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Abstract

This thesis consists three chapters on topics in monetary economics and
applied macroeconomics. In the first chapter, I consider a framework
where the central bank has private information about future economic
conditions. Agents update their beliefs according to Bayes’ theorem.
Policy actions play a signaling role, and may therefore have an impact
on both short and long-term interest rates. I discuss the implications of
information frictions for the design of optimal simple rule. In the second
chapter, I explore the role of market power for the optimal choice of infla-
tion index for a central bank to stabilize In a framework with cross-sector
heterogeneities in both nominal rigidity and market power. The optimal
weight attached to inflation in a sector is increasing in this sector’s: i)
price stickiness (stickiness channel) and ii) degree of market competition
(competition channel). Moreover, if firms in a more competitive sector
adjust their price more frequently as predicted by costly price adjustment
models, the competition channel offsets the stickiness channel. In the
third chapter, I show that for short horizon exchange rate predictability,
the simple random walk model outperforms professional forecasts. A
new puzzle arises: why do professional forecasters not adopt the simple
random walk model to provide a more accurate estimate? I provide an
explanation based on ambiguity averse forecasters.
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Resum

Aquesta tesi està compresa per tres capı́tols que tracten temes en econo-
mia monetària i macroeconomia aplicada. En el primer capı́tols considero
un marc teòric en el qual el banc central té informació privada respecte
les condicions econòmiques futures. Els agents econòmics actualitzen les
seves creences en base al teorema de Bayes. Les accions del banc tenen
un paper senyalador, i poden tenir un impacte en els tipus d’interès a curt
i llarg termini. En aquest marc, discuteixo el paper de les friccions de la
informació a l’hora de dissenyar una regla monetària simple. En el se-
gon capı́tols exploro el paper del poder de mercat en l’elecció òptima de
l’ı́ndex de preus a ser estabilitzat. En aquest cas considero un marc teòric
en el qual les rigideses nominals i el poder de mercat difereixen entre sec-
tors. El pes òptim assignat a la inflació d’un sector és creixent en la rigide-
sa dels preus (efecte rigidesa) i en el nivell de competició (efecte compe-
tició) d’aquest sector. Si les empreses en un sector competitiu ajusten els
preus més freqüentment, tal com prediuen els models que consideren un
ajust de preus costós, l’efecte competició contrarestarà l’efecte rigidesa.
Finalment, en el tercer capı́tols , demostro que per a predir els tipus de
canvi a curt termini, un simple model random walk supera les prediccions
professionals. D’aquesta observació sorgeix una nova incògnita: per què
els professionals no adopten un model random walk per oferir unes pre-
diccions més encertades? En aquest capı́tols mostro com tal incògnita es
pot explicar en base a l’aversió a l’ambigüitat dels professionals.
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Preface

This thesis consists three chapters on topics in monetary economics and
applied macroeconomics. The first chapter of the thesis studies the in-
formation channel of monetary policy in a model where the central bank
has superior information regarding news shock. Monetary policy shocks
affect interest rates at long horizons (10 years or more). Furthermore,
the private sector’s real GDP forecasts are revised upward in response to
a monetary tightening. These facts challenge the prevailing theories in
academic and policy circles, which are based on the paradigm that mone-
tary policy has limited long-run effects and a monetary policy tightening
should depress agents? beliefs about real GDP. In this paper, I propose a
micro-founded model to rationalize those facts, based on the information
channel of monetary policy. I consider a framework where the central
bank has private information about future economic conditions. Agents
update their beliefs according to Bayes’ theorem. Policy actions play a
signaling role, and may therefore have an impact on both short and long-
term interest rates. Moreover, I provide novel empirical facts that the
aforementioned responses are stronger when monetary shocks are expan-
sionary. An extension of the model with ambiguity averse agents and
ambiguous signals rationalizes such an asymmetry. Finally, I discuss the
implications of information frictions for the design of optimal simple rule.

The second chapter explores the role of market power for the design of
the optimal monetary policy. Existing empirical evidence suggest cross-
sector heterogeneities in both nominal rigidity and market power. This
paper studies the optimal choice of inflation index for a central bank to
stabilize in a framework that embeds those features. The optimal weight
attached to inflation in a sector is increasing in this sector’s: i) price stick-
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iness (stickiness channel) and ii) degree of market competition (compe-
tition channel). Moreover, if firms in a more competitive sector adjust
their price more frequently as predicted by costly price adjustment mod-
els, the competition channel offsets the stickiness channel. The finding
challenges the conventional wisdom that the central bank should attach
a higher weight to a sector with a higher degree of nominal rigidity, and
supports the current practice of central banks around the world (CPI tar-
geting).

In the third chapter, I propose and rationalize puzzles related to the
professional forecasts of exchange rates. For short horizon exchange rate
predictability, the simple random walk model outperforms professional
forecasts. A new puzzle arises: why do professional forecasters not adopt
the simple random walk model to provide a more accurate estimate? This
paper provides an explanation. In this framework, the forecaster faces
model uncertainty and reports the forecast that minimizes the forecast er-
ror under the worst-case scenario. Therefore professional forecasts are
intentionally suboptimal. Estimation results show that the model matches
the empirical puzzle. In addition, the model predicts that the forecaster
substantially underreacts to current news, which is consistent with em-
pirical facts provided in this paper. Moreover, the null of ”rationality”
is rejected using simulated data confirming existing findings even though
forecasters in the model perform optimally.
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Chapter 1

TERM STRUCTURE,
FORECAST REVISION AND
THE INFORMATION
CHANNEL OF MONETARY
POLICY

1.1 Introduction

I emphasize two facts that are inconsistent with the predictions of a stan-
dard New Keynesian (NK thereafter) model. Fact 1: monetary policy
shocks affect long-term interest rates (10 years or more). And Fact 2:
the private sector’s real GDP forecasts are revised upward in response
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to a monetary tightening.1 Since the long-term rate is the weighted av-
erage of the current and expected future short-term rate, the significant
impacts of monetary shocks on long-term rates imply that monetary pol-
icy shocks have highly persistent effects on the real economy for more
than 10 years! Clearly, this is contradictory to NK models, which are
based on the paradigm that monetary policy has limited long-run impacts.
Moreover, NK models predict that agents’ expected real GDP is revised
downward in response to a monetary tightening. A sign that is the oppo-
site of what we observe in data!

The goal of this paper is to provide a micro-founded model that ratio-
nalizes those facts. I consider a framework where the central bank has pri-
vate information about future economic conditions. Agents update their
beliefs according to Bayes’ rule. Policy actions play a signaling role, and
may thus generate the aforementioned empirical facts. I can then discuss
policy implications.

In the first part of the paper, I present the empirical framework. I
employ monetary surprises, constructed using High Frequency Identifica-
tion (HFI thereafter) strategy,2 as instrumental variables (IV). The basic
idea behind the HFI strategy is that financial contracts reflect the market’s
beliefs about future monetary actions. Thus, the tick-by-tick data on Fed-
eral Funds futures and Eurodollar futures enable us to construct monetary
surprises within 30-minute surrounding the FOMC announcements. The
tight window (30 minutes) ensures that those identified measures are true

1See Romer and Romer (2000), Gürkaynak, Sack and Swanson (2005b), Hanson
and Stein (2015), Nakamura and Steinsson (2017) Gilchrist, López-Salido and Zakrajšek
(2015), Campbell et al. (2012) and Hubert (2015) for similar results derived using alter-
native identification strategies.

2See the seminal work of Kuttner (2001) and Gürkaynak, Sack and Swanson
(2005a) for the construction of monetary surprises.
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surprises to the market.
However, monetary surprises are not necessarily monetary shocks. A

monetary action might turn out as a surprise to the market when the cen-
tral bank observes/anticipates a change in economic condition that is not
fully understood by the market. Whereas, a monetary shock is defined as
the central bank’s exogenous deviation from a monetary policy rule that
is unrelated to economic conditions. Thus, the HFI monetary surprises
are subject to the endogeneity problem.

To address this endogeneity problem, I control for two sets of vari-
ables in the IV approach. The first set of variables are Greenbook fore-
casts3, which is a proxy for the central bank’s information set. The sec-
ond set of variables are factors that are constructed from more than 100
macroeconomic time series, which are good representations of fundamen-
tal shocks yet orthogonal to monetary policy.4 The identification assump-
tion is that, once those variables are controlled for, the HFI monetary
surprises are exogenous.

In the baseline empirical framework, I obtain the following results.
In response to a monetary shock that increases the monetary instrument
by 100 basis points, the nominal interest rate with a maturity of 10 years
increases by 50 basis points on impact. And, the private sector’s real GDP
forecasts are revised upward in response to a monetary tightening. From
the NK perspective, the first fact is a quantitative puzzle and the second
puzzle a qualitative one.

3The Fed’s internal forecasts that are only available with a lag of five years. A sim-
ilar approach is taken by Romer and Romer (2004) to construct R&R monetary shocks
from fed funds rate and by Miranda-Agrippino (2016), Lakdawala (2016) and Campbell
et al. (2016) to clean HFI monetary surprise.

4In Loria et al. (2017), we project HFI monetary surprises on those factors to address
the endogeneity problem.
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In the second part of the paper, I propose a novel framework to ra-
tionalize the aforementioned empirical facts. I consider a simple NK
model where the central bank has private information about the produc-
tivity trend,5 which is not perfectly observed by private agents. As a re-
sult, private agents might interpret an expansionary (negative) monetary
surprise in two different ways. First, it can be interpreted as the Fed’s en-
dogenous response to a worse than expected long-term productivity trend.
If this is the case, private expectation regarding the productivity trend de-
creases and, consequently, the market’s expectation regarding the natural
real interest rate drops. If the productivity trend is persistent, which is the
case empirically, the expectations regarding the natural real rate in the far
future decreases. Thus, the long-term rate responds proportionally to a
monetary surprise. Alternatively, an expansionary monetary surprise can
be interpreted as a pure monetary shock. If this is the case, it contains no
information about the unobserved productivity trend, and therefore expec-
tations about the trend and the natural real interest rate are not affected.
In my framework, since private agents cannot distinguish a shock to pro-
ductivity trend from a monetary policy shock, optimal belief updating
(Bayes’ rule) requires that agents assign weights to both interpretations.
Thus, in response to a negative monetary surprise (driven by a pure mon-
etary shock or a shock to productivity trend) both the perceived trend and
the perceived natural real rate drop. Hence long-term interest rates de-
crease and expected real GDP in the next quarters drop. The model is
estimated using the Bayesian method.

Three main results stand out. First, the model with asymmetric in-
formation rationalizes both Fact 1 and Fact 2. Second, the information

5Shocks to the productivity trend can be interpreted as news shocks as discussed in
Barsky and Sims (2012).
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channel dampens the traditional effect of monetary policy via an inter-
temporal substitution effect. On the one hand, via the conventional chan-
nel, a higher interest rate leads to a higher saving rate by reducing the
aggregate consumption. On the other hand, a positive monetary shock is
partially interpreted, as the future economic condition will be better than
previously expected. Through the second channel, consumers have the
desire to consume more. Overall, the aggregate impact of a monetary
shock is smaller as compared to an NK model with perfect information.
Third, information asymmetry does not change the optimal simple rule.
In this model, the welfare lost under the optimal simple rule is 1.04%
(as a fraction of steady state consumption). Whereas, the welfare loss is
1.05% if the central bank follows a ”naive” optimal simple rule — the op-
timal rule derived under the assumption that the private market has perfect
information. The difference is minimal.

In addition, I uncover novel empirical facts that the aforementioned
effects of monetary shocks on long-term rates and real GDP forecasts are
asymmetric. The responses are more pronounced (more puzzling) when
the monetary shocks are expansionary. A simple extension of the baseline
model rationalizes those asymmetric facts, based on signals of uncertain
qualities and ambiguity averse agents. Moreover, the model predicts the
asymmetric effects of monetary shocks on output and inflation, which are
consistent with empirical facts discovered in the empirical literature6.

Related Literature The empirical part of the paper is related to the lit-
erature that studies the impacts of FOMC announcements on the yield
curve and private agents’ forecasts. See for example Romer and Romer

6See for example Barnichon and Matthes (2016).
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(2000), Gürkaynak, Sack and Swanson (2005b), Hanson and Stein (2015),
Nakamura and Steinsson (2017), Gilchrist, López-Salido and Zakrajšek
(2015) and Campbell et al. (2012). Unlike in the existing literature, I em-
ploy relevant control variables to address the potential endogeneity prob-
lem discussed above7. This allows us to interpret the estimated responses
as the market’s reactions to exogenous monetary shocks (actions).

This paper contributes to the literature on the information channel of
monetary policy actions. Earlier works include Cukierman and Meltzer
(1986), Ellingsen and Soderstrom (2001). Erceg and Levin (2003), Koz-
icki and Tinsley (2005) and Gürkaynak, Sack and Swanson (2005b). And
recent studies include Baeriswyl and Cornand (2010), Tang (2015), Melosi
(2017) and Falck, Hoffmann and Hurtgen (2017). In contrast to previous
studies, this paper introduces asymmetric information about news shocks
and argues that consumers extract information about the future economic
condition from a monetary policy action. This is crucial to rationalize
the empirical facts that I discuss in this paper. In another closely related
paper, Nakamura and Steinsson (2017) emphasize the information effects
of FOMC statements. Unlike in their work, I build a model that endog-
enizes the signal extraction process and I use it to assess the role of the
signaling channel of monetary actions in explaining the two empirical
puzzles. Moreover, this micro-foundation allows us to study extensions
of the model such as the one presented in the last part of this paper.

More broadly, this paper adds to the literature that has focused on
money non-neutrality arising from imperfect information. In his island

7Miranda-Agrippino (2016), Lakdawala (2016), Campbell et al. (2016) and Loria
et al. (2017) also clean those HFI monetary surprises in their VAR analysis that stud-
ies the impacts of monetary shocks on real activities such as industrial production and
inflation.
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model, Lucas (1972) shows that money non-neutrality arises from the
imperfect knowledge regarding those nominal disturbances. Woodford
(2002), Sims (2003), Mackowiak and Wiederholt (2009) and Mankiw and
Reis (2002) provide alternative frameworks in which the real effect of a
monetary shock emerges from information friction. In contrast, in this
paper, money non-neutrality arises from price stickiness and the presence
of information asymmetry dampens the impacts of monetary shocks.

The last part of the paper relates to the recent literature that studies the
implications of ambiguity and signals of uncertain qualities in macroeco-
nomics and finance. Epstein and Schneider (2008) provide the first argu-
ment that ambiguity averse agents react to signals of uncertain qualities
asymmetrically. Based on the same ambiguity structure, recent appli-
cations include Ilut (2012), Ilut, Kehrig and Schneider (2015), Baqaee
(2017) and Michelacci and Paciello (2017). This paper adapts the same
idea to a framework in which the central bank’s action plays a signaling
role. And I study the implications for the dynamics of economic activities
to monetary shocks.

The remainder of the paper is organized as follows. Section (1.2)
presents empirical facts. Section (1.3) introduces the baseline model.
Section (1.4) estimates the model and discusses implications of the model
as compared to the basic New Keynesian model. Section (1.5) analyzes
the implication for the design of optimal simple rule and central bank
communication policy. Section (1.6) extends the model by introducing
ambiguous signals and ambiguity averse agents. Section (1.7) presents
the theoretical predictions of the extended model. And Section (1.8) con-
cludes.
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1.2 Empirical Facts

This section discusses empirical facts in details. Section 3.2.1 presents
the impact effects of monetary shocks on the yield curve. Section 1.2.2
discusses the impact effects of monetary policy shocks on real GDP fore-
casts.

1.2.1 Fact 1: Impact Effect of Monetary Policy on Yield

In the baseline, I estimate regressions of the following form:

4Y h
t = αh + βh4MPt + γhXt + εh,t, (1.1)

where, 4Y h
t is the daily changes in nominal yield taken from Gürkay-

nak, Sack and Wright (2007). The superscript h denotes the maturity of
the yield. 4MPt is the daily changes in the monetary policy instrument,
two-year nominal yield nominal yield, surrounding the monetary policy
decision date. The use of two-year nominal yield as a policy instrument is
consistent with Gilchrist, López-Salido and Zakrajšek (2015), Gertler and
Karadi (2015) and Hanson and Stein (2015). This is the common practice
in the High Frequency Identification (HFI) literature to include forward
guidance. It is debatable whether the daily change in the monetary in-
strument or the change in a tighter window (ex: 30-minute window sur-
rounding FOMC announcement) is a better proxy for monetary surprise.
Hanson and Stein (2015) argue in favor of the daily change to allow for
the market to have sufficient time to digest the new information. Gürkay-
nak, Sack and Swanson (2005a) argue that the use of a tighter window
(30 minutes) surrounding the FOMC announcement is desirable to min-
imize the noise. To combine the advantages of those two, I instrument

8



the daily changes of 4MPt by monetary surprises constructed within a
30-minute window surrounding the FOMC announcements using data on
the financial future8. 9

However, due to the asymmetric information of the central bank and
private agents, the HFI monetary surprises are subject to an endogeneity
problem. To see this, in a world with asymmetric information, a non-
monetary shock that is observed by the central bank but is not seen by
private agents will be included in the HFI monetary surprises because the
central bank’s reaction to this unobserved shock comes as a surprise to
private agents.

To address this endogeneity problem, I control for two sets of vari-
ables in the IV approach. The first set of variables are Greenbook fore-
casts, which is a proxy for the central bank’s information set. Follow-
ing Romer and Romer (2004), the Fed’s internal forecasts of inflation,
real output growth, and the unemployment rate are included in vector Xt.
The second set of variables are real-time factors that are constructed from
more than 100 macroeconomic time series, which are good representa-
tions of fundamental shocks yet orthogonal to monetary policy. Those
are also included in vector Xt in order to ensure the exogeneity assump-
tion of instruments. The underlying identification assumption is that those
HFI monetary surprises are exogenous once controlled for Greenbook
forecasts and factors. Intuitively, this approach is equivalent to the two-
step approach: first, clean those HFI monetary surprises using Greenbook
forecasts and factors; and second, use those cleaned monetary surprises

8I thank Refet Gurkaynak for providing the updated 30-minute window HFI mone-
tary surprises.

9Gertler and Karadi (2015) use those HFI monetary surprises, the raw data, as in-
struments in a Structural Vector Autoregressive model.
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as instruments. The one-step approach employed in this paper has the
advantage that the standard errors are free of construction error, which
would arise in the two steps approach. The construction of the factors is
discussed in appendix (1.9.7). The baseline specification controls for five
factors. The same number of factors are used in Ramey (2016). However,
the results are robust to the use of different numbers of factors.

Figure 1.1: Responses of Nominal Yields at Different Maturities to
Monetary Shocks

Note: The square dots represent the estimated β̂h from sep-
arated regressions: 4Y ht = αh + βh4MPt + γhXt + εh,t
using HFI monetary surprises as instruments for the variable
of interest 4MPt. The blue lines are the 95% confidence
interval constructed using standard errors that are robust to
serial correlation and heteroskedasticity. Sample: 1990M2 to
2010M12.

For each h, I estimate a regression of the form (1.1) using HFI mon-
etary surprises as instruments for the variable of interest 4MPt. In the
baseline, I employ eight instruments. These are: surprises in the current
month’s fed funds futures (FF1), in the one month, two month and three
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month ahead monthly fed funds futures (FF2, FF3, FF4), and in the three
month, six month, nine month and year ahead futures on three month Eu-
rodollar deposits (ED1, ED2, ED3, ED4). Results are robust to the use
of smaller instrument sets. The F-statistics from the first-stage regression
is reported in Table (1.6). As can be seen, the F-statistics from the first-
stage regression for the baseline is 28.7 which is greater than the rule-
of-thumb value 10 proposed by Stock and Yogo (2005). This suggests
strong relevance of these instruments. The sample ranges from 1990M2
to 2010M12 due to the availability of HFI monetary surprises and Green-
book forecasts. Note that I exclude dates when there were large-scale
asset purchasing announcements. However, the results are not affected if
those are included.

Figure (1.1) plots the estimates of β̂s from estimating separate re-
gressions. The lines are the 95% confidence interval constructed using
standard errors that are robust to serial correlation and heteroskedasticity.
As one can see, monetary shocks have persistent positive and significant
effects on the entire yield curve. For instance, the nominal rate with ma-
turity of 20 years increases by roughly 0.25 basis points in response to a
1 basis point exogenous increase in monetary instrument.

Asymmetric effect of monetary shock on the yield curve Next, I test
whether the effects of monetary shocks on the yield curve are symmetric.
To address this question, I estimate regressions of the following form:

4Y h
t = αh1 + αh2I negative + βh14MPt + βh24MPt × I negative + γhXt + vh,t,

(1.2)
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where I negative is the indicator variable that equals to 1 if 4MPt < 0

and 0 otherwise. Again,4MPt and4MPt × I negative are instrumented
by HFI monetary surprises10 and those interacting with I(HFI < 0), the
latter is the indicator variable that equals to 1 if the HFI monetary surprise
is smaller than zero and 0 otherwise. The F-statistics from the first-stage
regression is reported in the second and the third rows of Table (1.6). As
can be seen, the F-statistics from the first-stage regression for the baseline
is 84.7 for 4MPt and 75.3 for the interacting term 4MPt × I negative

suggesting strong relevance of these instruments.
Surprisingly, as one can see from Figure (1.2), while a negative (ex-

pansionary) monetary shock has a significant effect on long-term yield, a
positive monetary shock only affects yields with short maturities (up to 8
years).

Robustness Checks The results discussed in this section are robust to:
i) the use of alternative instrument sets ii) excluding the recession periods,
iii) excluding factors, iv) excluding Greenbook forecasts, v) excluding all
control variables, vi) the use of inflation indexed forward rate (TIPSF)
and vii) the use of Romer and Romer (2004) (R&R thereafter) monetary
shocks. See Appendix 1.9.3 for detailed explanations and figures.

I emphasize that the results are robust to the use of R&R monetary
shocks: an alternative measure of monetary shock that is often used in
the literature. Those shocks are identified at monthly frequencies and
are perceived as aggregate exogenous monetary shocks. Therefore, I use

10There are few episodes where there were more than one monetary announcement
in a month, I sum up the monetary surprises to get the monthly data.
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Figure 1.2: The Asymmetric Impact Effects of Monetary Shocks on
Nominal Yields

Note: The square dots on the left panel represent the estimated β̂h1 +β̂
h
2

and the square dots on the right panel represent the estimated β̂h1 ,
where β̂hs are estimated from separated regressions: 4Y ht = αh1 +
αh2I negative+ βh14MPt++βh24MPt× I negative+Xt+ vh,t us-
ing HFI monetary surprises and those interacted with I(HFI < 0) as
instruments for the variable of interest4MPt and4MPt×I negative.
The blue lines are the 95% confidence interval constructed using stan-
dard errors that are robust to serial correlation and heteroskedasticity.
Sample: 1990M2 to 2010M12.

those shocks directly and estimate regressions of the following forms:

Linear case: 4Y h
t = αh + βhRRt + γhXt + εh,t, (1.3)

Asymmetry: 4Y h
t = αh1 + αh2I negative + βh1RRt + βh2RRt × I negative + γhXt + vh,t,

(1.4)

with RRt denotes the R&R monetary shocks and 4Y h
t is the monthly
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changes in nominal yield with maturity h. Figure (1.3) plots the estima-
tion results: in the baseline regression, an R&R monetary shock has a big
impact on yields at the long horizon. And the effect is sign dependent: the
impact is more pronounced when the sign of a monetary shock is negative
(expansionary). The sample ranges from 1969M1 to 2007M12 due to the
availability of R&R monetary shocks.

