smooth systems can exhibit a great variety of bifurcations, including those seen
in smooth systems. Nevertheless, in what follows, we will only pay attention to those
bifurcations which are unique in piecewise-smooth systems and are called Discontinu-
ity Induced Bifurcations (DIB) [29]. This class of bifurcations has also been mentioned
in the bibliography as C-bifurcations, non-smooth bifurcations or discontinuous bifur-
cations.

We will consider as a DIB any topological change involving invariant sets and their
switching manifolds in the phase space. Namely, a DIB includes interactions of fixed
points, equilibrium points and limit cycles with the system switching manifolds. Figure
2.6 shows some representative bifurcations in PWS systems for fixed points in PWS
maps and equilibrium points and limit cycles in PWS flow.

¢ Border-collisions (BC)

This bifurcation appears when a fixed point or a higher-periodic orbit of a
piecewise-smooth map hits the boundary X at a critical parameter value. This
class of bifurcations will be analyzed in detail in this dissertation.
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Figure 2.6. Different non-smooth bifurcations in PWS.
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¢ Boundary equilibrium bifurcations (BEB)

In piecewise-smooth flows, the simplest non-smooth bifurcation occurs when
an equilibrium point hits the boundary ¥ (see Fig. 2.6a). There not exists a
complete strategy of classification of the possible scenarios. The existence of
different scenarios after a BEB was firstly reported by Bautin & Leontovich
and also shown in [50, 76]. In [33] an extension of the Feigin’s classification
is presented and extended. Regarding Filippov systems, an overview of the
phenomena in planar systems by Kuznetsov et al. in [73] is presented.

We will give few examples of the feasible phenomena after undergoing a BEB.
When a boundary equilibrium in a PWS system is perturbed, this invariant set
can persist or disappear in a non-smooth fold. More complex scenario is given
when a limit cycle appears after a BEB. These phenomena can also be seen in
Filippov or Hybrid systems with sliding, but there include new phenomena for
instance pseudo-equilibria.

Grazing bifurcations of limit cycles

A grazing bifurcation occurs when a limit cycle of a flow becomes tangent to the
discontinuity boundary (see Fig. 2.6b). This phenomenon is commonly seen in
applications modelled with PWS systems.

One of the technique used to study these non-smooth bifurcations is based in
the use of Discontinuity Mappings [25]. This map was introduced by Nordmark
in 1999 and now there exists a strategy to derive this map in n-dimensional
systems.

Sliding bifurcations

Another class of DIBs covers the interactions between equilibrium points or limit
cycles with sliding regions. In Fig. 2.6c, a limit cycle with part of its orbit in the
switching boundary is generated after the sliding bifurcation. Some examples of
this dynamics can be seen in certain models of the basic dc-dc converters, such
as the Buck converter [92].

A classification of sliding bifurcations of equilibrium points in planar Filippov
Systems can also be found in [73]. Concerning bifurcations of limit cycles, early
results were presented in [47].

Boundary intersection crossing/corner collision

Finally, we consider another kind of DIB given when an equilibrium point or
limit cycle hits a (n — 2)-dimensional surface formed by the intersection of two
different discontinuity manifolds (see Fig. 2.6d).

Some dynamics observed in dc-dc converters can be yielded by the intersection
of a limit cycle with a corner in a switching manifold. An example of this
phenomenon can be seen in [11], where a Buck converter exhibits a sudden
transition from a periodic orbit to a large-amplitude chaos undergone by a corner-
collision bifurcation.



2.2. PIECEWISE-SMOOTH SYSTEMS 21

2.2.3 Piecewise-smooth continuous maps

We now consider the family of maps which are locally continuous piecewise-linear
and draw our attention to a local region in which there exists only one boundary.
Therefore, we can define the following map

Fa(z,p), if H(z,p) <0, (2.1)

e Sl = {FB(I,M), it H(z, 1) > 0.

where x € D CR", Fy, Fp : R" x R— R", p € R and H : R® — R are sufficiently
smooth and differentiable functions of x. The condition H(u) = 0 define implicitly
the boundary

Yap={x€D: H(x,u) =0},

which divides the region D into

Sa={zxeD:H(z,pu) <0},
Sp={xe€D:H(xz,u) > 0}.

Definition. z} is said to be an admissible fized point of (2.1) if = = F;(z}) and
xf € S;. Otherwise, z} is considered a virtual fized point if 7 = Fi(z}) and z} € S;
being j # i for i = A or i = B.

Definition. zj; is said to be a boundary fized point if Fi(x]) = Fj(z}) of (2.1), namely,
x;j € X;j, being i # jfori,j=Aori,j=B.

Notice that these definitions can be extended easily to piecewise-smooth maps with
multiple borders. For the sake of clarity, the stable and unstable fixed points will be
denoted by upper (i. e. A, B, ...) and lower (i. e. a, b, ...) case letters respectively.
After undergoing the BC bifurcation, there exist four main scenarios involving fixed
points or higher dimensional periodic orbits, which will be defined as follows:

e Persistence: At the border-collision point, admissible and virtual fixed points
placed in S; turn into virtual and admissible fixed points in S;.

e Non-smooth fold: Two admissible fixed points z; and z7}, being i # j collapse
at bifurcation point as the parameter is varied.
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(a) Persistence (b) Non-smooth fold (c) Non-smooth period-doubling

Figure 2.7. Feasible scenarios in a PWS map. Solid and dashed lines represent the evolution of
the admissible and virtual fixed points in the phase space, respectively, under the variation of p.

¢ Non-smooth period-doubling: After the fixed point 2} hits the boundary, a
periodic orbit which has one fixed point in each region, appears.

e Non-smooth period multiplying: Similarly to non-smooth periodic orbit, a
n-periodic orbit branches after the border-collision bifurcation.

e Chaos: Emerges when no others attractors are possible and the system does
not diverge.

An appropriate normal form will be defined in order to develop a strategy of classifi-
cation. This map can be obtained after linearizing (2.1) in the neighborhood of the
bifurcation point and introducing a change of co-ordinates. The resulting normal form
corresponds to a n-dimensional piecewise-linear map given by

Nax+ Mp if Tz <0,

z— f(z,u) = 2.2
fe ) {NBQH—MU if CTx >0, (22)
where
O0F 4 0Fg
Ns=22A  Np= B
A axv B axv
M:aFA:aFB OT:()_H

ou ou’ Ox’

evaluated at * = 0 and p = 0.

Definition. o () are defined as the number of real eigenvalues of N4 (Np) greater

than 1. Similarly, oy (o) are said to be the number of real eigenvalues of N4 (Np)
less than —1.

After having defined these parameters, we can present the theorem introduced by
Feigin in [44, 45]. The appearance of the following scenarios when the BC occurs will
be given if the following conditions are fulfilled:
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¢ Persistence: O'X + Ug is even.

e Non-smooth fold: ‘721_ + crg is odd.

e Non-smooth period-doubling: ¢, + o5 is odd.

The theorem will help us to analyze the non-smoothness of a one-dimensional PWL

map with two pieces.

o4 +o0g crjg + ag O'XA + crng Scenarios
even even A< B
even odd Abeo o
odd even even A~ b AB; A+ b,ab
odd even odd A ab<— B; Ajab < b
odd odd even A,b— AB; A)b < ab
odd odd odd Ab,ab— &

Table 2.1. Classification of the border-collision bifurcations

2.3 Example:
map

Analysis of a one-dimensional PWL

This section deals with the analysis and classification of the border-collision bifurca-
tions of the fixed points and higher periodic orbits of the simplest piecewise-linear
continuous map composed by two pieces. The results presented in this study are con-
sidered as a first stage to understand the results presented in Chapter 3, where we

analyze a PWL map composed by three pieces.

Let us consider the following piecewise-linear map:

o gt {

or + [
Br + p

if x <0,
if x>0,

where z € R and «, § and p are real parameters of the system.

Accordingly with (2.1) and (2.3), we obtain

Fa(z)=az+p and Fp(z)= Pz +p,
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Tpt1 Tn+1

-
\K”

\

f=-05 Cu=-05

(a) A= B (a=0.75, 8 = —0.5). (b) A b (a=0.75, 3 = —1.5).

Tn+1 Tn+1

(¢) @«—a,B(a=15,3=-0.5). (d) @ < a,b (=15, 8=—-1.5).
Figure 2.8. lllustrations of the map (2.3) for different values of «, 5 and p, representing the four
possible scenarios.
H(z) =z

and hence
Sa={zxeR:x <0},

Sp={r€R:z >0}

Without loss of generality, the parameters o and 3 will be restricted to positive and
negative values respectively.

2.3.1 Existence and stability of fixed points

The feasible fixed points of (2.3), which will be called z* and x7}; using the nomencla-
ture proposed above, can be obtained applying Fa(z% ) = =% and Fp(z}) = x5 and
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0 1 2
0 «
A~ B &« a,B
-1
A~ b AB
-2t T a,b
A~ b,ab

-3

p

Figure 2.9. Possible scenarios for the one and two-periodic orbits of (2.3).

hence,
Th = and zp = L,
1l—a 1-p
which will be admissible if
zy <0 (2.4)
and
xp > 0. (2.5)

Therefore, from (2.4) and (2.5), 2% and z7; will exist for negative and positive values
of p respectively. Dealing with their stability, % and 7 will be stable provided that
a < 1 and B > —1 respectively. Then, four different non-smooth scenarios can take
place as the parameter p is varied depending on the parameters a and 3:

A—B, Aeb G« a B and < a,b,

where now the symbol «» means the variation of p from negative to positive values.

In Fig. 2.8, four diagrams representing the possible scenarios have been depicted for
different values of the parameters.

2.3.2 Existence and stability of period-two orbits

Let us now study the existence and stability of period-two orbits. As a result of the
linearity of the functions F4 and Fg, orbits such as AA, aa, BB and bb cannot appear.
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Consequently, the period-two orbits must have the forms AB or ab, which means that
one solution must be placed in Sy (2% ) whereas the other solution must be in Sp
(x5 ,4)- From the set of equations

Tpa = aTyp + [,

g = Prpa + 1,
the following solution is straight forward,

xAB::ul_aﬁ and $BA:/L1_QB-

The existence of the period-two orbit is guaranteed if 2% 5 < 0 and x4 > 0. Hence,
the orbit will only exist for positive values of p if 3 < —1.

Finally, the eigenvalue associated to the second iteration of (2.3) corresponds to af3
and thus, the stability will be proved if o > —1.

The different scenarios which can occur have been depicted in Fig. 2.9 where the
condition of existence and stability have been plotted in the parameter space {«, 5}.

2.3.3 Existence and stability of higher periodic orbits

Assuming the restrictions of the parameters given above, it has been proved that only
the higher periodic orbits with the form A*~!B and a*~'b can exist [31]. These orbits
are composed by one point placed in the region Sp, which must be positive to fulfil
the existence condition, whereas the remainder points belong to the region S and
must be positive. The possible scenarios present at the border-collision are proved to
be

A b,ab,...,a" 2, A¥ 1B,
A b,ab,...,a"2b, a1,

& < a,b,ab,a* 1b.

Therefore, only the periodic orbits A*~1B can be stable in the map. Let us now
develop the existence condition of this attractor.

Assuming that the points composing the k-periodic orbit are given by
T, T, Ta,, o 5 Ta,
the following set of equations can be easily obtained:

xy, = Brp +p, (2.6)
Th, =axy,  tp for2<j<k-1,

Th = ary, |+ p. (2.8)
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The k-periodic orbit will exist provided that the following conditions are fulfilled:

rp >0, xi, <0, 3, <0, .. ,zi , <0

Let us suppose that 27, = < 0. Then, taking into account that

* J—
* _ LAy, — M
TAp_o = a )

and o > 0 and p > 0, it is easy to prove that all points placed in S4 are also negative.
Moreover, according (2.6), =} will positive as § < 0. Therefore, the existence will be
guaranteed if 7, < 0. From (2.6), (2.7) and (2.8), the expression for 27 can be
found and is expressed as follows

. 1+a+...+ak*2+ak*26<

LAy, = H 1—aF 13 <0. (2.9)

Taking into account that 1 — a*~!3 is positive, (2.9) will be fulfilled if

1 1 1 1—akt
ﬁ<— 1+a+$++ak72 :akfl_ak72'

Let us define the function ¥y (a) as

1—ak1
V() = = (2.10)

The existence of the k-periodic orbit A*~1B/a*~1b is guarantied if x> 0 and

B < Yr(a).

Regarding the stability condition, it can be obtained from the eigenvalue of the iter-
ated map. It is easy to prove that this eigenvalue corresponds to o*~'3 and hence,
considering the following definition of the function ¢ (a) as

Ou0) = — =, (211)

the k-periodic orbit will be stable so long as

B> or(a).

Curves (2.10) and (2.11) have been depicted in Fig. 2.10 for k£ = 2.4, together
with « = 1 and 8 = —1, to summarize the different scenarios studied in this section.
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A<~ b AB

A b,ab

A < b,ab, A’B

A < b,ab,a?b

A < b,ab,a?b, A°B
A < b,ab, a’b, a3b

A b, ab, a’b,a’b, A*B

Figure 2.10. Possible scenarios for the k-periodic orbits of (2.3) in the parameter space {«, 3}.

Functions ¢ () and ¢y («) have been plotted using dashed and solid lines respectively
and colored zones stands for regions in which an stable orbit exists. Notice that stable
solutions can only take place if & < 1. Moreover, for values of a greater than one, the
existence of a is restricted to positive values of pu.

The study of the existence of these periodic orbits reveals that stable fixed points and
higher-periodic orbit cannot coexist.

2.3.4 Robust chaos. Bifurcation diagrams

Numerical simulations of the map (2.3) reveal the presence of chaotic attractors in the
one-dimensional PWL continuous map (see Fig. 2.11d). Their appearance is restricted
to zones in which any fixed point or periodic orbit is stable. It is proved that under
the conditions

Yrp—1(a) < B <Yp(a) and B> ¢r(a),

the map exhibits robust chaotic dynamics [31]. Robust means the no existence of
periodic windows, in contrast to nonlinear smooth systems such as the logistic map.
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(d) A < b,ab, A2B (B = —3.5)

Figure 2.11. Bifurcation diagrams using . as the varying parameter and considering o = 0.5.

To conclude, some relevant bifurcation diagrams have been depicted in Fig. 2.11 using
w1 as varying parameter. Persistence, non-smooth period-doubling, robust chaos and
period-three orbit are illustrated in 2.11a, 2.11b, 2.11c and 2.11d respectively.






Chapter 3

Non-smooth dynamics of a three-piece
piecewise-linear map

This chapter deals with the study of the dynamics of a three-piece
continuous piecewise-linear map. Fxpressions for the existence and
stability of the fized points and period-two orbits are determined in a
restricted set of parameters jointly with an extended classification of
the border-collision bifurcations. The basins of attraction in those set
of parameters in which coexistence of attractors can be found are also
determined. This analysis will help us to understand the dynamics of
the SIMIMO converter under both SPC and IC controls, which will
be discussed in the following chapters.

3.1 Definition of the map

Let us consider the following three-piece piecewise-linear map

Fy(x,9) ifx €Sy,
x> f(z) = Fg(z,¢) ifz € Sp, (3.1)
Fe(z,¢) ifz € Sc,

where v € D C R and F; : R x R® — R, being i € {4, B,C}.

31
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Tn

Figure 3.1. The three-piece piecewise-linear map.

The expressions for the linear functions will be expressed as follows

Fyz,a,p) = az + p, (3.2)
FB(J;,CY,B,,U) = (a+ﬁ)x+ﬂ,
FC(I,Oé,ﬂ,’Y,,LL,T) = (OZ+6+"Y)$—|—ILL—’}/T

Notice that the definition of the parameters considered here, where § (y) corresponds
to the difference between the slopes of F4 and Fp (Fp and F). This property permits
to provide simpler expressions for the restriction of the parameters when adapting the
discrete-time model to the SIMIMO converter in following chapters.

The regions are defined as

Sa={xeD:x <0}, (3.5)
Sp={zeD:0<z <7}
Sc={xeD:z>r7},

and it is easy to prove that the boundaries are described by

Yap(x) ={x e D:z =0},
Ype(x)={zxeD:x—7=0}

Therefore, the piecewise-linear map proposed here will be described by five parameters,
whose domains are summarized in Table 3.1.

Let us now explain the significance of the restrictions applied to the parameters.
Firstly, a will be always considered positive and less or equal than one, thus the
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Parameter ‘ Domain ‘
a [0,1]
B (=00, 0]
gl (=00, 0]
7 (=00, +o0)
T (0, 00)

Table 3.1. Domain of the parameters «, 3, v, u, 7. The parameters must also fulfil the condition
a+B+y<1.

0 1
0 «
A~ B
_1,
-2 Aeb
-3
B

Figure 3.2. Behavior of the fixed points 2% and x5 in the planar space {c, 3}. u € (—o0, u%g) <
€ (Hap, KEc)-

slope of F4 will be always positive. Moreover, [ is negative and consequently, the
slope of Fp will be always less than the slope of F4, despite being positive or nega-
tive, but less than 1. Finally, although « can be positive or negative, the third slope
(4 B+ 7y) must be less than 1.

Concerning the definition of the boundaries, the first border has been placed at = =0
in order to simplify the analysis and ensure the continuity of the map. In the same way,
the second boundary is placed at x = 7, which will be always positive to guarantee
that the map is divided into three pieces.
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3.2 Existence and stability of fixed points

The map (3.1) presents the following fixed points:

.l
AT Ty
a:*B:iu

1—(a+8)’
T -t L —
L—(a+B+7)

Notice that the fixed point 2% is not defined when o = 1. These fixed points will
undergo a border-collision bifurcation when they hit any of the boundaries of the
map, which means that any of the following conditions ¥ apg(z%) (or Xag(z}y)) or
Ypo(zry) (Bpce(xg)) is fulfilled. Using i as a varying parameter, the fixed points will
cross the boundaries ¥ 45 and X pc at the critical values p% 5 and N%’c respectively,

given by (see Fig. 3.3)

/L?LXB = Oa

ppe =T1(1 = (a +5)).

Let us now study the existence conditions of the fixed points. Firstly, 2% will be an
admissible fixed point if 2% < 0 and, taking into account that 1 —a > 0, =% will only
exist if p < 0. Moreover, its stability is always guarantied because the range of a.

Similarly, the fixed point 2% will exist if 2 > 0 and 3 < 7. Considering that
1 — (a+ B) > 0, the existence of 23 will be proved if u > p%p and p < %,
whose value is always higher than u% 5 and thus, 2% is an admissible fixed point if
15 < p < p%e. In addition, its stability will be proved when o+ 3 > —1.

Finally, the fixed point zf, will be an admissible fixed point if ¢ > 7. Therefore,
considering that a + 5 4+ v < 1, the existence condition will be fulfilled if

p=7>7(1—(a+8+7)),

and hence, xf, will exists if
1> Hpe

The stability of zf, is guaranteed if a« 4+ 3 +v > —1.

These results have been summarized in Fig. 3.2 and Fig. 3.4, in which the existence
and stability conditions have been depicted in the two-parameter space {«, 5} and {a+
8,7} respectively. Some remarkable conclusions can be obtained from our analysis:
the attractor A is always presented for negative values of p and none of the three fixed
points can coexist in a given set of parameters.
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Figure 3.3. lllustrations of the critical values of p.
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Figure 3.4. Behavior of the fixed points z; and z¢ in the planar space {a + 3,7}
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3.3 Existence and stability of two-periodic solutions

Period-two solutions of the map (3.1) correspond to the pair of fixed points of the
second iterative maps given by

Fi(Fj('rvavﬁv")/;,uvT)) and Fj(E(-I,OZ,B,’Y,IU,T)), (38)

where 7, j can be A, B or C. These orbits, which will be named (z7;,z7;), are admissible
if z7; € S; and zj; € Sj. Because of the linearity of the map, the two-periodic orbits
(xf;, x};), which have both fixed points in the same region, cannot be admissible.
Therefore, only three possible two-periodic orbits can be found in this three-piece
map: (2%5,254), (@50, 26p) and (2%, 28 ,4). In this section, the existence and

stability of each of these possible attractors will be analyzed in detail.
3.3.1 Two-periodic orbit (%5, x5,)

The orbit (z 5, x5 4) has its fixed points placed in the regions S4 and Sp respectively.
Therefore, from (3.5) and (3.6), the conditions of existence of 2% 5 and z}; 4, are given
by

‘TZB < 07 (39)

xpa >0 and Tpa <T (3.10)

respectively, where the expressions of both points z%p and x5, are expressed as

follows
. 1+a+p N 1+

TAB = muv Tpa = m#-

Considering the domain of the parameters, the expressions 1 — a(a + 3) and 1 + «
are always positive and thus, the first part of the condition (3.10) can only be fulfilled
for > p% 5. Moreover, from the condition (3.9) and assuming positive values of p,
the following condition must be also fulfilled to guarantee the existence of the periodic
solution:

a+ [ < -1

Notice that this inequality corresponds to the instability condition of the fixed point
2y seen above. Finally, the first part of the condition (3.10) implies that

Tl—a(a—i—ﬁ) 1

B < 1+ a = Mpc- (3.11)

Nch is defined as the critical value of p at which the point 2} 4 reaches the boundary
Ypc (see Fig. 3.3b). Notice that uko < u%o. Concerning the stability of the two-
periodic orbit, it is guaranteed if

ala+8) > —1. (3.12)
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Figure 3.5. Existence and stability of =7 and x3 and two-periodic orbit (z}g,x54) in the
planar space {a, 8}. p € (—oo,p%p) — (%5, wag). Solid and dotted lines correspond to the
conditions a« 4+ 8 = —1 and a(a + ) = —1 respectively.

