
Chapter 2

Thermal equilibrium of the plasma

2.1 Introduction
The purpose of this Chapter is to describe the model we propose for solving

the global thermal equilibrium of tokamak plasmas using a precise geometry, com-
position, and arbitrary profiles for density and temperature. In such a model, the
conductive-convective transport losses are described by a global energy confine-
ment time, which is empirically deduced from the analysis of a large dataset of dis-
charges from present-day tokamaks. Different kinds of transitions between confine-
ment regimes are considered, and the helium fraction is calculated self-consistently
imposing the ratio of the apparent helium confinement time to the energy confine-
ment time.
Description of stability limits of the plasma (pressure, density, and safety factor),

as well as characteristics of the inductive and non-inductive mode of operation, are
given.
The model for the global thermal equilibrium is of considerable importance both

for providing the design basis of future devices and for predicting their performance.

2.2 The thermal equilibrium equation
In steady-state conditions ( d

dt
= 0) the thermal power sources of the tokamak

plasma are balanced by the thermal power losses

Pα + POH + Padd = PB + Psyn + Pcon, (2.1)

where Pα is the alpha power coupled to the plasma, i.e. the power supplied to the
plasma by the alpha particles resulting of the fusion reactions, POH is the ohmic
power source, Padd is the additional power source, PB is the Bremsstrahlung radia-
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2. Thermal equilibrium of the plasma

tion loss, Psyn is the synchrotron radiation loss, and Pcon represents the conductive-
convective transport losses.

2.2.1 Plasma composition
Burning plasmas considered here are composed of an equal mixture of Deu-

terium (D) and Tritium (T) (nD = nT ), which produces the most promising fusion
reaction, of helium ions (alpha particles) with ZHe = 2 as well as of two impurity
species with atomic numbers Z1 and Z2.
Denoting the electron density as ne and considering the quasi-neutrality equation

(ne =
P
niZi), the effective atomic number Zeff, which is defined as Zeff =

P
fiZ

2
i ,

may be written as

Zeff = 1 + 2fHe + f1Z1 (Z1 − 1) + f2Z2 (Z2 − 1) ,
where fi = ni/ne is the impurity fraction of the ion species i, e.g.

fDT = 1− 2fHe − Z1f1 − Z2f2.

2.2.2 Plasma power sources
The number of D-T fusion reactions occurring in the plasma volume is

Nfus =

Z
V

nDnT σvDT(Ti) dV ,

where σvDT(Ti) is the D-T thermonuclear reaction rate for two D and T maxwellian
populations (nD and nT, respectively) with the same ion temperature Ti. The expres-
sion used for σvDT(Ti) is the Sadler fit [Sad87], which is precise for 0 keV < T <
100 keV.
The product of D and T densities is expressed in a most convenient form as a

function of the electron density in the following form:

nDnT = Cα
n2e
4
,

where Cα is the dilution coefficient in the alpha power source due to the impurities
and helium content. We have

Cα = (1− 2fHe − Z1f1 − Z2f2)2 . (2.2)

Typical values for the reactor plasma parameters considered in Chapter 6 are Cα ∼
0.40 − 0.50, which means that for a given electron density (as we will see in Sec-
tion 2.5, ne is limited by MHD instabilities) the number of D-T fusion reactions
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2. Thermal equilibrium of the plasma

in the presence of impurities and helium are reduced approximately by half with
respect to an ideal “clean” plasma (Zeff = 1). This important effect is called the
dilution effect. It can be seen that when the impurity fraction of the ion species i is
increased by∆fi, Nfus in relative terms is decreased by

∆Nfus
Nfus

=
Zi∆fi
Cα0

¡
Zi∆fi − 2C1/2α0

¢
with Cα0 the initial dilution coefficient. As an example, for Zi = 4 and Cα0 = 0.5,
Nfus is reduced by about 11% when ∆fi = 1%.
The total fusion power produced inside the plasma may be written as

Pfus = Nfus (Eα + En) , (2.3)

where Eα is the initial kinetic energy of the alpha particle (3.56 MeV)1 and En
is the kinetic energy of the neutron (14.0 MeV), but only the alpha particles are
thermalized into the plasma. Thus the power that contributes to heat the plasma is
the alpha power, which can be expressed as

Pα = FPαNfusEα, (2.4)

where FPα is the fraction of the alpha power produced by the fusion reactor which
is effectively coupled to the plasma. Typical values of this fraction are FPc ∼ 95 −
100%. In this work, we assume FPc = 1.
Fig. 2.1 shows the maximum fusion power ever produced in JET and TFTR

devices.
The toroidal current which is necessary for the magnetic equilibrium in a toka-

mak is also a source of plasma heating due to the resistivity originating in electron-
ion collisions. The ohmic heating power in the plasma balance is given by

POH =

Z
V

ηj2OHdV

where η is the plasma resistivity and jOH is the ohmic current density, which is
driven by the toroidal electric field induced by the variation of the magnetic flux
in the poloidal system of the tokamak (transformer action). Note that from a point
of view of the thermal energy plasma balance, the self-generated current IBS (also
called bootstrap current) and the externally driven current ICD (generated by the
current drive methods) do not participate to the ohmic power source,

IOH =

Z
S

jOHdS = Ip − IBS − ICD,
1Here the kinetic energy of the thermalized He ion is neglected in comparison with the initial

alpha particle energy.
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2. Thermal equilibrium of the plasma
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Figure 2.1: Thermonuclear power generation versus time (arbitrary zero). Source:
Ref. [Wat99].

where Ip is the total plasma current and S is the plasma poloidal surface.
Hence, in a non-inductive operation, where the toroidal electric field is zero, the

ohmic power vanishes.
A neo-classical enhancement factor γNC is added to the full Spitzer expression

for the local plasma resistivity η [Wes97], leading to

η =
η0 Zeff lnΛ
T
3/2
e

γNC(A, ρ),

with

η0 = 0.51
m
1/2
e e2

3ε20 (2π)
3/2
' 1.66× 10−9,

γNC(A, ρ) =
1

1− 1.95
A1/2

ρ1/2 + 0.95
A

ρ
,

where Te is the electron temperature, A is the aspect ratio (A = R/a) and ρ is the
normalized radius (i.e. the polar co-ordinate in the poloidal cross-section normalized
to the minor radius a).
The Coulomb logarithm lnΛmay be expressed as lnΛ = λD/r0, where λD is the

Debye length (λD =
q

ε0kTe
e2n
) and r0 is the impact parameter for a 90◦ scattering,

which from a temperature higher than 36 eV is the quantum mechanical length (r0 =

20



2. Thermal equilibrium of the plasma

~
2
√
3mekTe

). Thus

lnΛ =
2
√
3m

1/2
e ε

1/2
0 k

e~
Te

n
1/2
e

.

