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Abstra
t
Swit
hing power 
onverters are known to be appropriate solutions to supply energyto ele
troni
 devi
es owing to their high e�
ien
y and low 
ost. Their extensiveuse in the last de
ades has motivated resear
hes to improve their designs and to godeeply into the 
omprehension of their behavior whi
h, like most power ele
troni
devi
es, exhibit nonlinear dynami
s. More re
ently, ele
troni
 equipments 
ontainingmultiple loads have been arisen su
h as PDA, mobile phones, MP3... These appli-
ations frequently require multiple supplies with di�erent polarities. Single-Indu
torMultiple-Input Multiple-Output (SIMIMO) swit
hing d
-d
 
onverters are be
omingas solutions to supply low power devi
es as LCD displays and to 
harge batteries dueto the signi�
ant redu
tion of size be
ause the use of a single indu
tor.The inherent swit
hing nature of these systems 
lassi�es their dynami
s into the �eld ofVariable Stru
ture Systems (VSS), whi
h are also known as Pie
ewise-Smooth (PWS)systems. Due to the fa
t that their dynami
s 
annot be 
ompletely explained with the
lassi
al smooth theory, in the last years a lot of e�ort has been addressed towardsthe resear
h on a theory of non-smooth dynami
s motivated by di�erent �elds ofappli
ation.This dissertation deals with the dynami
al 
hara
terization of SIMIMO 
onverters,whi
h 
an help us to prove their viability. Two strategies of 
ontrol, both of thembased on the widely used Pulse Width Modulation (PWM) 
ontrol, are dis
ussed. Inthe �rst alternative, the 
ontrol is used to regulate a Two-Input Two-Output (SITITO)
onverter with opposite polarity. The two required modulating signals are generatedsyn
hronizely. This strategy of PWM 
ontrol is 
alled in this work Single PhaseControl (SPC) in 
ontrast to a se
ond strategy, whi
h is noted here as InterleavedControl (IC), 
apable of driving a generalized single indu
tor multiple-input multiple-output 
onverters. This 
ontrol is based on the use of various modulating signals,equal to the number of outputs, whi
h are progressively time delayed.v



viThe dynami
s of the SIMIMO 
onverters, just like of the basi
 d
-d
 
onverters,presents a ri
h variety of nonlinear phenomena, whi
h 
overs from smooth bifur
a-tions, su
h as period-doubling, Saddle-Node or Hopf bifur
ations, to non-smooth bi-fur
ations. After proving the existen
e of stable dynami
s if appropriate parametersare sele
ted, this dissertation will deal with the investigation of models to analyze the
omplex dynami
s of the 
onverter in a wide range of parameters. Several models areproposed and analyzed in this work. Averaged models, from whi
h slow s
ale instability
ondition 
an be determined, and dis
rete-time models, able to prove fast s
ale insta-bilities, are used in a 
omplementary way. Besides this, several approa
hes of thesemodels will be established and validated. Their usefulness will be proved not onlyin the predi
tion of the stability, but also in the 
hara
terization of the non-smoothbifur
ations presents in this 
onverter. It will be shown that simple one-dimensionalPie
ewise-Linear (PWL) models provide analyti
al expressions for the existen
e andstability 
onditions of �xed points of the dis
rete-time models. Furthermore, higherdimensional maps are developed to improve the a

ura
y of the predi
tions obtainedby means of one-dimensional maps and averaged models.The dis
rete-time analysis of a SITITO 
onverter driven by ea
h of the two strategiesof 
ontrol has revealed that its dynami
s 
an be modeled by a PWL map with threetrams in a spe
i�
 range of parameters. To our best knowledge, the literature onPWL maps in
ludes 
ontinuous and dis
ontinuous maps but is limited to two trams.Therefore, this dissertation is a 
ontribution in the �eld of non-smooth dynami
s inbase to the unfolding of spe
i�
 dynami
s of three-pie
e maps.Con
erning the IC 
ontrol, a generalized analysis of the stability is obtained for aSIMIMO 
onverter with a generi
 number of loads. The stability analysis of the one-dimensional model has revealed the existen
e of a type of non-smooth bifur
ation,whi
h has been 
lassi�ed in this dissertation as a non-smooth pit
hfork owing to theappearan
e of two new �xed points after undergoing the bifur
ation. Detailed analysisin higher dimensional maps asso
iates this bifur
ation to a Neimark-Sa
ker, whoseexisten
e 
annot be predi
ted by averaged models.This dissertation also in
ludes some experimental results obtained with a SITITOd
-d
 
onverter prototype, to validate some of the s
enarios found in the analysis.
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Chapter 1
Introdu
tion

1.1 MotivationNowadays, swit
hing power 
onverters are widely used in ele
troni
 devi
es as powersupplies, motor 
ontrols, light 
ontrols, et
. Their bene�ts rely in their high e�
ien
y,in 
ontrast to linear ampli�ers, jointly with their small size and low 
ost. This fa
t hasmotivated the resear
h of di�erent strategies of 
ontrol and the study of the dynam-i
s of the swit
hing 
onverters in di�erent forms of energy transformation: AC/AC,AC/DC, DC/AC and DC/DC.The simplest 
on�gurations of d
-d
 swit
hing 
onverters are based on the transferen
eof energy from an unregulated sour
e to an indu
tor and from this to the load. Thebu
k, boost and bu
k-boost are illustrations of these simple swit
hing regulators (seeFig. 1.1). The bu
k or step-down 
onverter redu
es the output voltage regardingto the sour
e while the boost or step-up 
onverter in
reases this voltage. The bu
k-boost permits the regulation of lower and higher voltages, although in the simplest
on�guration the output voltage is inverted. They permit the 
onversion of the energyfrom one level to another avoiding, theoreti
ally, losses in their 
omponents. Thus,the aim of the regulation is to for
e the averaged output voltage to a desired value inpresen
e of external disturban
es. This 
onversion 
an 
arry an in
rease or de
reasein the input sour
e, in
luding a feasible inversion of its polarity. The regulation isa
hieved by alternating suitably the operation of the 
onverter between two topologies,by means of a 
ontrolled swit
h S (ON or OFF). In addition, the presen
e of diodes inthe 
ir
uitry of the 
onverters for
es the indu
tor 
urrent to be positive. Hen
e,the 
onverter operates in Dis
ontinuous Condu
tion Mode (DCM) when the indu
tor1
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k-BoostFigure 1.1. S
hemati
s of the three basi
 power d
-d
 
onverters.

urrent drops to 0 during the swit
hing 
y
le. Otherwise, the 
onverter is said to beoperating in Continuous Condu
tion Mode (CCM).The most extended strategy of 
ontrol used in the literature is the Pulse Width Modu-lation (PWM) [64, 69, 83℄, whose stru
ture in
ludes the following elements: an external
lo
k �xing the swit
hing period, a sawtooth signal syn
hronized with the 
lo
k, anoutput voltage error obtained as a linear 
ombination of the 
apa
itor voltage andthe indu
tor 
urrent and a 
omparator, whose inputs are the voltage error and thesawtooth signal. The resulting 
ontrol signal of this 
omparator determines the duty
y
le of the 
ontrolled swit
h S, whi
h is de�ned as the ratio of the ON state to theperiod of an external modulated signal T .Two approa
hes of PWM 
ontrol are 
ommonly used in d
-d
 
onverters: VoltageMode Control (VMC) and Current Mode Control (CMC). In the �rst 
ase, the regula-tion is rea
hed dire
tly as the result of the 
omparison between the voltage error andthe sawtooth signals, whi
h will establish the state ON or OFF of the swit
h. Conversely,in CMC the indu
tor 
urrent is added to the feedba
k thus for
ing the addition of abistable �ip-�op to avoid sliding dynami
s.



1.1. Motivation 3Besides the basi
 d
-d
 swit
hing regulators, 
onverters in
luding more 
omplex 
on-�gurations have been emerged, whi
h in
lude multiple a
tive 
omponents [19, 54, 36,53, 12℄. Converters 
omposed by multiple 
ells (multi-
ell 
onverters) 
an supply highvoltages regarding to the input sour
e [42, 99℄. There exists another group of 
on-verters 
omposed by parallel 
onne
tions of the same elemental 
onverter, whi
h allowsupply high 
urrent in the loads [60, 59℄. In most appli
ations, only a single stabilizedoutput is required. Nevertheless, re
ent appli
ations as mobile phones, MP3 playersPDA and GPS often in
lude several loads as LCD displays, memories, universal seriesbus (USB) or hard drives, whose operation require di�erent voltages. These require-ments 
ould be solved by using several independent d
-d
 
onverters, whi
h lead toan in
rement in the number of magneti
 
omponents and swit
hes.Conversely, in the range of lower power appli
ations a new stru
ture that uses a singleindu
tor shared by several outputs is now emerging. These Single-Indu
tor Multiple-Input Multiple-Output (SIMIMO, also known as SIMO in the literature) 
onvertersare useful when multiple outputs must be regulated and, despite the management oflow power, a high e�
ien
y is also required. From 2001, there exist some di�erentregistered patents of d
-d
 
onverters using a single indu
tor. Moreover, some in-tegrators using this kind of 
onverter have been 
ommer
ialized: Texas Instruments(TPS65136), whi
h are used in AMOLED displays of mobile phones or SmartPhonedevi
es, and Maxim (MAX685) for 
omponents of digital 
ameras, 
am
order andnotebooks. Di�erent topologies of SIMIMO 
onverters exist depending on the 
ombi-nation of elemental 
onverters and 
ontrol [75, 67, 100, 95, 104℄. Con
erning the reg-ulation of the 
onverter, the simplest strategy is based on time multiplexing [79, 80℄,whi
h assigns an a
tive interval for ea
h 
hannel. Nevertheless, in order to guaran-tee the stability and avoid the regulation interferen
e among 
hannels, the 
onvertermust operate partially in DCM in the time interval asso
iated to every 
hannel. Asa result, ea
h output is independently 
ontrolled despite sharing the indu
tor. Apseudo-
ontinuous 
ondu
tion mode is proposed in [78℄, whi
h uses a 
onstant valuefor the indu
tor 
urrent to operate in CCM. Besides the analog 
ontrols mentioned,in [103℄ a digital 
ontrol is proposed to regulate the 
onverter is CCM whi
h redu
esthe 
ross-regulation problem.Finally, the 
ontrol proposed in [15℄, based in PWM, allows the operation in CCMand permits the generalization of the 
ontrol to regulate a SIMIMO 
onverter with anarbitrary number of outputs. This thesis deals with the study of the viability of thistype of 
onverters jointly with the analysis of their dynami
al behavior.



4 Chapter 1. Introdu
tion1.2 Nonlinear phenomena in power ele
troni
 
on-vertersThe dynami
s of power ele
troni
s systems is known to be highly nonlinear [43℄. Ari
h variety of phenomena, for instan
e subharmoni
s, quasiperiodi
ity and 
haoti
dynami
s, has been reported in systems that in
lude swit
hes, saturations or evenhysteresis. In parti
ular, the operation of the swit
hing regulators is 
hara
terized bytransitions between di�erent topologies, whi
h 
lassi�es these systems into the groupof Variable Stru
ture Systems (VSS) also known as Pie
ewise-Smooth (PWS) systems.Consequently, despite the fa
t that ea
h topology 
an be des
ribed by means of a setof smooth equations, the existen
e of boundaries in
reases the 
omplexity of theirbehavior. A
tually, it is known that PWS dynami
s 
annot be analyzed by using thewell-known theory of smooth systems. Apart from the bifur
ations 
hara
teristi
 ofsmooth systems, PWS systems 
an exhibit bifur
ations whi
h are ex
lusive of them. Asan example, we 
an mention the border-
ollision bifur
ations. There exists an extensiveliterature reporting the nonlinear phenomena in power ele
troni
s, in
luding somerelevant books [107, 11, 34℄. A more spe
i�
 literature about non-smooth phenomena
an be found in Chapter 3.Let us now present a brief review of the earlier works dealing with nonlinear phenomenain power ele
troni
s. The �rst fo
ussing in power ele
troni
 
onverters appeared atthe beginning of the Eighties. In 1980, Baillieul proved in [6℄ the existen
e of 
haoti
dynami
s in power ele
troni
 
ir
uits. Few years later, Bro
kett and Wood showedin [16℄ the existen
e of 
haos in a d
-d
 
onverter. Chua, in a spe
ial issue in [24℄,presents a study of 
haos in power ele
troni
s.A �rst analysis of these nonlinear phenomena was presented in 1988 by Hamill andJe�eries [56℄. Herein, the authors showed, by means of a one-dimensional dis
rete-timemap, the existen
e of subharmoni
s, bifur
ation and 
haos dynami
s in a �rst-orderPWM voltage 
ontrol 
onverter. Later, Je�eries in [63℄ shows that a RL-diode 
ir
uit
an exhibit a great variety of nonlinear s
enarios despite being 
hara
terized by simplesystems. In 1989, Krein and Bass proved analyti
ally and experimentally the existen
eof multiple limit 
y
les [70℄ and later the same authors reported in [71℄ three typesof instability in d
-d
 power ele
troni
 
onverters: unboudness, 
hattering and 
haos.The phenomenon of hysteresis is also mentioned in the work.In [26, 27℄, Deane and Hamill proved experimentally the existen
e of 
haos in a Bu
k
onverter. Fossas and Olivar in [49℄ analyzed the stability by means of 
hara
teristi
multipliers of the one and two-periodi
 orbits in the Bu
k 
onverter, in whi
h anstrange attra
tor is shown as dynami
s. In 1998 di Bernardo [32℄ introdu
es a newdis
rete-time map related to the asyn
hronous swit
hing to identify the presen
e ofperiodi
 orbits and bifur
ations in the basi
 swit
hing regulators. The nonlinearity hasalso been proved in 
onverters with sliding mode 
ontrol. Calvente in 1996, showed



1.2. Nonlinear phenomena in power ele
troni
 
onverters 5in [20℄ the existen
e of subharmoni
s and 
haoti
 behavior in a Boost 
onverter usingthis 
ontrol. Later, El Aroudi in [39℄ in
luded a deep analysis of the period-two orbit.The o

urren
e of nonlinear phenomena and 
haos in swit
hing regulators operatingin DCM was reported by Tse in 1994 for bu
k [105℄ and boost [106℄ 
onverters.Con
erning the non-smooth phenomena, in 1998 Yuan demonstrated in a work fo-
ussed in the Bu
k 
onverter [111℄, that most bifur
ations whi
h were produ
ed ind
-d
 
onverters are due to a border-
ollision bifur
ations. Sin
e then, non-smoothphenomena in power ele
troni
s has attra
ted the attention of many resear
hes. We
an mention the works published in this de
ade by Banerjee in [10℄, where a one-dimensional dis
rete-time analysis is used to study the border-
ollision bifur
ationsin Bu
k and Boost 
onverters. In [94℄, Parui presented these bifur
ations in PWSmaps whi
h are two-dimensional in one side of the boundary and one-dimensional inthe other. Zhusubaliyev [113℄ detailed the quasiperiodi
ity and border-
ollisions in atwo-side PWM bu
k 
onverter. We �nally mention the works in [23, 13, 38, 2℄.More re
ently, in 2008, Giaouris in [51℄ have reported a Filippov's method to analyzethe dynami
s of the swit
hing 
onverters, whi
h is useful when the Poin
aré map
annot be determined.The study of the nonlinear phenomena has not been restri
ted to the elemental 
onvert-ers. This behavior has also been reported by Iu in parallel-
onne
ted bu
k 
onverters[60℄ and parallel-
onne
ted boost 
onverters using averaged models [61℄, whi
h wasalso studied by Mazumder in [81℄. Finally, more re
ently, Robert analyzes multi-
elld
-d
 
onverters in [99℄.The modelling of swit
hing 
onverters has evolved from two methods: averaged anddis
rete-time models. The averaging approa
h for modelling swit
hing 
onverters wasdeveloped in 1976 by Milddlebrok and �uk [82℄ and has been 
ommonly used in thestability analysis of swit
hing regulators be
ause it provides simple expressions andmakes the analysis easier. Nevertheless, it only 
ontains information about the slow-frequen
y or slow-s
ale dynami
s and thus, it is unable to predi
t many non-smoothphenomena. To deal with them, dis
rete-time models are employed to explain higherperiodi
 orbits, quasiperiodi
ity or 
haoti
 dynami
s, in
luding both existen
e andstability properties [35℄. When the 
ontinuous time system uses a �xed frequen
ymodulating signal, the strobos
opi
 or Poin
aré map arises as a pra
ti
al tool, retain-ing a

urately the information of the dynami
al properties of the original 
ontinuoussystem.



6 Chapter 1. Introdu
tion1.3 Organization and 
ontribution of this disserta-tionTaking into 
onsideration that part of the analysis is fo
used in the non-smooth phe-nomenon, Chapter 2 presents an overview of the pie
ewise-smooth dynami
s in
ludingthe analysis of the dynami
s of a pie
ewise 
ontinuous linear maps with two pie
es.This 
hapter in
ludes also a brief review of the basi
 
on
epts and bifur
ations insmooth dynami
al systems. Some relevant literature dealing with non-smooth sys-tems is also provided in this 
hapter. The nomen
lature whi
h will be used in thefollowing 
hapters is introdu
ed here.As it will be proved in Chapters 4 and 5, the dis
rete-time model whi
h des
ribesthe dynami
s of the 
onverter is 
omposed by three pie
es in 
ertain range of theparameters. In order to understand the possible s
enarios given in this map, a three-pie
e pie
ewise-linear map is analyzed in a restri
ted set of parameters in Chapter3. This 
ontribution 
an be understood as an extension of the analysis of the two-pie
e map, whi
h has been published in English literature in [31℄. Expressions for theexisten
e and stability of the one and two-periodi
 orbits will be obtained in order todetermine the possible patterns of bifur
ation. This work was partly realized in theUniversity Federi
o II in Naples, under the supervision of professor Mario di Bernardo.The results obtained have been presented in the Spanish 
onferen
e [87℄ and a reportis still on preparation.In Chapter 4, a Single-Indu
tor Two-Input Two-Output (SITITO) power ele
troni
 d
-d
 
onverter is introdu
ed jointly with the �rst strategy of 
ontrol SPC. The 
onverteris governed by means of a pulse width modulation (PWM) with a double voltagefeedba
k, whi
h in
ludes a Proportional Integral (PI) term. Its dynami
s is analyzedby using averaged models [14℄. Moreover, several dis
rete-time models, one and �ve-dimensional, have been developed in order to understand the bifur
ations produ
ed byfast dynami
s. Some relevant results will be dis
ussed 
on
erning the dis
rete analysis.Finally, the s
enarios found are 
ompared with the results obtained in Chapter 3.Part of the study developed in this 
hapter has been published in the international
onferen
es [84℄ and [85℄, and the report [88℄.Chapter 5 deals with the se
ond strategy of 
ontrol, whi
h will be named InterleavedControl (IC). This 
ontrol is able to drive a SIMIMO d
-d
 
onverter whi
h was �rstlyproposed in [15℄ and analyzed by means of averaging te
hniques. My 
ontributionin this 
hapter in
ludes the development of a generalized dis
rete-time model withdi�erent degrees of approa
h jointly with a generalized existen
e and stability analysisof the main mode of operation. The one-dimensional analysis reveals an un
ommonbifur
ation, whi
h has been 
alled non-smooth pit
hfork bifur
ation. Moreover, thehigher dimensional map has also revealed a signi�
ant deviation in the predi
tion ofsome bifur
ations. The results obtained in this 
hapter have been reported in the
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onferen
es [40℄ and the reports [41℄ and [86℄. This last report is still onpreparation.In Chapter 6, several experimental measurements are provided. A prototype of SIM-IMO 
onverter has been built in the laboratory, whose 
ontrol board permits theprogramming of di�erent strategies of 
ontrol without the needed of any 
hange in thepower stage. This prototype has allowed us to prove the nonlinear dynami
s of both
ontrols analyzed in this dissertation.Finally, 
on
lusions and future works will be given in Chapter 7.





Chapter 2
Pie
ewise-smooth dynami
al systems

The main obje
tive of this 
hapter is to provide an overview of thetheory of pie
ewise-smooth dynami
al systems. Our dis
ussion beginswith a brief introdu
tion of the basi
 
on
epts of the well-developedsmooth theory, 
onne
ting then with the pie
ewise-smooth theory. Thelast part of this 
hapter 
on
erns with the study and 
lassi�
ationof the non-smooth bifur
ations, whi
h undergo in one-dimensionalpie
ewise-linear maps.
2.1 Brief review of smooth dynami
al systemsThe 
lassi
al theory of dynami
al systems helps us to understand the behavior of dy-nami
al systems in many areas su
h as physi
s, biology, engineering and e
onomi
s.There exists a well established theory for dynami
al systems su�
iently smooth re-ported in diverse reports and books. For instan
e, we 
an mention the books ofKuznetsov [74℄ and Wiggins [109℄. The obje
tive of this se
tion is to introdu
e somebasi
 nonlinear 
on
epts and notation for the two 
lasses of dynami
al systems: �ows(
ontinuous-time) and maps (dis
rete-time).Let us 
onsider the following ve
tor �eld or �ow in the form of an ordinary di�erentialequation

ẋ = f(x, t, µ),9



10 Chapter 2. Pie
ewise-smooth dynami
al systemswhere x ∈ D ⊂ R
n, t ∈ R

1, µ ∈ V ⊂ R
p, t stands for the independent variable time,

x is the ve
tor of state variables or phases, the subset D is 
alled phase spa
e, being
ommonly D = R
n and µ is the ve
tor of parameters or �xed 
oe�
ients of the system.A system that does not depend expli
itly on time will be 
alled autonomous.A traje
tory Φ(x0, t) is said to be a solution of the �ow with given initial 
ondition

x0. A phase portrait refers to the set of traje
tories of the �ow in the phase state.Similarly, let us 
onsider also the following map or dis
rete-time system
x 7→ g(x, µ),where x ∈ D ⊂ R

n and µ ∈ V ⊂ R
p.A map is a dynami
al system where time is dis
rete. They are also known as dif-feren
e equations or iterated maps. Maps are used to model natural or te
hni
alphenomena su
h as ele
troni
s, e
onomist and population dynami
s. Nevertheless,dis
rete-time models 
an also arise from analyzing di�erential equations through theso-
alled Poin
aré maps. Let us 
onsider the following �ow

ẋ = f(x),where x ∈ R
n. Let us also 
onsider the (n − 1)-dimensional surfa
e S, whi
h istransversal to all traje
tories of f . Then, we 
an de�ne the Poin
aré map (see Fig.2.1) as follows

P : S → S,where
x 7→ P (x).Despite the di�
ulty in �nding an expli
it expression of P , Poin
aré maps 
an turndi�
ult problems in di�erential equations into easier problems. The analysis of exis-ten
e and stability of limit 
y
les of �ows is given by the study of �xed points in thePoin
aré map, whi
h is demonstrated to be equivalent.2.1.1 Invariant setsAn invariant set 
an be de�ned as a set that evolves to itself under the dynami
s.We 
an also de�ne an attra
tor of a dynami
al system as a subset of the state spa
eto whi
h orbits tend as time in
reases. When more than one attra
tor 
oexists inthe phase spa
e, the basin of attra
tion 
an be de�ned as the set of initial 
onditionsleading to long-time behavior that approa
hes that attra
tor. The following list showsmost important attra
tors in 
ontinuous-time dynami
al systems:
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S

P (x)

x

Figure 2.1. Poin
aré mapping.� Equilibrium points: x∗ is said to be an equilibrium point of f if f(x∗) = 0.� Limit 
y
les: A limit 
y
le 
orresponds to a periodi
 orbit with period T thatsatis�es Φ(x0, T ) = x0, being x0 the initial 
ondition and T the smallest time forwhi
h the 
ondition is ful�lled. In the phase spa
e, the limit 
y
le 
orrespondsto a 
losed 
urve.� Invariant tori or quasiperiodi
 orbit: This attra
tor 
ontains a �nite numberof in
ommensurable frequen
ies. The traje
tories move on the surfa
es of a torus.� Chaos: This behavior is 
hara
terized by having an aperiodi
 and, apparently,random traje
tory, whi
h is unpredi
table in the long term due to its sensitivityto initial 
onditions.We 
an mention also other invariant set as su
h homo
lini
 or hetero
lini
 orbits whi
h
onne
t a single equilibrium point with itself or two equilibrium points respe
tively.These invariant sets are involved in the boundary of basins of attra
tion.Con
erning dis
rete-time models, the feasible invariant sets are:� Fixed point: x∗ is said to be a �xed point of f if f(x∗) = x∗. This invariantset 
orresponds to a 
losed orbit of a �ow.� Periodi
 orbit: (x∗1, x
∗

2, ..., x
∗

k) is a k-periodi
 orbit, being k > 0, of the map fif fk(x∗1) = x∗1. In fa
t, a n-periodi
 orbit is a �xed point of the nth-iteration ofthe map.� Invariant 
y
le: The 
orresponding invariant set in �ows of a torus.� Chaos
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ewise-smooth dynami
al systemsIt is important to remark that another advantage of the use of Poin
aré maps isthat the 
orresponding invariant sets in maps are simpler than in the 
ontinuous-timemodel.2.1.2 Stability of �xed pointsIn order to deal with the stability of �xed points, we will 
onsider nonlinear au-tonomous systems or maps su�
iently smooth. The stability is proven to be equiva-lent to the stability of a linearization of the system in the neighborhood of the �xedpoint.Let us 
onsider the map
x 7→ P (x),where x ∈ R

n with x∗ as a �xed point of the map and then x∗ = P (x∗). Let us also
onsider the perturbation
x = x∗ + ǫ.Then, for small ǫ, the map 
an be approa
hed in the neighborhood of the �xed point

x∗ by the �rst term of its Taylor expansion in x∗. Therefore,
x∗ + ǫ′ = P (x∗ + ǫ) = P (x∗) + [DP (x∗)]ǫ+O(‖ǫ‖2),where DP is the Ja
obian matrix of P at the �xed point x∗. The element ij of the

DP matrix is de�ned as
DPij =

∂Pi

∂xj

.Then, we obtain
ǫ′ ≈ [DP (x∗)]ǫ.The set of multipliers {λj , j = 1..n} of a �xed point x∗ refers to the eigenvalues ofthe Ja
obian matrix DP of the linearized map P asso
iated at this point. The lo
alstability of this �xed point x∗ is guarantied so long as

|λj | < 1 ∀j ∈ [1, n].Similar analysis 
an be developed to determine the stability 
ondition of an equilibriumpoint x∗ of a �ow. In this 
ase, due to the solutions of the linearized system 
an beexpressed as a 
omposition of exponential fun
tions, the stability of x∗ is ful�lled ifRe λj < 0 ∀j ∈ [1, n].



2.1. Brief review of smooth dynami
al systems 132.1.3 Bifur
ations of the �xed pointsA bifur
ation is said to o

ur when a topologi
al 
hange in the phase portrait isprodu
ed under variation of some parameters of the system. The set of parametervalues at whi
h a bifur
ation appears is 
alled a bifur
ation point.We must also introdu
e the 
on
ept of 
odimension of a bifur
ation, whi
h 
orrespondsto the number of the independent parameters whi
h determine the bifur
ation.Many kind of bifur
ations 
an o

ur in smooth systems and an extended 
lassi�
ation
an be found in [74℄. In what follows, we will fo
us on the 
odimension-one bifur
ationsof the �xed points for both �ows and maps. Con
erning dis
rete-time models, thebifur
ations are yielded when one of the multipliers be
omes nonhyperboli
, namely,it is pla
ed in the unit 
y
le. This situation 
an be rea
hed when DP has an eigenvalueequal to 1, −1, or a 
omplex 
onjugate pair with unit modulus sin
e the remainingeigenvalues have moduli not equal to 1 (see Fig. 2.2). Otherwise, the bifur
ationsin �ows o

ur when the real part of the greatest eigenvalue be
omes 0, being real or
omplex. The main bifur
ations are listed below:� Saddle-Node bifur
ation: Several bifur
ations 
an appear in maps when areal eigenvalue be
omes 1. In the Saddle-Node or Fold bifur
ation, one multiplierof two �xed points (a pair of stable and unstable �xed points) tends to 1 as oneparameters is varied rea
hing the nonhyperboli
ity simultaneously at the 
riti
alpoint, where these points 
ollide and disappear (see Fig. 2.2a). This phenomenon
an also o

ur in �ows when two equilibria (one stable and one unstable) havereal eigenvalues whi
h simultaneously tend to 0.� Trans
riti
al bifur
ation: In 
ontrast to the fold bifur
ation, in the trans
rit-i
al bifur
ation a pair of stable and unstable �xed points 
ollides at the 
riti
albifur
ation point but not disappear. After the bifur
ation, both �xed point existbut with the stability inter
hanged.� Pit
hfork bifur
ation: This bifur
ation is also dete
ted when a real eigenvalueof a �xed point x∗ be
omes 1 while the remainder of eigenvalues are insidethe unit 
y
le. There exist two kinds of bifur
ations. In the sub
riti
al 
ase,two unstable �xed points whi
h 
oexist together with the stable �xed point x∗
ollapse at the 
riti
al bifur
ation point, when x∗ be
omes unstable. Similarly,in the super
riti
al 
ase a pair of stable �xed point appear after the 
riti
al pointand 
oexists with the unstable x∗.Both trans
riti
al and pit
hfork bifur
ations 
an also be given for equilibriumpoints in �ows.� Neimark-Sa
ker/Hopf bifur
ation: In the Neimark-Sa
ker bifur
ation, apair of 
omplex 
onjugate eigenvalues 
rosses the unit 
y
le and their module
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ewise-smooth dynami
al systemsbe
omes greater than 1 (see Fig. 2.2b). Around the bifur
ation, an invariant
y
le appears, whi
h 
an be stable (super
riti
al 
ase) or unstable (sub
riti
al
ase). This bifur
ation 
an only appear in maps with dimension greater than 1.Noti
e that this bifur
ation 
an be produ
ed in a Poin
aré map of a limit 
y
le,generating a two-dimensional torus in its 
orresponding 
ontinuous-time system.The Hopf bifur
ation is the analog of this bifur
ation in �ows, thus involvingthe appearan
e of a limit 
y
le at the time that an equilibrium point with 
om-plex eigenvalue be
omes unstable. Similarly, only 
ontinuous-time systems withdimension greater than 1 
an present a Hopf bifur
ation.� Flip or period-doubling bifur
ation: This bifur
ation is given when one realeigenvalue 
rosses the unit 
y
le be
oming less than −1. This bifur
ation has
1
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alFigure 2.2. Possible bifur
ations of the �xed point in maps.