All these results are summarized in Fig. 3.5, in which the curves of existence and
stability for the fixed points A and B and the two-periodic orbit AB/ab are plotted.

3.3.2 Two-periodic orbit (x5, z5p)

Similarly, the periodic orbit (2}, 2¢ ) has the fixed points in the regions Sg and Sc
respectively. Therefore, this two-periodic orbit will exist so long as

Tpe >0, e <7 and  zip > T, (3.13)

where the expressions of the fixed points of the attractor can be easily obtained from
(3.3), (3.4) and (3.8) and are given by

. p(l+a+ B) —yr(a+ f)

. _ pl4+a+pB+y) -7 _
A T R P ey

TBC T T (a1 B)a+B+7)

From the two last conditions of (3.13), we obtain the following inequalities:

(Ita+f+9)(p-r(1—(a+f)) _(A+a+b+7)(p—rpe) _,
1—(a+p)(a+B+7) 1—(a+p)(a+B+7)

(+a+B -1l =(a+p)  (+a+P)(p—uhe) >0. (3.14)

Tpe —T =

T T T Tt e+ B+y) 1-(a+B)(a+B+7)




38 CHAPTER 3. NON-SMOOTH DYNAMICS OF A THREE-PIECE PIECEWISE-LINEAR MAP

0
o~ b,bc — C
\\\ \’ E= 2 +
\\\b,BCHC\
N
b C, bc < 1
N
N
AN
-3 2 St 1
a+fp 1 1 N
\\\ B« C
b Nt \
\
\
L= L
\\B i c, BC -
\3
B,bc<—>c1\_ ‘B < ¢ be

Figure 3.6. Existence and stability of 2%, ¢ and the two-periodic orbit (z5¢, 2z ) in the
planar space {a + 3,7} p € (Hap, Hpo) < (Wpo, mhp) if pap > Hpo or 1 € (Wap, nbe) <
(Wpc,+00) if pap < Hpe-

which have been factorized to make the analysis easier. Notice that the existence of
this periodic orbit requires that 1 + a+ 3+~ and 1 + a + 5 must have different sign.
Hence, the orbit BC/be will exist

if v<0, and a+8+y< -1 and a+[>-1, (3.15)

or
if ~v>0, and a+pB8+y>-1 and a+ < -1 (3.16)

These results are illustrated in Fig. 3.6, where the critical conditions « + 3 +~v = —1
and o+ (8 = —1 have been depicted using blue lines. Moreover, in the region colored in
blue, the set of parameters fulfil (3.15) and (3.16) and therefore, the orbit (2, 2 p)
is admissible.

Let us now focus in the range of p which guaranties the existence of the two-periodic
orbit. For (3.15), when the denominator of (3.14) is negative, the admissibility is given
when p < p%. Therefore, if v < 0, the existence of the orbit is given by

p<ppe and 1= (a+B)(a+pB+7) <0,

w>u%e and 11— (a+B)(a+B+7)>0.
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Otherwise, from (3.16), we obtain the conditions
p<ppe and 1—(a+B)(a+B+7)>0,

w>p%e and 1—(a+B)(a+B+7)<0.

In Fig. 3.6, the different scenarios have been represented specifying the different
obits which are admissible in both sides of the border-collision bifurcation at the
critical value of 1 = u%.. The results obtained are characteristic of a two-piece PWL,
because only one boundary has been taken into account. Notice also the symmetry is
the different scenarios illustrated in Fig. 3.6.

Nevertheless, due to the map (3.1) is composed by three pieces, there exists another
boundary when the fixed point z}; reaches ¥ 45 (v = 0). Therefore, from the first
condition of (3.13), when 1 — (a + B)(a + 8 +7) >0 and o+ §+ v > —1, we obtain

the condition
T

1

> — = . 3.17
P Tvarpry  Mae (3.17)
The critical value pY 5 is defined as the value of p for which 2%, reaches the boundary

Y ap (see Fig. 3.3c). Therefore, considering all the solutions of the first condition of
(3.13) it is obtained:

if 1—(a+B8)(a+p+~)>0, and a+B8+y>—1 and p>pulp,
if 1—(a+B8)(a+p+~)>0, and a+B8+y<—1 and pu<pulp,
if 1—(a+B)(a+p+7)<0, and a+B8+y>—1 and pu<plp,
if 1—(a+B)(a+B+7v)<0, and a+B+y<—1 and pu>pulp.

In order to establish the range of p where the orbit is admissible in each region of the
parameter space, it is required to determine the relation between both critical values
%o and pk 5. Hence, from ph 5 < u%o, the following condition is obtained:

1—(a+P)(atB+7)

> 0.
l+a+8+7y

Therefore, the orbit (27, ¢ ) will be admissible so long as

for 1—(a+pB)(a+B+7)>0 and a+pB+v>—1, phg<p<pfe,
L—(a+p)(a+ B+
for 1—(a+p8)(a+8+7y
L—(a+pB)(a+F+7

for >0 and a+fB+7y<-1, uQe<p<php,
<0 and a+pF+7v>-1, N%c<ﬂ<ﬂ}437

for <0 and a+f0+v<-1, N,143<N<M(1J3c~

—_ — — —
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It is important to remark that uy 5 can be negative (and then pl 5 < u9 ) for negative
values of v and o+ 5+ > —1 or for positive values of v and o+ g+ < —1. Notice
that is this region in the parameter space, the orbit (2,25 z) cannot exist.

Finally, the stability of the orbit BC/bc will be given if the following condition is
fulfilled:

“1<(a+p)(a+p+7) <L

Notice that the condition (a4 5+ v)(a+ ) = 1 has also taken part in the analysis of
the existence of the orbit. The condition (a4 3+)(a+ 3) = —1 has been represented
in Fig. 3.6 using a dotted line.

3.3.3 Two-periodic orbit (2%, z¢,)

The fixed points of the last two-periodic orbit (%, zf 4) are given by the expressions

p(l+a+B8+7) -7 . pl+ o) —ayr
and Top = )
l—ala+8+7) 1—ala+8+7)

* —_
Tac =

whose existence conditions, taking into account that =%, and =, 4 are in S4 and S¢
respectively, can be expressed as

The <0 and Tig > T (3.18)
From the first part of (3.18), and taking into account that 1 — a(a + 8+ ) is always
positive, the (z%~, 25 4) period-two orbit will exist if
a+pB+y<—1 and p>pukg,
or

a+B+y>—1 and p<php.

From the second part of the condition (3.18), we obtain a complementary existence

1—
H>T (71045?;5)) = ppc-

condition, expressed as

Finally, the stability is given by the condition a(a+ B +7) > —1 and thus, (2%, 25 y)
will be stable (attractor AC) if

7>—%—m+@-
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Figure 3.7. Existence and stability of the period 1 and 2 orbits in the parameter space {3,~} for
a = 0.5. The different attractors of each region are summarized in the Tables 3.2, 3.3, 3.4, 3.5
and 3.6. The grey dots represent the sets of parameters used in Figs. 3.8 and 3.9.

All these results are summarized in Fig. 3.7, where the existence and stability curves of
period-one and two orbits split the parameter space {3, ~} into sixteen zones. Though
these curves have been obtained using the value a = 0.5, the value of this parameter
does not change qualitatively the regions in the parameter space {3,~}. Each region
has different attractors depending on the parameter p, which are resumed in Tables
3.2, 3.3, 3.4, 3.5 and 3.6 depending on the relationship between the critical values % 5,

0 1 1
1pos fap and ppe.

To sum up, we summarized the most important results which can be obtained in the
analysis of the existence and stability of the period 1 and 2 orbits:

For ;1 < 0, there is only the attractor A.

Only the attractors C' and AC' can exist for higher values of p.
e The attractor AC appears in all zones except in zone 1.

e For > u%, the attractor C exists if « + 8+~ > —1 (Zones 1, 11-16).
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e The attractor AC' can coexist with the fixed point B in Zone 5, and C, in zones
11 and 12.

‘ZOHEHM<M%B Pap <P <Upc | Mhe <KW <Hip | B> Mg

1 A B C C

2 A B c, BC c, AC
3 A B ¢, BC ¢, ac
4 A B ¢, be ¢, ac

Table 3.2. Different scenarios of the map in zones 1 to 4 (u%p < % < phz)

| Zone || p<plp | 1hs <p<php | whe <p<uhe | n>uhe

5

A

B

B, be, AC

c, AC

6

A

B

B, bc,ac

¢, ac

Table 3.3. Different scenarios of the map in zones 5 to 6 (uho < php < UBc)

| Zone || u< s [ 1% <n<ibo | mho <n<ube | n>ude

7 A b, AB b, AC c, AC
8 A b, AB b,ac ¢, ac
9 A b, ab b, ac ¢, ac
10 A b, ab b, AC ¢, AC

Table 3.4. Different scenarios of the map in zones 7 to 10 (i < phe < 1%e)

‘ Hu<u913‘u913<u<ulsc fbe < p < ppe M%c<u<u25‘u>uhs‘
11 A b, ab b, AC C,be, AC C
12 A b, AB b, AC C,be, AC C

Table 3.5. Different scenarios of the map in zones 11 to 12 (ul5 < phe < u%e)

3.4 BC bifurcations of the fixed points and period-
two solutions
As it has been introduced above, the fixed points A and C present a border-collision

bifurcation when they cross the boundaries ¥ 4 g and X p¢ respectively. In addition, B
can have two border-collision bifurcations when the attractor crosses the boundaries
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‘ Hu<u?43 Hap <p<ppe | ppe <p<php | phe <p<phce | p> phe

13 A b, ab b, AC b, BC C
14 A b, AB b, AC b, BC C
15 A b, ab b, AC b, be C
16 A b, AB b, AC b, be C

Table 3.6. Different scenarios of the map in zones 13 to 16 (ulp < phe < phe)

Yap or ¥po. Dealing with the period-two orbits, AB or BC will present another
bifurcation when the fixed point % 5 or z%~ reach the boundaries X 4p and Xpc
respectively and finally, orbit AC' will present two bifurcations when the fixed points
%o and xf 4 cross the boundaries ¥ 4p or ¥ g respectively.

The different dynamical scenarios in which border-collision bifurcations are involved
can be seen in Fig. 3.8 and Fig. 3.9, where sixteen bifurcation diagrams have been
depicted using p as the varying parameter and using sets of parameters placed in each
region defined previously in Fig. 3.7. Moreover, in Fig. 3.10 two bifurcation diagram
are depicted using the same set of parameters in the Zone 6 (Fig. 3.10a,b), 10 (Fig.
3.10c) and 13 (Fig. 3.10d) to show the coexistence of two attractors.

In Table 3.7, the different border-collision bifurcations appeared at the critical values
of p are classified using the strategy of classification presented in [31], which is based
on the analysis of the eigenvalues of the maps involved in each bifurcation at the
bifurcation point and has been reviewed in Chapter 2. Notice that in all cases 0§ =
0, =0f =0l =0and o}z = 0}, = 0. Depending on the values of o, o5, 045,
0pcs Tac and o at the bifurcation point, the scenarios found are persistence of the
fixed point or the period-2 orbit, non-smooth fold and non-smooth period-doubling.
Furthermore, in some regions it is needed to analyze the existence and stability of

higher periodic orbits.
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Figure 3.8. Bifurcation diagrams with p as varying parameter for negative values of . Parameters:
a = 0.5, 7 = 0.05 and (8, «y) are in the captions. Legend: Red doted lines for unstable orbits,
black solid lines for stable one-periodic orbits and blue, red and green dashed lines for the orbits
AB, BC and AC respectively.
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Figure 3.9. Bifurcation diagrams with p as varying parameter for positive values of 7. Parameters:
a = 0.5, 7 = 0.05 and (8, 7) are in the captions. Legend: Red doted lines for unstable orbits,
black solid lines for stable one-periodic orbits and blue, red and green dashed lines for the orbits
AB, BC and AC respectively.



46 CHAPTER 3. NON-SMOOTH DYNAMICS OF A THREE-PIECE PIECEWISE-LINEAR MAP

i i
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Figure 3.10. Bifurcation diagrams with u as varying parameter. Parameters (o, (3, v and
7): (a,b) Zone 6: (0.5,—1.3,—2.0,0.05), (c) Zone 10: (0.5, —2.6, 0.4, 0.05), (d) Zone 13:
(0.5, —2.6, 2.0, 0.05).
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Zones H I ‘ Scenario ‘ og ‘ oo ‘ Oup ‘ 0o ‘ Oac ‘ UEC ‘ Type ‘
1.6 Wy | A=B |0 P
7,8,12,14 || 195 | A= 0,AB | 1 0 NS PD
9.11,13 || php | Aebab | 1 1 HPO/C
1 Whe | BeC | 0] 0 P
2.3 (% | Be=e,BC | 0 | 1 0 0 | NSPD
4 1%e | B« cbe 0 1 HPO/C
5..6 1% | Bibcec | 0 | 1 1 1 | NSPD
7..10 1e b c 1|1 P
11,12 %o | b e Cbe 0 1 NS PD
13,14 || ppo | C < b,BCO 0 1 NS PD
2,14 iy | BC < AC 0 0 0 P
4,13 Fap be < ac 1 1 0 p
3 iy | BC < ac 0 1 0 | HPO/C
511,12 || phg | 0 < be, AC 0 0 1 NS F
6 g | 0 beac 0 1 1 NS F
7,12,14 || ppe | AB < AC 0 0 P
10,11,13 || phe | ab— AC 1 0 HPO/C
9 e ab < ac 1 1 P
8 Lhe | AB < ac 0 1 HPO/C

Table 3.7. Bifurcations of the fixed points and two-periodic orbits.

P: persistence, NS PD:

Non-smooth period-doubling, NS F: Non-smooth fold, HPO/C: higher periodic orbit or chaos.
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3.5 Higher periodic orbits and chaos

The map exhibits a rich variety of higher periodic orbits (see Fig. 3.11) due to the
presence of two boundaries. In this section, some results dealing with these orbits will
be discussed. Nevertheless, a complete classification of the possible scenarios involving
higher periodic orbits is out of the scope of this dissertation.

In contrast to the higher periodic orbits in a two-piece map, other conditions of ex-
istence must be taken into consideration. The set of periodic orbits of the forms
A*B/aFb and B*C /b c will always present a border-collision bifurcation when one of
the fixed points of the attractor reaches one of the boundaries. For A¥B/a*b orbits,
the border-collision will be given when the fixed point placed in Sp reaches the bound-
ary Ypc (Fig. 3.11a,b), whereas for B¥C/b¥c orbits, the bifurcation will appear when
the lowest fixed point in Sp reaches the boundary ¥ 4p (Fig. 3.11c). Then, differ-
ent scenarios can appear as persistence (Fig. 3.11a), period-doubling (Fig. 3.11c) or
chaos (Fig. 3.11b). The border-collision bifurcation of the A*B and B*C modes will
be given at the critical values

1—a*(a+pB)
Whe = TWG —a),

B —7(1 - (a+p))
L+y—(a+pB)F(a+p+7)

k
Hap =
respectively.

Although the A*¥B/a*b and B*C/b*c modes cannot be admissible for high values of
u, from a critical value of u, the orbits of the form A*C/a*c can appear and will
not present border-collision bifurcations as p increases (see Fig. 3.11d). Due to the
fact that the fixed point placed in S¢ to has to be greater than Xpc we obtain the
following condition of p

1—ak(a+p)
> Tw(l —a) = e

In addition, the highest point in S4 must be negative, and hence

B —y7(1 — a)ab!
l—af1((a-1)(a+p+7)+a)

H> = e

3.6 Basins of attraction

The study of the existence and stability of the period-one and two orbits has shown
the coexistence of the attractors B and AC' in the zone 5, and the attractors C and
AC in the zones 11 and 12. In both cases, bc is an admissible period-two orbit and
takes a relevant part in the basin of attraction of each pair of attractors.
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Figure 3.11. Bifurcation diagrams with p as varying parameter. Parameters (o, 3, 7, v and u)
are in the caption.

Let us study the first case, which is illustrated in Fig. 3.12. Basins of attractions for
the solutions C' and AC in zone 11 and 12 can be obtained similarly. As it can be
appreciated, the basin of attraction of B (blue) is composed by infinite segments, each
of which surrounded by segments of the basin of attraction of the orbit AC' (green).
The main basin, which surrounds the fixed point B, is limited by the fixed points of
the unstable orbit (25, 2¢ ). The next segment of this basin is bounded by z’,; and
@'y, (left side) and z(; and xf:; (right side), being

xE‘B :FA(x;\l)v ‘T*BC :FA(‘TZH)v
95141 :FC(fEIC‘l)a xifu :FC(fEIcl‘l)-

Therefore, the expressions for 'y, 24, (-, and z,, are given by

1 1
’_ = * _ v - * _
LA = o (9503 1) T A1 o ($Bc 1),
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/ 1 «
ICI:a(a+ﬁ+7) («ICB—,U—(,U—’}/T)O[),
" 1 *
:601:704(044'54'7) (e —p— (0 —77)a).

The remainder segments of the basin are limited by z’4,, and 2}, in the region S4
and z¢,, and x, in Sc (see Fig. 3.12), whose expressions are given by

,_mop—p(ltat+a’+--a") 1/ p(l-a”)
= ToB T T {4

An an an

-«

2 :IEC_U(1+Q+O‘2+"'QH71) _ i 5o p(l—am)
An am a™ BC 1—a

/ n
/ IAn_:u_F’YT 1 <* /L(l—O&) n)
Ton = = - = (b =7
cn a+ B+ an(a+B+7) 9P 1-« (e =17)

S —u+T 1 u(l—a™)
i :xAn 1% _ pooo_pd=a) PRy
on a+ B+ ar(a+ B +7) B -« (e =77)

being n =1,2,3.. + co.

The size of each basin of the attractor B is given by the expressions

* *
’ n _ Top — Tac
Tan — Tan = an

* *
/ Tpc —TcB

"
Lopn —Xon =

am(a+B+7)
which increases with n.
1 ! 1 / * k A 1! ! 1
LTaz  Taz LTar Tax Tpcrtcp  Toilol Lo Teo

I I I I I z
-0.4 -0.2 0.0 0.2 0.4

Figure 3.12. Basin of attraction in region 5. Parameters (o, 3, v, 7, u): (0.8, —1.79, —0.2, 0.1,
0.15). Colors: Green (zic, x5 a). blue (B).

3.7 Non-smooth dynamics for a =1

The discrete-time analysis of the SITITO converter that will be explained in the fol-
lowing chapters reveals that the dynamics of this converter governed by the SPC
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Figure 3.13. Existence and stability of the period 1 and 2 orbits for o = 1.

control can be modelled by means of a three-piece piecewise-linear map. Similarly, the
discrete-time map that describes the dynamics of the converter under the control IC
is composed by three or four trams. Due to the fact that the first slope of both maps
will be established to 1, we have been motivated to particularize the analysis realized
above for a = 1.

The first consequence produced when « is forced to 1 is the disappearance of the fixed
point z%. In addition, the stability conditions of the attractors AC and AB becomes
equivalent to the stability of z¢. and x}; respectively. As a result, the possible scenarios
are significantly reduced as Fig. 3.13 illustrates.

Moreover, for negative values of «, the only possible attractors of the map are: C,
placed in zone 1, and BC', which only appears in zone 3. Therefore, the coexistence of
B and AC in zone 5 is now avoided. Zones 7 and 8, in which AB was allowed, now have
collapsed and disappeared. Notice that BC' is the only period-two orbit permitted.
Higher periodic orbits such as B*C' can also be found in zone 4. Otherwise, for positive
values of v, C is a feasible attractor which can be found in zones 1, 11 and 13. In
addition, in the zone 11 the attractor AC' coexists with C. Notice that now both
attractors loose the stability simultaneously.
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3.8 Conclusions

The existence and stability conditions of the fixed points and period-two orbits have
been obtained in a three-piece piecewise-linear map in a restricted range of parame-
ters. Furthermore, the border-collision bifurcations, which can be produced by these
attractors, have been detected and classified.

This study has revealed an increment in the complexity of the dynamical behavior in
comparison with the two-piece piecewise-lineal continuous map. Firstly, the number of
different patterns of bifurcation reported has increased significantly owing to, in part,
the presence of two boundaries. This fact has implied the existence of different critical
values of u, which can also appear in a different order of occurrence, incrementing
the variety of scenarios. Furthermore, the study has shown different regions in the
parameter space in which there are coexisting attractors, such as B and AC or C, and
AC and therefore, hysteresis in the bifurcation diagrams. The analytical expressions
which define the boundaries of the basin of attraction have been developed for the first
pair of attractors.

An overview of the existence of higher periodic orbit has been also included. Never-
theless, a complete classification of the higher periodic orbits will be the subject of
future research.

Finally, the bifurcation analysis has been particularized for &« = 1. These results will
permit us to improve the comprehension of the dynamics of the SITITO converter
governed by SPC and, partially, by IC control.