In steady state, the spatial distribution of the ohmic current density is derived
from the equilibrium of a cylindrical plasma, which gives a flat toroidal electric field
E (after a time much larger than the skin penetration time),

E =
IOHR
S
1
η
dS

(2.5)

leading to the following expressions:

jOH (ρ) =
IOH

η0Zeff
R
S
1
η
dS

Te (ρ)
3/2

lnΛ (ρ) γNC(ρ)

and
POH =

η0 Zeff I
2
OH³R

S
Te(ρ)3/2

lnΛ(ρ) γNC(ρ)
dS
´2 Z

V

Te(ρ)
3/2

lnΛ(ρ) γNC(ρ)
dV .

At high temperatures, the ohmic heating is strongly decreased, as η ∝ T−3/2e , and
for next step scenarios it can be shown that POH ¿ Pα; e.g., the reference scenario
in inductive operation for ITER-FEAT predicts POH ' 1 MW to be compared to
Pα ' 83MW.
The additional power source Padd is the global heating power externally injected

into the plasma. It includes neutral beam injection heating as well as high frequency
wave heating, i.e. ion cyclotron resonance heating, lower hybrid resonance heating,
and electron cyclotron resonance heating.
A measure of the success in approaching reactor conditions is given by the am-

plification factor Q, also called plasma gain, defined as the ratio of the thermonu-
clear power Pfus produced by the plasma (Eq. (2.3)) to the total external power
Pext = POH + Padd injected into the plasma,

Q =
Pfus
Pext

=
1

FPα

Eα + En
Eα

Pα
Pext

.

Note that for burning plasmas (like next step or reactor plasmas) the temperature
is high enough to have an ohmic heating much lower than the fusion power. In such
cases, the external power is approximately equal to the additional heating power.
Characteristic values of the amplification factor are Q = 1, 5, 10, ∞. Q = 1 is
called the break-even condition because in this case the fusion power produced is
exactly equal to the external power coupled to the plasma. Considering the fact that

C5 =
1

FPα

Eα + En
Eα

≈ 5, (2.6)
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2. Thermal equilibrium of the plasma

Q = 5 corresponds to an alpha heating power which is roughly equal to the external
heating power, Q = 10 corresponds to an alpha heating power which is roughly
double the external heating power, and Q =∞ is called ignition. In this latter case,
the plasma is self-sustained (no external power required).

2.2.3 Plasma power losses
In a magnetic confinement system there is a loss of energy from the plasma by

means of different physical mechanisms of transport: radiation losses (Prad) and
conduction-convection losses (Pcon).

Radiation losses:

The plasma core emits electromagnetic radiation due to the acceleration of the
charged particles. Electrons are subject to much larger acceleration than ions be-
cause of their lighter mass. Therefore, they radiate much more strongly and only the
electrons need to be considered here.
Depending on the origin of the acceleration of the electrons, the core radiation

losses can be divided in Bremsstrahlung and synchrotron radiation. Bremsstrahlung
radiation is emitted in the range of the X-rays wavelengths mainly due to the electron-
ion collisions. In the non-relativistic Born approximation, the Bremsstrahlung loss
is given by

PB =

Z
V

CB Zeff n
2
eT

1/2
e dV , (2.7)

with

CB =
1

(4π²0)3
32
√
2

3
√
π

e6k1/2

m
3/2
e c3~

' 5.355× 10−37,

The dependence of PB in Zeff together with the dilution effect introduced previously,
makes low impurity content essential for thermonuclear plasmas. As an example, for
Zi = 4 and Zeff = 1.9, PB is increased by about 6% when ∆fi = 1%. Comparing
both impurity effects on the thermal energy balance of commercial reactor plasmas,
the dilution effect is the dominant one since in such conditions the alpha power
coupled to the plasma is much higher than Bremsstrahlung losses.
Synchrotron radiation has its origin in the gyromotion of the electrons around

the magnetic field lines confining the plasma. Owing to the complexity of their
exact calculation, synchrotron radiation losses per unit of plasma volume are roughly
estimated by expressions deduced for homogeneous cylindrical plasmas, of the form
[Tru79]

Psyn ' 8.2× 10−10 (1− r)1/2Ra3/2T 5/2e B
5/2
t0 n

1/2
e ,

where R and a are the major and minor radius of the tokamak, Bt0 is the magnetic
field on the plasma axis, and r is the reflection coefficient of the machine first wall.
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2. Thermal equilibrium of the plasma

The emission is in the millimetre wavelength region. Consequently, the emit-
ted radiation is both absorbed by the plasma itself and reflected by the first wall,
resulting in a new absorption phase so that the power effectively lost is negligi-
ble compared to the power balance, for plasmas of present tokamaks. However, in
Chapter 6 we illustrate that synchrotron losses become significant in the power bal-
ance of high-temperature plasmas envisaged for a steady state commercial reactor.
The complete formalism for the synchrotron radiation transport will be described in
Chapter 3, where a new expression for the fast calculation of synchrotron losses is
proposed.
The presence of impurities in the plasma produces an enhancement of radiation

losses. On the one hand, the Bremsstrahlung radiation increases because of the
higher value of the effective charge of the plasma. On the other hand, several atomic
physics processes such as ionisation by electron collisions, radiative recombination,
charge exchange recombination and excitation produce the so-called line radiation.
The reaction rates of all of these processes depend on the local plasma electron
temperature and on the impurities atomic number. Considering that heavy impurities
(metals) and the associated line radiation in a thermonuclear plasma core must be
absolutely avoided, the line radiation is maximal at low temperatures, i.e. of the
order of tens of eV for the low Z impurities and of the order of 1 keV for medium
Z impurities, and it vanishes for core temperatures in which such species are fully
ionised. Therefore, line radiation losses are only important at the plasma edge, where
they participate in dissipating the conductive-convective heat flux, not affecting the
global power balance.
A good estimation of the power that a plasma can radiate by these processes

occurring at the plasma mantle (edge plasma inside the separatrix) is provided by
the experimental multi-machine expression [Mat97]:

Prad-mantle =
10−33

5.6
(ne)

1.95 S1.03
Z∗eff − 1
Z0.19r

, (2.8)

where
Z∗eff = 1 + frZr (Zr − 1) ,

S is the plasma surface, and fr and Zr are the fraction and atomic number of the
radiative impurity (Neon or Argon in next step tokamaks). In the plasmas with two
impurity species considered in this work, we take fr = f2 and Zr = Z2. The above
expression is obtained from that in Ref. [Mat97] by replacingZeff−1 by Z∗eff−1 only
taking into account the contribution to Zeff of the radiative impurity frZr (Zr − 1),
which corresponds to the case where the temperature pedestal is high enough so that
light impurities no longer radiate.
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2. Thermal equilibrium of the plasma

Conductive-convective loss and energy confinement time:

The conduction-convection loss Pcon is the power transferred from the core to
the edge plasma by conduction and convection processes. It is modelled through the
global energy confinement time τE by the following expression:

Pcon (ne, Te) =
Wth (ne, Te)

τE (ne, Pnet)
, (2.9)

where Wth is the total energy content of the plasma and Pnet is the so-called net
heating power, i.e. the power coupled to the plasma which is not lost by the core
radiation processes. The expression of Pnet is as follows:

Pnet = Ptot − (PB + Psyn)

with
Ptot = Pα + POH + Padd,

which means that at thermal equilibrium, we have

Pnet = Pcon. (2.10)

Considering a multispecies plasma with a temperature Te for the electrons and
Ti for the ions and impurity species, the thermal energy content in Eq. (2.9) may be
written as

Wth =

Z
V

CW 3nekTe dV , (2.11)

where CW is the multispecies coefficient, given by

CW =
1

2
(1 + θi)− θi

2
[fHe + f1 (Z1 − 1) + f2 (Z2 − 1)] (2.12)

with θi = Ti/Te.