2.2. Pie
ewise-smooth systems 15asso
iated a Pit
hfork bifur
ation in the se
ond order map P 2(x, µ). In 
ontrastto the mentioned bifur
ations, the �ip bifur
ation does not have analogy withbifur
ation of equilibrium points of �ows.
2.2 Pie
ewise-smooth systemsThough the smooth theory is well established and explains properly low dimensionnonlinear smooth systems, many appli
ations in engineering or biologi
al systems ex-hibit diverse bifur
ation phenomena whi
h are inexpli
able in the frame of the 
lassi
smooth bifur
ation theory. We 
an mention, for instan
e, ele
troni
s 
ir
uits 
ontain-ing diodes or transistors [11℄, me
hani
al systems involving impa
ts, sti
k-slip motionin os
illators with fri
tion and hybrid dynami
s in 
ontrol systems. These systems aregoverned by smooth �ows whi
h are interrupted when some event is produ
ed. There-fore, these pro
esses 
annot be des
ribed by means of simple systems of di�erentialequations and require di�erent mathemati
al formalisms as pie
ewise-smooth systems.The non-smooth systems are known to exhibit a ri
h variety of bifur
ations whi
hhas attra
ted the attention of many resear
hers; their results have been reported inan extensive literature. The earliest works in whi
h the non-smooth phenomena werereported were published in Russian. We refer to the works of Andronov [1℄ in equi-librium bifur
ations and Feigin [44, 45, 46℄ in the 
lassi�
ation of C-bifur
ations. InEnglish literature, we must mention the work of Brogliato [17, 18℄ in me
hani
al sys-tems, Zhusubaliyev & Mosekilde [112℄ in 
ontrol and ele
troni
s systems, Tse [107℄,Leine [76℄, Kunke [72℄, Banerjee [7℄ and Peterka [96℄ in impa
ting systems, wherethe des
ription of examples exhibiting non-smooth dynami
s 
an be found. Morere
ently, di Bernardo et al. presents in [29℄ general te
hni
s for analyzing the bi-fur
ations whi
h are unique in pie
ewise-smooth dynami
al systems (also known asdis
ontinuity-indu
ed bifur
ations).Alternatively, the dynami
al behavior of these systems has also been studied by usingother formalisms, su
h as di�erential in
lusions [62, 28℄ or 
omplementary systems[57℄, whi
h have been useful to des
ribe me
hani
al systems and a mature analyti
altheory 
an be found in [17℄.This se
tion deals with the 
lassi�
ation of the di�erent non-smooth phenomena. Wewill provide some of the most relevant results found in the bibliography, mainly indis
rete-time models. Similarly to the smooth theory, this se
tion does not provideformal de�nitions and 
lassi�
ation of non-smooth systems, whi
h 
an be found in thereferen
es given. Nevertheless, a detailed analysis of pie
ewise-linear maps with twopie
es will be developed here, whi
h will be extended for three-pie
e pie
ewise-linearmaps in Chapter 3.
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b
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Sj

Si

Σij(b) PWS Maps bb

Sj

Si

Σij(
) Hybrid PWSFigure 2.3. Traje
tories of the state variable in di�erent 
lasses of pie
ewise-smooth systems.2.2.1 Classi�
ation of the pie
ewise-smooth systemsWe 
an des
ribe a pie
ewise-smooth (PWS) system as a dynami
al system 
omposedby a set of ordinary di�erential equations or maps, whi
h are asso
iated to a di�erentregions in the phase spa
e.Figure 2.3 shows the evolution of a state variable both for �ows (see Fig. 2.3a) andfor PWS maps (see Fig. 2.3b). Besides these, there exist systems whose dynami
sneeds to be modelled by using both formalisms: �ows and maps. These pro
esses willbe 
alled hybrid systems (see Fig. 2.3
). The dis
ontinuity boundary Σij is de�ned asthe interse
tion between two sets, Si and Sj . Σij is also known as dis
ontinuity set orswit
hing manifold (�ows) or border (maps).The PWS systems 
an be 
lassi�ed depending on their degree of non-smoothness a
rossthe boundary. The dis
ontinuity 
an be found in the state, ve
tor �eld or higherderivatives, distinguishing the systems in PWS 
ontinuous, Filippov, or impa
tingsystems:� Pie
ewise-smooth 
ontinuous systemsIn the �rst 
lass 
onsidered, the ve
tor �eld 
hara
terizing the dynami
s of thesystems is 
ontinuous at the boundary (see Fig. 2.4a) whereas higher derivativesare dis
ontinuous. Consequently, the boundary 
annot a
t as an attra
tor orrepeller in both sides at the same time whi
h avoids the sliding dynami
s.� Filippov systemsThis 
lass 
overs those PWS systems whose dis
ontinuity is given in the ve
tor�eld. Due to the normal 
omponent of the ve
tor �eld 
an have opposite signin the neighborhood of the boundary, these systems 
an permit the sliding dy-nami
s. The sliding motion appears when the traje
tories hit the boundary butare for
ed to 
ontinue their evolution in part of the swit
hing manifold, whi
h
an be
ome part of a periodi
 solution of the system. The 
omplexity of this
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Si

Σij(
) Impa
ting systemsFigure 2.4. Classi�
ation of PWS �ows depending on their degree of non-smoothness.phenomenon is given by the loss of information on the initial 
onditions and theirdynami
s 
an be studied by using Filippov's 
onvex [48℄ or Utkin's equivalent
ontrol [108℄ methods.One of the examples of Filippov systems are the swit
hing d
-d
 
onverters [11℄analyzed in this thesis. Besides these, Filippov systems arise in os
illators withdry fri
tion or relay-feedba
k systems.� Impa
ting systemsIn impa
ting systems, the swit
hing manifold a
ts as a hard boundary as theregion Sj in the phase spa
e is forbidden (see Fig. 2.4
). Therefore, the dynami
sof the impa
ting systems 
an be des
ribed by a smooth �ow and a map whi
hmodi�es the traje
tory instantaneously when the traje
tory hits the boundary.A great variety of examples 
an be found in me
hani
al systems as su
h theimpa
ts os
illators, whose state variables are the position and velo
ity and theimpa
t implies a 
hange in the sign of the velo
ity. This phenomenon has drawnthe attention of many resear
hers in the last de
ades sin
e the early work ofPeterka [96℄.PWS maps 
an also be 
lassi�ed depending on their non-smoothness. Figure 2.5illustrates the diagrams of three one-dimensional pie
ewise-smooth maps with di�erentdis
ontinuity degrees. In Fig. 2.5a, and Fig. 2.5b pie
ewise-linear 
ontinuous anddis
ontinuous maps have been depi
ted respe
tively. The �rst map has a dis
ontinuousderivative whereas in the se
ond 
ase the map presents a jump in the state. Anotherexample of PWS maps is illustrated in Fig. 2.5
, whi
h presents a fra
tional degree ofdis
ontinuity [29℄.The non-smooth theory for one and two-dimensional smooth 
ontinuous maps beganwith the works developed by Feigin [44, 45, 46℄. An English review of these workswere translated into English by di Bernardo in 1999 [31℄. It must also be mentionedthe works of Nusse and Yorke in [89, 91, 90℄.
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(a) PWL 
ontinuous xn
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(b) PWL dis
ontinuous xn

xn+1

(
) Square-root PWSFigure 2.5. Examples of one-dimensional pie
ewise-smooth maps.Dis
ontinuous maps arise from Poin
aré maps applied to systems involving impa
tos
illators with multiple impa
ts. More examples 
an be found in the modelling ofirregular heartbeats [66℄, other biologi
al systems and swit
hing d
-d
 
onverters [93℄.The works of Lo Faro [77℄ and Qu et al. [97℄ show the existen
e of period-adding s
e-nario and multiple devil's stair
ases in these systems respe
tively are proved. Avrutinstudied a quadrati
 map with a gap in [3, 4, 5℄. Regarding the development of theoryfor dis
ontinuous maps, this is still in the �rst stage. Some results in one-dimensionalmaps 
an be found in [65, 93, 68℄. Re
ently, Hogan et al. in [58℄ developed a 
lassi�
a-tion strategy of the pie
ewise-linear dis
ontinuous map as extension for dis
ontinuousmaps of the 
lassi�
ation done by Feigin. The work is 
ontinued by Dutta et al. in[37℄.2.2.2 Bifur
ations in PWS systemsNon-smooth systems 
an exhibit a great variety of bifur
ations, in
luding those seenin smooth systems. Nevertheless, in what follows, we will only pay attention to thosebifur
ations whi
h are unique in pie
ewise-smooth systems and are 
alled Dis
ontinu-ity Indu
ed Bifur
ations (DIB) [29℄. This 
lass of bifur
ations has also been mentionedin the bibliography as C-bifur
ations, non-smooth bifur
ations or dis
ontinuous bifur-
ations.We will 
onsider as a DIB any topologi
al 
hange involving invariant sets and theirswit
hing manifolds in the phase spa
e. Namely, a DIB in
ludes intera
tions of �xedpoints, equilibrium points and limit 
y
les with the system swit
hing manifolds. Figure2.6 shows some representative bifur
ations in PWS systems for �xed points in PWSmaps and equilibrium points and limit 
y
les in PWS �ow.� Border-
ollisions (BC)This bifur
ation appears when a �xed point or a higher-periodi
 orbit of apie
ewise-smooth map hits the boundary Σ at a 
riti
al parameter value. This
lass of bifur
ations will be analyzed in detail in this dissertation.
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µ < 0 µ = 0 µ > 0(b) Grazing bifur
ation
b

µ < 0 µ = 0 µ > 0(
) Sliding and sti
king
b

µ < 0 µ = 0 µ > 0(d) Corner 
ollisionFigure 2.6. Di�erent non-smooth bifur
ations in PWS.
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ewise-smooth dynami
al systems� Boundary equilibrium bifur
ations (BEB)In pie
ewise-smooth �ows, the simplest non-smooth bifur
ation o

urs whenan equilibrium point hits the boundary Σ (see Fig. 2.6a). There not exists a
omplete strategy of 
lassi�
ation of the possible s
enarios. The existen
e ofdi�erent s
enarios after a BEB was �rstly reported by Bautin & Leontovi
hand also shown in [50, 76℄. In [33℄ an extension of the Feigin's 
lassi�
ationis presented and extended. Regarding Filippov systems, an overview of thephenomena in planar systems by Kuznetsov et al. in [73℄ is presented.We will give few examples of the feasible phenomena after undergoing a BEB.When a boundary equilibrium in a PWS system is perturbed, this invariant set
an persist or disappear in a non-smooth fold. More 
omplex s
enario is givenwhen a limit 
y
le appears after a BEB. These phenomena 
an also be seen inFilippov or Hybrid systems with sliding, but there in
lude new phenomena forinstan
e pseudo-equilibria.� Grazing bifur
ations of limit 
y
lesA grazing bifur
ation o

urs when a limit 
y
le of a �ow be
omes tangent to thedis
ontinuity boundary (see Fig. 2.6b). This phenomenon is 
ommonly seen inappli
ations modelled with PWS systems.One of the te
hnique used to study these non-smooth bifur
ations is based inthe use of Dis
ontinuity Mappings [25℄. This map was introdu
ed by Nordmarkin 1999 and now there exists a strategy to derive this map in n-dimensionalsystems.� Sliding bifur
ationsAnother 
lass of DIBs 
overs the intera
tions between equilibrium points or limit
y
les with sliding regions. In Fig. 2.6
, a limit 
y
le with part of its orbit in theswit
hing boundary is generated after the sliding bifur
ation. Some examples ofthis dynami
s 
an be seen in 
ertain models of the basi
 d
-d
 
onverters, su
has the Bu
k 
onverter [92℄.A 
lassi�
ation of sliding bifur
ations of equilibrium points in planar FilippovSystems 
an also be found in [73℄. Con
erning bifur
ations of limit 
y
les, earlyresults were presented in [47℄.� Boundary interse
tion 
rossing/
orner 
ollisionFinally, we 
onsider another kind of DIB given when an equilibrium point orlimit 
y
le hits a (n− 2)-dimensional surfa
e formed by the interse
tion of twodi�erent dis
ontinuity manifolds (see Fig. 2.6d).Some dynami
s observed in d
-d
 
onverters 
an be yielded by the interse
tionof a limit 
y
le with a 
orner in a swit
hing manifold. An example of thisphenomenon 
an be seen in [11℄, where a Bu
k 
onverter exhibits a suddentransition from a periodi
 orbit to a large-amplitude 
haos undergone by a 
orner-
ollision bifur
ation.
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ewise-smooth systems 212.2.3 Pie
ewise-smooth 
ontinuous mapsWe now 
onsider the family of maps whi
h are lo
ally 
ontinuous pie
ewise-linearand draw our attention to a lo
al region in whi
h there exists only one boundary.Therefore, we 
an de�ne the following map
x 7→ f(x, µ) =

{
FA(x, µ), if H(x, µ) ≤ 0,

FB(x, µ), if H(x, µ) > 0.
(2.1)where x ∈ D ⊂ R

n, FA, FB : R
n × R 7→ R

n, µ ∈ R and H : R
n 7→ R are su�
ientlysmooth and di�erentiable fun
tions of x. The 
ondition H(µ) = 0 de�ne impli
itlythe boundary

ΣAB = {x ∈ D : H(x, µ) = 0},whi
h divides the region D into
SA = {x ∈ D : H(x, µ) ≤ 0},
SB = {x ∈ D : H(x, µ) > 0}.De�nition. x∗i is said to be an admissible �xed point of (2.1) if x∗i = Fi(x

∗

i ) and
x∗i ∈ Si. Otherwise, x∗i is 
onsidered a virtual �xed point if x∗i = Fi(x

∗

i ) and x∗i ∈ Sjbeing j 6= i for i = A or i = B.De�nition. x∗ij is said to be a boundary �xed point if Fi(x
∗

i ) = Fj(x
∗

j ) of (2.1), namely,
xij ∈ Σij , being i 6= j for i, j = A or i, j = B.Noti
e that these de�nitions 
an be extended easily to pie
ewise-smooth maps withmultiple borders. For the sake of 
larity, the stable and unstable �xed points will bedenoted by upper (i. e. A, B, ...) and lower ( i. e. a, b, ...) 
ase letters respe
tively.After undergoing the BC bifur
ation, there exist four main s
enarios involving �xedpoints or higher dimensional periodi
 orbits, whi
h will be de�ned as follows:� Persisten
e: At the border-
ollision point, admissible and virtual �xed pointspla
ed in Si turn into virtual and admissible �xed points in Sj.� Non-smooth fold: Two admissible �xed points x∗i and x∗j , being i 6= j 
ollapseat bifur
ation point as the parameter is varied.
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Sj

Si Σij

x∗i

x∗j

(a) Persisten
e
Sj

Si Σij

x∗i

x∗j

(b) Non-smooth fold
Sj

Si Σij

x∗i

x∗ij
x∗ji(
) Non-smooth period-doublingFigure 2.7. Feasible s
enarios in a PWS map. Solid and dashed lines represent the evolution ofthe admissible and virtual �xed points in the phase spa
e, respe
tively, under the variation of µ.� Non-smooth period-doubling: After the �xed point x∗i hits the boundary, aperiodi
 orbit whi
h has one �xed point in ea
h region, appears.� Non-smooth period multiplying: Similarly to non-smooth periodi
 orbit, a

n-periodi
 orbit bran
hes after the border-
ollision bifur
ation.� Chaos: Emerges when no others attra
tors are possible and the system doesnot diverge.An appropriate normal form will be de�ned in order to develop a strategy of 
lassi�-
ation. This map 
an be obtained after linearizing (2.1) in the neighborhood of thebifur
ation point and introdu
ing a 
hange of 
o-ordinates. The resulting normal form
orresponds to a n-dimensional pie
ewise-linear map given by
x 7→ f(x, µ) =

{
NAx+Mµ if CTx ≤ 0,

NBx+Mµ if CTx > 0,
(2.2)where

NA =
∂FA

∂x
, NB =

∂FB

∂x
,

M =
∂FA

∂µ
=
∂FB

∂µ
, CT =

∂H

∂x
,evaluated at x = 0 and µ = 0.De�nition. σ+

A (σ+

B) are de�ned as the number of real eigenvalues of NA (NB) greaterthan 1. Similarly, σ−

A (σ−

B ) are said to be the number of real eigenvalues of NA (NB)less than −1.After having de�ned these parameters, we 
an present the theorem introdu
ed byFeigin in [44, 45℄. The appearan
e of the following s
enarios when the BC o

urs willbe given if the following 
onditions are ful�lled:
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e: σ+

A + σ+

B is even.� Non-smooth fold: σ+

A + σ+

B is odd.� Non-smooth period-doubling: σ−

A + σ−

B is odd.The theorem will help us to analyze the non-smoothness of a one-dimensional PWLmap with two pie
es.
σ−

A + σ−

B σ+

A + σ+

B σ+

AA + σ+

AB S
enarioseven even A↔ Beven odd A, b↔ ∅odd even even A↔ b, AB; A↔ b, abodd even odd A, ab↔ B; A, ab↔ bodd odd even A, b↔ AB; A, b↔ abodd odd odd A, b, ab↔ ∅Table 2.1. Classi�
ation of the border-
ollision bifur
ations2.3 Example: Analysis of a one-dimensional PWLmapThis se
tion deals with the analysis and 
lassi�
ation of the border-
ollision bifur
a-tions of the �xed points and higher periodi
 orbits of the simplest pie
ewise-linear
ontinuous map 
omposed by two pie
es. The results presented in this study are 
on-sidered as a �rst stage to understand the results presented in Chapter 3, where weanalyze a PWL map 
omposed by three pie
es.Let us 
onsider the following pie
ewise-linear map:
x 7→ f(x) =

{
αx + µ if x ≤ 0,

βx + µ if x > 0,
(2.3)where x ∈ R and α, β and µ are real parameters of the system.A

ordingly with (2.1) and (2.3), we obtain

FA(x) = αx + µ and FB(x) = βx+ µ,
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xn

xn+1

b

b

µ = 1

µ = −0.5

B

A(a) A ↔ B (α = 0.75, β = −0.5).
xn

xn+1

b

b

µ = 1

µ = −0.5

b

A(b) A ↔ b (α = 0.75, β = −1.5).
xn

xn+1

b

b

µ = 1

µ = −1

B

a(
) ∅ ↔ a, B (α = 1.5, β = −0.5).
xn

xn+1

b

b

µ = 1

µ = −1

b

a(d) ∅ ↔ a, b (α = 1.5, β = −1.5).Figure 2.8. Illustrations of the map (2.3) for di�erent values of α, β and µ, representing the fourpossible s
enarios.
H(x) = x.and hen
e

SA = {x ∈ R : x ≤ 0},
SB = {x ∈ R : x > 0}.Without loss of generality, the parameters α and β will be restri
ted to positive andnegative values respe
tively.2.3.1 Existen
e and stability of �xed pointsThe feasible �xed points of (2.3), whi
h will be 
alled x∗A and x∗B using the nomen
la-ture proposed above, 
an be obtained applying FA(x∗A) = x∗A and FB(x∗B) = x∗B and
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0

−1

−2

−3

0 1 2
α

β

A↔ B

A↔ b, AB

A↔ b, ab

∅ ↔ a,B

∅ ↔ a, b

Figure 2.9. Possible s
enarios for the one and two-periodi
 orbits of (2.3).hen
e,
x∗A =

µ

1 − α
and x∗B =

µ

1 − β
,whi
h will be admissible if

x∗A < 0 (2.4)and
x∗B > 0. (2.5)Therefore, from (2.4) and (2.5), x∗A and x∗B will exist for negative and positive valuesof µ respe
tively. Dealing with their stability, x∗A and x∗B will be stable provided that

α < 1 and β > −1 respe
tively. Then, four di�erent non-smooth s
enarios 
an takepla
e as the parameter µ is varied depending on the parameters α and β:
A↔ B, A↔ b, ∅ ↔ a,B and ∅ ↔ a, b,where now the symbol ↔ means the variation of µ from negative to positive values.In Fig. 2.8, four diagrams representing the possible s
enarios have been depi
ted fordi�erent values of the parameters.2.3.2 Existen
e and stability of period-two orbitsLet us now study the existen
e and stability of period-two orbits. As a result of thelinearity of the fun
tions FA and FB , orbits su
h as AA, aa, BB and bb 
annot appear.
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al systemsConsequently, the period-two orbits must have the forms AB or ab, whi
h means thatone solution must be pla
ed in SA (x∗AB) whereas the other solution must be in SB(x∗BA). From the set of equations
x∗BA = αx∗AB + µ,

x∗AB = βx∗BA + µ,the following solution is straight forward,
x∗AB = µ

1 + β

1 − αβ
and x∗BA = µ

1 + α

1 − αβ
.The existen
e of the period-two orbit is guaranteed if x∗AB < 0 and x∗BA > 0. Hen
e,the orbit will only exist for positive values of µ if β < −1.Finally, the eigenvalue asso
iated to the se
ond iteration of (2.3) 
orresponds to αβand thus, the stability will be proved if αβ > −1.The di�erent s
enarios whi
h 
an o

ur have been depi
ted in Fig. 2.9 where the
ondition of existen
e and stability have been plotted in the parameter spa
e {α, β}.2.3.3 Existen
e and stability of higher periodi
 orbitsAssuming the restri
tions of the parameters given above, it has been proved that onlythe higher periodi
 orbits with the form Ak−1B and ak−1b 
an exist [31℄. These orbitsare 
omposed by one point pla
ed in the region SB, whi
h must be positive to ful�lthe existen
e 
ondition, whereas the remainder points belong to the region SA andmust be positive. The possible s
enarios present at the border-
ollision are proved tobe

A↔ b, ab, ..., ak−2b, Ak−1B,

A↔ b, ab, ..., ak−2b, ak−1b,

∅ ↔ a, b, ab, ak−1b.Therefore, only the periodi
 orbits Ak−1B 
an be stable in the map. Let us nowdevelop the existen
e 
ondition of this attra
tor.Assuming that the points 
omposing the k-periodi
 orbit are given by
x∗B, x∗A1

, x∗A2
, ... , x∗Ak−1

,the following set of equations 
an be easily obtained:
x∗A1

= βx∗B + µ, (2.6)
x∗Aj

= αx∗Aj−1
+ µ for 2 ≤ j ≤ k − 1, (2.7)

x∗B = αx∗Ak−1
+ µ. (2.8)
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 orbit will exist provided that the following 
onditions are ful�lled:
x∗B ≥ 0, x∗A1

≤ 0, x∗A2
≤ 0, ... , x∗Ak−1

≤ 0.Let us suppose that x∗Ak−1
≤ 0. Then, taking into a

ount that

x∗Ak−2
=
x∗Ak−1

− µ

α
,and α > 0 and µ > 0, it is easy to prove that all points pla
ed in SA are also negative.Moreover, a

ording (2.6), x∗B will positive as β < 0. Therefore, the existen
e will beguaranteed if x∗Ak−1

≤ 0. From (2.6), (2.7) and (2.8), the expression for x∗Ak−1

an befound and is expressed as follows

x∗Ak−1
= µ

1 + α+ ...+ αk−2 + αk−2β

1 − αk−1β
≤ 0. (2.9)Taking into a

ount that 1 − αk−1β is positive, (2.9) will be ful�lled if

β < −
(

1 +
1

α
+

1

α2
+ ...+

1

αk−2

)
=

1 − αk−1

αk−1 − αk−2
.Let us de�ne the fun
tion ψk(α) as

ψk(α) =
1 − αk−1

αk−1 − αk−2
. (2.10)The existen
e of the k-periodi
 orbit Ak−1B/ak−1b is guarantied if µ > 0 and

β < ψk(α).Regarding the stability 
ondition, it 
an be obtained from the eigenvalue of the iter-ated map. It is easy to prove that this eigenvalue 
orresponds to αk−1β and hen
e,
onsidering the following de�nition of the fun
tion φk(α) as
φk(α) = − 1

αk−1
, (2.11)the k-periodi
 orbit will be stable so long as

β > φk(α).Curves (2.10) and (2.11) have been depi
ted in Fig. 2.10 for k = 2..4, togetherwith α = 1 and β = −1, to summarize the di�erent s
enarios studied in this se
tion.
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A↔ B b
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Figure 2.10. Possible s
enarios for the k-periodi
 orbits of (2.3) in the parameter spa
e {α, β}.Fun
tions ψk(α) and φk(α) have been plotted using dashed and solid lines respe
tivelyand 
olored zones stands for regions in whi
h an stable orbit exists. Noti
e that stablesolutions 
an only take pla
e if α < 1. Moreover, for values of α greater than one, theexisten
e of a is restri
ted to positive values of µ.The study of the existen
e of these periodi
 orbits reveals that stable �xed points andhigher-periodi
 orbit 
annot 
oexist.2.3.4 Robust 
haos. Bifur
ation diagramsNumeri
al simulations of the map (2.3) reveal the presen
e of 
haoti
 attra
tors in theone-dimensional PWL 
ontinuous map (see Fig. 2.11d). Their appearan
e is restri
tedto zones in whi
h any �xed point or periodi
 orbit is stable. It is proved that underthe 
onditions
ψk−1(α) < β < ψk(α) and β > φk(α),the map exhibits robust 
haoti
 dynami
s [31℄. Robust means the no existen
e ofperiodi
 windows, in 
ontrast to nonlinear smooth systems su
h as the logisti
 map.
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(a) A ↔ B (β = −0.5) (b) A ↔ b, AB (β = −1.5)

(
) A ↔ b, ab (β = −2.5) (d) A ↔ b, ab, A2B (β = −3.5)Figure 2.11. Bifur
ation diagrams using µ as the varying parameter and 
onsidering α = 0.5.To 
on
lude, some relevant bifur
ation diagrams have been depi
ted in Fig. 2.11 using
µ as varying parameter. Persisten
e, non-smooth period-doubling, robust 
haos andperiod-three orbit are illustrated in 2.11a, 2.11b, 2.11
 and 2.11d respe
tively.





Chapter 3
Non-smooth dynami
s of a three-pie
epie
ewise-linear map

This 
hapter deals with the study of the dynami
s of a three-pie
e
ontinuous pie
ewise-linear map. Expressions for the existen
e andstability of the �xed points and period-two orbits are determined in arestri
ted set of parameters jointly with an extended 
lassi�
ation ofthe border-
ollision bifur
ations. The basins of attra
tion in those setof parameters in whi
h 
oexisten
e of attra
tors 
an be found are alsodetermined. This analysis will help us to understand the dynami
s ofthe SIMIMO 
onverter under both SPC and IC 
ontrols, whi
h willbe dis
ussed in the following 
hapters.
3.1 De�nition of the mapLet us 
onsider the following three-pie
e pie
ewise-linear map

x 7→ f(x) =






FA(x, φ) if x ∈ SA,

FB(x, φ) if x ∈ SB,

FC(x, φ) if x ∈ SC ,

(3.1)where x ∈ D ⊂ R and Fi : R × R
5 7→ R, being i ∈ {A,B,C}.31
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xn

xn+1

µ

µ− γτ

τ

Figure 3.1. The three-pie
e pie
ewise-linear map.The expressions for the linear fun
tions will be expressed as follows
FA(x, α, µ) = αx + µ, (3.2)

FB(x, α, β, µ) = (α+ β)x + µ, (3.3)
FC(x, α, β, γ, µ, τ) = (α+ β + γ)x+ µ− γτ. (3.4)Noti
e that the de�nition of the parameters 
onsidered here, where β (γ) 
orrespondsto the di�eren
e between the slopes of FA and FB (FB and FC). This property permitsto provide simpler expressions for the restri
tion of the parameters when adapting thedis
rete-time model to the SIMIMO 
onverter in following 
hapters.The regions are de�ned as

SA = {x ∈ D : x ≤ 0}, (3.5)
SB = {x ∈ D : 0 < x ≤ τ}, (3.6)
SC = {x ∈ D : x > τ}, (3.7)and it is easy to prove that the boundaries are des
ribed by

ΣAB(x) = {x ∈ D : x = 0},
ΣBC(x) = {x ∈ D : x− τ = 0}.Therefore, the pie
ewise-linear map proposed here will be des
ribed by �ve parameters,whose domains are summarized in Table 3.1.Let us now explain the signi�
an
e of the restri
tions applied to the parameters.Firstly, α will be always 
onsidered positive and less or equal than one, thus the
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α [0, 1]

β (−∞, 0]

γ (−∞,∞]

µ (−∞,+∞)

τ (0,∞)Table 3.1. Domain of the parameters α, β, γ, µ, τ . The parameters must also ful�l the 
ondition
α + β + γ ≤ 1.

0

−1

−2

−3

0 1
α

β

A↔ B

A↔ b

Figure 3.2. Behavior of the �xed points x∗

A and x∗

B in the planar spa
e {α, β}. µ ∈ (−∞, µ0
AB) ↔

µ ∈ (µ0
AB , µ0

BC).
slope of FA will be always positive. Moreover, β is negative and 
onsequently, theslope of FB will be always less than the slope of FA, despite being positive or nega-tive, but less than 1. Finally, although γ 
an be positive or negative, the third slope(α + β + γ) must be less than 1.Con
erning the de�nition of the boundaries, the �rst border has been pla
ed at x = 0in order to simplify the analysis and ensure the 
ontinuity of the map. In the same way,the se
ond boundary is pla
ed at x = τ , whi
h will be always positive to guaranteethat the map is divided into three pie
es.
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s of a three-pie
e pie
ewise-linear map3.2 Existen
e and stability of �xed pointsThe map (3.1) presents the following �xed points:
x∗A =

µ

1 − α
,

x∗B =
µ

1 − (α+ β)
,

x∗C =
µ− γτ

1 − (α+ β + γ)
.Noti
e that the �xed point x∗A is not de�ned when α = 1. These �xed points willundergo a border-
ollision bifur
ation when they hit any of the boundaries of themap, whi
h means that any of the following 
onditions ΣAB(x∗A) (or ΣAB(x∗B)) or

ΣBC(x∗B) (ΣBC(x∗C)) is ful�lled. Using µ as a varying parameter, the �xed points will
ross the boundaries ΣAB and ΣBC at the 
riti
al values µ0
AB and µ0

BC respe
tively,given by (see Fig. 3.3)
µ0

AB = 0,

µ0
BC = τ(1 − (α+ β)).Let us now study the existen
e 
onditions of the �xed points. Firstly, x∗A will be anadmissible �xed point if x∗A < 0 and, taking into a

ount that 1− α > 0, x∗A will onlyexist if µ < 0. Moreover, its stability is always guarantied be
ause the range of α.Similarly, the �xed point x∗B will exist if x∗B > 0 and x∗B < τ . Considering that

1 − (α + β) > 0, the existen
e of x∗B will be proved if µ > µ0
AB and µ < µ0

BC ,whose value is always higher than µ0
AB and thus, x∗B is an admissible �xed point if

µ0
AB < µ < µ0

BC . In addition, its stability will be proved when α+ β > −1.Finally, the �xed point x∗C will be an admissible �xed point if x∗C > τ . Therefore,
onsidering that α+ β + γ < 1, the existen
e 
ondition will be ful�lled if
µ− γτ > τ(1 − (α+ β + γ)),and hen
e, x∗C will exists if

µ > µ0
BC .The stability of x∗C is guaranteed if α+ β + γ > −1.These results have been summarized in Fig. 3.2 and Fig. 3.4, in whi
h the existen
eand stability 
onditions have been depi
ted in the two-parameter spa
e {α, β} and {α+

β, γ} respe
tively. Some remarkable 
on
lusions 
an be obtained from our analysis:the attra
tor A is always presented for negative values of µ and none of the three �xedpoints 
an 
oexist in a given set of parameters.