Chapter 4

Analysis of the SITITO converter with
Single-Phase Control

In this chapter, a Single-Inductor Two-input Two-output
(SITITO) dc-dc converter, which is capable of regulating two asym-
metric outputs with different polarities by means of a PWM control,
will be analyzed. As a first step, averaging technique is used to deal
with low-scale bifurcations, then discrete-time models are developed
to predict bifurcations connected to the ripple of the inductor current
and to account for non-smooth bifurcations. The discrete formula-
tion will be developed according to the formalism used in the previous
chapter.

4.1 Description of the dc-dc converter

4.1.1 Power stage description

The simplified scheme of the power stage of a Single-Inductor Two-Input Two-Output
(SITITO) dc-de converter is shown in Fig. 4.1. This stage includes the unregulated
source voltage Viy, the inductor with inductance L and series resistance r;, and the
positive and negative loads with resistance Rp and Ry and filter capacitance Cp and
Cn respectively. Two pair of switches are also required in the circuit, which will be

33
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Figure 4.1. Schematic of the power stage of a single inductor dc-dc converter with positive and
negative loads.

implemented by means of two MOSFET transistors, S4 and Sp and two diodes D4
and Dp. The action of S4 and Sp will be determined by the control of the converter,
whereas the action of both diodes is complementary to the corresponding controlled
switches S4 and Sp. Therefore, S4 can connect the inductor to the source (ON case)
or to the negative channel (OFF case) whereas Sp can connect the other terminal of
the inductor to the ground (ON case) or to the positive channel (OFF case).

Associated to the energy storage elements of this stage (the inductor and the positive
and negative filter capacitors) are the following three state variables: current iy, and
both capacitor voltages vp and vy respectively.

4.1.2 Operation of the converter

The operation of this converter is based on suitable toggling among different topologies
given by the convenient action of both switches. In the continuous conduction mode
(CCM), where the inductor current is always defined positive, four feasible topologies
can operate in converter, whose schemes are represented in Fig. 4.2 and summarized in
Table 4.1. The 7; topology (see Fig. 4.2a) is given when both controlled switches are
ON and, consequently, both diodes are open. In this topology, the unregulated source
transfers energy to the inductor by increasing i7,. The 75 configuration (see Fig. 4.2b)
is operating when the switch Sp changes to OFF while S4 remains ON, then the inductor
transfers energy only to the positive load, whereas the 73 (Fig. 4.2c¢) configuration
appears when the switch S4 changes to OFF while Sp remains ON, then the inductor
transfers energy only to the negative load. In the last topology 74 (Fig. 4.2d), which
corresponds to both switches open, the energy flows from the inductor to both positive
and negative loads, so this configuration corresponds to a series connection of the loads
and the inductor.
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Figure 4.2. The four feasible topologies of the SITITO converter in CCM.
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IHENES
7. || ov | oN
T || on | OFF
73 || OFF | ON
T, || OFF | OFF

Table 4.1. Definition of the topologies of the SITITO converter in CCM.

The discontinuous conduction mode (DCM) can also be found in the SITITO converter
proposed and hence, another topology must be taken into account in the dynamics of
the converter when the inductor current drops to zero. In this topology, both diodes
and both transistors remain open.

As it has been said before, the operation of the converter will alternate among the
different topologies to achieve the regulation. Notice that if the switching sequence
reached is 73 — 75, the circuit will work as a boost converter being the negative output
voltage vy = 0. Similarly, if the switching sequence becomes 7; — 73, the circuit will
operate as a buck-boost converter and hence, vp = 0.

4.1.3 Control PWM

The aim of the control of this converter is the regulation of voltage outputs vp(t)
and vy (t) to adjust them to the corresponding desired inputs Vp and Viy respectively,
which, in general, will be unbalanced. The control must provide two binary signals
ua(t) and up(t) in order to drive the corresponding switches S4 and Sp and thus,
two loops have been included to the control to achieve the regulation.

Figure 4.3 shows a diagram of the control proposed for the converter. As it can be seen
in the figure, the control will be given, as usual in PWM controllers, by the comparison
of two signals. Particularly, the control compares the peak references v4(t) and vp(t),
which will include a modulating signal v (t) of period T, with v;(¢). This signal
is proportional to the inductor current and will be common for both channels. Its
expression is given by

’U](t) = TsiL. (41)

where rg is the sensing resistance.
The expressions for both peak references v4(t) and vg(t) are given by
vA(t) = gpa(Ve —vp(t) —op(t) +gna(un (t) =V +on(t) —graVin +om(t), (4.2)

vp(t) = gp(Vp —vp(t)—op(t)) +gnp(vn(t) = VN +on(t) —greViN +om(t). (4.3)
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Figure 4.3. Schematic of the PWM control of the SITITO converter.

Finally, the integral error variables op(t) and o (t) are given as follows

op(t) = = [ (wnlt) = Vi) dt, (4.4)
on(t) = — / (on (8) — Viv) dt., (4.5)
™

where 7p and 7y are the corresponding time constants associated with the integral
terms. op(t) and oy (t) will add two state variables of the system.

Notice that each peak references v4(t) and vp(t) include the following terms:

e Two proportional integral terms with gains gp4 and gya (gnp and gpp) to
minimize error signals.

e A feedforward term to prevent from disturbances of the source, whose gain is
gra (9FB)-

e A modulating sawtooth function, vy, whose expression will depend on the state
of the switches that must be synchronized. Particularly, in the control proposed



58 CHAPTER 4. ANALYSIS OF THE SITITO CONVERTER WITH SINGLE-PHASE CONTROL

f f t
t t+T

Figure 4.4. The modulating signal v (t)

here, the ON state of both channels will be synchronized with an external clock.
Therefore, the expression of the modulating signal must be given by

oat(t) = Vi — (Vir — Vi) mod <% 1) ,

being Vi and Vi, the upper and lower value and T, its period (see Fig. 4.4).

In order to avoid multiple switching during a single period, two Set-Reset edge-
triggered Flip-Flops are included taking into account that their configuration will
depend on the synchronized state. In case of synchronizing the ON state, the external
clock must be connected to the SET input of the Flip-Flops of both channels and
thus, the ON state of both switches will be forced to be synchronized with the clock,
which will also imply the simultaneity of both ON switches. Conversely, the signal vy
must be connected to the RESET terminal. Consequently, the OFF state of S4 and
Sp switches, which are outputs of the ) channels, will be reached when conditions
(4.6) and (4.7) are fulfilled, thus these switches will be asynchronous and, in general,
non simultaneous.

Before presenting the different modes of operation of the converter, let us define the
duty cycles d4 and dp as the time interval during which the switches S4 and Sp
remain closed (ON) respectively, and thus

ta,oN

d p— —7
A T )
tB,OoN
dp = 7

where t4 on (tB,0n) is the time interval for which the switch S4 (Sp) is in the state ON.
Let us also define the binary signals u4 and up. Their values are related with the state
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Figure 4.5. The two main modes of operation of the converter: My and Mp.

of the corresponding switch S4 and Sp: 0 if open (OFF) or 1 if closed (ON). Therefore,
both signals will be fixed to 1 at the beginning of each period, becoming 0 when its
corresponding condition (4.6) or (4.7) is fulfilled. Then, this value is maintained until
the end of the period.

Depending on the order of occurrence of conditions (4.6) or (4.7) during a certain
period of the modulating signal, different scenarios turn up. Figure 4.5 shows the
two cases in which both conditions are satisfied during a period 7" and consequently,
three topologies are involved. The critical condition that distinguishes both models of
operation is given by

da —dg =0. (4.8)

In Fig. 4.5a, d4 < dp and thus, S4 changes to OFF while Sp remains in the ON
state, and then Sp changes to OFF. Therefore, the sequence of topologies will be
Ty « T3 < T4. This mode of operation will be called My. Similarly, the second
mode (see Fig. 4.5b), (d4 > dp) in which firstly Sp changes to OFF while S4 remains
in ON, will be called Mp, being the sequence of topologies 73 « 75 < 74. The
evolution of the state variables iy, vp and vy including the references v4 and vp are
depicted in Fig. 4.6 for both modes of operations.

Besides these cases, other scenarios can appear if one or both switches do not change
their ON state, although the dynamics of the converter cannot be stable. These modes
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Figure 4.6. Evolution of following signals: (a,b) the inductor current, more precisely vy, (red)
and the reference signals v4 (blue) and v (green); (c,d) the positive and (e,f) negative capacitor
voltages. The parameters are in Table 4.2 except in mode My: Rp = 33Q, Ry = 22Q and

Vp=5.0V.



4.2. CLOSED LOOP MATHEMATICAL MODELING

61

Parameter Value ‘ Parameter Value
Vin 6.0V rs 1Q

L 47pH rL 0.2Q
Vu 1.0V \%3 0.0V
Vp 10.0V VN —-8.0V
Cp 22nF Cn 22 uF
Rp 220 Ry 330
TP 50 ps ™ 50 ps
grPA 0.02 gNA 0.0
gPB 0.0 JNB 0.02
grA 0.0 JrBo 0.0
fs=1/T 200kHz

Table 4.2. Parameter values used in numerical simulations.

will be called M, if neither of the commutations is given and Mgp or Mgy, when
only the condition (4.6) or (4.7) is satisfied.

4.2 Closed loop mathematical modeling

4.2.1 Switched model

Switched models are useful tools to simulate the dynamics of switching power convert-
ers, since they contain the dynamics of all configurations of the converter by means
of appropriate binary signals. The dynamics can be studied straightforward from the
corresponding differential equations of every topology, which can be obtained easily
from Fig. 4.2 using Kirchhoff’s laws, and the initial conditions of the state variables.
Notice that the differential equations are linear and the vector fields are, in general,
discontinuous in the transitions between topologies. Therefore, the system can be
classified as a piecewise-linear system (PWL). Particularly, the switching instants can
be fixed by solving (4.6) or (4.7), depending on the sequence of topologies. The value
of the state variables at these points will become the initial conditions of the following
topology. Using this methodology, the continuous evolution of all state variables can
be obtained despite the discontinuity in the vector fields.

Let us define the general form of the fifth-dimensional system as follows

%X = Ax + B, (4.9)
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where x is the fifth-order state space vector which includes the five state variables
mentioned above, the inductor current iy, both capacitor voltages vp and vy and
both integral variables op and oy, and is defined as

x = [iz,vp,vn,0p,0n]".

The dynamics of the converter will be determined by a (5 x 5) matrix A and the
5-dimensional vector B, which depend on the topology and are given by

(L A A 0 0]
L ~1
A 0 00
21 RPCP 1
A=A 0 — 0f, 4.10
31 1 Rl (4.10)
0 - 0 00
TP 1
0 0 — 00
L TN J
T
B=|B 0 0 Ve W , (4.11)
TP TN

where the elements depending on the four topologies are summarized in Table 4.3.

Considering the definition of the binary signals u4 and up defined above, the matrix
(4.10) and the vector (4.11) can be simplified and written as follows:

I TL up—1 1—uy 1
ERET " Bk
L L L
1—11,3 -1
0 0
Cp RpCp
A=| wmzl =L 5 0. (4.12)
Cn RnCy
1
0 — 0 0 0
TP
1
0 0 — 0 0
L ™ i
Vi Vi V
B= |y, 0 0 - -£ X (4.13)
L TP T

4.2.2 Averaged model

Under the assumption of small period of the modulating signal compared to the time
constants of the circuit, the dynamics of the system (4.9) can be analyzed by means
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ON:ON ON:0FF OFF:0N OFF:0FF
Aoy 0 Cip 0 Cip
Az 0 0 —% — %
Asz 0 —% 0 —%
wlo o 11
By VITN VITN 0 0

Table 4.3. Matrix elements

of a smooth averaged model, where the switching action is not taken into account
and, consequently, the state variables can be considered as constant values during
the entire period. A simple model can be derived easily from (4.12) and (4.13), by
substituting the binary functions w4 and up by the averaged duty cycles, which will
be called d4 and dp respectively. Now, the domain of these continuous signals turns
into da, dp € (0,1). Therefore, from (4.12), the averaged model will be described as
follows

rodpol1-da 0 0 _ Vinda
L L L L
1—dg -1
0 0 0
Cp RPCP
dx da—1 -1 -
— = 0 0 0 |X+ 0 , (4.14)
de Cn RNCy
-V
0 - 0 0 0 L
TP TP
-V
0 0 o9 N
L TN i L TN i

where the bar stands for the averaging during one switching period and hence, X =
[i_L, Up,UN,0OpP, 6N]T will correspond to the averaged vector of state variables and ir,
Up, Un, op and oy are the corresponding averaged state variables.

The control proposed previously for this converter gives us explicit expressions of the
averaged duty cycles (see Fig. 4.7), which, together with (4.14), determine the closed
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Figure 4.7. The definition of the averaged duty cycles for the mode Mp.

loop of the converter. These expressions are given by

JA _ Vu +9NA(1_)N - VN +(_7N) +QPA(VP — Up — 5’p) —graVIN — TSgL

D . (4.15)
dn— Vo +gnB(on —Vn +0n) +gpe(Vp —Up —dp) — greViN — rsiL 416
B = VU _ VL . ( . )

This averaged approach allows us to determine the equilibrium points of the systems,
denoted by x*, which will correspond to limit cycles in the switched model. The value
of the equilibrium points can be obtained by solving the set of equations

AX* +B =0, (4.17)

which corresponds to the equations

rr CZB—I l—CZA [ VINCZA
_L 00 x
L L L 'L L 0
1—dg -1
0 00 o
Cr RpCrp Up 0
ds—1 -1
0 0 0 5% + 0 = . (4.18)
Cx RnCy UN 0
1 -V
0 — o 0 0|| o F 0
TP P
1 -V
0 0 — 00 oy N 0
L TN 4 L a L TN a L ;

Firstly, in order to understand the possible solutions of this set of equations, only
those belonging to the open loop will be considered. Then, it is easy to prove, from
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the second and third equation of (4.18) that the expressions of the duty cycles in the
steady state are given by

_ [T

dy=1+ -2, 4.19
A + Rnis (4.19)
_ [

dg=1—- —£_. 4.20
B Rpi} (4.20)

The fourth and fifth equations of (4.18) force the steady state of the capacitor voltages
to the corresponding voltage reference, and thus

T = Vp, (4.21)
7% = V. (4.22)

Finally, the expression of the steady state of the averaged inductor current can be
obtained from the first equation of (4.18), together with (4.21) and (4.22) solving the
equation,

L,  dp—1 1—dy Vinda
= = 4.2
7 iy, + i7 Vp + i Vv + i 0, (4.23)
from which the following expression for iz, is obtained
- Vin vin)® 1 VR V@ VinVn
e AN (YY) (2 N . 4.24
i 2ry, \/( 2ry, ) rp \Rp * Ry Ry (4.24

This expression corresponds to an ellipsoid in the phase space, with high (positive sign)
and low (negative sign) current. Nevertheless, though the expression (4.24) includes
the negative and positive values of the square root, only the negative one will be used
in a real design of the converter due to the fact the alternative solution will imply high
current which means high losses in the series resistor of the inductor. The existence of
equilibrium points also requires positive values of the discriminant of the square root
in (4.24).

Figure 4.8 shows the transient of the state variables i¢;, vp and vy by using the
averaged model proposed here and the PSIM simulator. Notice that the averaged
model predicts accurately the evolution of the inductor current and both capacitor
voltages. Nevertheless, the averaged model fails in the prediction of the steady state
of the integral variables.

4.2.3 Stability analysis of the equilibrium points

The stability of the equilibrium point of a dynamical system is known to be equivalent
to the stability of a linearized system in the neighborhood of an equilibrium point.
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Figure 4.8. Comparison of the evolution of the state variables obtained with the averaged (blue)
and switched models (red). The parameters are in Table 4.2.

Therefore, the stability of the proposed converter can be analyzed by means of the
properties of the Jacobian matrix evaluated in the equilibrium point x*. Taking into
account that the element J;; of this matrix corresponds to the partial derivative of
the equation i of (4.14) respect the element j of the state vector evaluated at the
equilibrium point, the expression of the Jacobian Matrix is given by

Jp
J =
1
0 -
s
0 0

where the submatrix is given by

rs rr VI

L rs VD

1 roi’

JP = - DI Str,
OP<B+E@

1 ’r‘sz*
—— (D L

I CN< At VD>

Cp

1

L

(

1

1V},

LVp
gpB i},
Vp Cp

_gpa i}
Vb Cn

Ve
Vb

(5 +

-1

Rp

)

gpBi}

Vb
1 gpaij
Cy Vp

1Vy
LVp
_9NB i,
VD Op
ova i |,
Vb Cn
0
0
1 Vi
—|p, + N
L < at VD)
L gnsly
Op VD

L (=L gnaip
Cn \ RN Vb i

(4.25)
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being
Vp =gprVp +9pa(Vin —Vy)  and
V' =Vin — VN + Vp,
D)y=1—da and Dy =1—dp,

Vp=Vy - VL.

Vy = gnBVe +gnva(Vin — Vi),

Figure 4.9 shows different diagrams, in which the real part of the eigenvalues of the
matrix J evaluated in the equilibrium point have been depicted as one single parameter
is varied. It is well known that the local stability of a equilibrium point is proved if

the real part of all the eigenvalues is negative.
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Figure 4.9. Real part of the largest real (blue) and complex (green) eigenvalues of J evaluated

in the low current equilibrium point as the parameters in the caption is varied. The parameters

used are in Table 4.2.
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As it can be seen in Fig. 4.9, two kind of smooth bifurcations can be detected by using
the averaged model proposed: saddle-node and Hopf bifurcation.

e Saddle-node bifurcation:

Figure 4.9 shows some tangent or saddle-node bifurcations as the parameter,
specified in the caption, is varied. It is important to remark that before the ap-
pearance of the bifurcation, the two equilibrium points mentioned above, being
one stable and the other one, unstable, coexist. Nevertheless, beyond a crit-
ical point, these equilibrium points collapse, implying the no existence of any
equilibrium point after the bifurcation. Another characteristic of this kind of
bifurcation is that the eigenvalues of both equilibrium points tend to zero at this
critical point. These phenomena can be seen in the diagrams depicted in Fig.
4.9 taking into account that only the eigenvalues of the stable fixed point have
been represented. Figure 4.11 illustrates the steady state of both equilibrium
points of the inductor current as Vp is varied showing this smooth bifurcation.
It is important to remark that in a real design, the parameters of the converter
must be chosen in such a way that the stable equilibrium point is far from this
tangent point.

304

20+

0 10 20 30 40

Figure 4.11. Representation of both equilibrium points of the inductor current as the parameter
Vp is varied, revealing the existence of a saddle-node bifurcation. Stable and unstable equilibrium
points are plotted in solid and dotted line respectively.

Finally, an explicit expression for the critical point can be obtained directly from
(4.24), considering that the inductor current cannot be a complex number. This
expression is given by

V]N 2 1 V]g V]\2] ‘/}NVN
) (s HX =)= 4.26
(2TL) TL (RP + RN RN ( )

Therefore, the parameters directly related with this bifurcation are Vi, Vp, Vi,
RP, RN and rr.
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¢ Hopf bifurcation:
The Hopf bifurcation, which appears when the real part of the largest complex
eigenvalue becomes positive, can be appreciated in Fig. 4.10b,c,e. One property
of this bifurcation, due to approaching to zero, is the increment of the transients
of the state variables in the neighborhood of the critical point.

Let us now focus in the influence in the stability when the gains of the feed-
forward terms are varied. Notice that whereas the variation of the gains gpa
(and similarly gy p) are not critical in the stability, the variation of gnya or gpp
has a strong influence in the stability of the converter which implies unstable
dynamics when the value of the largest eigenvalue differs slightly from 0. Taking
into consideration that gy and gpp are related with the errors of the negative
and positive channels, which are driven by the channels S4 and Sp respectively,
this result reveals the need of avoiding the direct feedforward terms to guarantee
the stability of the converter.

4.3 One-dimensional discrete-time model

Numerical simulations of the dynamics of the converter have revealed the existence of
alternative scenarios, apart from those seen in the previous section, related with the
ripple of the inductor current. Discrete-time models are known to be useful tools to
analyze the fast dynamics in power switching converters. In following sections, we will
deal with several discrete-time models, each of which will be able to cover a determined
set of scenarios.

Under discrete-time modeling, the dynamics of the SITITO converter can be described
by a fifth-dimensional piecewise-smooth map. Nevertheless, considering some assump-
tions, this map will be simplified to a one-dimensional piecewise-linear map. Let us
assume the period of the modulating signal 7' much lower than the time constants
of every operating topology. In this situation, the ripples of both capacitor voltages
are small and consequently, these functions can be approached by their mean values,
which are forced by the integral control to the voltage references Vp and V. This
last consideration also implies that the values of the state variables op and oy, which
measure the integral of the errors vp — Vp and vy — Vy respectively, can also be
considered as constant values, whose level can be estimated by means of the averaged
model (see [52]). Thus, the whole five-dimensional system can be approached by a
one-dimensional map, being the inductor current, which will be denoted as ¢, the only
state variable.