2.2.4 Peak heat flux on the divertor target plates
In a reactor plasma, the impurities which come from solid surfaces or resulting

from the fusion process (alpha particles) must be controlled to keep an acceptable
value of Q, due to the dilution effect and radiation processes. Impurities can also
lead to disruptions as a result of edge cooling and consequent current profile modi-
fication.
Two techniques are presently used to separate the plasma from the vacuum vessel

and to pump out the impurities. The first one, is to define an outer boundary of the
plasma with a material limiter as shown in Fig. 2.2(a). The second technique is
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2. Thermal equilibrium of the plasma

to keep the particles away from the vacuum vessel by means of a modification of
the magnetic field so that, outside the last closed magnetic surface (LCMS), the
plasma flows towards and eventually interacts with a solid surface. This is the basic
geometry of a divertor (see Fig. 2.2(b)). The essential difference between the two
methods is that with a limiter the LCMS is in contact with a solid surface, whilst
with a divertor the solid surface may be placed at some distance from the LCMS.
For next step devices and reactors the divertor configuration is envisaged.

X-point

Target plates

Limiter

Vacuum
pump

Vacuum
pump

Vacuum
vessel

separatrix

Closed
magnetic surface

(a) (b)

scrape-off
layer

Figure 2.2: Schematic diagram of poloidal flux surfaces in a tokamak (a) with a lim-
iter configuration and (b) with a divertor configuration (the toroidal field is normal
to the page).

There are several possible magnetic configurations for divertors, but the most
successful one has been the toroidal symmetric configuration. The required mag-
netic field is produced by creating a null in the poloidal field, separating closed and
open magnetic surfaces (X-point). It has been found experimentally that the use
of such a divertor configuration also often results in a significant improvement in
the energy confinement time, the plasma being in a confinement regime known as
the H-mode (see Section 2.4.2). In the present study we only refer to such divertor
configurations.
A difficult problem associated with the divertor is that of limiting the power den-

sity flowing to the target surface. This is necessary to avoid high surface tempera-
tures which can lead to surface melting, catastrophic impurity release by evaporation
or other processes. The time averaged peak heat flux on the divertor target plates is
taken to be

Φdiv-peak = 0.62
Psep
R
, (2.13)
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2. Thermal equilibrium of the plasma

where Psep is the power crossing the separatrix (last closed magnetic surface) and the
constant is adjusted to obtain Φdiv-peak = 10 MW/m2 for Psep = 100 MW in ITER-
FEAT (R = 6.2 m). The 1/R dependence is due to the fact that the width of the
scrape-off layer is approximately kept constant with increasing machine dimensions.

2.3 Conductive-convective heat transport within a fu-
sion plasma

2.3.1 Determination of the global energy confinement time τE
from a local modelling of heat transport

In a magnetic plasma configuration, the confinement properties are governed by
the transport perpendicular to the magnetic field, since the parallel transport is much
larger than the perpendicular one. Hence, axisymmetry is considered in the plasma
torus and consequently the density and the temperature are constant on a magnetic
surface, which complies with the equilibrium condition

j×B =∇p,
where j × B is the magnetic force (j the current density flux and B the magnetic
field) and∇p is the force due to the plasma pressure.
For a given magnetic surface, the differential formulation of the conservation

equation for the thermal energy wth per unit of volume can be written as

d

dt
wth +∇ · φ = pnet, (2.14)

where pnet is the net heating power per unit of volume corresponding to the magnetic
surface, and φ is the heat flux across the magnetic surface. In steady-state ( d

dt
wth =

0), Eq. 2.14 leads to
∇ · φ = pnet. (2.15)

In the first approximation, the conductive heat flux φj for each species in a ther-
monuclear plasma can be locally expressed in terms of density nj and temperature
Tj by the differential Fourier form

φj = −njkχj∇Tj, (2.16)

where χj is the thermal diffusivity of the species j. The units of χj are
h
m2

s

i
for a

heat flux φ expressed in
£
J
m2s

¤
.

The problem of the local modelling of heat transport can be reduced to the es-
timation of the thermal diffusivity coefficient χj . Then, for a given χj model, the

26
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temperature profiles may be deduced from Eqs (2.15) and (2.16) when the profile of
density and source of heating power pnet are known.
In thermal equilibrium, integration of the transport equations (2.15) and (2.16)

then leads to the zero D equilibrium equation (2.1) with Pcon given by Eq. (2.9). Note
that the convective part of transport could be added to the conductive term φj for
each species, keeping the validity of the zero D power equilibrium when transport
equations are integrated.

2.3.2 Classical, neoclassical and anomalous models for the ther-
mal diffusivity

In the absence of instabilities the confinement is determined by Coulomb col-
lisions. The transport of energy and particles which would occur in these circum-
stances has been calculated. Nevertheless, the predicted results cannot explain the
experimental results even though the neoclassical effects are considered. In par-
ticular, the experimental thermal transport by electrons and the consequent thermal
diffusivity are up to two orders of magnitude higher than neoclassical predictions.
It is thought that the observed anomalous transport is due to micro-instabilities of

the plasma. Today, a large international collaborative effort is being done in order to
understand and model this so-called anomalous transport using the non-linear kinetic
theory. Although the key parameters leading to a growth rate of the instabilities onset
are identified [Bou00], today there is no satisfactory agreement between the theory
calculations and the experimental behaviour. For this reason, it has been necessary
to resort to empirical methods providing statistical scaling expressions deduced from
experimental tokamak results which, within some error, allow extrapolation to next
step tokamaks.

Classical transport:

In a cylindrical plasma the collisional transport of particles and energy can be
understood in terms of a simple diffusion process, and this is called classical trans-
port. Electron and ion thermal diffusivities can be estimated by assuming Coulomb
interactions to be produced between identical particles with different thermal energy.
Thus,

De ∼ χe,

where De is the electron diffusivity.
On the other hand, the ion thermal diffusivity is related to the electron thermal

diffusivity as a ratio between masses

χi ∼
µ
mi

me

¶1/2
χe,
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with the consequent prediction that the ion thermal diffusivity would far exceed that
of the electrons.
In a random walk approach we assume that, due to the collisions with other

particles characterized by the collision frequency νc, a particle makes a step perpen-
dicular to the magnetic field with a step length equal to the Larmor radius ρL, which
is the orbit radius described by a particle in the presence of a magnetic field on its
perpendicular plane,

ρL =
mυ⊥
eB

.