Figure 1.3: Impact Effect on Yield Robustness Check: R&R Mone-
tary Shocks

Note:The top left panel reports the results from estimating the baseline regres-
sions: 4Y ht = αh + βhRRt + γhXt + εh,t, where RRt denotes the R&R
Monetary Shocks. The square dots on the bottom panel represent the esti-
mated β̂h1 + β̂h2 and the square dots on the top right panel represent the es-
timated β̂h1 , where β̂hs are estimated from separated regressions: 4Y ht =
αh1+α

h
2I negative+β

h
1RRt+β

h
2RRt×I negative+γ

hXt+vh,t. The blue lines
are the 95% confidence interval constructed using standard errors that are robust
to serial correlation and heteroskedasticity. Sample: 1969M1 to 2007M12.
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1.2.2 Fact 2: Expected Real GDP and Monetary Policy

One interpretation of the first set of facts is that monetary surprise is per-
ceived as news about future growth rate in consumption. The second set
of facts provides evidence that is consistent with this hypothesis. Fol-
lowing Romer and Romer (2000), I estimate regressions of the following
form:

yt+j|t − yt+j|t−1 = αj + βj4MPt + γjXt + vj,t, (1.5)

where 4MPt is instrumented by HFI monetary surprises. I add the fol-
lowing control variables, denoted as Xt: the lagged real GDP, price de-
flator, monetary instrument and both contemporaneous and lagged factors
and Greenbook forecasts. According to information criteria, it has been
decided to use two lags. yt+j|t denotes expected log real GDP at j quarters
ahead that I take from the Survey of Professional Forecasters (SPF). In or-
der to correctly identify the effect of monetary shock on forecast revision,
one needs to adjust HFI monetary surprise as it occurred between the cur-
rent survey (yt+j|t) and the previous survey (yt+j|t−1). This is possible
since the exact dates of SPF and FOMC meetings are publicly available.

The F-statistics from the first-stage regression is reported in the sec-
ond panel of Table (1.6). As can be seen, the F-statistics from the first-
stage regression for the baseline is 15.2 suggesting strong relevance of
these instruments.

Figure (1.4) plots the instantaneous effect of monetary shock on real
GDP forecast revision at 1 quarter, 2 quarters and 3 quarters ahead. In re-
sponse to a monetary shock that increases the monetary instrument by 100
basis points, professional forecasters revise their real GDP forecasts for
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Figure 1.4: The impact effect of a monetary shock on real GDP fore-
cast revision

Note: The square dots represent the estimated β̂js from sep-
arated regressions: yt+j|t − yt+j|t−1 = αj + βj4MPt +
γjXt + vj,t. The forecast horizons are denoted in quarters
and yt+j|t denotes the forecast made at time t about the real
GDP at quarter t + j. The blue lines are the 95% confidence
interval constructed using standard errors that are robust to
serial correlation and heteroskedasticity. Sample: 1990Q1 to
2010Q4.

the next quarters raising them by roughly 60 basis points. Qualitatively,
this is the opposite of what the standard NK model predicts: monetary
tightening should depress the expected real GDP.

Asymmetric effect of monetary shock on real GDP forecast revision
Next, I test whether the effect of monetary shock on the real GDP forecast
revision is symmetric. To address this question, I estimate regressions of
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the following form:

yt+j|t − yt+j|t−1 = αj + βj14MPt + βj24MPt × I negative + γjXt + vj,t.

Again,4MPt and4MPt× I negative are instrumented by HFI monetary
surprises and monetary surprises interacting with I(HFI < 0). These in-
struments are relevant as is evidenced by the second panel of Table (1.6).
Figure (1.5) plots the estimation results: β̂j1 + β̂j2 on the left panel and
β̂j1 on the right panel. Similar to the case for the yield curve, in response
to an expansionary monetary shock, agents revise their real GDP forecast
downwards — the opposite of what a standard NK model predicts. And
in contrast, a positive monetary shock does not affect real GDP forecast
revision.

Robustness Checks The results discussed in this section are robust to:
i) the use of alternative instrument set, ii) excluding the recession periods,
iii) excluding factors, iv) excluding Greenbook forecasts, v) excluding all
controls and vi) the use of R&R monetary shocks. See Appendix 1.9.3
for detailed explanations and figures.

I emphasize that the results are robust to the use of R&R monetary
shocks. As is evidenced by Figure (1.6), the use of R&R monetary shocks
as identified exogenous shocks generates the same puzzle. Moreover,
the impact of an R&R monetary shock on real GDP forecast revisions is
sign dependent. While in response to a negative (expansionary) monetary
shock agents revise their real GDP forecasts downwards, positive (con-
tractionary) monetary shocks have limited impacts on real GDP forecast
revisions and the effects are statistically insignificant.
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Figure 1.5: The asymmetric effect of a monetary shock on real GDP
forecast revision

Note: The square dots on the left panel represent the estimated β̂j1+ β̂
j
2

and the square dots on the right panel plot the estimated β̂j1 , where
the coefficients are estimated from separated regressions: yt+j|t −
yt+j|t−1 = αj + βj14MPt + βj24MPt × I negative + γjXt + vj,t.
The blue lines are the 95% confidence interval constructed using stan-
dard errors that are robust to serial correlation and heteroskedasticity.
Sample: 1990Q1 to 2010Q4.
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Figure 1.6: Impact Effect on Forecast Revision Robustness Check IV:
R&R Monetary Shocks

Note: The top left panel reports the results from estimating the baseline regres-
sions: yt+j|t − yt+j|t−1 = αj + βjRRt + γjXt + vj,t using HFI monetary
surprises as instruments for 4MPt. The square dots on the bottom panel rep-
resent the estimated β̂j1 + β̂j2 and the square dots on the top right panel rep-
resent the estimated β̂j1 , where β̂js are estimated from separated regressions:
yt+j|t − yt+j|t−1 = αj + βj1RRt + βj2RRt × I negative + γjXt + vj,t. The
blue lines are the 95% confidence interval constructed using standard errors
that are robust to serial correlation and heteroskedasticity. Sample: 1969Q1 to
2007Q4.
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1.3 The Model

These facts challenge different varieties of NK models, which are based
on the paradigm that monetary policy has limited long-run effects and a
monetary policy tightening should depress agents’ expectations regarding
real GDP.

Figure (1.11) plots the impact effects of monetary shocks on nominal
yields at different maturities and real GDP forecast revisions at different
horizons predicted by a standard NK model with perfect information (a
special case of the model discussed below). The circles and intervals are
the mean estimates and 95% confidence intervals constructed based on
posterior parameters’ distributions. Details regarding the estimation of
the model will be discussed in Section (1.4). As can be seen, the effect
of a monetary shock on expected real GDP growth is clearly at odds with
the Fact 2 discussed above. And quantitatively, a monetary policy shock
has limited effect on long-term yield, which is inconsistent with Fact 1.

In this section, I build a model to rationalize the baseline (linear) facts.
The model extends the basic NK model discussed in Galı́ (2008a) with a
stochastic trend in productivity, which is not fully observed by private
agents. Shocks to the stochastic trend can be interpreted as a news shock
as in Barsky and Sims (2012).

1.3.1 Households

A representative household j ∈ (0, 1) seeks to maximize the following
utility function:

E
∞∑
t=0

βteδtU(C(j)t, N(j)t), with U(C(j)t, N(j)t) =

[
log(C(j)t)−

N(j)1+ϕ
t

1 + ϕ

]
,
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where δt is the preference shock that follows:

δt = ρδδt−1 + εδt with εδt ∼ N(0, σ2
δ )

Nt denotes labour supply and Ct is a consumption index given by:

Ct =

(ˆ 1

0

C
(γ−1)/γ
j,t dj

)γ/(γ−1)

I have assumed a continuous supply of consumption goods [0,1] with
elasticity of substitution γ among them. The representative consumer
faces a standard budget constraint:

ˆ 1

0

Pt(j)Ct(j)dj +QtBt+1 ≤ Bt +WtNt + Tt

where, Pt(j) denotes the price of good j, Qt denotes the price at time t
of one period bond that pays Bt+1 at time t + 1, Wt the wage and Tt the
lump-sum transfer including profit from firms. Solving the consumer’s
optimization problem leads to the following Euler equation:

Qt = βE
{Λt+1

Λt

Pt
Pt+1

}

where, Pt =
(´ 1

0
P 1−γ
j,t dj

)1/(1−γ)

is the aggregate price index and Λt =

Uc,te
δt .

1.3.2 Firms

There is a continuum of firms indexed by j ∈ [0, 1] whicj produce dif-
ferentiated goods in a monopolistic competitive market according to the
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following production function:

Yt,j = eatNt,j

I assume that firms have access to the same technology with the latter
follows the following process:

at = at−1 + gt + εat with εat ∼ N(0, σ2
a)

gt = ρggt−1 + (1− ρg)g∗ + εgt with εgt ∼ N(0, σ2
g).

Firms are subject to nominal rigidity à la Calvo (1983). Each period
a fraction θ of firms cannot reset prices optimally, but choose their price
according to the following indexation rule:

Pt(i) = Pt−1(i)πωt−1π
1−ω,

where πt−1 is the lagged inflation and π the steady state inflation. The
fraction 1−θ of firms can reset their prices freely and will do so optimally
to maximize the following equation:

E

[
∞∑
k=0

θkβk
Λt+k

Λt

(Pt(i)Πt,t+k −MCt)Yt+k(i)

]
,

subject to constraint:

Yt+k(i) =

(
Pt+k(i)Πt,t+k

Pt+k

)−γ
Yt+k,

where Πt,t+k ≡
∏k

s=1(πωt+s−1π
(1−ω)).
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1.3.3 Log-linearized equilibrium conditions

I have log linearized the Euler equation around the steady state to get the
dynamic IS equation:

ŷt = Eŷt+1 − [̂it − Eπ̂t+1 − ρgEĝt + (Eδt+1 − δt)]. (1.6)

Since the model has a stochastic trend, to solve the model around a sta-
tionary steady state, I rescale the non-stationary variable by level produc-
tivity At. The variable with hat denotes its deviation from its steady state.

The log linearized Phillips curve is derived from firms’ problem:

π̂t =
β

1 + ωβ
Eπ̂t+1 +

ω

1 + ωβ
π̂t−1 + κŷt + επt , (1.7)

where k ≡ (1−θβ)(1−θ)
θ(1+ωβ)

(ϕ + 1). Note that I have introduced shock to the
Phillips curve: επt with mean 0 and variance σπ.

1.3.4 Monetary policy

The central bank sets the interest rate following a version of the Taylor
rule that keeps track of the efficient real interest rate — the one that would
prevail without frictions (Wicksell (1989)). Cúrdia et al. (2015) show
that the interest rate tracks an efficient rate of return that fits the U.S.’s
data well. Formally, Woodford (2001) shows, in a framework without
information friction, that such a rule is optimal.

I assume a Taylor rule of the following form:

ît = ρmît−1 + (1− ρm)(φrr
e
t + φππ̂t + φyŷt) + εmt , with εmt ∼ i.i.d N(0, σ2

m).

(1.8)

23



The persistent component ρmît−1 is introduced to generate persistent im-
pacts of monetary shocks. The theoretical argument for introducing this
component is the following: in a framework with the presence of an out-
put gap and inflation tradeoff, such as the current one, it is optimal for
the central bank to conduct monetary policy with commitment in order to
smooth the welfare loss over time. Consequently, the current policy rate
depends on the previous one. Thus the lagged interest rate in the Taylor
rule allows the simple policy rule to be able to approximate the optimal
monetary policy under commitment.

The variable ret denotes the efficient real interest rate.11 In this frame-
work, the efficient real interest rate is the one that would prevail if the
market were perfectly competitive and if there were no information fric-
tions. To determine the efficient real interest rate, I solve the social plan-
ner’s problem in this economy. The social planner makes intra-temporal
consumption and labor decisions according to:

−UN,t
UC,t

= MPNt. (1.9)

The inter-temporal optimality condition under efficient allocation is:

Rt = βEe
{ Λt

Λt+1

}
. (1.10)

11An alternative interpretation of ret in the taylor rule is that the central bank reacts to
its expected future economy or financial conditions, for instance the expected real GDP
growth in the next period. The latter is proportional to the trend of the economy and is
therefore similar to ret .
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Combine (1.9) with (2.9) and log-linearize :

ret = Eegt+1 − Ee4δt+1, (1.11)

Lastly, εmt in the Taylor rule is the exogenous monetary shock. In
the literature, there are two main interpretations of these monetary policy
shocks. First, εmt reflects shocks in the FOMC’s preference as committee
members may prefer to respond more to inflation on one day than on an-
other. Second, εmt captures measurement error in the real time data that the
FOMC has during the day of policy making. My preferred interpretation
is the second: although the central bank aims to keep track of ret , due to
information friction the policy rate fluctuates around the intended one.12

What matters is the assumption that εmt is exogenous to policy decision
and private agents do not observe monetary shocks. In the presence of
unobserved monetary shocks, the central bank’s action does not provide
perfect information regarding the unknown gt therefore agents’ learning
is persistent.

1.3.5 Belief updating and solution of the model

Private agents make decisions based on an uncertain environment. Namely,
they do not observe the productivity trend gt perfectly and cannot distin-
guish trend shocks (εgt ) from level productivity shocks (εat ). Moreover,
agents do not observe monetary shocks (εmt ). Since the trend is relevant
for their optimal decisions, agents will infer gt from observable variables.
Let us denote agents’ estimate of gt by gt|t ≡ E(gt|Zt), where Zt is the
history of variables that are relevant for inference about gt that agents

12That is εmt ≡ (1− ρm)ρg(gt − EFedgt).
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observe up to time t.

I assume that agents understand the model and know the distributions
of shocks as well as the parameters of the model. To update gt|t, agents use
the up-to-date history of Zt = [at ît st] those are: the level of productivity,
the policy rate and additional private signals about gt summarized in st:

st = gt + εpt with εpt ∼ i.i.d N(0, σ2
p). (1.12)

I introduce st for two reasons. First, it is more realistic to assume, apart
from monetary action and level productivity, that agents receive additional
information about the future development of the economy. For example,
by reading newspapers. Second, with the introduction of st the NK model
with perfect information is nested in this model by setting σp equal to
zero. Thus, one approach to assess whether the information channel of
monetary policy is empirically relevant or not is to check if the estimated
σp is different from zero.

It is worth emphasizing that the realized short-run interest rate it pro-
vides information about the underlying trend gt, because agents know the
central bank’s reaction function. Moreover, due to the fact that agents do
not observe monetary shocks, they cannot infer gt perfectly from mone-
tary actions.

The signal extraction problem of agents is subject to a simultaneity
problem. The monetary policy signal responds to endogenous variables
π̂t, ŷt, and those are determined based on agents’ posterior belief about
gt, which in turn depends on monetary policy. Svensson and Woodford
(2004) provide a solution for optimal filtering under these settings.

The model’s solution is derived in Appendix (1.9.4). In the model,
agents update their beliefs about the unknown process ĝt and εmt using
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kalman filter. And naturally gt|t and εmt|t are state variables. Define Xt ≡(
εmt ĝt δ̂t επt ît−1 π̂t−1 εmt|t ĝt|t

)′
,

Ut ≡
(
εgt εδt επt εmt εat εpt

)′
andXf

t ≡
(
ŷt πt

)′
then the state space

representation of the model’s solution is:

Xt+1 = AXt +BUt+1, (1.13)

Xf = FXt, (1.14)

with matrix A,B and F specified in Appendix (1.9.4).

1.3.6 Term structure

This section describes the term structure implied by the model. Following
Bekaert, Cho and Moreno (2010) and Nimark (2008), yields of different
maturities are derived based on the following four equations together with
the assumption that shocks are normal. The first equation characterizes
the short-run yield, which is basically the monetary policy rule:

it = MIXt (1.15)

The second equation relates yields at different maturities with correspond-
ing prices:

int = − 1

n
log(P n

t ) (1.16)

In the third equation, I assume that there is no arbitrage condition:

P n+1
t = Et(Mt+1P

n
t+1) (1.17)
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The fourth equation derives the stochastic discount factor from consumers’
optimization problem:

Mn
t+1 = β

Λt+1Pt
ΛtPt+1

(1.18)

Combining these equations one can write the yields in terms of state vari-
able Xt as13:


it

i2t

.

.

int

 =


−A1

−1
2
A2

.

.

− 1
n
An

+


−B1

−1
2
B2

.

.

− 1
n
Bn

Xt (1.19)

where int denotes the yield with maturity n at time t. An and Bn are
derived recursively in Appendix (1.9.4). There are three key features that
are absent in the previous literature. First in this model, agents’ belief
about trend ĝt|t enters as a state variable and therefore affects the whole
yield curve. Second, monetary policy acts as one of the signals, and as a
consequence, monetary surprises affect the long end of the yield through
their effects on ĝt|t that standard models cannot capture. And third, if
the process for gt is highly persistent, which is verified in our estimation
exercise shown later in this paper, current shocks would affect the yield
curve at long horizons.

13See Appendix (1.9.4) for the detailed derivations.
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1.4 Model Estimation and Results

I estimate the model using a Bayesian approach with quarterly data from
the U.S. ranging from the first quarter of 1982 to the last quarter of 2016.
Real GDP per capita, inflation, nominal yields with maturities of two, five
and ten years are included in the measurement equations, see Appendix
(1.9.8) for detailed data descriptions.

Identification It is well known that many DSGE models are subject
to local identification issues, see Canova and Sala (2009) for potential
reasons. Iskrev (2010) and Komunjer and Ng (2011) provide algorithms
to check for identification prior to estimation. It is standard practice in
the literature that unidentified parameters are then calibrated. I follow
Komunjer and Ng (2011)’s procedure and all parameters are verified to
be locally identified.

Priors and Posteriors Tables (1.1) and (1.7) report the prior and pos-
terior estimates. Priors are reported in the first three columns. They are
taken from the literature, see for example An and Schorfheide (2007).
I estimate posteriors using the Random Walk Metropolis-Hastings algo-
rithm. Posterior means and standard errors for both the model with asym-
metric information and the one with perfect information (in which σp is
imposed as zero) are reported. The key parameters that drive the main
results are reported in Table (1.1): variances of monetary, level produc-
tivity, trend and private signal shocks — these are not only a measure of
volatility but also a measure of precision of signals. In the model with
asymmetric information, the posterior mean of σp — the private signal
noise is much larger than monetary shock volatility (σm). This suggests
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that the information is indeed not perfect. In addition, σa, the noise of
another source of private information, is relatively big and determines the
magnitude of the information channel of monetary policy.

Table (1.7) reports the posterior estimates of other parameters. With
few exceptions, estimated parameters between a model with asymmetric
information and a model with perfect information are similar. The results
discussed below are not driven by those differences.

Table 1.1: Prior and Posterior: key parameters

Priors Asymmetric Information Perfect Information

Mean s.d Distribution Mean s.d Mean s.d

σm 2× 10−3 4 InvGamma 1.2× 10−3 0.8× 10−4 1.7× 10−3 1.2× 10−4

σa 2× 10−3 4 InvGamma 6.7× 10−3 4.9× 10−4 7.1× 10−3 4.1× 10−4

σg 2× 10−3 4 InvGamma 1.6× 10−3 0.1× 10−3 1.6× 10−3 0.1× 10−3

σp 2× 10−3 4 InvGamma 1.9× 10−2 0.9× 10−2 − −

Note: Posterior means and standard deviations are estimated using the Random Walk
Metropolis-Hastings algorithm

1.4.1 Results

Rationalizing Fact 1: the Impact Effects of Monetary Shocks on Long-
term Yield Figure (1.7) plots one of the main facts that I aim to capture:
the impact effects of monetary shocks on nominal yields. Those should
be compared to their empirical counterpart: Figure (1.1).

The circles and intervals are the mean estimates and 95% confidence
intervals constructed based on posterior parameters’ distributions. The
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Figure 1.7: Prediction of the Model: the Impact Effects of Monetary
Shocks on Nominal Yields
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Note: This figure depicts the impact effects of monetary shocks on
nominal yield at different maturities predicted by the models. The
circles and intervals are the mean estimates and 95% confidence in-
tervals constructed based on posterior parameters’ distributions. The
blue lines plot the predictions of the model under asymmetric infor-
mation. The red ones plot those for the perfect information case: all
parameters are set to be the same as for the asymmetric case except for
the private signal volatility σp, which is imposed as zero.

blue lines plot the predictions of the model under asymmetric information.
The red ones plot those for the perfect information case: all parameters
are set to be the same as for the asymmetric case except for private signal
volatility σp, which is imposed as zero. This choice of comparison is
made to ensure that the information channel is the key mechanism driving
the model’s success. 14

14Alternatively, one can compare the predictions of the two models based on separate
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As one can see, while the model with perfect information fails to re-
produce the empirical facts, the model with information asymmetry re-
flects the facts very well. As observed in the data, the model predicts that
on impact nominal yields at all horizons respond to monetary shocks pos-
itively and significantly. In the model, private agents cannot distinguish
a monetary shock from the central bank’s endogenous response to the
bank’s information about the news shock. And agents know that the mon-
etary policy responds positively to a news shock. As a result, a positive
monetary surprise that originates from a pure positive monetary shock is
partially interpreted as the central bank has received good news about the
economy’s future development. Hence, the perceived natural real interest
rate increases. Notice that the natural real interest rate is highly persistent
(ρg = 0.98) in this economy, a magnitude that is shared in the long-run
risk literature (Bansal and Yaron (2004)), and therefore the expected nat-
ural real interest rate in the far future also increases. Consequently, the
long-term yield, which is the weighted average of the current and ex-
pected future policy rate, increases in response to a positive monetary
shock.

