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Preface

Photonic crystals emerged at the end of the last decade as a new frame to control the

interaction between radiation and matter. The 3-D distribution in an ordered lattice of

dielectric particles, with dimensions comparable to the wavelength of visible light, can

lead to an extensive control of radiation phenomena, such as for example, the inhibition

or enhancement of spontaneous emission. The potential advances that such structures

could report in photonics technology has lead to an increasing research focused on the

implementation of photonic crystals possessing full photonic band gaps, hindering the

fact that more simple structures, possessing band gaps in selected directions of space,

may also provide strong control of the electromagnetic radiation leading to the

observation of many new interesting phenomena. In fact, the scope of this control is not

limited to a linear interaction and can be extended to nonlinear interactions of any order.

In this work we present an experimental and theoretical study of the second order

nonlinear interaction from nonlinear organic molecules placed within two different

types of photonic crystals. First, we will discuss in detail the enhancement and

inhibition of the radiation at the second-harmonic frequency of a sheet of dipoles

embedded in a ID photonic crystal, consisting of a set of dielectric layers with

alternating indices and thickness, with-a defect introduced in the central period. The

introduction of defects in the photonic crystal results in the appearance of localized

states within the photonic band gap of the structure. The experimentally observed

reflected second-harmonic intensity as a function of the angle of incidence shows sharp

resonances corresponding to the excitation of the SH field in a local mode within the

forbidden band in the structure, which position depends on the size of the defect, and

additional resonance at the high angular band edge, arising as a consequence of the

bending of the electromagnetic wave dispersion curve provided by the periodicity of the

structure, which position is independent of the size of the defect. Comparison among

these results and the SH intensity reflected by the same monolayer in free space (which

presents a bell shaped radiation"pattern as a function of the angle of incidence), shows
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an enhancement of the radiation at the resonances, and strong inhibition of the radiation

at other angles within the gap. Theoretical simulation of the experiment shows a good

agreement with the experimental results.

A detailed analysis of the enhancement and inhibition phenomena occurring in these

structures shows a clear dependence of the resulting intensity with the position of the

monolayer within the defect and with the dipole orientation. The change in phase

difference between the oscillating dipoles and the field at the SH frequency at the

monolayer as it is moved within the defect is found to play a determining role in the

final energy transfer to the second-harmonic field. The resulting enhancement and

inhibition of the radiation may be studied in terms of a nonsymmetric contribution of

the different components of the field to the energy transfer process.

The second configuration studied in the present work consider the experimental

demonstration of second-harmonic generation in a 3-dimensional macroscopically

centro symmetric lattice formed by spherical particles of optical dimensions. In such

photonic crystals, the surface separating each dielectric particle from the surrounding

material provides a local breaking of the inversion symmetry, which allows for the

existence of a nonvanishing second order interaction through the bulk of the entire

crystal, enhanced by the adsorption of highly nonlinear organic molecule layer on the

surface of each spherical particle constituting the photonic crystal. The growth of the

SH radiation is provided by the phase-matching mechanism caused by the bending of

the photon dispersion curve near the Bragg reflection bands of this photonic crystal.

Experimental evidence of this phase-matching mechanism, inherent of such crystals, is

reported in this work. The second-harmonic generation measured shows that SH

radiation is peaked at the smaller angle side of its Bragg reflection band, where the

change in the effective index of refraction introduced by the periodicity of the photonic

crystal is sufficient to overcome the phase lag between the fundamental and second-

harmonic beams. By measuring the SH intensity radiated from several crystals with

different concentrations, thus having the Bragg reflection band at different angular

positions, we obtained the angular dependence of this type of emission and confirmed

the surface character of the nonlinear interaction. A simplified theoretical model based

on the substitution of each crystal plane by a dielectric slab with nonlinear layers at each

side can explain the most relevant features of this type of interaction, showing very
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good agreement with the experimental results. It is important to notice that in this

mechanism of SHG, the nonlinearity of the molecule is independent of the phase-

matching mechanism, that is inherent to the periodicity of the crystal.

In conclusion, the results obtained show a clear influence of the photonic crystals in the

radiated intensity at the second harmonic frequency, resulting in enhancement and

inhibition of the dipo les radiation. Enhancement of SHG in defect modes could become

particularly usefiil in the implementation of frequency doubler in vertical cavity surface

emitting lasers. On the other hand, the observation of SHG from the surface of spherical

particles ordered in a three-dimensional lattice may open numerous applications in the

development of new nonlinear devices as well as possibilities for research in the basic

field of scattering media.





Introduction

Chapter 1

Introduction

1. Photonic crystals

1.1. Photonic crystals: general perspectives

The extraordinary improvement in electronic devices and communication systems in the

last 50 years, resulting in the achievement of high-performance and considerable

miniaturization of integrated electronic circuits, is directly related to the development of

the semiconductor technology, which opened the possibility of controlling the

propagation of electrons within a crystal. In a semiconductor, the Bragg-like diffraction

suffered by the electrons in the conduction band caused by the periodicity of the

structure results in the alteration of their propagating properties which leads to the

formation of energy gaps for which the electron is forbidden to propagate inside the

crystal. However, this miniaturization results in increasing resistance and power

dissipation in circuits and higher speed operation leads to the necessity of signal

synchronization. In order to avoid these problems there has been an increasing effort in

the development of materials which use light as the information carrier instead of

electrons.

Traditionally, the control of light beams-was limited to devices based on the mechanism

of total internal reflection or refraction, or to the use of electronic devices for which

previous conversion of the light into an electronic signal was needed. The use of

photons offers several advantages to electrons such as its greater speed, its higher

bandwidth and the absence of interaction between photons which reduces energy losses.

At present, some hybrid optoelectronic devices have contributed to the achievement of

higher performances in electronic circuits, but the fabrication of devices based on all-

optical signal processing is still a matter under research. The fabrication of a device

capable of controlling the photons in the desired way is of paramount importance and

should lead to a very great expansion in this field.
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In 1987, it was proposed by Yablonovitch [Yab87] and independently by John [John87]

that periodic arrangements of dielectric material conveniently designed could be used to

control the propagation and radiation properties of light, creating a range of forbidden

frequencies, called photonic band gaps, for which photons are not allowed to propagate,

being highly reflected in close resemblance to the electronic behaviour in solid state

physics. A difference of practical importance is that, in the case of electrons nature

provides the periodic arrangement in common solids, while in the optical domain these

structures need to be artificially fabricated so one can study these kind of processes.

Such structures are known with the generic name of photonic crystals.

Since their proposal as potential structures to control the properties of photons within

them, there has been an increasing interest in this field [Bow93][Kur94][Joann]. The

possibility of molding the flow of light through these structures justifies its potential

interest in many fields of physics as quantum electrodynamics [Kwe95] or nonlinear

optics. The first structures acting as photonic crystals with a fiali photonic band gap

were proposed by Yablonovitch [Yab89] and were mechanically constructed by drilling

holes in a dielectric material, obtaining a photonic crystal with gap in the infrared. Since

then, many different structures have been proposed to obtain photonic gaps, in one, two

and three dimensions. Experimentally, the fabrication of photonic crystals for

wavelengths in the visible spectrum is a difficult task, since the period for these

structures should be of the order of the optical wavelength. Recent results show some

progress in this direction [Ros96] [Che95][Fan94][Ozb94]. The photonic crystal in one

or two-dimensions is much easier to obtain. In fact, the analog of the 1-D photonic

crystal is the well known multilayer film widely used in nowadays technology.

To obtain a photonic bandgap in a 3- dimensional periodic structure certain conditions

for the index contrast and filling ratios are necessary in order to achieve a forbidden

band in every direction in space. First studies of photonic crystals assumed an scalar

model for the electromagnetic wave [John88][Eco89][Hui93] but soon it was seen that a

vector model for the wave was necessary since different polarization modes present

different gap widths thus appearing certain zones where pseudo gaps (gaps for one of

the polarization modes) exist, but not corresponding to true gaps. For structures with

periodicity in 2 dimensions or 1 dimension the necessary conditions to find a gap are

less restrictive until the point that any 1-dimensional periodic structures exhibits a
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photonic band gap in the structure irrespective of its refractive index contrast. An

extension of a 1-dimensiónal (scalar) model to a three dimensional domain by

considering a completely isotropie medium was considered by John to study some

properties of atomic systems within those structures [John90]. This treatment gave some

qualitative understanding of certain processes, but a complete and detailed study of the

band theory for such structures requires a full vector calculation [Sat90][Ho90]

[Leu90][Pla91][Zha90].

The study of the propagation of electromagnetic waves in periodic structures begins

with the resolution of Maxwell equations for the structure. Let us consider propagation

of electromagnetic radiation in a three dimensional periodic distribution of dielectric

material. We will assume a lossless medium in which the dielectric constant may be

treated as a real variable. The periodicity of the structure is taken into account in the

periodicity of the dielectric constant of the structure:

VD = V(f(r)E)=0 1.1.

VxE = -^ 1.2.
dt

VB = 0 1.3.

VxH=-L^ 1.4.
c2 dt

where the periodicity of the dielectric constant is written as s (r) = e(r + R), R being a

vector of the periodic lattice which runs'over the lattice points generated by the unit cell

basis vectors R = mâi + «â2 +/â3 . These equations remain unchanged under a

translation of the coordinate system by a quantity R.

By combining Eq. 1.2. and 1.4. we obtain the wave equation for the electric field and a

similar equation can be written for the magnetic induction

1.5.
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The normal modes, solutions of this equation can be written in the form of Bloch type

solutions as it is well known from the theory of periodic systems [Ash82]:

E(r, t) = eEK (r)exp(/Kr )exp(- iat) 1 .6.

where the particular mode is labeled by the Bloch wavevector, K, and the function EK.(T)

is periodic with R, that is E/:(r + R) = EA:(r). In order to find the amplitudes of the

modes and the Bloch wavevectors for a given frequency we can expand the periodic

functions in terms of the reciprocal lattice vectors of the periodic structure

1.7.
c

and

where the vectors G run over the reciprocal lattice vectors given by the relation

b,ay = litôy , where b¡ and a, stand for the basis vectors of G and R respectively. After

introducing these substitutions in the wave equation 1.5. we obtain an equation for the

Fourier components of the field:

_ 0 1.9.
G', I G J

From this equation a solution for the eigenmodes and dispersion relation can be

obtained giving the photonic band structure for the material. Those regions with real

Bloch wavevector correspond to propagating modes within the structure, while those

frequency regions where the corresponding wavevector becomes imaginary gives rise to

evanescent solutions which amplitude decays exponentially as they propagate. These

regions of frequency with imaginary Bloch vectors, are the photonic band gaps of the

structure. Additionally, the bending of the wave dispersion curve at the band edges

results in a change in the effective phasae velocity as well as in the group velocity. As

we will see in the following chapters, these changes are highly relevant when a

nonlinear interaction is considered within a 1-D as well as in a 3-D photonic crystal.



Introduction

Calculation of PBG has been the subject of intensive theoretical study during the last

decade to characterize a large amount of structures, periodic either in two or three

dimensions . An experimental effort leading to the fabrication of structures possessing a

full photonic band gap in the optical domain should be necessary in order to take

advantage of all the possibilities of such kind of structures.

Although the construction of a periodic structure possessing a band gap in all directions

in space should become a very desirable objective to be reached, the use of structures

which does not posses a full photonic band gap, but that show a forbidden gap in

selected directions of space, as it is the case for 1-dimensional or 2-dimensional

photonic crystals, present a great deal of interest since the presence of such gaps may

cause strong alteration of the properties of a light beam being incident on them

[Sca95][Sca96], such as changes in the reflection and transmission coefficients, in the

effective refractive index or in general the wave propagation velocity inside the

structure, and enhancement or inhibition of nonlinear phenomena within such structures

(as has been shown experimentally in the present work) among others. A significant

number of research groups have studied the effects of combining the use of periodic

structures together with optical nonlinearities [Hat97] [Has95][Ber97]rTru95][Tru98]

[Tru99][Mar97][Mar94] and its potential utility to construct optoelectronic devices

[Gibbs][Ste96][Sca94] [Sca97][Coj99]. The effect of these structures on the resulting

radiation emission may be studied in terms of the interference effects due to the

coherent superposition of the different fields present in the structure and in terms of the

local alteration in the density of states introduced by the presence of the structure. The

use of these structures to control the radiative properties of atoms embedded within

them has also attracted much interest during last years. In particular experimental

evidence of inhibition of the spontaneous emission of a dye solution in a photonic

crystal has been reported [Mar90].

1.2 Defect modes in photonic crystals

If the perfect translational periodicity of the structure is broken in some way, localized

states appear into the forbidden gaps for which light propagation is possible. Again this

fact has its analogy in solid state physics, where the introduction of impurities within a
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perfect periodic lattice results in the existence of localized states with energy in the gap

region at the bottom of the conduction band or at the top of the valence band of the

solid. The drastic effect of this kind of states on the conducting properties of the solid is

well known in semiconductor physics. It was first pointed out by Yablonovitch et al.

[Yab91] that localized states appear into the gap of a photonic crystal if the perfect

periodicity of the structure is broken by introducing some kind of defect within it. These

defects can be introduced for instance by removing part of the dielectric material or

adding material to one of the sites of the structure. The effect of this variation in the

dielectric composition at the structure is the same as the impurity atoms introduced in a

solid. The removal of dielectric material results hi the appearance of localized modes

within the gap emerging from the lower frequency band edge and moving towards the

center of the gap ("acceptor modes"). In the same way if extra material is added to the

structure, the localized states appear from the bottom of the high frequency edge within

the gap ("donor modes").

Localization phenomena have been a subject of active research since the first works by

Anderson [And58], centered in the localization of electrons in solids. This effect arises

as a consequence of the strong variations of the potential that the electron sees in a

strong disordered medium (such as in glasses). For strong enough potentials the electron

may be trapped in the region close to the initial one, thus preventing the electron to

diffuse away from its sites being localized in space. The effect of localization is not a

particular property of the electronic systems and can be studied also in any kind of wave

phenomena [Sheng], [Abr79], [Koh83], [Kra93].

In particular, the possibility of obtaining localization of electromagnetic waves, in the

sense that photons propagating in a material can be trapped within it, has been proposed

by using photonic crystals with defects. Localization effects in electromagnetic waves

are entirely due to the coherent superposition of the multiple scattered waves at the

material sites. Localization phenomena may be found in two opposite regimes, either in

a collection of random scattering sites or in a periodic distribution of scatterers

[John91]. The study of localization in electromagnetic waves propagating in strong

disordered structures has been a very active field in the last years [John84],

[Ete86],[Ary86]. As pointed out by John, for structures with a correlation distance of

disorder comparable to the wavelength, localized states may appear as a consequence
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of the superposition of the multiply scattered waves in the disordered potential. Within

this regime, the transport properties of waves are altered thus conducting to a

redefinition of certain parameters such as the diffusion length. The degree of disorder

and index contrast necessaries to the observation of such localization effects makes

difficult their experimental observation. Related phenomena associated to a regime of

weak light localization, such as backscattering of light (a process in which light is

reflected back from the structure in opposite direction to the incident wave) has been

experimentally measured [Sheng] [Alb85][Wolf85].

