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Figure 3.17: Poincaré map for the orbit of Figure 3.16. Panel (a) includes the points R(τ)
and V (τ) for the time interval (1000-1400) years, whereas panel (b) shows the points R(t)
and V (t) for the time interval (1000-2000) years.

This example corroborates the suggestion, first proposed by Buchler et al. (1977) and

later found in the very detailed numerical calculations of Ya’ari & Tuchman (1996),

that the long-term effects in Mira variables have an important role in understanding

the mechanism which drives mass-loss. This result also argues in favor of the capa-

bility of simple models to “catch” the underlying dynamics of the physical system.

To put it in a different way, these models, despite their simplicity, reproduce reason-

ably well the results obtained with full, sophisticated and nonlinear hydrodynamical

models. It is nevertheless important to realize here that our model does not incor-

porate the secular effects induced by the thermal changes and, hence, it is quite likely

that this kind of behavior is intrinsically associated to the physical characteristics of

the oscillations of real stars. We shall come back to this behavior in the next section.

Following the evolution as the parameter α is slightly varied we find another

interesting orbit of the system, which is represented for a particular initial condition

in the lower panels of Figure 3.18. The Poincaré map is also shown in the top panel

and illustrates how the main deformed torus breaks into several small pieces. In

Figure 3.19 we present the velocity variations of a typical orbit from the stochastic

sea. It suggests the necessity of a time-frequency analysis, which will be done in the

next section. The classical approach of time-series analysis applied to this non-steady

cases generally yields poor results. Nonlinear time-series analysis as well as time-

frequency analysis are, thus, compulsory for these cases. Nevertheless, let us say at

this point that, again, Figure 3.19 shows that the velocity of the outermost layers

of the star reach quite frequently the escape velocity and, hence, mass-loss is most

likely. Moreover, the fraction of time during which the outer layers of the model star

have velocities in excess of the escape velocity is larger in this case than in the case of

Figure 3.16. Thus, the more chaotic is the behavior of our simple linear model, the

stronger is the mass-loss.
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Figure 3.18: Poincaré map (top) for ω ' 3, α = 0.35, ε = 0.5, and graph of R(t) (middle)

and V (t) (bottom) for the initial condition (x0, y0) = (−0.1, 0.0).

3.4 Time-frequency analysis

3.4.1 Description of the most usual methods

First of all, it has to be pointed out that the time-frequency analysis corresponds to a

linear approach. It is of a purely interpolative nature and therefore does not provide

any information about the nonlinear physical nature of the source of the time series.

In contrast, the flow reconstruction method and the topological method are two

recently developed tools specifically tailored to better understand intrinsically non-

linear time-series or models (Buchler & Kolláth 2001). However, since our model

is basically a perturbed linear oscillator, the time-frequency analysis is perfectly ap-

propriate for the study of the non-steady resultant time-series. The most classical

tool used in time-frequency analysis is the so called short-time Fourier transform

(STFT), which is also frequently referred to as the windowed Fourier transform. The
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Figure 3.19: Velocity variations for the case of α = 0.2, ε = 0.5 and nondimensional initial

condition (x0, y0) = (−0.1, 0.0). The escape velocity (vesc ' 86 km/s) is represented as a

dashed line.

signal s(t) is weighted by a time-localized window function h(t) and then Fourier

transformed:

F (t, ν) =

∫ +∞

−∞

s(τ)h∗(τ − t)e−2iπτνdτ. (3.13)

The STFT was first introduced in Gábor (1946) with the Gaussian analyzing window:

h(t) = e−t2/(2τ2). (3.14)

This time-frequency analysis is generally referred to as the Gábor transform (GT).

The spectrogram is the power spectrum version, |F (t, ν)|2, of the STFT. The gen-

eralized form of the time-frequency distributions (GTFD) was introduced in Cohen

(1966) — see also Cohen (1995) — and it is :
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C(t, ν) =
1

2π

∫ ∫ ∫

e−iθt−2iπτν+iτu Φ(θ, τ)z∗
(

u− τ

2

)

z
(

u+
τ

2

)

dudτdθ,

(3.15)

where z(t) is the complex signal associated to the real one, s(t), and Φ(θ, τ) is the so-

called kernel of the distribution. Most practical signals are purely real, which implies

the existence of a negative frequency component in the associated Fourier analysis.

This property introduces undesirable cross-terms in the associated time-frequency

diagrams. The complex (or analytic) signal, z(t) is generated by suppressing the

negative frequency components while preserving the positive components:

z(t) =
1

2π1/2

∫ +∞

−∞

s(ν)eiνtdν, (3.16)

where s(ν) are the coefficients of the Fourier transform for the real signal at fre-

quency ν. It can be easily shown that with the simplest kernel, Φ(θ, τ) = 1, the

definition of the GTFD reduces to the so-called Wigner-Ville distribution (WVD):

W (t, ν) =

∫

e−2iπτνz∗
(

t− τ

2

)

z
(

t+
τ

2

)

dτ. (3.17)

To avoid the problem of undesired cross-terms in the distribution, one can also

use a kernel with localizing properties. One of such kernels was defined by Choi &

Williams (1989), i.e., Φ(θ, τ) = exp(−θ2τ 2/τ), and gives the following distribution:

C(t, ν) =
1

2π1/2

∫ ∫

1√
τ 2σ

e−σ(u−t)2/τ2−2iπτνz∗
(

u− τ

2

)

z
(

u+
τ

2

)

dudτ.

(3.18)

Is is straightforward to show that the Gábor transform is obtained from the dis-

tribution of Eq.(3.15) with the kernel

Φ(θ, τ) = e−τ2/(4σ2)−σ2θ2

. (3.19)

3.4.2 Results

The different forms of frequency spectra (mainly the Fourier transform) became an

important tool for the analysis of multiperiodic variations, and the Fourier decom-

position of the periodic light curves of Cepheids and RR Lyrae stars turned into a

powerful device for the comparison of observations and theoretical models. Kolláth

& Buchler (1997) compared the results obtained with different time-frequency meth-

ods using both real light-curves and synthetic signals and from these tests they con-

cluded that the Gábor transform provides much more informative results on the high

frequency part of the data than the wavelet transform, and that the time-frequency

analysis using the Choi-Williams distribution is definitely superior to both methods
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Figure 3.20: Choi-Williams distribution for the velocity variations of the case α = 0.3, ε =
0.1902, (x0, y0) = (0.00, 0.25)

(at least on the data they used). Regarding this last remark, further investigations

carried out by the same authors (Buchler & Kolláth, 2001) led them to conclude that

in general one cannot claim a priori that any of these methods is specifically supe-

rior to the others. In fact, this depends largely on the nature of the signal and on

which kind of features one tries to enhance, and it is always therefore advantageous

to use simultaneously several of them. However, as the Choi-Williams distribution

is generally accepted to be the most useful among all the methods, we will center our

analysis using this tool. For our calculations, we took σ=10, as it was done in Buchler

& Kolláth (2001).

For illustrative purposes in the central panel of Figure 3.20 we show the Choi-

Williams time-frequency analysis of the velocity variation for the case ofα = 0.3, ε =
0.1902 and the initial condition (x0, y0) = (1, 0.25). The bottom panel of Figure

3.20 shows the time series in order to better understand the Choi-Williams distri-

bution, whereas the Fourier analysis is shown in the left panel. A close look at this

last panel reveals beatings between two main frequencies. The period of the beat-

ings is 8.81 years, as can be noticed approximately from this panel. Also, from the

left panel of Figure 3.20 (which corresponds to the Fourier analysis) one can notice
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Figure 3.21: Choi-Williams distribution of the velocity variations for the case of Figure 3.17

(central panel), Fourier analysis for τ < 1440 yr (top left panel) and for τ ≥ 1440 yr (top

right panel), and the corresponding time series (bottom panel).

clearly the presence of the beatings, since there are two main frequencies close one

to another: the first at f1 = 1.0013 yr−1 with A1 = 56.79 km/s and the second at

f2 = 1.0567 yr−1 with A2 = 20.16 km/s. Both frequencies can be clearly seen as

well in the central panel of Figure 3.20, and the beatings are in this case most obvi-

ous, with a period of 18.05 yr. In this figure the escape velocity is represented as a

horizontal line in the corresponding time series, and mass-loss is again very likely,

since the velocity exceeds the escape velocity. The quasiperiodicity is easily noticed.

Moreover, the amplitude modulation of the main frequency from the Fourier spec-

tra is clearly visible in the time-frequency representation. Finally in this last case, the

particular form of the envelope of the time-series results in an apparent spreading of

the frequency, typical characteristic of a quasi-Dirac pulse.

Finally in Figure 3.21 the time-frequency analysis of the time series of Figure

3.16 is shown in the central panel. In order to be used as a visual help this time
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series has been reproduced in the bottom panel of this figure. As we did in §3.3

with the Poincaré maps of this orbit, we have split the time series into two pieces, in

order to better illustrate the stickiness of the oscillator, and we have computed the

Fourier transforms of both pieces separately. These Fourier transforms are shown

in the top panels of Figure 3.21, the left one corresponds to τ < 1400 yr, whereas

the right panel corresponds to τ ≥ 1400 yr. Note the difference in the scales of the

power, which is much larger for the right panel. As it can be seen in these panels

the power is suddenly shifted from larger frequencies to much smaller frequencies.

This is even more clearly shown as well in the Choi-Williams distribution. Note as

well the contribution of the frequency f ' 2.1 yr−1 at small times, just before the

beginning of the burst (at τ ≤ 1430 yr). Indeed, this small contribution could be

at the origin of the transfer of power to f ' 1.2 yr−1, which occurs immediately

after τ ' 1430 yr and which ultimately leads to the burst at τ ' 1440 yr. It is as

well highly remarkable the small time elapsed since the beginning of the transfer of

power, which is only about 10 yr.

3.5 Mathematic details of the dynamics

3.5.1 Comparison with the perturbed oscillator

In order to get a better insight of the dynamics of the oscillator studied so far, along

this section we are going to compare it with the motion of a perturbed oscillator,

which has been already studied extensively (Zaslavsky et al., 1991). This is important

since, as it will be shown below the formal appearance of Eq.(3.6) does not differ

very much from that of a perturbed oscillator. In order to make this clear consider

the motion of a perturbed linear oscillator in the form of:

ẍ+ ω20x = ε sin[ωx− ωt]. (3.20)

The left-hand side of Eq.(3.20) describes very simple dynamics of linear oscilla-

tions of frequency ω0. All the non-trivial types of motion arise from the perturbation

one the right-hand side and its interaction with the unperturbed motion. To ease the

comparison with the perturbed oscillator, Eq.(3.6) which describes our system, can

be rewritten as:

ẍ+ ω20x = −ε[ωx− ω(t)t], (3.21)

where

ω(t) = ω

(

b sinωt

t
+ 1

)

. (3.22)

As it can be seen both equations share common features. It is important to point

out here that for our system ω0 = 1, as it results from Eq.(3.6). The explicit in-

troduction of ω0 in Eq.(3.20) will be used later to emphasize the importance of the
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Figure 3.22: The period-3 homoclinic structure for α = 0.4 and ε = 0.5.

resonance condition, that is the case when the ratio n ≡ ω/ω0 is a rational number.