This map will be classified as a piecewise continuous map, whose different trams are
required to describe each of the modes of operation determined in the previous section.
Nevertheless, the assumptions taken into consideration in the approach will permit to
simplify the model. Let us consider the condition which distinguishes the operation
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modes between Mp and My (4.8). In concordance with (4.19) and (4.20), (4.8) can

be written as follows -
T vk
1 N__(1-—L2 ) =0 4.27
"R ( Rp@) (420

From the averaged model, the steady state of the capacitors v} and v}, are known to
be Vp and Vi respectively. Therefore, (4.27) can be simplified as follows

Vp VN

— 4+ — =0, 4.28

Rp + Ry ( )
which does not depend on the state variable of the discrete-time model ¢. This allows
us to divide the one-dimensional model into two submappings. Then, the discrete-time
model will be defined as

fl (i, ¢) if Ho((b) >0,

f@@_{h@@iMM@<&

where f : R! x R? = R! and i C D € R refers to the inductor current. ¢ represents
the following set of 9 parameters:

¢: {V]N,TL,VP,VN,RP,RN,VU,VL,T}-

Finally, the surface Hy(¢) will be defined as

Vp VN

H, = — 4+ — 4.29
0(¢) RP =+ RNv ( )
where Hy : R® — R. According with this definition, the first submapping f; will oper-
ate for positive values of (4.29) and thus, whenever d4 > dp, whereas the submapping
f2 will be active when d4 < dp. Note that each of the submappings fi and fo is
itself a PWS map characterized by different operating regions. In what follows, we

will treat separately the analysis of the two submappings.

Sa | S Ai
7, || on | ov | A1, MT
% | on | oFF | Ag, | VIV Z Vz —rilen
T || OFF | on | Ais WT
7. || OFF | OFF | Aiy WT

Table 4.4. Definition of the increment currents of the SITITO converter in CCM.
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Ip +Alpt Ia+ A+
Ip+ Ixt
Mp My
Msp Msn
./\/10 MO
t t+T t t+T
(a) da > dp (b) da < dp

Figure 4.12. The different modes of operation of the SITITO converter. The signals represented
correspond to va/rs (blue), ve/rs (green) and iz (red).

4.3.1 Approximated expressions of the maps f; and f;,

The definition of the map must approach the evolution of ¢;, in each topology, during a
period of the modulating ramp. These functions can be obtained directly approaching
the state equations defined in (4.10) and (4.11) and assuming a linear time dependence
of i;,. Therefore, different increment currents, whose expressions are summarized in
Table 4.4, will be obtained for each topology. Notice that in the expressions the
capacitor voltages have been approached by their corresponding voltage reference and
the term rrir, which is related with the losses in the inductor resistance, by rrlg
where I will correspond to 7} .

Dealing with function fi, there exist three modes of operation involved (see Fig. 4.12a):
Mo, Mgp and M p, where none, one and two switchings are produced during a period.
Consequently, the discrete-time model f; will be described by three pieces (see Fig.
4.13), which will be called Fa, Fp and F¢ respectively. Thus, the map f; will be
defined as follows
FA(i,(b) if i € Sy,
fl(i,¢) = FB(i,gf)) ifi € Sp, (430)
Fo(i,¢) ifie S,

where F; : R x R? — R. The regions of S4, Sg and S¢ represent the domain of each
tram.

Conversely, the function fy will also be composed by the three trams, G4, Gp and
G¢, which model the modes of operation My, Mgy and My respectively (see Fig.
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4.12b). Therefore, the map f will be expressed as follows

GA(i,(b) ifi €Ty,
f2(i,0) =< Gp(i,¢) ific Tp, (4.31)
Geli,¢) ifieTe.

According to Fig. 4.12 and Table 4.4, the expressions of the functions F4, Fg and F¢
can be easily obtained and are expressed as

Fu(i) =1+ Aiq, (4.32)
Fp(i) =14 Aidp(i) + Aig (1 —dp(i)), (4.33)
Fo(i) =i+ Aidp(i) + Alodap + Ay (1 — dp(i) — dag), (4.34)
where dp corresponds to
dp(i) = S (4.35)
Ai; — Air
being
Air = —u.
rs

The parameter Ip corresponds to the peak value of the reference vp at the beginning
of the period divided by the sensing resistance (Iz = vg(0)/rs). The value of dap,
which represents the difference between both duty cycles, d4 — dp, will be forced in
this one-dimensional map to the value predicted by means of the averaged model.
Hence, the expression for d4p is give by

- 1 /Vp VN
dap=—|—+—].
AB Io (RP + RN)

Once the evolutions of the inductor current has been fixed, let us determine the ex-
pressions for the regions S4, Sp and Sc. Notice that the functions F4 and Fp model
the dynamics when none or one switching is produced, which implies dg > 1 and
dp +dap > 1, respectively. Then, these modes of operation will act when the condi-
tions (see Fig. 4.12)

1< Ip — (Ail — Air),

i>Ig — (Ail — Air) and i1 <Ip— (1 —EAB)(Ail — Air),
respectively, are fulfilled. Therefore, the regions can be established by the expressions
SA = {Z eD: HF,AB(i7¢) < O},

Sp = {Z eD: HF,AB(i7¢) >0 and HF)BC(Z',gf)) < 0},
SC = {Z ED:HF7BC<(Z',¢) > O},
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Figure 4.13. lllustration of the three-piece map f1 and the fixed point i*. The parameters used
are in Table 4.4.

being
HF,AB(i) =1 — IB + Ail — Air,

HF,BC(i) = HF,AB(i) —EAB(Ail — Air).

Similarly, expressions for the map fo can be found and are given by

GA(.”L') =1+ Ai;, (4.36)
GB(LL') =1+ AildA(i) + Ai3 (1 - dA(,T)) , (437)
Ge(z) =i+ Airda(i) — Aig(ZAB + Aiy (1 —da(i)+ CZAB) , (4.38)

where d4 corresponds to
Iy —i

The parameter 4 corresponds to 4 = va/rg at the beginning of the period. Finally,
the existence regions will be given by

TA = {Z eD: HG,AB(i,¢) < O},
T = {Z eD: HG,AB(ia(b) >0 and Hg)Bc(i,¢) < O},

Tc ={i€eD: Hgpc(i,¢) >0},

being
Hg ap(i) =i— Ia+ Ai; — Air,

Hg po(i) = Haap(i) + dap(Aiy — Air).
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Obtaining approached expressions of Iz and 4

Notice that the values of parameters Ip and I, are still undefined. These values
will establish the level of the voltage references and consequently, the averaged value
of the variable i. Before obtaining their appropriate expressions, let us consider the
influence of these parameters in the value of the steady state, assuming the main modes
Mp and Mpy. Let us define i} and i, as the fixed points of the functions F and
G¢ respectively and let us assume that the duty cycle in this equilibrium situation
corresponds to the averaged dg and da. Then, Fo(i%) and Ge (i) will be

Fe(ip) =ip + Airdp + Aigdap + Aiy (1 —dp — dag) (4.40)
and
Gelig) =i5 + Airda — Aizdap + Ay (1 —da+dap) . (4.41)
If i}, and ¢f, are fixed points of F(i), G (@) then following conditions must be fulfilled
Aiydp + Aisdap + Aiy (1 —dp —dag) =0
and

AichA — Aig(ZAB + Aiy (1 — CZA + CZAB) =0.

Replacing the current increments with the expressions given in Table 4.4, the following
expression is obtained in both cases:

rr CZB—l 1—JA +V]NJA

1o - - =0, (4.42)

which corresponds to the condition obtained in the averaged approach (4.23). There-
fore, (4.42) is fulfilled and consequently, i} and 4}, are fixed points of the Fc and
G respectively, whose expressions can be obtained forcing the duty cycles to their
averaged values. Then, from (4.19), (4.20), (4.35) and (4.39) we obtain

g — Ip —1i% i Vp
B Ail — Air RPIQ7
and
. Ia— ZE B VN
AT Ai; — Air - RNIQ7
and thus,
" Vp . .
ip=1Ip— 1_RPIQ (Ai; — Air)
and

o VN . i
it =14 (1+RNIQ> (Aip — Air).
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Consequently, the value of the fixed points will be determined by I and I4. The strat-
egy proposed here to establish the value of Ip and I4 is to force the mean value during
a period of i1,(t) to be equal to I, assuming there exists a situation of equilibrium,
then

1 [T

— / in(t)dt = Ig. (4.43)

T/
To solve this equation, assuming that the evolution of the inductor current is linear
in each topology and the duty cycles of the steady state are those predicted in the
averaged model. Then,

1 — ~
i+ 57 (Airdy + Adedyp + 2A11dpdap — Ais(1 — da)?) = Ig

2
and
i+ % (Aiyd + Adsdyp — 2Airdadap — Aig(1—dp)?) = Ig
and thus,
ip=1Ig— % (Airdh + Adadlyp + 2A811dpdap — Aig(1 — da)?)
and

1 o ,
iG=1a— 57 (AL1d% + Aigdl g — 2Ai1dadap — Aig(1 —dp)?).

Finally, the expressions of Iz and I4 will be given by
Ip =i} +dp (Ai; — Air)

and
Iy =i% +da(Ai — Air).

It can be proved that both expressions for i} and ¢, are, in fact, equivalent and it is
important to remark here their dependence on parameters 7" and Vp.

4.3.2 Fixed points of f; and f,

Though the maps f; and fa could have several fixed points, only the fixed points
belonging to the functions F or G¢, which have been found previously, will be taken
into consideration in our analysis. Notice that only the modes of operation Mp and
My imply the switching of S4 and Sp during the same period. If only one switch is
given, the one-dimensional map would predict a stable dynamics, but the real system
cannot be stable except in the particular cases Vp = 0 and Vy = 0. % or iy, whose
expressions are equivalent, will be referred here as the main fixed point (:*).
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Figure 4.14. Temporal evolution of the signals va (blue), vp (green) and rsir (red).

4.3.3 Stability analysis of the main fixed point

The stability of the main fixed point can be analyzed by means of the derivative of
the functions F and G¢. Therefore, from (4.34) and (4.35) or from (4.38) and (4.39),
the derivative of both functions will be determined by the expression
o Ai4 — Air

A= Ai; — Air’

(4.44)

which does only depend on the current increments of the first and third stage. More-
over, due to Ai; > 0 and Aigy < 0, A < 1 the stability of the main fixed point will be
guaranteed provided that A > —1. Therefore, the instability occurs when the following
condition is fulfilled:

L
VIN+VN—VP—2TLIQ+2(VU—VL)W =0. (4.45)
S

4.3.4 Existence of the main fixed point

Let us now deal with the existence of the main fixed point. From (4.30) and (4.31),
the condition of existence for fixed points are given by

it e Sc or it e Tc,

whether the mode of operation is M p or My respectively. Therefore, the fixed point
will be admissible if the conditions

Hppo(i*) >=0 or Hgpo(i*) >=0

is fulfilled. Considering that these conditions are equivalent to d4 < 1 or dg < 1 in
the mode Mp or My respectively, from (4.19) and (4.20), the existence of the fixed
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point will be guaranteed if

VN VP

<1l or 1-— <1

1
T Bnlo Rplg =

which, taking into account that the resistances and the inductor current are positive
and the reference voltages Vp and Viy are defined positive and negative respectively,
is always fulfilled. Therefore, the fixed point i* will never become virtual.

Nevertheless, there exists another boundary due to the definition of the map. In
Fig. 4.14, two diagrams have been depicted in which the evolution of both voltage
references and the sensed current are represented. Notice that, as the parameters
Vi is varied, the inductor current decreases faster than the signal references in the
intermediate tram. At the critical point, the three slopes will be equivalent and the
second switching is skipped. Actually, the maps (4.30) and (4.31) are only defined if
the parameter Al or Al4 (see Fig. 4.12) is positive and so, Alg and A4 becomes
0 at the critical point. Therefore, the following two surfaces can be defined as

HF(¢) = AIB = CZAB(Aig - Air)

or
He(¢) = Alx = —dap(Ais — Air),

and their corresponding boundaries

Yr(¢) ={Hrp(¢) =0} (4.46)

or
Ya(¢) = {Ha(¢) = 0}. (4.47)

Consequently, a non-smooth bifurcation will occur when the fixed point of the modes
of operation Mp and My crosses the corresponding boundary (4.46) or (4.47). It is
important to remark that, despite having the same fixed point and stability condition,
the existence condition of the fixed point is different. This fact has some consequences,
which will be seen in the following section.

4.3.5 Two-dimensional bifurcation diagrams. Codimension-two
points

In this section, several representative two-dimensional bifurcation diagrams will illus-
trate some of the feasible scenarios that can be predicted with the one-dimensional
discrete model presented above. Only one smooth bifurcation will take place, the flip
bifurcation, whereas there exist three different conditions in which the fixed point can
yield a non-smooth bifurcation:
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e Intermediate slope limit (ISL): As it has been mentioned above, a non-
smooth bifurcation is yielded when ¢, or if, crosses the boundaries ¥ (4.46) or
Y (4.47) respectively.

e Change of the mode of operation (MOC): This non-smooth bifurcation will
appear when, under the variation of some parameters of the systems, the mode
of operation changes from M p to My or viceversa. From (4.29), the bifurcation
will be given when the corresponding fixed point crosses the boundary defined
by:

Yo(¢) = {Ho(¢) = 0}. (4.48)

e Discontinuous conduction mode (DCM): This bifurcation is given when

the inductor current drops to 0 at the beginning of the cycle, and thus, the
bifurcation occurs when

i =0.
Flip bifurcation - ISL bifurcation
20 7 159 7
s :
7 ;
/. /i
s :
//% // :
15 P 104 ,
S /
v, /_,.-‘// b vV, //
a / table area // Stable area
10 - 5
/ M /
/ L / MN
/ /
/ /
/ /
5 ‘ ‘ i —
0 0.5 1 15 0 05 1 15
VU Vb
(a) Rp =22Q, Ry = 330 (b) Rp = 33Q, Ry = 22Q

Figure 4.15. Stability (dashed) and ISL (dotted) bifurcation curves in the parameter space
{Vu,Vp}. The solid line represents to the condition ¥o (MOC). The parameters are in table
4.2.

In Fig. 4.15, the stability condition (4.44) (dashed lines) and the two border-collision
bifurcation curves X and X (dotted lines) have been depicted in the two-parameter
space {Vy, Vp} for the modes of operation Mp (see Fig. 4.15a) and My (see Fig.
4.15b) respectively. The solid line stands for the condition (4.48), which establishes
the change of mode of operation. Therefore, the non-smooth bifurcation curves Xp
and Y are only valid in their corresponding mode of operation. Let us focus in the
first diagram. As Vi is decreased, the fixed point can reach the instability by crossing
the flip bifurcation curve or can become virtual by crossing X . The existence of both
scenarios in Fig. 4.15a has been validated, in which two bifurcation diagrams obtained
with the PSIM simulator have been depicted (flip bifurcation in Fig. 4.16a and ISL
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Figure 4.16. Bifurcation diagrams obtained with the PSIM simulator using Vi; as varying param-
eter along segments in Fig. 4.15a.

bifurcation in Fig. 4.16b). Notice that the red lines in Fig. 4.15a correspond to the
parameter variation of the one-dimensional bifurcation.

A codimension-two point appears when these two bifurcation curves intersect. From
(4.44) and (4.46) or from (4.44) and (4.47), it is obtained the condition

Vin—Vn —Vp =0, (4.49)

and from (4.49) and (4.45),

L
(VU — VL)— + VN — TLIQ =0. (450)
TsT

The codimension-two point will occur when the conditions (4.49) and (4.50) are ful-
filled, for both operation modes. Consequently, for a given set of parameters, this
point will appear only in one mode of operation. Notice that in Fig. 4.15b, the fixed
point can only present the non-smooth bifurcation due to the fact that the critical
point is placed in the M p zone.

MOC non-smooth bifurcation curve

Under the variation of some parameters of the system, the fixed point can change the
mode of operation between M p and M . The stability condition has been proved not
to be influenced by the mode of operation, in contrast to its corresponding existence
condition. This phenomenon has been illustrated in Fig. 4.17, where the involved
bifurcation curves have been depicted. In this diagram, the green line represents
the stability condition, whereas the solid black line corresponds to the boundary .
Notice that, in both sides of this curve, there exists a region in which the fixed point
is admissible and stable, despite belonging to different modes of operation. Therefore,
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Figure 4.17. Stability (green) and existence (blue) bifurcation curves in the parameter space
{Vu,Vp}. The solid line corresponds to Xy and grey lines represent virtual lines. The parameters
are in table 4.2 except: Rp = Ry = 331

a stable fixed point placed in whatever mode can become virtual or persist when
changing the mode of operation, but not become unstable. The conditions ¥ and
3¢ have also been included. Notice that these lines are only defined in the region in
which the corresponding fixed point is admissible (blue lines).

Two different bifurcation scenarios have been chosen and denoted with red lines in Fig.
4.17. In one case, for Vy = 1.2V, the fixed point persists after crossing the boundary
9. Due to the fact that it cannot be appreciated a significant change in the fixed
point in both sides of the bifurcation, two temporal diagrams have been illustrated
in Fig. 4.18 to show the persistence scenario. Conversely, the second non-smooth
phenomenon can be observed in Fig. 4.19, in which a one-dimensional bifurcation
diagram has been shown. For Viy = 0.8V, as Vp is decreased, the fixed point of Mp
crosses the boundary ¥y by becoming virtual. Moreover, after the boundary, the fixed
point ¢f; is also virtual and the dynamics of the converter jumps to a chaotic attractor.
This non-smooth phenomenon is characteristic of discontinuous maps.

Discontinuous conduction mode.

The last non-smooth bifurcation that can be predicted by the one-dimensional map
occurs when the inductor current drops to zero and operates in DCM. Figure 4.20a
shows the DCM bifurcation curve (cyan line) in the parameter space {Vi7, Vp} when
the fixed point belongs to My. As it can be seen in the one-dimensional bifurcation
diagram included (see 4.20b).

The one-dimensional discrete-time model has been proved to be useful to predict the
mentioned non-smooth bifurcation together with the smooth flip bifurcation. Their
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Figure 4.18. Temporal evolution of rsir (red), va (blue) and vp (green) fixing Vy = 1.2V
obtained with the PSIM simulator. The parameters are in Fig. 4.17.
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Figure 4.19. Bifurcation diagram using Vp as varying parameter obtained with the PSIM simu-
lator. The parameters are in Fig. 4.17 except: Viy = 0.8 V.

prediction has resulted to be accurate enough in a range of parameters. Nevertheless,
the averaged model predicts a Hopf smooth bifurcation that cannot be predicted by
this simplified map due to its unique state variable. This fact has motivated us to
develop a more complete map.

4.4 Normalized one-dimensional map

In Chapter 3, the different scenarios that can be given in a three-piece piecewise-lineal
map in a restricted range of parameters have been classified in sixteen zones in the
parameter space {3,7}. Under the assumption of a = 1, the dynamics was reduced to
few zones illustrated in Fig. 3.13. Let us now determine which scenarios can occur in
the submappings f; and fs defined above, taking into account the restrictions of the
physical parameters.
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Figure 4.20. (a) Stability (green), ¥g (blue), 3o (black) and DCM (cyan) bifurcation curves
in the parameter space {Vi7,Vp}. (b) Bifurcation diagram obtained with the PSIM simulator
according to the red line variation. The parameters are in table 4.2 except: Rp = Ry = 682
and Vy = =5.5V.

Concerning the submapping fi, after applying the change of coordinates x =i — Ip +
Ai; — Air, this submapping can be rewritten as

Fy(x) =z + Aiq,

Fo(e) (1= A=Ak At - Ay
c\r) = Ai; — Air  Ai; — Air

) T+ Aig +dap(Ai; — Aig).

Therefore, if the following definitions are taken into consideration

L g AuzAL AL - A
e=5 T Aip — Air’ 7= Ai; — Air’

n = Ail and TZJAB(Ail —Air),

the three-piece PWL map studied in the previous Chapter is obtained.

Counsidering the range of the physical parameters, the domain of the normalized pa-
rameters are given by
f<0 and <0,

7>0 and p>0.

Notice that v < 0 and hence, the only feasible scenarios are placed in zones 1, 3, 4 and
6. Nevertheless, considering the discontinuous boundary X g, which is now determined
by the expression

Yp={14+8=0},
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0§ > —1 and the dynamics of the submapping f; is restricted to the zones 1, 3 and 4.
Consequently, only the stable period-two solution BC' can be found in the system and
no coexistence between period-one and two orbits are permitted. These results are in
agreement with those obtained in this chapter.

Equivalent results are obtained for the map f> and hence, they will not be reproduced
here.

4.5 Five-dimensional discrete-time models

The map presented in this section will consider the evolution of all the state variables
of the system. Though in the new map the evolution of the inductor current will be
also considered linear in each topology, its influence in the evolution of the capacitor
voltages will imply the need of nonlinear terms in order to approach their evolution,
as well as the evolution of the integral terms. Therefore, the resulting map will be
classified as 5-dimensional piecewise-smooth map. Taking all these consideration into
account, the following map can be defined:

Xoi1 = f(xn) (4.51)

where x,, = [i,vp, vn, op,on]|’. Similarly to the definition of the one-dimensional map,
(4.51) can be divided into the submappings:

fl(i,vp,vn,ap,crn,(b) if Ho(vp,vn, ¢) > 07

’L',’Up,’UTL,O'p,O'TL,(b =
f( ) {f2(i7vpavnao—p7o-n7¢) if HO('UP,’U’I’L, ¢) < 07

where f: R% x R - R5 and ¢ refers to the set of parameters

¢ ={Vin,rr,L,Vp,VN,Rp, RN, Vu, VL, T,Cp,CN,75,9PA, gPB, YN A, GNB, TP, TN }-

The expressions of the map will not be reproduced here, for the sake in brevity. For
further details, the complete development of these expression can be found in the
Appendix A. Notice that the condition that divides the map (4.51) depends on the
state variables vp and vn. Therefore, hybrid solutions belonging to both submappings
can now be modelled by this higher dimension map.