Photonic crystals have been proposed as potential structures to obtain light localization

in ordered media. The electric field distribution within such photonic crystals when a

defect is introduced, is strongly confined at the defect sites and its amplitude decays

exponentially as we move away from the defect. The high energy density of these

localized states has been measured in a two dimensional periodic structure in the

infrared domain [Smi93].

The introduction of defects in photonic crystals offers new possibilities to their potential

use to control light beams and atomic radiative properties. A point defect into a

photonic crystal could act as a microcavity, a line defect like a waveguide, and a planar

defect like a perfect mirror. The nonlinear radiation generated within such microcavities

will be strongly influenced by the environmental conditions as will be seen in following

chapters.

2. Nonlinear Optics

2.1 General aspects of nonlinear interactions

The response of a given material to an incident electromagnetic wave may be

characterized by the study of the induced polarization of the medium. The classical

linear response of a medium to an incident electromagnetic wave is only valid whenever

the incident radiation is weak and out of any resonance of the medium. As the intensity

of the input light is increased, the polarization of the medium is no longer linear. Out of

resonance, the relation between the polarization and the incident field may be expressed

as a Taylor expansion of the field and nonlinear terms proportional to the square of the
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field and so on appear in the induced polarization. The processes involved at the field

intensities where these terms are significant are included within the generic field of

nonlinear optics [Shen][Bloe][Boyd].

The birth of nonlinear optics is considered to coincide with the appearance of the laser

since it represents the powerful light source needed to study these processes, although

theoretical work on nonlinear dynamical properties of atoms were taken before this

date. Nonlinear optical processes may be roughly divided as parametric and non

parametric, all of these presenting a potential field of study of new physical aspects for

electromagnetic theory. Roughly speaking, parametric interactions involve processes in

which the final state of the atom doesn't change and include those which give rise to an

exchange of energy between a number of different electromagnetic fields of different

frequencies, such as harmonic generation, parametric amplification, self-focusing, light

squeezing and cascading processes. Nonparametric interactions involve processes for

which a change in the level populations of atoms occur. This happens when the

frequencies of radiation are close to material resonances of the medium giving rise to

strong interaction between the field and the atom. Saturable absorption, Stimulated

Raman scattering, Stimulated Brillouin scattering, optical bistability, laser theory should

be included within these kind of processes and clearly denote the importance of these

kind of nonlinear phenomena.

The starting point for the study of nonlinear interactions is the response of a given

material to an incident electromagnetic field. We can write such relation as:

1.10.

where the terms £, =Ej(r,a>) represent the i"1 component (i=x,y,z) of the Fourier

components of the field and we assume that the the electric field and polarization vector

may be written as a superposition of plane waves of different frequencies, in the form:

E(r,/)=£E"(r)exp-/<af 1.11.

1.12.
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where a spatially local relation is assumed between the induced polarization and the

incident field. This relation accounts for nonlinear processes in the dipole

approximation. A nonlocal relation should be considered to include other terms such as

quadrupolar terms, etc..

The first term in Eq. 1.10. is the linear relation between the field and the polarization

given by classical optics and accounts for the index of refraction of the medium. Second

order processes such as SHG, sum frequency generation or parametric amplification are

given by the quadratic term in the expansion of the induced polarization. The third term

is responsible of processes such as third harmonic generation, phase conjugation, self

focusing or self phase modulation provided by an intensity dependent refractive index.

Usually third order terms may be neglected if second order are present, since for typical

nonlinear materials, third order nonlinearities are much lower than second order terms.

By symmetry considerations one can see that for materials with inversion symmetry

second order processes are not possible. On the other hand, some of the main aspects of

third order processes, such as intensity dependence of the refractive index, may be

obtained through cascading second order nonlinearities. The study of these processes

has opened the possibility of new advances in the implementation of all optical devices

or soliton propagation, among other interesting effects. [Jeos] [Ste96].

The present work will be centered in the particular nonlinear process of second-

harmonic generation (SHG). Our main purpose is to study both experimentally and

theoretically, the SHG in periodic structures (photonic crystals). In the following

sections I shall give a brief review on the theory of second-harmonic generation and I

will consider its study in surfaces and mono layers in order to give a first insight into the

problems that will be treated in the following chapters.

2.2 Second Harmonic Generation

Soon after the birth of nonlinear optics 35 years ago, the relative strength of second

order nonlinear interactions prompted the development of mechanisms capable of

generating new frequencies using lasers of moderately high intensity. In particular, the

doubling of that laser frequency, known as second-harmonic generation (SHG), is one

of the most widespread applications of quadratic nonlinear interactions. This type of
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interaction occurs between an incident field and a given medium with a nonvanishing

second order susceptibility %(2), and is described by Maxwell equations 1.1-1.4 when the

polarization term posses a quadratic nonlinear part. From these equations, we can obtain

the wave equation for the electric field:

where the nonlinear part of the polarization vector has been separated from the linear

part. It is clear from this equation that the nonlinear polarization acts as a driven source

for the electric field.

When the expressions 1.11 and 1.12 are substituted in equation 1.13, it decouples into a

set of coupled equations for each given frequency component of the field. In this set of

equations the nonlinear components of the polarization act as the coupling terms which

are responsible of the energy transfer between the different components of the field at

different frequencies. This coupling is at the origin of several interesting nonlinear

phenomena such as second order processes (sum frequency generation, parametric

amplification, down conversion) or third order processes (third harmonic generation,

self-focusing). A detailed explanation of these and several other nonlinear processes

may be found in several reviews on nonlinear optics [Boyd][Shen][Bloe][Zer].

In the process of second-harmonic generation, only two equations involving the field at

the fundamental,«, and second-harmonic, 2o>, frequencies need to be considered.:

1.14.

where s<o and 820 are the dielectric susceptibility of the medium at the fundamental and

second-harmonic frequency respectively, and P^¿ and P^¿ are the nonlinear terms of

the polarization vector at each frequency resulting from the contraction of the nonlinear
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susceptibility tensor xí2) with the corresponding fields in each case. These nonlinear

terms couple both equations and its solution gives the energy exchange between both

waves. In general, this coupling depends on the initial conditions of the fields, on the

characteristics of the nonlinear material, and on the particular geometry chosen for the

interaction. In general, one needs to match the velocities of the SH generated wave and

of the polarization wave at the SH frequency which forces the oscillation of the dipo les

for an effective process of second harmonic generation to take place. This condition,

known as phase-matching may be obtained in a number of different ways as will be

seen later.

Unfortunately, a general solution of this nonlinear system for a general source term is

not possible and some simplifying assumptions must be made in order to get solutions

of the equations.. Between the most used assumptions we found the slowly-varying

amplitude approximation, the infinite plane wave approximation and the constant-pump

intensity approximation.

The use of a plane-wave expansion of the fields allows to consider fields propagating in

different directions inside the material and in particular, to properly account for

reflections when boundaries are present (which will be our case). The effect of

considering plane waves in the expansion of the fields in Eq 1-13 assumes a constant

field in the transverse plane, perpendicular to the propagation direction. Since any real

field is of finite extent in space, it presents a dependence on the transverse coordinates

which must be taken into account in certain circumstances. The net effect is that the

distance within the material along which the beam can be focused depends on the beam

profile and reduces the interaction length for the nonlinear process, consequently

reducing the efficiency of the process. The use of diffraction-limited beams and

waveguide geometries has proven to be a good way of achieving the best results. This

fact, however is not crucial if the length of the crystal is not very large. For our

particular case in which we will be concerned with monolayers of nonlinear materials,

the use of the plane wave approximation is well justified, since the extent of the beam is

at least 1000 times higher than the length.

The most used approximation to treat the process of SHG in bulk media is obtained by

using the slowly varying envelope approximation, which is based on the assumption
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that the amplitude variations of the fields take place along distances longer than the

wavelength. This fact allow us to neglect the second derivative terms in the propagation

direction, resulting in a coupled system of first order differential equations for the

fundamental and second harmonic fields in the medium. This approximation may be

used to derive the resulting power conversion to a field at the SH frequency in a bulk

crystal for which propagation in the forward direction is considered. The resulting

equations, replacing Eq. 1.14 and 1.15 may be written in the form:

—— = ÌKE2 E* exp- /Afe 1.16.
dz

fìF.
^ exp/Afe 1.17.

dz

where the term Ak, known as the phase mismatch wavevector is given by:

1.18.

When the amount of generated radiation at the second-harmonic frequency is not very

large, we can assume that the fundamental incident beam will not be depleted

significantly during the process and we can take it as a constant in order to solve for the

second-harmonic field. This approximation, known as the constant intensity pump

approximation is justified in the case considered since the coupling term in Eq. 1.16 will

be much lower than the corresponding term of Eq. 1.17 (since we are assuming that the

second-harmonic field is weaker than the fundamental field). For the cases in which this

approximation is possible, we are left with one equation, which may be integrated to

give the resultant second-harmonic field generated at the crystal. The solution for the

resulting second harmonic output power (P^) is written as:

(Afe/2)2

From this equation we may see that the efficiency of the second harmonic frequency

depends very strongly on the phase mismatch to the point that it goes to zero for certain

crystal lengths given by the condition
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1.20.
M

which with the aid of 1.18 may be written as

z =„ - 1.21.

This is consequence of the fact that the beams at the fundamental and second harmonic

frequencies travel at different speeds within the crystal, and as a consequence the SH

field generated at a given point in the medium by the driven source, becomes dephased

with respect to the field at the SH frequency at the same point coming from previous

planes of the crystal.

In order to obtain a continuous growth of the second harmonic generation, phase

matching (/d£=0) is required [Eck84]. This is not achieved in the most general case since

any material presents dispersion. However, phase-matching may be obtained by the two

most commonly used mechanisms:

i) A birrefringent material may be used to achieve phase-matching by a suitable

choice of incident polarizations of the beams and incidence angles [Gio62]

[Mak62]

ii) A change in the sign of the nonlinearity after each coherence length of the

crystal may be used to obtain a continuous growth of the second harmonic signal

[Arm62]. This process known as quasi-phase matching has been developed

during the last decades to the point that practical construction of such

dispositives is possible [Fej92].

A third mechanism of phase-matching, proposed by Bloembergen and Sievers [Blo62]

and experimentally demonstrated by van der Ziel [ZieVó], uses a periodical distribution

of dielectric material to induce a bending of the photon dispersion curve near the

second-harmonic frequency. " .More recently, numerical results showed that this
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mechanism could also be used in periodic multilayer structures with a defect breaking

the perfect periodicity [Mar94]. As we shall see in later chapters this mechanism

becomes of the utmost importance when the nonlinear interaction occur within a

photonic crystal. We will show experimentally that the intrinsic periodicity built in a 3-

D photonic crystal provides the necessary phase-matching mechanism. This constitutes

the first experimental demonstration of long range phase-matching using this third

mechanism.

In the case in which reflecting boundaries are present, the SVEA approximation cannot

be used and second order derivatives should be kept in order to take into account all

reflections at the interfaces. In that case, the plane-wave approximation provides in

addition to a full description of the nonlinear interaction at the boundary, a complete

description of the changes in the wave propagation phase velocity leading to the proper

phase-matching mechanism.

2.3 Surface second harmonic generation

Although bulk inorganic crystals have proven to be very suitable materials to obtain a

high power conversion to the SH field, nonlinear quadratic processes may be studied in

other systems such as organic molecular crystals [Prasad]. For these materials the

optical nonlinearity is associated to the molecular structures [Dul78j.

When interfaces separating different media are present additional effects arise in the

second harmonic process, the most significant is the existence of a reflected second-

harmonic wave at the interface (Figure 1.1). This process, known since the early days of

nonlinear optics [Blo68][Jha65][Jha67], is always present at the surface of a bulk

material, being generated by a portion of material close to the interface, since

contributions to the reflected wave from material placed at longer distances from the

surface cancel out due to the absence of phase-matching. This surface second harmonic

generation, which is not important in the case of SHG from bulk materials, has appeared

as a new phenomena which has focused much attention due to its potential applications

in the study of surfaces [She94][Guo86] and monolayer orientation of monolayer

adsorbates [Hei83].
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Figure 1.1 Surface SHG at the interface between two homogeneous media.
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Figure 1.2 Angle of incidence dependence of TM polarized SH signal under TM

polarized excitation fro different molecular orientations. This figure corresponds to a

paper by Hollering et al. [Hol90].
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SHG is always possible, in the dipole approximation, at the interface between two

different media due to the intrinsic absence of inversion symmetry at the surface. This

SH emission at the interface may be enhanced if a mono layer of nonlinear molecules is

adsorbed at the interface. The study of the process of SHG by a dipole sheet has been

treated in a number of ways. Bloembergen and Pershan [Blo62] considered a nonlinear

slab of material of thickness approaching zero to simulate the nonlinear mono layer and

the existing boundary conditions for a nonlinear dipole sheet were derived by Heinz

[Heinz] in order to obtain the SH emitted power from the slab. More general treatments

of surface second harmonic generation have been given by Mizrahi [Miz88] or by Sipe

[Sip87] based on a Green-function formalism. In Figure 1.2 we see a plot of the surface

second-harmonic radiation by a mono layer, showing the bell shaped form characteristic

of these surface phenomena [Hol90].
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Chapter 2

Second Harmonic Generation in Local Modes of

1-dimensional truncated periodic structures

The use of 1-dimensional periodic structures to control the properties of the

electromagnetic radiation is well known and extensively used in nowadays technology.

Dielectric mirrors, antireflection coatings, filters, DFB lasers and many other

components are based in the properties of the 1-D periodic structures. As a

consequence, in recent years, the study of electromagnetic wave propagation within

such structures has been extensively studied in the literature [Yariv][Beth89][Leod].

The use of these kind of structures has been extended to the study of nonlinear

phenomena such as optical diodes [Sca94], second-harmonic generation[Mar97],

solitons, fiber optics [Fer99][Kni97] and others.

In this chapter we will consider SHG from a NL monolayer placed within the defect of

a 1-dimensional photonic crystal both, experimentally and theoretically. Our main

purpose is to study the modification of the SHG induced by the presence of this

structure and in particular how this radiation may be enhanced or inhibited depending

on the conditions present in the experiment. The most simple photonic crystal consists

of a set of dielectric layers with alternating refractive indices and thickness. These

structures are shown to present band gaps or certain frequency windows for which

electromagnetic radiation is strongly reflected. The band gaps in our experiments will

be considered for a fixed frequency and as a function of the angle of incidence. We will

present the theoretical model of these effects in the angular domain.

When a defect is placed within this structure, localized states appear within the band

gaps as explained in section 1.2 of chapter 1. The radiative properties at the second-

harmonic frequency of the monolayer of nonlinear molecules, adsorbed at the defect site

of the structure, driven by a field at the fundamental frequency are changed by the
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Nonlinear slab

Truncated 1-dimensional
photonic crystal

(a)

Nonlinear slab

1-dimensional
multilayer

(b)

Figure 2.1 Schematic representation of the experimental configuration for the

measurement of SH radiation in local modes of truncated periodic dielectric structures.
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presence of the structure. This will be studied experimentally by looking at the second

harmonic radiation emitted from the structure with the monolayer. In order to see the

effect introduced by the periodic distribution we will also measure the SH radiation

emitted by the same monolayer when placed out of the truncated 1-D photonic crystal,

and will make a comparison between both results. We will give also a comparison of

the experimental results with a theoretical modelization of the process. The analysis of

the nonlinear interaction at the monolayer will consider a nonlinear slab of thickness

approaching zero [Blo62] and the use of the transfer matrix technique [Yariv][Beth89]

to account for the periodicity of the medium.

