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5.4 The form factor

According to Usher & Whitney (1968) the form factor,m introduced as ρ/ρ0 = X−m

is given by

m =
log [(X3 − η3)/(1− η3)]

log(X)
, (5.38)

where η ≡ Rc/R?, beingRc the core radius. One can remark the necessary condition

X > η, otherwise the argument of the logarithm becomes negative. Moreover, since

Rc is considered to be the radius of the rigid core that does not participate to the

pulsation, it is also physically meaningless that R reaches values smaller than Rc. It

is worth noting that in none of the several studies existent in the literature regarding

this one-zone model (neither radiative nor convective) is Eq.(5.38) used, but its value

corresponding to small oscillations (R ≈ R?), that is

m0 =
3

1− η3 . (5.39)

While the use of Eq.(5.39) avoids the mathematical problem of a negative argument

for the logarithm, it does not resolve the unphysical situation of R reaching values

smaller than Rc. As considered also in the previous sections, m = 10 is used in

Stellingwerf (1986), to which corresponds an η = 0.888 leading to Rmin ≈ 0.82.

Therefore, large excursions of X0 should be considered with caution when using

Eq.(5.39).

On the other hand, we argue in favor of not considering the “shell thickness”,

(1 − η) in dimensionless formulation, equal to the range in radius of the envelope.

In evolutionary models, the envelope is a structured dynamic entity consisting in a

high number of layers playing different roles in the pulsational history of the star.

The driving is accounted for indirectly in the sense that, during the evolution of the

stellar model, certain layers of the envelope fulfill the conditions for the H and/or

He partial ionization and become driving regions. A simplification of the envelope

structure should include, from inner to outer regions: a damping region, a driving

region, a transition region and the dissipation region. From this point of view, the

model of Icke et al. (1992) accounts for a driving region (piston approximation)

at X ≈ 0.2 − 0.4, a transition region through which the pressure waves from the

interior propagate, and a dissipation region that they call mantle, where the waves

decrease their amplitude. In Stellingwerf (1986), the one-zone model consists in a

dissipation region bounded below by a rigid core at X ≈ 0.85 excited by a driving

agent (Γ1 < 4/3). Apparently, the two models are incompatible as, if the rigid

core is considered at X ≈ 0.85, no driving can originate at X ≈ 0.4. However, a

consensus can be reached if the concept of rigid core boundary of Stellingwerf (1986)

is considered as the inner boundary of the dissipation region. In this sense, the idea

of “shell thickness” might be equivalent to the radial extension of the dissipation

region.
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Figure 5.12: Influence of the shell thickness. Locations of the limit cycle regions (in black) as

well as stable (light grey), unstable (dark grey) and singularity regions (white regions) in the

(ζ, ζc) plane for γc = 0.4, αp = 0 and: (a) η = 0.888; (b) η = 0.8; (c) η = 0.7. Eq.(5.38)

was used for the form factor. The histograms of the periods for the above cases are presented

in (d), (e) and (f), respectively.

It is, hence, highly desirable to use Eq.(5.38) in modeling stellar pulsations, be-

cause of its more reliable physical meaning. Therefore, we present in this section the

results of an analysis similar to the ones already done in §5.1 and §5.2, but which

includes the variable nature of the parameter m and the importance of the shell

thickness, η. For a better illustration of the importance of the variable form fac-

tor, we have investigated first the case of zero-turbulent pressure. In Figure 5.12a,
b, c, we plot the plane (ζ, ζc) for different values of the shell thickness, η, and for

an intermediate degree of convection. One can notice that the increase of the shell

thickness produces the increase of the regions characterized by limit-cycle behavior.

Moreover, we have noticed that the histogram of the periods for the limit cycles (Fig-

ure 5.12b) present a clear correlation with the shell thickness. They represent a good

approximation of a Poissonian distribution whose maximum corresponds to higher

periods for thicker shells. In other words, it is a confirmation of the association of

thiner shells to higher overtones: the first (half the fundamental period) and second

(a third of the fundamental period) overtones.

We have considered further the changes introduced by the turbulent pressure

coupled with the variable form factor. We have chosen to represent in Figure 5.13

the regions of different types of dynamics in the plane (ζ, ζc) for the case of η = 0.8,

as being an intermediate case. One can notice that limit cycles exist for higher values

of the convective/radiative parameter, γc, as a consequence of a thicker shell. On the
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Figure 5.13: Same as Figure 5.7, but for the case in which turbulent pressure and variable

form factor are considered (η = 0.8). The white regions represent the cases leading to

singularities.
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other hand, the limit-cycle and stable regions existent for the case of γc = 1 with

constant form factor disappear with the introduction of the variability of the form

factor and the turbulent pressure (Figure 5.13 j). More precisely, for the disappear-

ance of the limit-cycle region it suffices the introduction of the variability of the form

factor.

The study presented in the last sections was concerned with a mathematical anal-

ysis of the model, and it was related mainly to its dynamic behavior. In order to be

able to establish any relationship between the results and the observations, a more

reliable observational characteristic must be extracted from these results. For this

purpose, we present in the next section the study of the limit cycle characteristics.

5.5 Limit cycle characteristics

Unfortunately, in the case of simple models such as the one we are analyzing in the

present chapter the task of comparison with observations is tricky and mainly qual-

itative. For these cases, the best way out of this dilemma is the classification of the

light curves morphology by assigning quantitative terms to the shape of the light

curves in order to enable reliable comparison with real data. Therefore, we shall an-

alyze the morphology of the luminosity and velocity curves for the limit cycle cases

and infer the roles played by the pulsation-convection interaction.

In all the cases presented in the previous sections, the region of limit cycles can

be considered as an equivalent of the Cepheids instability strip (red region of the

HR diagram in Figure 1.2). First, we shall consider the case in which neither the

turbulent pressure nor the variability of the form factor is taken into account. That

is, we study the case discussed in §5.2. In Figure 5.14 we summarize the types of light

curves encountered when moving from the stable-region border (red-blue border in

Figure 5.7) to the unstable-region border (blue-red border in the same Figure). We

have chosen to illustrate the case of γc = 0.2 and ζc = 3, while ζ was varied from

high values to low values in the limit-cycle region. The morphology of Figure 5.14 is

generic for all values of γc for the model of Stellingwerf (1986) except for γc = 1. In

other words, the transition from the stable region to the unstable region through the

limit-cycle region follows the sequence of Figure 5.14 for all the values of γc. For the

case of γc = 0.4 — Figure 5.7d — the unstable region is represented by a very small

fraction of the (ζ, ζc) plane and the transition is not so well represented as in the

cases of smaller γc. That is, the values of the parameters in the proximity of the blue-

red border yield light curves of low period and amplitude (e.g., not pulse-like) as the

distance to the green-blue border is too small for the limit cycle to grow significantly

in amplitude.

The detailed-zoning nonlinear models reveal that the transition from the red

edge (low temperature) to the blue edge (high temperature) of the instability strip

implies the increase of the luminosity amplitude until it becomes unstable (Figure 16

of Bono & Stellingwerf 1994 for RR Lyrae and Figure 11 of Bono et al. 2000a for Clas-
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Figure 5.14: Morphology of the light curves for the cases of the model of Stellingwerf (1986),

that is with no turbulent pressure and constant form factor. The total luminosity, L (left

panels); radiative luminosity, Lr and convective luminosity, Lc (middle panels); radius, X
and velocity, V variations (right panels) are shown. The parameters are γc = 0.2 and (a)

Small amplitude: (ζ, ζc) = (6.5, 3); (b) Bump Cepheid: (ζ, ζc) = (5.5, 3); (c) Double-peak

Cepheid: (ζ, ζc) = (4, 3); (d) Steep bump: (ζ, ζc) = (1.5, 3); (e) Pulse-like: (ζ, ζc) =
(0.7, 3).
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sical Cepheids). Rewardingly, the observations confirm such a behavior and, more

exactly, the light curves of RR Lyrae variable stars in the globular cluster IC 4499

(Figure 2 of Clement et al. 1979) show a remarkable similarity. As far as the periods

are concerned, the transition from the red to the blue edge occurs with a continuous

decrease in period (Bono & Stellingwerf 1994; Bono et al. 2000a). Apparently, this

is in contrast with our results. However, one must take into account that our results

have a non-dimensional form. Physically, this covers the fact that for different values

of γc, ζ and ζc correspond different normalizing values for the stellar luminosity, ra-

dius and dynamical time scale. Unfortunately, for this reason the direct comparison

with observations may be misleading.

In Figure 5.14, one can notice that the approach to the unstable region gradu-

ally transforms the convective luminosity from a sinusoidal variation to a pulse-like

variation and also leads to the appearance of a bump-like feature on the ascending

branch of the total luminosity. The bump increases as the period of the light curve

increases, but never reaches the height of the main peak which might be considered

of radiative origin. The double-peak appearance of the light curves of panels (b),
(c) and (d) makes a clear reference to what are generally called Bump Cepheids and

constitute a guaranty that the values of the parameters for these cases are definitely

within the instability strip. The pulse-like cases (panel e) appear for values of (ζ, ζc)
close or on the frontier with the unstable region. In spite of the existence of a limit

cycle in such cases, they should not be considered as part of the instability strip as no

such steep light curves have been observed yet.

Generally, the main effect of convection when moving to lower temperatures

within the instability strip is to increase the fraction of the period over which con-

vection carries a large amount of the total flux. In the present model, it translates

into higher values of γc and ζc. Another simplification of the present model is the

constancy of the time-scales ratios, ζ and ζc, over the pulsation cycle. These parame-

ters normally vary during the pulsation, with convection being more efficient (small

convective time scale and, thus, ζc large) near minimum radius and with the H- and

He-ionization regions alternating the efficiency of the convection in the envelope.