This gives a diffusion coefficent

De ∼ ∆x2

∆t
∼ ρ2Lνc.

The thermal diffusivities experimentally determined are much larger than the
values predicted by the classical transport theory. In addition to this, the electron
thermal diffusivity is found to be larger than the ion one. Therefore, classical trans-
port cannot be the dominant process in a fusion plasma.

Neoclassical transport theory:

The magnetic field in a poloidal plasma section is not homogeneous due to the
fact that the toroidal coils are closer in the inner part than in the outer part (∇B). In
such a distribution of the magnetic field, when a particle’s guiding centre follows a
curved magnetic field, it undergoes a drift giving rise to two types of guiding centre
orbit, as shown in Fig. 2.3.

magnetic
surface

untrapped
particle

trapped
particles

Figure 2.3: Poloidal plane projection of the guiding centre orbit of untrapped and
trapped particles. The major axis of the tokamak is on the left.
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For magnetic field lines with sufficiently high υ⊥/υk, the particles can be trapped
because their parallel velocity υk is not sufficient to escape the magnetic well which
is formed as a result of the poloidal variation of B. The projection of the trapped
particles orbit on a poloidal plane has not enclosed the magnetic axis, but rather has
a banana-like shape due to the curvature drift. A simple result of this effect is that the
electrical conductivity is lowered in neoclassical theory, as trapped particles cannot
contribute to the toroidal current.
The existence of banana orbits leads to the so called effective collision frequency

for trapped particles νeff ∼ νc/ε, where νc is the collision frequency between par-
ticles and ε is the inverse aspect ratio. Let us define the collisionality parameter
as

ν? =
νeff
νb
,

where νb ∼ υthε
1/2/ (qR) is the inverse of the time a particle needs to transit the ba-

nana, υth is the electron thermal velocity, and q is the safety factor (see Section 2.5.3).
The normalized collision frequency ν∗ determines whether the particle can complete
a banana orbit between two collisions. Depending on its value, we define three dif-
ferent regimes, which are illustrated in Fig. 2.4:

• Banana regime (low collision frequency ν? < ε3/2): the effective frequency
νeff of the Coulomb collisions which are able to detrap the trapped particles is
lower than the transit frequency in the banana orbit. Thus, the trapped particles
follow the banana orbit several times before they are scattered. In this case,
the relevant transport mechanism is the diffusion of the trapped particles

De ∼ ∆2
bνeff,

where∆b ∼ qρLε−1/2 is the width of the banana orbit. The effective diffusion
coefficient for the banana regime takes into account that only a fraction∼ ε1/2

of the particles are trapped, leading to

De ∼ q2ρ2Lνc ε−3/2.

This diffusion coefficient exceed the classical diffusion coefficient by the large
factor q2ε−3/2.

• Pfirsch-Schlüter regime (high collisionality ν? > 1): the trapped particles do
not complete their banana orbits but are scattered before. In this case, the
diffusion of the untrapped particles determines the transport, and it is found

De ∼ q2ρ2Lνc.
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Figure 2.4: Variation of diffusion coefficient with collision frequency throughout
the three different transport regimes (solid line), and the predicted classical values
(dashed line).

• Plateau regime (ε3/2 < ν? < 1): between the banana and Pfirsch-Schlüter
regimes. In this case, the diffusion coefficient De ∼ υthρ

2
Lq/R is independent

of the collision frequency νc.

These neoclassical terms have to be added to the classical terms. In fact, they
completely dominate the latter. Nevertheless, the predicted results still cannot ex-
plain the experimental observations, especially for electrons.

The anomalous transport:

An approach to the study of the anomalous transport in tokamaks is based on
the dimensionless analysis of local scaling expressions for thermal diffusivity. This
method provides a reliable way to extrapolate present-day tokamak performance
towards a next step device, by maintaining the similarity.
It has been shown that, for a given class of microinstabilities (e.g. electrostatics),

the thermal diffusivity depends on a certain local parameters, which are grouped
in a dimensionless form. Hence, the thermal diffusivity of each species is usually
assumed to scale as [Gar96]

χ ≡ T

eB
(ρ∗L)

x f (β, ν∗) , (2.17)

where ρ∗L is the Larmor radius normalized to the minor radius a, and f (β, ν∗) is
the dependence on beta and on normalized collision frequency. The so-called gyro-
Bohm model is characterized by x = 1 in Eq. (2.17), whereas x = 0 corresponds to
the so-called Bohm model.
At this point, we can make two general considerations. First, we observe that

ρ∗L increases from large to small machines. Secondly, since the normalized Lar-
mor radius depends on the square root of the local temperature of a plasma with a

30



2. Thermal equilibrium of the plasma

Maxwellian distribution (ρ∗L ∝ T 1/2), there is a natural tendency for the gyro-Bohm
term to be more important in the plasma centre with respect to the Bohm term, when
other functional dependencies are similar.

• The mixed Bohm/gyro-Bohm anomalous transport model

The mixed Bohm/gyro-Bohm model, which is based on such considerations,
assumes the transport inside a tokamak plasma to be a combination of a Bohm term
that dominates in the plasma edge (χB), and a gyro-Bohm term that is peaked in the
plasma centre and dominates the heat flux in small machines (χgB). The two terms
are added to the neoclassical diffusivity χneo, giving the following expression for the
thermal diffusivity:

χ = χB + χgB + χneo

with the following expression for the Bohm-like term χB for electrons and ions:

χBe = αB
cTe
eBt

1

L∗pe
q2 and χBi = 2χBe,

where L∗pe is the normalized pressure scale length L
∗
pe =

pe
a|∇pe| , while χgB is a

simple gyro-Bohm-like diffusivity which has the same form for electrons and ions

χgB = αgB
cTe
eBt

1

L∗Te
ρ∗,

where L∗−1Te
is the normalized temperature scale length L∗Te =

Te
a|∇Te| . The numerical

constants αB and αgB are adjusted from the experiments.
The model has been successfully tested on data from different experiments, such

as in JET, DIIID, TFTR, ASDEX, and JT-60U, for L-mode confinement regimes2
[Erb96].

• Extension of the mixed Bohm/gyro-Bohm model to the H-mode regime

In the majority of tokamak plasma configurations, it has been found that when
sufficient amount of power is coupled to the plasma, the edge confinement is im-
proved, leading to edge pedestals in the temperature and density. The resulting con-
finement regime is called the H-mode3, which is the reference confinement regime
for ITER-FEAT. The transport properties in the outer region of the plasma are mod-
ified and the numerical value of the diffusivity is reduced by a factor of approxi-
mately three. Hence, for H-mode confinement regimes we modify the Bohm term
of the thermal diffusivity (dominating the edge transport) by introducing a non-local

2The L-mode regime is the “normal” behaviour of a tokamak plasma.
3H and L mean “high” and “low” confinement.