A schematic diagram of the experiment may be seen in Figure 2.1 (a). The nonlinear

interaction between the beam at the fundamental frequency & (1064 nm) incident at the

structure and the monolayer placed within the defect results in a generation of second-

harmonic radiation, 2a>, which is measured in reflection out of the structure. Excitation

of the molecules at the monolayer placed within the structure is possible since the

fundamental frequency is far from the Bragg reflection bands of the periodic structure,

and thus is highly transmitted through the structure.On the other hand, additional

measurements of the second harmonic generated by the same monolayer when it is not

placed within the defect of the truncated periodic structure will be performed according

to the diagram shown in Figure 2.1 (b)

A brief review of the main aspects of the wave propagation in 1-d periodic structures

will be derived in sections 1 and 2 of the chapter. Section 3 will be devoted to the study

of localized states appearing when de'fects are included within such structures. The

theoretical description of the generation of second harmonic radiation by a monolayer

placed within such defects will be studied in section 4 and in section 5 the experimental

results obtained will be presented.

1. Wave propagation in 1- D periodic structures

The most general 1-D dielectric periodic structure can be characterized by the

knowledge of its dielectric constant profile over one period. The periodicity of the

structure translates into a periodicity of the dielectric constant of the medium

s(x)=e(x+R), where R denotes" any vector of the periodic lattice of the structure. These
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structures may be studied by direct application of the formalism seen in chapter 1

[Yariv] by solving the eigenvalue problem, Eq. 1.3 for this particular case.

Nevertheless, for the particular structures used, an exact solution of the wave equation

can be obtained by means of a second approach based on matrix calculations and this

second approach is the one we will adopt in this work.

The particular structures we are concerned with consists of a set of layers of dielectric

material with alternating refractive indices «/, and n\ and thickness IH and // respectively.

The dielectric medium in each layer is considered to be homogeneous and lossless and

is supposed to extend in all directions in the plane transverse to the periodicity direction.

Figure 2.2 represents a schematic diagram of such structures with the notation used for

the axes and the geometrical and optical parameters of the structure.

The refractive index profile for these structures can be written as:

inh, 0<z<lh
n(z) = \ 2.1.

[»,, / „ < z < A

with

w(z) = n(z + A) 2.2.

where the direction z is the axis normal to the layer interfaces and /I =//,+// is the period.

Figure 2.2 Schematic representation of a I-dimensional periodic structure made of

homogeneous and lossless dielectric layers.
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Let's consider an infinite monochromatic plane wave of frequency co propagating in the

-XZ plane in a direction forming an angle 90 with respect to the Z axis. At each

interface it will be partially reflected and transmitted giving as a result a final stationary

electric field distribution within the structure that can be written as a superposition of a

forward propagating and a backward propagating wave in each layer (Figure 2.3).

In particular, the expression for the electric field in the n"1 period of the structure at the

layer with index n¡ (i=l,h) is written in the form:

^
+ C.C

2.3.

where ê^and ê^are unit vectors in the directions of the forward propagating (+) and

backward propagating (-) components of the electric field in layer i. Their particular

expression depends on the polarization state of the beam. E'+ and E'_ are the complex

amplitudes of the field in the forward and backward direction and ki: and kx are the

components of the wavevector in layer i. They are related through the expression:

k., = -k 2.4.

O

n+1

I,, l,

Figure 2.3 Schematic representation of the fields in the structure.
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The fields in different layers are not independent of each other, since they are related

through the boundary conditions at the interfaces and as a consequence only one field

can be determined arbitrarily. The knowledge of the boundary conditions for the whole

structure will allow us to find the solution for each particular mode.

In the case of waves with TE polarization (electric field perpendicular to the plane of

dEy
incidence) the tangential components of the fields (Ey and Hx°c—— ) must be

dz

continuous at each interface (see Appendix A). By applying these conditions at the

interfaces z=(n-l)A+lh and z=nA (Fig 2.2) we obtain the following equations:

z=(n-l)A+lh

£+
A(«)exp/VA +£_A(«)exp-/VA =£>) exp/V* +£-(») exp-iV*

*fe(£»exp/*fe/A -£*(fi)exp-/V*)=*t(^(»)exp/M* -E*(n)exp-ik,Jk)

z = nA 2.5.

El (n)exp ihb A + El_ (n) exp- iklz A = E* (n +1) + E* (n +1)

These four equations can be written in matrix form as:

exp-
k„

exp/*fcA -exp-/^
vfe "•&

After some algebraic manipulation we obtain an expression relating the fields in the

layer h of the nlh period and the field in the layer h of the nth+l period:

CTE

where the matrix elements are given by:
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(, , \ i ni coso/ nh cos0h . /. . \COSÍA:./,)+- — '- + — \sin(kJ,)
\ ¿Z / / /•» I /\ /I I \ /Z / /2^HAcos#A n,cos0,

i(n,cos0, nhcos0,,\.f, .
n, coso,

i ( n¡ coso/ nh cos0h j .
— 157 A

21 nh cos0h n, coso/ J {kJ,}

DTE=QXp-ikhzll
f, ,\ i niCOSÍA:,// ) — —V / z "

n

n,cos0,
. /. ,
in(k,l,V /z /
.

sin

where the relation k^ =——cose?, has been used. The fields at each layer ni,El
±(n),

c

may be related to the fields Eh
± (n) from Eq.2.6.

For the case of waves with TM polarization, we can proceed in an analogue way to

obtain the relation between fields in consecutive layers. By applying the boundary

conditions at the tangential components of the field Ex and Hy (see Appendix A) we

obtain the equations:

z = wA

cos O, (E[ (rí) exp ikh A + E'_ («) exp- ikb A.) = cos 6>A (E
h
+ (n + 1) + £* (n + 1))

k, (E'+ (n) exp ikb A -£^exp- ikb\) = kh (^ (n + 1) - £_* (w + 1))

2.8.

Rewriting these equations in matrix form and operating on them we get

2.9.

with
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ATM =expi*te/A
i(n,cos0h nhcos0,
d - f + - ^2^ «¿cose?, n,cos0h

' »//)>, n,cos0h

i(n,cos0h n
2 ^ /ÏA cos o, w, cos0h

D1M=exp-iklalil
f , \ i(n,cos0h nf,cos0A . , \

COSÍA:,,/,) — — - - + — - - \sin(kJ.)
\ 12 l J r\ \ s\ / l i \ 12 t /2{nhcos0, n, cos0hj

Equations (2.7) and (2.9.) are the matrix representation of the translation operator for

the given structure. From these relations the expressions for the fields at each layer and

the dispersion relation for the structure can be obtained. Note that the particular choice

of the phases made in Eq. 2.3. results in a translation matrix independent of the

particular period of the structure.

The expression of the dispersion relation may be obtained by applying the symmetry

conditions imposed by the periodicity of the structure on the fields. From Eq. 1.6. we

obtain the condition:

2.10.

where K is the Bloch wavevector. Applying this relation to our particular structure:

C DÌE1M
2.11.

By solving this eigenvalue equation we obtain the eigenvalue solution:

2.12.

The dispersion relation obtained can be demonstrated to be valid for a generic periodic

media of period A with a translational operator expressed in matrix form[Yariv]. In the
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present case, where propagation of the beam in the XZ plane is considered, we note that

this dispersion relation gives a surface in the K-kx-co space. Within this space there exist

two differentiated regions:

Those regions with — (A + D) < 1, give a real value for K and correspond to propagating

modes of the structure , whereas for those regions where — (A + D) > I , K is complex

giving raise to evanescent modes with amplitude decaying exponentially as they are

propagated through the structure (band gaps). The electromagnetic modes with

frequency values falling within these regions will be strongly reflected.

The explicit expression for the dispersion relation in the particular structures considered

may be found by substituting the values of the matrix elements in 2.12.:

TE polarization

TM polarization 2.13.

For the particular case of wave propagation in the direction perpendicular to the layer

interfaces ( kx=0), the dispersion relation for both polarizations reduces to the same

expression:

.,. A + l (nah} A-l (vaA.}
cosATA = cos cos 2.14.

2 \ c ) 2 ( c J

where the different terms are defined as:

21 Vi, /„H. /*+/,
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Figure 2.4 Dispersion relation for a periodic structure with n = l .72, A = l .04 and

v = 0.34.

A plot of the dispersion relation given by this equation is shown in Figure 2.4. As can

be seen from this Figure, band gaps appear when the Bloch wavevector reaches the

values K=m7i/A centered at the frequency values given by the expression:

a> = 2.15..

Note that in those regions out of the gaps the dispersion relation is close to the

dispersion relation for an homogeneous medium with index of refraction ñ : CD = c*y_.

A more detailed analysis of these relations shows that the relative gap width of each

band is proportional to the corresponding component of the Fourier expansion of the

dielectric constant at that frequency [Yariv].
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Figure 2.5 Dispersion relation for quarter wavelength Bragg reflectors.

The particular structure having each one of its layers of equal optical length, known as

quarter wavelength Bragg reflector (QWBR), will be the structure we will use in our

experimental work. For these structures, the even orders in the Fourier expansion of the

dielectric constant vanish, thus giving no gaps at the frequencies with an even value of

m. Figure 2.5 shows a typical plot of a dispersion relation for such structures. Some

special properties for such QWBR are outlined in Appendix B.

The periodicity inherent to these structures has very important consequences in the

propagating properties of the radiation with frequency values falling within or close to

the photonic band gap [Yar76]. Several effects, reported in the literature during the last

years and including both basic aspects of the interaction and potential practical

applications, demonstrate the importance of photonic crystals even in the case where not

filli photonic band gaps are present. The bending of the dispersion relation curve at the

band edges causes a reduction of the wave group velocity thus increasing the effective

path length within the structure (such effect has been proposed to be the basis of the
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gain enhancement for photonic band edge laser [Dow94]) and, at the same time, giving

rise to an alteration in the density of states which cause the appearance of resonant

states at these frequencies leading to an enhancement of radiation. This fact has been

used to obtain an enhancement of SH radiation at the band edges (as will be

demonstrated experimentally later in this chapter), or to the study of spontaneous

emission enhancement [Toc96]. The change in the effective refractive index of the

structure giving an anomalous dispersion regime in the low frequency band edges

opens the possibility of obtaining phase-matching in nonlinear processes (this will be

studied in further detail in chapter 4). The combination of pulse propagation through

these structures together with nonlinearities in the medium has shown to be of potential

use in the achievement of new optical devices such as optical limiters or the photonic

band edge optical diode [Sca94]. The effects of this periodicity on the propagation

properties of optical pulses, energy flow or momentum has also been object of study

[Sca95][Sca96].

2. Reflection and Transmission in periodic structures

In the preceding section, we have given a brief review of the properties of infinite 1-

dimensional periodic structures. Any real multilayer structure must be finite and as a

consequence no real Bloch modes may formally exist as modes for the structure. The

effects caused by the finite number of layers of the structure, results in the appearance

of subsidiary maxima between high reflection bands, a lowering of the reflectivity of

such structures at the band gap frequencies when the number of periods is very low, and

broadening of the localized states when defects are present, among other effects.

Nevertheless, many of the results of the preceding section may be used even in finite

structures, i.e. the Bloch wavevector is useful to calculate the density of modes in a

periodic structure of this kind [Ben96].

In this section we will review the transfer matrix method for the calculation of the

reflectance and transmittance of such structures and will extend the concept of band gap

to the angular domain. From now, we will limit our results to quarter-wave length Bragg

reflectors, since those structures will be the ones which will be used in the experimental

measurements. As it is usual in such structures, the first and last layers are considered to
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be of high refractive index nt, in order to have a higher reflectivity, and we consider that

the multilayer structure is deposited on a substrate with index ns. We can represent an N

period structure of this kind as an g[HL]NHa structure where a represents the substrate

and g the incident medium[Hecht].

In order to calculate the reflectance and transmission of such N period structures we

need to relate the fields at both sides of the structure. This can be done by relating the

tangential components of the electric and magnetic fields at each interface of the

structure. As seen in the previous section, the fields in consecutive layers with index nh,

are related through the translational matrix given by Eqs. 2.7 and 2.9. In order to

calculate the reflectance and transmittance of the medium we need to relate the fields

incident at the structure with the fields at the first layer, and the fields in the last layer

with the fields out of the structure. We write the fields incident and transmitted as:

Field incident at the structure

2.16.

Field transmitted by the structure:

E(z, f) = X exP <*- (* - <tf - DA)) + W exp- /(*„ (z-(N- l)A))exp(/M - fetf

+ C.C

where km = is the propagation wavevector in the medium surrounding the
c

structure which will be considered to be air and 60 is the incidence angle with respect to

the z axis. Once the boundary conditions at the interfaces are considered the relation

between fields in consecutive layers is written as:

V'n>

E+= [AM]
£_*(!)] l E ine
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and

where the terms between brackets [T], [AM] and [MA] denote the matrices that relate

the corresponding field components. The elements of the [T] matrix are those given in

Eqs. 2.7 and 2.9. The particular values of the other matrices can be found in Appendix

C. The choice of the phases in 2.16 results in a [T] matrix independent of the particular

period of the structure. With the values for the matrices found we can relate the incident

and transmitted fields at the structure through the expression :

f à n V riñe \
A B }E+ 2.17.

.C D J E"* J

where the resulting matrix is obtained by multiplication of the previous ones:

We will consider that there is no field incident at the right of the structure (E* = 0),

and that we know the field incident at the left ( E™ ). After applying these boundary

conditions for the whole structure, the reflection and transmission coefficients for the

structure are found immediately from Eq. 2.17:

Einc -C . El AD-BC
r = —— = and / = —— =

E'+
nc D E'+

nc D

the reflectance and transmittance of the structure are given by:
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Figure 2.6 Transmission of a periodic QWBR consisting of 29 layers with

indices «/,=!.95, n/=1.46, and lengths 4=68 nm, //=91 nm. The index of the

substrate is 1.52.

= r and T = v 2.18.