The hamiltonian associated with the system of Eq.(3.20) is:

H =
(ẋ2 + ω20x

2)

2
− ε

ω
cos[ωx− ω(t)t]. (3.23)

Consequently, the results obtained so far and summarized in §3.2 (bifurcations

and stochastic webs) should be similar to the case of a perturbed oscillator. And

indeed this is the case, the only difference resides in the period 3 homoclinic orbit

(see Figure 3.22), that is in point d) of the summary in §3.2. The creation of this

period-3 homoclinic structure was illustrated in Figure 3.6 as α increases from α =
0.2 to α = 0.3. This suggests that the ultimate reason of this difference might be the

presence of the function ω(t) from Eq.(3.22) as a weak detuning of resonance. In

order to confirm this distinctive difference, we present in Figure 3.23 and Figure 3.24

the Poincaré maps for the following equations. First, we rewrite Eq.(3.21) — with

α 6= 0 — in the following way:

ẍ+ ω20x = −ε sinω(x− t− b sinωt)]. (3.24)

Also we can set α = 0 in Eq.(3.24) so we obtain:

ẍ+ ω20x = −ε sin[ωx− ωt], (3.25)

noticing that the difference between Eq.(3.25) and Eq.(3.20) resides only in the sign

of the right-hand side.

As it can be seen in the previous equations, all three ODEs have the same math-

ematical structure. Due to the fact that the unperturbed equation (ε = 0) is linear,

the existence of the heteroclinic structures appears uniquely from the presence of

the perturbation and they always transform to stochastic layers. It is generally called

“weak chaos” — the perturbation itself creates the separatrix network at a certain

ε0 and then destroys it as ε increases beyond ε0 by producing channels of chaotic

dynamics (Zaslavsky et al. 1991). For the cases of “strong chaos”, the unperturbed

hamiltonian H0 intrinsically has separatrix structures and the perturbation clothes
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Figure 3.23: Poincaré map for Eq.(3.24),

α = 0.3 (a), Eq.(3.25) (b) and Eq.(3.20)

(c). In all three cases ε = 0.07.

Figure 3.24: Poincaré map for Eq.(3.24),

α = 0.3 (a), Eq.(3.25) (b) and Eq.(3.20)

(c). In all three cases ε = 0.2.

them in thin stochastic layers. In fact, Figures 3.23 and 3.24 show better than the

previous figures the symmetry due to the resonance as n ≡ ω/ω0 ≈ 3: rotational

symmetry generated by ω20x with the angle θ = π/n as n is odd. In the phase space

there appear invariant curves (deformed tori) embracing the center which do not

allow diffusion in the radial direction. Inside these cells of the web, motion occurs

along closed-orbits, around the elliptic points from the centers of the cells. With

the increase of ε and creation of the stochastic layers, particles can wander along the

channels of the newly born web, a phenomenon that represents a universal insta-

bility and gives birth to chaotic fluctuations. The heteroclinic structures formed as

the perturbation increases through this bifurcation are what differentiates our equa-
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Figure 3.25: The distinctive separatrices for Eq.(3.24) differentiating its dynamics from that

of Eq.(3.25): (a) α = 0.3, ε = 0.07 and (b) α = 0.3, ε = 0.2. For this case, only the period-3

homoclinic structure is the distinctive particularity. As ε increases the bifurcation is clearly

seen.

tion from the typical equations of hamitonian chaos and in particular those of the

perturbed oscillator. The bifurcation is better illustrated in Figure 3.25.

Before getting into the detailed analysis of the underlying cause of these bifurca-

tions, we consider necessary to introduce the most important mathematical proper-

ties of the nontwist maps.

3.5.2 Typical features of nontwist maps

The general mathematical approach in studying area preserving maps (APMs) relies

on the action-angle coordinates (r, θ) instead of the cartesian coordinates (x, y) —

see Appendix A — with x =
√
2r cos θ and y =

√
2r sin θ, and r is the momentum-

like coordinate while θ is the angular variable. Under this coordinates and computing

the angle without the restriction modulo 2π, one can associate to an orbit (rn, θn)
the rotation number which is the limit:

ρ = lim
n→∞

θn − θ0
2πn

, (3.26)

if it exists. If ρ is an irrational number, then the orbit densely fills an invariant circle

(i.e., a KAM circle), while an orbit of rational rotation number p/q — with p, q co-

prime integers, q > 0 — is a q–periodic orbit.

Typical questions of mathematical and physical interest include the persistence

of the KAM circles after perturbation and determination of the threshold at which

a circle of a given rotation number breaks up. The main results which answer these

questions, such as the KAM theorem, the Poincaré–Birkhoff theorem, and the Moser

twist theorem (Lieberman & Lichtenberg, 1992), are based on the validity of the twist

property of the area preserving map transforming (r, θ) 7→ (r′, θ′), namely:
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Figure 3.26: The triplication bifurcation in the cubic Hénon map. (a) The separatrix as-

sociated to the hyperbolic period–3 orbit of the map from Eq.(3.29), corresponding to

µ = −1.13, and some nearby orbits; (b) The same map at the saddle–center threshold

µs = −1.12189. The twistless circle is the circle with three cusps.

∂θ′

∂r
6= 0, ∀ r (3.27)

The twist condition implies the monotonic change of the rotation number ρ with r.

The APM satisfying this condition is called monotonic twist map or simply a twist

map.

Recently, due to the increasing number of physical phenomena that are modeled

by nontwist maps, this class of dynamic systems has finally captured the attention of

the scientific community. The prototype of nontwist APMs is the quadratic standard

map (del Castillo Negrete et al., 1996; Petrisor, 2001):

rn+1 = rn − k sin θ
θn+1 = θn + 2πω − r2n+1 (mod 2π) .

(3.28)

The twist condition is violated along the curve r = k sin θ. For k = 0 we get

an integrable map, whose orbits lie on the circles of constant r. The rotation num-

ber function is ρ(r) = ω − r2/(2π). The circle r = 0 has the maximum rotation

number ρmax = ω. It is called the twistless circle or shearless circle. A slight per-

turbation leads to the persistence of the twistless circle and nearby circles having a

diophantine rotation number — that is, an irrational number badly approximated

by rationals (Simó, 1998). Hence, the nontwist standard map, defined above, has an

invariant circle of maximum rotation number among the rotation numbers of the

nearby orbits.

There are many ways in which the monotonic twist condition can be violated.

The vertical lines θ = θ0 can be mapped into curves having a single extremum —

quadratic twist (del Castillo Negrete et al., 1996) — or multiple extrema — cubic

(del Castillo Negrete & Firpo, 2002), quartic (Howard & Humpherys, 1995) or si-

nusoidal twist (Saitou et al., 1997). Moreover, it has been proved (Dullin et al.,
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Figure 3.27: The nontwist property of the Poincaré map. (a) The effect of the map on the

semi-line defined by θ = π/4; (b) The effect of the map on the semi-line of θ = π/2.

2000) that whenever the elliptic fixed point of an APM of the plane passes through a

triplication, a twistless bifurcation occurs or, equivalently, the rotation number as a

function of the distance from the elliptic fixed point becomes a nonmonotonic func-

tion. The triplication of the elliptic fixed point of an APM fµ of the plane, occurs

at the value µ ≡ µ3 at which the multipliers of the elliptic point cross the values

λ = exp(±2πi/3). At the triplication threshold µ = µ3 an unstable period–3 orbit

emerges from the elliptic fixed point in both directions (see Figure 3.7), that is for

µ < µ3 and for µ > µ3. As µ increases the elliptic point crosses the 1/3 resonance

and the triangular shape figure changes side after shrinking to an elliptic fixed point.

The typical case of triplication bifurcation is encountered in the dynamics of the

cubic Hénon map

xn+1 = −yn + x3n + µxn + 0.7
yn+1 = xn,

(3.29)

which has an elliptic fixed point (x0, y0 = x0) that can be easily found. At µ3 =
−1.1505 this point undergoes a triplication, while at µs = −1.12189 the saddle cen-

ter collision occurs. In Figure 3.26, we show that as µ increases beyond µ3, the elliptic

and hyperbolic period-3 orbits collide and disappear in a saddle–center bifurcation

at µ = µs.

3.5.3 Generic and nongeneric properties of our Poincaré map

In the action-angle coordinates (r, θ) resulting from the change x =
√
2r cos θ and

y =
√
2r sin θ, the Hamiltonian of the system from Eq.(3.9) becomes

H(r, θ) = r − ε

ω
cos(ω

√
2r cos θ − ωt− αω1/3 sinωt). (3.30)

Due to the the complexity of the perturbative term of the Hamiltonian, the asso-

ciated system is analytically intractable. In order to get some insight into its dynamic
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Figure 3.28: The curve α∗(ε) whose points are the triplication thresholds of the central fixed

point of the map Pε.

behavior, we studied, as shown before, the Poincaré map (in fact the stroboscopic

map) associated to this time-periodic Hamiltonian system. The unperturbed Hamil-

tonian H0(r, θ) = r is globally degenerate, which means that ∂2H0/∂r
2 = 0, ∀r.

The dynamic consequence of this degeneracy is that all the orbits are periodic having

the same period. This is in contrast to KAM theory, where the unperturbed system

is nondegenerate. We have seen that after a periodic perturbation (periodic in time

and in space) the corresponding Poincaré map exhibits local and global bifurcations.

In this section, we shall see that in some cases these are typical of the class of nontwist

APMs, while in other cases are not.

The symmetry properties are very useful for the explanation of the behavior ex-

hibited by the system under study. A system of differential equations can be written

as

ẋ = F (x), x ∈ R
n. (3.31)

Since the Hamiltonian is time-periodic of period T = 2π/ω, we define the function

s : R→ S
1, s(t) = t (mod 2π/ω), where S

1 is the circle identified with the interval

[0, 2π/ω), and then the system from Eq.(3.8) becomes the autonomous system of

differential equations:

ẋ = y
ẏ = −x− ε sin(ωx− ωs− αω1/3 sin ωs)
ṡ = 1 .

(3.32)

We denote by Φε
t its flow. Φε

t associates to each triplet (x0, y0, s0) ∈ R × S
1 the

position at the time moment t of the orbit starting at t = 0 from (x0, y0, s0). The

plane

Σ = {(x, y, s) ∈ R
2 × S

1|s = 0} ≡ R
2 (3.33)

is transversal to the flow and the mapPε : Σ→ Σ defined byPε(x, y) = Φε
2π/ω(x, y, 0)

is the associated Poincaré map.

The Poincaré map associated to the vector field F is reversible with respect to

the involution R : Σ → Σ, R(x, y) = (−x, y) and therefore has the symmetry line
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Figure 3.29: The Poincaré map Pε before and after a saddle-center bifurcation. The figures

display also the symmetry lines Γ+2k (dotted line) and Γ−2k (dashed line), with k=0, 1, 2, 3. (a)

ε = 0.055 — the phase portrait prior to the creation of the second dimerized island chain;

(b) ε = 0.07 — the second dimerized island chain has been created. The points satisfying

(x, y) ∈ Γ±0 ∩ Γ±6 are period–3 points.