31



2. Thermal equilibrium of the plasma

dependence on edge parameters. As the diffusivity decreases when the edge tem-
perature is increased (as in the L-H transition), a simple parametric dependence has
been proposed [Erb97] by dividing the Bohm diffusivity by the normalized elec-
tron temperature scale length L∗Te , evaluated as an average in the boundary region
internal to the separatrix corresponding to the normalized toroidal flux co-ordinate
0.8 < ρ < 1.0, resulting in

χ = χB
­
L∗Te
®−1

+ χgB + χneo,

with ­
L∗Te
®−1

=
Te(ρ=0.8) − Te(ρ=1)

Te(ρ=1)
.

• Extension of the mixed Bohm/gyro-Bohm model to optimized shear configu-
rations
More recently, new confinement regimes called advanced tokamak regimes
have been achieved in several tokamaks [Fuj99], [Wat99], and [All00]. In such
regimes, a local stabilising effect (i.e. the local negative magnetic shear) pro-
duces a decrease of the instabilities growth rate, creating a so-called internal
transport barrier (ITB). The thermal diffusivities inside the ITB are drastically
reduced, in some cases even close to neoclassical levels, and the confinement
improves. As a result, the density and temperature profiles are steeper in the
transport barrier. This strong pressure gradient induces an increase of the ro-
tation shearing rate, which then maintains the confinement high quality. Ad-
vanced confinement regimes are very promising as a reactor nominal regime.

The mixed Bohm/gyro-Bohmmodel can also describe the central ion and elec-
tron temperature rise typical of an internal transport barrier regime if a cor-
rection factor Fshear reduces the Bohm term, in the region where the rotation
shearing rate is larger than a threshold value. Semi-empirical expressions are
proposed for this rotation shear threshold in Ref. [Voi98].

2.4 Experimental scaling expressions for the global
energy confinement time

As seen above, there is a lack of understanding of the anomalous transport theory
and as a result it has been necessary to use semi-empirical local expressions for the
thermal plasma diffusivity. For plasma engineering studies, i.e. plasma performance
predictions or tokamak design, a zero D model for the thermal equilibrium is used.
In this model, the thermal losses are described by the global energy confinement
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Figure 2.5: Ion thermal diffusivities versus normalized plasma radius for the ad-
vanced discharge #40847 of JET, and comparison with neoclassical values [Wat99].

time, which is empirically deduced from the analysis of a large dataset of discharges
from present-day tokamaks.
The scaling laws for the global energy confinement time takes a monomial form;

that is to say, the product of powers of various engineering plasma parameters. The
detailed dependence on these parameters depends on the regimes of plasma confine-
ment, also called modes of confinement.

2.4.1 L-mode
In the L-mode confinement regime, τE = τE,L, the ITER-97P(th) expression

for the global energy confinement time scaling is considered [FDR97]. We take
τE,L = τE,ITER-97P(th), with

τE,ITER-97P(th) = 2.3× 10−10.98
M0.2
eff κ

0.64
X I0.96p (ne)

0.4B0.03t0
R1.89a−0.06

P 0.73net
, (2.18)

where Meff is the effective mass (Meff = 2.5 for a 50% D-T plasma), κX is the
up-down averaged value of the plasma elongation at the X-point, and ne is the line
averaged density.
It is worth noting that the global energy confinement time exhibits degradation

with increasing net heating power.
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2.4.2 H-mode
The most convenient operation regime for stationary operation in H-mode is

called the ELMy H-mode (τE = τE,H). This is the reference confinement regime
for ITER-FEAT. The reference scaling for the ITER-FEAT design [IPB99] is a con-
servative scaling (with respect to other scaling laws proposed before) derived using
1310 points of ELMy H-mode discharges from 11 tokamaks. In this case, we take
τE,H = τE,IPB98(y,2), with

τE,IPB98(y,2) = 5.62× 10−11.23
M0.19
eff κ0.78a I0.93p (ne)

0.41B0.15t0
R1.39a0.58

P 0.69net
, (2.19)

where the effective plasma elongation κa is the ratio of the LCMS poloidal surface
Sp (see Section 2.6) to the surface of the circle forming the same minor radius,

κa =
Sp
πa2

.

The root mean square error of this scaling, which is shown in Fig. 2.6, is RMSE =
14.5% (see Appendix C for the definition of such a goodness fit indicator).

Figure 2.6: Comparison of the experimental energy confinement time τth with the
scaling expression in Eq. (2.19), for ELMy H-mode discharges, and prediction for
ITER-FEAT next step (Ref. [ODR99]).

Advanced regimes achieve global confinement times larger than the values pre-
dicted by the above scaling. In order to evaluate this improved confinement, the
confinement time enhancement factor HH is introduced using the following relation:

τE = HH × τE,IPB98(y,2). (2.20)
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Recent near steady-state discharges from JT-60U with ITB have achievedHH ∼
2.2 [Kam00]. Other high values of confinement time enhancement factor have been
observed on DIII-D [All00] and JET [Wat99].

2.4.3 L-H transition power threshold
Denoting Psep the power crossing the Last Closed Magnetic Surface (LCMS),

we have the following relation

Pcon = Prad-mantle + Psep, (2.21)

wherePrad-mantle is the power radiated at the plasma edge inside the separatrix (plasma
mantle). When Psep exceeds a threshold value PL-H, the L-H transition occurs,
Psep ≥ PL-H.
The expression considered for the L-H transition power threshold is that used

for the ITER-FEAT design, which is deduced from the analysis of discharges of
present-day tokamaks [IPB99],

PL-H = 2.84× 10−5.6 (ne)0.58B0.82t0
R1.00a0.81M−1

eff . (2.22)

In several devices, a power hysteresis has been observed for the H-mode thresh-
old and about 1.5 − 2 times more power is required to achieve the H-mode (L-H
transition) than to sustain it (H-L transition). However, on JET and in high-density
discharges on ASDEX-Upgrade, hysteresis is not observed [IPB99]. Thus, as a con-
servative criterion, for prospective studies (see Chapters 4, 5, and 6) we use the L-H
power threshold expression (2.22) also for the H-L transition (no hysteresis).