3.2. Existen
e and stability of fixed points 35
µ

x

τ

0

µ0
BCµ0

AB

x∗

A

x∗

B

x∗

C

(a) µ0
AB

and µ0
BC

µ

x

τ

0

µ1
BCµ0

AB

x∗

A x∗

AB

x∗

BA

(b) µ1
BC

µ

x

τ

0

µ0
BCµ1

AB

x∗

Cx∗

CB

x∗

BC

(
) µ1
ABFigure 3.3. Illustrations of the 
riti
al values of µ.
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Figure 3.4. Behavior of the �xed points x∗

B and x∗

C in the planar spa
e {α + β, γ}. µ ∈

(µ0
AB , µ0

BC) ↔ (µ0
BC , +∞).
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s of a three-pie
e pie
ewise-linear map3.3 Existen
e and stability of two-periodi
 solutionsPeriod-two solutions of the map (3.1) 
orrespond to the pair of �xed points of these
ond iterative maps given by
Fi(Fj(x, α, β, γ, µ, τ)) and Fj(Fi(x, α, β, γ, µ, τ)), (3.8)where i, j 
an be A, B or C. These orbits, whi
h will be named (x∗ij , x

∗

ji), are admissibleif x∗ij ∈ Si and x∗ji ∈ Sj . Be
ause of the linearity of the map, the two-periodi
 orbits
(x∗ii, x

∗

ii), whi
h have both �xed points in the same region, 
annot be admissible.Therefore, only three possible two-periodi
 orbits 
an be found in this three-pie
emap: (x∗AB , x
∗

BA), (x∗BC , x
∗

CB) and (x∗AC , x
∗

CA). In this se
tion, the existen
e andstability of ea
h of these possible attra
tors will be analyzed in detail.3.3.1 Two-periodi
 orbit (x∗
AB, x∗

BA)The orbit (x∗AB , x
∗

BA) has its �xed points pla
ed in the regions SA and SB respe
tively.Therefore, from (3.5) and (3.6), the 
onditions of existen
e of x∗AB and x∗BA are givenby
x∗AB < 0, (3.9)

x∗BA > 0 and x∗BA < τ (3.10)respe
tively, where the expressions of both points x∗AB and x∗BA are expressed asfollows
x∗AB =

1 + α+ β

1 − α(α+ β)
µ, x∗BA =

1 + α

1 − α(α + β)
µ.Considering the domain of the parameters, the expressions 1 − α(α + β) and 1 + αare always positive and thus, the �rst part of the 
ondition (3.10) 
an only be ful�lledfor µ > µ0

AB . Moreover, from the 
ondition (3.9) and assuming positive values of µ,the following 
ondition must be also ful�lled to guarantee the existen
e of the periodi
solution:
α+ β < −1.Noti
e that this inequality 
orresponds to the instability 
ondition of the �xed point

x∗B seen above. Finally, the �rst part of the 
ondition (3.10) implies that
µ < τ

1 − α(α + β)

1 + α
= µ1

BC . (3.11)
µ1

BC is de�ned as the 
riti
al value of µ at whi
h the point x∗BA rea
hes the boundary
ΣBC (see Fig. 3.3b). Noti
e that µ1

BC < µ0
BC . Con
erning the stability of the two-periodi
 orbit, it is guaranteed if

α(α + β) > −1. (3.12)
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Figure 3.5. Existen
e and stability of x∗

A and x∗

B and two-periodi
 orbit (x∗

AB, x∗

BA) in theplanar spa
e {α, β}. µ ∈ (−∞, µ0
AB) ↔ (µ0

AB, µ1
AB). Solid and dotted lines 
orrespond to the
onditions α + β = −1 and α(α + β) = −1 respe
tively.All these results are summarized in Fig. 3.5, in whi
h the 
urves of existen
e andstability for the �xed points A and B and the two-periodi
 orbit AB/ab are plotted.3.3.2 Two-periodi
 orbit (x∗

BC , x∗
CB)Similarly, the periodi
 orbit (x∗BC , x

∗

CB) has the �xed points in the regions SB and SCrespe
tively. Therefore, this two-periodi
 orbit will exist so long as
x∗BC > 0, x∗BC < τ and x∗CB > τ, (3.13)where the expressions of the �xed points of the attra
tor 
an be easily obtained from(3.3), (3.4) and (3.8) and are given by

x∗BC =
µ(1 + α+ β + γ) − γτ

1 − (α+ β)(α + β + γ)
and x∗CB =

µ(1 + α+ β) − γτ(α + β)

1 − (α+ β)(α + β + γ)
.From the two last 
onditions of (3.13), we obtain the following inequalities:

xBC − τ =
(1 + α+ β + γ) (µ− τ (1 − (α+ β)))

1 − (α+ β)(α + β + γ)
=

(1 + α+ β + γ)
(
µ− µ0

BC

)

1 − (α+ β)(α+ β + γ)
< 0

xCB − τ =
(1 + α+ β) (µ− τ (1 − (α+ β)))

1 − (α + β)(α+ β + γ)
=

(1 + α+ β)
(
µ− µ0

BC

)

1 − (α+ β)(α + β + γ)
> 0. (3.14)
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α+ β

γ

B ↔ C

b,BC ↔ C

b↔ C, bc

B ↔ c, BC

B ↔ c, bcB, bc↔ c

b, bc↔ C

b↔ c

Figure 3.6. Existen
e and stability of x∗

B, x∗

C and the two-periodi
 orbit (x∗

BC , x∗

CB) in theplanar spa
e {α + β, γ}. µ ∈ (µ0
AB, µ0

BC) ↔ (µ0
BC , µ1

AB) if µ1
AB > µ0

BC or µ ∈ (µ0
AB, µ0

BC) ↔

(µ0
BC , +∞) if µ1

AB < µ0
BC .whi
h have been fa
torized to make the analysis easier. Noti
e that the existen
e ofthis periodi
 orbit requires that 1 + α+ β + γ and 1 + α+ β must have di�erent sign.Hen
e, the orbit BC/bc will existif γ < 0, and α+ β + γ < −1 and α+ β > −1, (3.15)or if γ > 0, and α+ β + γ > −1 and α+ β < −1. (3.16)These results are illustrated in Fig. 3.6, where the 
riti
al 
onditions α+ β + γ = −1and α+β = −1 have been depi
ted using blue lines. Moreover, in the region 
olored inblue, the set of parameters ful�l (3.15) and (3.16) and therefore, the orbit (x∗BC , x

∗

CB)is admissible.Let us now fo
us in the range of µ whi
h guaranties the existen
e of the two-periodi
orbit. For (3.15), when the denominator of (3.14) is negative, the admissibility is givenwhen µ < µ0
BC . Therefore, if γ < 0, the existen
e of the orbit is given by

µ < µ0
BC and 1 − (α+ β)(α + β + γ) < 0,

µ > µ0
BC and 1 − (α+ β)(α + β + γ) > 0.
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 solutions 39Otherwise, from (3.16), we obtain the 
onditions
µ < µ0

BC and 1 − (α+ β)(α + β + γ) > 0,

µ > µ0
BC and 1 − (α+ β)(α + β + γ) < 0.In Fig. 3.6, the di�erent s
enarios have been represented spe
ifying the di�erentobits whi
h are admissible in both sides of the border-
ollision bifur
ation at the
riti
al value of µ = µ0

BC . The results obtained are 
hara
teristi
 of a two-pie
e PWL,be
ause only one boundary has been taken into a

ount. Noti
e also the symmetry isthe di�erent s
enarios illustrated in Fig. 3.6.Nevertheless, due to the map (3.1) is 
omposed by three pie
es, there exists anotherboundary when the �xed point x∗BC rea
hes ΣAB (x∗BC = 0). Therefore, from the �rst
ondition of (3.13), when 1 − (α+ β)(α + β + γ) > 0 and α+ β + γ > −1, we obtainthe 
ondition
µ >

γτ

1 + α+ β + γ
= µ1

AB. (3.17)The 
riti
al value µ1
AB is de�ned as the value of µ for whi
h x∗BC rea
hes the boundary

ΣAB (see Fig. 3.3
). Therefore, 
onsidering all the solutions of the �rst 
ondition of(3.13) it is obtained:if 1 − (α+ β)(α + β + γ) > 0, and α+ β + γ > −1 and µ > µ1
AB,if 1 − (α+ β)(α + β + γ) > 0, and α+ β + γ < −1 and µ < µ1
AB,if 1 − (α+ β)(α + β + γ) < 0, and α+ β + γ > −1 and µ < µ1
AB,if 1 − (α+ β)(α + β + γ) < 0, and α+ β + γ < −1 and µ > µ1
AB.In order to establish the range of µ where the orbit is admissible in ea
h region of theparameter spa
e, it is required to determine the relation between both 
riti
al values

µ0
BC and µ1

AB. Hen
e, from µ1
AB < µ0

BC , the following 
ondition is obtained:
1 − (α+ β)(α + β + γ)

1 + α+ β + γ
> 0.Therefore, the orbit (x∗BC , x

∗

CB) will be admissible so long asfor 1 − (α+ β)(α + β + γ) > 0 and α+ β + γ > −1, µ1
AB < µ < µ0

BC ,for 1 − (α+ β)(α + β + γ) > 0 and α+ β + γ < −1, µ0
BC < µ < µ1

AB,for 1 − (α+ β)(α + β + γ) < 0 and α+ β + γ > −1, µ0
BC < µ < µ1

AB,for 1 − (α+ β)(α + β + γ) < 0 and α+ β + γ < −1, µ1
AB < µ < µ0

BC .
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s of a three-pie
e pie
ewise-linear mapIt is important to remark that µ1
AB 
an be negative (and then µ1

AB < µ0
AB) for negativevalues of γ and α+β+ γ > −1 or for positive values of γ and α+ β+ γ < −1. Noti
ethat is this region in the parameter spa
e, the orbit (x∗BC , x

∗

CB) 
annot exist.Finally, the stability of the orbit BC/bc will be given if the following 
ondition isful�lled:
−1 < (α + β)(α+ β + γ) < 1.Noti
e that the 
ondition (α+β+ γ)(α+β) = 1 has also taken part in the analysis ofthe existen
e of the orbit. The 
ondition (α+β+γ)(α+β) = −1 has been representedin Fig. 3.6 using a dotted line.3.3.3 Two-periodi
 orbit (x∗

AC , x∗
CA)The �xed points of the last two-periodi
 orbit (x∗AC , x

∗

CA) are given by the expressions
x∗AC =

µ(1 + α+ β + γ) − γτ

1 − α(α + β + γ)
and x∗CA =

µ(1 + α) − αγτ

1 − α(α+ β + γ)
,whose existen
e 
onditions, taking into a

ount that x∗AC and x∗CA are in SA and SCrespe
tively, 
an be expressed as

x∗AC < 0 and x∗CA > τ. (3.18)From the �rst part of (3.18), and taking into a

ount that 1 − α(α+ β + γ) is alwayspositive, the (x∗AC , x
∗

CA) period-two orbit will exist if
α+ β + γ < −1 and µ > µ1

AB,or
α+ β + γ > −1 and µ < µ1

AB.From the se
ond part of the 
ondition (3.18), we obtain a 
omplementary existen
e
ondition, expressed as
µ > τ

(
1 − α(α + β)

1 + α

)
= µ1

BC .Finally, the stability is given by the 
ondition α(α+β+γ) > −1 and thus, (x∗AC , x
∗

CA)will be stable (attra
tor AC) if
γ > − 1

α
− (α+ β).
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Figure 3.7. Existen
e and stability of the period 1 and 2 orbits in the parameter spa
e {β, γ} for
α = 0.5. The di�erent attra
tors of ea
h region are summarized in the Tables 3.2, 3.3, 3.4, 3.5and 3.6. The grey dots represent the sets of parameters used in Figs. 3.8 and 3.9.All these results are summarized in Fig. 3.7, where the existen
e and stability 
urves ofperiod-one and two orbits split the parameter spa
e {β, γ} into sixteen zones. Thoughthese 
urves have been obtained using the value α = 0.5, the value of this parameterdoes not 
hange qualitatively the regions in the parameter spa
e {β, γ}. Ea
h regionhas di�erent attra
tors depending on the parameter µ, whi
h are resumed in Tables3.2, 3.3, 3.4, 3.5 and 3.6 depending on the relationship between the 
riti
al values µ0

AB,
µ0

BC , µ1
AB and µ1

BC .To sum up, we summarized the most important results whi
h 
an be obtained in theanalysis of the existen
e and stability of the period 1 and 2 orbits:� For µ < 0, there is only the attra
tor A.� Only the attra
tors C and AC 
an exist for higher values of µ.� The attra
tor AC appears in all zones ex
ept in zone 1.� For µ > µ0
BC , the attra
tor C exists if α+ β + γ > −1 (Zones 1, 11-16).
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s of a three-pie
e pie
ewise-linear map� The attra
tor AC 
an 
oexist with the �xed point B in Zone 5, and C, in zones
11 and 12.Zone µ < µ0

AB µ0
AB < µ < µ0

BC µ0
BC < µ < µ1

AB µ > µ1
AB

1 A B C C

2 A B c,BC c,AC

3 A B c,BC c, ac

4 A B c, bc c, acTable 3.2. Di�erent s
enarios of the map in zones 1 to 4 (µ0
AB < µ0

BC < µ1
AB)Zone µ < µ0

AB µ0
AB < µ < µ1

AB µ1
AB < µ < µ0

BC µ > µ0
BC

5 A B B, bc, AC c,AC

6 A B B, bc, ac c, acTable 3.3. Di�erent s
enarios of the map in zones 5 to 6 (µ1
BC < µ1

AB < µ0
BC)Zone µ < µ0

AB µ0
AB < µ < µ1

BC µ1
BC < µ < µ0

BC µ > µ0
BC

7 A b,AB b,AC c,AC

8 A b,AB b, ac c, ac

9 A b, ab b, ac c, ac

10 A b, ab b, AC c,ACTable 3.4. Di�erent s
enarios of the map in zones 7 to 10 (µ1
AB < µ1

BC < µ0
BC)

µ < µ0
AB µ0

AB < µ < µ1
BC µ1

BC < µ < µ0
BC µ0

BC < µ < µ1
AB µ > µ1

AB

11 A b, ab b, AC C, bc, AC C

12 A b,AB b,AC C, bc, AC CTable 3.5. Di�erent s
enarios of the map in zones 11 to 12 (µ1
AB < µ1

BC < µ0
BC)3.4 BC bifur
ations of the �xed points and period-two solutionsAs it has been introdu
ed above, the �xed points A and C present a border-
ollisionbifur
ation when they 
ross the boundaries ΣAB and ΣBC respe
tively. In addition, B
an have two border-
ollision bifur
ations when the attra
tor 
rosses the boundaries
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µ < µ0

AB µ0
AB < µ < µ1

BC µ1
BC < µ < µ1

AB µ1
AB < µ < µ0

BC µ > µ0
BC

13 A b, ab b, AC b,BC C

14 A b,AB b,AC b,BC C

15 A b, ab b, AC b, bc C

16 A b,AB b,AC b, bc CTable 3.6. Di�erent s
enarios of the map in zones 13 to 16 (µ1
AB < µ1

BC < µ0
BC)

ΣAB or ΣBC . Dealing with the period-two orbits, AB or BC will present anotherbifur
ation when the �xed point x∗AB or x∗BC rea
h the boundaries ΣAB and ΣBCrespe
tively and �nally, orbit AC will present two bifur
ations when the �xed points
x∗AC and x∗CA 
ross the boundaries ΣAB or ΣBC respe
tively.The di�erent dynami
al s
enarios in whi
h border-
ollision bifur
ations are involved
an be seen in Fig. 3.8 and Fig. 3.9, where sixteen bifur
ation diagrams have beendepi
ted using µ as the varying parameter and using sets of parameters pla
ed in ea
hregion de�ned previously in Fig. 3.7. Moreover, in Fig. 3.10 two bifur
ation diagramare depi
ted using the same set of parameters in the Zone 6 (Fig. 3.10a,b), 10 (Fig.3.10
) and 13 (Fig. 3.10d) to show the 
oexisten
e of two attra
tors.In Table 3.7, the di�erent border-
ollision bifur
ations appeared at the 
riti
al valuesof µ are 
lassi�ed using the strategy of 
lassi�
ation presented in [31℄, whi
h is basedon the analysis of the eigenvalues of the maps involved in ea
h bifur
ation at thebifur
ation point and has been reviewed in Chapter 2. Noti
e that in all 
ases σ+

A =

σ−

A = σ+

B = σ+

C = 0 and σ+

AB = σ+

AC = 0. Depending on the values of σ−

B , σ−

C , σ−

AB ,
σ−

BC , σ−

AC and σ+

BC at the bifur
ation point, the s
enarios found are persisten
e of the�xed point or the period-2 orbit, non-smooth fold and non-smooth period-doubling.Furthermore, in some regions it is needed to analyze the existen
e and stability ofhigher periodi
 orbits.
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(a) Zone 1: (−0.2,−0.7) (b) Zone 2: (−0.2,−1.4) (
) Zone 3: (−0.2,−3.0)
(d) Zone 4: (−0.1,−3.0) (e) Zone 5: (−1.3,−1.0) (f) Zone 6: (−1.3,−2.0)
(g) Zone 7: (−1.6,−0.2) (h) Zone 8: (−1.6,−2.2) (i) Zone 9: (−2.6,−0.2)Figure 3.8. Bifur
ation diagrams with µ as varying parameter for negative values of γ. Parameters:

α = 0.5, τ = 0.05 and (β, γ) are in the 
aptions. Legend: Red doted lines for unstable orbits,bla
k solid lines for stable one-periodi
 orbits and blue, red and green dashed lines for the orbits
AB, BC and AC respe
tively.
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(a) Zone 10: (−2.6, 0.4) (b) Zone 11: (−3.0, 2.0) (
) Zone 12: (−1.8, 0.5)
(d) Zone 13: (−2.6, 2.0) (e) Zone 14: (−1.6, 1.5) (f) Zone 15: (−3.0, 3.0)

(g) Zone 16: (−2.4, 2.6)Figure 3.9. Bifur
ation diagrams with µ as varying parameter for positive values of γ. Parameters:
α = 0.5, τ = 0.05 and (β, γ) are in the 
aptions. Legend: Red doted lines for unstable orbits,bla
k solid lines for stable one-periodi
 orbits and blue, red and green dashed lines for the orbits
AB, BC and AC respe
tively.
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(a) Zone 6: Left-Right (b) Zone 6: Right-Left

(
) Zone 10 (d) Zone 13Figure 3.10. Bifur
ation diagrams with µ as varying parameter. Parameters (α, β, γ and
τ ): (a,b) Zone 6: (0.5,−1.3,−2.0, 0.05), (
) Zone 10: (0.5, −2.6, 0.4, 0.05), (d) Zone 13:(0.5,−2.6, 2.0, 0.05).
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Zones µ S
enario σ−

B σ−

C σ−

AB σ−

BC σ−

AC σ+

BC Type
1..6 µ0

AB A↔ B 0 P
7, 8, 12, 14 µ0

AB A↔ b, AB 1 0 NS PD
9..11, 13 µ0

AB A↔ b, ab 1 1 HPO/C
1 µ0

BC B ↔ C 0 0 P
2..3 µ0

BC B ↔ c, BC 0 1 0 0 NS PD
4 µ0

BC B ↔ c, bc 0 1 1 0 HPO/C
5..6 µ0

BC B, bc↔ c 0 1 1 1 NS PD
7..10 µ0

BC b↔ c 1 1 P
11, 12 µ0

BC b↔ C, bc 0 1 NS PD
13, 14 µ0

BC C ↔ b, BC 0 1 NS PD
2, 14 µ1

AB BC ↔ AC 0 0 0 P
4, 13 µ1

AB bc↔ ac 1 1 0 P
3 µ1

AB BC ↔ ac 0 1 0 HPO/C
5, 11, 12 µ1

AB ∅ ↔ bc, AC 0 0 1 NS F
6 µ1

AB ∅ ↔ bc, ac 0 1 1 NS F
7, 12, 14 µ1

BC AB ↔ AC 0 0 P
10, 11, 13 µ1

BC ab↔ AC 1 0 HPO/C
9 µ1

BC ab↔ ac 1 1 P
8 µ1

BC AB ↔ ac 0 1 HPO/CTable 3.7. Bifur
ations of the �xed points and two-periodi
 orbits. P: persisten
e, NS PD:Non-smooth period-doubling, NS F: Non-smooth fold, HPO/C: higher periodi
 orbit or 
haos.
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s of a three-pie
e pie
ewise-linear map3.5 Higher periodi
 orbits and 
haosThe map exhibits a ri
h variety of higher periodi
 orbits (see Fig. 3.11) due to thepresen
e of two boundaries. In this se
tion, some results dealing with these orbits willbe dis
ussed. Nevertheless, a 
omplete 
lassi�
ation of the possible s
enarios involvinghigher periodi
 orbits is out of the s
ope of this dissertation.In 
ontrast to the higher periodi
 orbits in a two-pie
e map, other 
onditions of ex-isten
e must be taken into 
onsideration. The set of periodi
 orbits of the forms
AkB/akb and BkC/bkc will always present a border-
ollision bifur
ation when one ofthe �xed points of the attra
tor rea
hes one of the boundaries. For AkB/akb orbits,the border-
ollision will be given when the �xed point pla
ed in SB rea
hes the bound-ary ΣBC (Fig. 3.11a,b), whereas for BkC/bkc orbits, the bifur
ation will appear whenthe lowest �xed point in SB rea
hes the boundary ΣAB (Fig. 3.11
). Then, di�er-ent s
enarios 
an appear as persisten
e (Fig. 3.11a), period-doubling (Fig. 3.11
) or
haos (Fig. 3.11b). The border-
ollision bifur
ation of the AkB and BkC modes willbe given at the 
riti
al values

µk
BC = τ

1 − αk(α+ β)

1 − αk+1
(1 − α),

µk
AB = − −γτ(1 − (α+ β))

1 + γ − (α+ β)k(α+ β + γ)
,respe
tively.Although the AkB/akb and BkC/bkc modes 
annot be admissible for high values of

µ, from a 
riti
al value of µ, the orbits of the form AkC/akc 
an appear and willnot present border-
ollision bifur
ations as µ in
reases (see Fig. 3.11d). Due to thefa
t that the �xed point pla
ed in SC to has to be greater than ΣBC we obtain thefollowing 
ondition of µ
µ > τ

1 − αk(α+ β)

1 − αk+1
(1 − α) = µk

BC .In addition, the highest point in SA must be negative, and hen
e
µ > − −γτ(1 − α)αk−1

1 − αk−1((α− 1)(α+ β + γ) + α)
= µk

AC .3.6 Basins of attra
tionThe study of the existen
e and stability of the period-one and two orbits has shownthe 
oexisten
e of the attra
tors B and AC in the zone 5, and the attra
tors C and
AC in the zones 11 and 12. In both 
ases, bc is an admissible period-two orbit andtakes a relevant part in the basin of attra
tion of ea
h pair of attra
tors.
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(a) Zone 9, (0.5,−3.6,−0.2, 0.1) (b) Zone 9, (0.5,−3.6,−1.2, 0.017)

(
) Zone 4, (0.5,−0.15,−5, 0.4) (d) Zone 6, (0.5,−1.4,−2.9, 0.69)Figure 3.11. Bifur
ation diagrams with µ as varying parameter. Parameters (α, β, τ , γ and µ)are in the 
aption.Let us study the �rst 
ase, whi
h is illustrated in Fig. 3.12. Basins of attra
tions forthe solutions C and AC in zone 11 and 12 
an be obtained similarly. As it 
an beappre
iated, the basin of attra
tion of B (blue) is 
omposed by in�nite segments, ea
hof whi
h surrounded by segments of the basin of attra
tion of the orbit AC (green).The main basin, whi
h surrounds the �xed point B, is limited by the �xed points ofthe unstable orbit (x∗BC , x
∗

CB). The next segment of this basin is bounded by x′A1 and
x′′A1 (left side) and x′C1 and x′′C1 (right side), being

x∗CB = FA(x′A1), x∗BC = FA(x′′A1),

x′A1 = FC(x′C1), x′′A1 = FC(x′′C1).Therefore, the expressions for x′A1, x′′A1, x′C1 and x′′C1 are given by
x′A1 =

1

α
(x∗CB − µ) , x′′A1 =

1

α
(x∗BC − µ) ,
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x′C1 =

1

α (α+ β + γ)
(x∗CB − µ− (µ− γτ)α) ,

x′′C1 =
1

α (α+ β + γ)
(x∗BC − µ− (µ− γτ)α) .The remainder segments of the basin are limited by x′An and x′′An in the region SAand x′Cn and x′′Cn in SC (see Fig. 3.12), whose expressions are given by

x′An =
x∗CB − µ

(
1 + α+ α2 + · · ·αn−1

)

αn
=

1

αn

(
x∗CB − µ(1 − αn)

1 − α

)

x′′An =
x∗BC − µ

(
1 + α+ α2 + · · ·αn−1

)

αn
=

1

αn

(
x∗BC − µ(1 − αn)

1 − α

)

x′Cn =
x′An − µ+ γτ

α+ β + γ
=

1

αn(α + β + γ)

(
x∗CB − µ(1 − αn)

1 − α
− (µ− γτ)αn

)

x′′Cn =
x′′An − µ+ γτ

α+ β + γ
=

1

αn(α + β + γ)

(
x∗BC − µ(1 − αn)

1 − α
− (µ− γτ)αn

)being n = 1, 2, 3..+ ∞.The size of ea
h basin of the attra
tor B is given by the expressions
x′An − x′′An =

x∗CB − x∗BC

αn

x′′Cn − x′Cn =
x∗BC − x∗CB

αn(α+ β + γ)whi
h in
reases with n.
−0.4 0.4−0.2

x

0.0

0

0.2

Bx∗AC x∗CA

x∗BCx
∗

CBx′A1x′′A1x′A2x′′A2 x′C1x
′′

C1 x′C2 x′′C2

xFigure 3.12. Basin of attra
tion in region 5. Parameters (α, β, γ, τ , µ): (0.8, −1.79, −0.2, 0.1,
0.15). Colors: Green (x∗

AC , x∗

CA), blue (B).3.7 Non-smooth dynami
s for α = 1The dis
rete-time analysis of the SITITO 
onverter that will be explained in the fol-lowing 
hapters reveals that the dynami
s of this 
onverter governed by the SPC
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Figure 3.13. Existen
e and stability of the period 1 and 2 orbits for α = 1.

ontrol 
an be modelled by means of a three-pie
e pie
ewise-linear map. Similarly, thedis
rete-time map that des
ribes the dynami
s of the 
onverter under the 
ontrol ICis 
omposed by three or four trams. Due to the fa
t that the �rst slope of both mapswill be established to 1, we have been motivated to parti
ularize the analysis realizedabove for α = 1.The �rst 
onsequen
e produ
ed when α is for
ed to 1 is the disappearan
e of the �xedpoint x∗A. In addition, the stability 
onditions of the attra
tors AC and AB be
omesequivalent to the stability of x∗C and x∗B respe
tively. As a result, the possible s
enariosare signi�
antly redu
ed as Fig. 3.13 illustrates.Moreover, for negative values of γ, the only possible attra
tors of the map are: C,pla
ed in zone 1, and BC, whi
h only appears in zone 3. Therefore, the 
oexisten
e of
B and AC in zone 5 is now avoided. Zones 7 and 8, in whi
h AB was allowed, now have
ollapsed and disappeared. Noti
e that BC is the only period-two orbit permitted.Higher periodi
 orbits su
h as BkC 
an also be found in zone 4. Otherwise, for positivevalues of γ, C is a feasible attra
tor whi
h 
an be found in zones 1, 11 and 13. Inaddition, in the zone 11 the attra
tor AC 
oexists with C. Noti
e that now bothattra
tors loose the stability simultaneously.
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s of a three-pie
e pie
ewise-linear map3.8 Con
lusionsThe existen
e and stability 
onditions of the �xed points and period-two orbits havebeen obtained in a three-pie
e pie
ewise-linear map in a restri
ted range of parame-ters. Furthermore, the border-
ollision bifur
ations, whi
h 
an be produ
ed by theseattra
tors, have been dete
ted and 
lassi�ed.This study has revealed an in
rement in the 
omplexity of the dynami
al behavior in
omparison with the two-pie
e pie
ewise-lineal 
ontinuous map. Firstly, the number ofdi�erent patterns of bifur
ation reported has in
reased signi�
antly owing to, in part,the presen
e of two boundaries. This fa
t has implied the existen
e of di�erent 
riti
alvalues of µ, whi
h 
an also appear in a di�erent order of o

urren
e, in
rementingthe variety of s
enarios. Furthermore, the study has shown di�erent regions in theparameter spa
e in whi
h there are 
oexisting attra
tors, su
h as B and AC or C, and
AC and therefore, hysteresis in the bifur
ation diagrams. The analyti
al expressionswhi
h de�ne the boundaries of the basin of attra
tion have been developed for the �rstpair of attra
tors.An overview of the existen
e of higher periodi
 orbit has been also in
luded. Never-theless, a 
omplete 
lassi�
ation of the higher periodi
 orbits will be the subje
t offuture resear
h.Finally, the bifur
ation analysis has been parti
ularized for α = 1. These results willpermit us to improve the 
omprehension of the dynami
s of the SITITO 
onvertergoverned by SPC and, partially, by IC 
ontrol.