The variability of the form factor,m, enriches the morphology of the light curves,

as can be seen in Figure 5.15. Compared to the case of constant form factor, the bump

introduced by the convective luminosity in the light curve gains more strength when

the form factor is allowed to vary according to Eq.(5.38). Additionally, for certain

values of (ζ, ζc), it becomes the main maximum in the light curve (Figure 5.15b, c,
d, e). More exactly, approaching the unstable region through the limit-cycle region,

the light curve acquires a double-peak form, with the first peak gaining more and

more amplitude with respect to the second one.

The introduction of the variable form factor leads to a light-curve morphology

which reminds the so-called Hertzsprung Progression (HP) of the Bump Cepheids

of periods 6 < P < 16 days (Bono et al. 2000b). The HP consists in a bump along

both light and velocity curves and appears on the descending branch for Cepheids

with periods up to 9 days, close to the maximum light for 9 < P < 12 days and on



5.5 Limit cycle characteristics 99

2 4 6 8
0.99

1.00

1.01

L 0.6

0.7

0.8

L

0.95
1

1.05
1.1

X

2 4 6 8
0.98

1.00

1.02

L

0.6

0.8
L

1.0
1.1
1.2

X

2 4 6 8
0.95

1.00

1.05

L

2 4 6 8
0.0
0.2
0.4
0.6

L

2 4 6 8

-0.2
0.0
0.2

V

2 4 6 8
0.90

0.95

1.00

1.05

1.10

1.15

L
0.4
0.6
0.8
1.0

L

2 4 6 8

-0.2
0.0
0.2

V

5 10

1.00

1.50

2.00

2.50

L
0.5

1

1.5

L
1.2
1.6
2.0

X

10 20
0.00

1.00

2.00

3.00

4.00

5.00

L
0.5
1.0
1.5
2.0

L
1.5
2.0
2.5
3.0

X

10 20

-0.5
0.0
0.5

V

5 10
0

1

2
L

5 10
-0.4
0.0
0.4

V

2 4 6 8
0.0

0.4

0.8

L

0.8
1.0
1.2
1.4

X

2 4 6 8
0.0
0.2
0.4
0.6

L

2 4 6 8

-0.2
0.0
0.2

V

2 4 6 8
0.2
0.3
0.4

L

2 4 6 8

-0.1
0.0
0.1

V

0.4
0.6
0.8
1.0

L 1.0

1.2
X

10 20
0.0
2.0
4.0

L

r

r

r

c

c

c

c

r

c

r

(a)

(b)

(e)

(f)

(c)

(d)

τ τ τ

τττ

τ τ τ

τττ

τ τ τ

τ ττ

c

r

Figure 5.15: Morphology of the light curves for the cases of the model of Stellingwerf (1986)

with variable form factor: total luminosity (left panels); radiative luminosity, Lr, and con-

vective luminosity, Lc, (middle panels); radius, X and velocity, V variations (right panels).

The parameters are γc = 0.3 and (a) Small amplitude: (ζ, ζc) = (8.5, 9); (b) Bump Cepheid:

(ζ, ζc) = (6, 9); (c) Double-peak Cepheid: (ζ, ζc) = (3, 9); (d) Lowest minimum Double-

peak: (ζ, ζc) = (1.8, 9); (e) Steep bump: (ζ, ζc) = (0.8, 9); (f) Pulse-like: (ζ, ζc) = (0.3, 9).
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the ascending branch for longer periods. In our case, the bump appears only on the

light curve. Moreover, for a fixed γc, the bump appears on the rising branch for small

periods and it becomes the main maximum for longer periods with the previous

maximum being now a peak on the descending branch. At a first glance, one might

say that a reverse HP is observed: that is, with a bump on the ascending branch for

short periods. However, it is misleading to consider a straightforward comparison

within a case of constant γc as it is clear that along the real HP, the importance and

efficiency of the convection varies, and therefore the HP implies also a variation in

at least γc and ζc.

Besides this visual (and quick) analysis, a more quantitative parameterization of

the light curves might help in the comparison. The quantities generally used to de-

scribe the shape of the light curves are the skewness and the acuteness (Stellingwerf &

Donohoe 1987). They are inspired by the sawtooth appearance of the light curves of

Cepheids and RR Lyrae variables (the rising branch of the light curve is shorter than

the descending branch). An example of such an asymmetric Cepheid-like light curve

is shown in Figure 5.8. The skewness, S, is defined as the ratio of the phase dura-

tion of the descending branch to that of the rising branch, while the acuteness, A, is

given by the ratio of the phase duration of the lower-than-average light to that of the

greater-than-average light. The work of Petersen (1984) on the RR Lyrae stars in the

ω Centauri globular cluster revealed a skewness in the range of S ∈ [0.25, 6]. Within

this interval, Stellingwerf & Donohoe (1987) used the model of Stellingwerf (1972)

to estimate the acuteness, A, which resulted to belong to the interval A ∈ [1, 2.5] for

values of S greater than 1. Under these guidelines we performed a detailed study of

the morphology of limit-cycle cases and of the effect of the turbulent pressure and

variable form factor on the skewness and acuteness.

In the left panels of Figure 5.16 we plot the acuteness versus skewness for the

case of constant form factor m = 10, whereas in the middle panels we show the

case of variable form factor (η = 0.8). In both cases, skewness values higher than

approximatively S > 8 imply pulse-like behavior similar to those of Figure 5.14e
and Figure 5.15f. Note that in Figure 5.16- middle panels, a lower limit was chosen

for the representation in order to better visualize the three groups mentioned above.

While the constant-m case leads to more compact and restricted regions in the (A, S)
plane, the case of variable m yields three distinct regions which become more sep-

arated as γc increases: a group of S ≈ 0, one whose S is centered on reasonable

values increasing as γc decreases, and another group of very high values of S. More-

over, for the case of variable m, the skewness reaches extreme values (S = 350 for

γc = 0.1) which slightly decrease as γc increases. Among these groups, the extremes

ones (very low and very high skewness values) represent the convective-maximum

cases, with very low skewness for cases such as the one of Figure 5.15d and high

or extreme values of skewness for cases similar to Figure 5.15c, e, f. The middle

group — best seen in the middle panel of Figure 5.16d,e— represents the radiative-

maximum cases, such as Figure 5.15b. These groups appear well identified in the

(ζ, ζc) plane of the right panels of Figure 5.16. There, the radiative-maximum cases
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Figure 5.16: Acuteness versus skewness for constant form factor (left panels) and variable

form factor (middle panels) and the limit-cycle regions in the (ζ, ζc) plane (right panels)

for the latter case distinguishing radiative-maximum cases (horizontal dashed region) from

convective-maximum cases (inclined-dashed regions). (a) γc = 0.1; (b) γc = 0.2; (c) γc =
0.3;(d) γc = 0.4; (e) γc = 1.0 (left panel) and γc = 0.5 (middle panel).
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Figure 5.17: Acuteness versus skewness for constant form factor (left panels) and variable

form factor (right panels) considering the turbulent pressure. (a) γc = 0.1; (b) γc = 0.2; (c)

γc = 0.3;(d) γc = 0.4; (e) γc = 1.0 (left panel) and γc = 0.5 (right panel).

appear as horizontal-dashed regions, while the convective-maximum cases are repre-

sented as inclined-dashed regions, with the grey dashed regions being the cases when

the minimum of the light curves follows immediately the convective maximum (e.g.

Figure 5.15d). The convective cases appear as a direct consequence of the variability

of the form factor, as no such examples exist for m constant.

The price payed for the enriched morphology is the dissappearance of the limit-

cycle regions for the completely convective case (γc = 1.0). The results shown in Fig-
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ure 5.16 were intended to verify the remark expressed in §5.4 that thicker shells lead

to the existence of limit cycles for higher values of γc (Figure 5.13e). In Figure 5.16

we confirmed this remark as for the case of constant m = 10 with η = 0.888 the

existence of limit cycles is limited to γc < 0.5, while for variable m with η = 0.8,

limit cycles exist even for γc = 0.5. We have also verified that for the case of variable

m with η = 0.888, no limit-cycle region appears in (ζ, ζc) plane with ζ, ζc ∈ [0, 10]
and γc = 1. As a general remark related to all cases of γc, it is not excluded that limit

cycles exist for higher values of ζ and ζc than the one considered in this study. In-

deed, during a substantial fraction of the pulsation phase for the models of RR Lyrae

of Bono & Stellingwerf (1994), ζc remains in the vicinity of 10 (their th/P close to

0.1, being th the convective timescale of hydrogen shell). It should be even more

important for the completely convective case for which a more efficient convective

transport is expected and, accordingly, ζc > 10. One can see both in Figure 5.7j and

in Figure 5.11j that only a very small fraction of the limit-cycle region is encompassed

by ζ, ζc < 10 and that it extends substantially for higher values.

A drastic change in the morphology of the light curves is caused by the introduc-

tion of the turbulent pressure. In Figure 5.17, we plot the acuteness versus skewness

when the turbulent pressure is taken into consideration, both with and without the

variability of the form factor. All cases present the characteristics of the group of

very small skewness found in the previous study on the influence of variable form

factor(Figure 5.16c, d, e). From the former and the latter figure, one should expect a

light curve of the type drawn in Figure 5.15d, more precisely, a maximum immedi-

ately followed by the minimum. We have verified this statement and as an example,

we represent the typical light curve for the cases of Figure 5.17 in Figure 5.18a. For

all these cases, as can be seen also in Figure 5.11 and Figure 5.13, the stable, un-

stable and limit-cycle regions are located in such a way in the (ζ, ζc) plane that no

clear transition from the stable to the unstable regions through the limit-cycle region

can be performed. However, it can be noticed a tendency to decrease the amplitude

and period of light-curves further away from the unstable region. All the examples

of Figure 5.18 share the characteristic feature consisting in a bump preceeding the

maximum, which becomes flatter with longer periods (panels b,c,d. We stress the

fact that no evolution of the morphology exists with the values of the parameters

and that the limit cycles are homologous to the ones of Figure 5.18.