2.4.4 The L-mode and ELMyH-mode softly mixed scaling τE,mix
Some experiments have shown a degradation of the H-mode confinement for

Psep above the L-H transition power threshold [Jac98] (up to twice the Psep value).
In order to model this effect, we introduce a soft transition between the H-mode and
L-mode regimes using the following expression:

τE,mix = τE,L +H
∗
τ (τE,H − τE,L) (2.23)

with 
H∗

τ = 0 for Psep/PL-H ≤ 1
H∗

τ =
£
1− (Psep/PL-H − 2)2

¤1/2 for 1 < Psep/PL-H < 2
H∗

τ = 1 for Psep/PL-H ≥ 2
where Psep is the power crossing the LCMS, and τE,L, τE,H are the empirical scalings
introduced above. Fig. 2.7 plots the function H∗

τ versus the quantity Psep/PL-H.
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Figure 2.7: Function H∗
τ of the softly mixed scaling between L-mode and H-mode

confinement regimes.

When Psep/PL-H ≥ 2 the plasma confinement regime is the H-mode, whilst
Psep/PL-H ≤ 1 corresponds to the L-mode regime. Between both cases we have
a mixed L-H regime. In Chapter 4, we analyse the plasma performance of ITER-
FEAT next step tokamak in this regime.

2.5 Plasma stability domain
The plasma operation window both in inductive or current drive operation is lim-

ited by macroscopic magnetohydrodynamical (MHD) instabilities. The constraints
for stable plasma operation are on the plasma density, pressure and safety factor.
These constraints are used in prospective and design studies of Chapters 4, 5,

and 6.

2.5.1 Density limit
When the electron density reaches a limiting value, unstable plasma processes

appear in which a confinement degradation and, in some cases, a disruption (i.e.
a dramatic event in which the plasma confinement is suddenly destroyed) are pro-
duced. The following empirical expression has been proposed byGreenwald [Gre88]
for this density limit:

nGreenwald = 10
14 Ip
πa2

, (2.24)

where units are SI.
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2.5.2 Beta limit
The confined plasma is subject to MHD instabilities which limit the plasma pres-

sure. Let us define the volume averaged toroidal beta hβti measuring the confined
pressure as the kinetic pressure due to thermal particles over the toroidal magnetic
pressure,

hβti = Pkinetic
Ptoroidal

=
2kCW

R
V
neTe dV

B2t0/2µ0
, (2.25)

where CW is the multispecies coefficient. We consider the usual normalization of
the toroidal beta parameter which is called the normalized beta

βN = 10
8 hβti aBt0

Ip
. (2.26)

Experiments have been found to be limited to a maximum normalized beta pa-
rameter βNmax. Typical values are in the range βNmax ∼ 2.5− 3.0.

2.5.3 Safety factor
The safety factor q plays an important role in the magnetohydrodynamic stability

of the plasma. In general terms, higher values of q lead to greater stability. As seen
before, it also appears as a parameter in energy transport theory.
In an axisymmetric configuration, a value of q may be associated to each mag-

netic surface, which can be defined by

q =
∆Ψ

2π
, (2.27)

where ∆Ψ is the change of toroidal angle when the field line of a given magnetic
surface does a complete poloidal turn. Using the equation of the field line, it is
shown that

RdΨ

dl
=
Bt
Bp
, (2.28)

where dl is the distance in the poloidal direction while moving through a toroidal
angle dφ, and Bt and Bp are the toroidal and poloidal magnetic fields. Thus, from
Eqs (2.27) and (2.28) we obtain

q =
1

2π

I
1

R

Bt
Bp
dl.

For stability analysis, the safety factor is evaluated at the magnetic surface where
the poloidal flux is 95% of the total poloidal flux at the separatrix, qψ95. Applying
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Ampere’s law in a poloidal plasma section, the averaged poloidal magnetic field at
a magnetic surface enveloping the 95% of the plasma may be expressed as

hBpi = µ0 IpH
dl
.

In a cylindrical plasma, the expression for the safety factor at the 95% magnetic
flux surface is given by

q∗ψ95 =
1

2πR

Bt
µ0Ip

µI
dl

¶2
,

where
¡H
dl
¢2 is approximated by (1 +K2)/2, with K2 = κ295 (1 + 2δ

2
95 − 1.2δ395)

and κ95 and δ95 are the elongation and triangularity of the cross section of the 95%
magnetic flux surface.
In the case of toroidal plasmas, the following fit for the safety factor at the 95%

magnetic flux surface qψ95 is used:

qψ95 =
2π

µ0

a2Bt0
RIp

1 +K2

2

Cq1 − Cq2/A
(1− 1/A2)2 . (2.29)

For limiter plasmas, with no X-points, we will take κ95 = κX = κ, δ95 = δX =
δ and we will use Cq1 = 1.22, Cq2 = 0.68. In the case of a configuration with one
or two X-points, qψ95 is given by the above expression with Cq1 = 1.17, Cq2 = 0.65.
The minimum safety factor value to guarantee the confinement stability is cur-

rently taken to be
qΨ95,min ∼ 3.

2.6 Plasma geometrical description
The tokamak plasma is axysimmetric with respect to the vertical axis of the

torus. In the general case, we consider asymmetric magnetic surfaces with respect
to the equatorial plane. Hence, the plasma configuration can present two, one, or
zero X-points.
The poloidal cross-section of the last closed magnetic surface (LCMS) is en-

closed inside a rectangular envelope, as represented in Fig. 2.8. We suppose that
the contact points of the vertical sides of this rectangle with the poloidal section are
situated on the same horizontal axis. In this case, the LCMS geometry is described
by four curves parameterised by the following eight parameters:

κ
(1)
X , δ

(1)
X ,ψ

−(1),ψ+(1) ; κ
(2)
X , δ

(2)
X ,ψ

−(2),ψ+(2)
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Figure 2.8: General geometry for an asymmetric configuration showing the rectan-
gular envelope and the reference elliptical case.

where κX , δX are the elongation and triangularity at the X-point, and ψ−, ψ+ are
the angles between the last closed magnetic surface and the horizontal plane at the
internal and external sides of the torus, respectively. The superscripts (1), (2) refer
to the upper and lower parts of the poloidal cross-section, respectively.
The curves describing the LCMS are portions of ellipses, parabolas, hyperbolas,

or straight lines depending on the values of the geometrical parameters. An example
of the LCMS modelling is given in Fig. 2.9. In this case, the upper part of the
poloidal section is made of two portions of ellipses as well as the outer lower part.
The lower inner part is a portion of hyperbola.
The parametric equations are reported in Appendix A.

2.6.1 Plasma surfaces and volume
For the plasma geometry description presented above, the plasma volume V ,

and the poloidal and toroidal plasma surfaces (Sp and S, respectively) are calculated
using the following explicit expressions:

Sp = πa2
κ
(1)
X + κ

(2)
X

2
ΘSp ,

S = 2πR× 2πaE1
Ã
κ
(1)
X + κ

(2)
X

2

!
ΘS ,
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Figure 2.9: Comparison of the poloidal section of the ITER-FEAT Outline Design
[ODR99] with our plasma configuration using κ

(1)
X = 1.687, κ(2)X = 2.001, δ(1)X =

0.466, δ(2)X = 0.568, Ψ−(1) = 0, Ψ+(1) = 0, Ψ−(2) = 67.92◦, and Ψ+(2) = 22.46◦.