4.5.1 Stability bifurcation curves

It has been proved in the one-dimensional analysis that the dynamics of the converter
can undergo a flip bifurcation, whose analytical expression has been presented above.
Conversely, the averaged model has also detected the existence of a Hopf bifurcation,
which corresponds to a Neimark-Sacker case in the discrete-time model, when the
parameters related to feedback terms, such as gpa, gnB, Tp Or Ty, are varied. Let us
now analyze the footprints of these bifurcations in the five-dimensional map.
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Figure 4.21. Flip bifurcation curve obtained with the 1-D map (solid line) and (4.51) (dotted
line) and Neimark-Sacker (dashed line) bifurcation curves obtained with (4.51) in the parameter
space {Vu,Vp} (a) and {7, g} (b). The parameters are in table 4.2 except: Rp = Ry = 331,
TP = TN = 6pS and grPA = gNB :O.l.

The two-dimensional bifurcation diagrams depicted in Fig. 4.21 shows the smooth
bifurcations curves predicted with the maps proposed in this chapter. Solid grey
line stands for the flip bifurcation predicted with the one-dimensional maps whereas
the dashed and dotted lines correspond to the Neimark-Sacker and flip bifurcations
obtained with (4.51). In Fig. 4.21a, the parameter space and the set of selected
parameters corresponds to the Fig. 4.17 but fixing gpa = gnp = 0.1 and 7p = 7§y =
6 ps. Notice the appearance of a Neimark-Sacker bifurcation, reducing significantly
the region in which the fixed point is stable. The blue dot in Figure 4.21b illustrates
this bifurcation curve in the parameter space {g,7}, being ¢ = gpa = gnp and
7 = 7p = 7n. Roughly, it can be seen the presence of unstable dynamics for lower
values of the time constants 7 jointly higher values of the gains g. In this case, the
blue dot denotes a codimension-two point given by the crossing of two Neimark-Sacker
bifurcations.

4.5.2 Non-smooth bifurcations

Let us now recall the non-smooth bifurcations predicted with the one-dimensional
discrete-time model. In order to show the feasible deviations between both discrete-
time models, the curves illustrated in the mode of operation Mp in Fig. 4.17 have
been depicted in Fig. 4.22a, including now the curves predicted by the 5-dimensional
map. Dealing with the MOC bifurcation, none discrepancy has been found between
both maps. Actually, both curves cannot be distinguished. The analysis of the DCM
bifurcation leads to similar conclusions.
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Figure 4.22. (a) Flip (green) and Neimark-Sacker (blue) bifurcation curves obtained with (4.51)
in the parameter space {Vi, Vp}. Grey lines correspond to the bifurcation curves obtained with
the one-dimensional map. (b) Modulo of the real (blue) and complex (red) eigenvalues of the
Jacobian. The parameters are in table 4.2 except: Rp = Ry =33Q and (b) Vy =1.0V.

Nevertheless, an important deviation takes place in the neighborhood of the bifurca-
tion. As it can be noticed in the diagram, in both sides of the ISL bifurcation, two
smooth bifurcation curves appear. Notice in the diagram the appearance of the flip and
Neimark-Sacker bifurcations. A deeper analysis of the eigenvalues has revealed that
the ISL boundary presents a discontinuity in the eigenvalues of the Jacobian matrix
(see Fig. 4.22b) despite the continuity of the fixed point. This phenomenon provokes
the smooth bifurcations which takes place in the neighborhood of the ISL boundary.
Further analysis is required to determine whether this discontinuity is yielded by the
nature of the discrete-time model or by the own dynamics of the converter.

4.6 Conclusions

A Single-Inductor Two-Input Two-Output (SITITO) switching dc-dc converter has
been analyzed in this chapter. This converter, which does not need symmetry in its
positive and negative outputs, operates with a PWM control, which has proved to
be capable of providing stable behavior if the parameters are properly selected. Two
models have been used to deal with the existence and stability of the normal regime
of operation. The averaging approach has been developed jointly with the Jacobian
matrix to deal with the stability of the slow dynamics.

Relevant conclusions have been obtained after the discrete-time analysis. The different
order of occurrence of both switchings allows the converter to operate in two different
main modes. Moreover, the strategy of control chosen adds a discontinuous boundary
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to the system, which has resulted to be depended on the mode of operation. The one-
dimensional map has permitted to detect a period-doubling bifurcation by means of
simple expressions jointly with some non-smooth bifurcations. Despite the presence of
both modes, the study has shown that the value and stability of the main fixed point
is not influenced by the mode of operation. Therefore, the dynamics of the converter is
characterized by the stability condition and the corresponding non-smooth boundaries.
Consequently, a non-smooth bifurcation arises when the condition which establishes
the mode of operation of the fixed point is fulfilled.

Higher dimensional maps have provided more accurate predictions, which are required
when the ripples of the capacitor voltages increases their weight in the feedback loops.
This map also predicts Neimark-Saker bifurcations when the parameters related with
the PI term are varied. Moreover, the analysis of the eigenvalues in the neighborhood
of the discontinuous boundaries has proved the existence of new flip and Neimark-
Sacker bifurcations owing to a discontinuity in the eigenvalues.






Chapter 5

Analysis of the SIMIMO converter
with Interleaved Control

Interleaved control will be presented as an alternative control,
whose viability will be studied in this chapter. In contrast to the
control previously proposed, the nature of this strategy will allow us
to generalize the control so as to requlate dc-dc converters with N
outputs which can have different polarities. After proposing a gener-
alized power stage, we will analyze both the stability and the bound-
aries of the system, which will establish the operating region of the
converter, by means of averaged and discrete-time models. The use-
fulness of the different models to determine the dynamics will be also
taken into consideration.

5.1 General power stage and interleaved control

5.1.1 Power stage description

The schematic diagram in Fig. 5.1 shows a SIMIMO dc-dc converter that uses a
single inductor shared by a generic number of outputs: p positive (non-inverted) and
n negative (inverted) polarities, being N = p + n. The following elements are defined
for each output: an equivalent resistance R; (considered here for the load), a filter

89
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_—Cﬁ\voﬁ

positive loads (7 = 1..p)

Figure 5.1. Schematic diagram of a SIMIMO dc-dc converter with a generic number of positive
and negative outputs.

capacitor C;, and a specific switch S;, whose ON state (closed) will activate the charging
of the capacitor Cj.

Two extra switches S4 and Sp are also required and work as following. Along the
time intervals during which these two switches are ON (and all S; are OFF (open)),
the inductor is connected to the source V;y in order to recover energy from it. This
stage of the process is similar to the ON interval of simple boost or buck-boost dc-
dc converter and is equivalent to the topology 77 in the SITITO converter presented
in the previous chapter. During the time remainder, S4 and Sp are activated in a
complementary way. If S4 is ON and Sp is OFF, then a particular S; switch, belonging
to a positive output, must be ON in order to load the corresponding capacitor C;. This
stage works like a boost converter in the OFF interval. Similarly, if S, is OFF and Sp
is ON, then the switch S; in the ON state must belong to a negative output, so this part
of the process is similar to the OFF interval of a buck-boost converter.

The general power stage also indicates the state variables: the inductor current ir,
and the set of output voltages {vo;, j = 1..N}.

The diagram in Fig. 5.2 corresponds to a Single-Inductor Two-Output case (p = 1 and
n = 1) (SITITO), which is equivalent to the converter studied in the previous chapter.
There is no need here for specific S; switches, because there is only one output to
which inject the current from the inductor when either S4 or Sp results open. Hence,
these switches can be substituted by two diodes, whose action is complementary to
Sa (negative load) and Sp (positive load). We will assign the indices 1 and 2 to the
positive and negative polarities respectively. Notice that the subindexes considered
here as 1 and 2 have their correspondence in P and N respectively in the previous
chapter.
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Figure 5.2. Schematic diagram of a SITITO dc-dc converter with positive (1) and negative (2)
outputs.

5.1.2 Interleaved control
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Figure 5.3. Scheme of the control of a SIMIMO dc-dc converter based on multi-phase modulation.
The feedback current is v; = rgi, being rs the sensing resistance.

A simplified scheme of a multi-phase or interleaved control for a SIMIMO dc-de con-
verter [15] is shown in Fig. 5.3. This control is made up from N channels, each
of them driving a specific switch S;. Hence, the corresponding capacitor C; will be
charged when the state of the switch S; is ON. The AND gates are used to achieve the
requirement, explained above, that the ON state of switch S4 corresponds to an OFF
state of all S; associated to negative outputs, and the same for Sp considering all S;

switches of the positive outputs.
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Let us define the set of inputs as {V;, j = 1..N}. Similarly to the previous control,
the aim of the control is to force the set of voltage outputs vo; as closed as possible
to the corresponding input V;. Considering the signal errors as follows

e; = V; —voy, 7 =1..N,
and taking into account the PI term of the control, it can also be defined the set of
signals {vij, j = 1..N} as
vij = g;sign (V;) (e; —oj)  j=1.N,

where {g;, j = 1..N} is the set of proportional coefficients of the PI blocks and

1
Uj:;/(voj—vj)dt j=1.N,
j

being {7;, j = 1..N} the set of corresponding time constants. A generic channel j will
be driven by a signal, which will be denoted vd;. This signal, which plays the role of
a dynamical reference, is a linear combination of PI outputs {vi}, given by

N
Udj = Zozjﬁkvik, j = 1..N,
k=1
where o ;. are the generic coefficients in the matrix that appears in Fig. 5.3.

Similarly to the control presented in the previous chapter, the regulation is achieved by
the comparison of vy, a signal proportional to the inductor current (v;(t) = rgir(t)),
and a set of peak reference signals {vm;, 7 = 1..N} (5.1), which include the corre-
sponding dynamic reference vd; and a ramp signal vr; with period 7" and amplitude
Vo — V5.

vm; = vrj + vd;. (5.1)

Nevertheless, the set of ramp signals have been modified in order to achieve an ap-
propriate regulation of the converter, due to the fact that it is convenient that only
one switch S; is ON at a time. Let us divide the period of a modulating signal into N
intervals, so that

N
> 6T =T,
j=1

where {¢;T, j = 1..N} is the time duration of each phase interval. The strategy used
in the interleaved control is based in applying an increment delay of the form

J
> ok k=14,
k=1

to each of the ramp signals. Therefore, vr; can be defined as

" J
ury = VU — (VU — VL)IHOC]. (T - Z(bka 1> )

k=1
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where mod (z, 1) stands for the modulo of z.

In order to clarify the operation of the control, in Fig. 5.4 the state variables i, and
vo;, j = 1..4 and the peak reference signals vm;, j = 1..4 have been depicted in the
steady state, for a SIMIMO converter with N =4 (being p = 2 and n = 2).

During each phase j, whose duration is ¢;7T', and taking into consideration the action of
the bistables, the condition vy = vm; splits the phase interval into two parts. During
the first subinterval, which will be referred as the ON subinterval, all S; switches remain
OFF and both S4 and Sp switches are ON. Therefore, in this subinterval, the inductor
receives energy from the source. Afterwards, until the end of that interval ¢;T, a
second subinterval is defined for which S; will be ON and either Sp or S4 will be OFF
depending on the polarity of the output: Sp in case positive or S otherwise. This
second subinterval will be known as the OFF subinterval. During this subinterval one
capacitor C; is charged from the inductor.

The action of the control is given by means of the automatic selection, due to the
feedback, of the instants of time that will determine the ratio of both ON and OFF
subintervals in every phase. During every OFF subinterval a direct effect is produced
on the output that corresponds to the specific switch S; that has been activated.
However, along the ON subintervals, the inductor current is recovered from the source,
so involving the rest of the outputs. The total time per cycle to charge the inductor is
determined by the addition of all ON subintervals, thus being a combined action of the
channels. Consequently, the regulation of each output is achieved through this total
ON interval besides the duration of the respective OFF subinterval, thus meaning the
stability must be considered for the system as a whole, not for each individual channel
or output.

Finally, we will introduce same remarks about the coefficients a. Numerical simula-
tions have revealed that the diagonal coefficients «; ; must be very small or even null
in order to ensure stability. This fact is due to an uncompensated effect: if o; ; is
defined with such a signum that a decreasing of vm; would increase the ON subinter-
val, then an undesirable reduction in the time of loading C}; is produced, otherwise
the reduction of the ON subinterval would not be in favor of the need of charge for the
inductor in order to increase the current to later be delivered to C;. Therefore, the
feedback will be achieved by the crossed coeflicients o i, k # j of the matrix.

5.2 Closed loop mathematical modeling

5.2.1 Switched model

The switched model gives the set of 2IV 41 ordinary differential equations for the state
variables. In order to take into account the different configurations of the system, the
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Figure 5.4. Steady state of the SIMIMO dc-dc converter with parameters in Table 5.1. Color
code (a): red (rsiz) blue (vmq), green (vmz2), cyan (vms) and orange (vma).
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binary variables u; and u4 are needed. These signals are valued depending on the
state of the corresponding switches S; and S4: 0 or 1 if open or closed respectively.
The switched model can be easily obtained by applying standard Kirchhoff’s voltage
law to the circuit:

dvo, 1 . , Vo,
i = (w0 - 7). )
do; 1
R >
) N
d’LL 1 . .
I = I uAVIN — JE:l ujsign (V) vo; —rrip | . (5.4)

The first subset of N equations (5.2) refers to the dynamics of each voltage output vo;,
where sign (-) stands for the signum function. Additional subset (5.3) deals with N
equations for each of the integral terms o; in the PI blocks. Finally, the last equation
(5.4) deals with inductor current dynamics.

The binary command signal u;, which is directly related with the time interval in
which capacitor Cj is loaded and thus, it is defined 0 from the beginning of ramp vm;
(when the synchronous switching is activated by the clock) until the asynchronous
switching defined by the zero condition:

vm;(t) —vr(t) = 0. (5.5)

Afterwards, u; is valued 1 until the end of the ramp vm;. Regarding the binary signal
ua, its value will be assigned to 1 if u; = 0, Vj associated with a negative output,
otherwise uyq = 0.

Taking into account (5.5), the set of state equations (5.2)-(5.4) is then in closed form
and can be used for computer simulations of the whole system.

Before finishing the description of the switched model, let us present some remarks
dealing with the operation of the converter. It should be noticed that, in the normal
mode of operation (period T orbit), only one output is connected to the inductor.
Nevertheless, during the transient or with a dynamics different from the normal regime
(subharmonics or chaos), it is possible that the asynchronous switching condition
(5.5) occurs before the interval assigned to that output. In this case, two outputs
would result interconnected. Two situations can be distinguished here: if the two
consecutive intervals involved in this process are defined belonging to outputs with
opposite polarity (alternation of positive and negative outputs), that case implies a
series connection of a positive and a negative output and the inductor, which will
transfer energy to these two outputs. Otherwise, in case that two or more consecutive
intervals are related to outputs having the same polarity, a parallel connection of them
could be produced. In order to avoid this last situation, the control should include some
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Figure 5.5. Simulated (red) and averaging (blue) transient of a SIMIMO dc-dc converter. The
parameters used are in Table 5.1.

complementary logic to inhibit this occurrence or the switch model should incorporate
at least the parasitic series resistance of the filter capacitors.

5.2.2 Averaged model

Under assumption of a reduced period 7" of the modulating signal such as the ripple
of the state variables are enough small, the dynamics of the system (5.2)-(5.4) can
be approximated by the smooth averaged model. A simple averaged model can be
obtained from the switched model by substituting the binary signals by continuous
variables. Therefore, if u; and u4 are replaced by d; and §4 respectively, then the set
of 2N + 1 averaged equations (5.6)-(5.8) are given by

dvo; 1 : = 00;
& <5J51gn (Vi)ir R >, (5.6)
de; 1
i 7 oY) 0
di, 1 >
L : 5 7
T -1 0AViN — E 1 d;sign (V) wo; —rrip | » (5.8)
i=

where the over bar stands for averaging during one switching period.

The duty ratios d;, which are defined as the interval relative to a period 7" in which
the switch S; is open (OFF), can be obtained explicitly from in terms of the averaged
state variables [15] as follows:

N
1 . __ _ =
5 = - <,§_1 a; kgesign (Vi) (Top — Vi +0x) + rsir — VL> (5.9)
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Parameter Value H Parameter Value
Vin 5.0V TS 0.50
L 39uH rL 0.1Q
%1 5V Vs -9V
Vs 12V | —-12V
Ry 100 Ry 15Q
Rs3 220 Ry 330
Ch 68 nF Co 68 nF
Cs 56 nF Cy 39pF
Vi 1.0V %3 0.0V
T 300 ps ?; 0.25
o 0.0 ok, j#k 1.0
gj 0.1 T 20 ps
Table 5.1. Parameter values used in numerical simulations for N = 4, being j,k = 1..4.

The parameter 6 4 refers to the ratio, in period of the modulating signal, in which the
inductor is recovering energy from the source. Therefore, this ratio must include the
N 0N subintervals and the OFF subintervals considering only the positive loads, which
is equivalent to exclude the OFF subintervals that involve the load of a negative output.
To obtain a formal expression, let us define the binary variable b; as

b; =1/2 +sign(V;) /2,

so that b; = 0if V; <0 and b; = 1if V; > 0, thus §4 can be expressed as:

N

oa=1- Z(l — b;)9;.

J=1

The above equations can be used to get information of the averaged system, in par-
ticular slow dynamics stability features. Let us recall here that a periodic orbit of the
switching system corresponds to an equilibrium point of the continuous-time averaged
system, which can be calculated by imposing the zero field condition to the set of
averaging equations (5.6)-(5.8), thus giving the following results:

vo; = V; 5.10
J J
Vil
§; =1 5.11
I T IoR; (5.11)
N /
_ 4 Vi lV!
/L B SR R VIV (5.12)

2T‘L V}QN = Rj
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where |-| stands for the absolute value and V/ = (1—b;)Vin+|Vj| (so that V] = Viny=V;
if V; <0and V] =V;if V; > 0). Finally, from (5.9) and (5.11), the steady state
expression for ; can be obtained from the following set of N equations (j = 1..N)

Vil _
IR,

N
Z a;jrgesign (Vi) o +rslg — Vi, — (Vu — V1)
k=1

0. (5.13)

A necessary existence condition for equilibrium is that the discriminant in (5.12) be
positive. Besides this, there are two possible solutions if either a positive or a negative
signum is considered for the square root term in (5.12), but only the negative one is
useful in practice; otherwise, the inductor current and the associated loss of energy
would be very high. The stability of this equilibrium point can be studied by the
Jacobian matrix of this model, which is given below:

1 o pgsign (V; Vi) Ig
T _ = ) J, J
ik c; <5g,k + Vo =1y
7. _ 1 ajrgesign (ViVi) Ig
7. N+k Cj Vo — Vi
I i Vi + sign (Vj) rslq
7,2N+1 C] ToR; VU — VL
IN+j,k = Vj.k
INtj N4 =0 (5.14)
INtjon+1 =0
—1 (Vi | gwsign (Vi) ~n
J: = — 3 ik V!
2N+1,k i (IQRk + Vo — VL > i1 @k V]
_ —1gwsign (Vi) ,
JoNt1N+E = T VoV, 2 j=1 @ik Y
-1 rs N
J. N _ 5 SN oy
2N+1,2N+1 T (T'L + Vo — V. >i=1 ])

beingj = 1N, k= 1N, 6%]‘ = —1/Rj, 63"]@ =0if k }é_], Y5 = 1/Tj and Yik = 0 if
k+#j.
In Fig. 5.5, the inductor current and the voltage outputs are represented during the

transient in a four-output single-inductor de-dc converter using both the switched and
the averaged model.

5.3 One-dimensional discrete-time model

The one-dimensional map that is presented in this section is a first approach that
considers only the variations of the inductor current while the rest of the state variables
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(the filter capacitor voltages and the integral terms) are assumed to be constant. In
addition, the inductor current is approximated by a piecewise-linear time function.
This kind of approach is equivalent to the one widely used in boost or buck-boost
converters with current programmed control.

L (t)

12(t)

0T $2T

Figure 5.6. Schematic diagram of the current evolution for a SITITO converter (N = 2). The
functions I;}(t) and I2(t) correspond to v, (t)/rs and vZ (t)/rs respectively.