Rationalizing Fact 2: the Impact Effects of Monetary Shocks on Real
GDP Forecast Revisions Figure (1.8) shows the second fact that I aim
to rationalize: the impact effects of monetary shocks on real GDP fore-
cast revisions. These should be compared to their empirical counterparts:
Figure (1.4). Again, the figure plots the mean estimates and 95% confi-
dence intervals both for the model with information asymmetry (in blue)
and with perfect information (in red). In contrast to the prediction of the

parameter estimates. The results are unchanged.
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Figure 1.8: Prediction of the Model: the Impact Effects of Monetary
Shocks on Real GDP Forecast Revisions

Note: This figure depicts the impact effects of monetary shocks
on real GDP forecast revision at different horizons predicted by
the models. The circles and intervals are the mean estimates and
95% confidence intervals constructed based on posterior parame-
ters’ distributions. The blue lines plot the predictions of the model
under asymmetric information. The red ones plot those for the
perfect information case: all parameters are set to be the same as
for the asymmetric case except for the private signal volatility σp,
which is imposed as zero.

standard NK model (the red lines), the model with asymmetric informa-
tion fits the data well. In response to a positive monetary shock, agents,
both in the model and data, revise upward their forecasts of log real GDP
in the next quarters. This is due to the information channel of monetary
policy. A positive monetary shock is partly interpreted as the arrival of a
positive news shock. As a result, agents become more optimistic.
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Implication: the Information Channel Dampens the Conventional Ef-
fect of Monetary Policy Figure (1.9) compares the IRFs of endogenous
variables to a positive monetary shock in the model with asymmetric in-
formation with those in the model with perfect information. The solid
and dashed lines are the mean estimates and 95% confidence interval of
IRFs of the models constructed based on the posterior parameters’ distri-
butions. The ones in blue plot the predictions of the model under asym-
metric information. The red ones plot those for the perfect information
case: all parameters are set to be the same as for the asymmetric case
except for the private signal volatility σp, which is imposed as zero.

The bottom left panel and bottom right panel confirm the previous
findings (on impact): while the model with asymmetric information re-
produces both Fact 1 and Fact 2 as discussed above, the model with
perfect information fails to match the data. Moreover, those impulse re-
sponses suggest that agents misinterpret a monetary surprise at the begin-
ning and only fully learn the truth after roughly two years.

More interesting results are shown on the top left and middle panels.
As compared to the case with perfect information, the effects of mone-
tary policy shock to output and inflation in the model with asymmetric
information are more silent. Unlike in the perfect information case, in
which monetary policy affects output only through the consumer’s Euler
equation and inflation adjusts according to the Phillips curve, with asym-
metric information the information channel of monetary policy emerges.
A contractionary monetary policy is perceived as a good news shock, thus
agents become more optimistic and, as a result, they consume more. The
information channel of monetary policy dampens the traditional channel.
As a result, monetary policy shocks in the model with asymmetric infor-
mation are less disturbing. Moreover, in contrast to a model with perfect
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information, with asymmetric information the actual GDP path does not
coincide with expected GDP.

Figure 1.9: IRFs: Asymmetric Information vs Perfect Information
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Note: This figure plots IRFs after a positive monetary shock. E(Output) and E(Inflation)
denote the expected log real output and inflation in one quarter ahead. The solid and
dashed lines are the mean estimates and 95% confidence interval of IRFs of the models
constructed based on the posterior parameters’ distributions. The ones in blue plot the
predictions of the model under asymmetric information. The red ones plot those for the
perfect information case: all parameters are set to be the same as for the asymmetric
case except for the private signal volatility σp, which is imposed as zero.

The analyses in Figure (1.9) are conducted based on parameters that
are estimated using the model with asymmetric information. While it is
useful to cleanly pin down the information channel of monetary shock on
economic activities, one cannot answer the question of whether ignoring
information asymmetry would lead to biased estimates for the effective-
ness of monetary shocks. To address this question, Figure (1.12) depicts
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IRFs for both the model with asymmetric information (in blue) and per-
fect information (in red) based on separately estimated parameters. As
one can see, to the extent that the true model features information asym-
metry (σp > 0), estimating a model with perfect or symmetric informa-
tion (σp = 0) would lead to significantly biased estimates regarding the
effectiveness of monetary shocks on output and inflation.

Discussion: How Plausible is the Estimated Degree of Information
Frictions? The previous analysis shows that the estimated degree of in-
formation asymmetry is capable of rationalizing the aforementioned em-
pirical puzzles. Yet we have not discussed whether the implied informa-
tion asymmetry is reasonable or not. The fact that the model-implied re-
sponses of real GDP forecast revisions to monetary shocks (Figure (1.8))
matches the empirical Fact 2 suggests that the underlying information
asymmetry is reasonable. In the next exercise, I provide additional evi-
dence.

Romer and Romer (2000) show that the FOMC staff’s internal fore-
casts dominate commercial forecasts based on the estimation of the fol-
lowing regressions:

yt+h = α + βPEP
t (yt+h) + βFEF

t (yt+h) + et, (1.20)

where EP
t (yt+h) denotes commercial forecasts (private agents’ forecasts)

at time t about variable y at h horizons ahead, and EF
t (yt+h) denotes the

Fed’s internal forecasts. They do the exercise both for real GDP forecasts
and inflation forecasts. The null hypothesis is whether βF = βP . Under
the null both private and the Fed’s internal forecasts are equally precise.
With βF > βP meaning the Fed’s information is superior to that of private
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agents. Estimation results are reported in Table (3) and Table (5) and
I have copied those numbers to the last two columns of Table (1.2)15:
overall β̂P is not statistically different from zero and β̂F is close to one.
Those results suggest that the Fed has superior information about future
inflation and real GDP and for the predictability of those variables it is
enough to use solely the Fed’s internal forecasts as predictors.

Using the structure model in this paper, I replicate their empirical re-
sults using the estimated parameters. I simulate the model 10 000 times
for 65 periods each (the same sample size as in Romer and Romer (2000)
regressions using SPF survey data). In each simulation, I construct the
realized variables yt+h: real GDP and Inflation; the private agents’ fore-
casts of the corresponding variables at different horizons h denoted as
EP
t (yt+h); and the central bank’s forecasts denoted as EF

t (yt+h). For
each simulation, I estimate the regressions of the form (1.20). The mean
estimates are reported in Table (1.2), and the standard deviations are re-
ported in parentheses. Those should be compared to the empirical results
discovered by Romer and Romer (2000), i.e. the numbers contained in the
fourth and fifth columns. As one can see, the model successfully repli-
cates Romer and Romer (2000)’s empirical results not only qualitatively
but also quantitatively.

In addition, in each simulation, I calculate the ratio of mean square
forecast error (RMSFE). The averages square forecast error (MSFE) is
calculated as the average squared difference between the expected and
actual GDP/inflation. The RMSFE is then obtained by taking the ratio
between the MSFE of the Fed’s forecasts and the MSFE of the private
forecasts. An RMSFE smaller than one suggests that the Fed’s inter-

15The parameters are estimated using SPF data.
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nal forecasts are more precise than the private’s forecasts. The means
of simulated RMSFE are reported in the third column and the standard
deviations are reported in parentheses. These should be compared to their
empirical counterparts discovered by Romer and Romer (2000) that are
reported in the last column. The simulated RMSFE are greater than their
empirical counterparts, suggesting that the degree of the central bank’s
information advantage assumed in this model is smaller to that implied
by the actual data. In practice, the central bank may have information ad-
vantage regarding other shocks in the economy and/or its monetary policy
reaction function. Those features, that are assumed away in the current
model16, may explain the gap between the simulated and actual RMEFE.

Overall, I interpret those as evidence suggesting that the implied in-
formation asymmetry in the model is realistic.

16These information advantages cannot rationalize the aforementioned facts, there-
fore those features are assumed away for simplicity.
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Table 1.2: Model Simulation: Romer and Romer (2000) Regressions

yt+h = α + βPEP
t (yt+h) + βFEF

t (yt+h) + et

Model Simulations Romer and Romer (2000)

Forecast
Horizon h β̂P β̂F RMSFE β̂P β̂F RMSFE

Real GDP
1 Quarter -0.01 (0.10) 1.00 (0.13) 0.79 (0.03) 0.56 (0.53) 0.81 (0.52) -

2 Quarters -0.02 (0.24) 1.00 (0.26) 0.94 (0.03) 0.66 (0.53) 1.07 (0.66) -

3 Quarters -0.03 (0.44) 1.00 (0.40) 0.97(0.02) 0.40 (0.28) 0.99 (0.44) -

4 Quarters -0.02 (0.71) 0.99 (0.57) 0.98 (0.01) -1.07 (0.55) 2.33 (0.46) -

Inflation
1 Quarter -0.01 (0.20) 1.00 (0.23) 0.94 (0.02) 0.39 (0.42) 0.57 (0.38) 0.72

2 Quarters -0.02 (0.34) 1.01 (0.36) 0.97 (0.02) -0.48 (0.33) 1.33 (0.29) 0.76

3 Quarters -0.03 (0.46) 1.01 (0.47) 0.98 (0.01) -0.65 (0.31) 1.55 (0.29) 0.74

4 Quarters -0.05 (0.60) 1.01 (0.58) 0.99 (0.01) -0.72 (0.36) 1.53 (0.32) 0.70

Notes: I simulate the model 10 000 times for 65 periods each. In each simulation, I construct the realized
variables yt+h: real GDP and Inflation; the private agents’ forecasts of the corresponding variables at different
horizons h denoted as EPt (yt+h); and the central bank’s forecasts denoted as EFt (yt+h). In each simulation,
I estimate Romer and Romer (2000)’s regressions: yt+h = α + βPEPt (yt+h) + βPEFt (yt+h) + et. The
mean estimates are reported in the first two columns of the table, and the standard deviations are reported
in parentheses. In addition, in each simulation, I calculate the ratio of mean square forecast error (RMSFE).
The means of simulated RMSFE are reported in the third column and the standard deviations are reported in
parentheses. The last three columns report empirical results discovered by Romer and Romer (2000).

1.4.2 Robustness Checks

An Alternative Taylor Rule The estimation results discussed above
are based on a Taylor rule that responds to the efficient real interest rate.
While keeping track of the efficient real rate is optimal, as I will discuss
below, it is less clear how the central bank constructs the efficient real
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rate in practice. A more realistic assumption is to assume a monetary
rule in which the central bank reacts to macroeconomic variables, such
as current and expected inflation and output growth. In fact, Romer and
Romer (2004) construct monetary shocks based on the assumption that
the Fed reacts to current inflation and Real GDP growth as well as the
Fed’s internal forecasts of those variables. This section conducts a ro-
bustness exercise based on a rule of this type. In particular, I assume that
the central bank reacts to inflation and expected real GDP growth:

ît = ρmît−1 + (1− ρm)(φππ̂t + φyE
Fed(yt+1 − yt) + εmt , (1.21)

where EFed(yt+1 − yt) denotes the Fed’s internal forecast of real GDP
growth in the next quarter. In practice, those are the FOMC staff’s internal
forecasts contained in the Greenbook, which is only available to the public
with a lag of five years. Thus, according to this rule, the central bank
reacts to its private information: the expected real GDP growth, which in
turn depends on the underlying unobserved trend shock. Therefore policy
action provides a signal regarding gt.

The model with this alternative Taylor rule is estimated separately.
Figure (1.13) plots the predictions of the model. Similar to the base-
line, monetary shocks have significant impacts on long-term yield. And
contractionary monetary shocks have expansionary impacts on private
agents’ real GDP expectations.

Replicating Empirical Facts using Simulated Data Previously, the
impacts of monetary shocks on the yield curve and real GDP forecasts are
derived using the state representation of the model. Thus, those are the
exact responses of endogenous variables to exogenous monetary shocks.
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However, this is not the case in the empirical framework. In this sec-
tion, I construct the model-implied impacts of monetary shocks closely
following the empirical framework discussed in section (1.2).

To this end, I simulate the following variables: monetary surprises,
R&R monetary shocks, yields with different maturities, real GDP fore-
cast revisions and the central bank’s internal forecasts of real GDP and
inflation. Note that R&R monetary shocks are constructed as the resid-
uals from projecting the monetary instrument on the current real GDP,
Inflation, the central bank’s forecast of real GDP and inflation, and the
lagged short-term interest rate.

I construct the model-implied empirical evidence by estimating the
empirical frameworks discussed in section (1.2) using those simulated
variables. Figure (1.14) plots the simulated results by estimating regres-
sions of the form (1.1) using monetary surprises as the instrumental vari-
able and the central bank’s forecast of real GDP and inflation as control
variables. I simulate the model 10 000 times for 160 periods each (same
as the empirical sample size). In each simulation, parameters of the model
are drawn randomly from posterior parameters’ distributions. The circles
in Figure (1.14) report the simulated impacts of monetary shocks on the
yield curve using the median of the posterior parameters’ distributions and
the lines plot the 95% probability intervals constructed based on posterior
parameters’ distributions. Similarly, Figure (1.15) plots the simulated re-
sults by estimating regressions of the form (1.3).

As one can see from Figure (1.14) and Figure (1.15), the model is
capable of replicating the two empirical facts discussed in section (1.2):
monetary shocks affect interest rates at long horizons and the private sec-
tor’s real GDP forecasts are revised upward in response to a monetary
tightening.
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1.5 Welfare Analysis and Monetary Policy

This section discusses the optimal central bank communication and opti-
mal monetary policy simple rule under the current framework.

The Welfare Loss Function The welfare loss function can be derived
as the second order approximation of a household’s welfare17:

W =
1

2
E0

∞∑
t=0

βt
[
(1 + ϕ)ŷ2

t +
ε

λ
π̂2
t

]
, (1.22)

where the welfare loss W is expressed in terms of the consumption loss
as a fraction of steady state consumption. Note that the deep parame-
ters ϕ, ε and λ, those that characterize the relative importance between
the variances of output gap and inflation, were not estimated due to the
identification issue. The analyses conducted below are based on the same
parameterization as in Galı́ (2008a): ϕ = 1, ε = 6, λ = 0.17.

Central Bank Communication Given the superior information that the
central bank holds regarding the news shock, a natural question arises:
would it be optimal for the central bank to release its private information?
With full central bank transparency, the information channel of monetary
policy would vanish.

Let us remember that, previously, I have assumed that the private
agent observes a private signal about gt:

st = gt + εpt with εpt ∼ i.i.d N(0, σ2
p).

17See Galı́ (2008a) for detailed derivations.
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If σ2
p equals zero, the information would be perfect. Following Baeriswyl

and Cornand (2010), the central bank’s communication policy can be
measured by σ2

p . A fully transparent central bank would release every-
thing and therefore the private signal, which includes information released
by the central bank, would be perfect, i.e. σ2

p = 0. An the other extreme,
with a fully opaque central bank, the one that is assumed in this paper, the
noise of the private signal would continue to be the estimate reported in
Table (1.1): 1.9 (×10−2).

To see whether central bank transparency is beneficial or detrimental
to welfare, I calculate the welfare loss (measured as a fraction of steady
state consumption) for different values of σ2

p that ranges from 0 to 1.9.
Figure (1.16) plots the result. The vertical axis denotes the welfare loss
and the horizontal axis denotes the degree of opacity measured by σ2

p .
Note that the degree of opacity equal to zero corresponds to a fully trans-
parent central bank and the other extreme corresponds to a fully opaque
one. As is shown in the figure, opacity regarding the news shock improves
welfare. The intuition behind this is as follows. In an NK framework with
sticky prices, a positive news shock today would lead to a boom in aggre-
gate consumption due to individual consumption smoothing decisions.
But current technology has not yet increased. Therefore, the output gap
will be positive. In addition, inflation arises. Both volatility in the out-
put gap and inflation is detrimental to welfare. Hence, the representative
agent would be better off if information regarding the increase in technol-
ogy in the future can be hidden from them.

Optimal Simple Rule I now turn to the discussion of the optimal simple
monetary policy rule given the parameters’ estimates. The optimal simple
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rule is the solution to the following problem:

min
ρm,φr,φπ ,φy

W =
1

2
E0

∞∑
t=0

βt
[
(1 + ϕ)ŷ2 +

ε

λ
π̂2
t

]
,

Subject to the dynamics of the economy. Let us remember that the control
variables are the parameters (weights) in the simple Taylor rule:

ît = ρmît−1 + (1− ρm)(φrr
e
t + φππ̂t + φyŷt) + εmt .

Panel A of Table (1.3) reports the optimal simple rule under both the
asymmetric information and perfect information model. Both are calcu-
lated based on the medians of the posterior distributions of parameters
estimated using the asymmetric information model, with the exception of
σp, which is imposed as zero for the case with perfect information.

The optimal simple rule is qualitatively similar when information asym-
metry is introduced. It is optimal to respond to the lagged interest rate due
to commitment. It is efficient to keep track of the efficient real rate. Wood-
ford (2001) shows that the optimal Taylor rule is the one that responds to
the natural real interest rate one-to-one, the same result carrying over to
the current setup in which the central bank has superior information re-
garding the news shock. In a standard NK model with perfect information,
it is optimal for the policy rate to respond aggressively to inflation. The
same result holds for the model with asymmetric information. Moreover,
even though both models feature a tradeoff between stabilization of out-
put gap and inflation, the optimal weight of the output gap is zero. This is
the case because the response to efficient real rates already manages the
stabilization of the output gap.

Quantitatively, in the presence of information frictions, the optimal
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simple rule responds less to the efficient real interest rate via a bigger
ρm and a smaller φr. A monetary rule that reacts more to the efficient
real interest rate reveals more information about the productivity trend,
in other words, the information channel is stronger (which is detrimental
to welfare as discussed above). Thus, in the presence of the information
channel the central bank chooses to react less to the productivity trend
strategically.

The fifth column reports the welfare loss, as fraction of steady state
consumption, under optimal simple rule of the corresponding models.
The welfare loss in the model with perfect information is 1.09%, bigger
than the one associated with the asymmetric information model (1.04%).
This confirms the optimal communication conducted above: revealing
that information is detrimental to welfare even under the optimal simple
rule. One interesting question is: if the central bank conducts the optimal
simple rule ignoring the information asymmetry, how big is the welfare
loss? The last column provides an answer; it reports the welfare loss as-
sociated with the optimal simple rule derived from the model with perfect
information. If the true model were the one with asymmetric information,
a central bank that ignores this feature would commit to a welfare loss of
1.05%: a 0.01 percentage point higher than the one associated with the
optimal simple rule.

The previous analyses are conducted in the presence of a cost-push
shock, σπ. The existence of such a shock leads to a policy trade-off: the
full stabilization of both inflation and the output gap is not feasible. On
Panel B of Table (1.3), I analyze the optimal simple rule in the absence
of cost-push shocks (σπ = 0). In this case, it is well-known that the full
stabilization of both inflation and the output gap can be achieved by fol-
lowing a strict inflation targeting Taylor rule (φπ =∞). This can be seen
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in the last row, the optimal coefficient on inflation is infinite and the other
coefficients are irrelevant in order to achieve a welfare loss of zero. As
is shown in the first row on Panel B, the same result holds when the as-
sumption of asymmetric information is made. This is because information
frictions do not introduce a new policy trade-off.

Table 1.3: The Optimal Simple Rule

Welfare Loss

ρm φr φπ φy Optimal rule Naive rule

Panel A: The Baseline Model

Asymmetric Information 0.65 0.98 3.70 0 1.04% 1.05 %

Perfect Information 0.57 1.00 3.72 0 1.09% 1.09%

Panel B: Without Cost-push Shock

Asymmetric Information - - ∞ - 0 0

Perfect Information - - ∞ - 0 0

Note: Panel A reports the optimal simple rule under both the asymmetric information and perfect
information model. Both are calculated based on the medians of the posterior distributions of
parameters estimated using the asymmetric information model, with the exception of σp, which is
imposed as zero for the case with perfect information. On Panel B, I conduct the same exercise
without the cost-push shock, i.e. σπ = 0.

In sum, despite the minor quantitative differences in the optimal φm
and φr, the policy implication for the design of optimal simple monetary
rule is unaffected by the introduction of information asymmetry.

A Joint Analysis of the Central Bank Communication and the Op-
timal Simple Rule Previously, the optimal communication and simple
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rule are discussed separately. In the next exercise, I consider both policies
jointly.

In Table (1.4), I calculate the optimal simple rule under different de-
grees of central bank opacity. The later is measured by σp. The last row
corresponds to the full transparent case, in which case, the model is equiv-
alent to a one with perfect information. As can be seen from the second
and third columns, the more transparent the central bank is, the weaker
is the information channel of the monetary policy action. As a result, the
closer the optimal simple rule is to the one under perfect information (the
last row). Moreover, at all those levels of transparency considered, a cen-
tral bank that conducts a ”ignorant rule” commits to a welfare loss that is
very close to the optimal one, the difference is less than 0.01 percentage
point.

Figure (1.17) plots the welfare loss under different degrees of central
bank opacity and the corresponding optimal simple rule. The welfare loss
is decreasing in opacity. Qualitatively, the result is the same as in Figure
(1.16), in the latter, the analysis was conducted based on a suboptimal
monetary simple rule. Crucial to this result is the presence of a cost-
push shock. In the absence of the policy trade-off, a strict inflation target
will always be able to fully stabilize inflation and close the output gap
independent to the degree of transparency.
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Table 1.4: The Optimal Simple Rule

Welfare Loss

Degree of Opacity σp ρm φr φπ φy Optimal rule Naive rule

1.9× 10−2 0.65 0.98 3.70 0 1.04% 1.05 %

1× 10−2 0.64 0.98 3.70 0 1.04% 1.05 %

0.5× 10−2 0.63 0.99 3.63 0 1.05% 1.06 %

0.1× 10−2 0.58 1.00 3.66 0 1.08% 1.08 %

0.01× 10−2 0.57 1.00 3.72 0 1.09% 1.09 %

0 0.57 1.00 3.72 0 1.09% 1.09%

Note: Each row reports the optimal simple rule under different degrees of central bank opac-
ity. The later is measured by σp.

1.6 A Model with Ambiguity Averse Agents

The previous sections present a baseline model that rationalizes the base-
line (linear) facts. However, the model predicts symmetric effects of mon-
etary policy on the yield curve and forecast revision, which are inconsis-
tent with the novel (asymmetry) facts I introduced in section (1.2), namely
Figure (1.2) and Figure (1.5). In order to generate the asymmetry in the
same family of model, I introduce the following additional assumptions:
the first, the volatilities of shocks are uncertain; and the second, agents
are ambiguity averse. To illustrate this, I show the extension in which
monetary policy as a signal is ambiguous i.e. the exact distribution of
monetary shock is not known, in the sense that the volatility of monetary
shock is unknown. It is known that it lies in between [σm, σm]. However,
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results are robust if one or more of the following volatilities are uncertain:
level productivity shock, trend productivity shock, private signal shock
and monetary shock. This is because, ambiguity in those shocks leads to
an ambiguous Kalman gain in agents’ belief updating equation. The latter
is crucial for rationalizing the asymmetric facts.

Household A representative household j ∈ [0, 1] which is ambiguity
averse solves the following optimization problem:

max
C(j)t,N(j)t

min
σtm∈Γt

Et
∞∑
t=0

βteδt
[
logC(j)t −

N(j)1+ϕ
t

1 + ϕ

]
.

I have assumed that agents have multiple priors regarding the qual-
ity of the monetary policy signal. This Knightian uncertainty is axioma-
tized by Gilboa and Schmeidler (1989) and Epstein and Schneider (2003).
Due to ambiguity, agents believe that σm can potentially be time vary-
ing. σtm denotes the perceived variance of monetary shock up to time t.
Γt =

{
Γ× ...× Γ︸ ︷︷ ︸

t times

}
with Γ = [σm, σm]. Ambiguity averse agents behave

according to their worse case belief, denoted as Ẽt. Therefore, one can
simplify a household’s optimization problem as:

max
C(j)t,N(j)t

Ẽt
∞∑
t=0

βteδt
[
logC(j)t −

N(j)1+ϕ
t

1 + ϕ

]

with the choice of prior σtm that enters in belief Ẽt yet to be determined.
To solve the consumer’s optimization problem, I have found the following
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Euler equation:

Qt = βẼt
{Λt+1

Λt

Pt
Pt+1

}
Log-linearized equilibrium conditions The model is solved by taking

the following steps: i) guess a σtm that min
σtm∈Γt

Et
∞∑
t=0

βteδtU(ct, nt); ii) solve

the log-linearized model under the conjectured worse-case belief and iii)
verify the initial guesses.