A particularity undoubtly due to the turbulent pressure is the high values of

acuteness reached for cases such as γc = 0.3 and γc = 0.4 for constant form factor

and γc = 0.4 and γc = 0.5 for the case of variable m and thicker shell (Figure 5.17).

We have chosen to represent in Figure 5.18 also two cases of high acuteness (pan-

els b and c) characterized both by (S,A) ≈ (0.32, 2.4) for γc = 0.4. As expected

from the definition of acuteness, one can see that the light curves are characterized

by a long duration of lower-than-average luminosity and by an incipient pulse-like

feature which increases in amplitude with the increase in period (panel d).

From the previous figures we can also draw the conclusion that the turbulent

pressure has more impact on the morphology of the light curves than the variable
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Figure 5.18: The characteristic limit cycle with constant m when turbulent pressure is taken

into account: (a) γc = 0.3 and ζ = ζc = 2; (b) γc = 0.4, ζ = 0.4, ζc = 4.7; and with

variable m: (c) γc = 0.4, ζ = 0.4, ζc = 9.9; (d) γc = 0.3, ζ = 0.9, ζc = 5.1. The quantities

are total luminosity, L, radiative luminosity, Lr, convective luminosity, Lc, radius, X and

velocity, V .

form factor in the sense that the introduction of the turbulent pressure cancels the

effect of the variable form factor whose influence on the limit-cycle characteristics

led to the progression illustrated in Figure 5.15. More precisely, the comparison with

observations should be considered only for the case of variable m and without tur-

bulent pressure. On the other hand, for the present study only the value of αp ≈ 0.4
of the fraction of the pressure due to turbulent pressure, was considered. Such a sig-

nificant contribution was used in order to clearly identify the impact of the turbulent

pressure. However, it would be interesting to investigate if lower values of αp might

provide only mild changes of the morphology. We remark here also that the initial

values have a crucial influence on the value of αp, but are obviously not remembered

in the final limit-cycle. In this sense, studies such as those of Stellingwerf & Donohoe

(1986) and Stellingwerf et al. (1987) concerning the evolution of the morphology of

the limit cycles with the initial conditions (e.g. radius) are somewhat puzzling.
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5.6 Discussion

The study of the convection in simple models of stellar pulsations was initiated as a

natural step in the series of investigations presented in the previous chapters and also

as a consequence of some oversights encountered in a convective one-zone model ex-

istent in the literature (Stellingwerf 1986). This model and simplified versions of it

have been the object of several other papers (Stellingwerf & Donohoe 1986, 1987;

Stellingwerf et al. 1987; Stellingwerf & Gautschy 1988). The main characteristic of

these studies that drew our attention was the detailed analysis of the light curve mor-

phology and the subsequent comparison with real data for cases in which the pa-

rameters chosen did not provide a limit cycle. We consider crucial the existence of a

limit cycle as any unstable solution is not expected to be seen in nature. Therefore,

in this study we performed a thorough search for the regions in the space of param-

eters leading to a limit-cycle behavior. Rewardingly, we encountered regions of limit

cycles and for these cases, we studied the morphology of the light curves. Moreover,

we extended the model by including the turbulent pressure and geometric consider-

ations. For these cases, we searched also for the limit cycle behavior and investigated

the light curve morphology. The geometric considerations included the variability of

the form factor, m, which has not been considered in any of the previously-studied

related models. The results provided an interesting progression of the light curves

with the period, as well as a richer morphology than the case of constant form fac-

tor. In the end, the case of variable form factor and no turbulent pressure resulted to

resemble better the observational data.





Chapter 6

Conclusions

Nowadays, the physical processes responsible for the pulsation mechanism are well

understood individually (driving mechanisms, convection, turbulence, shocks). How-

ever, the emergent properties resulting from the simultaneous action of these pro-

cesses as well as the lack of transparency of the mathematical aspects of the equa-

tions governing these processes are the cause of the development of simple models.

This approach is justified by the search of a more tractable mathematical and phys-

ical methodology in order to better understand the morphology of the light curves

of variable stars. In the last decades, the formalism of dynamical systems theory in-

cluding both hamiltonian and dissipative systems has been widely used to explore

the presence of nonlinear phenomena in astrophysics (Covas 1995). The approach

adopted in this thesis is not intended to be a substitute for finely zoned nonlin-

ear calculations such as the numerical hydrodynamical codes (Höfner 1999; Bono

et al. 2000b; Simis 2001). The results obtained using one-zone models are qualitative

and therefore quantitative agreement with the observations might be meaningless.

Therefore, in these conclusive remarks concerning our work we shall concentrate

only on the general aspects and implications that can be extracted from it.

In the first part of our work synthesized in Chapter 3, we have presented and

analyzed the dynamics of a forced oscillator which resulted interesting not only as

a model on its own right embodying the essentials of adiabatic stellar oscillations,

but also because of its fascinating mathematical features. This model has been pre-

viously used to study the irregular pulsations of low mass stars on the Asymptotic

Giant Branch — AGB (Icke et al. 1992), and we have extended this study to a range

of values of the parameters typical of more massive and luminous pulsating stars, the

Super-Asymptotic Giant Branch (SAGB) stars. In the model, the driving was char-

acterized by two parameters, the fractional amplitude of the internal perturbation,

α and the total amplitude of the driving, ε. The evolutionary status of the star was

contained in the parameter ω, a measure of the core–envelope ratio providing infor-

mation on the location of the driving source. The general aspects and results of our

study made the object of an article in a journal of broad mathematical and physical

interest (Munteanu et al. 2002), while the detailed mathematical explanation of such
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a rich dynamics was included elsewhere (Munteanu et al. 2003c).

As the oscillator is characterized by a time-periodic forcing, our main object of

analysis was the Poincaré (stroboscopic) map associated to the system. The paramet-

ric study yielded a rich set of local and global bifurcations. Among these, maybe the

most important one is the triplication bifurcation. We have shown that for a given

total amplitude of the driving, ε > 0 there exists a value of the fractional ampli-

tude, α∗(ε) that corresponds to a triplication of the central elliptic fixed point of the

Poincaré map. According to Dullin et al. (2000), this implies that the Poincaré map

acquires a nontwist character and a twistless bifurcation occurs or, equivalently, the

rotation number as a function of the distance from the elliptic fixed point becomes

a nonmonotonic function. As we were interested in values of the parameters α and

ε above the triplication curve, the nontwist character of the map was undoubtedly

present. We have argued that due to both the acquired nontwist character and the

periodic character of the perturbation, the map presents the typical features of a

generic class of nontwist area preserving maps, such as reconnection and meander-

ing, with the nongeneric scenario of creation of vortices. The nonmonotonic prop-

erty due to the triplication bifurcation is shown to be different from that exhibited by

the cubic Hénon map, which can be considered as the prototype of area preserving

maps which undergo a triplication followed by the twistless bifurcation. Moreover,

we have noticed that the richness of the dynamics is due mainly to ω being a rational

number and not a natural number. The probability that ω, which is a measure of

the core/envelope ratio, is a rational rather than a natural is extremely high and this

gives more validity to the conclusions that might be extracted from the dynamics of

the model concerning the stellar variability.

Concerning other bifurcations in the dynamics of the system, special attention

was devoted to the process of formation of periodic orbits and to the collision of

periodic orbits. Using these elements, we have followed the sequence of local and

global bifurcations until the formation of stochastic layers around separatrices to-

gether with the associated sticky orbits. We have proved that the reconnection of even

periodic orbits is generic by following the reconnection of two Poincaré-Birkhoff

chains of period 34.

From the astrophysical point of view, a first look at the phase space of the system

in the case of an AGB and of a SAGB star model (different ω, fixed α and ε) revealed

that the regions occupied by the chaotic sea were more extended in the SAGB-case.

This is in agreement with the observations of Long Period Variables (LPV) which

are the observational counterparts of the pulsating SAGB stars. The richness of the

Poincaré map translates into a high variety of time series. For example, we have

shown that although there are light curves which show a rather typical regular be-

havior for certain values of the parameters of the system and given initial conditions,

there are as well some other regular cases which show clear beatings or linear com-

binations of two main frequencies up to terms of 2f0+7f1, being f0 the fundamental

frequency and f1, the first overtone. For values of the parameters and initial con-

ditions leading to irregular behavior, we noticed the existence of both clear chaotic
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pulsations and sudden changes from regular to chaotic pulsations, the latter being

associated to the sticky orbits characteristic of hamiltonian systems. For the chaotic

orbits, the velocity of the outer layers exceeds the escape velocity and thus mass loss

is very likely to occur, in good agreement with observations which correlate the de-

gree of irregularity with the mass-loss rate. Regarding the stickiness property, it is

worth remarking that the long-term effects found in real stars are reproduced by our

model, even though the driven oscillator does not incorporate the effects of secular

changes. Hence it may be possible that this kind of behavior already found in full hy-

drodynamical simulations (Ya’ari & Tuchman 1996) is intrinsically associated to the

physical characteristics of the stellar oscillations and not to the long-term thermal

changes.