Figure 2.6 shows a typical transmittance curve for a QWBR structure as a fonction of

the incident wavelength for normal incidence calculated by means of Eq. 2.18. As can

be seen from this figure, high reflection bands appear in the spectrum. Electromagnetic

radiation with wavelength values falling within these regions will be completely

reflected by the structure. With the aid of Eq. 2.15 and considering that for our

particular case all layers have equal optical thickness (L), the wavelengths at the center

of these high reflection bands are given by:

4L
with m = 0,1,2,... 2.19.
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As stated in previous section, the dispersion relation for radiation propagating in the XZ

plane, is a surface in the K-kx-a> plane. According to this, if we fix the incident

wavelength to a given value, we will have a dispersion relation between K and kx, that

is between K and the incidence angle 00. For later convenience in our work, we will not

be interested in the reflectance as a function of wavelength since the wavelength will be

a fixed parameter in our experiments. Instead, we will change the angle of incidence of

the radiation in order to reach different regions of the dispersion relation. The

reflectance curves for the structure as a function of the angle of incidence can be

obtained with the same equations already derived. Figure 2.7 shows the transmittance

spectrum for the same structure as in Fig 2.6 for the fixed wavelength 532 nm. When

the incident radiation on the structure is TM polarized, the observed gap appears

between 0 and 40 degrees (that means that radiation at the given frequency and

polarization will be reflected by the structure when incident at angles lower than 40

degrees). Polarization of the incident wave is important in the angular measurements

0.0

20 40 60
Angle of incidence (deg)

Figure 2.7 Transmission as a function of the angle of incidence for the same

structure of Figure 2.6, for light incident at 532 nm.
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since different polarizations give different gaps, due to the fact that the Fresnel laws

depend on the polarization state of the incident wave. The transmittance for the same

structure of Fig 2.6 with TE polarization is also shown in Fig. 2.7. One can see

immediately that the gap width is higher in the TE case, with the band edge appearing at

higher angles. This fact may be important in different applications. For our present

work, we will have waves with TM polarization, the reason will be better understood in

the following sections.

3. Defects in 1-dimensional photonic crystals

In chapter 1 was seen that the introduction of a defect in a periodic structure results in

the appearance of localized states within the gap of the structure, with transmission

values different from zero. These localized states are characterized by a high energy

density of the electric field at the defect site, which falls off exponentially as we move

away from the defect. For an infinite structure, light generated inside the defect should

be confined within the structure, but if the structure is finite then part of the radiation

can get out of it.

The observation of such defect states in QWBR is possible if one introduces some

alteration in the periodicity of the structure. We will introduce the defect by changing

the optical length of the layer at the middle of the structure. Increasing the optical length

corresponds to the case of increasing the dielectric material in the structure, so donor

modes will appear from the lower angle band edge. If instead, the optical length is

diminished then defect states appear from the higher angles band edge into the gap

giving rise to acceptor modes. The position and number of such localized modes within

the gap depend upon the values of the length and index of refraction of the defect,

whereas the localized state width and maximum transmittance depend on the number of

layers of the structure. The introduction of a defect in these periodic structures may be

obtained by means of a change in the refractive index or the length (or both) of one of

the layers of the structure. Figure 2.8 shows the transmission of a periodic structure

possessing a gap between 20 and 60 degrees. The effect of introducing a defect in the

central layer (with index nf=\A6 and length //=101 nm) of the structure is seen in

Figures 2.9 and 2.10. Figure 2.9 shows the effect of introducing a variation in the
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refractive index of the layer while keeping the length of the layer to its initial value. As

the refractive index is decreased from its initial value (1.46), acceptor modes come from

the higher angular band edge of the structure moving within the gap as the optical

length is being reduced. On the contrary, if the optical length is increased by setting a

higher refractive index, donor modes appear from the low angular band edge into the

gap. In Figure 2.10 the effect of introducing a variation in the length of the structure,

keeping the refractive index constant to its initial value is shown to produce acceptor

and donor modes in the same way as in Figure 2.9.

As stated previously in chapter 1, the presence of the defect within the structure results

in a strong localization of the electromagnetic field at the defect site and a modification

of the density of states. The existence of this localized state may be used in order to

enhance different phenomena and in particular nonlinear phenomena, such as SHG.

1.0
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0 20 40 60 80
Angle of incidence (deg)

Figure 2.8 Transmission for a periodic structure consisting of 57 layers with

nh=1.95, nr=1.46, lh=75.5 nm and l|=101 nm, for incident light TM polarized at

532 nm.
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Figure 2.9 Appearance of defects in the periodic structure of Fig 2.8 when the

refraction index is changed at the central layer. The dashed line corresponds to

the periodic structure with no defects (Figure2.8).
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Figure 2.10 Appearance of defects in the periodic structure of Figure 2.8 when the

thickness of the central layer is changed. The dashed line corresponds to the periodic

structure with no defects (Figure2.8).
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4. Second harmonic generation in periodic structures

The process of second harmonic generation in a bulk material in which a strong

pumping field at frequency o acts as a nonlinear driving source generating light at the

doubled frequency, 2oo, has been a subject of major interest since the early work of

nonlinear optics. As seen in chapter 1, phase-matching between the corresponding

wavevectors ki» and 2k<o was necessary in a bulk material in order to achieve the

necessary condition for growth of the SH field in the direction of propagation of the

fields inside the material and this bulk generation is commonly used in many laser

•systems for efficient frequency light conversion. On the other hand, harmonic

generation by monolayers has proven to be a field of great interest in the

characterization of surfaces and determination of susceptibility tensors. It is known that

a beam of frequency o, incident on a surface separating two homogeneous media gives

rise to a reflected SH wave, even in the case of inversion symmetry in each medium.

This is possible due to the intrinsic symmetry breaking at the surface. The reflected

wave, appearing as a consequence of the boundary separating two media, is generated

due to electric dipole contributions to x(2) from the layers of the two media closest to

each side of the surface. The contribution of other layers is very low due to the absence

of phase-matching. These effects may be highly enhanced if a monolayer of nonlinear

molecules is adsorbed at the surface separating both media [Che73][Che81][Hei82].

We will consider in this section the generation of second harmonic light by a monolayer

of molecules with a nonzero nonlinear susceptibility second-order coefficient adsorbed

at the surface separating two homogeneous media when a beam at frequency o is

incident at the surface. In section 4.1 we will derive the equations for the SHG process

at the nonlinear slab when it is adsorbed on an homogeneous substrate. In section 4.2,

the effect of introducing such monolayer within the defect present in a QWBR will be

studied, in order to see how the process of SHG is influenced by the presence of the

structure. We will see that due to the presence of the periodic structure with the defect,

generation of SH is enhanced at angles for which there is a resonance with the localized

state of the structure, while SH radiation at other angles (for which the frequency falls

within the bandgap) is strongly inhibited.
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4.1 Second harmonic generation by a nonlinear monolayer

The equations governing the evolution of the fields in a nonlinear interaction were

described in the introductory chapter and will be developed here in more detail for the

particular case we want to study. For the case of SHG, the wave equations describing

the evolution of the fields at the fundamental frequency, o, and at the SH frequency ,2co

are :

2.20.

2.21.

where ¿4 is the magnetic permeability of vacuum, n^and n2o¡ are the refractive indices

of the medium at the corresponding frequencies, and VNL represent the nonlinear

polarization of the source terms for the fundamental and second harmonic fields, which

are given by the contraction of the nonlinear susceptibility tensor ^2) with the

corresponding field in each case. Preserving the second-order derivatives of the field in

the double cross product term implies that propagation is allowed in both directions and

that all reflections are properly accounted for at any boundaries.

The conditions that will hold in our experiment allow us to introduce the following

approximations:

i) First, since the amount of SH light generated at a monolayer slab will be small, even

in the assumption of a medium possessing a high nonlinear coefficient (the interaction

length is much lower than the wavelength) we will assume the intensity of the

fundamental wave remains undepleted. This fact is plausible in our case, since the

nonlinear polarization term which governs the change in the fundamental beam due to

the nonlinear interaction, scales proportional to the product of the fundamental and SH

fields, and since this SH field will be very small, the contribution of this term will be

negligible.

ii) Second, we will consider the generation of SH light only from the fundamental field

that propagates in the forward direction. That means that we neglect the contribution of

the reflected fundamental wave inside the slab in the SHG process. For the cases of low
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reflection of the fondamental wave this point is justified since the SH wave is driven by

a term proportional to the square of the fundamental field and consequently the

contribution from the reflected component will be much lower than that from the

forward component.

iii) Third, since the slab is considered to be very thin, we will consider that the general

solution to the wave equation with the driving term inside the slab may be written as a

superposition of the homogeneous plane wave solution and a particular solution

assuming constant amplitudes for these solutions along the interaction length [Blo62].

Suppose we have a nonlinear slab of thickness ö (considered much thiner than the

wavelength), adsorbed at the interface between two homogeneous materials with

refractive indices «, and «¿.(Figure 2.11). We will assume the field in each homogeneous

medium to be a superposition of a forward propagating and a backward propagating

plane wave, solutions of the homogeneous part of the wave equations 2.20 and 2.21.

Figure 2.11 SHG by a monolayer. Schematic representation of the fields present at the

monolayer and in each homogeneous medium
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The field at the NL slab will be considered to be a superposition of two terms, one

corresponding to the homogeneous solution of the wave equation, and a second term

corresponding to the particular solution of the wave equation which accounts for the SH

process. As explained in the previous paragraph, our assumptions allow us to neglect

the nonlinear driving term at the fundamental frequency (no particular solution is

written for the fundamental field). Within this approximation the propagation of the

fundamental may be calculated by means of the transfer method outlined in section 2.

We may obtain in this way the fundamental field at each layer of the structure.

The forward propagating component of the field at the fundamental frequency inside the

slab will be considered to be the only field that generates light at the SH frequency

according to ii) in the preceding paragraph. The fields for the field at frequency 2co in

each layer are written as:

Incident layer (i):

E*"(z,O = -[è'+El expikhz + e'_E'_ exp(-/A:jrz)]exp(/A:ttx - ¡2u)t)+ c.c

Nonlinear slab:

2 1 ÍT» / / - > / / 1 / \ / \1En, (z,/) = —[|e+£+ expikn,z + e_E_ exp(-iknl2z)\exp\iknlJlx-i2(ot)+Eni expi(kaz + ksxx-2a)t)\+

+ C.C

Transmitted layer:

<2<»/_ ,,\ * I*' r'tE,2" 0,0 = - è'+E'+ exp iklzz + è'_E'_ exp(-/*tóz)exp/Vttt;c - i2at+ c.c

where the èj
+\èj_j terms are the unit vectors for the forward (backward) propagating

homogeneous waves in layers j=i,nl and t, and E{ \Ef} are the corresponding complex

amplitudes at each layer and E*, is the field corresponding to the particular solution of

the wave equation which is driven by the nonlinear polarization term. The different

wavevectors are defined through the relations:

kj = , kj; = kj COS0J , kjx = kjSinOj j = /,«/,/

and
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ks = -^—, ka=k, COS0,, k^ = kssin9s
c

each wave component is considered to be propagating within the XZ plane and forming

an angle 0/ with respect to the z direction. Note that the particular and homogeneous

solutions inside the nonlinear medium propagate in different directions. Between these

defined parameters the following relations hold [Blo62]:

nix - *sx = ^tt

, = n2Jsinen, = n^sin9t 2.22.

n*sinOt(fo) = nasino s = n? sind, (co)

The direction of the particular solution is then, the direction of the propagating

fundamental field within the slab which is different from the propagating direction of

the SH beam due to the material dispersion. These relations allow us to find the fields

incident and transmitted at the nonlinear slab by applying the boundary conditions at

each interface. The nonlinear interaction for this case is all included in the field E* , and

it will modify the reflection and transmission of the wave with respect to the linear case.

In order to go on with our calculation, we should consider a particular polarization state

of the fields. The particular expression for the %(2) matrix we will have, corresponding to

a rotationally invariant system with respect to the z axis, gives a resulting SH field TM

polarized for incident fundamental wave with either TE or TM polarization. We will

assume an incident fundamental field with TM polarization for reasons which will be

explained afterwards. By applying the boundary conditions in the TM case (see

Appendix A) at the nonlinear slab interfaces, z=d and z=d+0 (see Figure 2.11) we

obtain the following set of equations:

Atz=d:

coso, [#; exp ikfid + E'_ exp- iküd] = cos0„, [ß"1 exp ik^d + £_*' exp- ik^d}* E*nlx expikcd

k\E[ exp/M- E- exp- ikhd]= kn\E? expik^d- E°> exp-/*„,,«/]
C £„
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At z=d+ô

cose?„ [E:' expiknk (d + S) + E? exp- iknh (d + S)]+ Es
nll

= coso, [E[ exp/£te (d + 0) + E'_ exp- ik,2 (d + a)}

2.23.

ika(d + S) =

= k, [El exp ikl2 (d + S) - E'_ exp- iklz (d + S)]

Once the boundary conditions have been established, we want to relate the fields at the

right of the NL slab with those to the left. As a first approximation, we will assume as

usual in surface SHG that the index of the nonlinear slab is matched to that of the

medium where it is adsorbed, («„/=»/) [Shen]. Taking this into account, we obtain from

the first two equations:

E'+ exp i k ¿d = —

+i|^+2(cos^

£1 exp- /&feí/

L + ZL £;'exp/M +
licose?, k¡

expikadF c

coso,

i f f l f c 2^/.i
7 ro<ï/? r2^ ^í
Z« I VAJOl/i' C- ¿i „Ai: I

^cosO, kt\ i _.j
,

2.24.

COSO, ^rìr-n/ -T . f COSé?, ^iìr-n/

and from the second pair of Eq. 2.23:

? exp ika = E'+ exp ik
i r ̂
2 (coso,

i "' exp- /Â:fe (uf + <J) = £l exp- /A;te (i/ + <J)

exP * 2.25.

I T

2 (coso, ce0kt

Since we are considering the nonlinear slab length to be much lower than the

wavelength, we can assume ks:o«\ and write the terms expiks:(d+S)x(l+iks:¿¡) expiks:d.

By making these substitutions in 2.25 and using 2.24, we can get after some

straightforward algebra:
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( \ s \
coso, k, |„, , , í cose?, A, i,,,L-4-_L £ expik^d + \ L £
coso, ¿,J ^cos^ A:,. J

io
2cos0k

\kìki cos#a - A:,2 cose?; JE;̂  exp /^i/ H (fc, coso2 - ^ cosos coso, )—¿-^expik^d
2 cos ft ¿,

And 2.26.

E'_exp-ikild = -
(cos0t k.}„t (cos0t k,} ,
- - — '- E[ exikd + - '- + — E

" " * ' ~I XI f{COS0, k,

, ., ,
exp- ik,Td

~ *• 'Z

iS
2cos0iki

(k,k, cos 0f + A:2 cos 0, )E*nlx exp *„rf -
ió ^ ET -S

:( cos Of + ks cos 9S cos ̂  )—2 "y exp /A:S2i

Now, in order to get further we need to find the expressions for the fields Es
nhc and H*n[y

The particular solution to the wave equation can be written[Blo62]:

_
~" 2.27.

where P^ = P^p is the nonlinear polarization vector at the frequency 2ca in the

nonlinear slab obtained by contracting the nonlinear susceptibility tensor x(2) with the

square of the forward propagating fundamental field at the nonlinear slab

Pm = %™ : Ej(cai)Ek((D). From Maxwell equations and eq. 2.27, the expression for the

magnetic induction vector can be obtained:

2.28.

Inserting the value for the wavevector ks = k1\^in0íi

we obtain the expressions for the fields:

, into eqs. 2.27 and 2.28

E* = — sin9 cos«
n.
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and

n, -n,
coso -

These fields may be substituted in Eqs. 2.26 to give, after some straightforward algebra

and using 2.22 :

l f cose», k,
-L + -L

{cos0i k
í cos 0, k,

,d + \

i2ú)\-SPNL·f ¿)PNL,nssin0s™ ™
w

{
- -- exp- ie

2.29.