Chapter 4
Analysis of the SITITO 
onverter withSingle-Phase Control

In this 
hapter, a Single-Indu
tor Two-input Two-output(SITITO) d
-d
 
onverter, whi
h is 
apable of regulating two asym-metri
 outputs with di�erent polarities by means of a PWM 
ontrol,will be analyzed. As a �rst step, averaging te
hnique is used to dealwith low-s
ale bifur
ations, then dis
rete-time models are developedto predi
t bifur
ations 
onne
ted to the ripple of the indu
tor 
urrentand to a

ount for non-smooth bifur
ations. The dis
rete formula-tion will be developed a

ording to the formalism used in the previous
hapter.
4.1 Des
ription of the d
-d
 
onverter4.1.1 Power stage des
riptionThe simpli�ed s
heme of the power stage of a Single-Indu
tor Two-Input Two-Output(SITITO) d
-d
 
onverter is shown in Fig. 4.1. This stage in
ludes the unregulatedsour
e voltage VIN , the indu
tor with indu
tan
e L and series resistan
e rL and thepositive and negative loads with resistan
e RP and RN and �lter 
apa
itan
e CP and
CN respe
tively. Two pair of swit
hes are also required in the 
ir
uit, whi
h will be53
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RN CN vN RP CP vP

LiL rL

DA DB

SA

SBVIN

Figure 4.1. S
hemati
 of the power stage of a single indu
tor d
-d
 
onverter with positive andnegative loads.implemented by means of two MOSFET transistors, SA and SB and two diodes DAand DB. The a
tion of SA and SB will be determined by the 
ontrol of the 
onverter,whereas the a
tion of both diodes is 
omplementary to the 
orresponding 
ontrolledswit
hes SA and SB. Therefore, SA 
an 
onne
t the indu
tor to the sour
e (ON 
ase)or to the negative 
hannel (OFF 
ase) whereas SB 
an 
onne
t the other terminal ofthe indu
tor to the ground (ON 
ase) or to the positive 
hannel (OFF 
ase).Asso
iated to the energy storage elements of this stage (the indu
tor and the positiveand negative �lter 
apa
itors) are the following three state variables: 
urrent iL, andboth 
apa
itor voltages vP and vN respe
tively.4.1.2 Operation of the 
onverterThe operation of this 
onverter is based on suitable toggling among di�erent topologiesgiven by the 
onvenient a
tion of both swit
hes. In the 
ontinuous 
ondu
tion mode(CCM), where the indu
tor 
urrent is always de�ned positive, four feasible topologies
an operate in 
onverter, whose s
hemes are represented in Fig. 4.2 and summarized inTable 4.1. The T1 topology (see Fig. 4.2a) is given when both 
ontrolled swit
hes areON and, 
onsequently, both diodes are open. In this topology, the unregulated sour
etransfers energy to the indu
tor by in
reasing iL. The T2 
on�guration (see Fig. 4.2b)is operating when the swit
h SB 
hanges to OFF while SA remains ON, then the indu
tortransfers energy only to the positive load, whereas the T3 (Fig. 4.2
) 
on�gurationappears when the swit
h SA 
hanges to OFF while SB remains ON, then the indu
tortransfers energy only to the negative load. In the last topology T4 (Fig. 4.2d), whi
h
orresponds to both swit
hes open, the energy �ows from the indu
tor to both positiveand negative loads, so this 
on�guration 
orresponds to a series 
onne
tion of the loadsand the indu
tor.
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RP CP vP RN CN vN

LiL rL

VIN (a) T1: SA ON and SB ON
RP CP vP RN CN vN

LiL rL

VIN (b) T2: SA ON and SB OFF
RN CN vN RP CP vP

LiL rL

(
) T3: SA OFF and SB ON
RN CN vN RP CP vP

LiL rL

(d) T4: SA OFF and SB OFFFigure 4.2. The four feasible topologies of the SITITO 
onverter in CCM.
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SA SB

T1 ON ON
T2 ON OFF
T3 OFF ON
T4 OFF OFFTable 4.1. De�nition of the topologies of the SITITO 
onverter in CCM.The dis
ontinuous 
ondu
tion mode (DCM) 
an also be found in the SITITO 
onverterproposed and hen
e, another topology must be taken into a

ount in the dynami
s ofthe 
onverter when the indu
tor 
urrent drops to zero. In this topology, both diodesand both transistors remain open.As it has been said before, the operation of the 
onverter will alternate among thedi�erent topologies to a
hieve the regulation. Noti
e that if the swit
hing sequen
erea
hed is T1 → T2, the 
ir
uit will work as a boost 
onverter being the negative outputvoltage vN = 0. Similarly, if the swit
hing sequen
e be
omes T1 → T3, the 
ir
uit willoperate as a bu
k-boost 
onverter and hen
e, vP = 0.4.1.3 Control PWMThe aim of the 
ontrol of this 
onverter is the regulation of voltage outputs vP (t)and vN (t) to adjust them to the 
orresponding desired inputs VP and VN respe
tively,whi
h, in general, will be unbalan
ed. The 
ontrol must provide two binary signals

uA(t) and uB(t) in order to drive the 
orresponding swit
hes SA and SB and thus,two loops have been in
luded to the 
ontrol to a
hieve the regulation.Figure 4.3 shows a diagram of the 
ontrol proposed for the 
onverter. As it 
an be seenin the �gure, the 
ontrol will be given, as usual in PWM 
ontrollers, by the 
omparisonof two signals. Parti
ularly, the 
ontrol 
ompares the peak referen
es vA(t) and vB(t),whi
h will in
lude a modulating signal vM (t) of period T , with vI(t). This signalis proportional to the indu
tor 
urrent and will be 
ommon for both 
hannels. Itsexpression is given by
vI(t) = rSiL. (4.1)where rS is the sensing resistan
e.The expressions for both peak referen
es vA(t) and vB(t) are given by

vA(t) = gPA(VP −vP (t)−σP (t))+gNA(vN (t)−VN +σN (t))−gFAVIN +vM (t), (4.2)
vB(t) = gPB(VP −vP (t)−σP (t))+gNB(vN (t)−VN +σN (t))−gFBVIN +vM (t). (4.3)
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VP

+ vP-

VN-
vN+

gF A

gF B
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τP S

)

gNA

(
1 + 1
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)

gPB
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(
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τN S

)

vM vI

vA

vB

−VIN

−

+

−

+

SR Q̄Q
RS Q̄Q

CLK

CLK

SA

SB

Figure 4.3. S
hemati
 of the PWM 
ontrol of the SITITO 
onverter.Finally, the integral error variables σP (t) and σN (t) are given as follows
σP (t) =

1

τP

∫
(vP (t) − VP )dt, (4.4)

σN (t) =
1

τN

∫
(vN (t) − VN )dt, (4.5)where τP and τN are the 
orresponding time 
onstants asso
iated with the integralterms. σP (t) and σN (t) will add two state variables of the system.Noti
e that ea
h peak referen
es vA(t) and vB(t) in
lude the following terms:� Two proportional integral terms with gains gPA and gNA (gNB and gPB) tominimize error signals.� A feedforward term to prevent from disturban
es of the sour
e, whose gain is

gFA (gFB).� A modulating sawtooth fun
tion, vM , whose expression will depend on the stateof the swit
hes that must be syn
hronized. Parti
ularly, in the 
ontrol proposed
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t

t t+ T

VU

VLFigure 4.4. The modulating signal vM (t)here, the ON state of both 
hannels will be syn
hronized with an external 
lo
k.Therefore, the expression of the modulating signal must be given by
vM (t) = VU − (VU − VL)mod( t

T
, 1

)
,being VU and VL the upper and lower value and T , its period (see Fig. 4.4).In order to avoid multiple swit
hing during a single period, two Set-Reset edge-triggered Flip-Flops are in
luded taking into a

ount that their 
on�guration willdepend on the syn
hronized state. In 
ase of syn
hronizing the ON state, the external
lo
k must be 
onne
ted to the SET input of the Flip-Flops of both 
hannels andthus, the ON state of both swit
hes will be for
ed to be syn
hronized with the 
lo
k,whi
h will also imply the simultaneity of both ON swit
hes. Conversely, the signal vImust be 
onne
ted to the RESET terminal. Consequently, the OFF state of SA and

SB swit
hes, whi
h are outputs of the Q 
hannels, will be rea
hed when 
onditions(4.6) and (4.7) are ful�lled, thus these swit
hes will be asyn
hronous and, in general,non simultaneous.
vA(t) = vI(t), (4.6)
vB(t) = vI(t). (4.7)Before presenting the di�erent modes of operation of the 
onverter, let us de�ne theduty 
y
les dA and dB as the time interval during whi
h the swit
hes SA and SBremain 
losed (ON) respe
tively, and thus
dA =

tA,ON

T
,

dB =
tB,ON

T
,where tA,ON (tB,ON ) is the time interval for whi
h the swit
h SA (SB) is in the state ON.Let us also de�ne the binary signals uA and uB. Their values are related with the state
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uA

uB

0

1

0

1

t

t
dAT

dBT

t t + T

T1 T3 T4(a) MN : dA < dB

uA

uB

0

1

0

1

t

t
dAT

dBT

t t + T

T1 T2 T4(b) MP : dA > dBFigure 4.5. The two main modes of operation of the 
onverter: MN and MP .of the 
orresponding swit
h SA and SB: 0 if open (OFF) or 1 if 
losed (ON). Therefore,both signals will be �xed to 1 at the beginning of ea
h period, be
oming 0 when its
orresponding 
ondition (4.6) or (4.7) is ful�lled. Then, this value is maintained untilthe end of the period.Depending on the order of o

urren
e of 
onditions (4.6) or (4.7) during a 
ertainperiod of the modulating signal, di�erent s
enarios turn up. Figure 4.5 shows thetwo 
ases in whi
h both 
onditions are satis�ed during a period T and 
onsequently,three topologies are involved. The 
riti
al 
ondition that distinguishes both models ofoperation is given by
dA − dB = 0. (4.8)In Fig. 4.5a, dA < dB and thus, SA 
hanges to OFF while SB remains in the ONstate, and then SB 
hanges to OFF. Therefore, the sequen
e of topologies will be

T1 ↔ T3 ↔ T4. This mode of operation will be 
alled MN . Similarly, the se
ondmode (see Fig. 4.5b), (dA > dB) in whi
h �rstly SB 
hanges to OFF while SA remainsin ON, will be 
alled MP , being the sequen
e of topologies T1 ↔ T2 ↔ T4. Theevolution of the state variables iL, vP and vN in
luding the referen
es vA and vB aredepi
ted in Fig. 4.6 for both modes of operations.Besides these 
ases, other s
enarios 
an appear if one or both swit
hes do not 
hangetheir ON state, although the dynami
s of the 
onverter 
annot be stable. These modes
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(a) MP : rSiL (b) MN : rS iL

(
) MP : vP (d) MN : vP

(e) MP : vN (f) MN : vNFigure 4.6. Evolution of following signals: (a,b) the indu
tor 
urrent, more pre
isely vI , (red)and the referen
e signals vA (blue) and vB (green); (
,d) the positive and (e,f) negative 
apa
itorvoltages. The parameters are in Table 4.2 ex
ept in mode MN : RP = 33 Ω, RN = 22 Ω and
VP = 5.0 V.
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al modeling 61Parameter Value Parameter Value
VIN 6.0 V rS 1 Ω

L 47 µH rL 0.2 Ω

VU 1.0 V VL 0.0 V

VP 10.0 V VN −8.0 V

CP 22 µF CN 22 µF
RP 22 Ω RN 33 Ω

τP 50 µs τN 50 µs
gPA 0.02 gNA 0.0

gPB 0.0 gNB 0.02

gFA 0.0 gFB 0.0

fs = 1/T 200 kHzTable 4.2. Parameter values used in numeri
al simulations.will be 
alled MO, if neither of the 
ommutations is given and MSP or MSN , whenonly the 
ondition (4.6) or (4.7) is satis�ed.4.2 Closed loop mathemati
al modeling4.2.1 Swit
hed modelSwit
hed models are useful tools to simulate the dynami
s of swit
hing power 
onvert-ers, sin
e they 
ontain the dynami
s of all 
on�gurations of the 
onverter by meansof appropriate binary signals. The dynami
s 
an be studied straightforward from the
orresponding di�erential equations of every topology, whi
h 
an be obtained easilyfrom Fig. 4.2 using Kir
hho�'s laws, and the initial 
onditions of the state variables.Noti
e that the di�erential equations are linear and the ve
tor �elds are, in general,dis
ontinuous in the transitions between topologies. Therefore, the system 
an be
lassi�ed as a pie
ewise-linear system (PWL). Parti
ularly, the swit
hing instants 
anbe �xed by solving (4.6) or (4.7), depending on the sequen
e of topologies. The valueof the state variables at these points will be
ome the initial 
onditions of the followingtopology. Using this methodology, the 
ontinuous evolution of all state variables 
anbe obtained despite the dis
ontinuity in the ve
tor �elds.Let us de�ne the general form of the �fth-dimensional system as followsẋ = Ax+B, (4.9)
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onverter with Single-Phase Controlwhere x is the �fth-order state spa
e ve
tor whi
h in
ludes the �ve state variablesmentioned above, the indu
tor 
urrent iL, both 
apa
itor voltages vP and vN andboth integral variables σP and σN , and is de�ned asx = [iL, vP , vN , σP , σN ]T .The dynami
s of the 
onverter will be determined by a (5 × 5) matrix A and the5-dimensional ve
tor B, whi
h depend on the topology and are given by
A =




−rL
L

A12 A13 0 0

A21

−1

RPCP

0 0 0

A31 0
−1

RNCN

0 0

0
1

τP
0 0 0

0 0
1

τN
0 0




, (4.10)
B =

[
B1 0 0 −VP

τP
−VN

τN

]T

, (4.11)where the elements depending on the four topologies are summarized in Table 4.3.Considering the de�nition of the binary signals uA and uB de�ned above, the matrix(4.10) and the ve
tor (4.11) 
an be simpli�ed and written as follows:
A =




−rL
L

uB − 1

L

1 − uA

L
0 0

1 − uB

CP

−1

RPCP

0 0 0

uA − 1

CN

0
−1

RNCN

0 0

0
1

τP
0 0 0

0 0
1

τN
0 0




, (4.12)
B =

[
VIN

L
uA 0 0 −VP

τP
−VN

τ

]
. (4.13)4.2.2 Averaged modelUnder the assumption of small period of the modulating signal 
ompared to the time
onstants of the 
ir
uit, the dynami
s of the system (4.9) 
an be analyzed by means
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al modeling 63ON:ON ON:OFF OFF:ON OFF:OFF
A21 0

1

CP

0
1

CP

A31 0 0 − 1

CN

− 1

CN

A12 0 − 1

L
0 − 1

L

A13 0 0
1

L

1

L

B1

VIN

L

VIN

L
0 0Table 4.3. Matrix elementsof a smooth averaged model, where the swit
hing a
tion is not taken into a

ountand, 
onsequently, the state variables 
an be 
onsidered as 
onstant values duringthe entire period. A simple model 
an be derived easily from (4.12) and (4.13), bysubstituting the binary fun
tions uA and uB by the averaged duty 
y
les, whi
h willbe 
alled d̄A and d̄B respe
tively. Now, the domain of these 
ontinuous signals turnsinto d̄A, d̄B ∈ (0, 1). Therefore, from (4.12), the averaged model will be des
ribed asfollows

dx̄dt =




−rL
L

d̄B − 1

L

1 − d̄A

L
0 0

1 − d̄B

CP

−1

RPCP

0 0 0

d̄A − 1

CN

0
−1

RNCN

0 0

0
1

τP
0 0 0

0 0
1

τN
0 0




x̄+




VIN d̄A

L

0

0

−VP

τP
−VN

τN




, (4.14)
where the bar stands for the averaging during one swit
hing period and hen
e, x̄ =

[īL, v̄P , v̄N , σ̄P , σ̄N ]T will 
orrespond to the averaged ve
tor of state variables and īL,
v̄P , v̄N , σ̄P and σ̄N are the 
orresponding averaged state variables.The 
ontrol proposed previously for this 
onverter gives us expli
it expressions of theaveraged duty 
y
les (see Fig. 4.7), whi
h, together with (4.14), determine the 
losed



64 Chapter 4. Analysis of the SITITO 
onverter with Single-Phase Control

t

t t+ T

vB(t)

vA(t)

rS īL

d̄B

d̄AFigure 4.7. The de�nition of the averaged duty 
y
les for the mode MP .loop of the 
onverter. These expressions are given by
d̄A =

VU + gNA(v̄N − VN + σ̄N ) + gPA(VP − v̄P − σ̄P ) − gFAVIN − rS īL
VU − VL

, (4.15)
d̄B =

VU + gNB(v̄N − VN + σ̄N ) + gPB(VP − v̄P − σ̄P ) − gFBVIN − rS īL
VU − VL

. (4.16)This averaged approa
h allows us to determine the equilibrium points of the systems,denoted by x̄∗, whi
h will 
orrespond to limit 
y
les in the swit
hed model. The valueof the equilibrium points 
an be obtained by solving the set of equationsAx̄∗ +B = 0, (4.17)whi
h 
orresponds to the equations



−rL
L

d̄B − 1

L

1 − d̄A

L
0 0

1 − d̄B

CP

−1

RPCP

0 0 0

d̄A − 1

CN

0
−1

RNCN

0 0

0
1

τP
0 0 0

0 0
1

τN
0 0







ī∗L

v̄∗P

v̄∗N

σ̄∗

P

σ̄∗

N




+




VIN d̄A

L

0

0

−VP

τP
−VN

τN




=




0

0

0

0

0




. (4.18)
Firstly, in order to understand the possible solutions of this set of equations, onlythose belonging to the open loop will be 
onsidered. Then, it is easy to prove, from
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ond and third equation of (4.18) that the expressions of the duty 
y
les in thesteady state are given by
d̄A = 1 +

v̄∗N
RN ī∗L

, (4.19)
d̄B = 1 − v̄∗P

RP ī∗L
. (4.20)The fourth and �fth equations of (4.18) for
e the steady state of the 
apa
itor voltagesto the 
orresponding voltage referen
e, and thus

v̄∗P = VP , (4.21)
v̄∗N = VN . (4.22)Finally, the expression of the steady state of the averaged indu
tor 
urrent 
an beobtained from the �rst equation of (4.18), together with (4.21) and (4.22) solving theequation,

−rL
L
ī∗L +

d̄B − 1

L
VP +

1 − d̄A

L
VN +

VIN d̄A

L
= 0, (4.23)from whi
h the following expression for īL is obtained

ī∗L =
VIN

2rL
±
√(

VIN

2rL

)2

− 1

rL

(
V 2

P

RP

+
V 2

N

RN

− VINVN

RN

)
. (4.24)This expression 
orresponds to an ellipsoid in the phase spa
e, with high (positive sign)and low (negative sign) 
urrent. Nevertheless, though the expression (4.24) in
ludesthe negative and positive values of the square root, only the negative one will be usedin a real design of the 
onverter due to the fa
t the alternative solution will imply high
urrent whi
h means high losses in the series resistor of the indu
tor. The existen
e ofequilibrium points also requires positive values of the dis
riminant of the square rootin (4.24).Figure 4.8 shows the transient of the state variables iL, vP and vN by using theaveraged model proposed here and the PSIM simulator. Noti
e that the averagedmodel predi
ts a

urately the evolution of the indu
tor 
urrent and both 
apa
itorvoltages. Nevertheless, the averaged model fails in the predi
tion of the steady stateof the integral variables.4.2.3 Stability analysis of the equilibrium pointsThe stability of the equilibrium point of a dynami
al system is known to be equivalentto the stability of a linearized system in the neighborhood of an equilibrium point.
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(a) iL (b) vP and vNFigure 4.8. Comparison of the evolution of the state variables obtained with the averaged (blue)and swit
hed models (red). The parameters are in Table 4.2.Therefore, the stability of the proposed 
onverter 
an be analyzed by means of theproperties of the Ja
obian matrix evaluated in the equilibrium point x̄∗. Taking intoa

ount that the element Jij of this matrix 
orresponds to the partial derivative ofthe equation i of (4.14) respe
t the element j of the state ve
tor evaluated at theequilibrium point, the expression of the Ja
obian Matrix is given by
J =




− 1

L

V ′

P

VD

1

L

V ′

N

VD

JP

gPB

VD

ī∗L
CP

−gNB

VD

ī∗L
CP

−gPA

VD

ī∗L
CN

gNA

VD

ī∗L
CN

0
1

τP
0 0 0

0 0
1

τN
0 0




, (4.25)
where the submatrix is given by
JP =




−rS
L

(
rL
rS

+
V ′

VD

)
− 1

L

(
D′

B +
V ′

P

VD

)
1

L

(
D′

A +
V ′

N

VD

)

1

CP

(
D′

B +
rS ī

∗

L

VD

)
1

CP

(−1

RP

+
gPB ī

∗

L

VD

)
− 1

CP

gNB ī
∗

L

VD

− 1

CN

(
D′

A +
rS ī

∗

L

VD

)
− 1

CN

gPAī
∗

L

VD

1

CN

( −1

RN

+
gNAī

∗

L

VD

)




,
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al modeling 67being
V ′

P = gPBVP + gPA(VIN − VN ) and V ′

N = gNBVP + gNA(VIN − VN ),

V ′ = VIN − VN + VP ,

D′

A = 1 − d̄A and D′

B = 1 − d̄B ,

VD = VU − VL.Figure 4.9 shows di�erent diagrams, in whi
h the real part of the eigenvalues of thematrix J evaluated in the equilibrium point have been depi
ted as one single parameteris varied. It is well known that the lo
al stability of a equilibrium point is proved ifthe real part of all the eigenvalues is negative.

(a) RP (b) RN

(
) VP (d) VNFigure 4.9. Real part of the largest real (blue) and 
omplex (green) eigenvalues of J evaluatedin the low 
urrent equilibrium point as the parameters in the 
aption is varied. The parametersused are in Table 4.2.
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(a) gPA (b) gNA

(
) gPB (d) gNA and gPB

(e) τP (f) VUFigure 4.10. Real part of the largest real (blue) and 
omplex (green) eigenvalues of J evaluatedin the low 
urrent equilibrium point as the parameter in the 
aption is varied. The parametersused are in Table 4.2.



4.2. Closed loop mathemati
al modeling 69As it 
an be seen in Fig. 4.9, two kind of smooth bifur
ations 
an be dete
ted by usingthe averaged model proposed: saddle-node and Hopf bifur
ation.� Saddle-node bifur
ation:Figure 4.9 shows some tangent or saddle-node bifur
ations as the parameter,spe
i�ed in the 
aption, is varied. It is important to remark that before the ap-pearan
e of the bifur
ation, the two equilibrium points mentioned above, beingone stable and the other one, unstable, 
oexist. Nevertheless, beyond a 
rit-i
al point, these equilibrium points 
ollapse, implying the no existen
e of anyequilibrium point after the bifur
ation. Another 
hara
teristi
 of this kind ofbifur
ation is that the eigenvalues of both equilibrium points tend to zero at this
riti
al point. These phenomena 
an be seen in the diagrams depi
ted in Fig.4.9 taking into a

ount that only the eigenvalues of the stable �xed point havebeen represented. Figure 4.11 illustrates the steady state of both equilibriumpoints of the indu
tor 
urrent as VP is varied showing this smooth bifur
ation.It is important to remark that in a real design, the parameters of the 
onvertermust be 
hosen in su
h a way that the stable equilibrium point is far from thistangent point.

Figure 4.11. Representation of both equilibrium points of the indu
tor 
urrent as the parameter
VP is varied, revealing the existen
e of a saddle-node bifur
ation. Stable and unstable equilibriumpoints are plotted in solid and dotted line respe
tively.Finally, an expli
it expression for the 
riti
al point 
an be obtained dire
tly from(4.24), 
onsidering that the indu
tor 
urrent 
annot be a 
omplex number. Thisexpression is given by

(
VIN

2rL

)2

− 1

rL

(
V 2

P

RP

+
V 2

N

RN

− VINVN

RN

)
= 0. (4.26)Therefore, the parameters dire
tly related with this bifur
ation are VIN , VP , VN ,

RP , RN and rL.
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onverter with Single-Phase Control� Hopf bifur
ation:The Hopf bifur
ation, whi
h appears when the real part of the largest 
omplexeigenvalue be
omes positive, 
an be appre
iated in Fig. 4.10b,
,e. One propertyof this bifur
ation, due to approa
hing to zero, is the in
rement of the transientsof the state variables in the neighborhood of the 
riti
al point.Let us now fo
us in the in�uen
e in the stability when the gains of the feed-forward terms are varied. Noti
e that whereas the variation of the gains gPA(and similarly gNB) are not 
riti
al in the stability, the variation of gNA or gPBhas a strong in�uen
e in the stability of the 
onverter whi
h implies unstabledynami
s when the value of the largest eigenvalue di�ers slightly from 0. Takinginto 
onsideration that gNA and gPB are related with the errors of the negativeand positive 
hannels, whi
h are driven by the 
hannels SA and SB respe
tively,this result reveals the need of avoiding the dire
t feedforward terms to guaranteethe stability of the 
onverter.4.3 One-dimensional dis
rete-time modelNumeri
al simulations of the dynami
s of the 
onverter have revealed the existen
e ofalternative s
enarios, apart from those seen in the previous se
tion, related with theripple of the indu
tor 
urrent. Dis
rete-time models are known to be useful tools toanalyze the fast dynami
s in power swit
hing 
onverters. In following se
tions, we willdeal with several dis
rete-time models, ea
h of whi
h will be able to 
over a determinedset of s
enarios.Under dis
rete-time modeling, the dynami
s of the SITITO 
onverter 
an be des
ribedby a �fth-dimensional pie
ewise-smooth map. Nevertheless, 
onsidering some assump-tions, this map will be simpli�ed to a one-dimensional pie
ewise-linear map. Let usassume the period of the modulating signal T mu
h lower than the time 
onstantsof every operating topology. In this situation, the ripples of both 
apa
itor voltagesare small and 
onsequently, these fun
tions 
an be approa
hed by their mean values,whi
h are for
ed by the integral 
ontrol to the voltage referen
es VP and VN . Thislast 
onsideration also implies that the values of the state variables σP and σN , whi
hmeasure the integral of the errors vP − VP and vN − VN respe
tively, 
an also be
onsidered as 
onstant values, whose level 
an be estimated by means of the averagedmodel (see [52℄). Thus, the whole �ve-dimensional system 
an be approa
hed by aone-dimensional map, being the indu
tor 
urrent, whi
h will be denoted as i, the onlystate variable.This map will be 
lassi�ed as a pie
ewise 
ontinuous map, whose di�erent trams arerequired to des
ribe ea
h of the modes of operation determined in the previous se
tion.Nevertheless, the assumptions taken into 
onsideration in the approa
h will permit tosimplify the model. Let us 
onsider the 
ondition whi
h distinguishes the operation
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rete-time model 71modes between MP and MN (4.8). In 
on
ordan
e with (4.19) and (4.20), (4.8) 
anbe written as follows
1 +

v̄∗N
RN ī∗L

−
(

1 − v̄∗P
RP ī∗L

)
= 0. (4.27)From the averaged model, the steady state of the 
apa
itors v̄∗P and v̄∗N are known tobe VP and VN respe
tively. Therefore, (4.27) 
an be simpli�ed as follows

VP

RP

+
VN

RN

= 0, (4.28)whi
h does not depend on the state variable of the dis
rete-time model i. This allowsus to divide the one-dimensional model into two submappings. Then, the dis
rete-timemodel will be de�ned as
f(i, φ) =

{
f1(i, φ) if H0(φ) > 0,

f2(i, φ) if H0(φ) < 0,where f : R
1 × R

9 7→ R
1 and i ⊂ D ∈ R refers to the indu
tor 
urrent. φ representsthe following set of 9 parameters:

φ = {VIN , rL, VP , VN , RP , RN , VU , VL, T }.Finally, the surfa
e H0(φ) will be de�ned as
H0(φ) =

VP

RP

+
VN

RN

, (4.29)where H0 : R
9 7→ R. A

ording with this de�nition, the �rst submapping f1 will oper-ate for positive values of (4.29) and thus, whenever dA > dB, whereas the submapping

f2 will be a
tive when dA < dB. Note that ea
h of the submappings f1 and f2 isitself a PWS map 
hara
terized by di�erent operating regions. In what follows, wewill treat separately the analysis of the two submappings.
SA SB ∆i

T1 ON ON ∆i1

VIN − rLIQ
L

T

T2 ON OFF ∆i2

VIN − VP − rLIQ
L

T

T3 OFF ON ∆i3

VN − rLIQ
L

T

T4 OFF OFF ∆i4

VN − VP − rLIQ
L

TTable 4.4. De�nition of the in
rement 
urrents of the SITITO 
onverter in CCM.
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IB

IB + ∆IB

t t+ T

M0

MSP

MP

(a) dA > dB

IA

IA + ∆IA

t t+ T

M0

MSN

MN

(b) dA < dBFigure 4.12. The di�erent modes of operation of the SITITO 
onverter. The signals represented
orrespond to vA/rS (blue), vB/rS (green) and iL (red).4.3.1 Approximated expressions of the maps f1 and f2The de�nition of the map must approa
h the evolution of iL in ea
h topology, during aperiod of the modulating ramp. These fun
tions 
an be obtained dire
tly approa
hingthe state equations de�ned in (4.10) and (4.11) and assuming a linear time dependen
eof iL. Therefore, di�erent in
rement 
urrents, whose expressions are summarized inTable 4.4, will be obtained for ea
h topology. Noti
e that in the expressions the
apa
itor voltages have been approa
hed by their 
orresponding voltage referen
e andthe term rLiL, whi
h is related with the losses in the indu
tor resistan
e, by rLIQwhere IQ will 
orrespond to ī∗L.Dealing with fun
tion f1, there exist three modes of operation involved (see Fig. 4.12a):
M0,MSP andMP , where none, one and two swit
hings are produ
ed during a period.Consequently, the dis
rete-time model f1 will be des
ribed by three pie
es (see Fig.4.13), whi
h will be 
alled FA, FB and FC respe
tively. Thus, the map f1 will bede�ned as follows

f1(i, φ) =






FA(i, φ) if i ∈ SA,

FB(i, φ) if i ∈ SB,

FC(i, φ) if i ∈ SC ,

(4.30)where Fi : R × R
9 7→ R. The regions of SA, SB and SC represent the domain of ea
htram.Conversely, the fun
tion f2 will also be 
omposed by the three trams, GA, GB and

GC , whi
h model the modes of operation M0, MSN and MN respe
tively (see Fig.



4.3. One-dimensional dis
rete-time model 734.12b). Therefore, the map f2 will be expressed as follows
f2(i, φ) =






GA(i, φ) if i ∈ TA,

GB(i, φ) if i ∈ TB,

GC(i, φ) if i ∈ TC .