We have dwelled constantly on the necessity of considering the nonadiabaticity

as a crucial feature in modeling pulsating stars. In practice, we explored the implica-

tions of nonadiabaticity through a one-zone model described and analyzed in Chap-

ter 4. As in Chapter 3, the oscillator was driven by sinusoidal pressure waves and the

driving was characterized by the fractional amplitude of the internal perturbation,

α and the coefficient of transmission of the pressure waves through the envelope, Q.

Our model is an extension of the models proposed by Icke et al. (1992) and Saitou

et al. (1989). In particular, Icke et al. (1992) proposed an adiabatic model driven

by pressure waves (the piston approximation) whereas Saitou et al. (1989) studied a

simple nonadiabatic model without driving (the self-excited pulsation model). We

have explored the interesting particularities of the system both from the astrophysical

and from the mathematical point of view. We have found that the degree of nona-

diabaticity is a determining factor in the development of the period-doubling route

to chaos, in particular the period-doubling sequence develops with the increase of

nonadiabaticity.

The saturation of the κ-mechanism in the stellar envelopes appears to be a valid

candidate for yielding the period-doubling route to chaos. Moreover, coupled with

the interior driving, results into a peculiar dynamics similar to that found for some

Mira stars. In Chapter 4, we stressed the particularities introduced in the dynamics

of the system by the time-dependent perturbation. Namely, a consequence of in-

creasing the parameter Q while α is kept fixed is the creation of a knot-like structure

in the space defined by the stroboscopic map of the variables (r, v, p). Our results

revealed that the critical phenomenon occurs for a certain range of the strength of

the perturbation, that is for certain pairs of (Q,α). Therefore, to a fixed value of

α corresponds a sequence of values of the parameter Q at which additional loops

are born. More exactly, for other values of the fixed parameter α together with the

associated sequence ofQ-values, the resultant dynamics is equivalent to the one por-

trayed in Chapter 4, including the temporal characteristics. More precisely, we have

also noticed that for increasing strengths of the pertubation new loops are created. At

high values of the strength of the perturbation within the range yielding the knot-like

structure, the behavior changes: the creation of new loops stops.

The assumption of radiative transfer provides a simple and compact formula
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for the stellar luminosity, which allows a quick visual comparison with real stellar

variability data. The light curves are characterized by a repetitive pattern consisting

in a major peak followed by n minor peaks, where n is the number of loops in the

Poincaré map. In other words, the creation of a new loop represents a new peak in the

light curve. As previously mentioned, we have noticed that for increasing strengths

of the perturbation new loops are created and the time interval between major bursts

increases reaching time intervals of the order of a thousand years. The resulting light

curves show a time interval during which the luminosity preceding every major peak

remains constant. This interval increases withQ as well. This makes a clear reference

to the periodicities observed in the circumstellar shells of some planetary nebulae

and then a causal connection between our results and such observations is enticing.

The values of the input parameters as well as the resultant periodicities assure

us that we deal with a simple model of pulsations of LPV stars. Our search in the

existent literature yielded several Mira stars having light curves reasonably similar to

ours. The pattern of alternating major peaks followed by various minors peaks in the

light curve of the prototype of the Mira stars, o Ceti, offers the closest resemblance

with our results. Moreover, we relate our results also with the light curves of some

peculiar Miras which appear to have double maxima due to alternating deep and

shallow minima. Among them, we mention R Cen, R Nor, U CMi, RZ Cyg, and

RU Cyg.

We have found as well that the system with internal driving presents both reg-

ular and irregular bursting regimes. A regular regime consists in strict periodicity

of the major-and-minor-peaks structure as well as in a constancy in the amplitude

of each peak. In the stroboscopic map, this translates into a precise loop, while for

the system of time-averaged perturbation this implies the existence of an attracting

periodic orbit. On the contrary, the irregular regime appears to be characterized by

a slight dispersion both in the amplitudes and in the periodicities of the peaks, and

thus the stroboscopic map presents fuzzy knot-like structures. In particular, the tran-

sition from a regular regime with n loops to another regular regime of n + 1 occurs

through an irregular regime. We conjectured that this transition occurs through a

period-doubling regime. Due to the complicated form of the perturbation, we found

no methods — neither analytical nor numerical — for solving this conjecture. Thus,

we have only illustrated the period-doubling sequence through the return map of the

major peaks of the luminosities. For the cases of irregular light curves a certain sim-

ilarity can be found with the mode-switching semiregular variable R Dor, in which

alternating large-amplitude, long-period Mira-like oscillations and low-amplitude,

short-period oscillations apparently occur (Bedding et al. 1998).

We have also obtained a theoretical period-luminosity relationship and com-

pared it with the observational data of Miras in the Large Magellanic Cloud (Feast

et al. 1989). In particular, we have focused on those peculiar Miras with long pe-

riods which are known to be over-luminous with respect to the best fit of Feast

et al. (1989). We have found that our model not only provides a reasonable fit to

the period-luminosity relationship of these stars but, additionally, it shows the same
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clustering in the period-luminosity diagram as the real data. The ultimate reason

for this clustering is closely related to the creation of a new loop in the stroboscopic

map, and, consequently, of a new luminosity peak in the corresponding time se-

ries. Finally, we would like to stress that although our very simple model succeeds

in furnishing reasonable comparisons with real stellar variability data, we consider

that more efforts are still necessary for a better understanding of the mathematical

implications of its dynamics.

There is a series of caveats that must be mentioned in this conclusive part. Some

Mira stars are suspected to have at least two frequencies (Mantegazza 1996) which

may vary independently, suggesting that more than one mode is involved. Clearly,

one-zone models are unable to reproduce this behavior and this is one of their limita-

tions. Nevertheless, the majority of Miras do not show this behavior. An interesting

compromise would be to use the modal coupling. However, although this approach

has been used to model the pulsation of Miras (Buchler & Goupil 1988), it is more

appropriate for classical Cepheids, RR Lyrae and W Vir stars — see Buchler (1993)

and references therein. It is also worth noting here that the piston approximation —

first introduced by Bowen (1988) — has been used since then by several authors also

in hydrodynamical codes (Fleischer et al. 1995; Höfner et al. 2003) even if it has never

been deeply scrutinized for validity. Nevertheless this approximation appears to cor-

rectly reproduce the velocities and mass loss rates typical of AGB stars. Hence, it

can be regarded as a reasonable first-order approximation of the dynamical effect of

the pulsation on the atmosphere. Finally, some of the results concerning this weakly

nonadiabatic one-zone model were included in Munteanu et al. (2003b) which was

preceeded by a preliminary report (Munteanu et al. 2003a).

From the huge amount of work existent in the literature on stellar pulsations

it has become rather clear that purely radiative models are not capable of produc-

ing a reasonable agreement with observations (Buchler 1998) and that a feedback

between pulsation and convection is needed if more progress is to be made. Convec-

tion is the dominant factor that controls the pulsational instability in red stars and

also no good interpretation can be made for the red edge of the Cepheid instability

strip if the coupling between convection and pulsation is not taken into considera-

tion (Xiong et al. 1998b). In the search of a simple, but physically and mathematically

robust recipe for the description of convection we have chosen the theory exposed

in Stellingwerf (1982) together with the one-zone model introduced in Stellingwerf

(1986). Our simulations of this model revealed several conceptual inadvertences in

Stellingwerf (1986). Therefore, we considered necessary to disentangle the causes of

the previously-mentioned oversights. Our study of this model has made the object of

Chapter 5, where caveats and new results concerning the work of Stellingwerf (1986)

were included. The model is an extension of the work from Stellingwerf (1972),

aimed to include the effects of convection. It is a typical one-zone model, in the

sense of the description used until now, where the shell thickness is defined through

the ratio η of the core radius to the stellar radius. The model appears in the form

of a system of 4 ODEs where the variables are the radius and velocity of the shell, its
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pressure and convective velocity. The nonadiabaticity resides in the pressure which is

considered as a nonadiabatic perturbation of the reference pressure and, thus, can be

regarded as a nonadiabatic variable of the system. The model accounts for the pulsa-

tion through self-excitation in a similar way as the model of Saitou et al. (1989), that

is by allowing a value close to unity for the adiabatic exponent Γ1. The main parame-

ters of the system are the fraction γc of convective luminosity with respect to the total

luminosity, and time-scales ratios, ζ and ζc, which are a measure of the dynamical

time scale to the thermal time scale and to the convective time scale, respectively.

The first result of the previous works related to this model or to simplified ver-

sions of it that intrigued us was the detailed analysis of the morphology of the re-

sulting light curves for cases in which no limit cycle existed and the solution was

either stable (damped amplitude) or unstable (growing amplitude). Since only the

cases of limit cycles are expected to be seen in nature, we reason that a parametric

study is compulsory to the reliable comparison with observations through identified

cases of limit cycles. For this purpose, we have selected a parametric space given by

γc ∈ [0, 1], ζ and ζc ∈ [0, 10]. Our parametric study revealed well delimited re-

gions in the parametric space where limit cycles exist. In §5.2 we have described the

Hopf bifurcation as one mechanism of limit-cycle creation and identified the soft

self-excited nature of the resultant oscillations.

Our results showed a complete disappearance of the limit-cycle regions for cases

in which the convection becomes dominant (γc / 0.5). As discussed in Chapter

1, the more efficient transport of energy by convection can disable the κ− and γ-

mechanism of excitation as it can transport away some of the heat trapped at mini-

mum radius and thus quench the pulsations. This onset of efficient convective trans-

fer is thought to be the mechanism determining the red edge of the Cepheid insta-

bility strip. Moving from the blue edge to the red edge within the instability strip,

convection increases the fraction of the period over which it carries a large amount

of the total flux to the detriment of the radiation. In the present model, it trans-

lates into higher values of γc and ζc and explains the disappearance of the limit-cycle

region in the vicinity of γc ≈ 0.5 depending on the shell thickness.