E'_ exp- ikjz

4._i2^_te
«

j_
2

5PNLznssin0s

n] coso,

\E'+ exi
. Teoso,•+_-+ - £ exp-

We can write this result in matrix form:

with

f J7>+ j?'+ nls

'nIS,

2.30.

- |

2£-0cl «; w, coso,
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These equations are the main results of this section, giving the relation between the

fields at both sides of the nonlinear slab. The generation of SH radiation by the structure

is given by the last term and is seen to scale proportional to the layer thickness. This

result is expected since we are considering the field amplitudes as constant at the

nonlinear slab. We can obtain now the SH field generated from the nonlinear thin slab

by setting the boundary conditions. Let's consider that we don't have any field at the

second harmonic frequency incident at the slab. In this case we have

E'+ = 0 and E'_ = 0 and the reflected and transmitted SH coefficients are given by:

C F+
^S^nlS and 2.31.

These expressions-give the reflected and transmitted SH field by the slab. In order to

determine these fields we should calculate first the nonlinear polarization driving terms

PHI* and PNLZ- Surface molecular layers may be considered in many cases to be

rotationally symmetric about an axis normal to the plane of the layer. By symmetry

considerations we may see that in this case there are only three nonvanishing tensor

elements in the nonlinear susceptibility tensor [Dick85]. The nonlinear terms are

obtained by the contraction of the susceptibility tensor x(2) with the fundamental field.

(p \rNLx

PNL =

A. J

' 0 0 0

0 0 0

J* X« %33

0 y 0^

^,5 0 0

0 0 Oy

E^E"z z

y 2

2E<°E° ,

2.32.

where the field at the fundamental frequency is supposed to be, as stated previously, the

forward propagating field at the slab. With this form of the susceptibility tensor matrix

it can be immediately seen that when the incident polarization field is incident with TM

or TE polarization, the resulting generated SH field will be always TM polarized since

for both cases the component PsLy vanishes. In the more general case in which the

incident field its a superposition of both polarizations will appear SH radiation in the TE

polarization direction. These result is well known in surface SHG
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Figure 2.12 Reflected SH from a monolayer adsorbed on an homogeneous substrate.

and can be stated as a 'selection rule' for the SHG process. For our particular case, in

which TM polarization is considered, the particular expressions to be considered for the

nonlinear polarization terms is written explicitly as:

P —1 Nix ~ 2.33.

Since the monolayer thickness is not known, we will consider its effect included in the

nonlinear polarization by considering the actual nonlinear polarization times the layer

thickness as an effective surface nonlinear polarization. This parameter will give us a

corresponding scale of the interaction strength of the nonlinear process.

By substituting the expressions given above into Equation 2.29, the reflected and

transmitted radiation by the nonlinear slab can be calculated. Figure 2.12 shows a

typical reflectance curve at the SH frequency for a nonlinear slab. As can be seen the

figure shows the typical bell-shaped form characterizing the surface SHG process.
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Measurements of such curves have been proven to be useful in determining the

elements of the second order susceptibility tensor, characterization of molecular

adsórbales at surfaces and others [Shen94].

4.2 Second harmonic generation in periodic structures

We want to consider now the observable effects on the SHG process, when the

nonlinear slab is placed at the defect located within a periodic structure. We will assume

our structure to be a QWBR, that is, a structure in which every layer has equal optical

thickness (Appendix B) since these particular structures will be the ones used in the

experimental configuration. Nevertheless, the method outlined in this section may be

immediately used to characterize other kind of structures in a straightforward manner.

Let's assume we have a g(HL)NHa structure (as defined in section 2 of the present

chapter), and suppose we change the optical length of the central layer in order to

introduce a defect at the central period of the structure. Our main purpose is to study

how the presence of the cavity may influence the emission of radiation by the nonlinear

oscillating dipoles at the monolayer. The periodic structure will be supposed to have a

band gap at the second harmonic frequency but not for the fundamental. Since the

fundamental wave will be highly transmitted through the structure, it will be able to

reach the monolayer placed inside the cavity and force the dipoles of the nonlinear layer

to oscillate, generating a SH wave as studied in section 4.1. The radiated SH light by the

monolayer will be reflected at each layer of the periodic structure (since its frequency

lies within the band gap of the structure), reacting on the oscillating dipoles. The

coherent superposition of the multiply scattered waves within the structure should have

observable effects on the SH radiated.

The calculation of the SH radiated by the nonlinear slab at the defect will be based on a

transfer matrix method in the same way as explained in section 2. The structure to be

considered here has N periods before the defect and N' periods after the defect (in our

contracted notation is represented as gH(LH)ND(HL)N Ha, where D denotes the defect

layer). The expression for the fields, which will be considered to be TM polarized as
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usual is the following, where the election of the phase factors in each case has been

selected for later convenience:

Field incident at the structure:

E*"(z,l) = — le' E' exp/Â^-z + ê' E' exp-iki,z\Q\p(ikitx-i2(ol)+c£
t *• * ' /^ L * T •*• (¿ — — i. fi j i \ ts /

Field at layer with index n¡ in the nth period before the defect:

E ^"6* ( »? f\ — I A J J? J f yt\ f* vn íiÍf i T (Yt T ^ A i l - J U i 1 ^ / * 1 ^ (YÍ\ PYti— iíJf i T in l l A i I|Í*YTÍÍ île Y — ï"7/>i/ Ii \ ¿i l I — — 1C . JLt \fl í CAU / \t\ i~\<6* — I / / — l l / V I / T ^ C ¡It \fl I CAU i 1/V ,•_ 1 ̂  1 fi i I/ V I lltAL/l í A- _ A í Z. CL/Í Iin \ ~ s / > L + + X - - ' r \ / * \ ^ ' / / — — \ y JT v /z v \ / //j * \ j /
Z

-f C.C

Field at the defect:

(z,0 = -e?£f exp ikdl(z - (N - 1)A) + e"_E* exp- ikdz(z -(N- l)A)exp*,x - /2<y/+ c.c

Field at the nonlinear slab

E'f (z, 0 = fW exp /*„,z (z - (N - 1)A) + ei"£_"" exp- iknliz

+ - Es
+ exp J(Ä:„ (z - (N - 1)A) + kax - 2col)

Field at layer with index n¡ in the mth period behind the nonlinear slab:

c^

Field transmitted by the structure:

Ef (z,/) = - [c'+ ̂ r exp ik„(z-<F) + è'_E'_ exp- *ft (z - ^)]exp(//txx - Oax)+ c.c

The length and refractive index of the defect are /</ and nj respectively, the parameters ^

are defined as 0 = (N-l)\+lh +ld +(m-l)Aand 0 f=(tf-l)A + /A+/ r f+(AP-l)A,

and the other factors have been already defined.

These fields will be related through the boundary conditions at each interface. As in

preceding sections, we write these relations in matrix form:
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(A, , - -
EL C

where the resulting matrices are obtained by multiplication of the following ones:

and

The particular expression for each of the matrices is given in Appendix C. Once the

matrix coefficients are known we can obtain the reflection and transmission coefficients

for the structure. Since we suppose that the only field incident on the structure is just the

fundamental field at frequency o>, the boundary conditions for the whole structure are

given by E'+ = E'_ = 0. Applying these conditions to eq. 2.32 we find

rSH - ~ « " " 1SH
Up

t -BF(C*E*+D*I'
l«u —

The reflectance and transmittance of the structure at the SH frequency are given by:

2.36.

Figure 2.13 (a) shows the reflected SH intensity of a truncated periodic structure with

the nonlinear layer adsorbed at the surface between the defect and the first layer at the

right. As can be seen from the figure, sharp resonances of reflected SH intensity appear

at certain angles separated by regions for which the SH intensity radiated is very low. If

we compare this result with that of Figure 2.12 it is immediately observed that there

exists a clear influence of the periodic structure on the radiated pattern. While in the

case of no structure present, the SH intensity radiated presents the bell shaped form,

characteristic of surface SHG, the SH radiated when the structure is present shows that

now the SH generation is enhanced at those angles corresponding to local modes of the

structure, as can be seen from Figure 2.13 (b) in which the transmittance for incident

radiation at the SH frequency, is plotted. In contrast, it is seen that SHG is strongly

inhibited at other angles within the gap. This fact may be explained in two
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complementary ways, either by the alteration of the density of modes introduced by the

structure, or by the resulting interference effects arising from the coherent superposition

of the multiply reflected waves within the structure. Both effects, enhancement and

inhibition, are due to the environmental effect imposed by the presence of the structure.

In our case this fact is demonstrated in a very clear way. The radiation at the

fundamental frequency forces the dipoles to oscillate at all incident angles and thus,

with no structure present SH is radiated at all angles (Figure 2.12). The presence of the

periodic structure, however, makes the emitted field at the second-harmonic frequency

to react back on the dipoles upon reflection on the structure. The coherent superposition

of the SH radiation gives rise to the observed effects. The enhancement of the SH field

at the localized modes within the gap corresponds to the excitation of the SH oscillation

in a local mode of the structure. In contrast, the nonlinear interaction in modes lying

within the forbidden zone other than the defect mode is inhibited by a destructive

interference among the multiply scattered waves at each layer of the structure and the

dipoles oscillating at the SH frequency. More details about the interpretation of SHG

enhancement and inhibition in such ID photonic crystals will be given in next chapter.

Near the band edge the bending of the electromagnetic wave dispersion curve (Figure

2.5) slightly above and below the forbidden zone indicates that the group velocity

approaches zero, giving raise to an increased path length and a Van Hove-type

singularity in the photon density of states for the 1-dimensiónal lattice. This effect,

arising as a consequence of the periodicity in the material and independent of the size of

the defect, may be observed in Figure 2.13 (a) for angles corresponding to the high

angular band edge.

If we look now to the reflected SH intensity for the same periodic structure of Figure

2.13 but with a longer defect length, as shown in Figure 2.14, we found a higher number

of resonances within the gap. By inspection of the corresponding transmittance of the

structure for incident radiation at the SH frequency, we can explain the resonances

appearing in Figure 2.14 (a) in the same way as it was done in Figure 2.13. Notice that

the resonance close to 60 degrees, at the band edge stands at the same position, since as

previously commented it is independent of the size of the defect.
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Figure 2.13 (a) Reflected SH intensity and (b) transmittance of the structure for

incident radiation at 532 nm as a function of the angle of incidence.
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Figure 2.14 Same as in Figure 2,13 with a different defect thickness.
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5. Experimental measurement of SH enhancement and

inhibition in a truncated 1-D photonic crystal

In this section we present the experimental study of the SH radiation of a slab of

nonlinear material embedded in a truncated multilayer stack of dielectric material. As

shown in the previous section, the environmental effect of the structure should lead to

the appearance of sharp resonances in the reflectance and transmittance spectra. In the

first part of the section we will give a characterization of the truncated periodic structure

used. The experimental setup characteristics and the method used to obtain the

nonlinear monolayer slab at the defect will be outlined in the second part of the section

and the experimental results will be given in the last part of the section. General aspects

of the measurements have already been pointed out in the introduction of this chapter.

5.1 Characterization of the truncated periodic structure

The truncated periodic structure necessary to perform the experiments is formed by two

identical multilayer dielectric mirrors separated by a small air gap acting as the defect.

The first step in the characterization of the structure should be the measurement of the

optical and geometrical parameters of each mirror. Several measurements were

performed to determine all the parameters needed for a complete characterization of the

commercial high-quality dielectric mirrors used as the multilayers. The determination of

the refractive indices and lengths of the layers was obtained through a method

developed by us based on a measurement of the reflectance of the structure as a function

of the incident wavelength for normal incidence and as a function of the incident angle

for a fixed wavelength. The details of this method are given in Appendix B.

An experiment to observe the environmental effects on the SH generation may be

performed in the frequency domain with a tunable laser source, but since in our case the

laser is a Nd:YAG laser with fixed frequency at 1064 nm we have carried out the

measurements in the angular domain. (In view of this fact the results presented in

previous sections were obtained in the angular domain). In order to avoid interference

with the SH field generated at the substrate, a reflection geometry for the experiment

will be required. This fact makes preferable to have structures where the reflection at

normal incidence is avoided. Due to this fact the chosen dielectric structures for the



54 Chapter 2

experiment are dielectric mirrors reflecting the light at the SH frequency, that is at 532

nm, at 45 degrees and not at normal incidence. The parameters for these mirrors,

obtained experimentally as explained in Appendix B, are the following. Each dielectric

stack is made of two identical QWBR made of 27 layers (g(HL)13Ha) with high index

«A=1.97 and low index «/=1.47 and corresponding thicknesses 4=74.6 nm and //=100.4

nm deposited upon a glass substrate. Figures 2.15 and 2.16 show the transmittance

curves for such structure as a function of the angle of incidence for both polarizations

and for incident radiation at 532 nm and at 1064 nm. As can be seen, a gap region of

almost zero transmittance (high reflection) appears for radiation at 532 nm, while

radiation at the fundamental frequency is highly transmitted through the structure since

this frequency is not within the band gaps of the structure. The gap for the TE

polarization is much wider than the gap for TM polarization. Although this fact may be

of potential interest for some applications [Winn98], in our present case we will be

interested in observing the SH radiation at the TM polarization (see the comments on
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Figure 2.15 Transmittance of the multilayer structure for incident radiation at 532 nm

and 1064 nm and with TM oolarization.
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Figure 2.16 Transmittance of the multilayer structure for incident radiation at

532 nm and 1064 nm and with TE polarization.

section 4.1) for which the effects due to the band edge should be present. The TM

polarization is selected for the fundamental field since its transmission values are

higher.

Once the dielectric mirrors to be used have been characterized we can assemble them

defect

Figure 2.17 Two l-dimensional dielectric mirrors separated by an air-gap or defect
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together, leaving a small air gap between them, in order to obtain the truncated periodic

structure we will use in the experiments. Figure 2.17 shows a schematic representation

of the structure.

The reflectance and transmittance of such structure, calculated by means of the

formalism given in section 3 of this chapter, shows the appearance of defect modes. The

position and number of defect modes within the gap is related to the thickness of the

defect. Figures 2.18 and 2.19 show two transmittance curves obtained for the structure
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Figure 2.18 Transmittance of the periodic structure with a defect thickness of 500 nm

for incident radiation at 532 nm.
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Figure 2.19 Transmittance of the periodic structure with a defect thickness of 2000 nm

for incident radiation at 532 nm.
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Figure 2.20 Angular position of the defect modes as a function of the defect length of

the structure of Figure 2.16

considered with defect thicknesses of 500 nm and 2000 nm.

The angular position of the defects of the 1-D photonic crystal of Figures 2.18-19 as a

function of the defect length is shown in Figure 2.20. It can be seen from this figure the

appearance of acceptor modes, from the high angular band edge, when the length of the

defect is lower than 150 nm and of donor modes, appearing from the low angular band

edge of the structure, for higher values of the defect length. Measuring the angular

position of the SH resonances, the defect length can be obtained from these curves.