Given an initial guess of utility minimizing σtm, the log-linearized Eu-
ler equation around a steady state18 to get the dynamic IS equation:

ŷt = Ẽtŷt+1 − [̂it − Ẽtπ̂t+1 − ρgẼtĝt + (Ẽtδt+1 − δt)]. (1.23)

The log-linearized Phillips curve is derived from firms’ problem:

π̂t =
β

1 + ωβ
Ẽtπ̂t+1 +

ω

1 + ωβ
π̂t−1 + κŷt, (1.24)

Note that since the households own the firms, they share the same
worst-case belief. Equations (1.23) and (1.24) are similar to those derived
in the baseline model except that now the expectation is taken under the
worst-case belief.

Belief updating and solution of the model The fact that the monetary
signal is ambiguous, complicates agents’ belief updating. Given signals,
agents choose a σm ∈ [σm, σm] that leads to the worst-case belief. In

18Ilut and Schneider (2014) log-linearize around the worst-case steady state. This is
not the case here because the fact that signals are uncertain does not distort the steady
state: in the steady state information is perfect.
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the setup of this paper, the choice of σm depends on the sign of monetary
surprise. It is apparent that households’ utility is higher if the unknown
productivity trend g increases. Thus facing an ambiguous monetary sig-
nal, the natural initial guess of the worse-case scenario for private agents
is the σm leading to a lower posterior gt|t. Hence the perceived volatility
of the monetary signal (σ̃m) is kinked:

σ̃m =

σm, if monetary surprise > 0

σm, if monetary surprise < 0
. (1.25)

Intuitively, a negative (positive) surprise is partially perceived as a bad
(good) news shock, thus the worst case, up to the first order, is associ-
ated with a smaller (bigger) σm leading to larger (smaller) drop (rise) in
expected trend.19

The equation (1.25) results in a kinked belief updating equation:

Ẽt(.) =

E(.|Ωt, σm), if monetary surprise > 0

E(.|Ωt, σm), if monetary surprise < 0
. (1.26)

With an ambiguous monetary signal, the dynamics of the model change
depending on the type and sign of the shocks. In response to perfectly
observed shocks: εδt and επt , the dynamic of the model is characterized
by equation (1.13) and equation (1.14) i.e. the same as in the baseline
model. In response to unobserved shocks: εgt , εat and εmt , the dynamic of
the model depends on the signs of the shocks. Below, I discuss the dy-

19I have kept the analysis to a first-order approximation because solving the model
beyond the first order would require a nonlinear filter for the belief updating equation.
Solving such a model in general is still an open question.
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namics of the economy in response to monetary shocks. The results can
be easily generalized to any shocks.

Case 1 (εmt > 0): a positive monetary shock (contractionary) results
in positive monetary surprise at time t. This is partly perceived as a good
news shock. Thus agents revise their beliefs about gt upwards. But since
they are max-minimizers, they choose to distrust the monetary signal and
update their beliefs using the monetary signal precision under the worst-
case scenario i.e. σm. As a result, agents have made a mistake and have
become over-optimistic. In the next period and all the following periods,
over-optimistic agents will be“shocked” by negative monetary surprises
and slowly realize that there was no shock to g at time t. This correction
process from t + 1 on, which that is accompanied by negative monetary
surprises is linked to a worst-case scenario prior σm. In sum, the solution
of the model in this case is summarized in Proposition (1).

Proposition 1. if εmt > 0 the solution of the model is as follows:

Xt+j =

AXt+j−1 +BUt+j, for j = 0

AXt+j−1 +BUt+j, for j > 0
, (1.27)

Xf
t+j =

FXt+j, for j = 0

FXt+j, for j > 0
. (1.28)

where A, B and F are parameters associated with σm and A, B and F

are parameters associated with σm. The agents choose to commit to their

choices of σm,t made in the past.

Proof. see Appendix (1.9.6). �
Case 2 (εmt < 0): similarly to case 1, a negative monetary shock
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results in a negative monetary surprise at time t and a positive surprise af-
terwards. The solution of the model in this case is summarized in Propo-
sition (2).

Proposition 2. if (εat < 0 or εmt < 0) the solution of the model is as

follows:

Xt+j =

AXt+j−1 +BUt+j, for j = 0

AXt+j−1 +BUt+j, for j > 0
, (1.29)

Xf
t+j =

FXt+j, for j = 0

FXt+j, for j > 0
. (1.30)

1.7 Estimation and Results

Estimation Procedure I set the majority of the parameters to be the
median estimates of the baseline model, except for σm and σm, which
were not present in the linear model. I estimate those key parameters by
minimizing the distance between the impact effects of monetary policy
shock on real GDP forecast revisions generated from simulations of the
model and those from actual data, i.e. those reported in Figure (1.5). As is
discussed in Proposition (1) and Proposition (2), the response to a positive
monetary shock (the right panel in Figure (1.5)) is used to estimate σm and
the left panel in Figure (1.5) is useful for the estimation of σm. The key
parameters to be estimated are stacked in vector Θ ≡

[
σm σm

]
.

Let M∗ denote the six moments from data: three forecast revision
horizons and two sets of estimates in response to positive and negative
shocks. For a given parameter vector Θ, I simulate those moments M(Θ)

using the model. For each parameter in Θ, the distance between the actual
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data and the simulation of the model is:(M∗(i)−M(Θ)(i)

M∗(i)

)2

.

My estimator is the solution to the following problem:

Θ̂ = argmin

6∑
i=1

(M∗(i)−M(Θ)(i)

M∗(i)

)2

.

Parameter estimates are reported in Table (2.3), in which the first column
reports the mean estimate (σm) that is taken from Table (1.1) and second
and third columns report the lower bound (σm) and upper bound (σm)
respectively. While the estimated σm is merely slightly smaller than the
mean estimate, σm is double the size of σm. This is the case because
empirically the responses of real GDP forecast revisions to negative mon-
etary shocks are similar to those estimated in the baseline model and re-
sponses to positive monetary shocks are much smaller.

Table 1.5: Estimated Parameters

The Mean Estimate σm The Lower Bound σm The Upper Bound σm

1.2× 10−3 1.0× 10−3 2.0× 10−3

Notes: The mean estimate is taken from Table (1.1), the lower bound and upper bound reported
in the second and third columns are estimated using the simulated method of moments.

Results: the Asymmetric Effects of Monetary Shocks The left panel
in Figure (1.10) depicts the impact effects of monetary shocks on real
GDP forecast revision at different horizons. The right panel reports the
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impact responses of nominal yield with different maturities to monetary
shocks. The red circles report the responses to a positive monetary shock
and blue ones correspond to the responses to a negative monetary shock.
The asymmetry is apparent and this figure successfully replicates the em-
pirical fact that we have seen in Figure (1.5). The intuition is the follow-
ing: a negative (positive) monetary shock is perceived by private agents
as an ambiguous signal about a bad (good) news shock therefore they
become more pessimistic (optimistic), yet the correct amount of belief
updating is ambiguous. Since they are ambiguity averse, they update as
much (little) as possible, in other words the information channel is strong
(weak). Therefore the puzzling facts are more (less) pronounced when
the monetary shock is negative (positive). The right panel in Figure (1.10)
confirms that the same asymmetric patterns hold for the yield curve: in
absolute value, a negative monetary shock affects the yield curve more
than the effects of a positive shock.

Figure (1.18) plots the impulse response functions of output and in-
flation to a positive (in red) and negative (in blue) monetary shock. As
one can see, a contractionary monetary policy shock is more effective
(disturbing) than an expansionary one. This is consistent with empirical
studies, such as, for example, Barnichon and Matthes (2016). This is a
result of the information channel and ambiguity aversion. The informa-
tion channel offsets the transitional channel of monetary policy. Together
with the assumptions of an ambiguous signal and ambiguity averse agent,
the information channel is stronger when the monetary action sends a bad
news (negative monetary shock). Since the traditional channel of mone-
tary shock is sign independent, overall the total effect is asymmetric.
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Figure 1.10: Model Result I: Rationalizing Asymmetric Facts
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Note: Plots of the model implied responses of real GDP forecast revisions at different
horizons and nominal yield with different maturities to monetary shocks.

Robustness Checks The results discussed above are based on a model
in which monetary policy as a signal is ambiguous. However, this is not
a necessary condition. The key to the success of the model is the kinked
belief updating equation, which arises as long as one or more of the fol-
lowing volatilities are uncertain: level productivity shock, trend produc-
tivity shock, private signal shock and monetary shock. Figure (1.19) plots
the estimation results of a model in which the volatility of the level pro-
ductivity shock is uncertain, Figure (1.20) plots the results in the case
where volatility of the trend productivity shock is uncertain, and in Fig-
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ure (1.21) both private signal shock and monetary shock feature uncertain
volatilities. In all of those cases, the model generates asymmetric effects
of monetary shocks on real GDP forecast revision and the yield curve in
a way that is consistent with empirical findings.

An interesting feature arises in Figure (1.19) and (1.21): the impulse
responses of real GDP and inflation to a negative monetary shock are
hump-shaped. The theoretical literature rationalizes the hump-shape IRFs
by introducing capital or habit formation to the basic NK model. This pa-
per provides an alternative mechanism: the information channel. Through
the information channel, a negative monetary shock has expansionary ef-
fects while through the standard channel the impacts are contractionary.
After a pure monetary shock, in the beginning, the information channel is
strong and it nearly offsets the standard channel. The total effect is small
on impact. Over time, agents learn the truth and the information channel
diminishes faster than the conventional effect. As a result, even though
the realized interest rates are not as high as in the first period, the total
effects of monetary policy are stronger in the subsequent periods.

1.8 Conclusion

I have provided a micro-founded model based on the information channel
of monetary policy that rationalizes: first, monetary policy shocks have an
impact on interest rates at long horizons (10 years or more) and second,
a contractionary monetary policy has an expansionary effect on agents’
forecasts of real GDP. In the framework, the central bank holds superior
information about future economic conditions. Policy actions partially
reveal that information to the public, and thus the model is capable of

57



generating the aforementioned facts. In the presence of the information
channel, the impacts of monetary shocks on output and inflation are mit-
igated. I have also discussed the optimal central bank communication
and the design of optimal monetary simple rule: it is optimal to be fully
opaque about trend shocks; the information asymmetry studied in this
paper does not affect the design of optimal simple rule.

In addition, I have uncovered novel empirical facts that the aforemen-
tioned effects of monetary shocks on long-term rates and real GDP fore-
casts are asymmetric. The responses are more pronounced (more puz-
zling) when the monetary shocks are expansionary. A simple extension
of the baseline model rationalizes these asymmetric facts, based on sig-
nals of uncertain qualities and ambiguity averse agents. Moreover, the
model predicts the asymmetric effects of monetary shocks on output and
inflation, which are consistent with empirical facts discovered in empiri-
cal literature.

There are two lessons to be learned from this paper. First, in a world
where the central bank has private information, the HFI monetary sur-
prises are not necessary monetary shocks, and the former are subject to
the endogeneity problem. Thus, researchers, who are interested in iden-
tifying the impacts of monetary shocks using HFI monetary surprises,
should clean those measures beforehand. Second, a deviation from the
monetary policy rule that intends to stimulate real GDP is not fruitful. In
particular, an exogenous drop in the monetary instrument has a limited
impact on real GDP due to the presence of the information channel.

An interesting extension of this paper could be to combine the cur-
rent framework with time-varying volatilities. Since the seminal work by
Bloom (2009), there is a growing literature that allows for a time varying
second moment and studies the impacts of macroeconomic uncertainty
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shocks. Many indexes, such as those provided by Jurado, Ludvigson and
Ng (2015), Rossi and Sekhposyan (2015) and Baker, Bloom and Davis
(2016), show evidence of time-varying volatilities. In this framework,
volatilities are the deep parameters that characterize the degree of infor-
mation frictions. Therefore, time-varying second moments will lead to a
time-varying information channel of monetary policy. Consequently, the
impacts of monetary shocks on actual economic activities will be varying
over time.
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1.9 Appendix

1.9.1 Tables

Table 1.6: Instrument Relevance : F-statistics from the First-stage
Regression

Baseline FFR Futures G&K FF4&ED4

The Yield Curve
Linear Framework
4MP 28.7 27.3 30.2 42.3

Allow for Asymmetry
4MP 84.7 22.3 28.5 26.2
4MPt × I negative 75.3 32.7 24.2 15.5

Forecast Revisions
Linear Framework
4MP 15.2 1.3 13.4 2.3

Allow for Asymmetry
4MP 28.3 7.7 15.0 1.1
4MPt × I negative 16.9 2.3 21.3 0.4

Notes: This table reports the F-statistics from the first-stage regression. In the baseline, the
instrument set consists of HFI monetary surprises constructed from four fed funds futures and
four futures on three month eurodollar deposits. The second column reports the F-statistics
when only HFI monetary surprises constructed from four fed funds futures are used as instru-
ment. In the third column, I employ the same instrument set as in Gertler and Karadi (2015),
namely: surprises in the current month’s fed funds futures (FF1), in the three month ahead
monthly fed funds futures (FF4), and in the six month, nine month and year ahead futures on
three month Eurodollar deposits (ED2, ED3, ED4). The last column reports the results using
only FF4 and ED4 as instruments.
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Table 1.7: Prior and Posterior: others

Priors Asymmetric Information Perfect Information

Mean s.d Distribution Mean s.d Mean s.d

σπ 2× 10−3 4 InvGamma 2.5× 10−3 0.2× 10−3 3.0× 10−3 0.3× 10−3

σd 2× 10−3 4 InvGamma 1.2× 10−2 0.3× 10−2 3.7× 10−2 0.4× 10−2

σey2 2× 10−3 4 InvGamma 5.5× 10−5 4.1× 10−5 6.4× 10−5 6.3× 10−5

σey5 2× 10−3 4 InvGamma 4.3× 10−5 3.2× 10−5 5.0× 10−5 4.3× 10−5

σey10 2× 10−3 4 InvGamma 6.8× 10−4 4.8× 10−5 2.0× 10−4 4.7× 10−5

g∗ 0.5× 10−2 0.5× 10−2 Gamma 0.4× 10−2 0.7× 10−2 0.4× 10−2 0.6× 10−2

π∗ 0.5× 10−2 0.5× 10−2 Gamma 0.6× 10−2 0.4× 10−2 0.6× 10−2 0.3× 10−2

β 0.99 0.01 Beta 0.99 0.01 0.99 0.01

k 0.3 0.1 Beta 0.12 0.04 0.36 0.07

ω 0.3 0.1 Beta 0.34 0.08 0.30 0.07

ρg 0.5 0.2 Beta 0.98 0.003 0.99 0.003

ρm 0.5 0.2 Beta 0.78 0.02 0.81 0.03

ρd 0.5 0.2 Beta 0.89 0.02 0.94 0.01

φπ 1.5 0.25 Gamma 1.1 0.05 1.6 0.13

φy 0.25 0.05 Gamma 0.35 0.06 0.31 0.06

φr 1 0.05 Gamma 0.90 0.02 0.97 0.03

Note: Posterior means and standard deviations are estimated by Random Walk
Metropolis-Hasting algorithm

1.9.2 Figures
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Figure 1.11: Predictions of a Standard NK Model: Responses to Pos-
itive Monetary Shocks
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Note: This figure depicts the impact effects of monetary shocks on nominal yield at
different maturities and real GDP forecast revisions at different horizons predicted by
a standard NK model with perfect information. The circles and intervals are the mean
estimates and 95% confidence intervals constructed based on posterior parameters’ dis-
tributions.
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Figure 1.12: Asymmetric Information v.s Perfect Information: Sepa-
rate Estimations
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This figure plots the IRFs for both the model with asymmetric information (in blue)
and perfect information (in red). Both models are estimated separately. The solid and
dashed lines are the mean estimates and 95% confidence interval of IRFs of the models
constructed based on the posterior parameters’ distributions.
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Figure 1.13: Robustness Check: an Alternative Taylor rule
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Figure 1.14: Robustness Check: Simulated Responses using the HFI
Approach
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Figure 1.15: Robustness Check: Simulated Responses using the R&R
Approach
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Figure 1.16: Optimal Central Bank Communication
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Note: This figure plots the welfare loss associate to different degrees of central bank
transparency. The latter is negatively related to σp, with σp = 0 corresponding to the full
transparent case. All the other parameters are fixed at their means of the corresponding
posterior parameter’s distributions.
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Figure 1.17: Optimal Central Bank Communication under Optimal
Simple Rule
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Note: This figure plots the welfare loss associate to different degrees of central bank
transparency under the corresponding optimal simple rule. For each value of σp, the
welfare loss is calculated under the corresponding optimal simple rule. All the other
parameters are fixed at their means of the corresponding posterior parameter’s distribu-
tions.
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Figure 1.18: Model Result II: the Asymmetric Effect on Economic
Activities
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Figure 1.19: Model Robustness Check I: Ambiguous Productivity
Volatility
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Figure 1.20: Model Robustness Check II: Ambiguous Growth Volatil-
ity
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1.9.3 Empirical Results: Robustness Checks

Monetary Shocks and the Yield Curve This section shows that the
empirical evidences presented in section (1.2) are robust to: i) the use of
alternative instrument sets ii) excluding the recession periods; iii) exclud-
ing factors; iv) excluding Greenbook forecasts; v) excluding all control
variables; and vi) the use of inflation indexed rate.

The results are robust to the use of alternative instrument sets. Table
(1.6) reports F-statistics from the first-stage regressions using alternative
instrument sets. The second column reports the F-statistics when only
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Figure 1.21: Model Robustness Check III: Ambiguous Monetary and
Private Signal Volatilities
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HFI monetary surprises constructed from four fed funds futures are used
as instrument. In the third column, I employ the same instrument set as in
Gertler and Karadi (2015), namely: surprises in the current month’s fed
funds futures (FF1), in the three month ahead monthly fed funds futures
(FF4), and in the six month, nine month and year ahead futures on three
month Eurodollar deposits (ED2, ED3, ED4). The last column reports
the results using only FF4 and ED4 as instruments. As can be seen, these
alternative instrument are relevant. Figure (1.22), Figure (1.23) and Fig-
ure (1.24) plot the estimated results using those alternative instruments:
monetary shocks affect interest rate at long horizon and the impacts are
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more pronounced when the shocks are negative.
Figure (1.25) shows the estimation results for the sample excluding

the deep recession periods: namely the second half of 2008 and the first
half of 2009. The asymmetry is not driven by the state of the economy.

Figure (1.26), Figure (1.27) and Figure (1.28) show that with or with-
out control variables do not affect the results. This suggests that both
the endogenous and exogenous components of monetary surprises affect
long-term interest rates, a feature that is consistent with the model pre-
sented in this paper. Moreover, monetary shocks affect inflation indexed
rates at long horizon, which are proxies for real interest rate, and the im-
pacts are sign dependent.

Monetary Shocks and Forecast Revisions I conduct the same set of
robustness checks for the puzzles related to monetary shocks and fore-
cast revisions.20 See Figure (1.30), Figure (1.31), Figure (1.32), Figure
(1.33) and Figure (1.34) for estimation results. As it is evidenced by those
figures, the impact of monetary shock on real GDP forecast revision is
sign dependent. While in response to a negative (expansionary) monetary
shock agents revise their real GDP forecast downwards and economically
significant, a positive (contractionary) monetary shock has little impact
on real GDP forecast revisions and the effect is statistically insignificant.

20However, I skip the use of alternative instrument sets that have no explanatory
power in the first stage.
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Figure 1.22: Impact Effect on Yield Robustness Check: FFR Futures
as Instruments

Notes: The top left panel reports the results from estimating the baseline re-
gressions: 4Y ht = αh + βh4MPt + γhXt + εh,t using HFI monetary sur-
prises as instruments for 4MPt. The square dots on the bottom panel rep-
resent the estimated β̂h1 + β̂h2 and the square dots on the top right panel rep-
resent the estimated β̂h1 , where β̂hs are estimated from separated regressions:
4Y ht = αh + βh14MPt + βh24MPt × I negative + γhXt + vh,t using HFI
monetary surprises and those interacting with I(HFI < 0) as instruments for
the variables of interest4MPt and4MPt × I negative.The blue lines are the
95% confidence interval constructed using standard errors that are robust to
serial correlation and heteroskedasticity. Sample: 1990M2 to 2010M12.
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Figure 1.23: Impact Effect on Yield Robustness Check: FF4&ED4 as
Instruments

Notes: The top left panel reports the results from estimating the baseline re-
gressions: 4Y ht = αh + βh4MPt + γhXt + εh,t using HFI monetary sur-
prises as instruments for 4MPt. The square dots on the bottom panel rep-
resent the estimated β̂h1 + β̂h2 and the square dots on the top right panel rep-
resent the estimated β̂h1 , where β̂hs are estimated from separated regressions:
4Y ht = αh + βh14MPt + βh24MPt × I negative + γhXt + vh,t using HFI
monetary surprises and those interacting with I(HFI < 0) as instruments for
the variables of interest4MPt and4MPt × I negative.The blue lines are the
95% confidence interval constructed using standard errors that are robust to
serial correlation and heteroskedasticity. Sample: 1990M2 to 2010M12.
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Figure 1.24: Impact Effect on Yield Robustness Check: G&K Instru-
ment Set

Notes: The top left panel reports the results from estimating the baseline re-
gressions: 4Y ht = αh + βh4MPt + γhXt + εh,t using HFI monetary sur-
prises as instruments for 4MPt. The square dots on the bottom panel rep-
resent the estimated β̂h1 + β̂h2 and the square dots on the top right panel rep-
resent the estimated β̂h1 , where β̂hs are estimated from separated regressions:
4Y ht = αh + βh14MPt + βh24MPt × I negative + γhXt + vh,t using HFI
monetary surprises and those interacting with I(HFI < 0) as instruments for
the variables of interest4MPt and4MPt × I negative.The blue lines are the
95% confidence interval constructed using standard errors that are robust to
serial correlation and heteroskedasticity. Sample: 1990M2 to 2010M12.