Not without a certain surprise we found that a limit-cycle region appears in the

case of completely convective shell. Even if there is general agreement within the as-

trophysical community that the intrinsic reason for the existence of the red edge of

Cepheid instability strip is the damping produced by convection, there are results

suggesting the existence of convection-induced oscillations (Wood 2000). When

the convective time scale is much longer than the dynamical time scale (ζc ¿ 1),

the effect of convection is stabilizing, but when the convective time scale is much

shorter, the reverse is true (Gough 1967). Thus, it may provide an important driving

mechanism in red giants and supergiants. Even if there are no clear models provid-

ing undisputed evidence for such a behavior, there are puzzling observational data

which are not contrasted by models. Among these, we mention the red variables

encountered by Yao et al. (1993) in globular clusters, some of them located outside

the RR Lyrae instability strip, and others at the tip of and at the lower middle part
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of the RGB, but leftward of the region of the LPV. Even more interesting is the still-

unexplained period-luminosity law for LPV (Wood et al. 1999) for which a convec-

tive prolongation of the period might be speculated on the roots of our results.

It may also be envisioned that the radiative damping in the deep interior of a

star can be largely weakened and may result in increased pulsational instability when

the coupling between convection and oscillations is introduced as the excitation re-

gions may extend deeper into the stellar interior. A Mira instability strip shows up

outside the Cepheid instability strip when the coupling is considered. For lumi-

nous red stars, the convective efficiency parameter, ζc is expected to be greater than

unity in the interior of the envelope model except for the extremely outermost layer

where it may take higher values (Xiong et al. 1998a). However, the internal distri-

bution of the luminous red giants is very different from that of Classical Cepheids

(and RR Lyrae) and the former are gravitationally weakly bound compared to the

latter (Feuchtinger 1999). In another perspective, the former have a very low mass-

luminosity ratios and, therefore, their internal structure has very high central con-

centration. They have very low envelope mass resulting from the high luminosity

blowing out the matter at large radii. The low effective temperature provides high

opacity and thus, strong convection is expected (Cox & Ostlie 1993). Theoretically,

their study is hampered by the difficulty in dealing with the extended and deep con-

vective envelopes. Under these circumstances, it appears plausible enough that for

low temperature stars, both Cepheids and LPV, the partial ionization regions are the

source of both convection and pulsational driving, and our results from the one-zone

approach may provide some support for such a hypothesis. Considering the remarks

expressed above, we might regard the limit-cycle cases of γc = 1 as more similar to

the RGB pulsators than the AGB pulsators.

Another caveat concerning the model of Stellingwerf (1986) was related to the ge-

ometric considerations, more precisely to the simplified formula of the form factor.

The form factor introduced by Usher & Whitney (1968) was supposed to account

for the existence of the stellar core which does not participate of the pulsations, but

which indeed affects the oscillations by assuring a strong rebound when the shell ra-

dius reaches the core radius. The rigid core boundary is a vague concept judged from

the way it is used in the literature as it is very model-dependent acquiring values from

η ≡ Rc/R? = 0.2 (Icke et al. 1992) to η = 0.9 (Stellingwerf (1986)). The root of this

inconsistency may reside in an image of the envelope different in each model. An

envelope structure should include, from inner to outer regions: the damping region,

the driving region, the transition region and the dissipation region. In our view, the

shell participating in the pulsation should include only the dissipation region as all

the layers below it are almost in an adiabatic regime and thus do not intervene in the

driving.

The formula used in Stellingwerf (1986) assumes an equilibrium value of the

form factor and thus allows the shell radius to reach values smaller than the core ra-

dius. For the present study, we have used the original formula of Usher & Whitney

(1968). We have undergone a parametric study of the (γc, ζ, ζc) space for such a case,
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as well as an inventory of the subsequent light curve morphology. In the (ζ, ζc) plane,

the amplitude and the period of the limit cycle increase as one changes the values of

the parameters from the stable region to the unstable region, thus the proximity to

the latter zone also gives the values of the parameters that yield maximum ampli-

tudes of oscillations. This remark is valid both for the case of constant and variable

form factor. The work of Bono et al. (1999) allows us to identify the stable-to-limit-

cycle border by the “red edge” of the Cepheid instability strip and the limit-cycle-

to-unstable border by its “blue edge”. Moreover, this transition gradually transforms

the convective luminosity from a sinusoidal variation to a pulse-like variation and

also leads to the appearance of a bump-like feature on the ascending branch of the

total luminosity. The bump increases as the period of the light curve increases, but

for the case of constant form factor, never reaches the height of the main peak which

might be considered of radiative origin. The double-peak appearance of the light

curves makes a clear reference to what are generally called the Bump Cepheids. For

the case of variable form factor, approaching the unstable region through the limit-

cycle region leads to the light curve acquiring also a double-peak form, with the first

peak gaining more and more amplitude with respect to the second one until the for-

mer surpasses the latter. This resembles a reverse Hertzsrpung Progression, with a

bump appearing on the ascending branch for shorter periods than for higher ones.

However, a direct comparison with the observed periods cannot be made as our time

variable is normalized to the dynamical time scale which may be different for differ-

ent values of the parameters. Nevertheless, it is rewarding to obtain a progression

depending on the convection efficiency from a one-zone model and thus maybe help

shed some light into the Hertzsrpung progression whose cause is still under debate

(Bono et al. 2000b).

In spite of a richer morphology of the limit cycles, the detriment of the variability

of the form factor consists in the disappearance of the limit-cycle cases of γc = 1. We

have searched for limit cycles cases in the vicinity of γc ≈ 1, but found no such

case and thus conclude that the variability of the form factor is too strong a driving

for such convective cases to present stable oscillations. We have also dwelled on the

effect of the shell thickness on the morphology of the limit cycles and confirmed the

expectations consisting in a prolongation of the periods for thicker shells.

Another extension of the work of Stellingwerf (1986) was the introduction of

the turbulent pressure which is expected to add to the driving mechanism. We have

searched for the regions of limit cycles in the parametric space and confirmed an

extension of the areas of limit-cycle regions. The morphology of the light curves is

significantly poorer than in the previous cases. All limit cycles have an homologous

shape — high convective peak followed by a deep minima — and no progression is

observed in the light curves. Moreover, the stable and unstable regions in the (ζ, ζc)
plane allow no clear transition from a “red edge” to a “blue edge”. In the view of these

results, the impact of the turbulent pressure on the morphology of the limit cycles

impoverishes the comparison with the observed shapes of limit cycles and makes

us suggest the disregarding of the turbulent pressure in one-zone modeling adopted
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here.

Clearly, the study of pulsating stars is not a narrow-minded research as pulsa-

tional instabilities are encountered in many phases of stellar evolution and provide

information about the evolutive status of the star that would be inaccessible other-

wise. The reductionist view of studying the small parts in order to understand the

integer has led both to important successes and to serious drawbacks as the pulsat-

ing phenomena still presents several “disturbing problems” (Buchler 1998) in spite

of the understanding of the consituent phenomena. For a better identification of the

roots of these problems, we have intended in the present work to make use of the

one-zone model, an approach initiated successfully by Baker (1966). In the spirit

of the motto from the beginning of the thesis, we have looked for the advantages

and the disadvantages of the one-zone models, as well as their ability to answer well-

defined questions. For a better and more precise interpretation of any possible out-

come of such models, their possibilities and limitations must be identified and taken

into consideration. Our work yielded several interesting behaviors not encountered

in any of the previous studies of one-zone models, such as the bursting regimes of

the weakly nonadiabatic model and the progression of the convective model. Also,

it has supposed the introduction of phenomena previously neglected in equivalent

models, such as the turbulent pressure and the variability of the form factor for the

model of Stellingwerf (1986). However, due to the inherent reduction of the physical

phenomena at work in multiple layers and regimes in the stellar interiors into a one

layer for a one-zone approach, some degeneracy might result whose identification

is very difficult. This degeneracy might lead to a particular behavior resulting from

several one-zone models in which the physical assumptions are reduced in different

ways and thus the real root of the behavior of interest might be difficult to untan-

gle. On the other hand, the codes based on the numerical-hydrodynamics approach

which has the advantage of the state-of-the-art physical inputs and numerical meth-

ods leading to accurate and detailed information about the stellar pulsations, are

becoming more and more complex and thus intricate at the moment of discerning

the roots and the effects of individual phenomena. In this sense, it is expected that

the one-zone approach will still be helpful for clearing some of the remaining “dis-

turbing problems”.





Appendix A

Some important aspects of

hamiltonian chaos

The purpose of this appendix is to show the reader several well known results of the

theory of dynamic systems used throughout the present work. Along the appendix

we will use the linear oscillator and the pendulum to introduce most of these results,

which will be superficially described. A more detailed description of the material

reviewed here can be found in the excellent review of Zaslavsky et al. (1991) and in

the references therein, where most of the graphical material can also be found.

Over the last century attention has shifted from the computation of individual

orbits toward the qualitative properties of families of orbits. For example, the ques-

tion of whether a given orbit is stable can only be answered by studying the develop-

ment of all orbits whose initial conditions are close to those of the orbit being stud-

ied. More generally, one can consider all orbits of a given hamiltonian system (that

is,which can be described by hamiltonian equations of motion) and ask whether all,

or almost all or most or hardly any are stable. More generally still, one can consider

all possible hamiltonian functions within some class, and look for the generic or typi-

cal behavior of its family of orbits. Finally, one can ask whether a hamiltonian system

displays properties which are typical of the wider class of dynamical systems which

may be dissipative. Several studies have indeed shown that hamiltonian systems show

fundamental physical differences from the non-hamiltonian systems (Sagdeev et al.

1988).