5.3.1 Map definition

The map will be defined stroboscopically with the periodicity of the modulating ramps.
Moreover, in an extended range of parameters, the evolution of the inductor current
presents a pattern that is qualitatively repeated every phase (see Fig. 5.6). Taking into
account this property, the map can be expressed as a composition of N submappings.
Let P(i) be the discrete-time map defined in a whole period 7', then

i P@i)=fNofN"lo.. o f2ofl(4), (5.15)

where f* corresponds to the submapping in the phase interval k. Considering a linear
time dependence of the inductor current in each topology, the evolution of the inductor
current in the phase interval k£ can be approached by

PFH = fR(R) = iF + (Aion — Aiof£¥)dy + Aiof£F ¢y, (5.16)

where i' = i, iN*! = P(i) and, generally, i* corresponds to the value of the state
variable ¢ at the beginning of the interval phase k, and thus

FF = fRo Rl o o f20 F1(30).
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The current increments that appear in (5.16) are specific for each subinterval and they
are defined as the total variation of the inductor current that would be produced if
that subinterval lasted for the whole period T'. Therefore, taking into account (5.8)
and the constant voltage approach (vo; = Vj), these increments are

V]N —TLIQ
—=T
L
biVin — |Vk7| — TLIQT
L

Aion =

(5.17)

AioffF =

(5.18)

Notice that in the above expressions the voltage drop in the inductor due to the
parasitic resistance rr, which is expected to be small, is assumed constant using the
averaged current I in (5.12).

The duty cycle in each phase interval is modeled as follows

d, ifd, <
dk_{ L f—d”“’ (5.19)
¢k lf dk} > ¢k,
in which
Ik — ik
d =2 .2
k™ Aion — Air’ (5.20)
and
Air = —Lj — Vi
rs '

According to (5.19), the generic submapping k is a PWL map with two trams: the
(main) unsaturated tram with dj, = d;C and the saturated tram with di = ¢.

The set of parameters {1}, k = 1..N}, in which I} is the value of the modulating ramp
vmy, at the beginning of the phase interval k divided by the sensing resistance rg, is
still undefined. As the one-dimensional map will be used to determine the existence
and stability of the normal regime of operation, then, due to the integral action, the dc-
levels of the ramps are considered to be shifted such as the mean value of the inductor
current fits the averaged value obtained in (5.12). Therefore, the method proposed
here to determine these parameters is to force the mean value of the piecewise-linear
continuous function iy (t) during a whole period T to fit 1o, when the starting value
of 4 is just the main fixed point and thus, the duty cycles are those predicted by the
averaged model (5.11). As dj corresponds to the ON subinterval in the map, while d
does to the OFF subinterval in the averaged model, these ratios are complementarily
defined in a phase interval, thus, in the fixed point conditions the duty ratio is defined

as
A

RkIQ ’

dy, = di = ¢x
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and I;f is determined in order to fulfil (5.20) in the fixed point condition

I;f =i* 4 (Aion — Air)dy, (5.21)
where i*k, which corresponds to i1 (¢) at the beginning of phase interval k in the
period-one case (fixed point) so as to be applied to submapping f* defined in (5.16),
thus giving

# =" 4 (Adon — Aiof£F)d), + AioffF gy, (5.22)

The final step is to give an explicit expression of i*l, which is actually the fixed point
of the map P (i* = i*l), in accordance to the averaging condition

N
=k
Ig=> &, (5.23)
k=1

in which 7" is the mean inductor current during the phase interval k£ applied to the
k-submapping in the fixed point condition. Taking into account that iy (t) is a PWL
function, it is straightforward that
—k Tk
i Ik

=1
P

k=1.N,

where

- dr 1 -
Nk = Aion dy <(J5k — %) + §Aioffk (¢k — dk)z.

Let {Ai*k, k = 1..N} be the set of differences between k— and 1st— submapping fixed
points. This set includes a trivial first member Ai*" =0 for the shake of completeness
and the remainder (k = 2..N) are obtained after k — 1 iterations of (5.22)

. k—1
A" =" ((Aion — Aioft!)d; + Aioff'e) .

=1

Finally, inserting the above expressions in (5.23), results

M=

Io =i+ ((bkAi*k + nk) ,

k

Il
-

then
N k
i =Ig =3 (6x2i" +).
k=1
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Parameter Value H Parameter Value
Vin 6V VL 0

L 47pH Vu variable
TL 0.29 Vi variable
Ch 22 pF Vs -8V
sy 22 pF T=T1="To 20 ps
Ry 330 g=91 =92 0.02

Ry 129 o1 = ¢ z
fs=1/T 200 kHz rsg 10

Table 5.2. Parameter values used in numerical simulations for N = 2.

5.3.2 Validity of the model

The map definition (5.15) has been constructed as a sequence of submappings and
requires that the inductor current (more precisely v; = rgiy) intercepts each of the
modulating signals vmy(¢) in the corresponding phase interval k. These restrictions
add two sets of boundary conditions in the map. The first set applies to the value of
*" with respect to I;f so that the duty cycle be positive. Therefore, from (5.20) the
first set of validity conditions can be expressed in two equivalent forms

d, >0
{ o k=1.N. (5.24)
-k Ik
v < Ay,

The second set applies to the relative position of the modulating ramps vmy and can
be expressed in the form

IF < It — Adrdy, k=1.N, (5.25)

where the cyclic condition IN*! = I} is taken into account.

Notice that (5.25) does not show dependence on the state variable ¢. When any of
these conditions are fulfilled, the dynamics presents a border-collision bifurcation. Ac-
tually, the dynamics outside these boundaries should be analyzed redefining the model.
Nevertheless, the loss in the symmetry of the system increases greatly the complexity
of the map and the extension of the analysis is out of the scope of this dissertation.
Therefore, these conditions will be considered here as a validity boundaries of our map.

The set of validity conditions (5.24) (black) and (5.25) (grey) have been depicted in
Fig. 5.7 in the parameter space {Vi,¢1} (Fig. 5.7a) and {V1,¢1} (Fig. 5.7b) for
N = 2. Solid and dashed lines represent the conditions for the phase intervals one and
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Figure 5.7. Validity curves from (5.24) (black) and (5.25) (grey) for N = 2. Solid and dashed
lines correspond to the conditions for the phase intervals one and two respectively. The parameters
are in Table 5.2.
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Figure 5.8. Plots obtained with the PSIM simulator for N = 2: i (¢) (red), I}(¢) (blue) and
I2(t) (green) evolution. The parameters are in Table 5.2.

two respectively. The red line added in Fig. 5.7a represent the parameter variations
of the bifurcation diagrams depicted in Fig. 5.8a, where some scenarios have been
found in the real system when crossing any of these boundaries. In Fig. 5.8b, the
scenario around the bifurcation has been plotted to illustrate the coincidence of both
modulated signals. In Fig. 5.9 some scenarios have been plotted to illustrate the
nearby of (5.24) condition, taking parameters along the red line in Fig. 5.7b.

In the first case, the bifurcation diagram has been obtained varying the parameter V.
As it can be appreciated, the diagram in Fig. 5.8a shows a jump in the state variable
from a stable one-periodic orbit to a chaotic attractor when the condition (5.25) from
the phase two is fulfilled. This kind of non-smooth bifurcation occurs in discontinuous
maps (maps with a jump in the state), with which this dynamics could be modeled if
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Figure 5.9. Plots obtained with the PSIM simulator for N = 2: iz (t) (red), I}(¢) (blue) and
I2(t) (green) evolution. The parameters are in Table 5.2 except: ¢1 = 0.65, ¢2 = 1 — 1. In (c)
and (b), the two switchings take place in the same phase interval.

the complete map has been taken into consideration. Notice also the equivalence of
this bifurcation with the bifurcation seen in the previous chapter when the slope of
the intermediate state reaches the slope of the ramp signal.

The second case studied has been depicted in Fig. 5.9. In this situation, four dia-
grams have been shown to illustrate the persistence scenario of the fixed point when
crossing the boundary (5.24). Notice that in Fig. 5.9c and Fig. 5.9d, after crossing
the boundary, both asynchronous switchings take place in the same phase interval.
Therefore, the dynamics cannot be predicted with the map proposed. When the fixed
point is unstable after crossing the boundary, other scenarios can appear, as such the
non-smooth period-doubling.
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5.3.3 Main mode of the map, fixed point and stability analysis

Taking into account the two trams in each submapping, the map (5.15) can have up
to 2 trams. However, those trams that imply saturation of the duty cycle are not of
interest for a real system, thus in practical applications, the configuration to which the
relevant fixed point belongs is the one with no duty cycle saturated. This configuration
will be called the main mode and is analyzed in detail below. In order to simplify the
analysis, the (unsaturated) map is rewritten in terms of variations regarding the fixed
point of the main mode. From (5.16) and (5.22)

R =ik 4 (Adon — Adof£F)(dy, — dy)

and from (5.20) and (5.21) the variation of the duty cycle is:

do—dpm T
k k Aion — Air

then, from the above two expressions, the submapping results
T = (1= ag) (6 — ) (5.26)
where a new set of coefficients {ay, k = 1..N} is defined

~ Aion— AioffF (5.27)
= Aion — Air '

Finally, the iterative map applied to the variation of current is obtained by the iteration
(k =1..N) of submapping (5.26).

N
i1 —i* = [[(1 = ) (in —i%)

k=

—

To simplify the notation, a new parameter A, which takes into account the effect of all
phases in the main mode, is defined

N
=[] =ax) (5.28)
k=1

then the map in the main mode, which will be denoted P,, can be expressed as

ins1 = Polin) = Xin + (1 — \)i* (5.29)

The main fixed point, which will be called i, and it is obtained applying the condition
i = Pp(4), is therefore i, = ¢*, in accordance to the conditions imposed in the map
definition.
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Figure 5.10. Function A(z) for N =2 (a) and N = 3 (b).
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(red) and ¢(0) = 4.105 A (blue)

Figure 5.11. Cobweb diagrams around a flip bifurcation. In (a) two different values of ¢(0) (initial
conditions) are used to show the existence of two attractors: the main fixed point and a period-two
orbit. Variable parameters shared in both diagrams are: V3 =2.0V and Vo = —15.0V.

Due to the linearity of P,,, the asymptotic stability is straight given by the condition
Al <1 (5.30)
In order to describe the feasible scenarios, which can appear in the dynamics of the

map as the ramp amplitude is varied, the parameter A defined in (5.28), in which
the coefficients «y, are in (5.27), can be expressed as a function of some dimensionless
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Figure 5.12. Bifurcation diagrams obtained with the PSIM simulator using Vir as the varying
parameter. The parameters are in Fig. 5.11.
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Figure 5.13. Cobweb diagrams around a non-smooth pitchfork bifurcation. After the bifurcation
in (b), the main fixed point is unstable and two new attractors coexist: a new fixed point (placed
in the fourth tram) and a chaotic attractor. Variable parameters shared in both diagrams are:
Vi=-Va=12V.

terms as follows

N
M) = ﬁ I, (5.31)

where x is defined as
VpL
p— . 2
v (V]N — TLIQ)TsT (5 3 )

and
_ [Vie| = b Vin +rilo
V]N —TLIQ '

Pk (5.33)
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Figure 5.14. Bifurcation diagram obtained analytically using Viy as the varying parameters. The
curves represent the stable (blue), unstable (red) and virtual (grey) one and two-periodic orbits.
The parameters for (a) are in Fig. 5.11 and for (b) in Fig. 5.13.

(a) Decreasing Vi (b) Increasing Vir

Figure 5.15. Bifurcation diagrams around the pitchfork bifurcation obtained with the PSIM
simulator using V7 as the varying parameter. The parameters are in Fig. 5.13 but g = 0.01 and
7 = 200 ps.

Figure 5.10 shows the function A(z) for N = 2 (Fig. 5.10a), N = 3 (Fig. 5.10b)
and different sets of parameters. This representation accounts for the influence of
the ramp amplitude in the stability of the map. Notice that A(xz) shows asymptotic
behavior (A(z) — 1lifz — oo) and has the singular point & = —1, which is located in a
non-physical area, considering that the slope of the ramp cannot be inverted (Vp > 0).

The map will be unstable if A < —1 or A > 1, thus provoking two types of bifurcations:
period-doubling (see Fig. 5.11) or non-smooth pitchfork (see Fig. 5.13).
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In the cobweb diagrams shown in these figures a different number of trams of the
map can be observed. The first tram is associated to saturation in both intervals
(Tn41 = Tpn + Aion), the second tram (and the fourth in Fig. 5.13) has one interval
saturated, and the third tram corresponds to the main mode (no saturation at all).
More details above these trams are given below also for the two-output converter
(N =2).

In Fig. 5.11a, A = 0.907 and hence, %,, is stable. Furthermore, it is shown in the same
figure the coexistence with a stable period-two orbit. It will be proved below that this
scenario, in which these two attractors coexist, is always given in the neighborhood of
a flip bifurcation in our system. On the other hand, in the diagram depicted in Fig.
5.11b, i, is unstable (A = 1.010 > 1) and a two-piece chaotic orbit exits in which all
the trams of the map are involved. Cobweb diagrams in Fig. 5.13 are related to a
pitchfork bifurcation. In this case, after the bifurcation (see Fig. 5.13b), two new fixed
points appear in the second and forth trams. The first fixed point is unstable whereas
the last one is stable and coexists with a chaotic orbit, which involves the second and
third trams of the map.

Finally, Fig. 5.14 shows the one and two periodic orbits using Vi as the varying
parameter. Blue and red lines stand for stable and unstable orbits whereas grey lines
represent virtual orbits. Notice in the diagrams the coexistence of the attractors. The
basin of attraction in Fig. 5.14a is determined by an unstable period-2 orbit, whereas
in Fig. 5.14b, the boundary is given by the unstable main fixed point.

The validity of this analysis has been proved in Fig. 5.12 and Fig. 5.15, showing that
the bifurcation points varying Vi are close to the predicted values.

5.3.4 Stability analysis of the main fixed point in a SITITO
dc-dc converter

In this section, we will study deeply the dynamics of the two-output case with opposite
polarity converter. As it is mentioned above and show in Fig. 5.11 and Fig.5.13, the
one-dimensional map can have up to four trams. The diagrams in Fig. 5.16 show the
waveforms of the inductor current (ir,(¢)) and the two references during a period. The
different waveforms correspond to a varying initial condition (i7,(0)). The continuous
line corresponds to a generic initial value in the main mode and the dotted lines are
the critical cases associated to the border of the trams. In Fig. 5.16a there are only
two borders and consequently, the map is defined with three trams, whereas in Fig.
5.16b there are three borders corresponding to four trams.

The relative value of dimensionless parameters {x, p1, p2} defined previously can help
us to determine the number of pieces and their slope, which applies for intervals with
increasing values of the inductor current in accordance to the following rules:
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e The first and simplest tram corresponds to the complete saturation, i,+1 =
in + Aion, then it has a unit slope.

e The second tram corresponds to the saturation of the first phase, therefore the
slope of this tram of the map is given by the expression (z — p2)/(x + 1), which
will result positive if © > po (negative otherwise).

e The third tram corresponds to the main mode or unsaturated operation. Its
slope can be obtained from (5.31) for N = 2 and is expressed as

Az) = E= P~ p2) _(z ﬁ(f); p2) (5.34)

and this is positive if z is outside the interval (p1, p2) or negative if x is inside
this interval.

e The fourth tram exists only if the time-slope of the inductor current in the first
phase is more negative than the slope of the ramp (z < p;), thus enabling the
saturation in the second phase. The slope of this tram of the map is therefore
given by the expression (x — p1)/(x + 1), which will always be negative.

t (us) t(us)
(a) Three pieces (b) Four pieces

Figure 5.16. Evolution of the inductor current (fixed point and critical values) and references (see
Fig. 5.8 for color code). The parameters are in Fig. 5.11 (a) and Fig. 5.13 (b).

In what follows, we will consider as the first phase the one corresponding to the
lower time-slope of iy (t), such that p; < ps. This criterion cannot modify the final
conclusions, the only difference lies in the values of the fixed points. Notice also that, in
general, due to the asymmetry in the expression of parameters (5.33), the first channel
will likely correspond to the positive output (V3 > 0) and this is necessarily true if
p1 < 0. In addition, the following restrictions apply to these parameters: p; > —1 and
p2 > 0.
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To sum up, the highest zero of A\(z) will be placed always in the positive axis, whereas
the lowest one can be positive or negative, but not less than —1. Moreover, the function
A(z) will present always a minimum value at

p1+ p2 +2p1p2
x S L e B e e L 5.35
MIN >+ pr + o (5.35)
in which the value of A is
—(p2 — p1)2
A = . 5.36
MIN =TT )1+ ) (530
Therefore, a flip bifurcation is possible if Ay <= —1 and at the two critical values
of x 1
TFLIP = 1 (pl +p2—2+ \/(Pl —p2)? —4(1+p)(1 + Pz)) : (5.37)
10 /
gl |
|
6A
Py
4A
2A
0 T T T T T

Figure 5.17. Flip (red) and non-smooth pitchfork (blue) bifurcation curves in the parameter space
{p1, p2} for different values of z.

A second possible bifurcation appears for A(xz) = 1. In this case the slope of the map
in the main fixed point is positive and the scenario is more similar to a pitchfork
bifurcation with non-smooth features. Notice that the second iteration of a map
with a parameter set that a flip bifurcation occurs will deal with such a kind of
bifurcation. The relevance of our map is that it is composed by two submappings,
and it is the composition of the two submappings that fits the threshold condition
(A = 1). Considered separately, the first submapping would have a tram with a
negative slope —1 < (z — p1)/(z + 1) < 0 and the second submapping with a more
negative slope (z — p2)/(x + 1) < —1. The critical value for this bifurcation is

p1p2 —1
= 5.38
TPFORK 2+p1 +p2 ( )

which always satisfies the inequality zprorkx < p1. From a practical point of view,
this bifurcation will not occur if zprorx < 0 or equivalently if p; < 1/pa. Therefore,
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a sufficient but not necessary condition to avoid this bifurcation is that the positive
output reference be inferior to the input voltage (Vi < Vin). In Fig. 5.10a, A(z) is
depicted using two different set of parameters.

To obtain a more general picture of the region of parameters for which these non-
smooth bifurcations (flip and pitchfork) can appear, two set of two-dimensional bifur-
cation diagrams in (p1, p2) space are depicted in Fig. 5.17. The lateral (red) set of
curves are those obeying the flip condition A(p1, p2, ) = —1, in which z is the variable
parameter. The envelope of these curves are two straight lines that obey condition
Amin = —1in (5.36) and can explicitly be expressed as

p2 = (3+2V2)p1 +2(1£V2). (5.39)

The central (blue) set corresponds to the parametric curves A(p1, p2,2) = 1. Notice
that if x = 0, the expression of the curve is: pips = 1. The main fixed point (i,,)
is stable in the inner part of the diagram bounded by the pitchfork and the two flip
curves for each value of the parameter x.

5.3.5 Non-smooth bifurcations of the main fixed point

As it is explained above, the definition of the duty cycles must take into account the
presence of boundaries in the model. One of these limits is analyzed in (5.19). Another
limit that has to be accounted for is the presence of the discontinuous conduction mode
(DCM). These limits can formally be expressed as

e High duty cycle saturation: The first set of boundaries is given when in a
generic phase k, the duty cycle becomes equal to that phase (¢). Therefore,
bifurcation curves IT¥(i,,) are defined as follows

(i) = dp — di(i¥)  k=1.N. (5.40)

It is important to remark that, although the main fixed point cannot cross any
of the boundaries in a physical set of parameters, (5.40) take relevance in the
non-smooth bifurcation of higher periodic orbits.

e Discontinuous conduction mode: The second set of boundaries is given
when the inductor current drops to zero, therefore, bifurcation curves IT5(i,,)
are defined as follows

05 (i) =i%  k=1..N. (5.41)
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5.4 Higher dimensional discrete-time model

5.4.1 Definition of the map

A more accurate map, which considers the evolution of all the state variables of the
system, is presented in this section. Though the evolution of the inductor current
(ir,(t)) will be also considered linear in each topology, the higher variations of if,
during a cycle influence significantly the evolution of the capacitor voltages, even the
integral variable, in such a way that nonlinear terms must be taken it into account.
Therefore, the one-dimensional PWL map (P) will be redefined below as a (2N + 1)-
dimensional piecewise-smooth (PWS) map, which, as before, can be expressed as a
composition of the k-submappings (f*):

P(x) = fNofN=1o . 0f%0 fl(x) (5.42)
xFH = fh(xk) (5.43)

! = x, xV*! = P(x) and, generally, x* corresponds to the value of the vector

where x
of state variables x = (4, vo1, v02, ..., VON, 01, 02, ..., 0N ) at the beginning of the interval

phase k, and thus

*T =ik 4+ (Aion — Aiof£¥)d), + Aioft ¢y,

1
voé?'i'l = 1)0? + <5va? + §6Vb§) 5;“ + 5vc§¢k

T 1 1 1
U;-H_l = U;? + ; ((UO? —Vi)or + (§5va? + Eévb?) (5;?)2 + §5vc§¢%>

being j = 1..N.

As in the one-dimensional approach, parameters Aion and Aioff* are defined in
(5.17) and (5.18) and di in (5.19) and (5.20). To make more understandable the
expressions of the map, the variables (5va§, 5vbé? and 5vc:é? have been included, which
are associated with the variations of the capacitor voltage and the integral term and
are defined as follows

(5va§ = C%—Sign (V;) (i* + Aion dy),

Svbh = Zsi n (V;) Aiof £%(¢p — dy)
i = Cj g J k k)

0ol

T.
R;C;

k—_
5vcj—
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The duty ratio 5;? is defined so as to take into account the fact that every capacitor
(C;) is only loaded during its corresponding interval (j):

5k o —d it k=7,
! 0 if k£ j.

One of the most significant improvements of this redefinition of the map is that the
members of the set {I¥}, which are used to obtain dj, from (5.20), are no longer
constant, but function of the state variables. Hence, in accordance to the definition of
the modulating signal in (5.1), these terms must be calculated as follows.)