(4.31)A

ording to Fig. 4.12 and Table 4.4, the expressions of the fun
tions FA, FB and FC
an be easily obtained and are expressed as
FA(i) = i+ ∆i1, (4.32)
FB(i) = i+ ∆i1dB(i) + ∆i2 (1 − dB(i)) , (4.33)
FC(i) = i+ ∆i1dB(i) + ∆i2d̄AB + ∆i4

(
1 − dB(i) − d̄AB

)
, (4.34)where dB 
orresponds to

dB(i) =
IB − i

∆i1 − ∆ir , (4.35)being
∆ir = −VU − VL

rS
.The parameter IB 
orresponds to the peak value of the referen
e vB at the beginningof the period divided by the sensing resistan
e (IB = vB(0)/rS). The value of dAB,whi
h represents the di�eren
e between both duty 
y
les, dA − dB , will be for
ed inthis one-dimensional map to the value predi
ted by means of the averaged model.Hen
e, the expression for dAB is give by

dAB =
1

IQ

(
VP

RP

+
VN

RN

)
.On
e the evolutions of the indu
tor 
urrent has been �xed, let us determine the ex-pressions for the regions SA, SB and SC . Noti
e that the fun
tions FA and FB modelthe dynami
s when none or one swit
hing is produ
ed, whi
h implies dB > 1 and

dB + dAB > 1, respe
tively. Then, these modes of operation will a
t when the 
ondi-tions (see Fig. 4.12)
i < IB − (∆i1 − ∆ir),

i > IB − (∆i1 − ∆ir) and i < IB − (1 − dAB)(∆i1 − ∆ir),respe
tively, are ful�lled. Therefore, the regions 
an be established by the expressions
SA = {i ∈ D : HF,AB(i, φ) < 0} ,

SB = {i ∈ D : HF,AB(i, φ) > 0 and HF,BC(i, φ) < 0} ,

SC = {i ∈ D : HF,BC(i, φ) > 0} ,
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i
0 1 2 3

i

0

1

2

3

Figure 4.13. Illustration of the three-pie
e map f1 and the �xed point i∗. The parameters usedare in Table 4.4.being
HF,AB(i) = i− IB + ∆i1 − ∆ir,

HF,BC(i) = HF,AB(i) − dAB(∆i1 − ∆ir).Similarly, expressions for the map f2 
an be found and are given by
GA(x) = i+ ∆i1, (4.36)
GB(x) = i+ ∆i1dA(i) + ∆i3 (1 − dA(x)) , (4.37)
GC(x) = i+ ∆i1dA(i) − ∆i3d̄AB + ∆i4

(
1 − dA(i) + d̄AB

)
, (4.38)where dA 
orresponds to

dA(i) =
IA − i

∆i1 − ∆ir . (4.39)The parameter IA 
orresponds to IA = vA/rS at the beginning of the period. Finally,the existen
e regions will be given by
TA = {i ∈ D : HG,AB(i, φ) < 0} ,

TB = {i ∈ D : HG,AB(i, φ) > 0 and HG,BC(i, φ) < 0} ,

TC = {i ∈ D : HG,BC(i, φ) > 0} ,being
HG,AB(i) = i− IA + ∆i1 − ∆ir,

HG,BC(i) = HG,AB(i) + dAB(∆i1 − ∆ir).
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rete-time model 75Obtaining approa
hed expressions of IB and IANoti
e that the values of parameters IB and IA are still unde�ned. These valueswill establish the level of the voltage referen
es and 
onsequently, the averaged valueof the variable i. Before obtaining their appropriate expressions, let us 
onsider thein�uen
e of these parameters in the value of the steady state, assuming the main modes
MP and MN . Let us de�ne i∗F and i∗G as the �xed points of the fun
tions FC and
GC respe
tively and let us assume that the duty 
y
le in this equilibrium situation
orresponds to the averaged d̄B and d̄A. Then, FC(i∗F ) and GC(i∗G) will be

FC(i∗F ) = i∗F + ∆i1d̄B + ∆i2d̄AB + ∆i4

(
1 − d̄B − d̄AB

) (4.40)and
GC(i∗G) = i∗G + ∆i1d̄A − ∆i3d̄AB + ∆i4

(
1 − d̄A + d̄AB

)
. (4.41)If i∗F and i∗G are �xed points of FC(i), GC(i) then following 
onditions must be ful�lled

∆i1d̄B + ∆i2d̄AB + ∆i4

(
1 − d̄B − d̄AB

)
= 0and

∆i1d̄A − ∆i3d̄AB + ∆i4

(
1 − d̄A + d̄AB

)
= 0.Repla
ing the 
urrent in
rements with the expressions given in Table 4.4, the followingexpression is obtained in both 
ases:

−rL
L
IQ +

d̄B − 1

L
VP +

1 − d̄A

L
VN +

VIN d̄A

L
= 0, (4.42)whi
h 
orresponds to the 
ondition obtained in the averaged approa
h (4.23). There-fore, (4.42) is ful�lled and 
onsequently, i∗F and i∗G are �xed points of the FC and

GC respe
tively, whose expressions 
an be obtained for
ing the duty 
y
les to theiraveraged values. Then, from (4.19), (4.20), (4.35) and (4.39) we obtain
d∗B =

IB − i∗F
∆i1 − ∆ir = 1 − VP

RP IQ
,and

d∗A =
IA − i∗G

∆i1 − ∆ir = 1 +
VN

RNIQ
,and thus,

i∗F = IB −
(

1 − VP

RP IQ

)
(∆i1 − ∆ir)and

i∗G = IA −
(

1 +
VN

RNIQ

)
(∆i1 − ∆ir) .
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onverter with Single-Phase ControlConsequently, the value of the �xed points will be determined by IB and IA. The strat-egy proposed here to establish the value of IB and IA is to for
e the mean value duringa period of iL(t) to be equal to IQ, assuming there exists a situation of equilibrium,then
1

T

∫ t+T

t

iL(t)dt = IQ. (4.43)To solve this equation, assuming that the evolution of the indu
tor 
urrent is linearin ea
h topology and the duty 
y
les of the steady state are those predi
ted in theaveraged model. Then,
i∗F +

1

2T

(
∆i1d̄

2
B + ∆i2d̄

2
AB + 2∆i1d̄B d̄AB − ∆i4(1 − d̄A)2

)
= IQand

i∗G +
1

2T

(
∆i1d̄

2
A + ∆i3d̄

2
AB − 2∆i1d̄Ad̄AB − ∆i4(1 − d̄B)2

)
= IQand thus,

i∗F = IQ − 1

2T

(
∆i1d̄

2
B + ∆i2d̄

2
AB + 2∆i1d̄B d̄AB − ∆i4(1 − d̄A)2

)and
i∗G = IQ − 1

2T

(
∆i1d̄

2
A + ∆i3d̄

2
AB − 2∆i1d̄Ad̄AB − ∆i4(1 − d̄B)2

)
.Finally, the expressions of IB and IA will be given by

IB = i∗F + d̄B (∆i1 − ∆ir)and
IA = i∗G + d̄A (∆i1 − ∆ir) .It 
an be proved that both expressions for i∗F and i∗G are, in fa
t, equivalent and it isimportant to remark here their dependen
e on parameters T and VD.4.3.2 Fixed points of f1 and f2Though the maps f1 and f2 
ould have several �xed points, only the �xed pointsbelonging to the fun
tions FC or GC , whi
h have been found previously, will be takeninto 
onsideration in our analysis. Noti
e that only the modes of operation MP and

MN imply the swit
hing of SA and SB during the same period. If only one swit
h isgiven, the one-dimensional map would predi
t a stable dynami
s, but the real system
annot be stable ex
ept in the parti
ular 
ases VP = 0 and VN = 0. i∗F or i∗G, whoseexpressions are equivalent, will be referred here as the main �xed point (i∗).
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(a) VU = 2.0V (b) VU = 1.2VFigure 4.14. Temporal evolution of the signals vA (blue), vB (green) and rSiL (red).4.3.3 Stability analysis of the main �xed pointThe stability of the main �xed point 
an be analyzed by means of the derivative ofthe fun
tions FC and GC . Therefore, from (4.34) and (4.35) or from (4.38) and (4.39),the derivative of both fun
tions will be determined by the expression
λ =

∆i4 − ∆ir
∆i1 − ∆ir , (4.44)whi
h does only depend on the 
urrent in
rements of the �rst and third stage. More-over, due to ∆i1 > 0 and ∆i4 < 0, λ < 1 the stability of the main �xed point will beguaranteed provided that λ > −1. Therefore, the instability o

urs when the following
ondition is ful�lled:

VIN + VN − VP − 2rLIQ + 2(VU − VL)
L

rST
= 0. (4.45)4.3.4 Existen
e of the main �xed pointLet us now deal with the existen
e of the main �xed point. From (4.30) and (4.31),the 
ondition of existen
e for �xed points are given by

i∗ ∈ SC or i∗ ∈ TC ,whether the mode of operation is MP or MN respe
tively. Therefore, the �xed pointwill be admissible if the 
onditions
HF,BC(i∗) >= 0 or HG,BC(i∗) >= 0is ful�lled. Considering that these 
onditions are equivalent to d̄A < 1 or d̄B < 1 inthe mode MP or MN respe
tively, from (4.19) and (4.20), the existen
e of the �xed
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onverter with Single-Phase Controlpoint will be guaranteed if
1 +

VN

RNIQ
< 1 or 1 − VP

RP IQ
< 1,whi
h, taking into a

ount that the resistan
es and the indu
tor 
urrent are positiveand the referen
e voltages VP and VN are de�ned positive and negative respe
tively,is always ful�lled. Therefore, the �xed point i∗ will never be
ome virtual.Nevertheless, there exists another boundary due to the de�nition of the map. InFig. 4.14, two diagrams have been depi
ted in whi
h the evolution of both voltagereferen
es and the sensed 
urrent are represented. Noti
e that, as the parameters

VU is varied, the indu
tor 
urrent de
reases faster than the signal referen
es in theintermediate tram. At the 
riti
al point, the three slopes will be equivalent and these
ond swit
hing is skipped. A
tually, the maps (4.30) and (4.31) are only de�ned ifthe parameter ∆IB or ∆IA (see Fig. 4.12) is positive and so, ∆IB and ∆IA be
omes0 at the 
riti
al point. Therefore, the following two surfa
es 
an be de�ned as
HF (φ) = ∆IB = d̄AB(∆i2 − ∆ir)or
HG(φ) = ∆IA = −d̄AB(∆i3 − ∆ir),and their 
orresponding boundaries

ΣF (φ) = {HF (φ) = 0} (4.46)or
ΣG(φ) = {HG(φ) = 0}. (4.47)Consequently, a non-smooth bifur
ation will o

ur when the �xed point of the modesof operation MP and MN 
rosses the 
orresponding boundary (4.46) or (4.47). It isimportant to remark that, despite having the same �xed point and stability 
ondition,the existen
e 
ondition of the �xed point is di�erent. This fa
t has some 
onsequen
es,whi
h will be seen in the following se
tion.4.3.5 Two-dimensional bifur
ation diagrams. Codimension-twopointsIn this se
tion, several representative two-dimensional bifur
ation diagrams will illus-trate some of the feasible s
enarios that 
an be predi
ted with the one-dimensionaldis
rete model presented above. Only one smooth bifur
ation will take pla
e, the �ipbifur
ation, whereas there exist three di�erent 
onditions in whi
h the �xed point 
anyield a non-smooth bifur
ation:
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rete-time model 79� Intermediate slope limit (ISL): As it has been mentioned above, a non-smooth bifur
ation is yielded when i∗F or i∗G 
rosses the boundaries ΣF (4.46) or
ΣG (4.47) respe
tively.� Change of the mode of operation (MOC): This non-smooth bifur
ation willappear when, under the variation of some parameters of the systems, the modeof operation 
hanges from MP to MN or vi
eversa. From (4.29), the bifur
ationwill be given when the 
orresponding �xed point 
rosses the boundary de�nedby:

Σ0(φ) = {H0(φ) = 0}. (4.48)� Dis
ontinuous 
ondu
tion mode (DCM): This bifur
ation is given whenthe indu
tor 
urrent drops to 0 at the beginning of the 
y
le, and thus, thebifur
ation o

urs when
i∗ = 0.Flip bifur
ation - ISL bifur
ation

(a) RP = 22Ω, RN = 33Ω (b) RP = 33 Ω, RN = 22ΩFigure 4.15. Stability (dashed) and ISL (dotted) bifur
ation 
urves in the parameter spa
e
{VU , VP }. The solid line represents to the 
ondition Σ0 (MOC). The parameters are in table4.2.In Fig. 4.15, the stability 
ondition (4.44) (dashed lines) and the two border-
ollisionbifur
ation 
urves ΣF and ΣG (dotted lines) have been depi
ted in the two-parameterspa
e {VU , VP } for the modes of operation MP (see Fig. 4.15a) and MN (see Fig.4.15b) respe
tively. The solid line stands for the 
ondition (4.48), whi
h establishesthe 
hange of mode of operation. Therefore, the non-smooth bifur
ation 
urves ΣFand ΣG are only valid in their 
orresponding mode of operation. Let us fo
us in the�rst diagram. As VU is de
reased, the �xed point 
an rea
h the instability by 
rossingthe �ip bifur
ation 
urve or 
an be
ome virtual by 
rossing ΣF . The existen
e of boths
enarios in Fig. 4.15a has been validated, in whi
h two bifur
ation diagrams obtainedwith the PSIM simulator have been depi
ted (�ip bifur
ation in Fig. 4.16a and ISL
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(a) Flip bifur
ation (VP = 10.0V) (b) ISL bifur
ation (VP = 16.0V)Figure 4.16. Bifur
ation diagrams obtained with the PSIM simulator using VU as varying param-eter along segments in Fig. 4.15a.bifur
ation in Fig. 4.16b). Noti
e that the red lines in Fig. 4.15a 
orrespond to theparameter variation of the one-dimensional bifur
ation.A 
odimension-two point appears when these two bifur
ation 
urves interse
t. From(4.44) and (4.46) or from (4.44) and (4.47), it is obtained the 
ondition
VIN − VN − VP = 0, (4.49)and from (4.49) and (4.45),

(VU − VL)
L

rST
+ VN − rLIQ = 0. (4.50)The 
odimension-two point will o

ur when the 
onditions (4.49) and (4.50) are ful-�lled, for both operation modes. Consequently, for a given set of parameters, thispoint will appear only in one mode of operation. Noti
e that in Fig. 4.15b, the �xedpoint 
an only present the non-smooth bifur
ation due to the fa
t that the 
riti
alpoint is pla
ed in the MP zone.MOC non-smooth bifur
ation 
urveUnder the variation of some parameters of the system, the �xed point 
an 
hange themode of operation between MP and MN . The stability 
ondition has been proved notto be in�uen
ed by the mode of operation, in 
ontrast to its 
orresponding existen
e
ondition. This phenomenon has been illustrated in Fig. 4.17, where the involvedbifur
ation 
urves have been depi
ted. In this diagram, the green line representsthe stability 
ondition, whereas the solid bla
k line 
orresponds to the boundary Σ0.Noti
e that, in both sides of this 
urve, there exists a region in whi
h the �xed pointis admissible and stable, despite belonging to di�erent modes of operation. Therefore,
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Figure 4.17. Stability (green) and existen
e (blue) bifur
ation 
urves in the parameter spa
e
{VU , VP }. The solid line 
orresponds to Σ0 and grey lines represent virtual lines. The parametersare in table 4.2 ex
ept: RP = RN = 33 Ω.a stable �xed point pla
ed in whatever mode 
an be
ome virtual or persist when
hanging the mode of operation, but not be
ome unstable. The 
onditions ΣF and
ΣG have also been in
luded. Noti
e that these lines are only de�ned in the region inwhi
h the 
orresponding �xed point is admissible (blue lines).Two di�erent bifur
ation s
enarios have been 
hosen and denoted with red lines in Fig.4.17. In one 
ase, for VU = 1.2 V, the �xed point persists after 
rossing the boundary
Σ0. Due to the fa
t that it 
annot be appre
iated a signi�
ant 
hange in the �xedpoint in both sides of the bifur
ation, two temporal diagrams have been illustratedin Fig. 4.18 to show the persisten
e s
enario. Conversely, the se
ond non-smoothphenomenon 
an be observed in Fig. 4.19, in whi
h a one-dimensional bifur
ationdiagram has been shown. For VU = 0.8 V, as VP is de
reased, the �xed point of MP
rosses the boundary Σ0 by be
oming virtual. Moreover, after the boundary, the �xedpoint i∗G is also virtual and the dynami
s of the 
onverter jumps to a 
haoti
 attra
tor.This non-smooth phenomenon is 
hara
teristi
 of dis
ontinuous maps.Dis
ontinuous 
ondu
tion mode.The last non-smooth bifur
ation that 
an be predi
ted by the one-dimensional mapo

urs when the indu
tor 
urrent drops to zero and operates in DCM. Figure 4.20ashows the DCM bifur
ation 
urve (
yan line) in the parameter spa
e {VU , VP } whenthe �xed point belongs to MN . As it 
an be seen in the one-dimensional bifur
ationdiagram in
luded (see 4.20b).The one-dimensional dis
rete-time model has been proved to be useful to predi
t thementioned non-smooth bifur
ation together with the smooth �ip bifur
ation. Their
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(a) VP = 8.5V (b) VP = 7.5VFigure 4.18. Temporal evolution of rSiL (red), vA (blue) and vB (green) �xing VU = 1.2 Vobtained with the PSIM simulator. The parameters are in Fig. 4.17.

Figure 4.19. Bifur
ation diagram using VP as varying parameter obtained with the PSIM simu-lator. The parameters are in Fig. 4.17 ex
ept: VU = 0.8 V.predi
tion has resulted to be a

urate enough in a range of parameters. Nevertheless,the averaged model predi
ts a Hopf smooth bifur
ation that 
annot be predi
ted bythis simpli�ed map due to its unique state variable. This fa
t has motivated us todevelop a more 
omplete map.4.4 Normalized one-dimensional mapIn Chapter 3, the di�erent s
enarios that 
an be given in a three-pie
e pie
ewise-linealmap in a restri
ted range of parameters have been 
lassi�ed in sixteen zones in theparameter spa
e {β, γ}. Under the assumption of α = 1, the dynami
s was redu
ed tofew zones illustrated in Fig. 3.13. Let us now determine whi
h s
enarios 
an o

ur inthe submappings f1 and f2 de�ned above, taking into a

ount the restri
tions of thephysi
al parameters.
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(a) (b) VU = 0.8VFigure 4.20. (a) Stability (green), ΣG (blue), Σ0 (bla
k) and DCM (
yan) bifur
ation 
urvesin the parameter spa
e {VU , VP }. (b) Bifur
ation diagram obtained with the PSIM simulatora

ording to the red line variation. The parameters are in table 4.2 ex
ept: RP = RN = 68Ωand VN = −5.5 V.Con
erning the submapping f1, after applying the 
hange of 
oordinates x = i− IB +

∆i1 − ∆ir, this submapping 
an be rewritten as
FA(x) = x+ ∆i1,

FB(x) =

(
1 − ∆i1 − ∆i2

∆i1 − ∆ir)x+ ∆i1,

FC(x) =

(
1 − ∆i1 − ∆i2

∆i1 − ∆ir − ∆i1 − ∆i3

∆i1 − ∆ir)x+ ∆i1 + d̄AB(∆i1 − ∆i3).Therefore, if the following de�nitions are taken into 
onsideration
α = 1, β = −∆i1 − ∆i2

∆i1 − ∆ir , γ = −∆i1 − ∆i3

∆i1 − ∆ir ,
µ = ∆i1 and τ = d̄AB(∆i1 − ∆ir),the three-pie
e PWL map studied in the previous Chapter is obtained.Considering the range of the physi
al parameters, the domain of the normalized pa-rameters are given by

β < 0 and γ < 0,

τ > 0 and µ > 0.Noti
e that γ < 0 and hen
e, the only feasible s
enarios are pla
ed in zones 1, 3, 4 and
6. Nevertheless, 
onsidering the dis
ontinuous boundary ΣF , whi
h is now determinedby the expression

ΣF = {1 + β = 0},
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β > −1 and the dynami
s of the submapping f1 is restri
ted to the zones 1, 3 and 4.Consequently, only the stable period-two solution BC 
an be found in the system andno 
oexisten
e between period-one and two orbits are permitted. These results are inagreement with those obtained in this 
hapter.Equivalent results are obtained for the map f2 and hen
e, they will not be reprodu
edhere.4.5 Five-dimensional dis
rete-time modelsThe map presented in this se
tion will 
onsider the evolution of all the state variablesof the system. Though in the new map the evolution of the indu
tor 
urrent will bealso 
onsidered linear in ea
h topology, its in�uen
e in the evolution of the 
apa
itorvoltages will imply the need of nonlinear terms in order to approa
h their evolution,as well as the evolution of the integral terms. Therefore, the resulting map will be
lassi�ed as 5-dimensional pie
ewise-smooth map. Taking all these 
onsideration intoa

ount, the following map 
an be de�ned:xn+1 = f(xn) (4.51)where xn = [i, vp, vn, σp, σn]T . Similarly to the de�nition of the one-dimensional map,(4.51) 
an be divided into the submappings:

f(i, vp, vn, σp, σn, φ) =

{
f1(i, vp, vn, σp, σn, φ) if H0(vp, vn, φ) > 0,

f2(i, vp, vn, σp, σn, φ) if H0(vp, vn, φ) < 0,where f : R
5 × R

19 7→ R
5 and φ refers to the set of parameters

φ = {VIN , rL, L, VP , VN , RP , RN , VU , VL, T, CP , CN , rS , gPA, gPB, gNA, gNB, τP , τN}.The expressions of the map will not be reprodu
ed here, for the sake in brevity. Forfurther details, the 
omplete development of these expression 
an be found in theAppendix A. Noti
e that the 
ondition that divides the map (4.51) depends on thestate variables vp and vn. Therefore, hybrid solutions belonging to both submappings
an now be modelled by this higher dimension map.4.5.1 Stability bifur
ation 
urvesIt has been proved in the one-dimensional analysis that the dynami
s of the 
onverter
an undergo a �ip bifur
ation, whose analyti
al expression has been presented above.Conversely, the averaged model has also dete
ted the existen
e of a Hopf bifur
ation,whi
h 
orresponds to a Neimark-Sa
ker 
ase in the dis
rete-time model, when theparameters related to feedba
k terms, su
h as gPA, gNB, τP or τN , are varied. Let usnow analyze the footprints of these bifur
ations in the �ve-dimensional map.
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(a) (b)Figure 4.21. Flip bifur
ation 
urve obtained with the 1-D map (solid line) and (4.51) (dottedline) and Neimark-Sa
ker (dashed line) bifur
ation 
urves obtained with (4.51) in the parameterspa
e {VU , VP } (a) and {τ, g} (b). The parameters are in table 4.2 ex
ept: RP = RN = 33 Ω,
τP = τN = 6 µs and gPA = gNB = 0.1.The two-dimensional bifur
ation diagrams depi
ted in Fig. 4.21 shows the smoothbifur
ations 
urves predi
ted with the maps proposed in this 
hapter. Solid greyline stands for the �ip bifur
ation predi
ted with the one-dimensional maps whereasthe dashed and dotted lines 
orrespond to the Neimark-Sa
ker and �ip bifur
ationsobtained with (4.51). In Fig. 4.21a, the parameter spa
e and the set of sele
tedparameters 
orresponds to the Fig. 4.17 but �xing gPA = gNB = 0.1 and τP = τN =

6 µs. Noti
e the appearan
e of a Neimark-Sa
ker bifur
ation, redu
ing signi�
antlythe region in whi
h the �xed point is stable. The blue dot in Figure 4.21b illustratesthis bifur
ation 
urve in the parameter spa
e {g, τ}, being g = gPA = gNB and
τ = τP = τN . Roughly, it 
an be seen the presen
e of unstable dynami
s for lowervalues of the time 
onstants τ jointly higher values of the gains g. In this 
ase, theblue dot denotes a 
odimension-two point given by the 
rossing of two Neimark-Sa
kerbifur
ations.4.5.2 Non-smooth bifur
ationsLet us now re
all the non-smooth bifur
ations predi
ted with the one-dimensionaldis
rete-time model. In order to show the feasible deviations between both dis
rete-time models, the 
urves illustrated in the mode of operation MP in Fig. 4.17 havebeen depi
ted in Fig. 4.22a, in
luding now the 
urves predi
ted by the 5-dimensionalmap. Dealing with the MOC bifur
ation, none dis
repan
y has been found betweenboth maps. A
tually, both 
urves 
annot be distinguished. The analysis of the DCMbifur
ation leads to similar 
on
lusions.
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(a) (b)Figure 4.22. (a) Flip (green) and Neimark-Sa
ker (blue) bifur
ation 
urves obtained with (4.51)in the parameter spa
e {VU , VP}. Grey lines 
orrespond to the bifur
ation 
urves obtained withthe one-dimensional map. (b) Modulo of the real (blue) and 
omplex (red) eigenvalues of theJa
obian. The parameters are in table 4.2 ex
ept: RP = RN = 33Ω and (b) VU = 1.0V.Nevertheless, an important deviation takes pla
e in the neighborhood of the bifur
a-tion. As it 
an be noti
ed in the diagram, in both sides of the ISL bifur
ation, twosmooth bifur
ation 
urves appear. Noti
e in the diagram the appearan
e of the �ip andNeimark-Sa
ker bifur
ations. A deeper analysis of the eigenvalues has revealed thatthe ISL boundary presents a dis
ontinuity in the eigenvalues of the Ja
obian matrix(see Fig. 4.22b) despite the 
ontinuity of the �xed point. This phenomenon provokesthe smooth bifur
ations whi
h takes pla
e in the neighborhood of the ISL boundary.Further analysis is required to determine whether this dis
ontinuity is yielded by thenature of the dis
rete-time model or by the own dynami
s of the 
onverter.4.6 Con
lusionsA Single-Indu
tor Two-Input Two-Output (SITITO) swit
hing d
-d
 
onverter hasbeen analyzed in this 
hapter. This 
onverter, whi
h does not need symmetry in itspositive and negative outputs, operates with a PWM 
ontrol, whi
h has proved tobe 
apable of providing stable behavior if the parameters are properly sele
ted. Twomodels have been used to deal with the existen
e and stability of the normal regimeof operation. The averaging approa
h has been developed jointly with the Ja
obianmatrix to deal with the stability of the slow dynami
s.Relevant 
on
lusions have been obtained after the dis
rete-time analysis. The di�erentorder of o

urren
e of both swit
hings allows the 
onverter to operate in two di�erentmain modes. Moreover, the strategy of 
ontrol 
hosen adds a dis
ontinuous boundary
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lusions 87to the system, whi
h has resulted to be depended on the mode of operation. The one-dimensional map has permitted to dete
t a period-doubling bifur
ation by means ofsimple expressions jointly with some non-smooth bifur
ations. Despite the presen
e ofboth modes, the study has shown that the value and stability of the main �xed pointis not in�uen
ed by the mode of operation. Therefore, the dynami
s of the 
onverter is
hara
terized by the stability 
ondition and the 
orresponding non-smooth boundaries.Consequently, a non-smooth bifur
ation arises when the 
ondition whi
h establishesthe mode of operation of the �xed point is ful�lled.Higher dimensional maps have provided more a

urate predi
tions, whi
h are requiredwhen the ripples of the 
apa
itor voltages in
reases their weight in the feedba
k loops.This map also predi
ts Neimark-Saker bifur
ations when the parameters related withthe PI term are varied. Moreover, the analysis of the eigenvalues in the neighborhoodof the dis
ontinuous boundaries has proved the existen
e of new �ip and Neimark-Sa
ker bifur
ations owing to a dis
ontinuity in the eigenvalues.