The phase portrait of a hamiltonian system can be chosen as N position coor-

dinates forming a vector q and N conjugate momentum coordinates, p forming an

M = 2N dimensional phase space. The dynamics is determined by the Hamiltonian

H(p, q, t):
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dq

dt
= +

∂H

∂p
(A.1)

dp

dt
= −∂H

∂q
.

If the hamiltonian has no explicit time dependence, that is, if H = H(p(t), q(t))
then H is a constant of the motion which is identified with the energy of the system.

The system is said to be conservative. Hamiltonian dynamics is volume preserving

according to Liouville theorem

∇V =
∂

∂p

dp

dt
+

∂

∂q

dq

dt
= 0, (A.2)

which is the key property determining the difference between hamiltonian and dissi-

pative systems, considering that for the latter the volume contracts to zero for suffi-

ciently large times. This, in particular, means that for hamiltonian systems the phase

fluid is incompressible. The consequence of this fact is that attractors or repellers

do not exist for hamiltonian systems, and, therefore, one is left with the task of un-

derstanding the dynamics in the whole phase space. The absence of limit points and

limit quantities such as a limit cycles makes the phase portrait of hamiltonian sys-

tems less diverse. Nevertheless, it does not lessen their complexity. The introduction

of dissipative factors and the asymptotically limited trajectories associated with them

makes dissipative systems less sensitive to various small perturbations.

The basis for understanding chaotic phenomena is the concept of local instability.

Consider a droplet in the phase space as a set of all the initial states within a certain

volume of phase space. A change in the state of the system with time is equivalent to

follow the motion of this drop in the phase space. For a conservative system Eq.(A.2)

implies that the volume of the droplet will remain constant. Small variations of the

shape of the drop correspond to the stable dynamics of the system. However, very

strong changes of the shape of the droplet are also possible. Hence, phase points

that are arbitrarily close to each other initially can rapidly diverge in the phase space

and the droplet quickly loses its regular shape and spreads out in phase space, its

boundary acquiring an irregular shape. This is the most important manifestation of

local instability of the system. Due to this property, a strong divergence occurs in a

finite time. As a result, the information about the initial trajectory is lost and thus

irreversibility arises.

The Poisson bracket {} of two quantities, A and B, is defined as

{A,B} = ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
. (A.3)

If a quantity F (p, q) has zero Poisson bracket with the hamiltonian then it is a

constant of the motion:
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dF

dt
=
∂F

∂q

dq

dt
+
∂F

∂p

dp

dt
= {F,H} = 0. (A.4)

A hamiltonian system with a 2N dimensional phase space is said to be integrable

if there are N independent constants of motion Fm(p, q), 1 ≤ m ≤ N that verify

{Fi, Fj} = 0. Then the functions Fm(p, q) are constant along each trajectory of the

system. For a conservative system, one of these constants of motion is the energy —

the hamiltonian itself. For this kind of systems the following properties are valid:

1. The trajectories lie on the surface of a N-dimensional invariant torus.

2. The motion is characterized byN frequenciesωi = ωi(F1, ..., FN ), i = 1, ..., N .

3. The angular variables which determine the coordinates on the surface of the

torus satisfy the equations: θi = ωit+ ki, i = 1, ..., N , where ki are constants.

During the motion, the trajectory does not leave the surface of the torus. There-

fore, the torus is the invariant characteristic of the system. A set of invariant tori

corresponds to a set of different values of the integrals (F1, ..., FN ). Their relative

position in the phase space is determined by its dimension. For N = 2, the tori

corresponding to the different values of the integrals (F1, F2) do not intersect each

other and, in fact, divide the phase space. For N > 2, the tori intersect each other

and do not divide the phase space. As these tori are invariant curves, it is possible to

introduce more appropriate coordinates for the phase space with the change of vari-

ables (p, q) → (I, θ) with 0 ≤ θ ≤ 2π, such that I (the action on the torus) defines

on which torus is the motion taking place and θ (the angle on the torus) defines the

coordinates on the torus. The motion on the torus is thus

dI

dt
= 0 (A.5)

dθ

dt
= ω(I) =

∂H

∂I
. (A.6)

These coordinates are called action-angle variables and are widely used mostly

in analytical mechanics as they are topologically natural. With these new variables

the hamiltonian is only a function on I , H = H(I). For periodic motion with one

degree of freedom, the action variables can be related to the original (p, q) variables

through

I =
1

2π

∮

p dq, (A.7)

For the linear oscillator the transformation to action-angle variables is:
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q = (2I/ω)1/2 cos θ

p = (2I/ω)1/2 sin θ (A.8)

θ = ω0t,

which leads to H(I) = ω0I . Eq.(A.5) reflects the fact that I is also an integral of

motion since it is a function only of the integral of motion H , while Eq.(A.6) defines

the frequency of the periodic motion ω(I). The dimensionless parameter

α =
I

ω

dI

dω
(A.9)

determines the degree of nonlinearity of the system. If α 6= 0 , the oscillations

are called nonlinear and their frequency is a function of energy H . For the linear

oscillator, since H = ω0I , and ω = ω0 is constant, we have α = 0, reflecting the

linearity of the oscillator.

In an integrable Hamiltonian system, the motion is always periodic or quasiperi-

odic — geometrically speaking, the orbits move on the tori. Therefore, integrable

hamiltonian systems cannot display chaotic behavior. Examples of integrable hamil-

tonian systems include, for instance, harmonic oscillators (simple mass on a spring

or coupled linear springs), the pendulum, or keplerian motion. If the system is non-

integrable, the constraints of the integrals of motion are removed from the trajec-

tories and they move freely through the phase space. Situations in which the inte-

grability of the system is immediately evident or existent are very rare. Far more

often, one deals with a problem where a perturbation εV is added to an otherwise

integrable system, H0: H = H0 + εV . In this case, and generally speaking, H will

not be integrable for any nonzero ε. A large variety of methods exist nowadays to

help in analyzing the effects of the perturbation on the system. New methods and

techniques have enriched the field of dynamics theory due to the discovery of the

dynamic stochasticity or, simply, chaos. Regions of chaos, no matter how small are,

imply that the system is, in principle, nonintegrable. It is inherent only to nonlinear

systems.

Even if chaos is generic for nonintegrable systems, it has been shown that the tra-

jectories in nonintegrable systems may also be surprisingly stable. Mathematically it

consists in the well known theorem of Kolmogorov, Arnold and Moser (KAM). In

essence, it says that many of the quasiperiodic motions are preserved under pertur-

bations. These orbits fill out what are called KAM tori. If a KAM torus is perturbed,

it reaches a critical stage beyond which quasiperiodic orbits still exist, but instead of

tori, they cover Cantor sets. Thus, the transition to chaos in hamiltonian systems

can be thought as the destruction of invariant tori and the creation of Cantor sets, as

it will be presented in detail below. Chirikov (1979) was the first to realize that this

transition to global chaos was an important physical phenomena. Local chaos also

occurs in hamiltonian systems (in the region between the different KAM tori) and is
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(a) (b)

Figure A.1: Homoclinic orbit (a) connecting a hyperbolic point to itself and heteroclinic

orbit (b) connecting two hyperbolic points.

connected with homoclinic or, a in a more general case, heteroclinic orbits, that is to

the property of local instability, as it will be illustrated in the examples below.

A.1 The perturbed pendulum

The hamiltonian of the unperturbed nonlinear pendulum has the form:

H =
1

2
ẋ2 − ω20 cos x, (A.10)

where unit mass is assumed and ω0 is the frequency of weak oscillations. The fixed

points are of the elliptic type, for x = 2πn, and ẋ = 0, and saddles, for x =
π(2n + 1), and ẋ = 0, with n = 0,±1,±2, .... When H < ω2

0 , the trajectories cor-

respond to the oscillations of the pendulum (finite motion), in the case of H > ω2
0 ,

to rotation of the pendulum (infinite motion). The trajectory with H = ω2
0 passes

through the unstable equilibrium points (saddle or hyperbolic points) and it is called

the separatrix, as it defines the border between two distinct classes of orbits: those

which correspond to finite motions, and those which correspond to infinite motions.

As a general rule, the region of the phase space adjacent to a separatrix is especially

sensitive to any disturbance, even to a very weak one. There are two types of separa-

trices: the heteroclinic ones, which connect distinct fixed points, and the homoclinic

ones, which connect a fixed point to itself. Now let us consider a perturbation for

the nonlinear pendulum and write the equation of motion as:

ẍ+ ω20 sin x = εkω20 sin(kx− νt), (A.11)

with the associated Hamiltonian:

H =
1

2
ẋ2 − ω20 cos x+ εω20cos(kx− νt). (A.12)

The perturbation represents a plane wave that propagates along the x axis at the

speed ν/k. This equation is also a common equation in plasma physics and optics as

well. Zaslavsky et al. (1991) have shown that for arbitrarily small ε in the vicinity of

an unperturbed separatrix, a region arises in which the pendulum dynamics becomes

stochastic. This region is called stochastic layer. The thickness of the layer increases
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Figure A.2: Phase space of the nonlinear pendulum.

exponentially with ε. The existence of the stochastic layer is a universal property of

hamiltonian systems. In a typical case many separatrices are present in the phase

space. External perturbations destroy the unperturbed separatrices or clothe every

one of them in a stochastic layer. Depending on the thickness of the layers and on

their positions in the phase space, they can merge into large regions of stochastic

dynamics, producing what is called a stochastic sea. Therefore, the stochastic layer

can be considered to be a seed for chaos in hamiltonian systems. Any trajectory

whose initial condition belongs to the stochastic sea passes through every point of

the sea. Therefore, the entire sea can be explored with the help of a single trajectory.