V = 2πR× πa2
κ
(1)
X + κ

(2)
X

2
ΘV ,

where ΘSp, ΘV , ΘS are the corrective factors to the pure elliptical cross-section,
which is enclosed inside the rectangular envelope (see Fig. 2.8).
Here, a is the plasma horizontal minor radius (half the horizontal side of the

rectangular envelope), R is the distance which separates the plasma centre from the
vertical axis of the torus, and E1 is defined as

E1(κX) =
2

π
κXE

£
(1− 1/κ2X)1/2

¤
,

where E(k) = E(π
2
, k) is the complete elliptic integral of the second kind. The

expressions of the corrections factors as well as of the poloidal surface and volume
integrations are deduced in Appendix A.
The plasma configuration defined here allows a very good geometrical descrip-

tion for the configurations of most present tokamak plasmas and next step devices.
For example, using the ITER-FEAT parameters and the elevation view of Fig. 2.9,
the volume and plasma surfaces calculated with our plasma description differ less
than 1% from the values of the ITER-FEAT Outline Design [ODR99].
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2.7 Helium content of the plasma
The helium fraction (alpha particles fraction) fHe is calculated self-consistently

imposing a constant ratio τ ∗He/τE of the apparent helium particle confinement time
to the energy confinement time

τ∗He/τE = constant,

where the apparent helium confinement time τ∗He is the ratio of the total number of
He ions present in the discharge to the He source due to fusion reactions.
This condition means that the energy and helium confinement time are linked in

a similar way as the thermal and particle diffusivities (see Section 2.3.2). Indeed,
recent experiments in the tokamak ASDEX Upgrade have achieved in different dis-
charges identical values for the ratio τ ∗He/τE , in the range of 4 to 6 [ASD98], using a
ITER-like divertor configuration (Div II).
By definition, the apparent helium confinement time is the ratio of the total num-

ber of He ions present in the discharge NHe to the He source due to fusion reactions
Sα,

τ ∗He =
NHe
Sα
.

For a volume average electron density hnei,

hnei = 1

V

Z
V

nedV (2.30)

we obtain
τ ∗He =

fHeEα hneiV
Pα

, (2.31)

where Pα is the the alpha power produced inside the plasma.
In order to obtain an unequivocal result of fHe in terms of τ ∗He/τE when the

plasma parameters (including density and temperature) are known, we express the
energy confinement time τE from the monomial scaling laws defined in Section 2.4.

2.7.1 Case of a simple monomial energy confinement time
Considering a thermal equilibrium plasma in which the energy confinement time

is described by a scaling law with a power dependence with respect to Pnet, i.e. the
monomial expressions introduced in Section 2.4 as

τE =
τ
(1)
E

P xPnet
, (2.32)

and according to Eqs (2.10) and (2.9), the net heating power follows to be:
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Pnet =
W

1
1−xp
th

τ
(1) 1

1−xp
E

, (2.33)

and the scaling law can be written as

τE =
τ
(1) 1

1−xp
E

W
xp

1−xp
th

,

where Wth is the thermal content (see Eq. (2.11)), which can be also expressed as
Wth = CW (fHe)W

(0)
th , where CW is the multispecies coefficient given in Eq. (2.12).

From Eqs (2.31), (2.32), and (2.33) the ratio of the apparent helium confinement
time to the energy confinement time can be written in the form

τ ∗He
τE

=
EαV hneiW

(0)
xp

1−xp
th

P (0)α τ
(1) 1

1−xp
E

fHe [CW (fHe)]

xP
1−xP

Cα (fHe)
, (2.34)

where P (0)α is the alpha power defined in Eq. (2.4) of an ideal plasma without impu-
rities nor helium content (Cα = 1), thus Pα = Cα (fHe)P

(0)
α , while Cα is the dilution

coefficient given in Eq. (2.2). In Eq. (2.34) the first term on the right-side depends
on the plasma parameters (e.g. density, temperature, magnetic field, plasma current)
but not on the helium fraction.
An example of τ ∗He/τE (fHe) curve is shown in Fig. 2.10 below showing that this

function is monotonic, allowing numerical inversion.

2.7.2 Case of a softly mixed scaling for the energy confinement
time

A different treatment must be developed when a softly mixed scaling from the
L-mode to the H-mode is considered for the energy confinement time (see Sec-
tion 2.4.4). In this case, for L-mode and ELMy H-mode scaling laws with a Pnet
dependence as follows

τE,L =
τ
(1)
E,L

P
xP,L
net

and τE,H =
τ
(1)
E,H

P
xP,H
net

,

and according to Eqs (2.31) and (2.9), we obtain the following expressions for the
helium fraction in terms of τ ∗He/τE;
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Figure 2.10: τ ∗He/τE as a function of fHe for ITER-FEAT parameters [ODR99],
IPB98(y,2) scaling for the energy confinement time, flat density and parabolic tem-
perature profiles, f1 = f2 = 0, Te = Ti, hnei = 1020m−3, and hT i = 5, 10, 15, 20
keV.

for fHe ≤ fHe,H:

(τ ∗He/τE) =
EαV hneiW

(0)
xP,H

1−xP,H
th

P
(0)
α τ

(1) 1
1−xP,H

E,H

fHe [CW (fHe)]
xP,H

1−xP,H

Cα (fHe)
,

for fHe,H < fHe < fHe,L:

CW (fHe)W
(0)
th = C

1−xP,L
nT C

1−xP,L
α1 τ

(1)
E,L +

"
1−

µ
CnTCα1 − Prad-mantle

PL-H
− 1
¶2#1/2

×
³
C

1−xP,H
nT C

1−xP,H
α1 τ

(1)
E,H − C1−xP,LnT C

1−xP,L
α1 τ

(1)
E,L

´
,

for fHe > fHe,L:

(τ ∗He/τE) =
EαV hneiW

(0)
xP,L

1−xP,L
th

P
(0)
α τ

(1) 1
1−xP,L

E,L

fHe [CW (fHe)]
xP,L

1−xP,L

Cα (fHe)
,

with

Cα1 =
Cα (fHe)CW (fHe)

fHe
and CnT =

(τ ∗He/τE)P
(0)
α W

(0)
th

Eα hnei V ,
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fHe,H =
1 + θi
θi
− (Z1 − 1) f1 − (Z2 − 1) f2

− 2τ
(1)
E,H P

1−xP,H
L-H

θiW
(0)
th

(2 + Prad-mantle/PL-H)
1−xP,H ,

fHe,L =
(1 + θi)

θi
− (Z1 − 1) f1 − (Z2 − 1) f2

− 2τ
(1)
E,L P

1−xP,L
L-H

θiW
(0)
th

(1 + Prad-mantle/PL-H)
1−xP,L ,

while Prad-mantle and PL-H, which are independent from the helium fraction, are given
in Eqs (2.8) and (2.22), respectively. In the first case (fHe ≤ fHe,H-L) we have a
purely H-mode regime, in the third case (fHe > fHe,L) we have a purely L-mode
regime, and a mixed regime between L-mode and H-mode results from the second
case (fHe,H < fHe < fHe,L). Therefore, we conclude that, for a given plasma density
and temperature, the H-mode regime is maintained whenever the helium fraction is
lower than fHe,H. Note that when the ratio of the apparent helium confinement time
to the energy confinement time is imposed we obtain an unequivocal result for the
helium fraction, corresponding to the thermal equilibrium of the plasma.
For all the above cases, the net heating power is simply deduced from the helium

fraction as

Pnet =
(τ ∗He/τE)P

(0)
α W

(0)
th

Eα hneiV
Cα (fHe)CW (fHe)

fHe
.