5.2 Experimental measurement of SHG within the 1D photonic crystal

Once we have characterized the periodic structures which will be used in the

experiment, next we should include the nonlinear slab within the structure. This is done

by adsorbing the mo no layer at the surface of one of the dielectric mirrors using the

dipping technique [Gar82]. The nonlinear slab adsorbed at the surface consists of

molecules of Malaquite Green (MG) oxalate, which have been reported to be efficient
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in surface SHG at the desired wavelength [Mee90]. In order to obtain the mo no layer, a

SxlO"4 M solution of MG in 1-propanol was prepared. The deposition is obtained by

inserting the mirror in the dye solution and then slowly withdrawn it (typical velocity is

of the order of Smm/min). As the surface slides off the solution, the dye is adsorbed.

These molecules are shown to present a Coovm symmetry, rotationally symmetric about

the z-axis.

Measurements were performed by using the experimental setup shown in Figure 2.21.

The fundamental field incident on the dye molecules is provided by a 35 ps Nd:YAG

laser, with active-passive mode-locking operating at a repetition rate of 10 Hz. The

average energy of each pulse is about 5 mJ and its coherence length is approximately 1

centimeter. The incident beam is focused to a beam diameter of 2 mm onto the

truncated periodic structure which is mounted upon a rotating stage with an angular

precision of 0.017 deg. In order to achieve high stability for the structure both dielectric

mirrors are mounted on a micrometrie translation stage. By moving one of the mirrors

keeping the other fixed, the separation between them (which is the defect length) may

be varied. From Figure 2.20 we see that if we want to have few defects within the gap,

the defect length should be lower than 1 micron, which makes the obtention of the

desired structure a difficult task. In order to align the mirrors as parallel as possible, a

He-Ne laser was used in order to observe the interference fringes formed. The

interference pattern formed by the structure is very sensitive to a misalignment of one of

the mirrors with respect to the other.

The SH light reflected from the structure is measured with an R212 Hamamatsu

photomultiplier preceded by heat absorbing and interference filters in order to eliminate

the fundamental signal. The photomultiplier is connected to an oscilloscope Tektronix

DSA602A (Figure 2.21). Each measurement was performed by averaging over 100

pulses in order to overcome possible fluctuations in the output laser energy, which was

monitored as a reference signal measured with the aid of a photodiode (PD). The

average fluctuation of each experimental point considered is of the order of 10 %.

In order to avoid saturation at the photomultiplier, neutral density filters are used at the

fundamental path before being incident on the structure. The desired polarization of the

beam at the fundamental frequency, is controlled by using a Glann-laser polarizer and a
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half-wavelength plate. For the case of TM polarization, the half-wavelength plate is not

necessary, since the laser output is TM polarized. Even in this case the polarizer is used

in order to ensure the desired polarization incident at the structure.

The experimental results obtained for the SH light reflected from the slab when the

mirrors are separated a distance much longer than the coherence length of the laser

(1cm) are shown in Figure 2.22. As it can be seen, the reflected SH has the bell shaped

form characteristic of a surface nonlinear process (see Figure 2.12). Nevertheless in this

case a local minimum appears at 68 degrees which is not observed in Figure 2.12 where

the monolayer was assumed to be adsorbed on an homogeneous substrate. This is

related to the periodicity of the structure that is acting as the substrate in the present

case, which introduces some interference effects. When the curve from the numerical

calculation (continuous line), based on the matrix transfer formalism, is adjusted to the

experimental values, the only variable parameters to be adjusted are the three

nonvanishing coefficients of the nonlinear susceptibility tensor, since the parameters of

the periodic structure were obtained previously. By varying these parameters, we can

obtain the ratios between such coefficients from the experimental measurements. The

obtained ratios are the following

ZlS

= -30 and = 2 2.37.

With our experimental setup an absolute determination of the coefficients was not

possible, and since the unknown parameter ô (monolayer thickness) will we included in

the effective polarization term (as discussed previously) an absolute determination of

the outgoing energy is not given. Nevertheless, since the same values will be used in all

the results, the relative variations will be totally comparable in order to determine the

effect of the structure on the generated SH radiation.

Additional measurements were made of the SH radiation emitted by the periodic

structure when no layer was adsorbed at the surface, in order to detect possible

influence of the mirror in the resulting SH intensity. The SH radiation in this case,

arising from the quadrupolar contributions at the surfaces or at the substrate, is also
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Figure 2.22 Reflected SH intensity when the separation among the multilayer stacks is

larger than the coherence length of the laser pulse. The open circles indicate the

experimental data when the nonlinear layer is adsorbed. The square data are obtained when

no layer is adsorbed (the scale for this case has been multiplied by a factor of 10). The

continuous line shows the result of the theoretical model.

represented in Fig. 2.22 as squares and is seen to be negligible in comparison to the

dipolar contribution when the nonlinear layer is adsorbed.

In order to check the correctness of the values obtained for the nonlinear coefficient

ratios for the nonlinear layer we performed additional measurements with the same

mo no layer adsorbed at the surface of a different dielectric mirror. In this case we used a

dielectric mirror reflecting light at 532 nm at an angle of zero degrees, which was

characterized in the same way as the other mirrors (as explained in Appendix B). The

SH reflectivity measured for this mirror (open circles) is shown in Figure 2.23 together

with the theoretical curve obtained using the mirror parameters and the values of the

nonlinear coefficients given by Eq. 2.37. As can be seen, although the nonlinear slab is

the same, the reflectivity minima fall at different angles since the periodic structure
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Figure 2.23 Reflected SH intensity for the same situation as in Figure 2.21 when the

nonlinear slab is adsorbed on a different periodic structure.

acting as the substrate has been changed. The agreement between the experimental and

numerical simulation is also very good in this case.

In a subsequent step we will consider the configuration where the two mirrors are in

closer contact in order to obtain the truncated structure. The length of the defect is a

parameter that in the experimental setup cannot be accurately controlled (since the

defect thickness we seek is below the accuracy given by the micrometer), so the

experimental procedure is to align the mirrors, put them into contact (or almost contact)

and then measure the reflected SH as a function of the angle of incidence. The obtained

defect thickness for each case may be determined, since we have seen that the sharp

resonances in reflected SH appear at those angles for which local modes exist (Figure

2.13). Figure 2.20 gives us the defect length from the position of the reflected SH

resonances. Figure 2.24 shows the reflected SH intensity measured when the slab is

within the truncated periodic structure. As may be seen, a sharp resonance is obtained at
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Figure 2.24 Reflected SH intensity as a function of the angle of incidence, from the

multilayer stack described in the text. The angle is given relative to the normal of

the multilayer stacks. The filled circles indicate the experimental data while the

dashed curve is a guide for the eye.

28.7 degrees and a smaller one is seen at 63 degrees, while no SH radiation appears at

other angles within the gap. The defect length we have in this case is 250 nm, as can be

obtained from Figure 2.20.

In order to correlate the results obtained in both cases, when the nonlinear slab is within

the defect and when one of the mirrors is separated a distance much higher than the

coherence length, measurements of both curves were taken in the same experimental

conditions, since an absolute value of the emitted radiation was not measured. The

mirror with no layer, was not simply taken away in order to maintain the amount of

fundamental radiation upon the monolayer in both cases as equal as possible. The effect

introduced by the structure may be seen in Figure 2.25 in which both results are shown

together. A comparison of both curves indicates that at an angle of 28.7 deg.,

corresponding to a defect mode within the forbidden band, the generated SH intensity is

six times larger when the nonlinear interaction occurs in a mode of the microresonator
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Figure 2.25 Reflected SH intensity as a function of the angle of incidence measured for

the truncated periodic structure (full circles) and when the separation among the

multilayer stacks is larger than the coherence length of the laser pulse (open circles). The

continuous ciurves corresponds to the theonumerical prediction of the theoretical

analysis.The scales for the experimental data are the same. The scale of the theoretical

curve for the first case is reduced by a factor of 10 relative to the scale of the other

theoretical curve.

formed ;by the two multilayer stacks. The high energy density of this local mode is

responsible for the enhancement of several times of the nonlinear interaction in the

vicinity of the defect.

Near the band edge, the bending of the electromagnetic wave dispersion curve slightly

above or below the forbidden zone indicates that the group velocity approaches zero,

giving rise to an increased effective path length and a Van-Hove-type singularity in the

photon density of states for the one-dimensional lattice. The relevance of the effects

introduced by this change in group velocity and refractive index at the band edge has

been already discussed previously in this chapter. In our experiment, this leads to an

enhancement of the SH radiation at the angle of 63 deg. as shown. This enhancement,

predicted by Bloembergen and Sievers [Blo70] is a result of the periodicity built into
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the material, and its location in the angular spectrum is essentially independent of the

size and position of the defect. Our experimental measurement gives additional

confirmation to the existence of such effects in these kind of multilayered structures.

The nonlinear interaction in modes lying within the forbidden zone other than the defect

mode is inhibited by a destructive interference among the forward-generated wave, the

backward-reflected wave, and the dipoles oscillating at the SH frequency. As can be

seen in the Figure, SHG is completely suppressed for modes other than the defect mode

within the forbidden band. This suppression corresponds to the first experimental

observation of the inhibition of the radiation from a classical dipole source [Dow92]

(details to this respect will be given in next chapter).

A numerical simulation of the process, obtained through the expressions derived in

section 4, and using the parameters for the nonlinear coefficients, defect length

(obtained from the experimental measurements) and the geometrical and optical

parameters of the periodic structures (obtained with the method outlined in Appendix

B), is shown in Figure 2.25 as solid lines. The theoretical curves show that the relative

position and relative intensity of both resonances are in close agreement with the

experimental measurements. The scale for the theoretical curve in the case of the

structure with the defect is reduced by a factor of 10 relative to the scale of the

theoretical curve of Figure 2.22. The numerical prediction gives an enhancement of 80

times at the defect mode. This prediction is considerably larger than the enhancement

observed experimentally. This discrepancy probably arises from the spreading of the

laser beam, diffraction by imperfections in the multilayer stacks and imperfect

parallelism of the two stacks.

In order to further confirm that the theoretical values give us a good agreement we

should check that the conditions imposed in deriving the expressions in section 4 are

valid in the experimental case. As explained in section 4.1 of this chapter, the driving

term of the SH field is supposed to be given by the forward propagating component of

the fundamental field at the NL slab. For the structure used in the experiment it is seen

that the intensity of the forward propagating field is six times larger than the

corresponding intensity for the backward propagating component at the angle

corresponding to the defect mode. With these values, the expected error in the
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theoretical curve made if the backward propagating component at the fundamental field
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Figure 2.26 Reflected SH intensity measured for the same periodic structure of Figure

2.24 when the defect length is around 1700 nm and the incident fundamental is TE

polarized.

is neglected in the SHG process, should be of the order of 15%. A more detailed

calculation of the reflected SH intensity from the structure when the contribution of the

SH generation by the backward propagating component of the fundamental field at the

nonlinear slab is considered may be obtained by means of the same techniques

explained in previous sections, These effects should become more important as the

index contrast in the given structure is increased.

In order to see how the increasing of the defect length results in the appearance of an

increasing number of localized states within the band gap of the structure, we show in

Figure 2.26 the experimental results of the reflected SH intensity for the same periodic

structure when the defect length is around 1700 nm and the incident fundamental is TE

polarized instead of TM polarized as in previous cases. Here again the full circles

correspond to the SH reflected when the nonlinear slab is placed within the defect and
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the open circles represent the reflected SH intensity when one of the mirrors is placed at

a distance much higher than the coherence length.

A detailed analysis of the process of quadratic nonlinear interaction within a 1-

dimensional photonic crystal has been described including both theoretical modeling of

the problem and experimental evidence of the process.
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Chapter 3

Phase dependence of quadratic nonlinear radiation

within a 1-d photonic crystal

In the previous chapter, we studied experimentally and theoretically the SHG from a

sheet of nonlinear material located within an air gap (or "defect") in a 1-dimensiónal

photonic crystal. The fact that the nonlinear layer had to be adsorbed on one of the two

surfaces delimiting the air gap, prevented us from the possibility of locating the NL

layer at different positions within the defect. In this chapter, we study theoretically what

would occur if the NL layer could be located at different positions within the air gap.

We will see that this results in a change in the amplitude and phase of the SH light

generated (which accumulates around the defect at the localized state) at the slab. This

fact has a very large effect on the resulting interaction between the generated SH light

and the dipo les of the NL layer, enhancing or inhibiting their emission depending on the

values of amplitude and phase that the SH field takes at the position of the NL layer.

Further unexpected features such as emission in one direction and reabsorption in the

opposite direction also occur in certain conditions.

The control of the radiative properties of oscillating dipoles has been a subject of

interest during the last decades. Since the pioneering experiments performed by

Drexhage [Dre70] where the radiation of a molecular dipo le placed in front of a metallic

or dielectric surface was considered, it has been shown in many cases that the radiation

properties of the dipoles may be modified by changing the boundary conditions of the

problem. Inhibition of spontaneous emission of dipoles surrounded by a 3D periodic

distribution of dielectric material has been observed [Mar90][Yab89]. It is also possible

to observe strong alteration of such interaction in more simple ID systems where

radiation is emitted in only one or two directions [Dow92][Sul97][Tru95].

The modification of the free space emission rate of the dipo le is governed in all cases by

the change in the result of the product between the electromagnetic field and the current
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density vector. The SHG process described in the previous chapter constitutes a system

in which such effects can be studied. In this chapter we study theoretically the behavior

of the amplitude and relative phase of a field radiated at frequency 2a> through a

quadratic nonlinear interaction from a thin sheet of coherent dipo les placed in between

two identical dielectric multilayer mirrors separated by an air gap (defining a 1-D

photonic crystal with a defect), and that is "forced" to oscillate by an incident beam at

frequency a>. This interaction, explained in detail in chapter 1, will be considered as a

function of the position of the sheet within the air gap, as well as a function of the

orientation of the dipo les relative to the axes that define the dielectric structure.

Efficient dipole radiation not only requires a large field mode density in the material

structure at the frequency of the dipole source. Enhancement or inhibition phenomena

can occur even when the field-mode density is large. In some particular cases of 1-D

structures, these enhancement or inhibition phenomena may be directly linked to the

field intensity distribution inside the dielectric structure [Lid97][Bur97], in the sense

that the dipole emission responds to the local value of the field intensity distribution.

However, in general one can only establish a direct relation between this enhancement

or inhibition and the energy transfer from the dipole to the field or vice versa, which is

governed by the dot product of the field and the current density vectors. Thus the

amount of this energy transfer can only be fully determined if both: the amplitude or

intensity of the electromagnetic field, and the relative phase between this field and the

oscillation of the dipole source are known.