75



Figure 1.25: Impact Effect on Yield Robustness Check: Excluding
Recession Periods

Notes: The top left panel reports the results from estimating the baseline re-
gressions: 4Y ht = αh + βh4MPt + γhXt + εh,t using HFI monetary sur-
prises as instruments for 4MPt. The square dots on the bottom panel rep-
resent the estimated β̂h1 + β̂h2 and the square dots on the top right panel rep-
resent the estimated β̂h1 , where β̂hs are estimated from separated regressions:
4Y ht = αh + βh14MPt + βh24MPt × I negative + γhXt + vh,t using HFI
monetary surprises and those interacting with I(HFI < 0) as instruments for
the variables of interest4MPt and4MPt × I negative.The blue lines are the
95% confidence interval constructed using standard errors that are robust to
serial correlation and heteroskedasticity. Sample: 1990M2 to 2010M12.
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Figure 1.26: Impact Effect on Yield Robustness Check: Excluding
Factors

Note: The top left panel reports the results from estimating the baseline re-
gressions: 4Y ht = αh + βh4MPt + Xt + εh,t using HFI monetary sur-
prises as instruments for 4MPt. The control variables Xt contains only
Greenbook forecasts. The square dots on the bottom panel represent the es-
timated β̂h1 + β̂h2 and the square dots on the top right panel represent the es-
timated β̂h1 , where β̂hs are estimated from separated regressions: 4Y ht =
αh + βh14MPt + βh24MPt × I negative + Xt + vh,t using HFI monetary
surprises and those interacting with I(HFI < 0) as instruments for the vari-
ables of interest 4MPt and 4MPt × I negative.The blue lines are the 95%
confidence interval constructed using standard errors that are robust to serial
correlation and heteroskedasticity. Sample: 1990M2 to 2010M12.
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Figure 1.27: Impact Effect on Yield Robustness Check: Excluding
Greenbook Forecasts

Note: The top left panel reports the results from estimating the baseline regres-
sions: 4Y ht = αh + βh4MPt + γhXt + εh,t using HFI monetary surprises
as instruments for4MPt. The control variables Xt contains only factors. The
square dots on the bottom panel represent the estimated β̂h1 + β̂

h
2 and the square

dots on the top right panel represent the estimated β̂h1 , where β̂hs are esti-
mated from separated regressions: 4Y ht = αh + βh14MPt + βh24MPt ×
I negative + γhXt + vh,t using HFI monetary surprises and those interact-
ing with I(HFI < 0) as instruments for the variables of interest 4MPt and
4MPt× I negative.The blue lines are the 95% confidence interval constructed
using standard errors that are robust to serial correlation and heteroskedasticity.
Sample: 1995M1 to 2015M12.
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Figure 1.28: Impact Effect on Yield Robustness Check: Excluding
Control Variables

Note: The top left panel reports the results from estimating the baseline re-
gressions: 4Y ht = αh + βh4MPt + εh,t using HFI monetary surprises
as instruments for 4MPt. The square dots on the bottom panel represent
the estimated β̂h1 + β̂h2 and the square dots on the top right panel repre-
sent the estimated β̂h1 , where β̂hs are estimated from separated regressions:
4Y ht = αh + βh14MPt + βh24MPt × I negative + vh,t using HFI monetary
surprises and those interacting with I(HFI < 0) as instruments for the vari-
ables of interest 4MPt and 4MPt × I negative.The blue lines are the 95%
confidence interval constructed using standard errors that are robust to serial
correlation and heteroskedasticity. Sample: 1990M2 to 2015M12.
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Figure 1.29: Impact Effect on Yield Robustness Check: Inflation In-
dexed Yields

Note: The top left panel reports the results from estimating the baseline re-
gressions: 4Y ht = αh + βh4MPt + γhXt + εh,t using HFI monetary sur-
prises as instruments for 4MPt. 4Y ht is the daily change around FOMC
event in the inflation indexed yield. The square dots on the bottom panel rep-
resent the estimated β̂h1 + β̂h2 and the square dots on the top right panel rep-
resent the estimated β̂h1 , where β̂hs are estimated from separated regressions:
4Y ht = αh + βh14MPt + βh24MPt × I negative + γhXt + vh,t using HFI
monetary surprises and those interacting with I(HFI < 0) as instruments for
the variables of interest4MPt and4MPt × I negative.The blue lines are the
95% confidence interval constructed using standard errors that are robust to
serial correlation and heteroskedasticity. Sample: 2004M1 to 2010M12.
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Figure 1.30: Impact Effect on Forecast Revision Robustness Check:
G&K Instrument Set

Note: The top left panel reports the results from estimating the baseline regres-
sions: yt+j|t − yt+j|t−1 = αj + βj4MPt + γjXt + vj,t using HFI mone-
tary surprises as instruments for 4MPt. The square dots on the bottom panel
represent the estimated β̂j1 + β̂j2 and the square dots on the top right panel rep-
resent the estimated β̂j1 , where β̂js are estimated from separated regressions:
yt+j|t − yt+j|t−1 = α1 + βj14MPt + βj24MPt × I negative + γjXt + vj,t
using HFI monetary surprises and those interacting with I(HFI < 0) as instru-
ments for the variables of interest 4MPt and 4MPt × I negative. The blue
lines are the 95% confidence interval constructed using standard errors that are
robust to serial correlation and heteroskedasticity. Sample: 1990Q1 to 2010Q4.
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Figure 1.31: Impact Effect on Forecast Revision Robustness Check:
Excluding Recession Periods

Note: The top left panel reports the results from estimating the baseline regres-
sions: yt+j|t − yt+j|t−1 = αj + βj4MPt + γjXt + vj,t using HFI mone-
tary surprises as instruments for 4MPt. The square dots on the bottom panel
represent the estimated β̂j1 + β̂j2 and the square dots on the top right panel rep-
resent the estimated β̂j1 , where β̂js are estimated from separated regressions:
yt+j|t − yt+j|t−1 = α1 + βj14MPt + βj24MPt × I negative + γjXt + vj,t
using HFI monetary surprises and those interacting with I(HFI < 0) as instru-
ments for the variables of interest 4MPt and 4MPt × I negative. The blue
lines are the 95% confidence interval constructed using standard errors that are
robust to serial correlation and heteroskedasticity. Sample: 1990Q1 to 2010Q4.
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Figure 1.32: Impact Effect on Forecast Revision Robustness Check:
Excluding Factors

Note: The top left panel reports the results from estimating the baseline regres-
sions: yt+j|t − yt+j|t−1 = αj + βj4MPt + γjXt + vj,t using HFI mone-
tary surprises as instruments for 4MPt. The square dots on the bottom panel
represent the estimated β̂j1 + β̂j2 and the square dots on the top right panel rep-
resent the estimated β̂j1 , where β̂js are estimated from separated regressions:
yt+j|t − yt+j|t−1 = αj + βj14MPt + βj24MPt × I negative + γjXt + vj,t
using HFI monetary surprises and those interacting with I(HFI < 0) as instru-
ments for the variables of interest 4MPt and 4MPt × I negative. The blue
lines are the 95% confidence interval constructed using standard errors that are
robust to serial correlation and heteroskedasticity. Sample: 1990Q1 to 2010Q4.
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Figure 1.33: Impact Effect on Forecast Revision Robustness Check:
Excluding Greenbook Forecasts

Note: The top left panel reports the results from estimating the baseline regres-
sions: yt+j|t − yt+j|t−1 = αj + βj4MPt + γjXt + vj,t using HFI mone-
tary surprises as instruments for 4MPt. The square dots on the bottom panel
represent the estimated β̂j1 + β̂j2 and the square dots on the top right panel rep-
resent the estimated β̂j1 , where β̂js are estimated from separated regressions:
yt+j|t − yt+j|t−1 = αj + βj14MPt + βj24MPt × I negative + γjXt + vj,t
using HFI monetary surprises and those interacting with I(HFI < 0) as instru-
ments for the variables of interest 4MPt and 4MPt × I negative. The blue
lines are the 95% confidence interval constructed using standard errors that are
robust to serial correlation and heteroskedasticity. Sample: 1990Q1 to 2015Q4.

1.9.4 Model Solution

Define: Xb
t = (εmt , ĝt, δt, ε

π
t , ît−1, π̂t−1)′ and Xf

t = (ŷt, π̂t)
′. The model

can be summarized as:

M0

[
Xb
t+1

Xf
t+1|t

]
= M1

[
Xb
t

Xf
t

]
+M2

[
Xb
t|t

Xf
t

]
+M3ut+1 (1.1)
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Figure 1.34: Impact Effect on Forecast Revision Robustness Check:
Excluding Control Variables

Note: The top left panel reports the results from estimating the baseline re-
gressions: yt+j|t − yt+j|t−1 = αj + βj4MPt + vj,t using HFI monetary
surprises as instruments for 4MPt. The square dots on the bottom panel rep-
resent the estimated β̂j1 + β̂j2 and the square dots on the top right panel rep-
resent the estimated β̂j1 , where β̂hs are estimated from separated regressions:
yt+j|t− yt+j|t−1 = αj +βj14MPt+βj24MPt× I negative+ vh,t using HFI
monetary surprises and those interacting with I(HFI < 0) as instruments for
the variables of interest 4MPt and 4MPt × I negative. The blue lines are
the 95% confidence interval constructed using standard errors that are robust to
serial correlation and heteroskedasticity. Sample: 1990Q1 to 2015Q4.

or explicitly:

M0



εmt+1

ĝt+1

δt+1

επt+1

ît

π̂t

ŷt+1|t

π̂t+1|t


= M1



εmt

ĝt

δt

επt

ît−1

π̂t−1

ŷt

π̂t


+M2



εmt|t
ĝt|t

δt

επt

ît−1

π̂t−1

ŷt

π̂t


+M3


εgt+1

εδt+1

επt+1

εmt+1
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where

M0 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 1 1

0 0 0 0 0 −1 0 β
1+ωβ


M3 =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



M1 =



0 0 0 0 0 0 0 0

0 ρg 0 0 0 0 0 0

0 0 ρδ 0 0 0 0 0

0 0 0 0 0 0 0 0

1 (1− ρm)ρg (1− ρm)ρδ 0 ρm 0 (1− ρm)φy (1− ρm)ρπ

0 0 0 0 0 0 0 1

0 0 (1− ρδ) 0 0 0 1 0

0 0 0 −1 0 − ω
1+ωβ

−κ(1 + ϕ) 0



M2 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −ρg 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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Transform (1.1) into:[
Xb
t+1

Xf
t+1|t

]
= A1

[
Xb
t

Xf
t

]
+ A2

[
Xb
t|t

Xf
t

]
+ A3ut+1 (1.2)

where A1 ≡ (M0)−1M1, A2 ≡ (M0)−1M2 and A3 ≡ (M0)−1M3

Variables that are observable to private agent and relevant for belief
updating are summarized in vector Zt :

Zt = C

[
Xb
t

Xf
t

]
+ vt (1.3)

or explicitly:

 it

4at
spt

 = C



εmt

ĝt

δt

επt

ît−1

π̂t−1

ŷt

π̂t


+

 0

εat

εpt

 (1.4)

where:

C =

1 (1− ρm)ρg (1− ρm)ρδ 0 ρm 0 (1− ρm)φy (1− ρm)ρπ

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0
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Take expectation on (1.2):[
Xb
t+1|t

Xf
t+1|t

]
= W

[
Xb
t|t

Xf
t

]
(1.5)

where W ≡ A1 +A2. The Schur decomposition of matrix W is HUH−1.
Pre-multiply the previous equation by H−1 and define Yt ≡ H−1Xt|t we
get:

Yt+1 = UYt (1.6)

Solving the 2nd block of Yt+1 first, where |λi| > 1. Eliminating explosive
equilibrium implies:

Yf,t = 0

⇒ Xf
t = GXb

t|t, (1.7)

where G ≡ −(H inv
22 )−1HInv

21 . Note that through out the paper the matrix

H ≡

[
H1

H2

]
≡

[
H11 H12

H21 H22

]
, similar notations apply to other matrixes.

The 2nd block of (1.5) together with (1.7) implies:

Xb
t+1|t = J bXb

t|t (1.8)

Xf
t+1|t = JfXb

t|t, (1.9)

where J b ≡ (W11 +W12G), Jf ≡ G(W11 +W12G).
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(1.2) - (1.5):[
Xb
t+1 −Xb

t+1|t

0

]
= A1

[
Xb
t −Xb

t|t

0

]
+ A3ut+1

The first block implies that:

Xb
t+1 = HXb

t + JXb
t|t + A3

1ut+1 (1.10)

where J ≡ W11 +W12G− A1
11 and H ≡ A11.

Notice that in the belief matrix Xb
t|t, only two variables are not per-

fectly observed by agents, those are εmt , and gt. Denote xt ≡ [εmt , gt]
′ and

xt|t ≡ [εmt|t, gt|t]
′. The remaining variables are perfectly observable, there-

fore equal to their counter-parts in matrix Xb
t . Next, we will find law of

motion for xt|t.

Rewrite (1.3):

Zt = C1X
b
t + C2X

f
t + vt

= C1X
b
t + C3X

b
t|t + vt

= CbX
b
t +Mxt|t + vt,

where C3 = C2G, Cb ≡ C1 + [03,2 C3(:, 3 : end)], M ≡ C3(:, 1 : 2). The
above signal equation can be transform to:

Zx = Lxt +Mxt|t + vt, (1.11)

where Zx ≡ Zt − [03,2 Cb(:, 3 : 6)]Xb
t , L = Cb(:, 1 : 2). Note that:

xt = Jxxt−1 + uxt , (1.12)
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where Jx =

[
0 0

0 ρg

]
and uxt =

[
εmt

εgt

]
. Now, results derived in Svensson

and Woodford (2003) applies directly.

xbt|t = xbt|t−1 +K(L(xt − xt|t−1) + vt) (1.13)

K = PL′(LPL′ + Σvv)
−1 (1.14)

P = Jx[P − PL′(LPL′ + Σvv)
−1LP ]Jx

′
+ Σ2

ux (1.15)

State Space representation Xt ≡

[
Xb
t

xt|t

]
and Vt ≡



εgt

εδt

επt

εmt

εat

εpt


. We collect

the relevant equations into one state space representation.

Xt+1 = AXt +BVt+1, (1.16)

Xf
t = FXt (1.17)

Xf
t+1|t = F1Xt (1.18)
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with

A =

[
Ab

Abb

]
B =

[
Bb

Bbb

]
Ab =

[
H 0nb×2

]
+
[
0nb×2 J(:, 3 : end) J(:, 1 : 2)

]
,

Bb = A3
1L

u, Lu =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


Abb =

[
02×nb Jx −KLJx

]
+
[
KLJx 02×6

]
Bbb = KLLx +KLv, Lv =

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 , Lx =

[
0 0 0 1 0 0

1 0 0 0 0 0

]

F =
[
0nf×2 G(:, 3 : end) G(:, 1 : 2)

]
F1 =

[
0nf×2 Jf (:, 3 : end) Jf (:, 1 : 2)

]
F2 =

[
0nf×2 Jf2(:, 3 : end) Jf2(:, 1 : 2)

]
, Jf2 = J bJf

1.9.5 Term structure

This section derives term structure implied by the model discussed above.
The goal is to write down the term structure in terms of our state vector
Xt. it enters as the fourth element in vector Xt+1, therefore:

it = MIXt, (1.19)

where MI ≡ A(5, :).
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The stochastic discount factor, both nominal (Mn
t+1) and real (M r

t+1)

can be derived from consumer’s first order condition:

Mn
t+1 = β

Uc,t+1Pt
Uc,tPt+1

M r
t+1 = β

Uc,t+1

Uc,t

Given the utility function specified in this paper, mt+1 ≡ logMt+1 is
defined as:

mn
t+1 = logβ − yt+1 + yt − πt+1 + (ρδ − 1)δt − gt (1.20)

mr
t+1 = logβ − yt+1 + yt + (ρδ − 1)δt − gt (1.21)

Consider the nominal discount factor, rewrite in terms of state variable:

mn
t+1 = logβ +

[
−1 −1

]
Xf
t+1 +

[
1 0

]
Xf
t +

[
0 −1 ρδ − 1 05×1

]
Xt

Recall that Xf
t ≡ FXt, X

f
t+1 = FAXt + FBVt+1, plug them in:

mn
t+1 = m+MnXt +MvnVt+1, (1.22)

wherem ≡ logβ,Mn ≡
[
−1 −1

]
FA+

[
1 0

]
F+
[
0 −1 ρδ − 1 01×5

]
and Mvn ≡

[
−1 −1

]
FB.

Similarly:

mr
t+1 = m+MrXt +MvrVt+1 (1.23)

where Mr ≡
[
−1 0

]
FA +

[
1 0

]
F +

[
0 −1 ρδ − 1 05×1

]
and
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Mvr ≡
[
−1 0

]
FB.

The no arbitrage condition:

P n+1
t = Et(Mt+1P

n
t+1) (1.24)

The relation between yield and price of zero coupon bond:

i
(n)
t = −n−1log(P n

t ) (1.25)

With (1.19) (1.22) (1.23) (1.24) (1.25) we can derive the yield curve as
linear function of state variable Xt. Let’s begin with the nominal yield
and the real yield curve is derived similarly. Note that i(1)

t ≡ it. From
(1.19) (1.25) and let n = 1 we get:

P 1
t+1 = exp(−it+1)

= exp(−MIXt+1)

= exp(−MIAXt −MIBVt+1) (1.26)

Plug (1.23) and (1.26) into (1.25):

P 2
t = vh,t(Mt+1P

1
t+1)

= vh,t[exp(m+MnXt +MvnUt+1 −MIAXt −MIBVt+1)]

= vh,t[exp(m+ (Mn −MIA)Xt + (Mvn −MIB)Vt+1)]

Under the assumption that shocks are normally distributed, the previous
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equation follows a log-normal distribution21. Therefore:

P 2
t = exp(m+ (Mn −MIA)DXt + 0.5V ar2), (1.27)

we have used the fact thatXt|t = DXt withD ≡



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


.

V ar2 depends on parameters and are remained to be determined. By
(1.25)

i
(2)
t = −0.5log(P 2

t )

= −0.5m− 0.25V ar2 − 0.5(Mn −MIA)DXt (1.28)

We have derived the expression for yield of a zero-coupon bond with
maturity of 2. We will show in general for n ≥ 2:

logP n
t = An +BnXt (1.29)

For n = 1, logP 1
t = −MIXt. And we have shown for n = 2:

A2 = m+ 0.5V ar2

B2 = (Mn −MIA)D

21If x follows a log-normal distribution, E(ex) = eE(x)+0.5σ2
x
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In order to find the general rule, let’s take one more step and set n = 3:

P 3
t = vh,t(Mt+1P

2
t+1)

(1.29) implies that P 2
t+1 = exp(A2 +B2AXt +B2BVt+1). Therefore:

P 3
t = vh,t[exp(m+MnXt +MvnVt+1 + A2 +B2AXt +B2BVt+1]

= vh,t[exp(m+ A2 + (Mn +B2A)Xt + (Mvn +B2B)Vt+1]

Hence:

logP 3
t = A3 +B3Xt,

with

A3 = m+ A2 + 0.5V ar3

B3 = (Mn +B2A)D

The recursive relations for An and Bn are:

An = An−1 +m+ 0.5V arn (1.30)

Bn = (Mn +Bn−1A)D (1.31)
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The expressions for V ars are:

V ar2 = [B2D
−1]bP [B2D

−1]b
′
+ (Mvn +MIB)ΣV V (Mvn +MIB)′

+ σ2Ψ2(σ2
g + σ2

a + σ2
m)

V ar3 = [B3D
−1]bP [B3D

−1]b
′
+ (Mvn +B2B)ΣV V (Mvn +B2B)′

+ σ2Ψ2(σ2
g + σ2

a + σ2
m)

V arn = [BnD
−1]bP [BnD

−1]b
′
+ (Mvn +Bn−1B)ΣV V (Mvn +Bn−1B)′

+ σ2Ψ2(σ2
g + σ2

a + σ2
m)

Thus the yield curve with different maturities can be collected in:
it

i2t

.

.

int

 =


−A1

−1
2
A2

.

.

− 1
n
An

+


−B1

−1
2
B2

.

.

− 1
n
Bn

Xt + eit (1.32)

1.9.6 Proof of Proposition 1

Proof: At time t, a positive monetary shock leads to a positive mone-
tary surprise, thus the agent updates gt|t upwards as less as possible using
σm,t = σm. Note that Et(it+1) is positively related to gt|t with the coeffi-
cient θg.

At time t + 1, the misinterpretation committed at time t leads to a
negative monetary surprise −θggt|t, thus the agent updates gt+1|t+1 down-
wards. The exact amount of forecast revision depends on the choice of
σm,t and σm,t+1. It is apparent that σm,t+1 = σm leads to a maximum
downward revision of gt+1|t+1 (worse-case) independent with the choice
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of σm,t.

The σm,t chosen at t + 1 continue to be the same as before, i.e. σm.
To see this, by contradiction, assume that the agent revises her choice of
σm,t downward such that gt|t+1 − gt|t = 4. As a result, gt+1|t+1 would be
(1 − (kt,t − kt,t+1)θg)4 higher than the one associated with σm,t = σm,
thus this is not the worse-case. The latter contradicts that the agent is a
max-minimizer. Note that I have used the fact that under the worse case
choice of σm,t the belief updating equation is g∗t+1|t+1 = gt|t − kt,tθggt|t

and under the alternative case gt+1|t+1 = gt|t+1−kt,t+1θggt|t+1, with (kt,t−
kt,t+1) < 0.

Similarly, at time t + j for j > 1, the agent keeps being shocked by
negative monetary surprise until she fully learned the truth, i.e there was
merely a pure monetary shock at t. And the worse case belief is associated
with {σm, ..., σm︸ ︷︷ ︸

j times

}.

The same arguments hold for a negative monetary shock Proposition
2. The choice of σm,t made at time t is not revised at future periods. �

1.9.7 Data

Construction of factors

The goal is to construct factors (principal components) that represent state
of the economy but are orthogonal to the monetary instrument. Many
DSGE model, such as the one presented in this paper, has the solution
that takes the following form:

Yt = FXt + et,
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where Xt is a N by T vector that includes all state variables that evolve
exogenously and Yt is a M by T vector that contains observable variables.
In practice M is large and in theory N is small. Using the realtime 110
monthly macroeconomics time series from FRED-MD, I construct the
first N principal components denoted as Fall,t with N equal to five for the
baseline regressions and N equal to eight for the robustness check repre-
sented in the paper. I have used realtime data, i.e Fall,t are constructed
using data up to time t, in order to excluding future information. Those
principal components are good representation of the state of the economy
(Xt). However since those will be used to ”clean” (as controls) the HFI
monetary surprises, it is important to remove the state variable related to
monetary shock from Fall,t. To this end, I follow Bernanke, Boivin and
Eliasz (2004)’s approach. I construct the first N principal components
from slow-moving variables (those do not respond to monetary shock on
impact) denoted as Fslow,t, then estimate regression of the following form:

Fall,t = c+ β1Fslow,t + β1FFRt + β2Y 2Yt + ut (1.33)

where FFRt and Y 2Yt denote the fed funds rate and two year nominal
yields: those are the proxies for monetary instruments. This regression
aims to determine the part in Fall,t that originate from monetary shocks.
Fslow,t is included to ensure unbiased estimates for β1 and β2. The desired
factors Ft are thus constructed as the difference between the Fall,t and
those originate from monetary shocks:

Ft = Fall,t − β̂1FFRt − β̂2Y 2Yt. (1.34)
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In Loria et al. (2017), we show that the constructed Ft have predictive
power on the HFI monetary surprises suggesting the information asym-
metry between the central bank and private agent. And it is thus important
to control for Ft in order to identify the pure monetary shocks from the
HFI monetary surprises.