Γ0 = Fix(R) = {(x, y) | R(x, y) = (x, y)}, having the equation x = 0. Because the

analytical expression for Pε is not available, we cannot know the second reversor I
from the usual decomposition of a reversible map asPε = I◦R. Hence the symmetry

line Γ1 = Fix(I), as well as Γ2k+1 = P k
ε (Γ1) cannot be computed. We can however

compute P k
ε (Γ0) = Γ2k.

The Poincaré map P0 has the elliptic fixed point (0, 0). After a slight perturba-

tion the fixed point persists as a symmetric elliptic fixed point of the reversible map

Pε — it is a point (0, yε) ∈ Γ0 ∩ Γ1. In order to reveal the nontwist property of

the map Pε we compute and visualize the effect of the map on different semi-lines

emanating from the elliptic fixed point (Figure 3.27). As it results from Eq.(3.26),

the rotation number for the map P0 is negative, more exactly ρ = −1/ω. Unlike

for the standard–like nontwist maps, here a line of constant θ is not mapped onto a

parabola, that is a curve with a single extremum, but onto an oscillating curve, having

many minima and maxima. This fact will lead to a different behavior of our non-

twist map compared to the dynamic properties of nontwist standard–like mappings.

More precisely, our map Pε is a nontwist APM whose rotation number function ρ(y)
is oscillating, having more than one extremum, that is, more than one invariant cir-

cle whose rotation number is a local extremum — for more mathematical details, see

also Munteanu et al. (2002).

We have shown in Figure 3.7 that for ω = 3.0146, the Poincaré map Pε associated

to Eq.(3.32) has an elliptic fixed point which undergoes triplication. In Figure 3.28

we represent the triplication curve α∗(ε). In the former figure, we illustrated the

triplication bifurcation of the elliptic fixed point of the Poincaré map for ε = 0.07
and α = −0.3 — panel (a) — α = −0.05 — panel (b) — and α = 0.02 — panel

(c). We used values of α close to the ones from Icke et al. (1992) — 〈α〉 ≈ 0.3 —
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Figure 3.30: Reconnection process in the nontwist standard-like multi-harmonic map. (a)

ω = 0.3287 — two independent Poincaré-Birkhoff chains ; (b) ω = 0.3297655 — the

reconnection threshold; (c) ω = 0.3315 — two dimerized island chains. We illustrate also a

meander separating the two dimerized island chains.

in order to emphasize the role of ω and also to assure further comparison with their

work. Thus, the considered pairs (ε, α) are located above the triplication curve.

We have shown in Figure 3.8 the separatrix structure called dimerized island

chains. In order to show the successive births of period–3 orbits as ε increases with

α = 0.3 fixed, we compute and visualize P k
ε (Γ

+
0 ) and P k

ε (Γ
−
0 ), k = 1, 2, 3, with

Γ+0 = {(x, y)|x = 0, y > 0} and Γ−
0 = {(x, y)|x = 0, y < 0}. This process was

first illustrated in Figure 3.27b where Γ+0 and P 1
ε (Γ

+
0 ) = Γ+2 were represented. We

show in Figure 3.29 the connection between the symmetry properties of the map

and the creation of periodic orbits. A saddle-center bifurcation occurs at the value

of the parameter ε at which Γ±
6 has a tangential contact with Γ±

0 . The corresponding

Poincaré map has for such an ε an invariant curve with cusps which represent the

points of tangency. Increasing the perturbation, the two symmetry lines intersect at

two points, one being elliptic and the other, hyperbolic.

A global bifurcation which is generic of nontwist maps is the so-called recon-

nection process, which is illustrated in Figure 3.30 for the nontwist multi-harmonic

standard map (Petrisor, 2001):

xn+1 = xn + 2πω + y2n+1 (mod 2π) (3.34)

yn+1 = yn + k sin[xn + arcsin(e sinxn)], (3.35)

with k = 0.2, e = 0.38 and different values of ω. On the two sides of a twistless cir-

cle, two Poincaré–Birkhoff chains (necklaces of consecutive elliptic and hyperbolic
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Figure 3.31: Creation of the first chain of vortices for α = 0.3. (a) ε = 0.0614 — the saddle-

center bifurcation has created the first dimerized island chain; (b) ε = 0.06617 — instead of

a second dimerized island chain, a pair of vortices is born. See text for more details.

points), having the same rotation number, approach each other (Figure 3.30a). At a

given threshold, which is called the reconnection threshold, their hyperbolic points

are connected by heteroclinic arcs (Figure 3.30b). Varying the parameter of the sys-

tem further, two dimerized island chains emerge from the configuration created by

the reconnection (Figure 3.30c). These chains are separated by meanders.

In our case, we witness the creation of the nongeneric vortices or dipoles (del

Castillo Negrete et al., 1996). Figure 3.31 displays the birth of the first chain of vor-

tices. As ε increases, either Γ+6 or Γ−
6 intersects tangentially at a new point located at

a radius larger than in the previous cases. As a consequence, new period–3 dimer-

ized island chains are created after ε crosses the value of tangential contact. However,

each second dimerized island chain has a different creation mechanism. Unlike the

previous case, the hyperbolic point of the first dimerized island chain bifurcates into

two hyperbolic points in the transversal direction. In this process, a new elliptic

point is born on the symmetry line. These hyperbolic points are connected by three

heteroclinic arcs: one surrounding the previously existing elliptic point, another sur-

rounding the new elliptic point, and the third one separating the two elliptic points.

Thus, a pair of vortices is created.

As ε increases, the process of formation of chains of vortices continues for larger

radii (Figure 3.32). Note that if the elliptic orbits of one chain of vortices intersect

Γ+0 , then the next one, which is created external to it, has a pair of elliptic points on

the symmetry line Γ−
0 . The invariant rotational circle interpolating the hyperbolic

points of the chain of vortices is the twistless circle. In Figure 3.32 it can be seen that

such circles pass almost through the extremum of the symmetry lines Γ±
6 . As already

said, the formation of vortices is not generic and therefore the twistless circle that

appears between them is not either.
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Figure 3.32: The phase portrait of the Poincaré map corresponding to ε = 0.2 and α =
0.3. One can see a sequence of concentric chains of vortices. The most exterior one is still

incomplete. The figure displays also the symmetry lines Γ±
2k, k=0, 1, 2, 3.

The existence of meanders was already mentioned in §3.2 (Figure 3.13). In twist

standard–like maps they become usual invariant curves after the reconnection of

the two chains. For the sake of clarity, we illustrate next the relationship between

the meanders and the reconnection process for our map. In Figure 3.33 we show

the creation of meanders from the reconnection of the Poincaré-Birkhoff chains of

period 34. In the case of the standard nontwist map (del Castillo Negrete et al., 1996),

in the reconnection of Poincaré-Birkhoff chains of even periodic orbits, fixed points

of the chains having the same stability type are aligned in phase. In other words,

to an elliptic (hyperbolic) point of one chain corresponds below or above also an

elliptic (hyperbolic) point. Due to this alignment, the reconnection is nongeneric

and corresponds to a hyperbolic-hyperbolic collision leading to the formation of

vortices. In our case, the two Poincare-Birkhoff chains of even period (period 34)

have fixed points of opposite stability type which approach each other in their way

to reconnection (Figure 3.33a). Therefore, the reconnection is generic and in the

subsequent dimerized islands chains, hyperbolic-elliptic collision occurs. Moreover,

after the reconnection, the twistless circle turns from a graph of a function of the

angular variable to a meander (Figure 3.33b). This meander is slightly visible in

Figure 3.10b.

Meanders appear to be robust under the action of the perturbation, acting also

as separatrices between distinct regions of chaotic dynamics. For stronger perturba-

tions, their destruction allows the chaotic orbits to reach other stochastic regions pre-
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Figure 3.33: The reconnection process: (a) ε = 0.405 — the Poincaré-Birkhoff chains con-

firming the generic process of reconnection illustrated in Figure 3.30; (b) ε = 0.4 — after

the reconnection, the resultant meander with 34 cusps, slightly visible in Figure 3.10b. At the

bottom, the figures include a zoom for better view.

viously separated by the meander. This behavior was observed in nontwist standard-

like maps (Simó 1998), but until now there is no explanation for this robustness.

3.6 Discussion

In this first part of our work, we have concentrated on the study of a forced oscillator

which embodies the basics of the adiabatic stellar pulsations. We have extended this

model to a range of values of the parameters specific to more massive and luminous

stars than studied in a previous work. Compared to this previous work, our thor-

ough parametric study of the extended model revealed a richer and more complex

dynamics. In this sense, the model resulted to be of significant interest to us not only

as a first step toward better modeling of stellar pulsations, but also as a mathematical

object with distinctive properties. The latter aspect prompted us to undergo a com-

prehensive investigation on the mathematical causes of such a rich dynamics and the

results have been extensively presented in the present chapter. Among the most sig-

nificant results we mention the stickiness phenomenon characteristic of hamiltonian

systems and the existence of sporadic episodes of mass loss resulting as consequence

of the velocity of the outer layers exceeding the escape velocity.

Despite it being such a powerful trap to our mathematical interests with much

more intriguing properties to discover, we have turned our attention to the physical

aspects of the model. As discussed also in §1, an intrinsic variable star is one in

which the nonadiabatic effects drive it to pulsational instability. Thus, the next step

in our investigation centered on the importance of nonadiabaticity in simple models

of stellar pulsations. This makes the object of the next chapter.



Chapter 4

Weakly nonadiabatic one-zone model

In Chapter 3, the equations of a simple approach describing the nonequilibrium me-

chanical behavior of a pulsating star have been analyzed and discussed. In essence,

the model star was analog to a harmonic oscillator which was mathematically dis-

placed from its equilibrium configuration and then released to begin its oscillations.

As mentioned in §1.2, even if this adiabatic approach can account for some features

of pulsating stars, it cannot provide information about what really causes the pulsa-

tions. Since energy transport was not considered, no information on the thermal be-

havior of the star and, therefore, on the most important observable, the light curve,

was available. It also implies that the amplitude (whatever it may be) is forced to

remain constant and thus it is not known what modes will grow and which will de-

cay. In a nutshell, the equation describing the transfer of heat and radiation through

the stellar environment must be incorporated, and this means that a nonadiabatic

approach is compulsory. In the linearized nonadiabatic formulation (Eq. 1.14), we

saw that the time-dependence of the pulsation characteristics was contained in (the

real part of) eiσt, where σ was the complex frequency σ = ω + ik. In this expres-

sion, ω is the usual pulsation frequency, while k is the stability coefficient leading to

the definition of the growth or decay rate of the oscillations as 1/k. In this Chapter,

we shall consider thus the nonadiabatic extension of the model of Chapter 2. We

shall introduce other one-zone models in addition to the ones from §1.5 and com-

ment on their results. Next, we shall present our results and their comparison with

observations, together with the mathematical description of the observed dynamic

behavior.

4.1 An example of nonadiabatic one-zone model

Baker (1966) was the first to introduce the one-zone model as a tool to study the non-

linear behavior of stellar pulsations. As already mentioned in §2, Moore & Spiegel

(1966) have also derived a self-excited nonlinear oscillator which relies on thermal

dissipation for its excitation. In many senses it is, along with the Lorenz and Rössler

systems (Strogatz 1994; Takeuti 1990), one of the classical low-order dynamic sys-
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tems exhibiting rich chaotic dynamics (Balmforth & Craster 1997). Unfortunately,

in contrast to the Lorenz and Rössler equations, it has received less serious attention.