The classical nature of this type of interaction allows for a clear establishment of the

phase relation between the dipole oscillation and the phase of the radiated field. We

show below that in addition to the previously reported change in the field intensity

distribution inside such structure [Dow92][Lid97], there is also a strong modification of

the phase difference between the field at o), that induces a polarization oscillation at

frequency 2a>, and the field radiated at such frequency. Inside a microcavity the phase

of the radiated field does not lag the oscillation of the dipole source by n/2 as in free

space, but it turns out to be strongly dependent on the position of the dipole sheet within

the air gap and the orientation of the polarization vector relative to the axes defined by

the microcavity symmetry. The value of this phase difference strongly affects the

amount of energy transferred from the dipoles to the field. In particular, we will show
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that, for certain dipole sheet positions, the phase of one of the counterpropagating

components of the field at 2o> may even advance the phase of the radiation source,

indicating that the energy radiated at frequency 2 co can be transferred back to the

oscillating dipole, resulting in a strong "inhibition" of the radiation from such classical

dipole source. This type of "inhibition" can also be observed from the second harmonic

generation of a thin dipole sheet placed in front of a single mirror [Kau98][Ram95]. An

interesting feature of these energy transfer processes from the dipole sheet to the field is

that it is asymmetric with respect to the forward-backward field propagation directions,

so that the energy can be radiated in one direction and then lost by the field coming in

the opposite direction.

The results reported in the present chapter are not limited to the nonlinear quadratic

interaction considered, and their applicability can be extended to a wider range of cases

since the radiation at 2co of a thin layer of dipoles "forced" by an incident beam at

frequency co, is formally equivalent to the radiation of a sheet of forced classical linear

dipoles. It can be useful, in particular, to understand radiation emission from

microcavity lasers and optically or electrically injected passive microcavities, filled with

organic or semiconductor films, subjects of present large technological and scientific

interest.

1. Quadratic second harmonic radiation by oscillating dipoles

We want to study in this section the dependence of the total emission of SH radiation by

the structure used in chapter 1, when some parameters are changed such as the position

of the nonlinear slab within the defect or the dipole orientation.

The generation of SH radiation from the slab driven by the fundamental field incident

on the structure is calculated by means of the formalism introduced in section 4 of

chapter 2. The general expression for the electromagnetic radiation from a plane sheet

of quadratic nonlinear dipoles is found by solving Eq. 2.20 for the field Eia,. To obtain a

complete solution that fully describes the wave transfer mechanism, one should

consider the additional equation 2.21 for the field at co. However, in the approximation

of no depletion of the intense field at co an analytical solution can be obtained from just
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Eq. 2.20. as shown in chapter 2. It should be noted that even in this approximation

energy may be transferred back from the field at 2co to the oscillating dipoles. This

transfer is only seen as a depletion of one (forward or backward propagating) of the

components of the field at 2<y that is fully described by a general solution of Eq. 2.20.

Note also that if the nonlinear polarization is substituted by an equivalent current source

£pNL

J = , the above equation is equivalent to the equation that describes the
at

radiation from a plane sheet of linear dipoles forced at frequency 2co. In the case

considered here, the oscillation amplitude and phase of these dipoles is completely

determined by those of the forcing field at frequency co.

The emission of radiation for the periodic structure with a defect described in chapter 2,

will be considered now as a fonction of the position of the nonlinear layer within the

defect and molecular dipole orientation. As seen in the previous chapter such structure

provides sharp resonances with localized modes at certain angles of incidence and

regions where the radiation is inhibited at other angles within the gap. We will first

center in the study of the case for which the beam at the fundamental frequency is

incident at the angle corresponding to the resonance and later we will extend the results

to the case of incidence at any other angle within the gap. We will first take in our study

the particular values for the structure obtained in the experimental results of the

previous chapter so the local mode appears at the incident angle of 28.7 degrees.

Incidence at resonance

In this case the angle of incidence of the fundamental field is such that the generated SH

field is resonant with the mode density peak defining the localized state shown in Figure

2.24 , where a strong enhancement of the SH radiation was observed. As pointed out in

the introduction, however, resonance with the density of modes is not the only factor

determining the dipole radiation efficiency. Figure 3.2 shows the total intensity radiated

at the frequency 2co out of the material structure in the forward and backward directions,

calculated by means of the transfer method outlined in chapter 2 (Eq. 2.36), as a

function of the position (z0) of the nonlinear layer within the defect, when the beam at

o is incident at the angle corresponding to the localized state and for different values of

the orientation of the molecular dipoles in the nonlinear layer. As can be seen in Figure

3.1, this orientation is defined by giving the angle, a, that the resulting electric
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nonlinear slab

Figure 3.1 Schematic diagram of the truncated periodic structure studied. The origin of

the coordinate system used is taken at the beginning of the defect. The fields at the

fundamental and second-harmonic frequency propagate in the direction of the

wavevector k determined by the angle, d, with respect to the z-axis. The dipole

orientation was defined through the angle a, as can be seen from the figure.

polarization vector forms with respect to the direction parallel to the mirror planes

through the relation tana = P^1 ¡P^1 . The thin nonlinear layer of dipo les is assumed to

have a CooV symmetry for all the values of the angle cc=0, for which an orientation of the

dipoles parallel to the X axis is assumed. With this symmetry and when the incident

field is TM polarized (as it is the case assumed hi the following) the component Pf1 of

the electric polarization vector vanishes.

The intensity curves for the field at 2co hi Figure 3.2 are normalized to the values of the

total intensity for the field at 2co radiated by the nonlinear layer in free space (i.e. when

no structure is present) for each case. From this figure is observed that a strong

enhancement of the intensity at 2w is found for most of the molecular dipole

orientations, except for the orientation normal to the mirror planes (a=90 deg.). For this

particular case, inhibition instead of enhancement is obtained when the nonlinear layer

is placed close to the center of the defect. Note that a maximum enhancement of 350
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Figure 3.2 Total emission at frequency 2o> (both in the forward (transmission) and

backward (reflection) directions) of the ID truncated periodic structure when a thin layer

of nonlinear material is placed within the defect region as a function of the position (Zg) of

that thin layer within the defect. This emission is given for nine different dipole

orientations: a, cc=0°; b, a=20°; c, a=30°; d, a=40°; e, a=50°; f, a=60°; g, a=70°; h, a=80°;

i, a=90°. At the left boundary of the defect the position is 0 nm, and at the right boundary

the position is 250 nm, under the assumption that the incident beam at a> propagates from

left to right.

times the emission in air is found in the same position when dipoles are oriented parallel

to the mirror planes (a=0 deg.). From these results it may be immediately seen the

strong dependence of the dipole radiation with the environmental conditions imposed by

the structure. Varying the position of the nonlinear slab inside the defect results in a
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strong variation of the enhancement factor (the radiated intensity is increased ten times

for instance for the case a=0, when the slab is moved to the center of the defect.) as can

be also seen from the same Figure.

This variation of intensity with the layer position may be directly related, in some

particular cases, to the field distribution within the cavity as pointed out by some

authors [Lid97]. In our present case, the additional dependence with the dipole

orientation is shown to be important in the resulting emitted intensity. The change in the

conversion efficiency as the angle is changed may be seen in Figure 3.2, since the

position of maximum enhancement changes from the center of the defect, for dipole

orientation parallel to the mirror plane (Figure 3.2(a)), to the defect edge when the angle

is close to the perpendicular to the mirror planes (Figure 3.2 (i)).

Let us study the possible relationship of the radiation patterns shown in Figure 3.2 with

the field distribution inside the structure. The calculation of the field distribution may be

taken up by the transfer matrix method. The total field in each layer is given by the

expressions given in chapter 2. Once the reflectance and transmittance of the structure

are calculated by means of Eq. 2.36, the complex amplitudes are obtained after

multiplication of the corresponding matrices relating the fields in different layers.

The distribution for the field amplitude at the second-harmonic frequency 2co inside the

structure is shown in Figure 3.3a when the orientation of the dipoles is such that cc=0

deg. and in Figure 3.3b, when a=90 deg., for two different positions of the nonlinear

layer within the gap. The field amplitude in each case has been normalized to the value

of the amplitude of the field at 2<y reflected from the nonlinear layer in free space. It is

observed from these figures that the field amplitude distribution of the second harmonic

field within the structure, which corresponds to the resonant mode of the structure,

remains essentially the same in all the cases and has its main peak localized in the

defect region. As can be seen in Figure 3.3 the total field localized within the structure,

however, is strongly dependent on the dipole orientation and the nonlinear layer

position within the defect.
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For the case a=Q° (Figure 3.3(a)), the total field amplitude in the structure increases 4.5

times as the nonlinear layer is moved from the edge (curve A) to the center (curve B) of

the air gap, whereas for o=90° (Figure 3.3(b)), the field amplitude decreases 440 times

in the same conditions. These variations in the field amplitude have a direct influence

on the energy radiated out from the structure, since this field distribution extends up to

the outer surfaces of the structure(right and left parts in Figures 3.3(a) an 3.3(b)) and

propagates through the external free space, in the forward and backward directions.

These emission variations with the nonlinear layer position indicate that, in general, the

intensity at 2co radiated out of the structure as a function of the dipole layer position

(Figure 3.2) is not proportional to the field amplitude distribution within the air gap or

the density of modes, since as have been shown, a maximum in the amplitude

distribution for the field at 2a> is always observed at the middle of the air gap (Figures

3.3(a) and 3.3(b)), while the maximum of the field radiated changes with the

polarization vector orientation and, as may be seen, it reaches its maximum value at the

defect edges and not at the center of the defect when the dipo les are oriented at enough

high angles with respect to the normal to the layer planes. As we have seen in the

preceding paragraph, as we move the monolayer inside the defect, the total field inside

the cavity changes in magnitude keeping its envelope corresponding to the resonant

mode for the structure. In Figure 3.4 the total field amplitude at 2ct) (thick curve) ai the

location of the nonlinear layer is shown as a fonction of the layer position (z0) within

the air gap, for different values of the dipole orientation. The field amplitude in each

case has been normalized to the value of the amplitude of the field at 2a> reflected from

the nonlinear layer in free space. The variations of the intensity at 2o) radiated as a

function of the nonlinear layer position (Figure 3.2) are qualitatively correlated with the

variations of the field amplitude at the nonlinear layer (Figure 3.4, thick curve), but

these changes are clearly not directly proportional to each other, especially for o=90°

(Figure 3.4(d)).

The calculated field amplitudes at each layer, obtained by means of the transfer matrix

method, were used to obtain the stationary radiation distribution out of the structure

(Figure 3.2). Note that in the calculation of these fields, all reflections within the

structure are taken into account and give us all the information necessary to fully
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Figure 3.3 (a) Field amputile distribution inside the ID truncated periodic structure when

the nonlinear layer is at Zo=0 nm (A) and Zo=125 nm (B), and the dipole orientation is

such that cc=0°. The field at 2co is resonant with the localized state (incidence angle equal

to 28.7°). The vertical broken lines indicate the positions of the interfaces of the structure.

(b) The same as (a), for ot=90°. -
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Figure 3.4 Total field amplitude (thick curve), forward propagating field amplitude

(thin curve), and backward propagating field amplitude (broken curve) at the location

of the nonlinear layer, as a function of the layer position (z0) inside the defect of the

ID truncated periodic structure, for four different dipole orientations, a, ct=0°; b,

o=30°; c, «=60°; d, «=90°, when the incident field at co is incident at a

resonance angle of 28.7°.

calculate the intensity radiated by the structure. Nevertheless, as we have seen from the

preceding paragraph, the intensity radiated by the structure is not, in the most general

case, directly related to the field-amplitude distribution inside the structure as it is the

case for some particular parameter settings. In these particular cases, the measure of the

outgoing radiation could be used to map the field distribution within the structure

[Bur97]. In the more general case, this radiated intensity should be directly related to

the energy transfer between the oscillating dipoles and the fields. In order to see this

point in further detail, the energy transfer mechanism from the dipoles to the field ( or

viceversa) will be analyzed in the next section.
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2. Energy Transfer in nonlinear monolayers

In the preceding section we showed that in the case of coupling the SH radiation into a

local mode of the structure, where an enhancement of SH radiation is obtained, the

radiation emission rate varies strongly as we move the monolayer within the defect or

change the dipole orientation. In this section we will study the energy transfer between

the oscillating dipoles and the field at the frequency 2co in order to obtain additional

information about the way in which the enhancement or inhibition of radiation by the

structures takes place.

It is known from dipole radiation theory that the rate at which the energy per unit

volume is transferred from the nonlinear source to the field at 2<a is given by the

8P /quantity - J2(U • E2(0 , where J2fi) =
 N/4, is the current density vector at frequency 2«,

which is fixed in amplitude and phase by the strong fundamental field at the frequency

co, and E2ft)is the field at frequency 2oj that exists at the position of the source. This

means that not only the amplitude of the field, but also the orientation and phase

(relative to those of the oscillating dipoles at 2o>) determine the energy transferred from

the dipolar source to the field. The calculation of the energy transferred — J2(B • E2(B can

be performed either directly, or by the use of the well known relationship

3.1.

that is based on the continuity equation for time averaged fields [Jackson]. The fields

appearing in the equation are the complex representations of the electric field and

magnetic induction respectively. The left-hand side of Eq. 3.1 corresponds to the work

done by the dipoles on the field at 2co in a volume F, and can be easily determined in

the 1-D system considered, by performing the integral on the right-hand side on a

surface S enclosing a rectangular box of volume V. In order to evaluate such integral,

we should calculate first the electric and magnetic fields at both sides of the nonlinear

layer. These fields, which result from the generated radiation at the slab and the effect
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->••*- -Nonlinear slab.

Figure 3.5 Schematic representation of the nonlinear slab and the fields present at this

point of the structure. The dashed line gives the surface enclosing the integration volume.

The size of the nonlinear slab doesn't scale it's real dimensions with respect to the defect

length.

of the multiple reflections within the structure, were obtained previously with the

transfer matrix technique and were already used to calculate the emission of SH

radiation by the structure (Figure 3.2).

Figure 3.5 shows the given fields at the surfaces of the nonlinear slab and the

integration surface we will use in performing the integral of Eq. 3.1. The position of the

nonlinear slab surfaces will be denoted by z0=0. and z0~S+. The total electric field and

magnetic induction at each side of the nonlinear slab are written as:

and 3.2.
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The corresponding fields at the right side of the nonlinear slab are:

and 3.3.

where £¿+ and £¿" are the complex amplitudes of the electric field in the forward and

backward propagating directions at the outer side of the left surface of the nonlinear

slab at z0=0., and H% and H^ are the corresponding complex amplitudes for the

magnetic induction at the same position. The corresponding fields at the right side of the

nonlinear slab, at z0=S+ are given by the terms £%+ and E2£ for the electric field and

H^ and H^ for the magnetic induction respectively. The fields at the right side of

the slab are related to the fields at the left through equation 2.30 in chapter 2. The

magnetic induction is obtained from the electric field from Maxwell equations. The

unitary vectors in the direction of each component of the electromagnetic field are given

by the expressions (Appendix A gives the criterion used in this work for the direction of

the fields at each boundary):

A A _ A

e± = costò+sin0k

and 3.4.

h ± = ± j

kd: and ktz are the components of the wavevector in the z direction at each side of the

nonlinear slab. In our particular case we will assume the same medium at each side of

the slab to be air (the use of a different medium changes the absolute values of the

emitted radiation, but the qualitative aspects of the process remain unchanged) so the

subindex d and í will be omitted in the remaining expressions. 9 denotes the
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propagation direction of the beam with respect to the normal at the surface and in this

case is the angle corresponding to the localized state of the structure. By taking into

account the explicit form of the unit vectors given by eq. 3.4 and using Maxwell

equation we can write the expression for the electric field at each side of the mono layer

as:

/Vo ) + El- exp(- ik2z0 ))cos0 + k(- E% expfcz. ) + E£ exp(- tk,z.
- cut))

Zo-6* 3.5.