1.9.8 Bayesian Estimation

Measurement equations The measurement equations are:

log(RGDPt/POPt)− log(RGDPt−1/POPt−1) = g∗ + ŷt − ŷt−1 + ĝt + εat

Inflationt = π̂t + π∗

Y 2Yt/4 = ît + ey2
t

Y 5Yt/4 = − 1

20
B20Xt + ey5

t

Y 10Yt/4 = − 1

40
B40Xt + ey10

t ,

where RGDPt/POPt denotes the per capita real GDP, Inflation is the
GDP price deflator, Y 2Yt, Y 5Yt and Y 10Yt are the demeaned nominal
yields with maturity of two, five and ten years respectively. By demean-
ing the yield I forgo testing the model’s ability to match the average slope
of yield curve. Matching the empirical slope of the yield curve would
require additional features such as liquidity premium, which is beyond
the scope of this paper. Nimark (2008) take the same data transforma-
tion. Similar to the empirical exercises conducted above, I have used the
quarterly return of the two-year nominal yield as policy instrument. This
is a short-cut to allow me to interpret the monetary shock in the model
as a mix of conventional monetary shock (shock to the fed funds target)
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and the forward guidance shock (shock to interest rate at longer horizon).
Moreover, using two years yields as policy instrument makes estimation
using data beyond 2008 (zero lower bound) possible22. Note that I have
add measurement errors to the yields to allow for potential time varying
risk premium that are not captured in the model.

Posterior Convergence Check Figure (1.35) provides a visual repre-
sentation of posterior distributions. Both the trace plots (see Figure (1.36))
and the recursive average of parameters (see Figure (1.37)) suggest the
convergence of posterior distributions.

Figure 1.35: Posterior Distributions
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22However, results are robust if the two-year nominal yields enter in the measure-
ment.equation as yield with maturity of eight periods.
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Figure 1.36: Convergence Check I: Traceplots
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Note: A traceplot is a plot of the value of the draw of the parameter at each iteration
against the iteration number
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Figure 1.37: Convergence Check II: Recursive Average
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Chapter 2

WHICH INFLATION INDEX
TO STABILIZE? THE ROLE
OF MARKET POWER

2.1 Introduction

As of early 2011, there were 27 central banks around the world adopted
inflation targeting as their policy objectives.1 In a historical shift, on 25
January 2012, the former U.S. Federal Reserve Chairman Ben Bernanke
set a formal inflation target of 2%, making the total number of inflation
targeting countries to 28. All those central banks employ the consumer
price index (CPI) as their policy instruments except for the U.S., in which
the personal consumption expenditure (PCE) is chosen to be the opera-
tional target. While there exist minor differences in the construction of
those two indexes, both of them are constructed as the weighted aver-
age of sectorial inflation using the shares of consumption as the weights.

1See Hammond (2012).
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Although it is convenient for a central bank to target CPI/PCE because
statistical agencies, such as the Bureau of Labor Statistics in the U.S.,
collect and publish those measures. However, it is not clear whether such
a practice is optimal. Should the central bank stabilize an inflation index
that is constructed using alternative weights other than their consumption
shares? This paper addresses this question.

To answer this question, I build a multi-sector New Keynesian model,
in which sectors differ in their degrees of price stickiness and price elas-
ticities of demand in addition to sectorial technology shocks. In a setup
with monopolistic competition, the price elasticity of demand is positively
related to the degree of competition and negatively correlated with market
power (markup). Thereafter, I will use those terms interchangeably. Ex-
isting literature has mainly focused on the implications of relative price
stickiness. Denote this as Stickiness Channel, see Aoki (2001), Benigno
(2004) and Mankiw and Reis (2003). However, little is known about the
impact of heterogeneity in sectorial market power (Competition Chan-
nel) on the choice of the optimal inflation index.

Allowing for this additional feature is necessary for two reasons. First,
for its empirical relevance. Loecker and Eeckhout (2017) show significant
cross-sector heterogeneities in markup in the U.S. and using different data
and method, Christopoulou and Vermeulen (2012) find similar results for
both the U.S. and the Euro Area. Second, costly price adjustment mod-
els developed by Barro (1972), Sheshinski and Weiss (1977) and Golosov
and Lucas (2007) predict more flexible price in a sector with higher com-
petition. Therefore, analyzing the stickiness channel without considering
the origin of the relative frequency of price adjustment might be mislead-
ing.

The main contribution of this paper is to fill this gap in the literature.
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Two results stand out. First, the more competitive (lower market power)
a sector is, the higher is the optimal weight for that sector. In the extreme
case when a market is infinitely close to a perfect competition market (flat
demand curve), the optimal inflation index is the one that only consists in-
flation in that sector. The intuition is the following. In a more competitive
market, firms face a flatter demand curve. Consequently, a given change
in price leads to a more significant movement in quantity. In the presence
of price stickiness, this results in a more significant dispersion in output,
which is welfare detrimental due to consumers’ love of variety. In sum,
inflation in a more competitive sector creates a bigger distortion. There-
fore, stabilizing inflation in that sector is relatively more important, hence
the higher weight. Second, interestingly, when the model is calibrated to
data, the competition channel offsets the stickiness channel. As a result,
targeting CPI (weighted by the size of the market) dominates the stabi-
lization of an inflation index that is merely based on the relative price
stickiness. This finding challenges the conventional wisdom that the cen-
tral bank should attach a higher weight to a sector with a higher degree of
nominal rigidity, and supports the current practice of central banks around
the world (CPI targeting).

The framework enables us to calculate the optimal inflation index by
taking into account sectorial heterogeneities both in price stickiness and
market power. The optimal weight is not necessary increasing in rela-
tive price stickiness as suggested by Aoki (2001), Benigno (2004) and
Mankiw and Reis (2003) if competition and frequency of price adjust-
ment are positively correlated.

Previous literature on the optimal inflation index is abundant, but most
conclusions are drawn based on frameworks that introduce nominal rigid-

105



ity into different markets. Erceg, Henderson and Levin (2000)2 show that
in the presence of nominal wage rigidity, the optimal monetary policy in-
dex includes wage inflation. Huang and Liu (2005) demonstrate that with
price stickiness in intermediate sectors, it is optimal for the central bank
to respond to both CPI inflation and PPI inflation. By introducing nomi-
nal rigidity to the investment goods sector, Basu and Leo (2016) conclude
that the optimal policy reacts to inflations in both consumption goods and
investment goods. Different from those papers, the current paper investi-
gates a factor — market power that is a source of sectorial heterogeneity
in nominal rigidity. And study the interaction between competition and
nominal rigidity for the design of optimal monetary policy. Anand, Prasad
and Zhang (2015) consider the optimal inflation targeting policy for de-
veloping countries. They show that with a significant fraction of hand-
to-mouth workers in the food sector, stabilizing headline CPI is welfare
improving as compared to maintaining core CPI.

More broadly, this paper is related to the literature that studies the
optimal monetary policy with a dynamic price elasticity originating from
firm entry and exit. See, for example, Bilbiie, Ghironi and Melitz (2008),
Bilbiie, Fujiwara and Ghironi (2014), Bergin and Corsetti (2008), Cooke
(2016), Etro and Rossi (2015), Faia (2012) and Lewis (2013). In contrast
to those studies, this paper focuses on the heterogeneity in price elasticity
across sectors. In another closely related paper, Andrés, Ortega and Vallés
(2008) rely on cross-country heterogeneity in competition to explain infla-
tion differentials in the EMU. While the current framework shares similar
features, this paper focuses on the interaction between price stickiness and
market competition and studies the implication for the design of optimal

2See also Galı́ (2008b) Chapter 6 for a textbook treatment.
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monetary policy.

The remainder of the paper is organized as follows. Section (2) in-
troduces the model. Section (3) discusses the central bank’s problem.
Section (4) presents the main results. And Section (5) concludes.

2.2 Model

I consider a multi-sector New Keynesian model as the one discussed in
Woodford (2011), which is a closed economy version of Benigno (2004).
Different from the existing literature, I allow for heterogeneity in the de-
gree of market power across sectors.

2.2.1 Households

A representative household seeks to maximize the following utility func-
tion:

E
∞∑
t=0

βt

[
C1−σ
t

1− σ
−

K∑
k=1

N1+ϕ
k,t

1 + ϕ
di

]
,

subject to budget constraint:

PtCt +QtBt+1 ≤ Bt +
K∑
k=1

WktNkt +
K∑
k=1

Tkt

where Pt denotes the aggregate price defined below, Qt denotes the price
at time t of a one period bond that paysBt+1 at time t+1,Wkt the sectorial
wage and Tkt the lump-sum transfer including profit from firms. There are
K sectors in the economy, each of those sectors requires a sector-specific
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labor Nk. The aggregate consumption that enters utility function is a CES
aggregate of K subindices:

Ct ≡

[
K∑
k=1

n
1/η
k C

(η−1)/η
kt

]η/(η−1)

, (2.1)

with the elasticity of substitution across sectors η > 0 and nk denotes the
size of the sector k with

∑K
k=1 nk = 1. Each subindices Ckt is a CES

aggregate of the following form:

Ckt ≡

[
n
−1/εk
k

ˆ nk

0

Ckt(i)
(εk−1)/εkdi

]εk/(εk−1)

(2.2)

with an elasticity of substitution εk that varieties across sectors.

The implied sectorial prices index are:

Pkt ≡

[
n−1
k

ˆ nk

0

pkt(i)
1−εkdi

]1/(1−εk)

, (2.3)

The implied aggregate price index is:

P ≡

[
K∑
k=1

nkP
1−η
kt

]1/(1−η)

(2.4)

Solving the consumers’ problem regarding the optimal allocation of
demand across varieties yields the following demand functions:

Ckt(i) =
1

nk
Ckt

(
Pkt(i)

Pkt

)−εk
, Ckt = nkCt.

(
Pkt
Pt

)−η
(2.5)
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The former is the demand function faced by an individual firm i in sector
k and the one on the right is the sectorial demand faced by sector k. It
is worth to emphasize that the price elasticity of demand faced by firm
i in sector k is −εk, the same magnitude as the elasticity of substitution
with the opposite sign (downward sloping). This is intuitive: the higher
is the elasticity of substitution the easier it is for a consumer to substitute
goods i by another goods j in the same sector. Hence, the more elastic is
the demand hence more competitive this sector is. In the limiting case of
εk →∞, the market is perfectly competitive.

2.2.2 Firms

There are K sectors in the economy, with a continuous of monopolistic
competitive firms operate in each of those sectors. All sectors share the
production function of the same functional form but are subject to differ-
ent shocks:

Ykt = eaktL1−α
kt , (2.6)

Firms are subject to nominal rigidity à la ?: each firm may reset its price
with probability 1− θk. Hence, the log level price at sector k, pkt, evolves
as the following:

pkt = θkpk,t−1 + (1− θk)p∗kt
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where p∗kt is the optimal price that a reoptimizing firm at sector k would
set, which is the solution to the following problem:

max
P ∗kt

∞∑
h=0

θhkEt
{
Qt,t+h

(
P ∗ktYk,t+h|t −Ψk,t+h(Yk,t+h|t)

)}
(2.7)

subject to its demand constraints specified in (2.5). Where Qt,t+h ≡
βk(Ct+h/Ct)

−σ(Pt/Pt+h) denotes the stochastic discount factor, Ψk,t+h

denotes the cost function and Yk,t+h|t is the output for a firm in sector k
that last reset its price in period t.

The optimality condition implied by the firm’s problem is:

∞∑
h=0

θhkEt
{
Qt,t+hYk,t+h|t

(
P ∗kt −

εk
εk − 1

Ψ′k,t+h(Yk,t+h|t)
)}

= 0

Thus, the desired markup, defined as the markup under flexible price, is
equal to εk

εk−1
. The frictionless markup is decreasing in εk: the monop-

olistic competitive firm charges a lower markup in a more competitive
market.

2.2.3 Equilibrium

Solve the household’s problem and log-linearize to obtain the dynamic IS
equation:

ỹt = Eỹt+1 −
1

σ
[it − Eπt+1 − rNt )], (2.8)
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where

ỹt ≡ yt − yNt , yNt = ψa
K∑
k=1

nkakt, rNt ≡ σψa
K∑
k=1

nkEt4ak,t+1

with ψa ≡ (1+ϕ)
σ(1−α)+ϕ+α

. Throughout this paper, a variable with tilde de-
notes this variable in deviation from its natural level. And a variable
with hat denotes this variable in deviation from its steady state. Solve
the firms’ optimization problem and log-linearize, I obtain the New Key-
nesian Philipps Curve (NKPC) for each sector k:

πkt = λk(m̂ckt − p̂R,kt) + βEtπk,t+1 (2.9)

where λk ≡ (1−βθk)(1−θk)
θk

Θk, Θk ≡ 1−α
1−α+αεk

, pR,kt is the sector k’s relative
price (relative to aggregate price), defined as pkt − pt. And m̂ckt is the
real marginal cost in sector k, which is defined as:

m̂ckt = σ(ŷt − ŷNt ) +
α + ϕ

1− α
(ŷkt − ŷNkt) + η−1(ŷNt − ŷNkt). (2.10)

In the derivations of m̂ckt, I have used household’s labor supply equations
and the fact that m̂cNkt = −η−1(ŷNkt − ŷNt ) as it is implied by the sectorial
demand function. Plug (2.10) into (2.9) and replace pR,kt by −η−1ŷR,kt,
where ŷR,kt ≡ ŷkt − ŷt, I obtain the following sectorial NKPC:

πkt = kkỹt + γkỹR,kt + βEtπk,t+1 (2.11)
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where kk ≡ λk(σ + ϕ+α
1−α ) and γk ≡ λk(η

−1 + ϕ+α
1−α ). Alternatively, the

NKPC can be rewritten as:

πkt = kkỹt − ηγkp̃R,kt + βEtπk,t+1 (2.12)

As it is the case in standard multi-sector NK models, sectorial hetero-
geneities give birth to relative price (or quantity) dispersion across sectors,
therefore a full stabilization of both inflation and output gap is no longer
feasible. Moreover, while a positive aggregate output gap arises inflation
in all sectors, an increase in relative price (or quantity) in one sector has
a disinflationary impact in that sector and increases inflation pressure in
other sectors.

2.3 Central Bank

2.3.1 Welfare Loss Function

Before moving to the central bank’s problem, I will derive the welfare loss
function, which is the objective of the central bank. Following Rotemberg
and Woodford (1997, 1999) and ?, the second order approximation of the
representative consumer’s period welfare loss expressed in consumption
equivalent variation (CEV) is:

L =
K∑
k=1

εk
λk
nkvar(πkt) + (σ +

ϕ+ α

1− α
)var(ỹt)

+(η−1 +
ϕ+ α

1− α
)

K∑
k=1

nkvar(ỹR,kt) (2.13)
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where λk ≡ (1−βθk)(1−θk)
θk

Θk defined as above. Normalize the weights on
πkt such that

∑
φk = 1:

L =
K∑
k=1

φkvar(πkt) + λyvar(ỹt) + λRy

K∑
k=1

nkvar(ỹR,kt) (2.14)

where

φk =
nkεkλ

λk
, λy = (σ +

ϕ+ α

1− α
)λ, λRy = (η−1 +

ϕ+ α

1− α
)λ

and λ is defined as:

λ ≡ (
K∑
0

nkεkλ
−1
k )−1

See Appendix (2.6) for the derivations.

Similar to a standard multi-sector NK model, volatilities in sectorial
inflation, aggregate output gap, and the relative output gap are welfare
detrimental. More interestingly, by allowing for sectorial heterogeneity
in market power, inflation is a sector with a higher elasticity of demand
enters in the welfare loss function with a bigger relative weight, i.e. ∂φk

∂εk
>

0.

2.3.2 Monetary Policy

The central bank adopts inflation targeting as the means of conducting
monetary policy. This is the case for many central banks around the
world. I assume that the target rate is always 0 (the steady-state inflation
rate) and the goal is always achieved. This is equivalent to a Taylor rule
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with strict inflation index targeting. The monetary instrument is the ex-
ante choice of an inflation index that the central bank stabilizes ex-post. In
other words, I ask the question: which measure of inflation index should
the central bank stabilize and announce it to the public? This question can
be formulated as the following:

min
{ωk}

L = min
{ωk}

K∑
k=1

φkvar(πkt) + λyvar(ỹt) + λRy

K∑
k=1

nkvar(ỹR,kt)

(2.15)

subject to:

NKPC: πkt = kkỹt + γkỹR,kt + βEtπk,t+1,∀k

Dynamic IS: ỹt = Eỹt+1 −
1

σ

(
it − Eπt+1 − rNt

)
Monetary Policy :

K∑
k=1

ωkπkt = 0

sectorial Demand: yk,t = yt − η(p1,t − pt),∀k

Relative Output Gap: ỹR,kt = yk,t − yt − n2 ∗Ψak ∗ (a1 − a2),∀k

Aggregate Inflation CPI: πt =
K∑
k=1

nkπkt

sectorial Inflation: πkt = pk,t − pk,t−1,∀k

Aggregate Price: pt =
K∑
k=1

nkpk,t

Natural Real Interest Rate: rNt = σψa
K∑
k=1

nkEt4ak,t+1
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Previous studies have uncovered two main results. First, if sectors
share the same degrees of nominal rigidities and market competition, CPI
targeting is optimal. Second, it is optimal to give higher weight to the
sector with a higher degree of nominal rigidity. The remaining of this
paper is to investigate the role of market power and in particular how it
might interact with the stickiness channel.

2.3.3 Special Cases

I begin with analyzing a liming case in which one sector is infinitely close
to perfect competition3, i.e., εk → ∞. In this case, the loss function
collapses to:

L→ var(πk).

It follows immediately that:

Proposition 1. If εk → ∞ and θk 6= 0, the optimal monetary policy is to

set πk = 0.

This does not mean that the welfare loss under the optimal monetary
policy is zero. In fact, due to asymmetric shocks, the aggregate and the
relative output gap, and inflation in the remaining sectors fluctuate, which
give rise welfare loss. It means that if goods in sector k are almost perfect
substitutes then, in terms of welfare loss, stabilizing inflation in this sector
is infinitely more valuable than stabilizing any other variables. This is
the case because, with a flat demand curve and nominal rigidity, price

3It only makes sense to talk about the infinitely close case, because in the limit-
ing case with perfect competition firms are price takers. Therefore the firm’s problem
discussed in the previous section, price setter firms, would not carry over.
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dispersion that arises from inflation leads to an infinitely big dispersion in
output.

Next, I investigate whether the competition channel affects the opti-
mality of core inflation stabilization suggested by Aoki (2001) and Be-
nigno (2004).

Proposition 2. If price is flexible in sector k, independent of the relative

market power, the optimal weight for this sector is zero.

Proof : see Benigno (2004).
If the price is flexible, inflation does not lead to price dispersion. There-
fore welfare loss originating from inflation is trivial no matter how com-
petitive the market is.

A more interesting interaction between market power and nominal
rigidity rises in the general case. This is left for the next section.

2.4 Quantitative Analysis

Unless otherwise specified, the model’s parameters are calibrated to be
those reported in Table (2.1). Most parameters are calibrated to values
that are frequently used in the literature. σ = 2 implies that inter-temporal
elasticity of substitution equal to 0.5. The Frisch elasticity of labor sup-
ply (1/ϕ) is set to be 1/3. I set the discount factor β = 0.99, which
corresponds to a steady-state annual interest rate of 4%. The produc-
tion function has decreasing return to scale with α = 1/3, a value that
is commonly used in business cycle literature. I consider a two sectors
model with equal size, i.e. n1 = n2 = 0.5, While sectors are subject
to different productivity shocks, the process for the productivity is the
same: akt = 0.95ak,t−1 + εkt, εkt is normally distributed with mean 0
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and variance 0.002. Hobijn and Nechio (2017) provide an estimate of the
elasticity of substitution across sectors η = 1.

Table 2.1: Calibration

Utility function σ = 2, ϕ = 3

Discount factor β = 0.99

Production function α = 1/3

Size of sectors n1 = 0.5, n2 = 0.5

Exogenous shocks ρ1 = ρ2 = 0.95, σ2
a1 = σ2

a2 = 0.02

Nominal rigidity θ1 = 0.63, θ2 = 0.73

Elasticity of substitution η = 1, ε1 = 11/3, ε2 = 7/3

The sectorial nominal rigidities and elasticities of substitution are cal-
ibrated to match their counterpart in the manufacturing (sector 1) and ser-
vice (sector 2) sectors in the U.S. θ1 = 0.63 and θ2 = 0.73 matches
the frequency of price adjustment reported in Gorodnichenko and Weber
(2016) 4 for the manufacturing and service sectors. The sectorial elastici-
ties of substitution are calibrated to be ε1 = 11/3 and ε2 = 7/3 that match
markups in manufacturing (1.375) and service sectors (1.75) estimated by
Loecker and Eeckhout (2017) for 2014. Those markups are higher than
the values that are typically assumed in the literature: 1.1 or 1.2. I provide
a robustness check using those commonly used values, and qualitatively

4Gorodnichenko and Weber (2016)’s estimates are based on the method discussed
in Nakamura and Steinsson (2008), I take the values from the former because Gorod-
nichenko and Weber (2016)’s classifications of sectors matches the ones used in Loecker
and Eeckhout (2017), which I based on to calibrate sectorial markups.
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results are unchanged. What matters is the markup in the service sector
is higher than manufacturing, which is confirmed by Christopoulou and
Vermeulen (2012) in their estimates of markups for both the U.S. and the
Euro Area.

2.4.1 Results

In the previous section, we have seen that in the limiting case when a
sector is infinitely close to perfect competition, the optimal monetary pol-
icy fully stabilize inflation in this sector, i.e., the optimal weight for this
sector is 1. Figure (2.1) shows that the optimal weight attached to the
inflation in a sector is strictly increasing in both the degree of competi-
tion (stickiness channel) and its degree of price stickiness (competition
channel). While the former is well known, the later is new to the litera-
ture. The intuition for the competition channel is the following. In a more
competitive monopolistic market, firms face a flatter demand curve. Con-
sequently, a given change in price leads to a larger movement in quantity.
In the presence of price stickiness, this results in a bigger dispersion in
output, which is welfare detrimental due to consumers’ love of variety.
In sum, inflation in a more competitive sector creates a bigger distortion.
Therefore, stabilizing inflation in that sector is relatively more important,
hence the higher weight.

Next, I conduct welfare analysis under alternative inflation index sta-
bilization policies: optimal inflation index, CPI and inflation index based
only on price stickiness. Again, the welfare comparison is done for dif-
ferent values of markup in sector 1. The other parameters are calibrated
to be those reported in Table (2.1). Recall that the sector 2 is calibrated
to be the stickier sector. Figure (2.2) and Table (2.3) report the results.
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Figure 2.1: Optimal Inflation Index to Stabilize

Note: The optimal inflation index to stabilize as a function of markup
and price stickiness. Calibration: θ2 = 0.73 and ε2 = 7/3 i.e. markup

in sector 2 equals to 1.75.