The work of Baker et al. (1971) delineated the conditions for the interesting aperi-

odic solutions found for this model. Buchler & Regev (1982) and Auvergne & Baglin

(1985) later studied one-zone models under the assumption that the nonlinearity

of the adiabatic coefficient Γ1 is the main trigger for nonlinear pulsations through

dynamic instability. Later on, Tanaka & Takeuti (1988) pointed out that dynamic sta-

bility might be necessary for realistic models of pulsating stars, which is the approach

followed here.

In its simplest form, the study of stellar pulsations can be considered as a thermo-

mechanical, coupled oscillator problem (Gautschy & Glatzel 1990). The coupling

constant is given by the ratio of the dynamical to the thermal time scale in the outer

layers of the star. Whenever the thermal time scale (τth ∼ 4πr2ρ∆rcVT/Lr) of

an outer region of the star of radial extension ∆r happens to become comparable

to the sound-traveling time through that region (τdyn ∼ ∆r/cs), non-adiabatic ef-

fects are relevant. This implies that there is an efficient exchange of mechanical and

thermal energies in that region. The ratio of the time scales is much smaller than

one throughout most of the envelope and is close to unity only in the outermost

regions. Significant non-adiabatic effects are relevant for helium stars, very massive

AGB stars, some post-AGB stars and in the ionization zones of hot stars (Stellingwerf

1986; Gautschy & Saio 1995).

In order to derive the one-zone nonadiabatic model, we start by recalling the

equation of motion and the energy equation without energy sources

d2R

dτ 2
=

4πR2

m
P − GM

R2
(4.1)

d lnP

dτ
= Γ1

d ln ρ

dτ
− χT
cVT

L− L0
m

, (4.2)

where M is the stellar mass, L0 is the luminosity at the base of the mantle, and

R, P , T , ρ and L are, respectively, the radius, pressure, temperature, density and

luminosity in the shell of mass m. In the present work, we will study the particular

case in which L0 is the (constant) equilibrium luminosity of the star, L?.

As introduced in §1.4, the κ- and γ-mechanisms provide the necessary driving

for pulsations to occur and they reside in the layers of increased opacity. As a star

oscillates, the location of the ionization regions changes both with respect to its ra-

dial position, r, and mass interior to r, Mr. While this is certainly accounted for in a

hydrodynamical approach of a multi-layered envelope, it is not straight-forward in a

one-zone model where the derivatives with respect to r have been removed. A fit of

this saturation of the κ-mechanism was introduced in a one-zone model approach

by Saitou et al. (1989), the fit being a previous result of their multi-layered hydro-

dynamic models (Takeuti, M., private communication). It was introduced not only

for evident physical reasons, but also to avoid divergence of the model and reach a
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limit cycle. It is similar to the assumption of nonlinearity in the specific heat used by

Buchler & Regev (1982). In their work, Eqs.(4.1-4.2) become

dr

dt
= v

dv

dt
= p r2 − r−2 (4.3)

dp

dt
= −3Γ1r−1vp− ξr−3(rβpδ − 1),

where the variables r, v and p are the radius, velocity and pressure, respectively,

expressed in nondimensional units as the radius and pressure were previously nor-

malized to their equilibrium values. Additionally, the time t is expressed in units of

the dynamic timescale (Eq. 1.1). The parameters

β = a(r3p− 1.2) + 21.6 , δ = 3.6r3p(r3p− 0.2) (4.4)

are the coefficients introduced by Saitou et al. (1989) as a saturation effect of the

κ-mechanism with a being the control parameter. The nonadiabaticity parameter, ξ
discussed in §2.5 is defined here as

ξ ≡
(

GM

R3
?

)−1/2
L0

mcVT0
, (4.5)

where the subscript 0 of the physical variables means the value in the equilibrium

state. In their numerical analysis they use Γ1 = 5/3 and ξ = 0.08 and show that the

model becomes pulsationally unstable with the decrease of the control parameter

a (decreasing temperature). The transition to the chaotic regime occurs through

period-doubling bifurcations and accordingly, they recover the bifurcation diagram.

The behavior of any dynamic system ẋ = F (x), with x = (x1, x2, ..., xn) and

F = (F1, F2, ..., Fn) is critically determined by its fixed points x0 given by F (x0) =
0. The associated eigenvalues of the Jacobian matrix (Jx0

)ij = (∂Fi/∂xj)x0
de-

termine the nature of these fixed points. For instance, for a fixed point to be sta-

ble, it is required that all eigenvalues σ ≡ λ ± iρ have negative real parts. In

our case, the system has three fixed points: a trivial one, (r0, v0, p0) = (1, 0, 1) of

mainly adiabatic origin with λ ∈ R− and ρ ∈ R+, and two other fixed points,

(r+0 , v
+
0 , p

+
0 ) ≈ (0.68, 0, 4.75) and (r−0 , v

−
0 , p

−
0 ) ≈ (8.8558, 0, 0002), entirely due

to nonadiabatic effects (that is, they exist only for ξ 6= 0) and having λ+ ∈ R+,

ρ− ∈ R− and λ−1 ∈ R−, λ−2,3 ≈ 0. For initial conditions close to the trivial fixed

point, the period-doubling route to chaos was obtained by Saitou et al. (1989) by

varying the control parameter a in the range a ∈ [14, 20], while ξ was kept constant.

However, no investigation on an equivalent effect produced by varying ξ was carried

on. The Jacobian of the system calculated at the trivial fixed point has the form
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Figure 4.1: Period-doubling route to chaos represented in the space (r, v, p). In all panels,

α = 0.1, ω = 20.1 and a = 20 have been adopted. (a) ξ = 0.08: Period-1; (b) ξ = 0.09:

Period-2; (c) ξ = 0.108: Period-4; (d) ξ = 0.12: Chaos.
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0 1 0
4 0 1

−ξ(21.6− 0.2a) −5 −2.88ξ

∣

∣

∣

∣

∣

∣

. (4.6)

The eigenvalues σ — and, therefore, the stability — depend on the parameters ξ and

a. By solving the secular equation (i.e. det|J(1,0,1) − σ| = 0) one can see that ρ ≥ 0
for a ≤ 36 and λ ≤ 0 for a ≤ 50, for any value of ξ > 0. As mentioned also by

Saitou et al. (1989), the system is pulsationally stable for a ≤ 36 and pulsationally

unstable otherwise, for the initial conditions close to the trivial fixed point. A closer

look to the roots of the secular equation shows that for a ≤ 36, either the increase of

ξ or the decrease of a leads to the same effect on the eigenvalues: λ ∈ R− decreases

while ρ ∈ R+ increases. The latter effect leads to chaotic behavior through the

increase of pulsational instability. In favor of this statement and to complete their

study, we present in Figure 4.1 a period-doubling route to chaos with the increase of

the parameter ξ as it appears in the space (r, v, p).
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4.2 Introducing the piston approximation

Next, we have concentrated our attention on the effects of the sub-photospheric pis-

ton on the model from Saitou et al. (1989). The piston approximation — first intro-

duced by Bowen (1988) — used by Icke et al. (1992) is widely used in the literature

(Fleischer et al. (1995); Höfner et al. (2003)). In general, time-dependent dynamic

model atmospheres for AGB stars use a piston at their inner boundary (at ≈ 104K)

and are based either on a grey atmosphere (Hoefner et al. 1998) or on a non-grey one

(Höfner 1999). Even if it has never been scrutinized for validity, this approach ap-

pears to correctly reproduce the velocities and mass loss rates typical for AGB stars.

Hence, this approximation can be regarded as a reasonable first-order approximation

of the dynamic effect of the pulsation on the atmosphere.

In introducing the piston approximation for the one-zone model, we follow Icke

et al. (1992) and Munteanu et al. (2002) in considering that the mechanical energy

transmitted into the upper layers is proportional to the driving acceleration with a

transmission coefficient Q defined by

A = −Q d2Rc

dτ 2

∣

∣

∣

∣

ret

(4.7)

and thus the final equations for our nonlinear nonadiabatic oscillator are

dr

dt
= v

dv

dt
= p r2 − r−2 −

−Qαω4/3 sin(ωr − ωt− αω1/3 sinωt) (4.8)

dp

dt
= −3Γ1r−1vp− ξr−3(rβpδ − 1),

where the fractional amplitude, α and the characteristic frequency, ω are the param-

eters used in Chapter 3. The parameters that must be specified are Q, α, ω, Γ1, a and

ξ. We consider an ideal gas with an adiabatic coefficient Γ1 = 5/3. For this study,

we fix ω = 20.1 (R0/R? is of the order of 15%) as the value adopted by Icke et al.

(1992) for low-mass AGB stars, in order to pursue a further comparison of our nona-

diabatic approach with their adiabatic one. We fix a = 20 as corresponding to the

regular pulsation found by Saitou et al. (1989) and, moreover, we choose ξ = 0.06, a

value close to the one used in their work. In our study, we have considered α and Q
as main parameters in the control of the strength of the perturbation. As described

in the following sections, our study revealed certain regions in the parametric space

for which the model presents peculiar bursting oscillations. Its peculiarity and re-

semblance to some Mira light curves made us undergo a thorough investigation of

this behavior and its dependence on the parameters. It lead us to conclude that, for

a given ω, it is entirely characterized by the strength of the perturbation — by the
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Figure 4.2: The birth of a knot-like structure for increasing values of Q. Top panels: Stro-

boscopic sampling of the orbit (r, v, p) with the characteristic frequency ω = 20.1: (a)

Q = 1.02, (b) Q = 1.04, (c) Q = 1.08 and (d) Q = 1.16. Bottom panels: The light

curves corresponding to the cases shown in the upper panels.

pair (Q,α) — and not by the individual specific values of the parameters Q and α.

In other words, given a fixed value of α, a certain range of values of Q can be found

for which the same peculiar dynamics discussed below develop. First, we present

the case of small internal perturbation (α ≈ 3 − 4%) and amplified transmission

through the envelope (Q > 1). Later on we will show that for higher (lower) values

of the parameter α, the same behavior is encountered if lower (higher) values of the

coupling coefficient Q are chosen. In addition, as the system from Eq. (4.8) presents

a time-periodic perturbation, we shall use again the stroboscopic map in order to

ease the visualization of the dynamics.

In the top panels of Figure 4.2 we present the stroboscopic map of the system for

increasing values of Q. We notice the successive creation of loops, finally leading to

a knot-like structure for strong perturbation (Q = 1.16). For the sake of compari-

son with real astronomical data, we also plot in the bottom panels of Figure 4.2 the

nondimensional light curves for the corresponding cases. The luminosity L is ob-

tained from the condition of radiative transfer together with the perfect gas law (see

Eq. 2.44):

L

L?

= rβpδ, (4.9)

where the normalizing constant L? is the equilibrium stellar luminosity. The tem-

poral scale is expressed in years and for this task we have used the stellar parameters

associated to a typical Mira of 1M¯ as they result from the work of Vassiliadis &

Wood (1993).