Examples of curves of τ ∗He/τE versus fHe and Pnet curves are shown in Fig. 2.11,
showing the existence of only one fHe solution for a given τ ∗He/τE .

2.8 Non-inductive current drive operation
In the case of continuous operation of a tokamak with a pure non-inductive cur-

rent drive method (no loop voltage, no ohmic heating powerPOH = 0), the additional
power Padd is used to drive a current ICD which is the part of the total plasma current
Ip which is not due to the bootstrap effect (IBS)

Ip = ICD + IBS.

In a reactor based on this principle the poloidal system is simplified and mainly
used to maintain the plasma shape and position. Two of the most promising current
drive methods are the injection of lower hybrid waves and neutral beam injection
[Ane89], experimental evidences of which have been found and studied in present
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Figure 2.11: τ ∗He/τE as a function of fHe for ITER-FEAT parameters [ODR99], a
softly mixed scaling for the energy confinement time, flat density and parabolic
temperature profiles, f1 = f2 = 0, Te = Ti = Tα, hni = 1020m−3, and hT i =
5, 10, 15, 20 keV. On the right, the plane corresponding to fHe,H is shown.

tokamaks [IPB99]. The efficiency γCD of the current drive method is defined as
follows:

ICD =
γCD
hneiR Padd. (2.35)

When the plasma current is driven by different current drive methods at the same
time, it may be defined an effective efficiency as

γCD,eff = f
(CD)
NB γNB + f

(CD)
LH γLH + f

(CD)
IC γIC + f

(CD)
EC γEC,

where f (CD)i = PCDi/Padd is the fraction of the total coupled power generated by the i
current drive method: neutral beam injection (NB) [Mik83], lower hybrid resonance
wave (LH), ion cyclotron resonance wave (IC), and electron cyclotron resonance
wave (EC). In this case, γCD,eff replaces γCD in Eq. (2.35) and the current drive frac-
tion generated by a given current drive method i is given by

ICDi = ICD f
(CD)
i

γi
γCD,eff

,

where ICD is the total current drive.
Simulations performed in the framework of ITER studies using any current drive

method, show that the efficiency can be simply approximated by [Ton94]:

γCD = γ0CD hTei with γ0CD = (0.15− 0.3)× 1019 Am−2/ (W keV) .

More precise studies show that γ0CD depends on plasma parameters as Zeff, and
density and temperature profiles, but, as a first approach, these effects can be ne-
glected.

45



2. Thermal equilibrium of the plasma

2.8.1 Bootstrap current
The bootstrap current is generated by the momentum transfer when trapped parti-

cles collide with untrapped ones. In the presence of a density gradient, both trapped
ions and electrons carry a parallel current and there is a transfer of momentum to
the passing particles of both species, which adjust their velocities accordingly. The
difference in velocity between the passing ions and the passing electrons yields the
bootstrap current. The bootstrap current is interesting in long pulses or in a continu-
ous tokamak regime, which is requested for a commercial reactor, since it provides
part of the tokamak poloidal magnetic field.
The bootstrap current is reduced as the plasma becomes more collisional (ν in-

creases). Thus it is only important in the weakly collisional regimes (banana and
plateau) (see Fig. 2.4). An expression of this current is obtained by balancing the
momentum exchange between the passing electrons and the passing ions with the
momentum exchange between the passing and trapped electrons.
For a circular cross-section tokamak in the large aspect ratio limit (cylindrical

plasma) and for a single ion species plasma (ion charge Zi) with Te = Ti, it can be
shown from Ref. [Hin76] that the radial bootstrap current density may be written as:

j∗BS(r) = −
2nekTe
Bp

³ r
R

´1/2 ·
ν(Zi)

1

ne

dne
dr

+ τ(Zi)
1

Te

dTe
dr

¸
where ν(Zi) and τ(Zi) are the ion charge coefficients (ν = 2.44 and τ = 0.134 for
Zi = 1).
In the case of a toroidal plasma with non-circular cross-section, we use the Wil-

son fit [Wil92] for the fractional bootstrap current fBS = IBS/Ip, in which Zi is
replaced by Zeff to take into account several impurity species in the plasma. We
have

fBS =
βp
A1/2

B (αp,αT ,αj , Zeff, A) , (2.36)

where αj , αT , and αp = αn+αT are the peaking parameters of current density, tem-
perature and pressure, respectively, for profiles described by generalized parabolic
expressions (Eq (3.25)). Function B is given in Ref. [Wil92], and βp is the poloidal
beta defined as follows:

βp =
2µ0 hpi
hhBpii2

with hhBpii =
R
Bpd`R
d`

, and hpi =
Z
V

CW 2nekTe dV ,

where the integration is performed along the poloidal section of the last magnetic
surface: Z

Bpd` = µ0Ip
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Using Z
d` = 2πa E1(κX)ΘL

¡
κX , δX ,ψ

+,ψ−
¢

we obtain
βp =

16π2k

µ0
CW E

2
1(κX)Θ

2
L

a2

I2p

Z
V

neTe dV

and
fBS =

16π2k

µ0
CW E

2
1(κX)Θ

2
LB

a2

A1/2I2p

Z
V

neTe dV .

2.9 Summary
To solve the global thermal equilibrium of tokamak plasmas, plasma power

sources and losses are integrated over the plasma volume by considering a precise
geometry, composition, and arbitrary profiles for density and temperature. This zero
D model considers pure H-mode and L-mode regimes, but also a soft transition be-
tween such regimes.
For this plasma geometry description, the calculation of surfaces and plasma

volume, as well as the surfaces and volume integrations, are performed by using
analytical expressions which have been obtained. The helium fraction is calculated
self-consistently imposing a constant ratio of the apparent helium confinement time
to the energy confinement time.
The plasma operation window both in inductive and non-inductive operation is

limited by MHD instabilities and technological limits such as the peak heat flux on
the divertor plates. The constraints for stable plasma operation are on the plasma
density, pressure and safety factor.
The plasma model described in this Chapter is used in prospective and design

studies of Chapters 4, 5, and 6.
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