Chapter 5
Analysis of the SIMIMO 
onverterwith Interleaved Control

Interleaved 
ontrol will be presented as an alternative 
ontrol,whose viability will be studied in this 
hapter. In 
ontrast to the
ontrol previously proposed, the nature of this strategy will allow usto generalize the 
ontrol so as to regulate d
-d
 
onverters with Noutputs whi
h 
an have di�erent polarities. After proposing a gener-alized power stage, we will analyze both the stability and the bound-aries of the system, whi
h will establish the operating region of the
onverter, by means of averaged and dis
rete-time models. The use-fulness of the di�erent models to determine the dynami
s will be alsotaken into 
onsideration.
5.1 General power stage and interleaved 
ontrol5.1.1 Power stage des
riptionThe s
hemati
 diagram in Fig. 5.1 shows a SIMIMO d
-d
 
onverter that uses asingle indu
tor shared by a generi
 number of outputs: p positive (non-inverted) and
n negative (inverted) polarities, being N = p+ n. The following elements are de�nedfor ea
h output: an equivalent resistan
e Rj (
onsidered here for the load), a �lter89
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−+VIN

SA

SB

Sj−

Rj− Cj−
voj−

Sj+

Rj+ Cj+ voj+

L, rLil

negative loads (j− = 1..n) positive loads (j+ = 1..p)Figure 5.1. S
hemati
 diagram of a SIMIMO d
-d
 
onverter with a generi
 number of positiveand negative outputs.
apa
itorCj , and a spe
i�
 swit
h Sj , whose ON state (
losed) will a
tivate the 
hargingof the 
apa
itor Cj .Two extra swit
hes SA and SB are also required and work as following. Along thetime intervals during whi
h these two swit
hes are ON (and all Sj are OFF (open)),the indu
tor is 
onne
ted to the sour
e VIN in order to re
over energy from it. Thisstage of the pro
ess is similar to the ON interval of simple boost or bu
k-boost d
-d
 
onverter and is equivalent to the topology T1 in the SITITO 
onverter presentedin the previous 
hapter. During the time remainder, SA and SB are a
tivated in a
omplementary way. If SA is ON and SB is OFF, then a parti
ular Sj swit
h, belongingto a positive output, must be ON in order to load the 
orresponding 
apa
itor Cj . Thisstage works like a boost 
onverter in the OFF interval. Similarly, if SA is OFF and SBis ON, then the swit
h Sj in the ON state must belong to a negative output, so this partof the pro
ess is similar to the OFF interval of a bu
k-boost 
onverter.The general power stage also indi
ates the state variables: the indu
tor 
urrent iL,and the set of output voltages {voj , j = 1..N}.The diagram in Fig. 5.2 
orresponds to a Single-Indu
tor Two-Output 
ase (p = 1 and
n = 1) (SITITO), whi
h is equivalent to the 
onverter studied in the previous 
hapter.There is no need here for spe
i�
 Sj swit
hes, be
ause there is only one output towhi
h inje
t the 
urrent from the indu
tor when either SA or SB results open. Hen
e,these swit
hes 
an be substituted by two diodes, whose a
tion is 
omplementary to
SA (negative load) and SB (positive load). We will assign the indi
es 1 and 2 to thepositive and negative polarities respe
tively. Noti
e that the subindexes 
onsideredhere as 1 and 2 have their 
orresponden
e in P and N respe
tively in the previous
hapter.
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R2 C2 vo2 R1 C1 vo1
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Figure 5.2. S
hemati
 diagram of a SITITO d
-d
 
onverter with positive (1) and negative (2)outputs.5.1.2 Interleaved 
ontrol
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Figure 5.3. S
heme of the 
ontrol of a SIMIMO d
-d
 
onverter based on multi-phase modulation.The feedba
k 
urrent is vI = rSi, being rS the sensing resistan
e.A simpli�ed s
heme of a multi-phase or interleaved 
ontrol for a SIMIMO d
-d
 
on-verter [15℄ is shown in Fig. 5.3. This 
ontrol is made up from N 
hannels, ea
hof them driving a spe
i�
 swit
h Sj . Hen
e, the 
orresponding 
apa
itor Cj will be
harged when the state of the swit
h Sj is ON. The AND gates are used to a
hieve therequirement, explained above, that the ON state of swit
h SA 
orresponds to an OFFstate of all Sj asso
iated to negative outputs, and the same for SB 
onsidering all Sjswit
hes of the positive outputs.
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onverter with Interleaved ControlLet us de�ne the set of inputs as {Vj , j = 1..N}. Similarly to the previous 
ontrol,the aim of the 
ontrol is to for
e the set of voltage outputs voj as 
losed as possibleto the 
orresponding input Vj . Considering the signal errors as follows
ej = Vj − voj , j = 1..N,and taking into a

ount the PI term of the 
ontrol, it 
an also be de�ned the set ofsignals {vij, j = 1..N} as

vij = gjsign (Vj) (ej − σj) j = 1..N,where {gj, j = 1..N} is the set of proportional 
oe�
ients of the PI blo
ks and
σj =

1

τj

∫
(voj − Vj) dt j = 1..N,being {τj, j = 1..N} the set of 
orresponding time 
onstants. A generi
 
hannel j willbe driven by a signal, whi
h will be denoted vdj . This signal, whi
h plays the role ofa dynami
al referen
e, is a linear 
ombination of PI outputs {vik}, given by

vdj =

N∑

k=1

αj,kvik, j = 1..N,where αj,k are the generi
 
oe�
ients in the matrix that appears in Fig. 5.3.Similarly to the 
ontrol presented in the previous 
hapter, the regulation is a
hieved bythe 
omparison of vI , a signal proportional to the indu
tor 
urrent (vI(t) = rSiL(t)),and a set of peak referen
e signals {vmj , j = 1..N} (5.1), whi
h in
lude the 
orre-sponding dynami
 referen
e vdj and a ramp signal vrj with period T and amplitude
VU − VL.

vmj = vrj + vdj . (5.1)Nevertheless, the set of ramp signals have been modi�ed in order to a
hieve an ap-propriate regulation of the 
onverter, due to the fa
t that it is 
onvenient that onlyone swit
h Sj is ON at a time. Let us divide the period of a modulating signal into Nintervals, so that
N∑

j=1

φjT = T,where {φjT, j = 1..N} is the time duration of ea
h phase interval. The strategy usedin the interleaved 
ontrol is based in applying an in
rement delay of the form
j∑

k=1

φk, k = 1..j,to ea
h of the ramp signals. Therefore, vrj 
an be de�ned as
vrj = VU − (VU − VL)mod( t

T
−

j∑

k=1

φk, 1

)
,
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al modeling 93where mod (x, 1) stands for the modulo of x.In order to 
larify the operation of the 
ontrol, in Fig. 5.4 the state variables iL and
voj , j = 1..4 and the peak referen
e signals vmj , j = 1..4 have been depi
ted in thesteady state, for a SIMIMO 
onverter with N = 4 (being p = 2 and n = 2).During ea
h phase j, whose duration is φjT , and taking into 
onsideration the a
tion ofthe bistables, the 
ondition vI = vmj splits the phase interval into two parts. Duringthe �rst subinterval, whi
h will be referred as the ON subinterval, all Sj swit
hes remainOFF and both SA and SB swit
hes are ON. Therefore, in this subinterval, the indu
torre
eives energy from the sour
e. Afterwards, until the end of that interval φjT , ase
ond subinterval is de�ned for whi
h Sj will be ON and either SB or SA will be OFFdepending on the polarity of the output: SB in 
ase positive or SA otherwise. Thisse
ond subinterval will be known as the OFF subinterval. During this subinterval one
apa
itor Cj is 
harged from the indu
tor.The a
tion of the 
ontrol is given by means of the automati
 sele
tion, due to thefeedba
k, of the instants of time that will determine the ratio of both ON and OFFsubintervals in every phase. During every OFF subinterval a dire
t e�e
t is produ
edon the output that 
orresponds to the spe
i�
 swit
h Sj that has been a
tivated.However, along the ON subintervals, the indu
tor 
urrent is re
overed from the sour
e,so involving the rest of the outputs. The total time per 
y
le to 
harge the indu
tor isdetermined by the addition of all ON subintervals, thus being a 
ombined a
tion of the
hannels. Consequently, the regulation of ea
h output is a
hieved through this totalON interval besides the duration of the respe
tive OFF subinterval, thus meaning thestability must be 
onsidered for the system as a whole, not for ea
h individual 
hannelor output.Finally, we will introdu
e same remarks about the 
oe�
ients α. Numeri
al simula-tions have revealed that the diagonal 
oe�
ients αj,j must be very small or even nullin order to ensure stability. This fa
t is due to an un
ompensated e�e
t: if αj,j isde�ned with su
h a signum that a de
reasing of vmj would in
rease the ON subinter-val, then an undesirable redu
tion in the time of loading Cj is produ
ed, otherwisethe redu
tion of the ON subinterval would not be in favor of the need of 
harge for theindu
tor in order to in
rease the 
urrent to later be delivered to Cj . Therefore, thefeedba
k will be a
hieved by the 
rossed 
oe�
ients αj,k, k 6= j of the matrix.5.2 Closed loop mathemati
al modeling5.2.1 Swit
hed modelThe swit
hed model gives the set of 2N+1 ordinary di�erential equations for the statevariables. In order to take into a

ount the di�erent 
on�gurations of the system, the
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(a) vI = rS iL

(b) vo1

(
) vo2

(d) vo3

(e) vo4Figure 5.4. Steady state of the SIMIMO d
-d
 
onverter with parameters in Table 5.1. Color
ode (a): red (rSiL) blue (vm1), green (vm2), 
yan (vm3) and orange (vm4).



5.2. Closed loop mathemati
al modeling 95binary variables uj and uA are needed. These signals are valued depending on thestate of the 
orresponding swit
hes Sj and SA: 0 or 1 if open or 
losed respe
tively.The swit
hed model 
an be easily obtained by applying standard Kir
hho�'s voltagelaw to the 
ir
uit: dvojdt =
1

Cj

(
ujsign (Vj) iL − voj

Rj

)
, (5.2)dσjdt =

1

τj
(voj − Vj) , (5.3)diLdt =

1

L



uAVIN −
N∑

j=1

ujsign (Vj) voj − rLiL



 . (5.4)The �rst subset of N equations (5.2) refers to the dynami
s of ea
h voltage output voj ,where sign (·) stands for the signum fun
tion. Additional subset (5.3) deals with Nequations for ea
h of the integral terms σj in the PI blo
ks. Finally, the last equation(5.4) deals with indu
tor 
urrent dynami
s.The binary 
ommand signal uj , whi
h is dire
tly related with the time interval inwhi
h 
apa
itor Cj is loaded and thus, it is de�ned 0 from the beginning of ramp vmj(when the syn
hronous swit
hing is a
tivated by the 
lo
k) until the asyn
hronousswit
hing de�ned by the zero 
ondition:
vmj(t) − vI(t) = 0. (5.5)Afterwards, uj is valued 1 until the end of the ramp vmj . Regarding the binary signal

uA, its value will be assigned to 1 if uj = 0, ∀j asso
iated with a negative output,otherwise uA = 0.Taking into a

ount (5.5), the set of state equations (5.2)-(5.4) is then in 
losed formand 
an be used for 
omputer simulations of the whole system.Before �nishing the des
ription of the swit
hed model, let us present some remarksdealing with the operation of the 
onverter. It should be noti
ed that, in the normalmode of operation (period T orbit), only one output is 
onne
ted to the indu
tor.Nevertheless, during the transient or with a dynami
s di�erent from the normal regime(subharmoni
s or 
haos), it is possible that the asyn
hronous swit
hing 
ondition(5.5) o

urs before the interval assigned to that output. In this 
ase, two outputswould result inter
onne
ted. Two situations 
an be distinguished here: if the two
onse
utive intervals involved in this pro
ess are de�ned belonging to outputs withopposite polarity (alternation of positive and negative outputs), that 
ase implies aseries 
onne
tion of a positive and a negative output and the indu
tor, whi
h willtransfer energy to these two outputs. Otherwise, in 
ase that two or more 
onse
utiveintervals are related to outputs having the same polarity, a parallel 
onne
tion of them
ould be produ
ed. In order to avoid this last situation, the 
ontrol should in
lude some
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(a) iL (b) voj , j = 1..4Figure 5.5. Simulated (red) and averaging (blue) transient of a SIMIMO d
-d
 
onverter. Theparameters used are in Table 5.1.
omplementary logi
 to inhibit this o

urren
e or the swit
h model should in
orporateat least the parasiti
 series resistan
e of the �lter 
apa
itors.5.2.2 Averaged modelUnder assumption of a redu
ed period T of the modulating signal su
h as the rippleof the state variables are enough small, the dynami
s of the system (5.2)-(5.4) 
anbe approximated by the smooth averaged model. A simple averaged model 
an beobtained from the swit
hed model by substituting the binary signals by 
ontinuousvariables. Therefore, if uj and uA are repla
ed by δj and δA respe
tively, then the setof 2N + 1 averaged equations (5.6)-(5.8) are given bydvojdt =
1

Cj

(
δjsign (Vj) iL − voj

Rj

)
, (5.6)dσjdt =

1

τj
(voj − Vj) , (5.7)diLdt =

1

L



δAVIN −
N∑

j=1

δjsign (Vj) voj − rLiL



 , (5.8)where the over bar stands for averaging during one swit
hing period.The duty ratios δj , whi
h are de�ned as the interval relative to a period T in whi
hthe swit
h Sj is open (OFF), 
an be obtained expli
itly from in terms of the averagedstate variables [15℄ as follows:
δj =

1

VU − VL

(
N∑

k=1

αj,kgksign (Vk) (vok − Vk + σk) + rsiL − VL

) (5.9)
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al modeling 97Parameter Value Parameter Value
VIN 5.0 V rS 0.5 Ω

L 39 µH rL 0.1 Ω

V1 5 V V2 −9 V

V3 12 V V4 −12 V

R1 10 Ω R2 15 Ω

R3 22 Ω R4 33 Ω

C1 68 µF C2 68 µF
C3 56 µF C4 39 µF
VU 1.0 V VL 0.0 V

τj 300 µs φj 0.25

αj,j 0.0 αj,k, j 6= k 1.0

gj 0.1 T 20 µsTable 5.1. Parameter values used in numeri
al simulations for N = 4, being j, k = 1..4.The parameter δA refers to the ratio, in period of the modulating signal, in whi
h theindu
tor is re
overing energy from the sour
e. Therefore, this ratio must in
lude the
N ON subintervals and the OFF subintervals 
onsidering only the positive loads, whi
his equivalent to ex
lude the OFF subintervals that involve the load of a negative output.To obtain a formal expression, let us de�ne the binary variable bj as

bj = 1/2 + sign (Vj) /2,so that bj = 0 if Vj < 0 and bj = 1 if Vj > 0, thus δA 
an be expressed as:
δA = 1 −

N∑

j=1

(1 − bj)δj .The above equations 
an be used to get information of the averaged system, in par-ti
ular slow dynami
s stability features. Let us re
all here that a periodi
 orbit of theswit
hing system 
orresponds to an equilibrium point of the 
ontinuous-time averagedsystem, whi
h 
an be 
al
ulated by imposing the zero �eld 
ondition to the set ofaveraging equations (5.6)-(5.8), thus giving the following results:
voj = Vj (5.10)

δj =
|Vj |
IQRj

(5.11)
i = IQ =

VIN

2rL



1 −

√√√√1 − 4rL
V 2

IN

N∑

j=1

|Vj |V ′

j

Rj



 (5.12)
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onverter with Interleaved Controlwhere |·| stands for the absolute value and V ′

j = (1−bj)VIN+|Vj | (so that V ′

j = VIN−Vjif Vj < 0 and V ′

j = Vj if Vj > 0). Finally, from (5.9) and (5.11), the steady stateexpression for σj 
an be obtained from the following set of N equations (j = 1..N)
N∑

k=1

αj,kgksign (Vk)σk + rsIQ − VL − (VU − VL)
|Vj |
IQRj

= 0. (5.13)A ne
essary existen
e 
ondition for equilibrium is that the dis
riminant in (5.12) bepositive. Besides this, there are two possible solutions if either a positive or a negativesignum is 
onsidered for the square root term in (5.12), but only the negative one isuseful in pra
ti
e; otherwise, the indu
tor 
urrent and the asso
iated loss of energywould be very high. The stability of this equilibrium point 
an be studied by theJa
obian matrix of this model, whi
h is given below:
Jj,k =

1

Cj

(
βj,k +

αj,kgksign (VjVk) IQ
VU − VL

)

Jj,N+k =
1

Cj

αj,kgksign (VjVk) IQ
VU − VL

Jj,2N+1 =
1

Cj

(
Vj

IQRj
+

sign (Vj) rSIQ
VU − VL

)

JN+j,k = γj,k

JN+j,N+k = 0

JN+j,2N+1 = 0

J2N+1,k =
−1

L

( |Vk|
IQRk

+
gksign (Vk)

VU − VL

∑N

j=1
αj,kV

′

j

)

J2N+1,N+k =
−1

L

gksign (Vk)

VU − VL

∑N
j=1

αj,kV
′

j

J2N+1,2N+1 =
−1

L

(
rL +

rS
VU − VL

∑N

j=1
V ′

j

)

(5.14)
being j = 1..N , k = 1..N , βj,j = −1/Rj, βj,k = 0 if k 6= j, γj,j = 1/τj and γj,k = 0 if
k 6= j.In Fig. 5.5, the indu
tor 
urrent and the voltage outputs are represented during thetransient in a four-output single-indu
tor d
-d
 
onverter using both the swit
hed andthe averaged model.5.3 One-dimensional dis
rete-time modelThe one-dimensional map that is presented in this se
tion is a �rst approa
h that
onsiders only the variations of the indu
tor 
urrent while the rest of the state variables



5.3. One-dimensional dis
rete-time model 99(the �lter 
apa
itor voltages and the integral terms) are assumed to be 
onstant. Inaddition, the indu
tor 
urrent is approximated by a pie
ewise-linear time fun
tion.This kind of approa
h is equivalent to the one widely used in boost or bu
k-boost
onverters with 
urrent programmed 
ontrol.
t

d1T d2T

φ1T φ2T

T

I1
p

I2
p

I1
r (t)

I2
r (t)

iL(t)

b

b

bi1n

i2n
i1n+1

Figure 5.6. S
hemati
 diagram of the 
urrent evolution for a SITITO 
onverter (N = 2). Thefun
tions I1
r (t) and I2

r (t) 
orrespond to v1
m(t)/rS and v2

m(t)/rS respe
tively.5.3.1 Map de�nitionThe map will be de�ned strobos
opi
ally with the periodi
ity of the modulating ramps.Moreover, in an extended range of parameters, the evolution of the indu
tor 
urrentpresents a pattern that is qualitatively repeated every phase (see Fig. 5.6). Taking intoa

ount this property, the map 
an be expressed as a 
omposition of N submappings.Let P (i) be the dis
rete-time map de�ned in a whole period T , then
i 7→ P (i) = fN ◦ fN−1 ◦ ... ◦ f2 ◦ f1(i), (5.15)where fk 
orresponds to the submapping in the phase interval k. Considering a lineartime dependen
e of the indu
tor 
urrent in ea
h topology, the evolution of the indu
tor
urrent in the phase interval k 
an be approa
hed by

ik+1 = fk(ik) = ik + (∆ion− ∆ioffk)dk + ∆ioffkφk, (5.16)where i1 = i, iN+1 = P (i) and, generally, ik 
orresponds to the value of the statevariable i at the beginning of the interval phase k, and thus
ik+1 = fk ◦ fk−1 ◦ ... ◦ f2 ◦ f1(i).
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onverter with Interleaved ControlThe 
urrent in
rements that appear in (5.16) are spe
i�
 for ea
h subinterval and theyare de�ned as the total variation of the indu
tor 
urrent that would be produ
ed ifthat subinterval lasted for the whole period T . Therefore, taking into a

ount (5.8)and the 
onstant voltage approa
h (voj ≈ Vj), these in
rements are
∆ion =

VIN − rLIQ
L

T (5.17)
∆ioffk =

bkVIN − |Vk| − rLIQ
L

T (5.18)Noti
e that in the above expressions the voltage drop in the indu
tor due to theparasiti
 resistan
e rL, whi
h is expe
ted to be small, is assumed 
onstant using theaveraged 
urrent IQ in (5.12).The duty 
y
le in ea
h phase interval is modeled as follows
dk =

{
d′k if d′k ≤ φk,

φk if d′k > φk,
(5.19)in whi
h

d′k =
Ik
p − ik

∆ion− ∆ir , (5.20)and
∆ir = −VU − VL

rS
.A

ording to (5.19), the generi
 submapping k is a PWL map with two trams: the(main) unsaturated tram with dk = d′k and the saturated tram with dk = φk.The set of parameters {Ik

p , k = 1..N}, in whi
h Ik
p is the value of the modulating ramp

vmk at the beginning of the phase interval k divided by the sensing resistan
e rS , isstill unde�ned. As the one-dimensional map will be used to determine the existen
eand stability of the normal regime of operation, then, due to the integral a
tion, the d
-levels of the ramps are 
onsidered to be shifted su
h as the mean value of the indu
tor
urrent �ts the averaged value obtained in (5.12). Therefore, the method proposedhere to determine these parameters is to for
e the mean value of the pie
ewise-linear
ontinuous fun
tion iL(t) during a whole period T to �t IQ, when the starting valueof i is just the main �xed point and thus, the duty 
y
les are those predi
ted by theaveraged model (5.11). As dk 
orresponds to the ON subinterval in the map, while δkdoes to the OFF subinterval in the averaged model, these ratios are 
omplementarilyde�ned in a phase interval, thus, in the �xed point 
onditions the duty ratio is de�nedas
d∗k = dk = φk − |Vk|

RkIQ
,



5.3. One-dimensional dis
rete-time model 101and Ik
p is determined in order to ful�l (5.20) in the �xed point 
ondition

Ik
p = i∗

k

+ (∆ion− ∆ir)dk, (5.21)where i∗k , whi
h 
orresponds to iL(t) at the beginning of phase interval k in theperiod-one 
ase (�xed point) so as to be applied to submapping fk de�ned in (5.16),thus giving
i∗

k+1

= i∗
k

+ (∆ion− ∆ioffk)dk + ∆ioffkφk. (5.22)The �nal step is to give an expli
it expression of i∗1 , whi
h is a
tually the �xed pointof the map P (i∗ = i∗
1), in a

ordan
e to the averaging 
ondition

IQ =
N∑

k=1

φki
k
, (5.23)in whi
h ik is the mean indu
tor 
urrent during the phase interval k applied to the

k-submapping in the �xed point 
ondition. Taking into a

ount that iL(t) is a PWLfun
tion, it is straightforward that
i
k

= i∗
k

+
ηk

φk

k = 1..N,where
ηk = ∆ion dk

(
φk − dk

2

)
+

1

2
∆ioffk

(
φk − dk

)2
.Let {∆i∗k

, k = 1..N} be the set of di�eren
es between k− and 1st− submapping �xedpoints. This set in
ludes a trivial �rst member ∆i∗
1

= 0 for the shake of 
ompletenessand the remainder (k = 2..N) are obtained after k − 1 iterations of (5.22)
i∗

k

= i∗ + ∆i∗
k

,

∆i∗
k

=

k−1∑

l=1

(
(∆ion− ∆ioffl)dl + ∆iofflφl

)
.Finally, inserting the above expressions in (5.23), results

IQ = i∗ +

N∑

k=1

(
φk∆i∗

k

+ ηk

)
,then

i∗ = IQ −
N∑

k=1

(
φk∆i∗

k

+ ηk

)
.
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onverter with Interleaved ControlParameter Value Parameter Value
VIN 6V VL 0

L 47 µH VU variable
rL 0.2 Ω V1 variable
C1 22 µF V2 −8 V

C2 22 µF τ = τ1 = τ2 20 µs
R1 33 Ω g = g1 = g2 0.02

R2 12 Ω φ1 = φ2
1

2

fs = 1/T 200 kHz rS 1 ΩTable 5.2. Parameter values used in numeri
al simulations for N = 2.5.3.2 Validity of the modelThe map de�nition (5.15) has been 
onstru
ted as a sequen
e of submappings andrequires that the indu
tor 
urrent (more pre
isely vI = rSiL) inter
epts ea
h of themodulating signals vmk(t) in the 
orresponding phase interval k. These restri
tionsadd two sets of boundary 
onditions in the map. The �rst set applies to the value of
i∗

k with respe
t to Ik
p so that the duty 
y
le be positive. Therefore, from (5.20) the�rst set of validity 
onditions 
an be expressed in two equivalent forms

{
dk > 0,

i∗
k

< Ik
p ,

k = 1..N. (5.24)The se
ond set applies to the relative position of the modulating ramps vmk and 
anbe expressed in the form
Ik
p < Ik+1

p − ∆irφk, k = 1..N, (5.25)where the 
y
li
 
ondition IN+1
p = I1

p is taken into a

ount.Noti
e that (5.25) does not show dependen
e on the state variable i. When any ofthese 
onditions are ful�lled, the dynami
s presents a border-
ollision bifur
ation. A
-tually, the dynami
s outside these boundaries should be analyzed rede�ning the model.Nevertheless, the loss in the symmetry of the system in
reases greatly the 
omplexityof the map and the extension of the analysis is out of the s
ope of this dissertation.Therefore, these 
onditions will be 
onsidered here as a validity boundaries of our map.The set of validity 
onditions (5.24) (bla
k) and (5.25) (grey) have been depi
ted inFig. 5.7 in the parameter spa
e {VU , φ1} (Fig. 5.7a) and {V1, φ1} (Fig. 5.7b) for
N = 2. Solid and dashed lines represent the 
onditions for the phase intervals one and
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(a) V1 = 6.0V (b) VU = 0.5VFigure 5.7. Validity 
urves from (5.24) (bla
k) and (5.25) (grey) for N = 2. Solid and dashedlines 
orrespond to the 
onditions for the phase intervals one and two respe
tively. The parametersare in Table 5.2.

(a) V1 = 6.0V (b) V1 = 6.0V and VU = 0.104VFigure 5.8. Plots obtained with the PSIM simulator for N = 2: iL(t) (red), I1
r (t) (blue) and

I2
r (t) (green) evolution. The parameters are in Table 5.2.two respe
tively. The red line added in Fig. 5.7a represent the parameter variationsof the bifur
ation diagrams depi
ted in Fig. 5.8a, where some s
enarios have beenfound in the real system when 
rossing any of these boundaries. In Fig. 5.8b, thes
enario around the bifur
ation has been plotted to illustrate the 
oin
iden
e of bothmodulated signals. In Fig. 5.9 some s
enarios have been plotted to illustrate thenearby of (5.24) 
ondition, taking parameters along the red line in Fig. 5.7b.In the �rst 
ase, the bifur
ation diagram has been obtained varying the parameter VU .As it 
an be appre
iated, the diagram in Fig. 5.8a shows a jump in the state variablefrom a stable one-periodi
 orbit to a 
haoti
 attra
tor when the 
ondition (5.25) fromthe phase two is ful�lled. This kind of non-smooth bifur
ation o

urs in dis
ontinuousmaps (maps with a jump in the state), with whi
h this dynami
s 
ould be modeled if
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(a) V1 = 9.0V (b) V1 = 7.0V

(
) V1 = 6.0V (d) V1 = 4.0VFigure 5.9. Plots obtained with the PSIM simulator for N = 2: iL(t) (red), I1
r (t) (blue) and

I2
r (t) (green) evolution. The parameters are in Table 5.2 ex
ept: φ1 = 0.65, φ2 = 1− φ1. In (
)and (b), the two swit
hings take pla
e in the same phase interval.
the 
omplete map has been taken into 
onsideration. Noti
e also the equivalen
e ofthis bifur
ation with the bifur
ation seen in the previous 
hapter when the slope ofthe intermediate state rea
hes the slope of the ramp signal.The se
ond 
ase studied has been depi
ted in Fig. 5.9. In this situation, four dia-grams have been shown to illustrate the persisten
e s
enario of the �xed point when
rossing the boundary (5.24). Noti
e that in Fig. 5.9
 and Fig. 5.9d, after 
rossingthe boundary, both asyn
hronous swit
hings take pla
e in the same phase interval.Therefore, the dynami
s 
annot be predi
ted with the map proposed. When the �xedpoint is unstable after 
rossing the boundary, other s
enarios 
an appear, as su
h thenon-smooth period-doubling.



5.3. One-dimensional dis
rete-time model 1055.3.3 Main mode of the map, �xed point and stability analysisTaking into a

ount the two trams in ea
h submapping, the map (5.15) 
an have upto 2N trams. However, those trams that imply saturation of the duty 
y
le are not ofinterest for a real system, thus in pra
ti
al appli
ations, the 
on�guration to whi
h therelevant �xed point belongs is the one with no duty 
y
le saturated. This 
on�gurationwill be 
alled the main mode and is analyzed in detail below. In order to simplify theanalysis, the (unsaturated) map is rewritten in terms of variations regarding the �xedpoint of the main mode. From (5.16) and (5.22)
ik+1 − i∗

k+1

= ik − i∗
k

+ (∆ion− ∆ioffk)(dk − dk)and from (5.20) and (5.21) the variation of the duty 
y
le is:
dk − dk = − ik − i∗

k

∆ion− ∆irthen, from the above two expressions, the submapping results
ik+1 − i∗

k+1

= (1 − αk)(ik − i∗
k

) (5.26)where a new set of 
oe�
ients {αk, k = 1..N} is de�ned
αk =

∆ion− ∆ioffk

∆ion− ∆ir . (5.27)Finally, the iterative map applied to the variation of 
urrent is obtained by the iteration
(k = 1..N) of submapping (5.26).

in+1 − i∗ =

N∏

k=1

(1 − αk)(in − i∗)To simplify the notation, a new parameter λ, whi
h takes into a

ount the e�e
t of allphases in the main mode, is de�ned
λ =

N∏

k=1

(1 − αk) (5.28)then the map in the main mode, whi
h will be denoted Pm 
an be expressed as
in+1 = Pm(in) = λin + (1 − λ)i∗ (5.29)The main �xed point, whi
h will be 
alled im and it is obtained applying the 
ondition

i = Pm(i), is therefore im = i∗, in a

ordan
e to the 
onditions imposed in the mapde�nition.
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(a) (ρ1, ρ2): (1, 2.5) (bla
k), (−0.5, 2.5) (grey)
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(b) (ρ1, ρ2, ρ3): (0.5, 4, 8)Figure 5.10. Fun
tion λ(x) for N = 2 (a) and N = 3 (b).

(a) VU = 0.52V with i(0) = 0.0A(red) and i(0) = 4.105A (blue) (b) VU = 0.45VFigure 5.11. Cobweb diagrams around a �ip bifur
ation. In (a) two di�erent values of i(0) (initial
onditions) are used to show the existen
e of two attra
tors: the main �xed point and a period-twoorbit. Variable parameters shared in both diagrams are: V1 = 2.0 V and V2 = −15.0 V.Due to the linearity of Pm, the asymptoti
 stability is straight given by the 
ondition
|λ| < 1 (5.30)In order to des
ribe the feasible s
enarios, whi
h 
an appear in the dynami
s of themap as the ramp amplitude is varied, the parameter λ de�ned in (5.28), in whi
hthe 
oe�
ients αk are in (5.27), 
an be expressed as a fun
tion of some dimensionless
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(a) In
reasing VU (b) De
reasing VUFigure 5.12. Bifur
ation diagrams obtained with the PSIM simulator using VU as the varyingparameter. The parameters are in Fig. 5.11.

(a) VU = 0.23V (b) VU = 0.15V and i(0) = 0.0A(blue) and i(0) = 4.1A (red)Figure 5.13. Cobweb diagrams around a non-smooth pit
hfork bifur
ation. After the bifur
ationin (b), the main �xed point is unstable and two new attra
tors 
oexist: a new �xed point (pla
edin the fourth tram) and a 
haoti
 attra
tor. Variable parameters shared in both diagrams are:
V1 = −V2 = 12V.terms as follows

λ(x) =
1

(x+ 1)N

N∏

k=1

(x− ρk), (5.31)where x is de�ned as
x =

VDL

(VIN − rLIQ)rST
(5.32)and

ρk =
|Vk| − bkVIN + rLIQ

VIN − rLIQ
. (5.33)
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(a) Flip bifur
ation (b) Non-smooth pit
hfork bifur
ationFigure 5.14. Bifur
ation diagram obtained analyti
ally using VU as the varying parameters. The
urves represent the stable (blue), unstable (red) and virtual (grey) one and two-periodi
 orbits.The parameters for (a) are in Fig. 5.11 and for (b) in Fig. 5.13.

(a) De
reasing VU (b) In
reasing VUFigure 5.15. Bifur
ation diagrams around the pit
hfork bifur
ation obtained with the PSIMsimulator using VU as the varying parameter. The parameters are in Fig. 5.13 but g = 0.01 and
τ = 200 µs.Figure 5.10 shows the fun
tion λ(x) for N = 2 (Fig. 5.10a), N = 3 (Fig. 5.10b)and di�erent sets of parameters. This representation a

ounts for the in�uen
e ofthe ramp amplitude in the stability of the map. Noti
e that λ(x) shows asymptoti
behavior (λ(x) → 1 ifx→ ∞) and has the singular point x = −1, whi
h is lo
ated in anon-physi
al area, 
onsidering that the slope of the ramp 
annot be inverted (VD > 0).The map will be unstable if λ < −1 or λ > 1, thus provoking two types of bifur
ations:period-doubling (see Fig. 5.11) or non-smooth pit
hfork (see Fig. 5.13).
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rete-time model 109In the 
obweb diagrams shown in these �gures a di�erent number of trams of themap 
an be observed. The �rst tram is asso
iated to saturation in both intervals(xn+1 = xn + ∆ion), the se
ond tram (and the fourth in Fig. 5.13) has one intervalsaturated, and the third tram 
orresponds to the main mode (no saturation at all).More details above these trams are given below also for the two-output 
onverter(N = 2).In Fig. 5.11a, λ = 0.907 and hen
e, im is stable. Furthermore, it is shown in the same�gure the 
oexisten
e with a stable period-two orbit. It will be proved below that thiss
enario, in whi
h these two attra
tors 
oexist, is always given in the neighborhood ofa �ip bifur
ation in our system. On the other hand, in the diagram depi
ted in Fig.5.11b, im is unstable (λ = 1.010 > 1) and a two-pie
e 
haoti
 orbit exits in whi
h allthe trams of the map are involved. Cobweb diagrams in Fig. 5.13 are related to apit
hfork bifur
ation. In this 
ase, after the bifur
ation (see Fig. 5.13b), two new �xedpoints appear in the se
ond and forth trams. The �rst �xed point is unstable whereasthe last one is stable and 
oexists with a 
haoti
 orbit, whi
h involves the se
ond andthird trams of the map.Finally, Fig. 5.14 shows the one and two periodi
 orbits using VU as the varyingparameter. Blue and red lines stand for stable and unstable orbits whereas grey linesrepresent virtual orbits. Noti
e in the diagrams the 
oexisten
e of the attra
tors. Thebasin of attra
tion in Fig. 5.14a is determined by an unstable period-2 orbit, whereasin Fig. 5.14b, the boundary is given by the unstable main �xed point.The validity of this analysis has been proved in Fig. 5.12 and Fig. 5.15, showing thatthe bifur
ation points varying VU are 
lose to the predi
ted values.5.3.4 Stability analysis of the main �xed point in a SITITOd
-d
 
onverterIn this se
tion, we will study deeply the dynami
s of the two-output 
ase with oppositepolarity 
onverter. As it is mentioned above and show in Fig. 5.11 and Fig.5.13, theone-dimensional map 
an have up to four trams. The diagrams in Fig. 5.16 show thewaveforms of the indu
tor 
urrent (iL(t)) and the two referen
es during a period. Thedi�erent waveforms 
orrespond to a varying initial 
ondition (iL(0)). The 
ontinuousline 
orresponds to a generi
 initial value in the main mode and the dotted lines arethe 
riti
al 
ases asso
iated to the border of the trams. In Fig. 5.16a there are onlytwo borders and 
onsequently, the map is de�ned with three trams, whereas in Fig.5.16b there are three borders 
orresponding to four trams.The relative value of dimensionless parameters {x, ρ1, ρ2} de�ned previously 
an helpus to determine the number of pie
es and their slope, whi
h applies for intervals within
reasing values of the indu
tor 
urrent in a

ordan
e to the following rules:
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onverter with Interleaved Control� The �rst and simplest tram 
orresponds to the 
omplete saturation, in+1 =

in + ∆ion, then it has a unit slope.� The se
ond tram 
orresponds to the saturation of the �rst phase, therefore theslope of this tram of the map is given by the expression (x− ρ2)/(x+ 1), whi
hwill result positive if x > ρ2 (negative otherwise).� The third tram 
orresponds to the main mode or unsaturated operation. Itsslope 
an be obtained from (5.31) for N = 2 and is expressed as
λ(x) =

(x− ρ1)(x − ρ2)

(x+ 1)2
(5.34)and this is positive if x is outside the interval (ρ1, ρ2) or negative if x is insidethis interval.� The fourth tram exists only if the time-slope of the indu
tor 
urrent in the �rstphase is more negative than the slope of the ramp (x < ρ1), thus enabling thesaturation in the se
ond phase. The slope of this tram of the map is thereforegiven by the expression (x− ρ1)/(x+ 1), whi
h will always be negative.