The most striking feature of the light curves of Figure 4.2 consists in a highly

energetic sporadic burst followed by a series of smaller peaks. A new peak appears

with the creation of every new inward loop in the stroboscopic map. Each change

in the number of loops is accompanied by a chaotic regime. The transition from a
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Figure 4.3: Transition to the chaotic bursting regime. Top panels: Stroboscopic map for

the cases α = 0.037, ω = 20.1, a = 20, ξ = 0.06 and (a) Q = 1.08, (b) Q = 1.07,

(c) Q = 1.0615 and (d) Q = 1.055. Middle panels: A zoom of the central loops of the

stroboscopic maps of the top panel. Bottom panels: Return maps of the major peaks in the

associated light curves.

regular regime, as in Figure 4.1, to a chaotic one occurs through a sequence of period-

doubling bifurcations. In Figure 4.3 — upper and middle panels — we illustrate this

behavior for values of the parameterQ ∈ [1.06, 1.08]. In the bottom panels of Figure

4.3 we present the return maps of the major bursts for the cases of the upper panels:

plots of the maxima Mn+1 versus the previous maxima Mn. This method appears

to reveal with great clarity the period-doubling route to chaos, fact that justifies its

application to this particular case.

For a clear exemplification of the chaotic regimes, in Figure 4.4 we show the

light curves and the associated stroboscopic maps for a case of regular dynamics

and for two cases of different degrees of irregularity. The central panels correspond

to the case of regular dynamics prior to the development of the successive loops in

the stroboscopic map. For a slightly lower value of the parameter Q (top panels),

a completely irregular light curve results and the stroboscopic map clearly shows

it. Finally, in the lower panels, we illustrate the dynamics of the system when Q
takes a value corresponding to the accumulation of a sequence of period-doubling

bifurcations.

Another important feature of the dynamics is the fact that the time interval τB
between major bursts increases with the strength of the perturbation, as it can be

seen in the bottom panels of Figure 4.2. This is illustrated in Figure 4.5a, where the

time interval between the successive major bursts is shown as a function of the cou-
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Figure 4.4: Comparison between regular and irregular dynamics. The light curves and the

corresponding stroboscopic maps for the cases α = 0.037, ω = 20.1 and (top panels) Q =
0.8, (middle panels) Q = 1.0 and (bottom panels) Q = 1.048.

pling coefficient Q. As a visual guide we also plot the shape of the stroboscopic map

at the fixed values of Q where an additional inner loop appears. As it can be seen in

this panel and in panel 4.5b, τB significantly increases for Q ∈ [1.32, 1.39] whereas

for Q > 1.39 (Figure 4.5c) the separation between successive bursts increases dra-

matically. Also, in Figure 4.5b we show that the above mentioned increase of τB can

also be obtained by decreasing the nonadiabaticity of the system (that is, decreas-

ing ξ). Nevertheless the main parameter for tuning the time interval between major

bursts turns out to be Q. Note as well that these major bursts favor mass loss at

exceptionally high rates and, moreover, the time intervals between them are long.

Hence, it is tantalizing to directly connect them with the periodicities observed in

the circumstellar shells that can be found surrounding some planetary nebulae (Van

Horn et al. 2003).

4.3 Mathematical interpretation of the results

In order to validate the numerical results discussed above, we briefly present the

mathematical characteristics of our system. Given that our system is non-autono-

mous — that is, it is explicitly time-dependent — the typical methods of analysis

of the theory of dynamic systems cannot be used. To overcome this drawback, we

used an averaging method (Sanders & Verhulst 1985) to transform our system into

an autonomous one. The high value of the characteristic frequency (ω À 1) assures
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Figure 4.5: Time interval between bursting oscillations. In all cases, α = 0.037, ω = 20.1,

a = 20. (a) Time between major peaks as a function of the strength coefficient Q for the

case of ξ = 0.06; (b) Variation of the time between major peaks as a function of Q and for

different values of ξ from 0.06 to 0.11; (c) The extension to higher values of Q leads to larger

time intervals between major peaks for ξ = 0.06.

us that this method is applicable to our case. In the time-averaged framework, the

time integral to be computed is

F (r) =
1

T

∫ T

0

sin(ωr − ωt− αω1/3 sin ωt) dt =

= sin ωr
1

2π

∫ 2π

0

cos(x+ αω1/3 sin x) dx. (4.10)

Due to the particular complexity of this integral, we have resorted to numerical com-

putation which led us into the following form of the averaged function:

F (r) = A sin ωr, A = −0.04993. (4.11)

In the time-averaged framework, the system from Eq.(4.8) becomes

dr

dt
= v

dv

dt
= p r2 − r−2 −Qαω4/3F (r) (4.12)

dp

dt
= −5r−1vp− ξr−3(rβpδ − 1).

The fixed points of the system from Eq.(4.12) in the case of nonzero perturbation

must satisfy the conditions:

p0 = r−40 +Qαω4/3A r−20 sin ωr0 (4.13)

rβ0p
δ
0 − 1 = 0 . (4.14)
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Figure 4.6: Numerical determination of the fixed points. The two fixed points r0 ≈ 0.65
and r0 ≈ 1.03 are inherited from the case of zero perturbation. The third new fixed point

appears close to r0 ≈ 0.85 as Q increases at Q ≈ 1.3855. The curves shown correspond to

Q = 0.8, 1.0, 1.16, 1.4 (from bottom to top, as indicated by the arrow).

or, equivalently,

G(r) ≡ rβ(r−4 +Qαω4/3A sin ωr)δ − 1 = 0. (4.15)

The roots of Eq. (4.15) are to be found again numerically. The behavior of this

function in the range of interest r ∈ [0.6, 1.2] is shown in Figure 4.6, where the

horizontal line is used for a quick visual identification of the fixed points. The new

fixed points r0 ≈ 0.65 and r0 ≈ 1.03 are only slight displacements of the fixed

points mentioned before in the case of zero perturbation. Moreover, their associated

eigenvalues maintain the form from the previous case. Increasing the parameter

Q, a new fixed point is created at the central maximum of the function G(r) at

about Q ≈ 1.3855. This new fixed point is stable as the associated eigenvalues have

all negative real parts. With the creation of this fixed point, the looping behavior

disappears. For higher values of Q, the fixed point is replaced by two unstable fixed

points of saddle-focus type. The distance between them increases with (Q−Q0)
1/2.

In order to verify both the applicability and robustness of the method, we studied

the dynamics of the averaged system in search of the behavior observed in the non-

autonomous system. The results appear in Figure 4.7 where the trajectory in the
phase space (not the Poincaré map) of the averaged system for a selected range of

parameters is shown. As it can be seen we obtain again the same interplay between

the ejection loop and the inward spiraling, thus confirming the robustness of our

simplified approach and the validity of results obtained for the non-autonomous

system. In other words, we saw that the orbit sticks to a fixed point for a period of

time that increases with Q.
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Figure 4.7: Phase space trajectory of the averaged system from Eq. (4.12). All the parameters

are the same as in Figure 4.2 except: (a) Q = 1.08, (b) Q = 1.14, (c) Q = 1.19 and (d)

Q = 1.27.

4.4 The role of ω

Before interpreting the behavior of the system in the context of real data of stellar

variability, we consider worthy of interest the exploration of the role of the parame-

ter ω and to justify the particular value we have used throughout this work. Icke et al.

(1992) concluded that in the case of complete adiabaticity (ξ = 0), a decrease of ω
leads to stronger chaotic pulsations. The values of ω used in their work were equiva-

lent to adopting stellar models in the family of low-mass stars (M ≤ 8M¯) reaching

the AGB phase. In Chapter 3 — see also Munteanu et al. (2002) — we extended their

conclusion to intermediate-mass stars (8M¯ ≤M ≤ 11M¯) also in the AGB phase,

more precisely to values of ω around 3. In the previous sections, we have shown that

in the case of ω = 20.1 a peculiar behavior is born from the interplay between nona-

diabaticity and internal perturbation. Our analysis of the system corresponding to

the parametric interval 5 ≤ ω ≤ 25 has revealed that such a behavior is found for

values of ω close to 20, that is for low-mass stars. Mathematically, we attribute this

fact entirely to the creation of new fixed points mentioned in the previous section

which critically alter the dynamics of the system. They exist for values of ω higher

than about 18. For values slightly lower than 18, the dynamics resembles the one

encountered for ω = 20.1 (middle panels of Figure 4.8), but it does not present the

successive creation of new loops. Instead, the change of the control parameter Q
leads to a mixture of chaotic regimes and uncorrelated creation and disappearance

of new loops. For completeness, we present in Figure 4.8 the light curves and the

stroboscopic maps for three values of ω. For each case, the temporal scaling factor
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Figure 4.8: The role of ω. The light curves and the corresponding stroboscopic maps for the

cases α = 0.037, Q = 1.2 and (top panels) ω = 10 (M = 5M¯), (middle panels) ω = 15
(M = 3M¯) and (bottom panels) ω = 20.1 (M = 1M¯).

was computed according to the work of Vassiliadis & Wood (1993) which provides

a complete set of stellar parameters for AGB stars with initial masses in the range

0.89 ≤ M/M¯ ≤ 5.0. Due to the richness of the dynamics in the case of ω = 20.1,

we use it for a comparison with observations.

4.5 The strength of the perturbation

In §4.1 we anticipated the fact that the peculiar bursting regime described in the last

sections was observed for certain values of the strength of the perturbation, that is

for certain values of the pair (Q,α) and not for the individual specific values of the

parameters Q and α. In this section we present the basis of this result.

The perturbation term considered in the case of the averaged system as depend-

ing only on the parameters Q and α can be extracted from Eqs. (4.12):

A(α,Q, ω) = Qαω4/3
1

2π

∫ 2π

0

cos(x+ αω1/3 sin x) dx. (4.16)

It suggests that for the case of constant ω, to any value of α there should corre-

spond a series of values of Q for which the perturbation term equals the values asso-

ciated to the creation of additional loops described in the last sections. To confirm

this claim, we have varied α in the range α ∈ [0.03 − 0.1] searching for a behavior
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(dotted line), 4th (dashed line), and 5th loop (dot-dot-dashed line) for the averaged system

from Eqs. (4.12).

similar to the bursting regimes described until now together with the successive cre-

ation of loops. We indeed identified the sequences of values of Q corresponding to

the creation of the 2nd, 3rd, 4th and 5th loop as in Figure 4.7. In Figure 4.9(a) we rep-

resent Q as a function of α in the form of four curves traced by the values associated

with the creation of the 2nd, 3rd, 4th and 5th loop. The log-log representation of the

same data in Figure 4.9(b) illustrates a power-law dependence of the type Q ∼ αn

with n ≈ −1.99 to be at the root of the phenomenon. It is a reasonable approxima-

tion of Eq. (4.16) and therefore reflects the fact that the averaged perturbation term

critically determines the dynamics.

4.6 Comparison with observations

The values of the parameters used throughout the numerical integrations were in-

tended to locate the stellar models we are dealing within the family of Long Period

Variables (LPVs) and, specifically, in the families of semiregular and Mira variables.