N
1 . .
IF=—{Vy— Zak,j9j51gn (V) (voly =V +05) | + Air(l — ¢g).

r
S =1

5.4.2 Study of the fast scale dynamics for N = 2

The one-dimensional map can predict bifurcations related to the ripple of the induc-
tor current. The major advantage of this map is the relatively reduced number of
parameters to deal with the analysis. In fact, the stability of the fixed point can be
verified using the polynomial fraction function (5.31), which has a number of roots
(non-dimensional parameters defined in (5.33)) equal to the outputs (N), applied to
the non-dimensional parameter x defined in (5.32) and tunable by means of the am-
plitude of the ramp.

Roughly, those bifurcations are more or less accurately predicted by the simplest map
depending on the ripple of the capacitor and integral voltages and also of the weight
of these terms in the feedback. Two-dimensional bifurcation diagrams (mostly in
the {T,Vi;} parameter space) in Figs. 5.18 and 5.19 show the deviation of the one-
dimensional map of a SITITO dc-dc converter in some illustrative cases, which account
for a selection of parameters neglected in the one-dimensional map but considered in
the five-dimensional map. In general, a set of bifurcation curves are plotted in these
diagrams and therefore, three parameters have been considered at once. The red lines
have been obtained by means of the one-dimensional map approach whereas each
continuous grey line uses a variable intensity to identify the value of the parameter
among those predefined in the set. Figure 5.18 deals with flip bifurcation curves
whereas Fig. 5.19 does with a case in which a non-smooth pitchfork bifurcation curve
is found with the one-dimensional approach.

Concerning the deviation of the prediction of the flip bifurcation, two sets of flip
bifurcation curves using different values of the PI gain (gy), have been depicted in Fig.
5.18a and Fig. 5.18b fixing the values of the time constants of the PI terms to 200 us
and 50 ps respectively. An enlargement of both plots, between which no quantitative
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Figure 5.18. Flip bifurcation curves using (5.15) (dashed red line) and (5.42) (solid grey line)
maps for the values of g: 0.5 (light), 0.2, 0.1, 0.05 and 0.01 (dark). The parameters are in Table
5.2 except: Vi = 2.0V and Vo = —15.0 V. The stability of the main fixed point is reached at
high values of Viy and low values of C.

difference can be appreciated, has also been included. Notice that (see Fig. 5.18¢) for
low values of gi, these curves tend to the one-dimensional approach. It can also be
appreciated that the bifurcation curves do not tend to the one-dimensional approach
as the period of the modulated signal is decreased. Diagram in Fig. 5.18d reveals
the influence of the ripple of the capacitor voltages; in this case ({C, Vi }) is used as
parameter subspace. Notice that the prediction of the flip bifurcation is worsened as
the value of gy is increased.

Similar analysis has been developed in the range of parameters for which the one-
dimensional approach predicts a non-smooth pitchfork bifurcation. It is relevant to
note here that we have found the equivalence of the pitchfork bifurcation curve in
the one-dimensional map to Neimark-Sacker bifurcation curves (related with a pair
of complex eigenvalues crossing the unit circle) in the five-dimensional map. Hence,
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T (us) T (us)

(c) Zoom view of (a) (d) Zoom view of (b)

Figure 5.19. Neimark-Sacker/Pitchfork bifurcation curves using (5.15) (dashed red line) and
(5.42) (solid grey line) maps for different values of g: 0.2 (light), 0.1, 0.05 and 0.01 (dark). The
parameters are in Table 5.2 except: Vi = —V2 = 12.0 V. The stability of the main fixed point is
reached at high values of Vy;.

Fig. 5.19 shows the comparison between both bifurcation curves by using the two
approaches. In contrast to the flip bifurcation curves, as the period is increased,
the curves suffers a completely change in their tendency, moving away of the one-
dimensional approach. Conversely, for low values of T', the deviation between the two
curves is similar to the deviation in the prediction of the flip bifurcation. Therefore,
the higher-dimensional map predicts a significantly reduced region in which the main
mode is stable, especially when ¢ is decreased.

Finally, similar results are found in Fig. 5.20 using the time constant in the PI blocks
(7). In this range of parameters, it can be observed that when the period of the
modulation (T) is increased, the range of values for the ramp amplitude is increased
(showing a stable main fixed point), while in the Neimark-Sacker bifurcation this range
is decreased.
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Figure 5.20. Flip (red and grey) and Neimark-Sacker (blue) (a) and Neimark-Sacker / Pitchfork
(b) bifurcation curves using (5.15) (dashed red line) and (5.42) (solid grey or blue lines) maps
for different values of 7. The parameters are in Table 5.2 except: V1 =2.0V and Vo = —15.0V
(a) and Vi = =V, = 12V (b). The stability of the main fixed point is reached at higher values
Of Vu.

Notice that Fig. 5.20a also shows another smooth bifurcation, a Neimark-Sacker, when
the parameter 7 is reduced. In contrast to the Neimark-Sacker bifurcation seen above
which was related with the non-smooth Pitchfork bifurcation, this instability cannot
be predicted by means of the one-dimensional map because it is related with the low
frequency dynamics. As it can be appreciated in the figure, the stable zone is reduced
drastically as the parameter 7 is decreased, adding a higher critical value of V.

5.5 Conclusions

In this chapter, an interleaved control has been proposed to regulate a generalized
SIMIMO converter, which can provide multiple output voltages with different polari-
ties. The dynamics has been analyzed by means of averaged models and discrete-time
models using different approaches.

Firstly, expressions for the generalized averaged model have been obtained, including
the Jacobian matrix, whose eigenvalues determine the stability of the equilibrium
point. Similarly to the results obtained in the previous chapter, the averaged model
provides simple expressions for the equilibrium point, which correspond to limit cycles
in the real system, and the duty cycles. These results can help us to determine the
available region of the converter and are required to establish the expressions for the
one-dimensional map. No deep analysis has been developed using this model because
averaged models are not able to predict the bifurcations associated to the current
ripple and most of the non-smooth bifurcations.
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The analysis of a generalized one-dimensional map has permitted to obtain simple
expressions useful to determine the stability of the main mode of operation. More-
over, though the discrete-time model does not include all modes of operation of the
converter, the boundaries of the validity of the proposed model have also been estab-
lished. The crossing of any of these boundaries is known to yield a border-collision
bifurcation, which can imply several scenarios ranging from sudden jump to chaos to
persistence. Furthermore, the values of the phase intervals ¢; can be properly selected
to avoid any of these non-smooth bifurcations.

Due to the fact that the dynamics of the converter can be modeled with a three-piece
linear map in a determined region of the parameters, the result obtained in chapter 3
can be useful to reduce the possible scenarios that can appear in the dynamics of the
converter. One of the most relevant results is the proof of the coexistence of the one
and two-periodic orbit in the neighborhood of a flip bifurcation.

Concerning the stability, in contrast to the non-interleaved control seen in the previous
chapter, in which stability is lost only under the occurrence of the eigenvalue crossing
the critical value —1, the analysis of the interleaved control has revealed that the
instability is prompts to appear also if the eigenvalue crosses the critical value 1. In
this last case, numerical simulations from the switched model show that behavior of
the converter in the neighborhood of this bifurcation is similar to a Neimark-Sacker
bifurcation. Higher-dimensional discrete-time models prove that the bifurcation of the
real system is actually a Neimark-Sacker.

Nevertheless, when the ripples of the capacitor and integral voltages cannot be ne-
glected, the accuracy of the predictions that are obtained with the one-dimensional
map is not satisfying and higher-dimensional discrete-time models are required. In
this case, the higher complexity of the expressions and, consequently, the time incre-
ment of the numerical simulations is made up for the accuracy in the prediction of the
instability. Otherwise, non-smooth bifurcations can be properly determined by using
the expressions given by a one-dimensional PWL map.



Chapter 6

Experimental measurements

In this chapter, several experimental measurements obtained with
a SITITO prototype will be presented. The use of a micro-controller
to generate the driven signals of the switches has permitted to study
the two different strategies of control presented in this dissertation.
Different dynamics of the converter will be measured including the
normal operation regime, periodic orbits and chaos.

6.1 Description of the system

A prototype of a SITITO DC-DC converter has been implemented to prove the va-
lidity of the regulator and to confirm the results of the study realized in the previous
chapters. Figure 6.1 shows the physical implementation of both the power and the
control stages. In order to manage with different strategies of control, the regulation
of the converter has been realized by means of a micro-controller (LPC2138), which
computes the switching instants by processing the value of inductor current and both
capacitor voltages acquired periodically, according to the specific strategy of control.
In this stage, the algorithm implemented reproduces the analogical controls SPC and
IC explained in Chapters 4 and 5.

The power circuit is regulated by two command signals. These voltages are previously
adapted by two dedicated MOS inverting drivers from MAXIM (MAX626), and then
applied to the MOSFET IRF9Z34S (p channel) and IRL530N (n channel). The diodes
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(a) Power stage (b) Control stage

Figure 6.1. Prototype of a SITITO converter composed by the power and control boards.

are two Schottky barrier diodes (6CWQO04FN) and the inductor current is sensed using
the current probe PR30. Concerning the value of parameters of the power stage, both
capacitors and resistors can be selected to find a specific dynamics. The value of the
inductance is determined by an algorithm implemented in the micro-controller before
starting the regulation of the converter. According with this experimental measures,
the value of the inductor used in the numerical simulations has been fixed to 640 nH.
Finally, its parasitic resistance rz has been estimated about 0.7 €.

Let us now summarize the technical capabilities of the circuit of control. The pa-
rameters of this stage, such as the amplitude of the modulating signal, the voltage
references, the gains and time constants of the integral control, are configured in the
algorithm and loaded into the micro-controller memory. All these parameters can be
varied during the experimental measurements. Despite the micro-controller can oper-
ate up to 60 MHz, the A/D conversions of Vjy, iz, and both capacitor voltages, which
need around of 2.6 s, and the number of operations required to predict the switching
instants fix the maximum frequency of the modulated signal about 10 kHz. Moreover,
the operations needed in the initial part of every period force that the first switching
cannot be programmed before the 20% of that period. Notice that this restriction can
be relevant in the transient regime and in critical conditions, even during the normal
regime, in the presence of noise. These limitations have resulted more crucial in the
normal functioning of the converter in case of the interleaved control, due to the fact
that the algorithms are more complex and, besides this, the first switching is given
early.

Concerning the algorithms used to simulate the two controls, the duty cycles of both
switches are established by using the analytical expressions similar to those obtained
in the development of the one-dimensional discrete-time models. Nevertheless, there
exist some differences. The most relevant one deals with the value of the peak ref-
erences, which must be known in order to predict the switching instants and their
value cannot be computed exactly with the expressions developed in the analysis of
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Parameter Value H Parameter Value
Vin 6.0V \%3 0.0

L 640 pH Vu variable
TL 0.7 Vp variable
Cp 45 nF VN -7.0V
Cn 45 pF ™ = TN 200 ps
Rp 220 gp = gn 0.02
Ry 330 rg 10
fs=1/T 10kHz

Table 6.1. Parameter values used in the experimental and numerical results.

the one-dimensional map. Therefore, the complete expressions given by the switched
models of both strategies of control are used. These are functions of the capacitor
voltages, whose real value is acquired periodically, and the integral terms. Due to the
limitations in the computing time of the micro-controller, the evaluation of the integral
state variables has been simplified, considering the voltages as constant values in each
period. This strategy reduces the number of operations but can modify the dynamics
of the converter. As it will be observed bellow, one of the main consequences of this
method concerns the mean value of the capacitor voltages. Due to the action of the
integral control implemented here, the mean value of the capacitor voltages is forced
to be equal to its corresponding voltage reference in successive instants of acquisition
of the voltage instead of the whole period. Besides this, more complex deviations in
the dynamics can be produced and will be analyzed in future works.

6.2 Single-Phase Control

In this section, several dynamical behaviors of the SITITO converter driven by the
SPC control are presented. The fixed parameters chosen in the different experimental
measurements and numerical simulations are summarized in Table 6.1. Notice that
Vi and Vp will be the unique varying parameters in this section.

6.2.1 Normal operation regime

Concerning the normal operation regime, two different sets of parameters, accord-
ing to the technical limitations of the prototype, have been chosen to illustrate the
steady-state response of the SITITO converter regulated by the control SPC when the
converter operates in the modes Mp and My described in Chapter 4.
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Figure 6.2. Waveforms of the inductor current and the capacitor voltages obtained experimentally
(left) and by simulation (right). The varying parameters are Vp = 8.0V and Vy =1.5V.

Mode Mp

When the positive reference voltage is set to 8.0V (while Vi = —7.0V), the normal
mode of operation is Mp. Figure 6.2 shows the evolution of the inductor current

21 21
L Il L
1.5 1.5
1 / 1 / /
0.5 0.5
0 0 = —
0 01 02 03 04 05 0 01 02 03 04 05

t (ms)

(a) Sp and if,

t (ms)

(b) Sa and ir,

Figure 6.3. Waveforms of the inductor current and driven signals of Sg (a) and Sa (b) obtained
in the prototype of SITITO converter. The parameters are in Fig. 6.2.
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Figure 6.4. Evolution of the inductor current obtained experimentally (left) and with the PSIM
simulator (right). The varying parameters are Vp = 2.0V and Vy = 1.5V.
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Figure 6.5. Evolution of the inductor current and the driven signals of Sa (left) and Sp (right).
The parameters are in Fig. 6.4.

and capacitor voltages obtained experimentally (left) and with the PSIM simulator
(right). As it can be observed, experimental measurements are in good agreement
with expected results. Figure 6.3 shows the signals which drive the switches S4 (Fig.
6.3a) and Sp (Fig. 6.3b), whose edges force the switching instants of the MOSFET’s.
It has to be taken into account that the logic levels of these signals, which have been
pondered in Fig. 6.3 for the sake of clarity, operates in an opposite way and have been
inverted by intermediate drivers. Therefore, S 4 is open or closed at low or high levels
of its corresponding driven signal respectively whereas Sp is open or closed at high or
low levels respectively.

Mode My
Stable dynamical behavior has been also obtained when Vp =2.0V (Vy = —7V), so

that the converter operates in the mode My (see Fig. 6.4). In this case (see Fig. 6.5),
the switching of S4 becomes earlier than Sp and therefore, d4 < dp.

6.2.2 Bifurcation analysis

In this section, preliminary experimental results of the nonlinear phenomena of the
SITITO converter are presented. For the sake of clarity, a two-dimensional bifurcation
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Figure 6.6. (a) Stability (green), ISL (blue) and MOC (black) codimension-one bifurcation curves
in the parameter space {Vi, Vp}. The curves have been obtained by using the one-dimensional
discrete-time model. The parameters are in Table 6.1.

diagram in the parameter space {Vy;, Vp} has been depicted in Fig. 6.6, in which the
stability (green) and the Mode Operation Change (MOC) (black) and Intermediate
Slope Limit (ISL) (blue) non-smooth bifurcation curves have been represented by using
the one-dimensional map obtained in Chapter 4. Three nonlineal phenomena will be
shown: period-doubling, MOC and ISL bifurcations by means of temporal plots of the
inductor current. Notice that the specific parameters used in these representations
have been marked in the Fig. 6.6 as blue (ISL), green (flip) and black (MOC) dots. In
the diagrams obtained with the PSIM simulator and depicted in Fig. 6.7, the period
doubling (Fig. 6.7a) and ISL (Fig. 6.7b) bifurcation can be appreciated.

Flip bifurcation

Two waveforms of the inductor current have been obtained (see Fig. 6.8) at the values
Vp=6.0V and Vy = 1.0V (Fig. 6.8a), Viy = 0.6V (Fig. 6.8b) and Vy = 0.4V (Fig.
6.8c) by means of experimental measurements. The normal dynamics represented in
Fig. 6.7a becomes a period-two orbit after a flip bifurcation, as it can be appreciated
in Fig. 6.8b. In the range of the parameters selected, as the value of Vi is decreased,
the two-periodic orbit presents a non-smooth bifurcation and a four-periodic orbit
appears, which becomes a chaotic attractor after another BC bifurcation. Due to the
presence of noise, the dynamics in Fig. 6.8c cannot be clearly distinguished, which can
correspond to a four-periodic orbit or a chaotic attractor. Anyway, a further decrease
of the parameter V; shows chaotic dynamics.
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Figure 6.7. Bifurcation diagrams obtained with the PSIM simulator. The inductor current syn-
chronized with the clock is the variable represented.
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Figure 6.8. Experimental measurements of the waveform of the inductor current after a flip
bifurcation has undergone.
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Figure 6.9. Evolution of the inductor current around a ISL non-smooth bifurcation.
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Figure 6.10. Evolution of the inductor current in the neighborhood of a MOC bifurcation.

ISL and MOC non-smooth bifurcations

ISL and MOC border-collision bifurcations can be seen in Fig. 6.9 and Fig. 6.10
respectively, where experimental waveforms of the inductor current have been obtained
in both sides of the ISL and MOC bifurcations. Notice that the critical values of the
parameters Vy and Vp are in agreement with the numerical results obtained with the
one-dimensional map and the PSIM simulator (see Fig. 6.7b and Fig. 6.7c).

6.3 Interleaved Control

Let us now show some of the experimental measurements obtained in the same pro-
totype but driven by the IC control. Similarly, the normal operation behavior and a
preliminary bifurcation study are presented in this section. The value of parameters
are given in Table 6.1, considering the indexes 1 and 2 equal to P and N respectively.
The parameter ¢; (notice that ¢ = 1 — ¢1) is specified in each diagram.

6.3.1 Normal operation regime

Firstly, in order to compare the dynamical properties of both controls, the normal
operation regime has been illustrated with a set of parameters equals to those used
in the previous section. Figure 6.11 shows the evolution of the inductor current and
the capacitor voltages obtained experimentally and by using the PSIM simulator.
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Figure 6.11. Waveforms of the inductor current and capacitor voltages obtained experimentally
(left) and numerically with the PSIM simulator (right). The parameters are the same that in Fig.

6.2 and ¢1 = 0.60.
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Figure 6.12. Waveforms of the inductor current and the driven signals of Sa (a) and Sz (b)
obtained experimentally. The set of parameters corresponds to Fig. 6.11.
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Figure 6.13. Bifurcation diagrams obtained with the PSIM simulator using Vi as the varying
parameter. The parameters are in Table 6.1 except: Vi = 3.0V, Vo = —15.0V, Ry = 331,
Re = 688 and ¢1 = 0.45.

Complementary, the driven signals of the switches have also been depicted in Fig.
6.12.

Notice that ¢, has been set to 0.6. As it has been mentioned above, the first switch-
ing instant cannot be programmed before a minimum value due to computing time
required in its estimation. However, the critical situation can be avoided, when possi-
ble, by increasing ¢; .

6.3.2 Bifurcation analysis

To conclude, some smooth and non-smooth bifurcations have been detected in the real
system. Diagrams showing the dynamics around a flip bifurcation and the border-
collision bifurcations related with the delay applied between both modulated signals
are described bellow.

Flip bifurcation

In the range of parameters selected above, the normal operation regime does not
present any flip bifurcation as the parameter Vi is varied. As it was concluded in
Chapter 5, the flip bifurcation takes place in areas in which the parameters related
with channels 1 and 2 are highly asymmetric. Therefore, the voltage references V3
and V5 have been set to 3.0V and —15.0 V respectively and the resistors Ry = 22}
and Ry = 332 have been replaced by R; = 332 and Ry, = 68€). In Fig. 6.13, two
bifurcation diagrams have been depicted. The hysteresis phenomenon associated with
the flip bifurcation explained in Section 5.3.3 can been observed in the figure. Two
waveforms are depicted in Fig. 6.14, which illustrates one and two-periodic orbits at
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Figure 6.14. Waveforms of the inductor current obtained experimentally. The parameters are in
Fig. 6.13.
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Figure 6.15. (a) Validity curves from (5.24) (black) and (5.25) (grey) for N = 2. Solid and
dashed lines corresponds to the conditions for the phase intervals one and two respectively. (b)

Bifurcation diagram using Vi as the varying parameter. The parameters are in Table 6.1 except
V1 = 4.0V, V2 = —8.0V, R1 =330 and Rz = 68 Q.

the values of Viy = 0.9V (a) and Viy = 0.5V (b) respectively. Unfortunately, in the
region of the parameter Vi in which both attractors coexist, the presence of noise in

the system makes difficult the stabilization of both dynamics separately which, from
time to time, flips between the two attractors.

Border-collision bifurcations

Let us now focus in the validity conditions of the discrete-time models proposed in
Section 5.3.2. In the two-dimensional bifurcation diagram depicted in Fig. 6.15a in
the parameter space {Vis, ¢1}, four validity curves obtained with the five-dimensional
map have been plotted under parameters in Table 6.1 and V; = 4.0V, V5, = —8.0V,
Ry = 33Q and Ry = 68€). As it was explained above, the interleaved control was
considered with two kinds of boundaries due to the fact that each switching can only
be produced in its own phase interval. The first anomaly occurs when the relative

position of the peak references avoids one of the switchings (grey curves) whereas the
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Figure 6.16. (a,b) Waveforms of the inductor current obtained experimentally. (c,d) Reconstruc-
tions of the experimental waveforms of the inductor current depicted in (a) and (b) respectively
including the current peak references I (blue) and I2 (green) with data supplied by the micro-
controller. The parameters are in Fig. 6.15 and ¢1 = 0.55.

second case deals with two switchings produced in the same phase interval, so that
would be d; = 0 or d2 = 0 (black curves). Solid and dashed lines distinguishes the
two conditions for the phases 1 and 2 respectively. The red line represents the varying
range of the parameter V¢; used in the bifurcation diagram shown in Fig. 6.15b and
the blue dots correspond to the different set of parameters used in Figs. 6.17 and 6.18.