(a) Three pie
es (b) Four pie
esFigure 5.16. Evolution of the indu
tor 
urrent (�xed point and 
riti
al values) and referen
es (seeFig. 5.8 for 
olor 
ode). The parameters are in Fig. 5.11 (a) and Fig. 5.13 (b).In what follows, we will 
onsider as the �rst phase the one 
orresponding to thelower time-slope of iL(t), su
h that ρ1 < ρ2. This 
riterion 
annot modify the �nal
on
lusions, the only di�eren
e lies in the values of the �xed points. Noti
e also that, ingeneral, due to the asymmetry in the expression of parameters (5.33), the �rst 
hannelwill likely 
orrespond to the positive output (V1 > 0) and this is ne
essarily true if
ρ1 < 0. In addition, the following restri
tions apply to these parameters: ρ1 > −1 and
ρ2 > 0.
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rete-time model 111To sum up, the highest zero of λ(x) will be pla
ed always in the positive axis, whereasthe lowest one 
an be positive or negative, but not less than−1. Moreover, the fun
tion
λ(x) will present always a minimum value at

xMIN =
ρ1 + ρ2 + 2ρ1ρ2

2 + ρ1 + ρ2

, (5.35)in whi
h the value of λ is
λMIN =

−(ρ2 − ρ1)
2

4(1 + ρ1)(1 + ρ2)
. (5.36)Therefore, a �ip bifur
ation is possible if λMIN <= −1 and at the two 
riti
al valuesof x

xFLIP =
1

4

(
ρ1 + ρ2 − 2 ±

√
(ρ1 − ρ2)2 − 4(1 + ρ1)(1 + ρ2)

)
. (5.37)
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Figure 5.17. Flip (red) and non-smooth pit
hfork (blue) bifur
ation 
urves in the parameter spa
e
{ρ1, ρ2} for di�erent values of x.A se
ond possible bifur
ation appears for λ(x) = 1. In this 
ase the slope of the mapin the main �xed point is positive and the s
enario is more similar to a pit
hforkbifur
ation with non-smooth features. Noti
e that the se
ond iteration of a mapwith a parameter set that a �ip bifur
ation o

urs will deal with su
h a kind ofbifur
ation. The relevan
e of our map is that it is 
omposed by two submappings,and it is the 
omposition of the two submappings that �ts the threshold 
ondition(λ = 1). Considered separately, the �rst submapping would have a tram with anegative slope −1 < (x − ρ1)/(x + 1) < 0 and the se
ond submapping with a morenegative slope (x− ρ2)/(x+ 1) < −1. The 
riti
al value for this bifur
ation is

xPFORK =
ρ1ρ2 − 1

2 + ρ1 + ρ2

, (5.38)whi
h always satis�es the inequality xPFORK < ρ1. From a pra
ti
al point of view,this bifur
ation will not o

ur if xPFORK < 0 or equivalently if ρ1 < 1/ρ2. Therefore,
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onverter with Interleaved Controla su�
ient but not ne
essary 
ondition to avoid this bifur
ation is that the positiveoutput referen
e be inferior to the input voltage (V1 < VIN ). In Fig. 5.10a, λ(x) isdepi
ted using two di�erent set of parameters.To obtain a more general pi
ture of the region of parameters for whi
h these non-smooth bifur
ations (�ip and pit
hfork) 
an appear, two set of two-dimensional bifur-
ation diagrams in (ρ1, ρ2) spa
e are depi
ted in Fig. 5.17. The lateral (red) set of
urves are those obeying the �ip 
ondition λ(ρ1, ρ2, x) = −1, in whi
h x is the variableparameter. The envelope of these 
urves are two straight lines that obey 
ondition
λMIN = −1 in (5.36) and 
an expli
itly be expressed as

ρ2 = (3 ± 2
√

2)ρ1 + 2(1 ±
√

2). (5.39)The 
entral (blue) set 
orresponds to the parametri
 
urves λ(ρ1, ρ2, x) = 1. Noti
ethat if x = 0, the expression of the 
urve is: ρ1ρ2 = 1. The main �xed point (im)is stable in the inner part of the diagram bounded by the pit
hfork and the two �ip
urves for ea
h value of the parameter x.5.3.5 Non-smooth bifur
ations of the main �xed pointAs it is explained above, the de�nition of the duty 
y
les must take into a

ount thepresen
e of boundaries in the model. One of these limits is analyzed in (5.19). Anotherlimit that has to be a

ounted for is the presen
e of the dis
ontinuous 
ondu
tion mode(DCM). These limits 
an formally be expressed as� High duty 
y
le saturation: The �rst set of boundaries is given when in ageneri
 phase k, the duty 
y
le be
omes equal to that phase (φk). Therefore,bifur
ation 
urves Πk
1(im) are de�ned as follows
Πk

1(im) = φk − dk(ikm) k = 1..N. (5.40)It is important to remark that, although the main �xed point 
annot 
ross anyof the boundaries in a physi
al set of parameters, (5.40) take relevan
e in thenon-smooth bifur
ation of higher periodi
 orbits.� Dis
ontinuous 
ondu
tion mode: The se
ond set of boundaries is givenwhen the indu
tor 
urrent drops to zero, therefore, bifur
ation 
urves Πk
2(im)are de�ned as follows

Πk
2(im) = ikm k = 1..N. (5.41)
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rete-time model 1135.4 Higher dimensional dis
rete-time model5.4.1 De�nition of the mapA more a

urate map, whi
h 
onsiders the evolution of all the state variables of thesystem, is presented in this se
tion. Though the evolution of the indu
tor 
urrent(iL(t)) will be also 
onsidered linear in ea
h topology, the higher variations of iLduring a 
y
le in�uen
e signi�
antly the evolution of the 
apa
itor voltages, even theintegral variable, in su
h a way that nonlinear terms must be taken it into a

ount.Therefore, the one-dimensional PWL map (P ) will be rede�ned below as a (2N + 1)-dimensional pie
ewise-smooth (PWS) map, whi
h, as before, 
an be expressed as a
omposition of the k-submappings (fk):
P (x) = fN ◦ fN−1 ◦ ... ◦ f2 ◦ f1(x) (5.42)xk+1 = fk(xk) (5.43)where x1 = x, xN+1 = P (x) and, generally, xk 
orresponds to the value of the ve
torof state variables x = (i, vo1, vo2, ..., voN , σ1, σ2, ..., σN ) at the beginning of the intervalphase k, and thus

ik+1 = ik + (∆ion− ∆ioffk)dk + ∆ioffkφk

vok+1

j = vok
j +

(
δvak

j +
1

2
δvbk

j

)
δk
j + δv
k

jφk

σk+1

j = σk
j +

T

τj

(
(vok

j − Vj)φk +

(
1

2
δvak

j +
1

6
δvbk

j

)
(δk

j )2 +
1

2
δv
k

jφ
2
k

)being j = 1..N .As in the one-dimensional approa
h, parameters ∆ion and ∆ioffk are de�ned in(5.17) and (5.18) and dk in (5.19) and (5.20). To make more understandable theexpressions of the map, the variables δvak
j , δvbk

j and δv
k
j have been in
luded, whi
hare asso
iated with the variations of the 
apa
itor voltage and the integral term andare de�ned as follows

δvak
j =

T

Cj

sign (Vj) (ik + ∆ion dk),

δvbk
j =

T

Cj

sign (Vj)∆ioffk(φk − dk),

δv
k
j = −

vok
j

RjCj

T.
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onverter with Interleaved ControlThe duty ratio δk
j is de�ned so as to take into a

ount the fa
t that every 
apa
itor(Cj) is only loaded during its 
orresponding interval (j):

δk
j =

{
φk − dk if k = j,

0 if k 6= j.One of the most signi�
ant improvements of this rede�nition of the map is that themembers of the set {Ik
p }, whi
h are used to obtain d′k from (5.20), are no longer
onstant, but fun
tion of the state variables. Hen
e, in a

ordan
e to the de�nition ofthe modulating signal in (5.1), these terms must be 
al
ulated as follows.)

Ik
p =

1

rS



VU −
N∑

j=1

αk,jgjsign (Vj) (vok
j − Vj + σk

j )



+ ∆ir(1 − φk).5.4.2 Study of the fast s
ale dynami
s for N = 2The one-dimensional map 
an predi
t bifur
ations related to the ripple of the indu
-tor 
urrent. The major advantage of this map is the relatively redu
ed number ofparameters to deal with the analysis. In fa
t, the stability of the �xed point 
an beveri�ed using the polynomial fra
tion fun
tion (5.31), whi
h has a number of roots(non-dimensional parameters de�ned in (5.33)) equal to the outputs (N), applied tothe non-dimensional parameter x de�ned in (5.32) and tunable by means of the am-plitude of the ramp.Roughly, those bifur
ations are more or less a

urately predi
ted by the simplest mapdepending on the ripple of the 
apa
itor and integral voltages and also of the weightof these terms in the feedba
k. Two-dimensional bifur
ation diagrams (mostly inthe {T, VU} parameter spa
e) in Figs. 5.18 and 5.19 show the deviation of the one-dimensional map of a SITITO d
-d
 
onverter in some illustrative 
ases, whi
h a

ountfor a sele
tion of parameters negle
ted in the one-dimensional map but 
onsidered inthe �ve-dimensional map. In general, a set of bifur
ation 
urves are plotted in thesediagrams and therefore, three parameters have been 
onsidered at on
e. The red lineshave been obtained by means of the one-dimensional map approa
h whereas ea
h
ontinuous grey line uses a variable intensity to identify the value of the parameteramong those prede�ned in the set. Figure 5.18 deals with �ip bifur
ation 
urveswhereas Fig. 5.19 does with a 
ase in whi
h a non-smooth pit
hfork bifur
ation 
urveis found with the one-dimensional approa
h.Con
erning the deviation of the predi
tion of the �ip bifur
ation, two sets of �ipbifur
ation 
urves using di�erent values of the PI gain (gk), have been depi
ted in Fig.5.18a and Fig. 5.18b �xing the values of the time 
onstants of the PI terms to 200 µsand 50 µs respe
tively. An enlargement of both plots, between whi
h no quantitative
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(a) τ = 200 µs (b) τ = 50 µs

(
) Zoom view of (a) and (b) (d) τ = 50 µs, g = 0.1 (grey), g = 0.02(bla
k)Figure 5.18. Flip bifur
ation 
urves using (5.15) (dashed red line) and (5.42) (solid grey line)maps for the values of g: 0.5 (light), 0.2, 0.1, 0.05 and 0.01 (dark). The parameters are in Table5.2 ex
ept: V1 = 2.0 V and V2 = −15.0 V. The stability of the main �xed point is rea
hed athigh values of VU and low values of C.di�eren
e 
an be appre
iated, has also been in
luded. Noti
e that (see Fig. 5.18
) forlow values of gk, these 
urves tend to the one-dimensional approa
h. It 
an also beappre
iated that the bifur
ation 
urves do not tend to the one-dimensional approa
has the period of the modulated signal is de
reased. Diagram in Fig. 5.18d revealsthe in�uen
e of the ripple of the 
apa
itor voltages; in this 
ase ({C, VU}) is used asparameter subspa
e. Noti
e that the predi
tion of the �ip bifur
ation is worsened asthe value of gk is in
reased.Similar analysis has been developed in the range of parameters for whi
h the one-dimensional approa
h predi
ts a non-smooth pit
hfork bifur
ation. It is relevant tonote here that we have found the equivalen
e of the pit
hfork bifur
ation 
urve inthe one-dimensional map to Neimark-Sa
ker bifur
ation 
urves (related with a pairof 
omplex eigenvalues 
rossing the unit 
ir
le) in the �ve-dimensional map. Hen
e,
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(a) τ = 50 µs (b) τ = 200 µs

(
) Zoom view of (a) (d) Zoom view of (b)Figure 5.19. Neimark-Sa
ker/Pit
hfork bifur
ation 
urves using (5.15) (dashed red line) and(5.42) (solid grey line) maps for di�erent values of g: 0.2 (light), 0.1, 0.05 and 0.01 (dark). Theparameters are in Table 5.2 ex
ept: V1 = −V2 = 12.0 V. The stability of the main �xed point isrea
hed at high values of VU .Fig. 5.19 shows the 
omparison between both bifur
ation 
urves by using the twoapproa
hes. In 
ontrast to the �ip bifur
ation 
urves, as the period is in
reased,the 
urves su�ers a 
ompletely 
hange in their tenden
y, moving away of the one-dimensional approa
h. Conversely, for low values of T , the deviation between the two
urves is similar to the deviation in the predi
tion of the �ip bifur
ation. Therefore,the higher-dimensional map predi
ts a signi�
antly redu
ed region in whi
h the mainmode is stable, espe
ially when g is de
reased.Finally, similar results are found in Fig. 5.20 using the time 
onstant in the PI blo
ks(τ). In this range of parameters, it 
an be observed that when the period of themodulation (T ) is in
reased, the range of values for the ramp amplitude is in
reased(showing a stable main �xed point), while in the Neimark-Sa
ker bifur
ation this rangeis de
reased.
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(a) 200 µs (dark), 50 µs, 25 µs and
20 µs (light). Neimark-Sa
ker: 25 µs(dark) and 20 µs (light). (b) 200 µs (dark) and 50 µs (light).Figure 5.20. Flip (red and grey) and Neimark-Sa
ker (blue) (a) and Neimark-Sa
ker / Pit
hfork(b) bifur
ation 
urves using (5.15) (dashed red line) and (5.42) (solid grey or blue lines) mapsfor di�erent values of τk. The parameters are in Table 5.2 ex
ept: V1 = 2.0V and V2 = −15.0 V(a) and V1 = −V2 = 12V (b). The stability of the main �xed point is rea
hed at higher valuesof VU .Noti
e that Fig. 5.20a also shows another smooth bifur
ation, a Neimark-Sa
ker, whenthe parameter τ is redu
ed. In 
ontrast to the Neimark-Sa
ker bifur
ation seen abovewhi
h was related with the non-smooth Pit
hfork bifur
ation, this instability 
annotbe predi
ted by means of the one-dimensional map be
ause it is related with the lowfrequen
y dynami
s. As it 
an be appre
iated in the �gure, the stable zone is redu
eddrasti
ally as the parameter τ is de
reased, adding a higher 
riti
al value of VU .5.5 Con
lusionsIn this 
hapter, an interleaved 
ontrol has been proposed to regulate a generalizedSIMIMO 
onverter, whi
h 
an provide multiple output voltages with di�erent polari-ties. The dynami
s has been analyzed by means of averaged models and dis
rete-timemodels using di�erent approa
hes.Firstly, expressions for the generalized averaged model have been obtained, in
ludingthe Ja
obian matrix, whose eigenvalues determine the stability of the equilibriumpoint. Similarly to the results obtained in the previous 
hapter, the averaged modelprovides simple expressions for the equilibrium point, whi
h 
orrespond to limit 
y
lesin the real system, and the duty 
y
les. These results 
an help us to determine theavailable region of the 
onverter and are required to establish the expressions for theone-dimensional map. No deep analysis has been developed using this model be
auseaveraged models are not able to predi
t the bifur
ations asso
iated to the 
urrentripple and most of the non-smooth bifur
ations.
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onverter with Interleaved ControlThe analysis of a generalized one-dimensional map has permitted to obtain simpleexpressions useful to determine the stability of the main mode of operation. More-over, though the dis
rete-time model does not in
lude all modes of operation of the
onverter, the boundaries of the validity of the proposed model have also been estab-lished. The 
rossing of any of these boundaries is known to yield a border-
ollisionbifur
ation, whi
h 
an imply several s
enarios ranging from sudden jump to 
haos topersisten
e. Furthermore, the values of the phase intervals φj 
an be properly sele
tedto avoid any of these non-smooth bifur
ations.Due to the fa
t that the dynami
s of the 
onverter 
an be modeled with a three-pie
elinear map in a determined region of the parameters, the result obtained in 
hapter 3
an be useful to redu
e the possible s
enarios that 
an appear in the dynami
s of the
onverter. One of the most relevant results is the proof of the 
oexisten
e of the oneand two-periodi
 orbit in the neighborhood of a �ip bifur
ation.Con
erning the stability, in 
ontrast to the non-interleaved 
ontrol seen in the previous
hapter, in whi
h stability is lost only under the o

urren
e of the eigenvalue 
rossingthe 
riti
al value −1, the analysis of the interleaved 
ontrol has revealed that theinstability is prompts to appear also if the eigenvalue 
rosses the 
riti
al value 1. Inthis last 
ase, numeri
al simulations from the swit
hed model show that behavior ofthe 
onverter in the neighborhood of this bifur
ation is similar to a Neimark-Sa
kerbifur
ation. Higher-dimensional dis
rete-time models prove that the bifur
ation of thereal system is a
tually a Neimark-Sa
ker.Nevertheless, when the ripples of the 
apa
itor and integral voltages 
annot be ne-gle
ted, the a

ura
y of the predi
tions that are obtained with the one-dimensionalmap is not satisfying and higher-dimensional dis
rete-time models are required. Inthis 
ase, the higher 
omplexity of the expressions and, 
onsequently, the time in
re-ment of the numeri
al simulations is made up for the a

ura
y in the predi
tion of theinstability. Otherwise, non-smooth bifur
ations 
an be properly determined by usingthe expressions given by a one-dimensional PWL map.



Chapter 6
Experimental measurements
In this 
hapter, several experimental measurements obtained witha SITITO prototype will be presented. The use of a mi
ro-
ontrollerto generate the driven signals of the swit
hes has permitted to studythe two di�erent strategies of 
ontrol presented in this dissertation.Di�erent dynami
s of the 
onverter will be measured in
luding thenormal operation regime, periodi
 orbits and 
haos.

6.1 Des
ription of the systemA prototype of a SITITO DC-DC 
onverter has been implemented to prove the va-lidity of the regulator and to 
on�rm the results of the study realized in the previous
hapters. Figure 6.1 shows the physi
al implementation of both the power and the
ontrol stages. In order to manage with di�erent strategies of 
ontrol, the regulationof the 
onverter has been realized by means of a mi
ro-
ontroller (LPC2138), whi
h
omputes the swit
hing instants by pro
essing the value of indu
tor 
urrent and both
apa
itor voltages a
quired periodi
ally, a

ording to the spe
i�
 strategy of 
ontrol.In this stage, the algorithm implemented reprodu
es the analogi
al 
ontrols SPC andIC explained in Chapters 4 and 5.The power 
ir
uit is regulated by two 
ommand signals. These voltages are previouslyadapted by two dedi
ated MOS inverting drivers from MAXIM (MAX626), and thenapplied to the MOSFET IRF9Z34S (p 
hannel) and IRL530N (n 
hannel). The diodes119
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(a) Power stage (b) Control stageFigure 6.1. Prototype of a SITITO 
onverter 
omposed by the power and 
ontrol boards.are two S
hottky barrier diodes (6CWQ04FN) and the indu
tor 
urrent is sensed usingthe 
urrent probe PR30. Con
erning the value of parameters of the power stage, both
apa
itors and resistors 
an be sele
ted to �nd a spe
i�
 dynami
s. The value of theindu
tan
e is determined by an algorithm implemented in the mi
ro-
ontroller beforestarting the regulation of the 
onverter. A

ording with this experimental measures,the value of the indu
tor used in the numeri
al simulations has been �xed to 640 µH.Finally, its parasiti
 resistan
e rL has been estimated about 0.7 Ω.Let us now summarize the te
hni
al 
apabilities of the 
ir
uit of 
ontrol. The pa-rameters of this stage, su
h as the amplitude of the modulating signal, the voltagereferen
es, the gains and time 
onstants of the integral 
ontrol, are 
on�gured in thealgorithm and loaded into the mi
ro-
ontroller memory. All these parameters 
an bevaried during the experimental measurements. Despite the mi
ro-
ontroller 
an oper-ate up to 60 MHz, the A/D 
onversions of VIN , iL and both 
apa
itor voltages, whi
hneed around of 2.6 µs, and the number of operations required to predi
t the swit
hinginstants �x the maximum frequen
y of the modulated signal about 10 kHz. Moreover,the operations needed in the initial part of every period for
e that the �rst swit
hing
annot be programmed before the 20% of that period. Noti
e that this restri
tion 
anbe relevant in the transient regime and in 
riti
al 
onditions, even during the normalregime, in the presen
e of noise. These limitations have resulted more 
ru
ial in thenormal fun
tioning of the 
onverter in 
ase of the interleaved 
ontrol, due to the fa
tthat the algorithms are more 
omplex and, besides this, the �rst swit
hing is givenearly.Con
erning the algorithms used to simulate the two 
ontrols, the duty 
y
les of bothswit
hes are established by using the analyti
al expressions similar to those obtainedin the development of the one-dimensional dis
rete-time models. Nevertheless, thereexist some di�eren
es. The most relevant one deals with the value of the peak ref-eren
es, whi
h must be known in order to predi
t the swit
hing instants and theirvalue 
annot be 
omputed exa
tly with the expressions developed in the analysis of



6.2. Single-Phase Control 121Parameter Value Parameter Value
VIN 6.0V VL 0.0

L 640 µH VU variable
rL 0.7 Ω VP variable
CP 45 µF VN -7.0V
CN 45 µF τP = τN 200 µs
RP 22 Ω gP = gN 0.02

RN 33 Ω rS 1 Ω

fs = 1/T 10 kHzTable 6.1. Parameter values used in the experimental and numeri
al results.the one-dimensional map. Therefore, the 
omplete expressions given by the swit
hedmodels of both strategies of 
ontrol are used. These are fun
tions of the 
apa
itorvoltages, whose real value is a
quired periodi
ally, and the integral terms. Due to thelimitations in the 
omputing time of the mi
ro-
ontroller, the evaluation of the integralstate variables has been simpli�ed, 
onsidering the voltages as 
onstant values in ea
hperiod. This strategy redu
es the number of operations but 
an modify the dynami
sof the 
onverter. As it will be observed bellow, one of the main 
onsequen
es of thismethod 
on
erns the mean value of the 
apa
itor voltages. Due to the a
tion of theintegral 
ontrol implemented here, the mean value of the 
apa
itor voltages is for
edto be equal to its 
orresponding voltage referen
e in su

essive instants of a
quisitionof the voltage instead of the whole period. Besides this, more 
omplex deviations inthe dynami
s 
an be produ
ed and will be analyzed in future works.6.2 Single-Phase ControlIn this se
tion, several dynami
al behaviors of the SITITO 
onverter driven by theSPC 
ontrol are presented. The �xed parameters 
hosen in the di�erent experimentalmeasurements and numeri
al simulations are summarized in Table 6.1. Noti
e that
VU and VP will be the unique varying parameters in this se
tion.6.2.1 Normal operation regimeCon
erning the normal operation regime, two di�erent sets of parameters, a

ord-ing to the te
hni
al limitations of the prototype, have been 
hosen to illustrate thesteady-state response of the SITITO 
onverter regulated by the 
ontrol SPC when the
onverter operates in the modes MP and MN des
ribed in Chapter 4.
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(a) iL (b) iL

(
) vP (d) vP

(e) vN (f) vNFigure 6.2. Waveforms of the indu
tor 
urrent and the 
apa
itor voltages obtained experimentally(left) and by simulation (right). The varying parameters are VP = 8.0 V and VU = 1.5 V.Mode MPWhen the positive referen
e voltage is set to 8.0 V (while VN = −7.0 V), the normalmode of operation is MP . Figure 6.2 shows the evolution of the indu
tor 
urrent
(a) SB and iL (b) SA and iLFigure 6.3. Waveforms of the indu
tor 
urrent and driven signals of SB (a) and SA (b) obtainedin the prototype of SITITO 
onverter. The parameters are in Fig. 6.2.
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(a) iL (b) iLFigure 6.4. Evolution of the indu
tor 
urrent obtained experimentally (left) and with the PSIMsimulator (right). The varying parameters are VP = 2.0V and VU = 1.5 V.

(a) SA and iL (b) SB and iLFigure 6.5. Evolution of the indu
tor 
urrent and the driven signals of SA (left) and SB (right).The parameters are in Fig. 6.4.and 
apa
itor voltages obtained experimentally (left) and with the PSIM simulator(right). As it 
an be observed, experimental measurements are in good agreementwith expe
ted results. Figure 6.3 shows the signals whi
h drive the swit
hes SA (Fig.6.3a) and SB (Fig. 6.3b), whose edges for
e the swit
hing instants of the MOSFET's.It has to be taken into a

ount that the logi
 levels of these signals, whi
h have beenpondered in Fig. 6.3 for the sake of 
larity, operates in an opposite way and have beeninverted by intermediate drivers. Therefore, SA is open or 
losed at low or high levelsof its 
orresponding driven signal respe
tively whereas SB is open or 
losed at high orlow levels respe
tively.Mode MNStable dynami
al behavior has been also obtained when VP = 2.0 V (VN = −7 V), sothat the 
onverter operates in the mode MN (see Fig. 6.4). In this 
ase (see Fig. 6.5),the swit
hing of SA be
omes earlier than SB and therefore, dA < dB .6.2.2 Bifur
ation analysisIn this se
tion, preliminary experimental results of the nonlinear phenomena of theSITITO 
onverter are presented. For the sake of 
larity, a two-dimensional bifur
ation
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Figure 6.6. (a) Stability (green), ISL (blue) and MOC (bla
k) 
odimension-one bifur
ation 
urvesin the parameter spa
e {VU , VP}. The 
urves have been obtained by using the one-dimensionaldis
rete-time model. The parameters are in Table 6.1.diagram in the parameter spa
e {VU , VP } has been depi
ted in Fig. 6.6, in whi
h thestability (green) and the Mode Operation Change (MOC) (bla
k) and IntermediateSlope Limit (ISL) (blue) non-smooth bifur
ation 
urves have been represented by usingthe one-dimensional map obtained in Chapter 4. Three nonlineal phenomena will beshown: period-doubling, MOC and ISL bifur
ations by means of temporal plots of theindu
tor 
urrent. Noti
e that the spe
i�
 parameters used in these representationshave been marked in the Fig. 6.6 as blue (ISL), green (�ip) and bla
k (MOC) dots. Inthe diagrams obtained with the PSIM simulator and depi
ted in Fig. 6.7, the perioddoubling (Fig. 6.7a) and ISL (Fig. 6.7b) bifur
ation 
an be appre
iated.
Flip bifur
ationTwo waveforms of the indu
tor 
urrent have been obtained (see Fig. 6.8) at the values
VP = 6.0 V and VU = 1.0 V (Fig. 6.8a), VU = 0.6 V (Fig. 6.8b) and VU = 0.4 V (Fig.6.8
) by means of experimental measurements. The normal dynami
s represented inFig. 6.7a be
omes a period-two orbit after a �ip bifur
ation, as it 
an be appre
iatedin Fig. 6.8b. In the range of the parameters sele
ted, as the value of VU is de
reased,the two-periodi
 orbit presents a non-smooth bifur
ation and a four-periodi
 orbitappears, whi
h be
omes a 
haoti
 attra
tor after another BC bifur
ation. Due to thepresen
e of noise, the dynami
s in Fig. 6.8
 
annot be 
learly distinguished, whi
h 
an
orrespond to a four-periodi
 orbit or a 
haoti
 attra
tor. Anyway, a further de
reaseof the parameter VU shows 
haoti
 dynami
s.
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(a) VP = 6.0V (b) VP = 2.0V

(
) VU = 1.0VFigure 6.7. Bifur
ation diagrams obtained with the PSIM simulator. The indu
tor 
urrent syn-
hronized with the 
lo
k is the variable represented.
(a) VP = 6.0V, VU = 1.0V

(b) VP = 6.0V, VU = 0.65V (
) VP = 6.0V, VU = 0.40VFigure 6.8. Experimental measurements of the waveform of the indu
tor 
urrent after a �ipbifur
ation has undergone.
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(a) VP = 2.0V, VU = 1.2V (b) VP = 2.0V, VU = 1.1VFigure 6.9. Evolution of the indu
tor 
urrent around a ISL non-smooth bifur
ation.
(a) VP = 5.0V, VU = 1.0V (b) VP = 4.5V, VU = 1.0VFigure 6.10. Evolution of the indu
tor 
urrent in the neighborhood of a MOC bifur
ation.ISL and MOC non-smooth bifur
ationsISL and MOC border-
ollision bifur
ations 
an be seen in Fig. 6.9 and Fig. 6.10respe
tively, where experimental waveforms of the indu
tor 
urrent have been obtainedin both sides of the ISL and MOC bifur
ations. Noti
e that the 
riti
al values of theparameters VU and VP are in agreement with the numeri
al results obtained with theone-dimensional map and the PSIM simulator (see Fig. 6.7b and Fig. 6.7
).6.3 Interleaved ControlLet us now show some of the experimental measurements obtained in the same pro-totype but driven by the IC 
ontrol. Similarly, the normal operation behavior and apreliminary bifur
ation study are presented in this se
tion. The value of parametersare given in Table 6.1, 
onsidering the indexes 1 and 2 equal to P and N respe
tively.The parameter φ1 (noti
e that φ2 = 1 − φ1) is spe
i�ed in ea
h diagram.6.3.1 Normal operation regimeFirstly, in order to 
ompare the dynami
al properties of both 
ontrols, the normaloperation regime has been illustrated with a set of parameters equals to those usedin the previous se
tion. Figure 6.11 shows the evolution of the indu
tor 
urrent andthe 
apa
itor voltages obtained experimentally and by using the PSIM simulator.
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(a) iL (b) iL

(
) vo1 (d) vo1

(e) vo2 (f) vo2Figure 6.11. Waveforms of the indu
tor 
urrent and 
apa
itor voltages obtained experimentally(left) and numeri
ally with the PSIM simulator (right). The parameters are the same that in Fig.6.2 and φ1 = 0.60.
(a) SA and iL (b) SB and iLFigure 6.12. Waveforms of the indu
tor 
urrent and the driven signals of SA (a) and SB (b)obtained experimentally. The set of parameters 
orresponds to Fig. 6.11.