The light curve of the prototype of the Mira stars, o Ceti, shows a peculiar variability

consisting in an exceptional peak occurring every two, three or five “cycles” (Barthes

& Mattei 1997). Our simple model naturally recovers this behavior by tuning the

strength of the perturbation or the coupling coefficient. Moreover, we have shown

that within our simple model large peaks in the light curve are associated to large

interpulse intervals.

The Mira stars belonging to the Large Magellanic Cloud constitute the best sam-

ple of Miras concerning both periodicities and luminosities. In Figure 4.10a we

show the observational data for some Mira stars in the LMC (Feast et al. 1989) and

the best fit to the observational data. Among them, the ones having periods longer

than about 400 days clearly appear to be over-luminous with respect to the period-

luminosity relationship found for Miras with relatively short periods (Zijlstra et al.

1996; Bedding et al. 1998). With this in mind we have obtained a period-luminosity
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Figure 4.10: Period-Luminosity relation for Mira stars. (a) PL relation for Mira stars in the

LMC and the data on which the relationship is based (Feast et al. 1989). (b) The PL relation

using the data furnished by our model (filled circles): the equivalent Mbol of the major

peaks and the time interval τB between them. The values for the parameters used here are

α = 0.037, ξ = 0.06 and Q ∈ [1, 1.26]. The crosses represent a sample of over-luminous

Mira stars in the LMC. See text for additional details.

relationship from our theoretical models using the time interval τB and averaged val-

ues of the major peaks in luminosity. More precisely, we have varied the parameter

Q in the range [1, 1.26] resulting in light curves whose major peaks have periodicities

(in days) within the range 2.4 ≤ log τB ≤ 3.0. The corresponding bolometric mag-

nitudes were computed using a reference value for the equilibrium stellar luminosity

of L? = 103.5L¯, which is typical for Mira stars. Our theoretical period-luminosity

relationship is shown in Figure 4.10b. For the sake of comparison we also show in

this panel all those Miras with logP > 2.4 and Mbol < −5.0, that is all the stars

which are found to be over-luminous in Figure 4.10a. We have also included two

other interesting Miras: R Hya and V Hya. As it can be seen our theoretical period-

luminosity relationship fits very well the observational data. Moreover, note as well

that the observations tend to cluster around fixed regions of the period-luminosity

relationship. These regions are coincident with the regions where we find regular

oscillations with a fixed number of loops in the stroboscopic map and its sequence

of period-doubling cascade leading to chaos. The gaps between the theoretical data

are the consequence of the drastic change in the characteristics of our light curves

when a new loop is created, and correspond to a very small change of the coupling

coefficient. Hence, according to our analysis we should not find almost any star in

these regions, which is exactly what it is found.

Another peculiarity of Mira stars is that some of them show alternating deep

and shallow minima, giving the appearance of double maxima. Some examples are
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R Cen, R Nor, U CMi, RZ Cyg and RU Cyg — see Hawkins et al. (2001), and refer-

ences therein. Among these, R Cen has the most persistent and stable double maxima

in the light curve while for the rest of the cases the second maxima is often weak and

the light curve sometimes reverts to that of a normal Mira. Our results provide such

light curves for small values of the parameter Q. As for the general “chaotic con-

nection” for the Mira variables, the first (and unique) case of evidence of chaotic

pulsation in a Mira star (R Cyg) comes from the study by Kiss & Szatmáry (2002).

They associate the long sub-segments of alternating maxima in R Cyg to a period-

doubling event, supporting therefore the well-known scenario of period-doublings

to chaos, which we also find in our model. Buchler et al. (2002) present an overview

of observational examples of chaotic behavior in some semiregular variables (SX Her,

R UMi, RS Cyg, and V CVn). They argue that AGB stars are prone to chaotic pul-

sations due to the fact that relative growth rates of the lowest frequency modes are

of order unity. This condition is not fulfilled for the classical Cepheid variables that

have growth rates of the order of a few percent and undergo periodic pulsations.

Higher relative growth rates are a consequence of higher luminosity/mass ratio, that

is more nonadiabatic stars. Hence, not only semiregular variables, but also Mira

stars should also be candidates for chaotic pulsators. In spite of its simplicity, our

one-zone model presents chaotic pulsations for certain intervals of the parameters

characterizing the strength of the internal driving and, thus, could provide some sup-

port to the conjecture that the evolution of semiregulars and of Mira stars is strongly

connected.

4.7 Discussion

In this second part of our study, we have concentrated our attention on the im-

plications of nonadiabaticity in the context of simple models of stellar pulsations.

Particularly, we have emphasized the consequences of the internal driving coupled

with weak nonadiabaticity in the dynamic behavior of the upper stellar layers. As in

the case of the previous chapter, we have encountered certain ranges of parameters

leading to a peculiar behavior. It was characterized by bursting oscillations in the

form of an energetic burst followed by a series of smaller peaks. Our results related

this behavior strictly to the strength of the internal driving. Through the parametric

study we followed the creation and disappearance of the bursting regime.

The nonadiabatic approach has allowed us the access to the most typical observ-

able, the stellar luminosity. The values of the parameters used in the simulations

corresponded to the class of Long Period Variables and thus the comparison with

the observations was intended for this type of pulsating stars. Rewardingly, several

peculiar Mira stars have resulted to present a bursting regime similar to the one en-

countered in our simulations. Moreover, the interval between the major peaks as a

function of the strength of perturbation has reproduced with acceptable accuracy the

period-luminosity of the Mira stars.
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As mentioned in the Introduction, the pulsating stars of low effective temper-

ature such as Mira stars are definitely characterized by extensive convective zones

in the envelope. In spite of numerous works and models treating the pulsation-

convection interaction, there is no consensus in the literature on the driving or

quenching role of the convection on the pulsation. This makes the object of the

next chapter.



Chapter 5

The convective one-zone model of

Stellingwerf revisited

As discussed in §1, there is a series of narrow bands running across the HR dia-

gram within which the ionization regions are located at such depths that the resul-

tant driving is able to lead the star into pulsational instability. The two main bands

correspond to: a) the ionization of hydrogen and neutral helium at low temperatures

(e.g., Mira variables) and b) the ionization of hydrogen, neutral and once ionized he-

lium for the classical instability strip (classical Cepheids). While the cut-off at high

temperatures (the so-called “blue edge”) appears to be due to the ionization region

located too high in the atmosphere for it to be effective, the low-temperature cut-off

(the “red edge”) is more problematic. If the surface temperature of a star is too low,

the onset of efficient convection in its outer layers may dampen the oscillations. As

the transport of energy by convection is more efficient when the star is compressed,

the convecting material may lose heat at minimum radius and cancel the effect of

the ionization, thus quenching the pulsation. The red edge of the instability strip

is generally thought to be the result of the damping effect of convection, but for gi-

ant stars like Miras, nonlinear effects (such as pulsation inducing mass loss) can be

strong enough to produce significant departures from hydrostatic equilibrium and

thus make the predictions of the location of the red edge even more uncertain. What

is beyond any doubt is that the stellar structure in the upper part of the HR diagram

shows, in the best of cases, weak convection zones, if not extended ones as in the

case of Miras where convection must necessarily be included in the modeling of its

dynamics.

The simplest model treating the interaction between pulsation and convection

is the one of Stellingwerf (1986), a generalization of the one-zone model of Baker

(1966). In this chapter, we present comments and caveats on the results obtained

from this model as they appear in several papers in the literature, and we also intro-

duce new results and further possible extensions of the model.
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5.1 Caveats on the Stellingwerf model

The model studied here was derived using the radiative approximation of Stellingw-

erf (1972) — see §2.5 — and adding a simplified version of the convection formalism

described in Stellingwerf (1982). For the radiative model briefly described in §2.5,

we recall below the equation of motion (Eq.2.41) and the energy equation (Eq.2.45):

d2X

dτ 2
= β(HX−(mΓ1−2) −X−2) (5.1)

dH

dτ
= −ξXm(Γ1−1)[XbHs+4 − Li/L0], (5.2)

where all the notations have been already described in §2.5.

Before getting into the details of the model, it is of certain importance to men-

tion the differences between the two normalizing schemes used in several versions

of the radiative one-zone model of Stellingwerf (1972). In Stellingwerf & Donohoe

(1987), the time is normalized to the pulsation period instead of normalizing to the

dynamical time scale. In this approach, the light curves are obtained by a process

of double iteration: first, the shell thickness, that is the ratio η = Rc/R? between

the core radius, Rc and the equilibrium radius, R?, is varied to obtain an oscillation

period of unity. Then, the initial value of H , the nonadiabaticity variable, is varied

to obtain periodicity. This is a method to produce periodic light curves for a model

in which the pulsations are growing or decaying. In another approach of the same

model (Stellingwerf et al. 1987), the time is taken in units of dynamical time scale.

The nonadiabatic parameter, ζ , becomes

ζ ≡ tdyn
ρ0(Γ3 − 1)L0

P0mS

, tdyn =

(

GM

R3
?

)−1/2

. (5.3)

with mS being the mass of the shell, M and R?, the stellar mass and radius, respec-

tively, and tdyn, the dynamical time. This method allows direct integration of the

equations without the need of iterative improvement being, therefore, a more phys-

ical approach. It is also the method adopted in Stellingwerf (1986), as well as in §3
and §4. Within this approach, the resultant time-series may be periodic or aperiodic

as the shell may exhibit either a limit cycle or damped/growing oscillations.

The damping of the internal radiative regions of the star is generally not included

in one-zone models. The one-zone model of Stellingwerf considers a form of damp-

ing produced by the radiative layers deeper than the pulsating shell. The functional

form of the damping is reflected in the interior luminosity as it is allowed to vary

with respect to the equilibrium luminosity as Li/L0 = Xu, where the parameter u
is normally negative as these layers damp the pulsation. In Stellingwerf & Donohoe

(1987), the exponent u is given by
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u = m[(s+ 4)(Γ1 − 1)]− 4 ≈ 7, (5.4)

where the values for m, the parameters of the κ-mechanism s and n, and Γ1 refer

to the interior, not to the shell as in the calculation of the exponent b for the radius

component of the outer luminosity, L/L0 = Xbhs+4. However, even if it is obvious

that in this work the u-exponent is taken as having the same form as b (see Eq.2.46)

from the usual diffusion formula for the luminosity, multiplied by −1 to account

for a damping behavior, no argumentation for this approach is given. In general,

the value u = −2 is arbitrarily adopted in most of the previously mentioned papers

where the internal damping is considered.

The pulsational stability condition in the radiative case: b − u < 0 indicates

that the only parameters affecting the driving or damping in the pulsating shell are

the radius exponents of the luminosities (internal, u, and superficial, b). However,

the introduction of the damping as described above does not lead to a more stable

dynamics, as the role of damping should be. On the contrary, this functional form

enhances the driving in the shell. This statement appears obvious directly from the

pulsational stability condition, b − u < 0, where the addition of the negative factor

u makes it more difficult to be fulfilled. Moreover, our calculations confirmed the

increase of pulsational instability with the introduction of this damping term. It is

worth adding also that in the above-mentioned paper the calculations involve an ad
hoc choice ofm, a guess for u, and a couple of tries for the initial radius,X0 to obtain

reasonable luminosity amplitudes. Additionally, in the same paper, it is mentioned

that, for the convective case, the values of the parameters chosen to exemplify the

blue-strip-red models for Cepheids are essentially arbitrary and are not based on

detailed models. In this chapter we shall explore the connection between the values

of the parameters and the physics expected from the model. Only such values can

provide a useful comparison with the observational data and can be trusted to give a

valid calibration of evolutionary models, too.