E2/4feexP('VJ+£¿-exp(-/Mo^^^
exp(i(kxx — cat))

the corresponding expressions for the magnetic induction are given by:

z0=0.

ï kl—

3.6.

J

Once we have the expressions for the fields at each side of the nonlinear slab, we can

perform the integral that gives the energy transfer (ET) from the oscillating dipoles to

the field at the frequency 2co. By dividing the surface enclosing the chosen volume into

the three parts shown in Figure 3.5, we obtain:

3.7.
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where the contribution to the surface integral from the surfaces normal to the plane

sheet (Ss in Figure 3.5) have been omitted since they cancel each other giving no net

contribution to the energy transfer. The expression in equation 3.7 has been written in

terms of the averaged Poynting vector S = —Re(ExH*J, and the differential surface

elements appearing in the integrals are given explicitly by (Figure 3.5)
A A

ds^ = -kds and dss+ — kds. By performing the dot product in S, using equations 3.5

and 3.6 we obtain:

¿

4. P**

2

ivc ¿me/i u
Z |_0)/¿0 V

k Cn"f}(\F2a>
cost/ pL+

ûî«o V

and

-í-W-2î//lôflj

+-Re
2

-cos

3.8.

By substituting these expressions in 3.7 we obtain the final expression for the energy

transfer from the dipoles to the field at 2co to be:

"L- 3.9.

where n is the refraction index within the defect and #is the angle of propagation of the

field at 2<a with respect to the z direction. At this point, we recall the fact that the values

of the fields needed for the calculation of the ET were previously obtained with the

transfer matrix method and that these fields are related through equation 2.30 which

accounts for the nonlinear quadratic interaction within the slab. The final expression for

the energy transfer may be separated into two distinct contributions, one for the forward

(+) and another for the backward (-) propagating components of the field.
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nc£0cos&

3.10.

negeos 91

The total energy transfer from the dipo les to the field, calculated from Equation 3.9 is

shown as the thick curves in Figure 3.6, normalized to the energy transfer of a nonlinear

layer emitting in free space, for the same cases studied in Figure 3.4. As expected, the

total intensity emitted by the structure (Figure 3.2) equals the energy transfer from the

dipo les to the field at 2o) (Figure 3.6). As the resultant stationary field at the second-

harmonic frequency within the structure can be written as a superposition of two terms

corresponding to forward and backward propagating plane waves, the separation of the

total energy transfer (Eq. 3.9) into these two contributions allows for the possibility of

studying how each one of these components contribute to the resulting conversion

efficiency. These separate energy transfers from the dipole sheet to the forward (thin

line) and backward (dashed line) components of the field at the nonlinear layer positicn

are also shown in Figure 3.6. Interestingly enough, these two energy transfers are

different from each other and, in particular, it can be seen that there are certain regions

that give negative energy transfer for one of these components as is, for example, the

case for the forward propagating contribution when o=0° and the nonlinear layer is

placed between 0 and 30 nm within the air gap (Figure 3.6(a)). This means that for such

conditions the corresponding field at the nonlinear layer position is losing energy, in

spite of the fact that the total energy transfer is always positive. Thus what occurs is that

the dipoles radiate the field in one direction, this field is reflected by the mirror

structure, it comes back in the opposite direction, and the energy is again transferred

back, partially, to the dipoles being lost by the corresponding component of the field.

Since we are calculating the emission of the structure in steady state, we do not see the

contributions of the different components separately but what we observe is the

resulting emission rate arising from the whole interaction. Because of this fact, it may

even occur that the field radiated by the dipoles in one direction is larger than in free
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Figure 3.6 Energy transfer from the dipole sheet, to the total field at 2co (thick full

curve), to the forward propagating field at 2<o (thin full curve), and to the backward

propagating field at 2o (broken curve), as a function of the position of the nonlinear layer

inside the defect of the ID truncated periodic structure, for the same four different dipole

orientations and incidence angle as in figure 3.4. The grey regions indicate the phase

difference values at which the energy transfer is negative (absorption)

space, but the total energy getting out of the structure is smaller than in free space, since

the net conversion efficiency is partially reduced in the opposite direction. For instance,

this can be seen in Figure 3.6 (d) when the nonlinear layer position is close to (but not

exactly at) the center of the air gap. At the center of the air gap, transfer of energy to the

field at 2o> is completely inhibited in both directions, so that the energy radiated outside

the structure is also below the energy radiated in free space. For the case a=60°, we see

that the energy transfer is provided by the backward component of the field while the

forward propagating component does not give contribution. This fact is explained in this

particular case, since the angle between the forward propagating field and the oscillating

dipoles is approximately 90° in this case, and consequently no energy may be

transferred in this case.
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This asymmetry in the forward-backward dipole radiation as well as the previous results

described above cannot be understood by looking only at the field amplitude value at

the dipole layer position. In effect, Figure 3.4 shows that the field amplitude at the layer

position is very similar for the forward (thin full curve) and the backward (broken

curve) field components. Clearly the phase difference between the oscillation of the

dipo les and the field components will play a dominant role in this process.

3. Phase dependence of quadratic nonlinear radiation in

periodic structures

In this section we will study the phase difference between the generated field at the

frequency 2co at the nonlinear slab position and the oscillating dipoles, in order to see

how this phase difference is modified by the presence of the structure and how this

factor affects the resulting emission rate at frequency 2®, The dependence of this

quantity with the monolayer position within the defect of the microresonator and the

orientation of the dipoles will be also studied showing a close relation between this

phase difference and the resulting energy transfer to the field.

In order to calculate this phase difference we will write the fields at the position of the

nonlinear slab, already calculated in previous sections by means of the transfer matrix

method, as:

expi(<f>E+ - 2cat)+e_\Ej' expi(jE_ - 2ax) 3.11.

where the subindex j =L, R refers to the fields at the right or left boundaries of the

nonlinear slab respectively. The oscillation of the dipoles at the second harmonic

frequency, driven by the field at the fundamental through the quadratic nonlinear

interaction may be written in a similar form as:

3.12.
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where the nonlinear polarization is obtained after contraction of the second order

susceptibility tensor with the square of the field at the fundamental frequency as usual.

Only the forward component is considered since this is the only component for which

generation of second-harmonic is considered. Once the fields are written in this form,

we calculate the phase difference between each of the components of the field (forward

(+) and backward propagating (-)) and the polarization vector. When the nonlinear layer

is considered to emit in free space with no structure present, a phase difference of 7i/2 is

obtained corresponding to a maximum in the energy transfer from the dipoles to the

second-harmonic field. Figure 3.7 shows the phase difference between the dipo le

oscillation and the forward (full curve) or backward (broken curve) field oscillations at

the position of the dipole layer, for the same cases of dipole orientation shown in

Figures 3.4 and 3.6. It can be seen that inside the truncated periodic structure, the phase

of the radiated field is strongly dependent on the position of the dipole sheet within the

air gap and the orientation of the dipoles. When this dependence is studied, one finds, as

expected, that when the energy transfer shown in Figure 3.6 for the corresponding

forward or backward field component is positive (i.e. the energy is transferred from the

oscillating dipole to the field ), the phase difference ranges from 0° to 180° (Figure 3.7).

In contrast, when the energy transfer for the forward or backward components of the

field is negative (i.e. the energy is lost by the corresponding component of the field

being transferred to the dipoles), the phase difference ranges from 0 to -180° or from

180 to 360° (Figure 3.7). In this way, the variations in the energy transfer for each one

of the components are related to a corresponding change in the phase relation between

the resulting field at the nonlinear slab posjtion and the oscillating dipoles driven by the

fundamental field.

By comparing Figures 3.4 and 3.6, we can observe that the peak of maximum field

amplitude for the forward or backward components of the field (for all four dipole

orientations), Figure 3.4, does not coincide with the location of maximum energy

transfer to the corresponding component, Figure 3.6. Inspection of Figure 3.7 indicates

that the peak of maximum energy transfer is shifted away from the peak of maximum

field amplitude and is pulled towards the position of the nonlinear layer where the phase

difference is exactly 90°, a phase difference that in free space leads to maximum

transfer of energy from the dipole.oscillation to the field at the frequency 2co.
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Figure 3.7 Phase difference between the dipole oscillation and the forward propagating

field at 2o) (full curve), and the backward propagating field at 2» (broken curve) as a

function of the position of the nonlinear layer inside the defect of the ID truncated

periodic structure, for the same four different dipole orientations and angle of incidence

shown in figure 3.4. The grey regions indicate the phase difference values at which the

energy transfer is negative (absorption)

Nevertheless, this pulling from one component of the field is compensated with a

pulling in the opposite direction by the corresponding counterpropagating component of

the field, and for most of the dipole orientations, the total field amplitude distribution

(shown in Figure 3.4) approximately mimics the total energy transfer shown in Figure

3.6, as already pointed out above. The most complex case is that with oc=90°, where the

total energy transfer as a function of the layer position is strongly influenced by the fast

variations of both the phase and the amplitude with the nonlinear layer position.

4. Incidence angle out of resonance

We have been studying in the previous sections how the presence of the structure

affects the emission rate of the nonlinear slab, when the angle of incidence of the
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fundamental field is such that the SH light is resonant with the local mode. It has been

shown that the enhancement factor may be improved by changing the position of the

monolayer within the defect or the dipole orientation of the slab. This behavior was

shown to be correlated to the associated variation in the phase difference between the

field and the oscillating dipoles. As it was shown in chapter 2, when the incidence angle

does not correspond to the resonant angle for the given structure, inhibition instead of

enhancement is observed for the SH emission of the structure. In this section we analyze

how the ideas given for the resonant case may be equally applied in the non-resonant

cases in order to explain how the inhibition process takes place.

If the incidence angle of the fundamental field is detuned from the value that makes the

SH generated field to be on resonance with the localized state of the structure, the

density of states decreases very quickly and thus the SH intensity also decreases fast to

zero, as was experimentally demonstrated in the previous chapter. Let us consider an

incidence angle not far from resonance, for which the SH intensity generated is still

noticeable, and let us study the emission process as previously done for the resonant

case. Figure 3.8 shows the total SH emission of the structure normalized to the emission

in free space, when the fundamental field is incident at an angle of 32°, for the four

dipole orientations shown in Figures 3.4, 3.6 and 3.7. From this figure it can be seen

that the emission dependence as a function of the monolayer position within the defect

is very similar to that found for the resonant case (Figure 3.2), but in this case the SH

radiation is strongly inhibited instead of enhanced, i.e., for the case of a=0° SH

radiation is inhibited by a factor of 5 in the same position for which an enhancement

factor of 350 is found for the resonant case. A much higher inhibition factor is found at

other positions and dipole orientations as can be seen in Figure 3.8.

The calculation of the energy transfer between the field and dipoles may be performed

in the same way as for the resonant case. This energy transfer is shown in Figure 3.9. It

can be seen that the total energy transfer equals the total emitted intensity (Figure 3.8)

also in this case. However, the total energy radiated from the dipoles (thick continuous

line) is much smaller than in free space indicating that the SH radiation is inhibited in

this case. When the energy transfer to each one of the components of the field is

calculated in the same way as for the resonant case, it is observed that the energy
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Figure 3.8 Total emission at frequency 2eo (both in the forward (transmission) and

backward (reflection) directions) of the ID truncated periodic structure when a thin layer

of nonlinear material is placed within the defect region as a function of the position (z0) of

that thin layer within the defect. This emission is given for four different dipole

orientations: a, a=0°; b, a=30°; c, a=60°; d, a=90°. At the left boundary of the defect the

position is 0 nm, and at the right boundary the position is 250 nm, under the assumption

that the incident beam at oo propagates from left to right. The incidence angle for the

fundamental radiation is 32°

transfer at the nonlinear layer position can still be larger than in free space for one of the

components, so a significant field can still be present within the structure (see for

example that in Figure 3.9 (a) where the energy transfer to the forward propagating

component of the field is enhanced 3 times with respect to the emission in free space

when the slab is at the position z=200 nm within the defect). This energy transfer to the

field component at the nonlinear slab position in one direction is almost completely

compensated by a loss of energy from the corresponding cöunterpropagating field

component at the same position resulting in a net reduction of the radiated energy from
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Figure 3.9 Energy transfer to the total field at 2» (thick full curve), energy transfer to the

forward propagating field at 2<a (thin full curve), and energy transfer to the backward

propagating field at 2o> (broken curve) as a function of the position of the nonlinear layer

inside the defect of the ID truncated periodic structure, for the same four different dipole

orientations shown in Figure 3.6, when the beam at o> is incident at an angle of 32°.

the whole structure. A similar phenomenon of radiation in one direction and absorption

from the counterpropagating direction was observed by Kauranen et al. [Kau95], where

a thin nonlinear layer of material was placed in front of a single mirror. Complete dipole

emission inhibition, in both directions, only occurs in the very symmetric position

where the nonlinear layer is exactly at the center of the air gap (which is also the center

of the whole structure) (Figures 3.9(a)-3.9(d)).

The phase difference may be calculated in the same way indicated for the resonant case

in order to see its variation in this case. It is found a strong variation in the phase

difference at both sides of the monolayer. In Figure 3.10 it is shown the phase

difference between the dipoles and the forward and backward propagating components
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Figure 3.10 Phase difference between the dipole oscillation and the forward

propagating field at 2eo (full curve) at z=0. (L) and at z=ô+ (R), and the backward

propagating field at 2co (broken curve) at z=0.(L) and at z=5+ (R) as a function of the

position of the nonlinear layer inside the defect o/the ID truncated periodic structure,

for the same four different dipole orientations and angle of incidence shown in figure

3.9. The grey regions indicate the phase difference values at which the energy transfer

is negative (absorption)

of the SH field at the slab surfaces, in the positions z=0. and z=<5V . It is seen

immediately that there exists a change in phase difference when crossing the slab both

in the forward and in the backward propagating directions. We can take the averaged

value of the phase at each side of the slab to be the phase at the nonlinear slab position

for each one of the components of the field. By looking at this averaged value we see

that the corresponding regions with positive energy transfer are related to phase

difference values between 0° and 180° and regions with negative energy transfer are

related to values between 180° and 360° or between 0° and -180°. In this way we see

that the change in phase difference is also playing a determinant role in the inhibition

process.
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When we study the energy transfer and phase difference at other angles within the gap

we see a similar behavior to that observed at this position, with positive energy transfer

to one of the components of the field which is lost by the counterpropagating

component.

It has been shown by considering this quadratic nonlinear radiation of a plane of

oscillating dipo les within the ID photonic crystal that not only the field distribution but

also the phase difference plays a determining role in the process of energy transfer that

defines the radiative properties of the dipo les within the structure. This energy transfer

mechanism has been found to be very different to that found in free space and strongly

dependent on the position of the dipoles as well as on their orientation. We have also

seen that one can distinguish two types of radiation inhibition: one where there is no

transfer of energy- to either of the counterpropagating components of the field, and

another one where one of the components loses the energy that is transferred to the

other counterpropagating component.
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