The reported welfare loss is the CEV defined above in deviation from
the CEV under the optimal monetary policy. The left panel shows that
the stabilization of an optimal inflation index that is calculated based on
both competition and nominal rigidity (red dotted line) dominates poli-
cies that stabilize CPI (solid blue line) or an inflation index only based on
nominal rigidity (dashed black line). The inflation index solely based on
nominal rigidity is calculated by solving the central bank’s problem as-
suming that the central bank’s perceived markups in both sectors are the
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same and equal to the markup in sector 2.5 The associated welfare loss is
then calculated by evaluating this policy in the true model with different
markups.

Figure 2.2: Welfare Analysis: Alternative Policies

Note: Welfare loss as a function of markup in sector 1 under alternative policies. The
welfare loss is the corresponding CEV in deviation from the CEV under optimal mon-
etary policy. Calibration: θ1 = 0.63, θ2 = 0.73 and ε2 = 7/3 i.e. markup in sector 2
equals to 1.75. The red dot corresponds to the point where markup in sector 1 equal to
1.37 — the empirically relevant one.

Interesting results arise when comparing the performance of CPI sta-
bilization with the inflation index based on stickiness. When markup in
sector 1 is big enough, greater than 1.5 as indicated by the second raw
of Table (2.3), stabilizing the inflation index based on stickiness as rec-

5Similar results hold if the perceived markups are calibrated to the markup in sector
1 or the average markup. Because as long as the perceived markups are equal, the
optimal weight only depends on the relative stickiness.
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ommended by Benigno (2004) and Mankiw and Reis (2003) is welfare
improving as compared to the stabilization CPI. However, if sector 1
is competitive with a markup less than 1.5, stabilizing CPI is superior.
Costly price adjustment models developed by Barro (1972), Sheshinski
and Weiss (1977) and Golosov and Lucas (2007) predict more flexible
price in a sector with higher competition. This suggests that the compe-
tition channel offsets the stickiness channel. This is verified in the data.
Sector 1 is calibrated to match the manufacturing sector (θ1 = 0.63 < θ2),
which corresponds a markup of 1.37 (smaller than markup in sector 2: the
service sector) in the data. This point is plotted as the red dot in the fig-
ure. In this case, CPI is very close to the optimal inflation index as one
can see from the third row of Table (2.3). The optimal weight for sector
1 is 0.49, merely 0.01 smaller than CPI’s weight (0.5) and 0.15 higher
than the inflation index that only based on stickiness (0.34). Stabilizing
CPI almost replicates the allocations under the optimal monetary policy,
whereas setting the inflation index that only based on stickiness equal to
zero would lead to a welfare loss that is 0.03 percentage points higher
than the optimal allocation.

Table 2.2: Welfare Analysis: Alternative Policies

CEV Welfare Loss (%)

Markup Optimal Weight ω∗1 Optimal Inflation Index CPI Inflation Index
in Sector 1 based on Stickiness

1.75 0.34 0.00 0.02 0.00

1.50 0.42 0.00 0.01 0.01

1.37 0.49 0.00 0.00 0.03

1.20 0.66 0.00 0.04 0.18

Note: The welfare loss is the corresponding CEV in deviation from the CEV under optimal monetary policy.
The analysis is based on the following calibration: θ1 = 0.63, θ2 = 0.73 and ε2 = 7/3 i.e. markup in sector 2
equals to 1.75.
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Figure 2.3: Effects of Productivity Shock in Sector 1 under Alterna-
tive Monetary Policies

To understand better the intuition why stabilizing CPI dominates the
stabilization of the inflation index that only based on stickiness. Figure
(2.3) reports the impulse responses to a technology shock in sector 1 under
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different policies: optimal inflation (in red with circles), CPI (solid blue
line) and the inflation index that only based on stickiness (dasheded black
line). As one can see, the responses to sector 1 productivity shock are
similar under optimal inflation index and CPI stabilization policies. This
verifies the results we have seen before. The results are different under
the policy that maintains the inflation index that only based on stickiness
equal to zero. Under this policy, the responses of all the other variables
are smaller as compared to the those under the optimal inflation index
policy, except for inflation in sector 1. Under the optimal inflation index
policy, the central bank is willing to bring higher volatilities to variables
such as output gap and inflation in sector 2 to reduce the volatility in
inflation in sector 1. This is the case, because the welfare loss associated
with inflation in sector 1 is higher once the competition channel is taken
into account.

We turn to investigate the mechanism how the central bank achieves
the optimal allocation. A positive technology shock in sector 1 leads to
a decrease in sector 1’s inflation as the marginal cost is reduced. Since
the welfare cost of a change in inflation in sector 1 is substantial, As
compared to a policy that is suboptimal (dashed black lines), under the
optimal policy the central bank reduces interest rate more to mitigate the
reduction in sector 1’s inflation. Consequently, inflation and output gap
in sector 2 rises more, in addition to the direct impact of the technology
shock.

2.4.2 Robustness Check

In this section, I conduct the welfare analysis with an alternative calibra-
tion of markup in sector 2 (service sector): ε2 = 6, i.e., the markup is
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Figure 2.4: Robustness Check: Sector 2 Markup = 1.2

equal to 1.2. Figure (2.4) and Table (2.3) report the results. Qualitatively
similar results hold as before. Quantitatively, the breakeven markup in
sector 1 is 1.16 (the required markup in sector 1 such that the stabilization
of CPI and stickiness based inflation index are equivalent in terms of wel-
fare loss), merely 0.04 points less than markup in sector 2. If the markup
in the manufacturing sector is 0.1 less than the service sector, ignoring the
competition channel leads to a welfare loss that is 0.21 percentage point
higher the optimal inflation index policy and 0.18 percentage point higher
than stabIlizing CPI.
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Table 2.3: Robustness Check: Sector 2 Markup = 1.2

CEV Welfare Loss (%)

Markup Optimal Weight ω∗1 Optimal Inflation Index CPI Inflation Index
in Sector 1 based on Stickiness

1.25 0.30 0.00 0.16 0.02

1.16 0.43 0.00 0.01 0.01

1.10 0.58 0.00 0.03 0.21

Note: The welfare loss is the corresponding CEV in deviation from the CEV under optimal monetary policy.
The analysis is based on the following calibration: θ1 = 0.63, θ2 = 0.73 and ε2 = 6 i.e. markup in sector 2
equals to 1.2.

2.5 Conclusion

Which inflation index should a central bank stabilize? This paper ad-
dresses this question in a multi-sector model, in which sectors differ in
their degrees of nominal rigidity and competition. The optimal inflation
targeting policy depends on both the nominal rigidity and competition.
The optimal weight attached to inflation in a sector is increasing in this
sector’s price stickiness (stickiness channel) and degree of market com-
petition (competition channel). The paper shows the interaction between
the stickiness and competition channel. In particular, if firms operating
in a market with greater competition adjust their prices more frequently
as predicted by costly price adjustment models, the competition channel
offsets the stickiness channel. When the model is calibrated to the ser-
vice and manufacturing sectors in the US, I show that stabilizing CPI is
welfare improving as compared to stabilizing an inflation index based on
stickiness. This finding challenges the conventional wisdom in academic
circle and supports the current practice of central banks around the world.
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2.6 Appendix: Derivation of the Welfare Loss
Function

The second order Taylor expansion of the representative household’s util-
ity Ut around a steady-state (C,L) in terms of log deviations can be writ-
ten as:

Ut − U ≈ UcC
(
ŷt +

1− σ
2

ŷ2
t

)
+

K∑
k=1

ULkLk

(
l̂kt +

1 + ϕ

2
l̂2kt

)
di.

Note that

(1− α)l̂kt = ŷkt − akt + dkt

where dkt ≡ (1− α)log(Pkt(i)
Pkt

)−
εk

1−α .

Lemma 1. dkt = εk
2Θ
vari{pkt(i)}, with Θk ≡ 1−α

1−α+αεk

Proof : Gali (2008, chapter 4)

Therefore,

Ut − U ≈ UcC
(
ŷt +

1− σ
2

ŷ2
t

)
+

K∑
k=1

ULkLk
1− α

(
ŷkt

+
εk

2Θk

vari{pkt(i)}+
1 + ϕ

2(1− α)
(ŷkt − akt)2

)
+ t.i.p.

where t.i.p denotes the terms independent of policy. Under the assump-
tion that cost of employment is subsidized optimally at sectorial level to
eliminate distortions originate from monopolistic competition, the steady-
state is efficient and −ULk

Uc
= MPN .
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Approximate the CES aggregate Ct defined in (2.1) around ck = c +

log(nk):

K∑
k=1

nkŷkt ≈ ŷt −
1− η−1

2

K∑
k=1

nkŷ
2
R,kt

with
∑K

k=1 nkŷ
2
R,kt ≡

∑K
k=1 nk(ŷkt − ŷt)2. Using the fact that MPN =
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(1− α)(Yk/Lk), Y = C, it follows that:

Ut − U
UcC

≈ −1

2

[ K∑
k=1

(εknk
Θk

vari{pkt(i)}
)
− (1− σ)ŷ2

t − (1− η−1)
K∑
k=1

nkŷ
2
R,kt

+
1 + ϕ

1− α
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nk(ŷkt − akt)2
]

+ t.i.p
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2
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2
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2
R,kt − 2

1 + ϕ

1− α

K∑
k=1
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where ỹt ≡ yt−yNt . From line 2 to line 3, I have used the fact that
∑K

k=1 nkŷ
2
kt =∑K

k=1 nkŷ
2
R,kt + (

∑K
k=1 nkŷkt)

2 ≈
∑K

k=1 nkŷ
2
R,kt + ŷ2

t . From line 4 to line
5, where the fact was used that akt = σ(1−α)+α+ϕ

1+ϕ
yNt and akt−

∑K
k=1 akt =

η−1(1−α)+α+ϕ
1+ϕ

(̂yNkt − yNt ).

To summarize, the second order approximation of the representative
consumer’s welfare loss as a fraction of steady-state consumption is:

W = E0

∞∑
t=0

βt
(Ut − U

UcC

)
= −1

2
E0

∞∑
t=0

βt
[ K∑
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+ (σ +
ϕ+ α
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)ỹ2
t + (η−1 +

ϕ+ α
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2
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]
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Lemma 2.
∑∞

t=0 β
tvari{pkt(i)} = θk

(1−βθk)(1−θk)

∑∞
t=0 β

tπ2
kt

Proof : Woodford (2003, chapter 6)

Thus we obtain the following welfare loss function:

W = −1

2
E0

∞∑
t=0

βt
[ K∑
k=1

εk
λk
nkπ

2
kt + (σ +

ϕ+ α

1− α
)ỹ2
t

+ (η−1 +
ϕ+ α

1− α
)

K∑
k=1

nkỹ
2
R,kt

]
+ t.i.p.

where λk ≡ (1−βθk)(1−θk)
θk

Θk defined as above. Normalize the weights on
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πkt such that
∑
ωk = 1:

W = −1

2
E0

∞∑
t=0

βt
[ K∑
k=1

φkπ
2
kt + λyỹ

2
t + λRy
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nkỹ
2
R,kt

]
+ t.i.p. (2.1)

where

φk =
nkεkλ

λk
, λy = (σ +

ϕ+ α

1− α
)λ, λRy = (η−1 +

ϕ+ α

1− α
)λ

and λ is defined as:

λ ≡ (
K∑
0

nkεkλ
−1
k )−1

From the sectorial demand equation, one can rewrite sectorial output
dispersion as a function of sectorial price dispersion:

W = −1

2
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βt
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nkπ

2
kt + (σ +

ϕ+ α

1− α
)ỹ2
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η)vark(p̃kt)

]
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Normalize the weights on πkt:
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2
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∞∑
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φkπ
2
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2
t + λRpvark(p̃kt)

]
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where

λRp = η(1 +
ϕ+ α

1− α
η)λ

130



Chapter 3

THE RANDOM WALK BEATS
PROFESSIONAL FORECAST:
FACTS, PUZZLES AND
EXPLANATIONS

3.1 Introduction

It is a well-known fact since Meese and Rogoff (1983a,b, 1988) that ex-
change rates are very difficult to predict using macro variables. This
is especially true for predicting exchange rates in the near future (next
few months). Economists have struggled for decades to find the macro
variables that beat the simple random walk for out-of-sample forecasts.
Few, if any, have succeeded and many well-known international macroe-
conomic models fail to compete with the random walk. See Rossi (2013)
for an excellent updated survey. In this literature, one variable that is well
appreciated by the private sector, yet few academic studies have been done
based on it, is the professional forecasts of exchange rates.
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This paper contributes to filling this gap. Empirically, I compare the
forecasting performance of the professional forecasts (PF), those provided
by the Consensus Economics, 1 with the prediction of the Random Walk
model (RW). Four results stand out.

First, the random walk beats the professional forecasts according to
the mean square forecast error (MSFE), the mean absolute forecast er-
ror (MAFE) and the mean absolute percentage forecast error (MAPFE)
criteria. For three-months-ahead exchange rate forecasts, the forecast
errors based on the professional forecasts are significantly bigger, both
economically and statistically, than those constructed using the random
walk model. Second, the professionals’ forecasting model deviates from
the random walk model substantially. Their current forecast depends,
roughly, half on the current level of exchange rate. Note that a forecaster
whose forecasts are based on the random walk model would update their
current estimate depending wholly on the current exchange rate. Third,
in a counter-factual exercise, I show that the higher the weight that the
professional forecasters attached to the random walk model, the better it
predicts the future exchange rate. Fourth, professional forecasts fail to
pass the rationality test.

Overall, empirical facts suggest that professional forecasters under-
react to the current exchange rate levels and that this is sub-optimal. A
new puzzle arises: why do professional forecasters not adopt the simple
random walk model to provide a more accurate estimate?

In the second half of this paper, I provide an explanation. In the model,
the forecaster faces model uncertainty and reports the forecast that min-
imizes the forecast error in the worst-case scenario. Therefore profes-

1The empirical part was conducted while I was visiting the ECB. I am grateful for
their hospitality and support in data collection.
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sional forecasts are intentionally suboptimal. The model is estimated us-
ing the maximum likelihood method. Estimation results show that the
model matches the puzzle raised above and, besides, the model predicts
that the forecaster substantially underreacts to current news, which is con-
sistent with empirical facts provided in this paper. Moreover, I conduct
rationality tests using simulated data. The null of “rationality” is rejected
according to the model, which is consistent with the existing empirical
literature and the tests presented in the current paper. Note that this re-
sult is obtained in a framework where professional forecasters perform
optimally.

The empirical part of the paper contributes to the literature that test the
rationality of professional forecasts of the exchange rate, see for example
Frankel and Froot (1987), Ito (1990) and Dominguez (1986). Different
from the literature, this paper focuses on forecast accuracy comparison
between the PF and the RW.

The literature on model uncertainty and ambiguity averse agent is
vast. See Hansen and Sargent (2008) for a textbook treatment of the ro-
bust control approach, and Epstein and Schneider (2008) for the multiple
priors approach. This paper follows the second approach and rational-
izes the empirical findings discussed above based on ambiguity averse
forecasters. In a closely related paper, Ellison and Sargent (2012) defend
the forecast performance of the Federal Reserve Open Market Commit-
tee (FOMC) by assuming that the FOMC members make policy decisions
maximizing social welfare under the worst-case scenario and report their
forecasts using the corresponding worse-case beliefs. This paper provides
an empirical application of ambiguity aversion that rationalizes empirical
puzzles related to professional forecasts of exchange rates.

The paper is structured as follows. Section (3.2) presents empirical
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evidence for exchange rate forecast. Section (3.3) models exchange rate,
and a professional forecaster’s forecast formation. Section (3.4) estimates
the model and discuss the estimation results. Section (3.5) concludes.

3.2 Empirical Analysis

In this section, I provide evidence that the Random Walk model beats the
professional forecast regarding exchange rate predictability. For the pro-
fessional forecasts, I use the data collected by the Consensus Economics.
I conduct the empirical analysis for twelve countries: Canada, Egypt,
Eurozone, Israel, Japan, Nigeria, South Africa, U.K, Denmark, Norway,
Sweden and Switzerland.

3.2.1 The Random Walk Model Beats Professional Fore-
cast

A direct criterion for comparing the forecast accuracy is to calculate and
compare the ratio of mean square forecast error (RMSFE):

MSFE =
1

T

T∑
t=1

(εt+h|t)
2, (3.1)

where εt+h|t denotes the forecast error. RMSFE is obtained as MSFE of
professional forecast divided by the MSFE of the random walk model.
The second column in Table (3.1) reports the results. A value greater than
1 suggests that the professional forecast makes more significant forecast
errors. The third column in Table (3.1) reports p-values of the Diebold
and Mariano (1995) test of the null hypothesis that the forecast accuracy
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is equal according to the MSFE criterion. As one can see, the random
walk outperforms the professional forecast for the majority of countries
considered.

Columns 4 to 6 in Table (3.1) compare the forecast accuracy between
the random walk and professional forecast using mean absolute forecast
error (MAFE) and mean absolute percentage forecast error (MAPFE).
Those criteria are constructed as the following.

MAFE =
1

T

T∑
t=1

∣∣εt+h|t∣∣ , (3.2)

MAPFE =
1

T

T∑
t=1

∣∣∣∣εt+h|tyt+h

∣∣∣∣ (3.3)

where yt+h is the actual exchange rate at time t + h. The p-value is cal-
culated for the test of the null hypothesis that the professional forecast
and random walk model’s forecast accuracy is equal. Again, the null is
rejected and the RW model is the better forecast for most countries.

3.2.2 Expectation Formation

Previously, we have seen that the random walk model outperforms the
professional forecast. In other words, professional forecasters deviate
from the RW model and yet perform worse. In this subsection, I inves-
tigate by how much professional forecasters deviate from the RW. For
simplicity, and to be consistent with the model that I introduce in the next
section, I assume that they only respond to their prior belief (the forecast
made in the previous month) and current new information (current ex-
change rate). Thus, it is natural to estimate regressions of the following
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Table 3.1: Comparison of Forecast Accuracy

Country MSFE MAFE MAPFE

RMSFE DM p-value RMAFE DM p-value RMAPFE DM p-value
Canada 1.20 0.01 1.13 0.00 1.20 0.16
Egypt 0.97 0.77 1.25 0.00 1.26 0.00
EURO 1.23 0.09 1.12 0.06 1.10 0.49
Israel 1.08 0.54 1.09 0.19 1.10 0.15
Japan 1.23 0.00 1.14 0.00 1.14 0.00
Nigeria 1.42 0.01 1.47 0.00 1.46 0.00
South Africa 1.27 0.01 1.18 0.00 1.18 0.00
U.K 0.98 0.80 1.05 0.23 1.06 0.14
Denmark 1.79 0.05 1.32 0.03 1.32 0.03
Norway 1.30 0.10 1.11 0.13 1.10 0.13
Sweden 1.28 0.04 1.19 0.02 1.19 0.02
Switzerland 1.10 0.16 1.15 0.02 1.14 0.06

Notes: MSFE = 1
T

∑T
t=1(εt+h|t)

2, MAFE = 1
T

∑T
t=1

∣∣εt+h|t∣∣ and MAPFE = 1
T

∑T
t=1

∣∣∣ εt+h|t
yt+h

∣∣∣, where εt+h|t
denotes the forecast error. RMSFE is the ratio between the MSFE of the professional forecasts and the RW model.
p-values are calculated according to Diebold and Mariano (1995),

form:

yproc,t+3|t = α + κ1y
pro
c,t+2|t−1 + κ2yc,t + ec,t. (3.4)

where, yc,t+h denotes the log of the actual exchange rate of country c at h
months after time t. And yproc,t+h|t means the professional forecasts of yc,t+h
in month t. However, running this regression is problematic since yproc,t+3|t

has a unit root. It is well known that with a unit root the OLS estimation of
the autoregressive coefficient (κ1 in this case) is biased and the t-statistic
doesn’t have a standard normal distribution in a finite sample. To handle
this issue, I take the first difference of those variables and estimate the
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regressions of the following form:

4yproc,t+3|t = α + κ14yproc,t+2|t−1 + κ24yc,t + uc,t (3.5)

The parameter of interest is κ2, in particular, we are interested in how
much it deviates from 1 (the case if professional forecasters adopt the
RW model). Table (3.2) reports the results. Standard errors that are ro-
bust to serial correlation and heteroskedasticity are reported in parenthe-
ses. Across almost all countries, the weights that a professional forecaster
assigns on the current exchange rate are close to 0.5. Note that, if profes-
sional forecasters were using a random walk model to make forecasts,
the κ2 would be equal to 1. This is rejected for all countries, suggest-
ing that professionals’ forecasting model deviate from the random walk
model substantially,

Table 3.2: The Expectation Formation
4yproc,t+3|t = α + κ14yproc,t+2|t−1 + κ24yc,t + uc,t

Can Egy Eur Isr Jap Nig S.A U.K Den Nor Swe Swi

κ1 0.346*** 0.035 0.343*** 0.057 0.374*** -0.460*** 0.271*** 0.281*** -0.585*** 0.497*** 0.388*** 0.080

(0.068) (0.086) (0.045) (0.070) (0.034) (0.138) (0.059) (0.049) (0.118) (0.067) (0.059) (0.118)

κ2 0.457*** 0.695*** 0.597*** 0.454*** 0.515*** 0.692*** 0.494*** 0.346*** 0.222** 0.429*** 0.461*** 0.707***

(0.036) (0.048) (0.034) (0.052) (0.029) (0.151) (0.049) (0.117) (0.113) (0.035) (0.036) (0.157)

α -0.001 0.006*** 0.000 0.005*** 0.001 0.017*** 0.006*** -0.003** 0.000 -0.003*** -0.005*** -0.000

(0.000) (0.001) (0.001) (0.001) (0.001) (0.003) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Observations 311 210 203 210 311 203 270 311 181 203 203 202
R-squared 0.684 0.668 0.738 0.597 0.758 0.335 0.740 0.720 0.132 0.777 0.790 0.772

Notes: yc,t+3 denotes the log of the actual exchange rate, of country c, 3 months after month t. And yproc,t+h|t denotes the professional forecasts of yc,t+h in month t.
Each column reports results from separate regressions. Standard errors that are robust to serial correlation and heteroskedasticity are reported in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

The same conclusion can be drawn by comparing the plot of the cur-
rent exchange rate (yc,t) with the professional forecasts about future ex-
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change rate made at time t (yproc,t+h|t). Figure (3.1) makes such a com-
parison for Canada. Indeed, the professional forecasts deviate from the
RW. And more interestingly, consistent with the regression results, pro-
fessional forecasts are smoother as compared to the actual exchange rate.
Similar results are found for other countries, see Figure (3.4), Figure (3.5)
and Figure (3.6).

Figure 3.1: A Plot of the Current Exchange rate and Professional
Forecast: Canada

This figure plots the current exchange rate, yt in blue, together with the current
professional forecast of exchange rate at 3-month ahead, yproc,t+3|t in red.
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3.2.3 Counter-factual Analysis

We have seen in section (3.2.2) that professional forecaster’s model de-
viate substantially from the random walk (as measured by κ2). In this
subsection, I investigate whether professional forecasters’ performances
would improve if they had used a model that is closer to the RW.