5.2 Coupled convection and pulsation

In Stellingwerf (1986), the nonlinear, nonlocal, time-dependent treatment of con-

vection introduced in Stellingwerf (1982) is applied to the one-zone model leading

to a simple convection scheme which has as limiting cases the “frozen-in” convection

and the “mixing-length” convection. The root-mean-square convective velocity, U ′

obeys a “phase lag” equation of the form

∂U ′

∂τ
= ζc(Uml − U ′), (5.5)

where Uml is a mixing-length convective velocity and ζc is the convective efficiency

defined as the ratio between the dynamical time scale and the convective adjustment

time scale. The definition of the convective time scale is considered as one of the
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main problems and it appears under question mark in Stellingwerf (1986), attracting

our attention for further studies.

By using Eq.(5.5) together with Eqs.(5.1) and (5.2), and adapting them to a nor-

malization scheme in which the dynamical time scale is used, the final equations

describing the dynamics are obtained:

d2X

dτ 2
= HX−q −X−2 (5.6)

dH

dτ
= ζX2d(1− γrXbHs+4 − γcX−cU3

c ) (5.7)

dUc
dτ

= ζc(X
−dH1/2 − Uc), (5.8)

where Uc ≡ U ′/Uml0 , q ≡ mΓ1 − 2, d ≡ m(Γ1 − 2)/2 and c ≡ m − 2, while the

other quantities have the meanings described in §2.5. The convective/radiative split-

ting is given by the parameter γc defined by the ratio between the initial convective

luminosity and the total initial luminosity, that is γc ≡ Lc0/L0. Thus, the parameter

γr is γr = 1−γc. In order to determine the stability properties of the above system of

differential equations, one has to linearize the equations about the equilibrium fixed

point (X̄, V̄ , H̄, Ūc) = (1, 0, 1, 1) through the change of variables X = 1 + xeσt,
H = 1 + heσt, Uc = 1 + uce

σt and further construct the secular equation of the

eigenvalues σ which results to be of the type

A+Bσ + Cσ2 +Dσ3 + σ4 = 0, (5.9)

where

A = ζζc[P +RQ+ 3γc(R/2− d)], (5.10)

B = ζcR + ζ(P +RQ), (5.11)

C = ζζc(Q+ 1.5γc) +R, (5.12)

D = ζc + ζQ, (5.13)

with P ≡ γrb − γcc, Q ≡ γr(s + 4) and R ≡ q − 2. The complete stability of

the system is assured if all the eigenvalues (the roots of Eq.5.9) have real part, which

according to Stellingwerf (1986) leads to:

Turbulent stability : A > 0, (5.14)

Secular stability : B > 0, (5.15)

Dynamic stability : BC − AD > 0, (5.16)

Pulsational stability : D(BC − AD)−B2 > 0. (5.17)
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Figure 5.1: Location of pulsationally stable and unstable regions in the (ζ, ζc) plane for vari-

ous values of γc, as obtained in Stellingwerf (1986).

While the values n = 1 and s = 3 for the parameters of the Kramers law are

standard values, the ones of Γ1, m, γc, ζ and ζc must be considered with caution.

The value of Γ1 = 1.1 adopted in Stellingwerf (1986) is a typical minimum one as

the γ-mechanism operating in the ionization regions produces values of Γ1 lower

than 4/3. The value of m is quite crucial for the dynamics as Eq.(5.14) predicts

instability if the shell is too thick (i.e., requires m > 8 for γc = 1). The choice of

m = 10 of Stellingwerf (1986) together with the values already mentioned for the

others parameters assure the turbulent stability as well as the dynamical and secular

stability for ζ and ζc in the range [0, 10] and γc ≤ 1. On the other hand, Eq.(5.17)

leads to both stability and instability for the ranges of interest. As also presented in

Stellingwerf (1986), the location of the pulsationally stable and unstable regions in

the (ζ, ζc) plane for various values of γc are shown in Figure 5.1.

In Stellingwerf (1986) a comparative study was done concerning what were con-

sidered to be models of pulsating stars in the vicinity of the Cepheid instability strip,

more precisely the blue, the strip and the red cases. The values of the parameters

chosen essentially arbitrarily happened to lead to the “blue” and the “strip” cases be-

ing pulsationally unstable (growing amplitude) and the “red” case, stable (decaying

amplitude). Due to the arbitrary nature of the values of the parameters and to the

absence of a limit cycle for these cases, the discussion of the time variations of the

variables during a couple of quasi-periods is questionable in terms of the relevance

of any possible conclusion regarding the form of the time series. A certain relevance

could be attributed to the time series only in the case of existence of a limit cycle,

in the context of a large range of γc, ζ and ζc. The linear stability analysis done

in Stellingwerf (1986) was presented as leading to nonperiodic curves showing either

damped (all eigenvalues have negative real parts) or growing oscillations (at least one

eigenvalue has positive real part). While this interpretation is perfectly valid in the

case of real eigenvalues, it may not be completely true if some eigenvalues are com-

plex, as in this case certain bifurcations may occur in which periodic orbits (limit

cycles) are born. Our calculations have revealed that indeed there are regions in the
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Figure 5.2: Location of the limit cycle regions (circles) as well as pulsationally stable (squares)

and unstable regions (stars) in the (ζ, ζc) plane for (X0, V0, H0, Uc0) = (1.4, 0.0, 1.0, 0.7)
and (a) γc = 0.3 and (b) γc = 0.4. The black lines represent the lines of linear stability from

Figure 5.1.

(ζ, ζc) plane where limit cycles exist for various values of γc. In Figure 5.2 we show

the cases of γc = 0.3 and γc = 0.4 represented in the spirit of Figure 5.1. We show

as white circles the cases in the plane for which limit cycles exist. For the numer-

ical analysis, we have used the embedded 8th order Runge-Kutta Prince-Dormand

method from the GNU Scientific Library and adopted a tolerance of 10−10. A limit

cycle was considered to have been reached when consecutive maxima of the radius

differed by less than 10−7. A damping solution was considered when the solution

was tending asymptotically to the fixed point (X̄, V̄ , H̄, Ūc) = (1, 0, 1, 1) and the

distance to it was less than 10−8. For values of the radius greater than X = 15, the

solution was considered unstable.

The typical bifurcation responsible for the creation of limit cycles is the Hopf bi-

furcation (Strogatz 1994). There are two types of Hopf bifurcation generally known

as the supercritical and the subcritical. The former is the one that characterizes the

behavior of Eqs. (5.6–5.8) and therefore will be discussed below. If some of the eigen-

values of the linearized system are complex, then it is possible that, by continuously

changing the values of the parameters, the real part of a pair of complex eigenvalues

crosses the imaginary axis from the negative domain to the positive domain giving

birth to a limit cycle. In order to exemplify the dynamics, let us consider the case of

γc = 0.4. For values of the parameters ζ and ζc from the green region in Figure 5.2b,

all eigenvalues have negative real part (Re(σ) < 0) and thus the equilibrium point

(X̄, V̄ , H̄, Ūc) = (1, 0, 1, 1) is stable (i.e. stable focus). This is the case of damping

oscillations found in Stellingwerf (1986). For all the values of the parameters from

Figure 5.2b, the linearized system presents one pair of complex eigenvalues whose

real part becomes positive when the pulsational stability condition is broken. After

the bifurcation point characterized by Re(σ±) = 0, where σ± is the pair of complex

eigenvalues, the equilibrium point has become linearly unstable and a stable closed

orbit is surrounding it. A schematic view of this bifurcation appears in Figure 5.3.
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Figure 5.3: The supercritical Hopf bifurca-

tion in a 2D system and the birth of a limit

cycle.

Figure 5.4: Schematic view of the presence

of a stable (solid circle) and an unstable

(dashed circle) limit cycle.

Let us analyze the evolution of the periodic orbit considering the diagonal ζ = ζc
of Figure 5.2. As the values of the parameters decrease, our simulations suggest

that the stable periodic orbit is annihilated by a collision with an unstable periodic

orbit. As the system of Eqs. (5.6–5.8) is a 4D system, it is impossible to represent

the dynamics in the phase space similar to the case of a 2D system as in Figure 5.3.

However, we give in Figure 5.4 a schematic view of the presence of the stable (solid

circle) and the unstable (dashed circle) limit cycles. In Figure 5.5 we also plot the

variations in time of the nondimensional radius, X , revealing the presence of the

unstable orbit. Panels a and b show two limiting examples for which a slightly larger

and smaller radius, respectively, than that of the unstable periodic orbit are chosen.

The latter also reveals the stable limit cycle by asymptotically approaching it from

larger radius. Panel c proves the instability of the fixed point and strengthens the

existence of the stable limit cycle. In Figure 5.6 we plot also three periods of the limit

cycle for the case γc = 0.4 and ζ = ζc = 0.8, where the luminosity was derived from

L ≡ Lr + Lc = γrX
bHs+4 + γcX

−cU3
c . (5.18)

The limit-cycle behavior encountered for the present model is a clear case of soft

self-excited oscillations briefly mentioned in §1.2 and initially defined in Ledoux

& Walraven (1958) using a model based on the Van der Pol oscillator. For such

oscillations, any infinitesimal perturbation of the fixed point leads the system toward

the limit cycle. Our case might be denominated limited self-excited oscillations, as

for a perturbation stronger than a certain threshold the orbit becomes repelled by
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Figure 5.7: Locations of the limit cycle regions (in black) as well as stable (ligh grey) and

unstable regions (dark grey) in the (ζ, ζc) plane for: (a) γc = 0.1; (b) γc = 0.2; (c) γc = 0.3;
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γc = 1.0. The white regions represent the cases leading to singularities. See text for more

details.



86 5 The convective one-zone model of Stellingwerf revisited

the unstable orbit (Figure 5.5a). The hard self-excited oscillations mentioned in the

work of Ledoux & Walraven (1958) are better understood imagining that the limit

cycles of Figure 5.4 are reversed with respect to the distance to the central fixed point

— an inner unstable limit cycle and an outer stable limit cycle. In such a case, the

perturbation must surpass the unstable limit cycle in order to allow the orbit to reach

the stable limit cycle.

In order to see how the existence of the limit cycle is influenced by the variation

of the parameters, we have performed a thorough study of the dynamics in the plane

(ζ, ζc) for different degrees of convection γc. Such a search and study of the limit-

cycle behavior was not followed in any of the previous investigations of the model.

Moreover, the qualitative and quantitative analysis of light curves in previous studies

(Stellingwerf & Donohoe 1986; Stellingwerf et al. 1987) was done only for short time

series (a few dynamical times) and most crucial, for cases in which limit cycles did

not exist. Therefore, we consider the search for limit cycles absolutely necessary for

any further interpretation of the observed dynamics and comparison with observa-

tions.