Reconsidering the concept of local instability presented above, if we consider a

volume element in the phase space represented as a phase drop and we imagine the

phase space outside the drop consisting of another liquid (say of different color), the

local instability will give rise to rapid mixing of the two liquids. The ability to explore

the whole sea by following only one trajectory is an immediate consequence of the

mixing process. However, there are numerous islands, which the chaotic trajectory

cannot penetrate. Within an island there are regions of quasiperiodic motion (in-

variant tori) and regions of trapped chaos. The stronger the chaos, the smaller the

islands are and the larger the fraction of the phase space occupied by the stochastic

sea.

At this point a more precise introduction to the KAM theory is needed for a better

understanding of the fate of the invariant tori for the non-integrable hamiltonian H
as ε is increased. Considering the frequencies ωi = ∂H/∂Ii, with i = (1, ..., N), the

condition of non-degeneracy means that theN frequencies ωi are independent (and,

hence, H0 is nonlinear):

det
∣

∣

∣

∂ωi(I)

∂Ij

∣

∣

∣
= det

∣

∣

∣

∂2H0

∂Ii∂Ij

∣

∣

∣
6= 0. (A.13)
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Figure A.3: The breaking of the rational tori — dashed lines — into a sequence of elliptic

and hyperbolic fixed points. From Berry (1978).

The KAM theory is associated basically with the problem of conservation of the

independent integrals of motion of hamiltonian systems (thus, the invariant tori) in

the presence of weak perturbations of the form:

H = H0(I1, ..., IN ) + εV (I1, θ1; ...; IN , θN ; t). (A.14)

In this case of a time-dependent perturbation with a given angular frequency ν,

one can introduce the phase θ = νt into V and increase the number of degrees of

freedom of the system with half a degree of freedom due to the perturbation.

The condition of resonance implies that the ratio ω(I)/ν must be rational or,

more precisely, that there exist values k0, l0 and I0, being k0 and l0 integers, such that

k0ω0(I0) = l0ν, where I0 defines the resonant torus. The KAM theorem says that if

the unperturbed hamiltonian is non-degenerate, then, for a sufficiently small ε, most

of the non-resonant (irrational) tori will not disappear, but will only undergo a slight

deformation, remaining continuous and, hence, unpenetrable for other trajectories.

Hence, chaos is impossible in these regions. Rational tori break up into a sequence

of elliptic and hyperbolic fixed points (Figure A.3), a behavior that is repeated on

finer and finer scales. The islands begin to break up into groups of smaller newborn

islands, in a cascade of bifurcations that results in a fractal structure. There is an

infinite number of bifurcations and each one globally changes the general structure

of the phase space. The sequence of values of the perturbation parameter that cor-

responds to the bifurcations is characterized by certain regularities. The analysis of

these regularities led to the introduction of the renormalization group into the stud-

ies of dynamical systems. It is worth noticing at this point that when new islands are

born, a new separatrix must also appear to divide them. The very same perturba-

tion that causes the bifurcation and the appearance of the separatrix, brings about

its simultaneous breakdown which is accompanied by the creation of the stochastic

layer.

The existence of hyperbolic points of Poincaré maps guarantees the existence of

chaos. The hyperbolic point in a mapping represents the intersection of a stable (in-
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sets) and an unstable manifold (out-sets). The stable and unstable manifolds are

the nonlinear extension of the stable and unstable eigenvectors of the linear anal-

ysis around the fixed point. This intersection triggers the chaotic behavior in the

resulting web called Poincaré heteroclinic structure. At a hyperbolic singularity four

curves join, corresponding to the two incoming separatrices (stable manifold), H+,

and the two outcoming separatrices (unstable manifold), H−.

An important and crucial theorem in the theory of dynamic systems states that

if the in-sets and out-sets of a saddle point in the Poincaré map of a dynamical sys-

tem intersect in one homoclinic structure at a certain point, then there must be an

infinite number of homoclinic intersections. The complex manner of oscillation of

a trajectory near the saddle point results in what is called homoclinic tangle.

Returning to the discussion on the number of degrees of freedom, for N = 2,

the destroyed tori lie between the invariant ones because the invariant tori divide the

phase space and therefore the trajectory is squeezed between these invariant tori and

the variations of the actions are very small. For N > 2, the invariant tori no longer

divide the phase space, meaning that destruction regions may join and permeate the

entire phase space, just like a spider-web often called stochastic web.

Despite the thinness of the stochastic layers, particles can wander along the chan-

nels of the newborn web, a phenomenon that represents a universal instability of al-

most all physical systems withN > 2. This global wandering over the phase space for

an arbitrary weak perturbation is called minimal chaos. Weak chaos manifests itself

in the form of a stochastic layer (for N > 1) or a stochastic web (for N > 2). These

statements also prove that regions of eternal stability exist and that their measure

approaches the full volume of phase space as ε goes to zero. The theorem also ex-

cludes for general hamiltonians the possibility of an absolute chaos in which regular

elements are absent. If the system is degenerate, the stochastic web becomes possi-

ble even when N = 3/2. This dimension is the minimum one because for N = 1
dynamic systems are integrable and chaos is impossible. The coexistence of regions

of stable dynamics and regions of chaos in the phase space in this system illustrates

the difference between chaotic systems and ordinary random processes where no sta-

bility islands are present. This property makes possible the analysis of the onset of

chaos and the appearance of minimal regions of chaos. Due to the integrability of

the system of Eq. (A.14), some important analytic results are available, such as the

equation of motion on the separatrix, the width of the stochastic layer and the condi-

tion of the onset of local instability (Zaslavsky et al., 1991). In the general case, these

characteristics cannot be determined exactly, although some satisfactory estimates

are possible.

Nonlinearity plays an exceptional role when the resonance condition between

the unperturbed frequency and the perturbation frequency is fulfilled. In the non-

linear case, since the frequency of oscillations is amplitude-dependent, the resonance

cannot lead to an unlimited growth of the energy of the system and the resonance

becomes mismatched. That is, nonlinearity can rapidly drive the system out of reso-

nance condition and stabilize it.
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A.2 The perturbed oscillator

Consider now the motion of a linear oscillator affected by a perturbation in the form

of a plane wave:

ẍ+ ω20x =
1

k
εω20 sin(kx− νt), (A.15)

with the associated hamiltonian:

H =
1

2
(ẋ2 + ω20x

2) +
1

k2
εω2 cos(kx− νt). (A.16)

This problem is equivalent to the motion of a particle in a constant magnetic

field and in the field of a plane wave traveling perpendicularly to the magnetic field.

Transforming Eq. (A.16) by using the action-angle variables:

x =

√

2Ix
ω0

sinφx

(A.17)

ẋ =
√

2Ixω0 cosφx,

one gets

H = ω0Ix + εV (Ix, φx; t)

(A.18)

V (Ix, φx; t) =
1

k2
ω20 cos

[

k

√

2Ix
ω20

sinφx − νt
]

.

As the unperturbed hamiltonian does not satisfy the non-degeneracy condition,

in the case of resonance nω0 = ν, with n integer, the amplitude of the oscillations

can largely increase. Thus, only due to the perturbation it is possible to escape from

the resonance. Consider the following change of variables in Eq. (A.16):

x = ρ sinφ
ẋ = ω0ρ cosφ

(A.19)

and the expansion:

cos(kx−νt) = cos(kρ sinφ−νt) =
m=+∞
∑

m=−∞

Jm(kρ) cos(mφ) cos(mφ−νt), (A.20)

where Jm are the Bessel functions. With these new expressions, the hamiltonian

becomes:
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H =
1

2
ω20ρ

2 +
1

k2
εω20Jn0

(kρ) cos(n0φ− νt)

+
1

k2
εω20

∑

m6=n0

Jm(kρ) cos(mφ) cos(mφ− νt), (A.21)

where the term of resonance m = n0 has been singled out. A second change of

variables:

I =
ω0ρ

2

2n0
θ = n0φ− νt (A.22)

H̃ = H − νI

leads to

H̃ = (n0ω0 − ν)I +
1

k2
εω20Jn0

(kρ) cos θ

+
1

k2
εω20

∑

m6=n0

Jm(kρ) cos
[m

n0
θ −

(

1− m

n0

)

νt
]

. (A.23)

The first bracket in Eq. (A.23) is the unperturbed hamiltonian and the second

one, is the perturbation. In the case of resonance, n0ω = ν, the hamiltonian is

proportional to ε. Zaslavsky et al. (1991) have demonstrated that even in the case of

resonance H̃0(I, θ) can be considered as the unperturbed part of the hamiltonian,

while Ṽ (I, θ; t) can be considered as the perturbation. They also have shown that

the separatrices form a net on the phase plane (x, p) as a web with a fixed number

of n0 rays and rotational symmetry by an angle α = 2π/n0 for even n0, and with a

number of 2n0 rays and rotational symmetry by the angle α = π/n0 for odd n0. The

fixed points of the system can be found from:

∂H̃0

∂I
= 0

(A.24)

∂H̃0

∂θ
= 0

and they are a set of hyperbolic points (ρh, θh):

Jn0
(kρh) = 0

θh = (2n+ 1)π/2
(A.25)
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and elliptic points (ρe, θe):

J ′
n0
(kρe) = 0

θh = nπ,
(A.26)

where the prime represents the derivative with respect to I . The family of separatrices

is formed by the 2n0 rays and by circumferences with the radii ρ
(s)
h crossing them,

where kρ
(s)
h are radicals of the Bessel function Jn0

. Inside these cells of the web,

motion occurs along closed-orbits, centered around the elliptic points of the cells.