Notice that, in the first case, the normal operation regime undergoes a border-collision
bifurcation when the second switching is skipped, with the control proposed in Chap-
ter 5. Nevertheless, this non-smooth bifurcation can be easily avoided by a slightly
different programme in control. The experimental results are shown in Figs. 6.16a and
6.16b. To facilitate the comprehension of this option, new plots obtained by means of
data supplied by the micro-controller have been depicted in Figs. 6.16c and 6.16d to
show the waveforms of the inductor current and the two peak reference currents. The
reconstructions of these signals have been made using the periodically acquired values
of the inductor current and capacitor voltages together with the predicted values for
the duty cycles and the peak references. All this variables are obtained as auxiliary
outputs of the micro-controller. Notice in Fig. 6.16d, that the switching of S5 is per-
mitted (the switching condition for S; is ignored), which avoids the border-collision
provoked by the relative position between both current peak references. Actually, the
new algorithm is simpler and requires less memory and computing time.
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Figure 6.17. (a,b) Waveforms of the inductor current obtained experimentally showing a per-
sistence scenario. (c,d) Reconstructions of the experimental waveforms of the inductor current
plotted in (a) and (b) respectively and the current peak references I} (blue) and I? (green). The
parameters are in Fig. 6.15.

Concerning the second case, Figs. 6.17 and 6.18 show the inductor current obtained
experimentally at different values of Viy and ¢, in the neighborhood of this non-
smooth bifurcation. The dynamics observed in the diagrams of Figs. 6.17a and 6.17b
correspond to an one-periodic orbit and therefore, the scenario given at the critical
point is persistence. Notice in the reconstructed waveforms depicted in Fig. 6.17c
that the one-periodic orbit at Viy = 0.62V has the two switchings in different interval
phases (normal regime) whereas in Fig. 6.17d both switchings are produced in the
first interval. Conversely, in Fig. 6.18, a two-periodic orbit appears due to a non-
smooth period-doubling bifurcation (see Fig. 6.18b). This two-periodic orbit links
a sequence of different patterns per period of the modulating signal: the pattern of
the normal operation and the two switchings in the first subinterval for the second
period. A detailed analysis of this scenario, which requires to model the dynamics of
the converter when both switchings are produced in the first interval phase, will be
realized in future works.

6.4 Conclusions

Several experimental measurements realized in a prototype of a SITITO converter
regulated by the two controls proposed in this dissertation (SPC and IC) have been
presented. The ranges of parameters have been chosen according to the limitations of
the system, in order to show several dynamical behaviors produced in the experiments.
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Figure 6.18. Waveforms of the inductor current obtained experimentally showing non-smooth
period doubling scenario. The parameters are in Fig. 6.15.

Concerning the first strategy of control, the main bifurcations analyzed in the Chapter
4 have also been detected in the physical system at the critical values predicted.
Nevertheless, bifurcations involving the parameters of the integral terms have been
postponed due to the need of a previous dynamical study of the system with the
simplified integral control programmed.

More difficulties have arisen in the IC control implementation. The lower limit of the
duty cycle forced by the micro-controller implies a significant reduction in the possible
range of the parameters. It has to be remarked that this limitation not only affects to
the one-periodic orbit but even more to higher periodic orbits, quasiperiodicity and
chaos. Nevertheless, when the normal operation regime is available, this dynamics is
stable in a wide range of parameters.

It has been proved in this Chapter that one of the border-collision bifurcations can be
avoided under a simple modification of the algorithm of control. This fact leads us to
consider in the future others variant of controls, some of them simpler, indeed. The
use of these algorithms could imply the increasing of the frequency of the modulating
signal.



Chapter 7

Conclusions and future works

Static and dynamics properties of a Single-Inductor Multiple-Input Multiple-Output
(SIMIMO) de-dc converter have been determined by means of averaged and discrete-
time models. The results that have been obtained prove the ability of the converter
to regulate several outputs with different polarities when the parameters are properly
selected. The analysis include not only the determination of instability conditions, but
also the limit or boundary conditions and the different dynamics that arise beyond
them. Experimental measurements have also been added to prove the viability of these
converters and dynamics properties in a specific range of parameters.

In order to reach our objective, different models have been developed with a tunable
degree of accuracy. Firstly, the usefulness of the averaged models has been validated.
Besides the characterization of the equilibrium situation and the duty cycle of each
channel, these models provide information of the stability related with the slow scale
dynamics. However, the averaged models are also known to be unable of detecting
phenomena related with the fast scale dynamics, in which mainly the ripple of the in-
ductor current is involved. This restriction covers not only the prediction of instability,
but also the detection of some of the non-smooth bifurcations, which are conditioned
by the evolution of the inductor current during a period. This leads to the requirement
of using discrete-time models to deal with these dynamics unpredicted by averaged
models.

Discrete-time models with different number of state variables have been proposed to

deal with the dynamics of the dc-dc converter driven by two different strategies of
control: Single Phase Control (SPC) and Interleaved Control (IC), which have been
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capable of regulating a Single-Inductor Two-Input Two-Output (SITITO) converter.
The one-dimensional model is obtained when only the evolution of the inductor current
is taken into consideration. In both SPC or IC, the analysis of these models has
permitted to obtain simple analytical expressions to characterize the stability and the
non-smoothness of the system. Higher dimensional maps have also been obtained to
improve the accuracy in these predictions. In the IC control, numerical results have
revealed a relevant deviation in the prediction of the Flip bifurcation.

Besides the analysis of both controls, another contribution given in this dissertation
has dealt with the dynamical study of a three-piece piecewise-linear (PWL) map. The
discrete analysis of both controls has shown that the one-dimensional PWL map which
describes the evolution of the inductor current is characterized by having three pieces,
in case of the SPC, or three or four pieces for the alternative IC. Therefore, the study
of a normalized one-dimensional PWL map has helped us to account for the feasible
scenarios in which one and two-periodic orbits are involved.

7.1 Differences in the operation of the converter un-
der both strategies of control

To sum up, we will present a list of relevant differences in the operation of the controls
SPC and IC. Due to the fact that the control SPC has not been generalized to several
outputs, only dynamics of SITITO dec-dc converters are evaluated.

e Concerning the main mode of operation, in the SPC the two capacitors are
simultaneously loaded in the last part of the OFF interval, whereas in the IC,
only one capacitor is loaded in the corresponding phase. As it was appreciated in
the experimental measurements, this fact implies that the possible low saturation
of the duty cycle, given when the duty cycles reach the 0 value, is more likely in
the IC control due to the fact that more time is required to load both capacitors.
On the other hand, high saturation of the duty cycles involving one-periodic
orbits cannot be given in any of the controls.

e We have found that during the transient multiple patterns of switching are pos-
sible. Unlike the one-dimensional model for SPC that takes into consideration
all feasible configurations, the method used in the generalization in IC control
limits the number of configurations that the model account for. Due to this fact,
the number of validity conditions is higher in IC regarding SPC.

e Averaged models have been proved to be equivalent in both controls due to the
fact that the evolution of the inductor current is not taken into consideration in
the models.

e The one-dimensional discrete-time analysis has revealed that the instability of
the SITITO converter driven by SPC can only be given when the eigenvalue
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becomes —1, thus producing a flip bifurcation. Otherwise, in case of the IC, the
instability can also appear when the eigenvalue becomes +1. Nevertheless, it
should be remarked that, despite this increment in the unstable conditions in
the IC, the flip bifurcation appears only in odd regions of parameters.

e Another important difference deals with the deviation in the predictions of the
flip bifurcation. It has been shown that the converter driven by the IC is more
sensible to the variation of ripples of the capacitor voltages. Hence, an increase
in the feedback gains or a reduction in the time constants of the PI terms implies
a greater deviation in the critical value predicted by the one-dimensional model.

7.2 Proposals of future works

Some future proposals are listed below:

e Concerning the characterization of the non-smooth phenomena in a three-piece
piecewise-linear map, a further study could be directed to extend the analysis
to the complete range of parameters. Moreover, our study has been restricted
to the existence and stability of one and two-periodic orbits and, therefore, a
complete description of the scenarios involving higher periodic orbits could also
be of interest.

e It has been shown that averaged models fail in the prediction of some smooth
bifurcations. More complete averaged models, which include information of the
evolution of the inductor current, could be developed in order to detect the
unpredicted Neimark-Sacker bifurcations.

e It has been observed that the experimental system has important limitations
due to the presence of noise and hence, a significant reduction in the noise level
should be achieved in order to increase the range of parameters available. Once
having reduced it, the data acquisition system that is added to the control circuit
could be reprogrammed to obtain periodic measurements of the state variables
so that it would be capable of representing experimental bifurcation diagrams.

e Due to the fact that the algorithm of control can be reprogrammed easily, simpler
digital controls, which reduces significantly the computing time in the predic-
tion of the switching instants, can be chosen to regulate the converter. This
improvement could permit an increase in the frequency of the modulated signal.






Appendix A

Five-dimensional map of the SITITO
converter with SPC

In this appendix, the five-dimensional discrete-time model which describes the dy-
namics of a SITITO converter regulated by the SPC control is developed. Due to the
symmetry between M p and My, only the mode of operation M p will be explained
in detail.

Let us define the following map:

F(%) = Xns1 (A1)

s T s T
where x,, = [i,vp,vn, op,on]* and Xp41 = [int1, UPnt1, UNnt1, OPnt1, ONpt1]” -

Notice that the subindex n has been eliminated from the discrete state variable x to
make the reading clearer.

Similarly to the definition of the one-dimensional map, (A.1) can be divided into the
submappings:

fl(iavpavnvo-p7 on, ¢) if HQ('UP,UTL,(]S) > 07

f 7;7 up,vn,op,on, (b =
( ) f?(iavpavnvo-p7 on, ¢) if HQ('UP,UTL,(]S) < 07

where f : R% x R — R and the surface Hy is given by

vp  Un
Ho(vp,'l}n, ¢) = R_P - Ea
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and ¢ refers to the set of parameters

¢ ={Vin,rr,L,Vp,VN,Rp, RN, Vu, VL, T,Cp,CN,75,9PA, gPBs YN A, GNB, TP, TN }-

For the sake of simplicity, gra and grp have been considered 0 in these analysis.

In the next section, expressions for 4,41, UDp+1, Unpt1, OPn+1 and on,1 are presented
for both submappings.

A.1 Mode of operations Mp, Mgp and M,

It is important the remark that the sequence of topologies in the mode Mp is 73 —
7T, — 714, whereas in Mgp and M, the sequences correspond to 77 — 75 and 7
respectively.

Obtaining 7,

Sa | Sp Ai
Ti || ov | ov | A1y MT
% | ow | orF | As, | VIV Z vﬁ_ relo
T, || OFF | oN | Ais %T
7. || oFF | 0FF | Aiy %T

Table A.1. Definition of the increment currents of the SITITO converter in CCM.

The assumptions considered in the development of the one-dimensional map are also
valid here. Therefore, according to (4.30),(4.32),(4.33) and (4.34), in,41 can be ex-
pressed as

1+ Aiq if x € 94y,
Iny1 = i+ Airdp + Ais (1 —dp) if x € Sp, (A.2)
i+ Aiydpg + Aisdap + Aig (1 —da) ifx € Se.

Nevertheless, there exist some differences. Firstly, the increment currents {Aij, j =
1..4}, which are summarized in Table A.1, depend on the state variables vp and vn.
Moreover, dap = da4 — dp is not considered as constant value and the duty cycle
dy is approached similarly to dp. In addition, both duty cycles are found using the
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complete expressions for the peak references. Therefore, according to (4.35) and (4.3),
the duty cycle dp is given by

(Vu +9p(Vp —uvp —op) + gnp(vn — Viy +0on)) /rs —i
Ai; — Air '

dp =

Similarly, taking into account the evolution of inductor current during 7; and 73, from
(4.39) and (4.2) da can be expressed as

Vo +gpa(Ve —uvp —op) + gya(on — Vi +on)) /rs — (i + (Ail; — Ais)dp)
AiQ — Air

da =

Obtaining vp

According to (4.9), the evolution of the positive voltage during the topologies 77 is
described by the state equation
d’Up -1

—-—r _ A
dt RPCPUP, ( 3)

whereas in the topology 72 and 74, the expression is given by

dvp —1 n i,
— = v —.
dt RpCp P Cp

Therefore, it can be considered that the evolution of the capacitor voltage has two
contributions: the discharge of the capacitor through the resistor, which acts during
the entire period, and the charge acting only during 7> and 7. Considering that
these two contributions will be approached separately, it can be define the following
approached function vp(t) as follows:

vp(t) ~ vp(t) = vpa(t) + vpe(t).

vpq(t) gives the information about the discharge and its evolution can be approached
by the first element of the Taylor series of (A.3). Therefore,

vp
CpRp

vpa(t) = vp — t,

where vp corresponds to the capacitor voltage at the beginning of the period (vp =
vp(0)).

In order to estimate the second contribution, we assume the following approximation of
the evolution of the inductor current, ir,(t), in the mode M p, as it has been developed
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in Chapter 4:
Z'-i-Ail% if t <dgT,
~ . ) 3 .
ir(t) ~ip(t) = i’ + Ais (T—dg) if dpT <t <daT, (A.4)

i 4+ Aiy (% — dA) if t >daT,

where 4, 7', and 7" correspond to the initial conditions of the inductor current in the
different topologies 77, 72 and 74 respectively. Defining dy = dp, do = da, Al = Ai,
and Ad = dp, the inial conditions are given by

ZZZL(O) iI=i+Ai1d1 i" =i + AiAd.

During the topology 77, there is no charge in the capacitor. Conversely, during 75 the
charge of the capacitor, which is proportional to the area of the inductor current, can
be approached by

t . . 2
ir, T (.,(t Aig [t
—dt &~ — ——d ——d
/dBT Cp Cp (l (T B) T\ ’
whereas during the last topology 74, the approach is given by

t . . 2
ir T e Aiy [t
gt~ = ( 6vp,d Loda )+ (g

/dATcp cp<"’1 an <T "‘)+ 2 (T A))

where the function évp,, together with all the auxiliary functions used in this chapter,
is defined in Table A.2. Finally, the function vp.(t) is given by the function

0 if t <dpT,
t Aiy [t 2
T (2 _ a2t .
vpe(t) = cr ! (T dB) T (T dB) if dpT <t <daT,
ot Aig [t 2
5Vp1dAB+Z” <T_dA) + 5 <T_dA) if t >daT.

Then, applying vp,+1 = vp(T'), we obtain
VP41 = vpa(T) + vpe(T) = vp 4+ Avp + dvp,dap + dvp, (1 —d4) .

Easier analysis can be done so as to find expressions of vp,, 11 for the remainder modes
of operation Mgp and M. It can be proved easily that
vp + Avp if x € Sy,
VPpnt1 = § vp + Avp + dvp, (1 —dp) if x € Sp, (A.5)
vp 4+ Avp + dvp dap + 0vpy (1 —d4) if x € Se.
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T vp T wn
A — A — | -
VP Cp ( Rp) e Cn ( RN )
T (., AiAd T AlAd
0vp, o i+ 5 ovny or
T .y A14(1 — d2) T A14 1— dg)
0vp, o (z + 7 dvngy O "y — =
T (., AiAd AlAd
0vps 50y T+ 3 dvng
T (. Aiy(l—d Ady(
dvny 20, (2” + 714(3 2)> dvny 50N ( + al 2))
ovps 0vpsAd + dvp, (1 — d2) ovns ovnzAd + évny (1 — da)

Table A.2. Definition of the auxiliary functions. di, d2, Ai and Ad correspond to dp, da, Ais
and dap respectively in the modes Mp and Msp and da, dp, Aiz and —dap in My and
Msn.

Obtaining vy

The evolution of the negative capacitor voltage can be obtained similarly. Taking into
account the differential equations of vy (¢) in the topologies 77 and 73 and 74 and that
there exists charge in the negative capacitor only during the topology 74, it is easy to
prove that
vn + Avn if x € Ty,
VNpt1 = S vn + Avn if x € Tg, (A.6)

vn+ Avn —dvny (1 —dy) if x € Te.

Obtaining op and on

From (4.4) and (4.5), the state equations of the integral terms are given by

dop 1 doy 1
7 (vp(t) = Vp) and Fra. (vn(t) = V).

Considering the approached evolution of the positive capacitor voltage vp(t) found
above, op(t) can be simplified as

— I

Up(t):—/ ( () Vp) t—0p+—/ UP Vp)

P

Therefore, op,+1 can be expressed as follows

. 1 T T
opn+1 =0p(T) =op+ — </ vpq(t)dt + / upe(t)dt — VpT) ,
0 0

P
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where

T
/ vpa(t)dt = (vp + %T) T,
0

/OTvpc(t)dt_/CldATvpc(t)dt+/T upe(t)dt.

BT daT

Taking into consideration the expressions of the inductor current in the different in-
tervals, the solutions of the integrals are given by and

daT
/ vpe(t)dt = dvpydi T
dpT

and

T
/ vpe(t)dt = dvp,dap(l — da)T + dvp, (1 — da)*T.
daT

Then, vp,41 is given by

T A
Opnt1 =0p+ - (vp + % + 0vpsdap + ovp, (1 —da)? — VP) .
P

Finally, the complete expressions for op,,+1 and on,41 in all the modes of operations
are given by

T A
op+ — vp—i—ﬂ—Vp) if x € Sy,
TP 2
T A
OPnt1 = op—l—; Up+¥+6vp3(1—d3)2—Vp) if x € Sp,
T A
ap—I—T— ’Up+%+5Vp5dAB+5Vp4(1—dA)2—Vp) if x € S¢,
P
(A7)
and
on—l—l Un—i—ﬂ—VN if x € Ty,
TN 2
T A
ONpy1 = an—I—T— vn—i—%—VN if x € T, (A.8)
N
T A
on+ — vn+$—5vn4(1—dA)2—VN> if x e Te.
TN

A.2 Functions f; and f,

Let us now provide the complete expressions for the submappings f; and f2, which
can be obtained directly from (A.2), (A.5), (A.6), (A.7) and (A.8). Considering the
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the following redefinition of fi:

Fu(i,vp,vn,op,on,¢) if x € Sa,
f1(i,vp,on, op,on, §) = { Fg(i,vp,vn,op,on,¢) if x € Sg,
Fe(i,vp,vn,op,on, @) if x € Sc.

where the submappings F 4, Fp and F¢ are defined as

i+ Aiq
vp + Avp

Fa(x)=| vn+ Avn ,

T A
op+ — (’Up‘f'ﬂ—‘/p)
TP 2
T ( Avn )
on+ —(vn+ — —Vn
L N 2 J

i+ Aijdp + Ais (1 —dp)
vp + Avp + dvp, (1 — dp)
Fp(x)=| vn+ Avn ,

T A
op+ — (vp—l— % + dvps(1 —dp)? — Vp)

P
T ( Avn )
on+ —|(m+ ——Vyn
L ™ 2 J

i+ Aijdp + Aisdap + Aig (1 —da)
vp 4+ Avp + dvp dap + ovpy (1 — da)
Fo(x) = | vn+ Avn — dvna(1l — dy)

T A
op+ p— <vp+ % +0vpsdap + 0vp, (1 —da)? — Vp)

T A
on+ — (’UTL + oV Svny(l —da)? — VN>
L N 2

Similarly, the five-dimensional submapping fs is described bellow. The expressions
can be obtained easily taking into account that the sequence in the mode My is
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T, — 73 — 71, whereas in M yp, the sequence corresponds to 77 — 73. Let us
redefine the submapping;:

Ga(i,vp,vn,op,on, @) if x € Ty,
fQ(i,Up,UTL,O'p, an, QZS) - GB(i,’Up,'UTl,O’p,O'TL,(b) if x e TB;
Geo(i,vp,on,op,on, ) if x € T,

where the functions G 4, Gg and G¢ are also redefined as
Ga(x) =Fa(x),
| i+ Airda + Aiz (1 —da)
vp + Avp

Gp(x)=| vn+ Avn—dvny(1 —da)

T A
on+ — <vn+ oy dvng(1 —da)? — VN>
L N 2 i

i+ Aijdg — Aigdap + Aig (1 —dp)
vp + Avp + 6vpy(1 — dp)
Ge(x) = | vn+ Avn+ dvnidap — dvna(l — dp)

T A
op+ — (vp—i— =P Svp,(1 —dp)? — Vp)
TP 2

T A
on+ — (vn + % + dvnsdap — dvny(1 —dp)? — VN> .
L ™N J

Finally, the duty cycles are given by

(Vo +gpa(Vp —vp — op) + gna(von — Vi +on)) [rs —i

da = Ai; — Air

and

Vo +gpe(Vp —vp — op) + gnp(vn — Vn +on)) /rs — (i + (Al — Aig)da)

dg = .
B Ais — Air
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