The results are presented in Figure 5.7 showing the damping cases (in green),

limit cycles (in blue) and the unstable cases divided into pulsationally unstable cases

(in red) and unphysical cases in which the high values of the radius led the pressure

into reaching negative values (in yellow). We have used for all cases the same value of

m = 10 and the same initial condition, (X0, V0, H0, Uc0) = (1.4, 0.0, 1.0, 0.7), both

identical to the ones used in Stellingwerf (1986). However, the type of the resultant

dynamics is independent of the initial condition as long as the latter leads to the same

dynamics as any other initial condition close to the fixed point (X̄, V̄ , H̄, Ūc) =
(1, 0, 1, 1), a condition that we have always verified. From Figure 5.7 one can notice

that in the cases dominated by radiation (γc < 0.5), there exist regions in the (ζ, ζc)-
plane with stale limit cycles. As the contribution of convection to the luminosity

increases and equals the contribution of radiation, the regions of limit cycles shrink

and disappear completely at γc = 0.5. The amplitude of the limit cycle increases

as one changes the values of the parameters from the green-blue edge to the blue-

red edge, thus the latter also gives the values of the parameters that yield maximum

amplitudes of oscillations.

Limit cycles exist only for weakly convective cases (γc < 0.5) which are char-

acteristic for the classical Cepheids. However, it is worth discussing the region of

limit cycles that appears for a completely convective shell (γc = 1.0) in Figure 5.7

and which has limit cycles of periods longer than any of the cases of smaller γc.
Even within this approach of a simple one-zone model, it is tempting to attribute

this region of the plane (ζ, ζc) to the instability strip of LPVs — variable red giants

and supergiants — which are thought to be significantly nonadiabatic and highly

convective. More exactly, the convective luminosity in the ionization regions of red

pulsating variables is expected to exceed 99% of the total luminosity, as mentioned

by Xiong et al. (1998a). They identify a Mira instability strip outside the Cepheid in-

stability strip when pulsation-convection interaction is taken into account. However,
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γc = 1.0; ζc = 9; ζ = 7.5).

similar to the limit cycles for the weakly convective cases possibly related to the clas-

sical Cepheids, it is highly speculative to attribute specific values of the parameters

ζ and ζc to the cases of Miras. For comparative purposes only, in Figure 5.8 we plot

the time series associated to a “Cepheid” and a “Mira” case, where the temperature

was estimated from the perfect gas law as being

T

T0
= X−2dH. (5.19)

Our analysis revealed that the amplitude and period of the limit cycles depend

crucially on the distance to the stability line (the blue-green frontier in the (ζ, ζc)
plane). Approaching the unstable region from the limit-cycle region, the amplitude

of the oscillations increases accompanied by an increase in the period. To exemplify

this behavior, we show in Figure 5.9 a “period-luminosity” relationship in nondi-

mensional units for the limit-cycles cases of γc = 0.3. The color code represents

the distance, d to the blue-green stability line (Figure 5.7 c) calculated in the (ζ, ζc)
plane. In Figure 5.9, ζ increases from top to bottom, while ζc increases from right to

left. Thus, the almost-horizontal parallel lines are sequences of constant ζ , while the

left-most circle of each almost-horizontal parallel line is characterized by ζc = 10.

A more accurate analysis of this behavior reveals the fact that the morphology

depends on the distance to both the stability and instability region. For example,

if two cases of limit cycles, (ζ, ζc) and (ζ ′, ζ ′c) are found at the same distance to the

stability line, than a more pulse-like dynamics will characterize the case which is
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closer to the instability region. This makes the correlation of period, luminosity and

distance to the stability/instability regions less useful for a classification of the limit

cycle characteristics. Thus, another quantitative method must be found for such a

purpose.

5.3 The turbulent pressure

Convection influences pulsation through three factors, namely convective energy

transfer (thermodynamic coupling), turbulent pressure and turbulent viscosity (dy-

namic coupling). Turbulent viscosity is always a pure damping factor, whereas tur-

bulent pressure is, in general, an excitation mechanism for stellar pulsation. Ther-

modynamic coupling has a damping effect in the deep layer of convective zone but

it has an excitation effect at the top of the convective zones. These three factors con-

tribute differently to pulsation with different stellar structures and pulsation modes.

This fact can explain the complex pulsational character in different regions of the

HR diagram — see Xiong & Deng (2001) and references therein.

The turbulent pressure, Pt is not explicitly included in Stellingwerf (1986), but it

is shortly mentioned as being

Pt
Pt0

= X−mU2
c , (5.20)
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where the zero subscript denotes its equilibrium value. In order to include the tur-

bulent pressure and its associated energy terms in the one-zone approach of §5.1,

one must start from the equation of momentum and energy conservation for the

treatment of convection of Stellingwerf (1982):

D〈u〉
Dt

= −1

ρ
∇(P + Pt)−∇Φ (5.21)

D

Dt
(E + Et) + (P + Pt)

DV

Dt
= −1

ρ
∇ · (Fr + Fc + Ft) (5.22)

where D/Dt = (∂/∂t+ 〈u〉 · ∇) is the Lagrangian time derivative, E is the specific

internal energy, V ≡ 1/ρ is the specific volume, P is the thermodynamic pressure

and

Et ≡
1

2
〈(u′)2〉, (5.23)

Pt ≡ ρ〈(u′)2〉, (5.24)

Fc ≡ ρCp〈(u′T ′)〉, (5.25)

Ft ≡
1

2
〈(u′)2u〉 (5.26)

represent, respectively, the convective energy, the turbulent pressure, the convec-

tive and turbulent kinetic fluxes. These equations must be adapted to the one-zone

model. The momentum equation translates into

d2X

dτ 2
= (1− αp)X−qh+ αpX

−cU2
c −X−2, (5.27)

where q ≡ mΓ1 − 2, c ≡ m− 2 and

αp ≡
Pt0

P0 + Pt0
=

X−m
0 U2

c0

X−mΓ1

0 h0 +X−m
0 U2

c0

. (5.28)

To ease the calculation, the energy equation can be divided into

∂(Lr + Lc)

∂m
=

Γ1P

ρ2(Γ3 − 1)

∂ρ

∂t
− 1

ρ(Γ3 − 1)

∂P

∂t
(5.29)

∂Lt
∂m

=
Pt
ρ2

∂ρ

∂t
− ∂Et

∂t
. (5.30)

In the determination of the convective and turbulent luminosities, one can use the

conservative choice of Lc of Eq.(27) of Stellingwerf (1986) and the above Eq.(5.26).

The calculations lead to a formula for Lt identical to that of Lc, that is Lt = X−cU3
c ,
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while Et = U 2
c /2. Using Eqs.(5.29–5.30), one can get the final equation of energy

conservation taking into account the turbulence:

dh

dτ
= − m

αp(Γ3 − 1)

1− αp
X2d−1 dX

dτ
U2
c −

ρ0(Γ3 − 1)

P0
ζc (X

dh1/2Uc −

− X2dU2
c ) − ζX2d (γrX

bhs+4 + (1− γr)X−cU3
c − 1), (5.31)

where d ≡ m(Γ1 − 1)/2 and γr ≡ Lr0/L0. All the other symbols used in Eq.(5.31)

have their usual meaning. The equation for the convective velocity coincides with

the zero-turbulence case as the approximation made for its recovery uses of the tem-

perature as a function of the thermodynamic pressure only.

In the case in which the turbulent energy, Et is neglected in Eq.(5.22), Eq.(5.31)

becomes

dh

dτ
= − m

αp(Γ3 − 1)

1− αp
X2d−1 dX

dτ
U2
c −

− ζX2d (γrX
bhs+4 + (1− γr)X−cU3

c − 1). (5.32)

Thus, at the first approximation, the one-zone convective model with turbulent

pressure is described by the Eqs. (5.27, 5.32), while the convective velocity equation

remains the same from Eq.(5.8). From these equations it becomes clear that the

fixed point of the new system is the same as in §5.1, (X̄, V̄ , H̄, Ūc) = (1, 0, 1, 1).
The Jacobian of the system calculated at this fixed point is

J(1,0,1,1) =

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 0
2− q − αp(c− q) 0 1− αp 2αp

−ζ(γrb− γcc) −αpf −ζγr(s+ 4) −3ζγc
−ζcd 0 0.5ζc −ζc

∣

∣

∣

∣

∣

∣

∣

∣

. (5.33)

The secular equation obtained from the general condition for the determination

of eigenvalues, det(J(1,0,1,1)−σI) = 0, has the same form as Eq.(5.9), where the new

parameters are

A = ζζc[P +RQ+ 3γc(R/2− d)] +
+ ζζcαp[(c− q)(Q+ 1.5γc) + 3γcd+ 2Qd], (5.34)

B = ζcR + ζ(P +RQ) + αp[(c− q)(ζc + ζQ) + ζc(2d+ f)− ζP ],(5.35)

C = ζζc(Q+ 1.5γc) +R + αp[c− q + (1− αp)f ], (5.36)

D = ζc + ζQ, (5.37)

with P ≡ γrb − γcc, Q ≡ γr(s + 4), R ≡ q − 2 and f ≡ m(Γ1 − 1)/(1 − αp).
The regions of stability as they result from the conditions that the real part of all
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Figure 5.10: Location of pulsationally stable and unstable regions in the (ζ, ζc) plane for

various values of γc.

eigenvalues be negative appear in Figure 5.10 represented in the spirit of Figure 5.1.

One can see that the regions of stability are somewhat smaller for the cases of weak

convection (γc < 0.5) and significantly larger for strong convection cases. Moreover,

their location is significantly different than in the case of αp = 0.

As for the existence of limit cycles, we have undertaken a parametric study in

order to investigate the influence of the turbulent pressure on the overall dynam-

ics of the system and implicitly on the existence of limit cycles. For this purpose,

we have chosen the same initial condition as in §5.1, that is (X0, V0, H0, Uc0) =
(1.4, 0.0, 1.0, 0.7), which led to a value of αp ≈ 0.4. The results concerning the

plane (ζ, ζc) appear in Figure 5.11. As discussed in the previous section, the yellow

regions represent the unphysical cases leading to negative values of the pressure and

to singularity in the resulting dynamics of the system. The figures reinforce the con-

clusions drawn from the analysis of the secular equation. The regions characterized

by the existence of limit cycle for γc < 0.5 are more extended. On the other hand,

in spite of the increased stability in the cases of strong convection (γc ≥ 0.5), the

regions of nonphysical values of the variables involved (e.g., yellow regions in Fig-

ure 5.11) are more extended in these cases. The persistence of the region of stable

oscillations for the completely convective case (γc = 1.0) adds more reliability to

its physical significance mentioned in §5.1. Compared to the case of zero-turbulent

pressure, this regions shifts to smaller values of the convective efficiency, ζc. This shift

is due to the fact that a part of the driving comes now from the turbulent pressure.

Taking into consideration the turbulent pressure certainly implies a more reli-

able model. However, drawing strict conclusions from the dynamics is hindered by

the relatively arbitrary value of the form factor m considered in Stellingwerf (1986).

There, Eq.(2.29) was used and a value of m = 10 was adopted. The reconsideration

of this value and, moreover, of the validity of this equation makes the object of the

next subsection.
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Figure 5.11: Same as Figure 5.7, but for the case in which turbulent pressure is considered.