The existence of this spiderweb-like separatrix network makes possible the radial

motion (significant changes in action) as the perturbation ε¿ 1 destroys the separa-

trices and forms channels of finite width, with stochastic dynamics, where a particle

can move without restriction. In a realistic situation, the motion is not unbounded

as the web channels become narrower with the increase of energy of the particle (i.e.,

increase in radius), which makes diffusion weaker within them. The degeneracy of

the systems makes this kind of diffusion possible, while any radial motion is ruled

out in nondegenerate systems.

It should be noted that in the linear case the existence of the web structure is due

uniquely to the presence of the perturbation and it always contains stochastic lay-

ers. It is generally called weak chaos — the perturbation itself creates the separatrix

network at a certain ε0 and then destroys it as ε increases by producing channels of

stochastic dynamics. In the nonlinear case, the unperturbed hamiltonian H0 gener-

ates the web, while εV clothes it in thin stochastic layers. It is called strong chaos.

Moreover, the term ω20x generates a rotational symmetry of the trajectories on the

phase plane. The perturbation possesses a translational symmetry with respect to

the shift x → x + 2nπ/k (where n is an integer). Under the resonance condition,

n0ω = ν, the interaction between these symmetries is strong even for small ε. The

analysis of the geometric properties of the web resulted from this interaction allows

one to find which symmetry wins in this competition. Weak chaos can be seen as a

compromise between contradictory symmetries.

Another important relation that can be obtained regards the time derivative of

the energy:

Ḣ0(ẋ, x) = {H,H0} = ε{H0, V } = −ε
∂H0

∂ẋ

∂V

∂x
= −εẋ∂V

∂x
(A.27)

where {} are the Poisson brackets previously defined in this appendix. Therefore, we

have

Ė = Ḣ0 = ε
ω20
k
ẋ sin(kx− νt) (A.28)

Using this equation and the hamiltonian in the form of Eq. (A.21), in the case of

resonance the width of the stochastic web was obtained by Zaslavsky (1998) as:
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∆Hs =
√
2 π7/2

1

ε
(kρ0)

1/2ω
2
0

k2
exp

{

− 1

ε

(π

2

)5/2√

kρ0

}

(A.29)

where ρ0 = (2n0I0/ω0)
1/2 and I0 define the resonant invariant curve. It illustrates

that the width of the web decreases quickly as the radius ρ0 grows, that is, the width

of the web for fairly distant cells is exponentially small.

A strong degeneracy can be removed in two ways: by detuning the resonance

(that is n0ω 6= ν) or by the introduction of a nonlinearity in the unperturbed hamil-

tonian of Eq (A.16). A similar analysis of the perturbed nonlinear pendulum dis-

cussed above performed by Zaslavsky et al. (1991) lead to following terms in the

hamiltonian using the notation from Eq. (A.23):

H̃0(I, θ) = (n0ω0 − ν)I + aI2 +
1

k2
εω20Jn0

(kρ) cos θ

(A.30)

Ṽ (I, θ; t) =
1

k2
εω20

∑

m6=n0

Jm(kρ) cos

[

m

n0
θ −

(

1− m

n0

)

νt

]

,

where the two terms added in H̃0(I, θ) are due to the detuning of the resonance (the

former) and to the nonlinearity of the oscillator (the latter). Since the frequency

δω 6= 0 when ε = 0, or, more exactly

δω ≡ ∂H̃0(I, θ; ε = 0)

∂I
= (n0ω0 − ν) + 2aI ≡ δωR + δωN (A.31)

the phase portrait of the system in the case of Ṽ = 0 has no web: degeneracy is

taken off. That is, in the phase space there appear invariant curves (deformed tori)

embracing the center which do not allow diffusion in the radial direction. The por-

trait closely resembles a web because, if the perturbation is large enough so that the

resulting stochastic layer is wide enough to cover the gaps between separatrices, then

a single large web can appear. The greater the value of k, the smaller the cells of the

web are (their size is typically of the order of 2π/k). The greater the value of ε is,

the wider the stochastic web is. In the process of deformation of the KAM-tori, new

smaller cells of web-tori are formed as the parameter k is increased. These changes

are called KAM-tori to web-tori transition. During this transition there occur an

infinite number of bifurcations in the phase space.



Appendix B

Numerical aspects

The present thesis has been devoted to the study of non-linear pulsations of Mira

stars. Its main approach is numerical and thus the simulations play the most im-

portant role in the subsequent conclusions drawn from the obtained results. Thus,

a short review of the numerical aspects and methods used throughout the work is

included in this Appendix.

The first dynamical behavior whose numerical implications determine crucially

its existence is the stickiness behavior observed for the adiabatic one-zone model

in Chapter 3. In Figure 3.16, we represented the variations of radius and velocity

as a function of time for a particular choice of the parameters of the system. The

behavior consisted in a quiet phase of quasi-periodic oscillations followed by an ex-

tremely violent and chaotic phase. One may undoubtely attribute such dynamics to

a phenomenon of error propagation and thus, without any physical relevance. To

clarify this matter, we have undergone a study concerning the results provided for

this particular case by using several methods of numerical integration. As already

mentioned in §3.2, we have used for general purpose the fifth order Runge-Kutta

integrator with stepsize control and dense output using the Prince-Dormand coef-

ficients (DOPRI method) from Hairer et al. (1993) as well as the code described in

Shampine & Gordon (1975). As far as the stickiness property is concerned, it is pos-

sible that different integrators produce different trajectories in the phase space (or in

the Poincaré map, as in our case) as different tolerances and integration methods are

used. This question is even most important in the cases in which one deals with a

chaotic trajectory. However, in the analysis of any chaotic system, what is relevant to

the dynamics is the phase space — the global features — and not the individual time-

evolutions as they might differ due to one of the requisites of chaotic dynamics: the

sensitivity to initial conditions. Therefore, in the case of the stickiness, what should

be observed with any integrator is the quiet phase followed by a chaotic one, while

the phase space presents the same global features. In order to verify this statement,

we have used the integrator code from Hairer et al. (1993) with different orders of

the Runge-Kutta method and with different absolute and relative tolerances for the

integration of Eq. (3.8) with the initial condition of the sticky orbit from Figure 3.16.
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Figure B.1: Variations of velocity as a function of time for ω = 3.0146, α = 0.3, ε = 0.5 and

the initial condition (x0, y0) = (0.0, 0.02) and different characteristics of the integration:

(a) Runge-Kutta of order 8 with double precision and relative and absolute tolerances equal

to 10−10; (b) Runge-Kutta of order 5 with quadruple precision and relative and absolute

tolerances equal to 10−12; (c) Runge-Kutta of order 8 with quadruple precision and relative

and absolute tolerances 10−12; (d) Runge-Kutta of order 8 with quadruple precision and

relative and absolute tolerances 10−14. See text for more details.

The variations of velocity as a function of time sampled for the Poincaré map appear

in Figure B.1. The Poincaré map for all cases are equivalent to the Figure 3.17b and

thus we have chosen not to add it here. Additionally, we have used for this verifica-

tion the integration code of an implementation of a Runge-Kutta-Fehlberg method

of order 8 kindly provided by the Department of Applied Mathematics of the Po-

litechnic University of Catalonia. The results confirmed the behavior typical for a

sticky orbit. As the duration of the quiet phase for this case is slightly longer than the

time-interval represented in Figure B.1, we have chosen not to add it to the Figure.

Moreover, this choice was motivated also by the fact that the calculations leading to

the results of Chapter 3 were obtained with the code from Hairer et al. (1993).

For the calculations regarding our weakly nonadiabatic model (Chapter 4) and

the convective model (Chapter 5) we have used the codes available from the GNU

Scientific Library (GSL) of C and C++ software 1. More precisely, we have in-

1http://www.gnu.org/software/gsl/
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tegrated all the differential equations using the embedded 8th order Runge-Kutta

Prince-Dormand method with 9th order error estimate.





Appendix C

Some astrophysical units and

notations

Solar luminosity L¯ = 3.9× 1026 = 3.9× 1033 erg s−1

Solar mass M¯ = 1.989× 1030 kg

Solar radius R¯ = 6.96× 108 m

Parsec 1 pc = 3.09× 1016 m

Magnitude

The quantityL denotes the energy a star radiates per second integrated over all wave-

lengths and is known as the (bolometric) luminosity. The corresponding bolometric

flux of radiation at the earth, F is then given by

F =
L

4πd 2
,

where d is the distance to the star. The magnitude system for comparing stellar

brightnesses is defined by the formula

m = −2.5 log10 F + constant,

where the factor -2.5 and the value of the constant are chosen to approximate the

scale to the magnitude system introduced by Hipparchus in the first century BC.

From the definition, it follows that a difference of 5 magnitudes is a factor of 100 in

intensity and the smaller or more negative magnitude, the brighter the star. In other

words the difference in magnitudes relates directly to the ratio of apparent fluxes:

m1 −m2 = −2.5 log10 (F1/F2).
The bolometric magnitude of a star is defined via

mbol = −2.5 log10 L+ 5 log10 d+ constant.

It measures the apparent brightness of a star and it is therefore termed the apparent

magnitude as it is a function of the star’s distance. A lowercase m is always used
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to represent an apparent magnitude. The absolute bolometric magnitude Mbol is

defined to be the apparent bolometric magnitude a star would have if it were at a

standard distance taken to be 10 parsecs and hence is given by

Mbol = −2.5 log10 L+ 5 + constant.

Due to the general use of filters in astronomical observations, the magnitude

system is effected by the use of notations such as MV, MB, MU for the absolute

magnitude, where V stands for visual, B for blue and U for ultraviolet.
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Kolláth, Z., Buchler, J. R., Serre, T. & Mattei, J., 1998. Analysis of the irregular

pulsations of AC Herculis. A&A, 329, 147–154.
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