128 Chapter 6. Experimental measurements

(a) De
reasing VU (b) In
reasing VUFigure 6.13. Bifur
ation diagrams obtained with the PSIM simulator using VU as the varyingparameter. The parameters are in Table 6.1 ex
ept: V1 = 3.0 V, V2 = −15.0 V, R1 = 33Ω,
R2 = 68Ω and φ1 = 0.45.Complementary, the driven signals of the swit
hes have also been depi
ted in Fig.6.12.Noti
e that φ1 has been set to 0.6. As it has been mentioned above, the �rst swit
h-ing instant 
annot be programmed before a minimum value due to 
omputing timerequired in its estimation. However, the 
riti
al situation 
an be avoided, when possi-ble, by in
reasing φ1.6.3.2 Bifur
ation analysisTo 
on
lude, some smooth and non-smooth bifur
ations have been dete
ted in the realsystem. Diagrams showing the dynami
s around a �ip bifur
ation and the border-
ollision bifur
ations related with the delay applied between both modulated signalsare des
ribed bellow.Flip bifur
ationIn the range of parameters sele
ted above, the normal operation regime does notpresent any �ip bifur
ation as the parameter VU is varied. As it was 
on
luded inChapter 5, the �ip bifur
ation takes pla
e in areas in whi
h the parameters relatedwith 
hannels 1 and 2 are highly asymmetri
. Therefore, the voltage referen
es V1and V2 have been set to 3.0 V and −15.0 V respe
tively and the resistors R1 = 22 Ωand R2 = 33 Ω have been repla
ed by R1 = 33 Ω and R2 = 68 Ω. In Fig. 6.13, twobifur
ation diagrams have been depi
ted. The hysteresis phenomenon asso
iated withthe �ip bifur
ation explained in Se
tion 5.3.3 
an been observed in the �gure. Twowaveforms are depi
ted in Fig. 6.14, whi
h illustrates one and two-periodi
 orbits at
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(a) VU = 0.9V (b) VU = 0.5VFigure 6.14. Waveforms of the indu
tor 
urrent obtained experimentally. The parameters are inFig. 6.13.

(a) (b) φ1 = 0.55V.Figure 6.15. (a) Validity 
urves from (5.24) (bla
k) and (5.25) (grey) for N = 2. Solid anddashed lines 
orresponds to the 
onditions for the phase intervals one and two respe
tively. (b)Bifur
ation diagram using VU as the varying parameter. The parameters are in Table 6.1 ex
ept
V1 = 4.0 V, V2 = −8.0 V, R1 = 33Ω and R2 = 68 Ω.the values of VU = 0.9 V (a) and VU = 0.5 V (b) respe
tively. Unfortunately, in theregion of the parameter VU in whi
h both attra
tors 
oexist, the presen
e of noise inthe system makes di�
ult the stabilization of both dynami
s separately whi
h, fromtime to time, �ips between the two attra
tors.Border-
ollision bifur
ationsLet us now fo
us in the validity 
onditions of the dis
rete-time models proposed inSe
tion 5.3.2. In the two-dimensional bifur
ation diagram depi
ted in Fig. 6.15a inthe parameter spa
e {VU , φ1}, four validity 
urves obtained with the �ve-dimensionalmap have been plotted under parameters in Table 6.1 and V1 = 4.0 V, V2 = −8.0 V,
R1 = 33 Ω and R2 = 68 Ω. As it was explained above, the interleaved 
ontrol was
onsidered with two kinds of boundaries due to the fa
t that ea
h swit
hing 
an onlybe produ
ed in its own phase interval. The �rst anomaly o

urs when the relativeposition of the peak referen
es avoids one of the swit
hings (grey 
urves) whereas the
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(a) VU = 0.35 V (b) VU = 0.25V

(
) VU = 0.35 V (d) VU = 0.25VFigure 6.16. (a,b) Waveforms of the indu
tor 
urrent obtained experimentally. (
,d) Re
onstru
-tions of the experimental waveforms of the indu
tor 
urrent depi
ted in (a) and (b) respe
tivelyin
luding the 
urrent peak referen
es I1
r (blue) and I2

r (green) with data supplied by the mi
ro-
ontroller. The parameters are in Fig. 6.15 and φ1 = 0.55.
se
ond 
ase deals with two swit
hings produ
ed in the same phase interval, so thatwould be d1 = 0 or d2 = 0 (bla
k 
urves). Solid and dashed lines distinguishes thetwo 
onditions for the phases 1 and 2 respe
tively. The red line represents the varyingrange of the parameter VU used in the bifur
ation diagram shown in Fig. 6.15b andthe blue dots 
orrespond to the di�erent set of parameters used in Figs. 6.17 and 6.18.Noti
e that, in the �rst 
ase, the normal operation regime undergoes a border-
ollisionbifur
ation when the se
ond swit
hing is skipped, with the 
ontrol proposed in Chap-ter 5. Nevertheless, this non-smooth bifur
ation 
an be easily avoided by a slightlydi�erent programme in 
ontrol. The experimental results are shown in Figs. 6.16a and6.16b. To fa
ilitate the 
omprehension of this option, new plots obtained by means ofdata supplied by the mi
ro-
ontroller have been depi
ted in Figs. 6.16
 and 6.16d toshow the waveforms of the indu
tor 
urrent and the two peak referen
e 
urrents. There
onstru
tions of these signals have been made using the periodi
ally a
quired valuesof the indu
tor 
urrent and 
apa
itor voltages together with the predi
ted values forthe duty 
y
les and the peak referen
es. All this variables are obtained as auxiliaryoutputs of the mi
ro-
ontroller. Noti
e in Fig. 6.16d, that the swit
hing of S2 is per-mitted (the swit
hing 
ondition for S1 is ignored), whi
h avoids the border-
ollisionprovoked by the relative position between both 
urrent peak referen
es. A
tually, thenew algorithm is simpler and requires less memory and 
omputing time.
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(a) VU = 1.0V and φ1 = 0.62 (b) VU = 1.0V and φ1 = 0.7

(
) VU = 1.0V and φ1 = 0.62 (d) VU = 1.0V and φ1 = 0.7Figure 6.17. (a,b) Waveforms of the indu
tor 
urrent obtained experimentally showing a per-sisten
e s
enario. (
,d) Re
onstru
tions of the experimental waveforms of the indu
tor 
urrentplotted in (a) and (b) respe
tively and the 
urrent peak referen
es I1
r (blue) and I2

r (green). Theparameters are in Fig. 6.15.Con
erning the se
ond 
ase, Figs. 6.17 and 6.18 show the indu
tor 
urrent obtainedexperimentally at di�erent values of VU and φ1, in the neighborhood of this non-smooth bifur
ation. The dynami
s observed in the diagrams of Figs. 6.17a and 6.17b
orrespond to an one-periodi
 orbit and therefore, the s
enario given at the 
riti
alpoint is persisten
e. Noti
e in the re
onstru
ted waveforms depi
ted in Fig. 6.17
that the one-periodi
 orbit at VU = 0.62 V has the two swit
hings in di�erent intervalphases (normal regime) whereas in Fig. 6.17d both swit
hings are produ
ed in the�rst interval. Conversely, in Fig. 6.18, a two-periodi
 orbit appears due to a non-smooth period-doubling bifur
ation (see Fig. 6.18b). This two-periodi
 orbit linksa sequen
e of di�erent patterns per period of the modulating signal: the pattern ofthe normal operation and the two swit
hings in the �rst subinterval for the se
ondperiod. A detailed analysis of this s
enario, whi
h requires to model the dynami
s ofthe 
onverter when both swit
hings are produ
ed in the �rst interval phase, will berealized in future works.6.4 Con
lusionsSeveral experimental measurements realized in a prototype of a SITITO 
onverterregulated by the two 
ontrols proposed in this dissertation (SPC and IC) have beenpresented. The ranges of parameters have been 
hosen a

ording to the limitations ofthe system, in order to show several dynami
al behaviors produ
ed in the experiments.
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(a) VU = 0.2V and φ1 = 0.62 (b) VU = 0.2V and φ1 = 0.7Figure 6.18. Waveforms of the indu
tor 
urrent obtained experimentally showing non-smoothperiod doubling s
enario. The parameters are in Fig. 6.15.Con
erning the �rst strategy of 
ontrol, the main bifur
ations analyzed in the Chapter4 have also been dete
ted in the physi
al system at the 
riti
al values predi
ted.Nevertheless, bifur
ations involving the parameters of the integral terms have beenpostponed due to the need of a previous dynami
al study of the system with thesimpli�ed integral 
ontrol programmed.More di�
ulties have arisen in the IC 
ontrol implementation. The lower limit of theduty 
y
le for
ed by the mi
ro-
ontroller implies a signi�
ant redu
tion in the possiblerange of the parameters. It has to be remarked that this limitation not only a�e
ts tothe one-periodi
 orbit but even more to higher periodi
 orbits, quasiperiodi
ity and
haos. Nevertheless, when the normal operation regime is available, this dynami
s isstable in a wide range of parameters.It has been proved in this Chapter that one of the border-
ollision bifur
ations 
an beavoided under a simple modi�
ation of the algorithm of 
ontrol. This fa
t leads us to
onsider in the future others variant of 
ontrols, some of them simpler, indeed. Theuse of these algorithms 
ould imply the in
reasing of the frequen
y of the modulatingsignal.



Chapter 7
Con
lusions and future works

Stati
 and dynami
s properties of a Single-Indu
tor Multiple-Input Multiple-Output(SIMIMO) d
-d
 
onverter have been determined by means of averaged and dis
rete-time models. The results that have been obtained prove the ability of the 
onverterto regulate several outputs with di�erent polarities when the parameters are properlysele
ted. The analysis in
lude not only the determination of instability 
onditions, butalso the limit or boundary 
onditions and the di�erent dynami
s that arise beyondthem. Experimental measurements have also been added to prove the viability of these
onverters and dynami
s properties in a spe
i�
 range of parameters.In order to rea
h our obje
tive, di�erent models have been developed with a tunabledegree of a

ura
y. Firstly, the usefulness of the averaged models has been validated.Besides the 
hara
terization of the equilibrium situation and the duty 
y
le of ea
h
hannel, these models provide information of the stability related with the slow s
aledynami
s. However, the averaged models are also known to be unable of dete
tingphenomena related with the fast s
ale dynami
s, in whi
h mainly the ripple of the in-du
tor 
urrent is involved. This restri
tion 
overs not only the predi
tion of instability,but also the dete
tion of some of the non-smooth bifur
ations, whi
h are 
onditionedby the evolution of the indu
tor 
urrent during a period. This leads to the requirementof using dis
rete-time models to deal with these dynami
s unpredi
ted by averagedmodels.Dis
rete-time models with di�erent number of state variables have been proposed todeal with the dynami
s of the d
-d
 
onverter driven by two di�erent strategies of
ontrol: Single Phase Control (SPC) and Interleaved Control (IC), whi
h have been133
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apable of regulating a Single-Indu
tor Two-Input Two-Output (SITITO) 
onverter.The one-dimensional model is obtained when only the evolution of the indu
tor 
urrentis taken into 
onsideration. In both SPC or IC, the analysis of these models haspermitted to obtain simple analyti
al expressions to 
hara
terize the stability and thenon-smoothness of the system. Higher dimensional maps have also been obtained toimprove the a

ura
y in these predi
tions. In the IC 
ontrol, numeri
al results haverevealed a relevant deviation in the predi
tion of the Flip bifur
ation.Besides the analysis of both 
ontrols, another 
ontribution given in this dissertationhas dealt with the dynami
al study of a three-pie
e pie
ewise-linear (PWL) map. Thedis
rete analysis of both 
ontrols has shown that the one-dimensional PWL map whi
hdes
ribes the evolution of the indu
tor 
urrent is 
hara
terized by having three pie
es,in 
ase of the SPC, or three or four pie
es for the alternative IC. Therefore, the studyof a normalized one-dimensional PWL map has helped us to a

ount for the feasibles
enarios in whi
h one and two-periodi
 orbits are involved.7.1 Di�eren
es in the operation of the 
onverter un-der both strategies of 
ontrolTo sum up, we will present a list of relevant di�eren
es in the operation of the 
ontrolsSPC and IC. Due to the fa
t that the 
ontrol SPC has not been generalized to severaloutputs, only dynami
s of SITITO d
-d
 
onverters are evaluated.� Con
erning the main mode of operation, in the SPC the two 
apa
itors aresimultaneously loaded in the last part of the OFF interval, whereas in the IC,only one 
apa
itor is loaded in the 
orresponding phase. As it was appre
iated inthe experimental measurements, this fa
t implies that the possible low saturationof the duty 
y
le, given when the duty 
y
les rea
h the 0 value, is more likely inthe IC 
ontrol due to the fa
t that more time is required to load both 
apa
itors.On the other hand, high saturation of the duty 
y
les involving one-periodi
orbits 
annot be given in any of the 
ontrols.� We have found that during the transient multiple patterns of swit
hing are pos-sible. Unlike the one-dimensional model for SPC that takes into 
onsiderationall feasible 
on�gurations, the method used in the generalization in IC 
ontrollimits the number of 
on�gurations that the model a

ount for. Due to this fa
t,the number of validity 
onditions is higher in IC regarding SPC.� Averaged models have been proved to be equivalent in both 
ontrols due to thefa
t that the evolution of the indu
tor 
urrent is not taken into 
onsideration inthe models.� The one-dimensional dis
rete-time analysis has revealed that the instability ofthe SITITO 
onverter driven by SPC 
an only be given when the eigenvalue
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omes −1, thus produ
ing a �ip bifur
ation. Otherwise, in 
ase of the IC, theinstability 
an also appear when the eigenvalue be
omes +1. Nevertheless, itshould be remarked that, despite this in
rement in the unstable 
onditions inthe IC, the �ip bifur
ation appears only in odd regions of parameters.� Another important di�eren
e deals with the deviation in the predi
tions of the�ip bifur
ation. It has been shown that the 
onverter driven by the IC is moresensible to the variation of ripples of the 
apa
itor voltages. Hen
e, an in
reasein the feedba
k gains or a redu
tion in the time 
onstants of the PI terms impliesa greater deviation in the 
riti
al value predi
ted by the one-dimensional model.7.2 Proposals of future worksSome future proposals are listed below:� Con
erning the 
hara
terization of the non-smooth phenomena in a three-pie
epie
ewise-linear map, a further study 
ould be dire
ted to extend the analysisto the 
omplete range of parameters. Moreover, our study has been restri
tedto the existen
e and stability of one and two-periodi
 orbits and, therefore, a
omplete des
ription of the s
enarios involving higher periodi
 orbits 
ould alsobe of interest.� It has been shown that averaged models fail in the predi
tion of some smoothbifur
ations. More 
omplete averaged models, whi
h in
lude information of theevolution of the indu
tor 
urrent, 
ould be developed in order to dete
t theunpredi
ted Neimark-Sa
ker bifur
ations.� It has been observed that the experimental system has important limitationsdue to the presen
e of noise and hen
e, a signi�
ant redu
tion in the noise levelshould be a
hieved in order to in
rease the range of parameters available. On
ehaving redu
ed it, the data a
quisition system that is added to the 
ontrol 
ir
uit
ould be reprogrammed to obtain periodi
 measurements of the state variablesso that it would be 
apable of representing experimental bifur
ation diagrams.� Due to the fa
t that the algorithm of 
ontrol 
an be reprogrammed easily, simplerdigital 
ontrols, whi
h redu
es signi�
antly the 
omputing time in the predi
-tion of the swit
hing instants, 
an be 
hosen to regulate the 
onverter. Thisimprovement 
ould permit an in
rease in the frequen
y of the modulated signal.





Appendix A
Five-dimensional map of the SITITO
onverter with SPC

In this appendix, the �ve-dimensional dis
rete-time model whi
h des
ribes the dy-nami
s of a SITITO 
onverter regulated by the SPC 
ontrol is developed. Due to thesymmetry between MP and MN , only the mode of operation MP will be explainedin detail.Let us de�ne the following map:
f(x) = xn+1 (A.1)where xn = [i, vp, vn, σp, σn]T and xn+1 = [in+1, vpn+1, vnn+1, σpn+1, σnn+1]

T .Noti
e that the subindex n has been eliminated from the dis
rete state variable x tomake the reading 
learer.Similarly to the de�nition of the one-dimensional map, (A.1) 
an be divided into thesubmappings:
f(i, vp, vn, σp, σn, φ) =

{
f1(i, vp, vn, σp, σn, φ) if H0(vp, vn, φ) > 0,

f2(i, vp, vn, σp, σn, φ) if H0(vp, vn, φ) < 0,where f : R
5 × R

19 7→ R
5 and the surfa
e H0 is given by

H0(vp, vn, φ) =
vp

RP

− vn

RN

,137



138 Appendix A. Five-dimensional map of the SITITO 
onverter with SPCand φ refers to the set of parameters
φ = {VIN , rL, L, VP , VN , RP , RN , VU , VL, T, CP , CN , rS , gPA, gPB, gNA, gNB, τP , τN}.For the sake of simpli
ity, gFA and gFB have been 
onsidered 0 in these analysis.In the next se
tion, expressions for in+1, vpn+1, vnn+1, σpn+1 and σnn+1 are presentedfor both submappings.A.1 Mode of operations MP , MSP and M0It is important the remark that the sequen
e of topologies in the mode MP is T1 →
T2 → T4, whereas in MSP and M0 the sequen
es 
orrespond to T1 → T2 and T1respe
tively.Obtaining iL

SA SB ∆i

T1 ON ON ∆i1

VIN − rLIQ
L

T

T2 ON OFF ∆i2

VIN − vp− rLIQ
L

T

T3 OFF ON ∆i3

vn− rLIQ
L

T

T4 OFF OFF ∆i4

vn− vp− rLIQ
L

TTable A.1. De�nition of the in
rement 
urrents of the SITITO 
onverter in CCM.The assumptions 
onsidered in the development of the one-dimensional map are alsovalid here. Therefore, a

ording to (4.30),(4.32),(4.33) and (4.34), in+1 
an be ex-pressed as
in+1 =






i+ ∆i1 if x ∈ SA,

i+ ∆i1dB + ∆i2 (1 − dB) if x ∈ SB,

i+ ∆i1dB + ∆i2dAB + ∆i4 (1 − dA) if x ∈ SC .

(A.2)Nevertheless, there exist some di�eren
es. Firstly, the in
rement 
urrents {∆ij , j =

1..4}, whi
h are summarized in Table A.1, depend on the state variables vp and vn.Moreover, dAB = dA − dB is not 
onsidered as 
onstant value and the duty 
y
le
dA is approa
hed similarly to dB. In addition, both duty 
y
les are found using the
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omplete expressions for the peak referen
es. Therefore, a

ording to (4.35) and (4.3),the duty 
y
le dB is given by
dB =

(VU + gPB(VP − vp− σp) + gNB(vn− VN + σn)) /rS − i

∆i1 − ∆ir .Similarly, taking into a

ount the evolution of indu
tor 
urrent during T1 and T2, from(4.39) and (4.2) dA 
an be expressed as
dA =

(VU + gPA(VP − vp− σp) + gNA(vn− VN + σn)) /rS − (i+ (∆i1 − ∆i2)dB)

∆i2 − ∆ir .Obtaining vPA

ording to (4.9), the evolution of the positive voltage during the topologies T1 isdes
ribed by the state equation dvPdt =
−1

RPCP

vP , (A.3)whereas in the topology T2 and T4, the expression is given bydvPdt =
−1

RPCP

vP +
iL
CP

.Therefore, it 
an be 
onsidered that the evolution of the 
apa
itor voltage has two
ontributions: the dis
harge of the 
apa
itor through the resistor, whi
h a
ts duringthe entire period, and the 
harge a
ting only during T2 and T4. Considering thatthese two 
ontributions will be approa
hed separately, it 
an be de�ne the followingapproa
hed fun
tion v̂P (t) as follows:
vP (t) ≈ v̂P (t) = vpd(t) + vpc(t).

vpd(t) gives the information about the dis
harge and its evolution 
an be approa
hedby the �rst element of the Taylor series of (A.3). Therefore,
vpd(t) = vp− vp

CPRP

t,where vp 
orresponds to the 
apa
itor voltage at the beginning of the period (vp =

vP (0)).In order to estimate the se
ond 
ontribution, we assume the following approximation ofthe evolution of the indu
tor 
urrent, îL(t), in the mode MP , as it has been developed
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onverter with SPCin Chapter 4:
iL(t) ≈ îL(t) =






i+ ∆i1

t

T
if t ≤ dBT ,

i′ + ∆i2

(
t

T
− dB

) if dBT ≤ t < dAT ,

i′′ + ∆i4

(
t

T
− dA

) if t > dAT ,

(A.4)where i, i′, and i′′ 
orrespond to the initial 
onditions of the indu
tor 
urrent in thedi�erent topologies T1, T2 and T4 respe
tively. De�ning d1 = dB, d2 = dA, ∆i = ∆i2and ∆d = dAB , the inial 
onditions are given by
i = iL(0) i′ = i+ ∆i1d1 i′′ = i′ + ∆i∆d.During the topology T1, there is no 
harge in the 
apa
itor. Conversely, during T2 the
harge of the 
apa
itor, whi
h is proportional to the area of the indu
tor 
urrent, 
anbe approa
hed by

∫ t

dBT

iL
CP

dt ≈ T

CP

(
i′
(
t

T
− dB

)
+

∆i2

2

(
t

T
− dB

)2
)
,whereas during the last topology T4, the approa
h is given by

∫ t

dAT

iL
CP

dt ≈ T

CP

(
δvp1dAB + i′′

(
t

T
− dA

)
+

∆i4

2

(
t

T
− dA

)2
)
,where the fun
tion δvp1, together with all the auxiliary fun
tions used in this 
hapter,is de�ned in Table A.2. Finally, the fun
tion vpc(t) is given by the fun
tion

vpc(t) =
T

CP






0 if t ≤ dBT ,

i′
(
t

T
− dB

)
+

∆i2

2

(
t

T
− dB

)2 if dBT < t < dAT ,

δvp1dAB + i′′
(
t

T
− dA

)
+

∆i4

2

(
t

T
− dA

)2 if t > dAT .Then, applying vpn+1 = v̂P (T ), we obtain
vpn+1 = vpd(T ) + vpc(T ) = vp+ ∆vp+ δvp1dAB + δvp2 (1 − dA) .Easier analysis 
an be done so as to �nd expressions of vpn+1 for the remainder modesof operation MSP and M0. It 
an be proved easily that
vpn+1 =






vp+ ∆vp if x ∈ SA,

vp+ ∆vp + δvp1 (1 − dB) if x ∈ SB,

vp+ ∆vp + δvp1dAB + δvp2 (1 − dA) if x ∈ SC .

(A.5)
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∆vp T

CP

(
− vp

RP

)
∆vn T

CN

(
− vn

RN

)

δvp1

T

CP

(
i′ +

∆i∆d
2

)
δvn1

T

CP

(
i′ +

∆i∆d
2

)

δvp2

T

CP

(
i′′ +

∆i4(1 − d2)

2

)
δvn2

T

CN

(
i′′ +

∆i4(1 − d2)

2

)

δvp3

T

2CP

(
i′ +

∆i∆d
3

)
δvn3

T

2CN

(
i′ +

∆i∆d
3

)

δvn4

T

2CP

(
i′′ +

∆i4(1 − d2)

3

)
δvn4

T

2CN

(
i′′ +

∆i4(1 − d2)

3

)

δvp5 δvp3∆d+ δvp1(1 − d2) δvn5 δvn3∆d+ δvn1(1 − d2)Table A.2. De�nition of the auxiliary fun
tions. d1, d2, ∆i and ∆d 
orrespond to dB , dA, ∆i2and dAB respe
tively in the modes MP and MSP and dA, dB, ∆i3 and −dAB in MN and
MSN .Obtaining vNThe evolution of the negative 
apa
itor voltage 
an be obtained similarly. Taking intoa

ount the di�erential equations of vN (t) in the topologies T1 and T2 and T4 and thatthere exists 
harge in the negative 
apa
itor only during the topology T4, it is easy toprove that

vnn+1 =






vn+ ∆vn if x ∈ TA,

vn+ ∆vn if x ∈ TB,

vn+ ∆vn− δvn2 (1 − dA) if x ∈ TC .

(A.6)Obtaining σp and σnFrom (4.4) and (4.5), the state equations of the integral terms are given bydσPdt =
1

τP
(vP (t) − VP ) and dσNdt =

1

τN
(vN (t) − VN ) .Considering the approa
hed evolution of the positive 
apa
itor voltage v̂P (t) foundabove, σP (t) 
an be simpli�ed as

σ̂p(t) =
1

τP

∫ t

−∞

(v̂P (t) − VP )dt = σp+
1

τP

∫ t

0

(v̂P (t) − VP )dt.Therefore, σpn+1 
an be expressed as follows
σpn+1 = σ̂p(T ) = σp+

1

τP

(∫ T

0

vpd(t)dt +

∫ T

0

vpc(t)dt− VPT

)
,
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onverter with SPCwhere ∫ T

0

vpd(t)dt =

(
vp+

∆vp
2

T

)
T,

∫ T

0

vpc(t)dt =

∫ dAT

dBT

vpc(t)dt +

∫ T

dAT

vpc(t)dt.Taking into 
onsideration the expressions of the indu
tor 
urrent in the di�erent in-tervals, the solutions of the integrals are given by and
∫ dAT

dBT

vpc(t)dt = δvp3d
2
ABTand ∫ T

dAT

vpc(t)dt = δvp1dAB(1 − dA)T + δvp4(1 − dA)2T.Then, vpn+1 is given by
σpn+1 = σp+

T

τP

(
vp+

∆vp
2

+ δvp5dAB + δvp4(1 − dA)2 − VP

)
.Finally, the 
omplete expressions for σpn+1 and σnn+1 in all the modes of operationsare given by

σpn+1 =






σp+
T

τP

(
vp+

∆vp
2

− VP

) if x ∈ SA,

σp+
T

τP

(
vp+

∆vp
2

+ δvp3(1 − dB)2 − VP

) if x ∈ SB,

σp+
T

τP

(
vp+

∆vp
2

+ δvp5dAB + δvp4(1 − dA)2 − VP

) if x ∈ SC ,(A.7)and
σnn+1 =






σn+
T

τN

(
vn+

∆vn
2

− VN

) if x ∈ TA,

σn+
T

τN

(
vn+

∆vn
2

− VN

) if x ∈ TB,

σn+
T

τN

(
vn+

∆vn
2

− δvn4(1 − dA)2 − VN

) if x ∈ TC .

(A.8)
A.2 Fun
tions f1 and f2Let us now provide the 
omplete expressions for the submappings f1 and f2, whi
h
an be obtained dire
tly from (A.2), (A.5), (A.6), (A.7) and (A.8). Considering the
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tions f1 and f2 143the following rede�nition of f1:
f1(i, vp, vn, σp, σn, φ) =






FA(i, vp, vn, σp, σn, φ) if x ∈ SA,

FB(i, vp, vn, σp, σn, φ) if x ∈ SB,

FC(i, vp, vn, σp, σn, φ) if x ∈ SC .where the submappings FA, FB and FC are de�ned as
FA(x) =




i+ ∆i1

vp+ ∆vp
vn+ ∆vn
σp+

T

τP

(
vp+

∆vp
2

− VP

)

σn+
T

τN

(
vn+

∆vn
2

− VN

)




,

FB(x) =




i+ ∆i1dB + ∆i2 (1 − dB)

vp+ ∆vp + δvp1(1 − dB)

vn+ ∆vn
σp+

T

τP

(
vp+

∆vp
2

+ δvp3(1 − dB)2 − VP

)

σn+
T

τN

(
vn+

∆vn
2

− VN

)




,

FC(x) =




i+ ∆i1dB + ∆i2dAB + ∆i4 (1 − dA)

vp+ ∆vp+ δvp1dAB + δvp2(1 − dA)

vn+ ∆vn− δvn2(1 − dA)

σp+
T

τP

(
vp+

∆vp
2

+ δvp5dAB + δvp4(1 − dA)2 − VP

)

σn+
T

τN

(
vn+

∆vn
2

− δvn4(1 − dA)2 − VN

)




.

Similarly, the �ve-dimensional submapping f2 is des
ribed bellow. The expressions
an be obtained easily taking into a

ount that the sequen
e in the mode MN is
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T1 → T3 → T4, whereas in MNP , the sequen
e 
orresponds to T1 → T3. Let usrede�ne the submapping:

f2(i, vp, vn, σp, σn, φ) =






GA(i, vp, vn, σp, σn, φ) if x ∈ TA,

GB(i, vp, vn, σp, σn, φ) if x ∈ TB,

GC(i, vp, vn, σp, σn, φ) if x ∈ TC ,where the fun
tions GA, GB and GC are also rede�ned asGA(x) = FA(x),

GB(x) =




i+ ∆i1dA + ∆i3 (1 − dA)

vp+ ∆vp
vn+ ∆vn− δvn1(1 − dA)

σp+
T

τP

(
vp+

∆vp
2

− VP

)

σn+
T

τN

(
vn+

∆vn
2

+ δvn3(1 − dA)2 − VN

)




,

GC(x) =




i+ ∆i1dA − ∆i3dAB + ∆i4 (1 − dB)

vp+ ∆vp + δvp2(1 − dB)

vn+ ∆vn + δvn1dAB − δvn2(1 − dB)

σp+
T

τP

(
vp+

∆vp
2

+ δvp4(1 − dB)2 − VP

)

σn+
T

τN

(
vn+

∆vn
2

+ δvn5dAB − δvn4(1 − dB)2 − VN

)
.




.

Finally, the duty 
y
les are given by
dA =

(VU + gPA(VP − vp− σp) + gNA(vn− VN + σn)) /rS − i

∆i1 − ∆irand
dB =

(VU + gPB(VP − vp− σp) + gNB(vn− VN + σn)) /rS − (i+ (∆i1 − ∆i3)dA)

∆i3 − ∆ir .
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