To address this question, I construct synthetic forecasts using differ-
ent values of κ2 from 0 to 1. Again, to be consistent with the model
introduced blow, the synthetic professional forecast is created based on
the following equation:

ysync,t+3|t = (1− κ2)yproc,t+2|t−1 + κ2yc,t (3.6)

For each value of κ2, I calculate RMSFE between the synthetic profes-
sional forecast and the RW. Figure (3.2) plots the RMSFE for Canada,
recall that the ratio greater than one suggests that the synthetic forecast is
worse than the random walk. The solid vertical line denotes the RMSFE
under the estimated κ2 reported in Table (3.2). Interestingly, not only the
forecast performance is the best when the random walk model (κ2 = 1) is
used, the RMSFE is monotonically decreasing in κ2. Similar results hold
for the other countries, see in Figure (3.3).

This exercise rules out the possibility that professional forecasters
avoid the use of the RW model to look more sophisticated. If this were
the case, they would have chosen a κ2 closer to 1 (for example 0.9 rather
than 0.5).
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Figure 3.2: The RMSFE(κ) of Synthetic Forecasts for Canada

The synthetic forecast are constructed using ysync,t+3|t = (1− κ)yproc,t+2|t−1 + κyc,t. The
solid vertical line denotes the RMSFE under the κ2 estimated in Table (3.2).

3.2.4 Rationality Test

It is well known since Frankel and Froot (1987), Ito (1990) and Dominguez
(1986) that exchange rate forecasts do not pass the rationality test:

yc,t+3 − yc,t = α + β(yproc,t+3|t − yc,t) + ec,t, (3.7)

where yc,t+h denotes the log of the actual exchange rate, of country c, h
months after month t. And yproc,t+h|t denotes the professional forecasts of
yc,t+h in month t. Under the full rationality: α = 0 and β = 1.

Estimation results are reported in Table (3.3). Standard errors that are
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Table 3.3: Rationality Test: yc,t+3 − yc,t = α + βp(yproc,t+3|t − yc,t) + ec,t

Can Egy Eur Isr Jap Nig S.A U.K Den Nor Swe Swi

βp -0.055 0.248 -0.045 0.401** -0.108 0.047 -0.307** 0.583** 0.180*** 0.083 0.365** 0.292
(0.148) (0.241) (0.145) (0.183) (0.120) (0.121) (0.128) (0.243) (0.059) (0.144) (0.155) (0.287)

Constant 0.001 0.009*** -0.000 -0.003 -0.001 0.011** 0.018*** 0.002 0.000 0.002 0.005** -0.006***
(0.002) (0.003) (0.004) (0.003) (0.003) (0.005) (0.005) (0.003) (0.000) (0.002) (0.002) (0.002)

Observations 309 208 201 208 309 201 268 309 177 201 201 200
R-squared 0.001 0.011 0.000 0.032 0.002 0.001 0.018 0.061 0.040 0.002 0.029 0.017

Notes: yc,t+3 denotes the log of the actual exchange rate, of country c, 3 months after month t. And yproc,t+h|t denotes the professional forecasts of
yc,t+h in month t. Each column reports results from separate regressions. Standard errors that are robust to serial correlation and heteroskedasticity
are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1

robust to serial correlation and heteroskedasticity are reported in paren-
theses. The estimated β is statistically different from 1. In fact, most
countries feature a β that is statistically insignificant.

3.2.5 Summary

To summarize the empirical findings: i) the random walk model beats
the professional forecast, ii) professional’s forecasting model deviates far
away from the random walk model iii) moving towards the random walk
model, the professional forecasts’ performance would improve monoton-
ically and iv) professional forecasts do not pass the rationality test.

Naturally, a puzzling question arises: why would not they, the profes-
sional forecasters, use the simple random walk model to provide a more
accurate forecast? In the next section, I provide a simple model to ratio-
nalize the behavior of forecasters.
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3.3 Model

Section (3.3.1) provides the benchmark model with information friction.
Section (3.3.2) introduces the model uncertainty.

3.3.1 The Benchmark Model: Information Friction and
Model Certain

This section writes down the benchmark model in which the model is
certain. Assume that the exchange rate yt is composed of a permanent
component xt and a temporary component εt.

yt = xt + εt, (3.8)

where εt ∼ N(0, σ2
ε ). The permanent component xt is not perfectly ob-

served, and it follows:

xt = xt−1 + ut, (3.9)

where ut ∼ N(0, σ2
u). I have assumed that the permanent component xt

follows a random walk without drift to match the fact that the exchange
rate has a unit root. Furthermore, I assume that the current exchange
rate yt contains all the relevant information about xt, no other signals are
relevant/needed for the forecaster’s belief updating. This is, of course, as-
sumed for simplicity. Nevertheless, this is consistent with the well known
Meese and Rogoff (1983a,b, 1988) puzzle that exchange rate is very diffi-
cult to predict using other macro variables. This assumption is most likely
to hold for forecast at short horizons.

Agent updates belief about xt, denoted as xt|t, according to the Kalman
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Filter. The problem of the forecaster is thus:

max
yt+1|t
−Et(yt+1|t − yt+1)2, (3.10)

subject to the data generating process (3.8) and (3.9). Where yt+1|t de-
notes her posterior belief (forecast). Agent’s belief updating equation fol-
lows:

xt|t = (1− kt)xt|t−1 + ktyt (3.11)

kt = pt|t−1(pt|t−1 + σ2
ε )
−1 (3.12)

pt+1|t = (pt|t−1 − p2
t|t−1(pt|t−1 + σ2

ε )
−1) + σ2

u. (3.13)

In practice, the pt|t−1 in the Riccati equation (3.13) converges to its steady-
state variable quickly. Therefore, it is sensible to drop the time subscript
of kt and pt|t−1 whenever necessary. Note that the pure random walk
model is a special case when σε = 0 and consequently k = 1.

The solution to this problem is thus:

yt+1|t = xt|t (3.14)

with xt|t updating according to equations (3.11) (3.12) and (3.13).

3.3.2 Information Friction and Model Uncertain

Based on the benchmark model discussed above, this section introduces
model uncertainty. In the spirit of Epstein and Schneider (2008), I assume
that the forecaster faces Knightian uncertainty regarding the volatility of
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temporary shock:

yt = xt + εt, (3.15)

where εt is i.i.d normally distributed with mean 0 and standard error σε.
However, the forecaster is uncertain about σε, and she believes that σε
belongs to the interval [σε, σε]. This Knightian uncertainty is axiomatized
by Gilboa and Schmeidler (1989) and Epstein and Schneider (2003). This
model nests the previous one in case σε = σε = σε. The distance between
σε (or σε) and σε measures the degree of model uncertainty.

Facing the model uncertainty, an ambiguity averse forecaster reports
a forecast by solving:

max
ypro
t+1|t

min
{σε,i}ti=0

−Et(yprot+1|t − yt+1)2 (3.16)

subject to constraint (3.9). One motivation for this objective function is
that professional forecasters concern their reputations. While the dam-
age to one’s reputation is minimal when she commits a small forecast
error, the drop in reputation is significantly bigger when one makes a big
forecast error. Thus to avoid big forecast error, the forecaster maximizes
the reverse of expected square forecast error under the worst case sce-
nario. Similar to the benchmark case, the forecast error minimizing agent
chooses kt and uses an updating rule of the form:

yprot+1|t = xt|t = (1− kt)xt|t−1 + ktyt, (3.17)

where it remains to determine the process for xt|t−1 and kt.
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Solving the Inner Problem

min
{σε,i}ti=0

−Et(yprot+1|t − yt+1)2 (3.18)

Plug (3.9) and (3.17) in and omit the terms that are irrelevant for the min-
imization:

min
{σε,i}ti=0

−Et
[
(1− kt)(xt|t−1 − xt) + ktεt

]2
The inner problem is thus simplified to choose {σε,i}ti=0 such that pos-
terior uncertainty about xt, denoted as Pt|t, is maximized given the con-
straint that σε,i ∈ [σε, σε], ∀ i.

min
{σε,i}ti=0

−Pt|t = −
[
(1− kt)2Pt|t−1 + k2

t σ
2
ε

]
(3.19)

The posterior uncertainty Pt|t is increasing in σε,i, ∀ i since the drop in
the precision of any signal in the past would lead to a more uncertain prior
thus a bigger posterior uncertainty today. the solution to the this problem
is thus a corner solution: σε,i = σε, ∀i.

The Outer Problem The outer problem is:

max
kt

[
(1− kt)2Pt|t−1 + k2

t (σ
2
ε + η2)

]
.

The solution to this problem is (3.17) with kt defined recursively as:

kt = Pt|t−1(Pt|t−1 + σ2
ε)
−1. (3.20)

Pt|t−1 = Pt−1|t−2 − P 2
t−1|t−2(Pt−1|t−2 + σ2

ε)
−1) + σ2

u (3.21)
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Compare this to the Kalman gain derived in the benchmark model (3.12),
with model uncertainty the ambiguity averse forecaster under-reacts to the
current signal. Although she knows that, as compared to standard Kalman
filter, this is sub-optimal in terms of expected squared forecast error. This
solution is the one that minimizes squared forecast error under the worst
case scenario.

3.4 Model Estimation

3.4.1 State Space Representation

The state space representation of the model of the robust forecaster is:

Zt = Dxt + Cut (3.22)

xt = Axt−1 +BUt, (3.23)

with Zt ≡
[
yprot+h|t yt

]′
, xt ≡

[
xt xt|t−1 yt

]′
, vt ≡

[
vjt

]′
and Ut ≡[

ujt

]′
are vectors with ujt, ujt ∼ N(0, 1). And

A ≡

1 0 0

0 1− kU kU

1 0 0

B ≡
σu 0 0

0 0 0

σu 0 σε


D ≡

[
0 1− kU kU

0 0 1

]
C ≡

[
σe 0

0 0

]
,
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where:

kU = p(p+ σ2
ε)
−1,

p = (p− p2(p+ σ2
ε) + σ2

u.

Note that the state space representation of the benchmark model is ob-
tained by replacing kU by k that is pinned down by the convergence ver-
sion of (3.12) and (3.13). Given the state space representation, it is easy to
construct the likelihood function using the standard Kalman filter. The pa-
rameters are estimated using the maximum likelihood method. For each
country, I use the log of the actual exchange rate (yt), the log of profes-
sional’s forecast of the exchange rate at three months ahead (yprot+3|t) as the
measurement equations. Note that I have included a measurement error
εe to the professional forecast data in order to capture anything else that
is in the survey but not explained by the simple model. I estimate the
following four parameters separately for each country: σu, σε, σe and σε.

3.4.2 Simulation Results

Estimated Parameters Table (3.4) reports the parameters estimated by
MLE. the parameters are estimated for each country separately. The
Kalman gains are then computed using kU = p(p + σ2

ε + η2)−1with the
corresponding p = (p− p2(p + σ2

ε)
−1) + σ2

u. And k = p(p + σ2
ε )
−1 with

the corresponding p = (p− p2(p+ σ2
ε )
−1) + σ2

u.

The degree of information friction is small if the model is certain: this
can be seen from the signal noise ratio of σε/σu as well as the implied
Kalman gain if the model were certain. The Kalman gain under the filter
without model uncertainty is very close to unity suggesting that without
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Table 3.4: MLE Parameter Estimates

Parameter Estimates Implied Kalman Gain

Model Certain Model Uncertain

Country σε σu σε σe k kU

Canada 0.002 0.020 0.021 0.011 0.988 0.610

Egypt 0.000 0.018 0.000 0.019 1.000 1.000

EURO 0.000 0.029 0.025 0.021 1.000 0.671

Israel 0.000 0.023 0.029 0.017 1.000 0.534

Japan 0.000 0.033 0.033 0.020 1.000 0.616

Nigeria 0.000 0.023 0.000 0.039 1.000 1.000

South Africa 0.000 0.043 0.060 0.022 1.000 0.502

U.K 0.013 0.028 0.025 0.019 0.846 0.618

Denmark 0.000 0.001 0.003 0.001 0.904 0.219

Norway 0.004 0.018 0.025 0.014 0.947 0.506

Sweden 0.007 0.015 0.019 0.015 0.853 0.516

Switzerland 0.006 0.011 0.009 0.010 0.811 0.625

Notes: the parameters are estimated using MLE, for each country separately. The Kalman gains are
then computed using kU = p(p+ σ2

ε)
−1 with the corresponding p = (p− p2(p+ σ2

ε)
−1) + σ2

u. And
k = p(p+ σ2

ε )
−1 with the corresponding p = (p− p2(p+ σ2

ε )
−1) + σ2

u.
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max-min preference, the professional forecaster would report a forecast
that is very close to the current exchange rate. However, due to the high
degree of model uncertainty σε, which is on average close to the volatility
of the permanent component σu, the ambiguity averse forecaster would
take this into consideration and the implied Kalman gain with model un-
certainty is far less than 1.

The Failure of the Benchmark Model I replicate the forecast accuracy
comparison exercise as it is done in section (3.2.1) for the benchmark
model using simulated data. I take parameter estimates from Table (3.4),
2 simulate the benchmark model for 10000 times. The length of the time
series is the same as its empirical counterpart studies in section (3.2). For
each simulation, I compute the RMSFE, the RMAFE and the RMAPFE.
I report median estimates and the numbers in Low and High columns
correspond to the 5th and the 95th percentiles respectively. As one can
see, both the professional forecaster and the random walk model under
the benchmark model predict the future exchange rate equally well. This
is clearly inconsistent with the empirical findings discussed above,

The Random Walk Beats Professional Forecast Table (3.6) reports
the forecast accuracy test for the framework in which the model is uncer-
tain. The random walk beats the professional forecast according to the all
of the criteria studied. This is consistent with the empirical results dis-
played above. This is the case because professional forecaster underacts
to the current news, as it is implied the computed Kalman gain reported in
Table (3.4), to avoid big forecast error in the worst case scenario. The in-
tuition is the following. Due to information friction, when the forecaster

2Simulation results are identical if the benchmark model is estimated separately.
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Table 3.5: Prediction of the Benchmark Model

RMSFE RMAFE RMAPFE

90% Interval 90% Interval 90% Interval

Country Median Low High Median Low High Median Low High

Canada 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Egypt 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

EURO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Israel 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Japan 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Nigeria 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

South Africa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

U.K 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Denmark 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Norway 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Sweden 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Switzerland 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Notes: I simulate the model for 10000 times. For each simulation, I compute the RMSFE, RMAFE and
RMAPFE. The Low and High columns correspond to the 5 and the 95 percentiles respectively.
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observes the current exchange rate, she cannot tell whether this is due to
movement in the permanent or temporary component. She forms expecta-
tion using the Bayes’ rule. However, the current exchange rate as a signal
is ambiguous. The variance of expected forecast error is the largest when
the model uncertainty in the signal is the biggest, therefore the forecaster
as a max-minimizer reports her forecast by distrusting the signal as much
as possible.

The Shorter the Forecasting Horizon the Worse the Professional Fore-
casts Table (3.8) ,Table (3.9) and Table (3.10) repeat the exercises for
forecast horizon at 1, 12 and 24 months ahead respectively. For 1-month
horizon forecast, the robust forecaster does a much worse job than the
random walk model, However, as the forecast horizon increases, the dis-
crepancy between those two decreases. For forecasts of exchange rate at
24 months ahead, both the robust forecaster’s forecast is as ”good” as the
random walk model.

Implication: Rationality Test We have seen in Table (3.3) that the pro-
fessional forecasts do not pass the rationality test. For comparison, those
results are reported again in the last three columns in Table (3.7). The
model is capable of reproducing those results. I estimate the same regres-
sions using data simulated from the model. The first three columns in
Table (3.7) report simulation results. Surprisingly, the prediction of the
model matches the empirical counterpart both qualitatively and qualita-
tively. This paper agrees with the literature that survey forecasts do not
pass the rationality test. However, it proposes different rationale: profes-
sional forecasters face model uncertainty and they are ambiguity averse.
As a result, they report a survey answer that minimizes forecast error un-
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Table 3.6: Prediction of the Model with Model Uncertain: h = 3

RMSFE RMAFE RMAPFE

90% Interval 90% Interval 90% Interval

Country Median Low High Median Low High Median Low High

Canada 1.05 1.00 1.11 1.03 1.00 1.06 1.03 0.99 1.06

Egypt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EURO 1.04 0.99 1.08 1.02 0.99 1.05 1.02 0.99 1.05

Israel 1.09 1.01 1.17 1.05 1.00 1.09 1.05 1.00 1.09

Japan 1.06 1.00 1.11 1.03 1.00 1.06 1.03 0.99 1.07

Nigeria 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

South Africa 1.11 1.02 1.19 1.05 1.01 1.10 1.05 0.99 1.15

U.K 1.01 0.96 1.05 1.00 0.97 1.03 1.00 0.97 1.04

Denmark 1.44 1.19 1.74 1.20 1.08 1.34 1.20 1.08 1.34

Norway 1.09 1.00 1.17 1.04 1.00 1.09 1.04 1.00 1.09

Sweden 1.04 0.97 1.12 1.02 0.98 1.06 1.02 0.98 1.06

Switzerland 0.99 0.95 1.03 1.00 0.97 1.02 1.00 0.97 1.02

Notes: I simulate the model for 10000 times. For each simulation, I compute the RMSFE, RMAFE and
RMAPFE. The Low and High columns correspond to the 5 and the 95 percentiles respectively.
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der the worst-case scenario. Thus the rejection of null of rationality does
not imply professional forecasts are irrational. Moreover, the answers
contained in the survey are not necessarily the expectations that those
professionals have when making investment decisions.

3.4.3 Robustness Check: Introducing Model Uncertainty
to the State Equation

In the baseline, professional forecasters only face model uncertainty in the
measurement equation. Now. assume that both the observable equation
and state equation are subject to model uncertainty:

yt = xt + εt,

xt = xt=1 + ut,

where both εt and ut are i.i.d normally distributed with mean 0 with un-
known standard errors that are perceived to belongs to the intervals [σε, σε]

and [σu, σu] with σε = σε + η1 and σu = σu + η2.

The solution (Kalman Gain) to this model is:

kt = Pt|t−1(Pt|t−1 + σ2
ε + η2

1)−1. (3.24)

Pt|t−1 = Pt−1|t−2 − P 2
t−1|t−2(Pt−1|t−2 + σ2

ε + η2
1)−1) + σ2

u + η2
2 (3.25)

Now it is unclear whether the forecaster would over-react or under-react
to the current news. The bias depends on the relative model uncertainty
between: η1 and η2. Parameters estimates and the implied Kalman gains
are reported in Table (3.11). The estimated η1 is bigger than η2 for most
countries driving the overall Kalman gain bias downward. The implied ku
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Table 3.7: The Rationality Test
yc,t+3 − yc,t = α + β(yproc,t+3|t − yc,t) + ec,t

Model Simulations Empirical Regressions

90% Interval 90% Interval

Country β̂model Low High β̂data Low High

Canada 0.07 -0.41 0.55 -0.06 -0.30 0.17

Egypt - - - 0.25 -0.64 0.15

EURO 0.06 -0.53 0.62 -0.05 -0.30 0.20

Israel 0.04 -0.37 0.46 0.40 0.10 0.70

Japan 0.04 -0.46 0.53 -0.11 -0.31 0.09

Nigeria - - - 0.05 0.15 0.25

South Africa 0.04 -0.34 0.42 -0.31 -0.52 -0.09

U.K 0.48 -0.02 0.95 0.58 0.18 0.98

Denmark 0.09 -0.11 0.32 0.18 0.08 0.28

Norway 0.13 -0.25 0.51 0.08 -0.15 0.31

Sweden 0.32 -0.06 0.69 0.37 0.11 0.63

Switzerland 0.63 0.11 1.11 0.29 -0.19 0.77

Notes: yc,t+3 denotes the log of the actual exchange rate, of country c, 3
months after month t. And yproc,t+h|t denotes the professional forecasts of yc,t+3

in month t. The first three columns report estimation results calculated from
simulated data. The last three columns report results from separate regressions
using survey data. The empirical confidence intervals are constructed based
on standard errors that are robust to serial correlation and heteroskedasticity.

154



is close to those estimated from the baseline specification. Table (3.12)
reports the simulation results. Again, the same results hold: the random
walk model beats the professional forecasts.

3.5 Conclusion

This paper shows that for short-horizon exchange rate predictability the
simple random walk model outperforms professional forecasts. A new
puzzle arises: why do professional forecasters not adopt the simple ran-
dom walk model to provide a more accurate estimate? This paper pro-
vides an explanation. In the framework, the forecaster faces model un-
certainty and she reports the forecast that minimizes the forecast error
under the worst case scenario. Therefore professional forecasters pro-
vide suboptimal forecast intentionally. The ability of the model to match
the empirical facts is tested through a Maximum Likelihood estimation
exercise. Estimation results show that the model matches the empirical
puzzle and in addition, the model predicts that the forecaster under-react
to current news substantially for exchange rate predictability. The later
is consistent with empirical facts provided in this paper. Moreover, the
null of “rationality” is rejected using simulated data confirming existing
findings even though forecasters in the model perform optimally.
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3.6 Appendix

3.6.1 Tables

Table 3.8: Prediction of the Model with Model Uncertain: h = 1

RMSFE RMAFE RMAPFE

95% Interval 95% Interval 95% Interval

Country Median Low High Median Low High Median Low High

Canada 1.23 1.12 1.36 1.11 1.05 1.17 1.11 1.05 1.17

Egypt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EURO 1.24 1.13 1.36 1.11 1.06 1.17 1.11 1.05 1.18

Israel 1.28 1.15 1.41 1.13 1.07 1.20 1.13 1.07 1.20

Japan 1.17 1.08 1.27 1.08 1.03 1.13 1.08 1.03 1.15

Nigeria 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

South Africa 1.33 1.19 1.49 1.16 1.09 1.23 1.16 1.06 1.29

U.K 1.00 0.94 1.06 1.00 0.97 1.04 1.00 0.96 1.04

Denmark 9.35 5.12 17.49 3.09 2.27 4.32 3.09 2.27 4.32

Norway 1.25 1.12 1.39 1.12 1.05 1.19 1.12 1.05 1.19

Sweden 2.03 1.61 2.59 1.43 1.26 1.63 1.43 1.26 1.63

Switzerland 0.97 0.93 1.01 0.98 0.96 1.01 0.98 0.96 1.01

Notes: I simulate the model for 10000 times. For each simulation, I compute the RMSFE, RMAFE and
RMAPFE. The Low and High columns correspond to the 5 and the 95 percentiles respectively.
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Table 3.9: Prediction of the Model with Model Uncertain: h = 12

RMSFE RMAFE RMAPFE

95% Interval 95% Interval 95% Interval

Country Median Low High Median Low High Median Low High

Canada 1.02 0.98 1.05 1.01 0.99 1.03 1.01 0.99 1.03

Egypt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EURO 1.02 0.98 1.05 1.01 0.99 1.03 1.01 0.98 1.03

Israel 1.02 0.98 1.06 1.01 0.99 1.03 1.01 0.98 1.03

Japan 1.01 0.98 1.04 1.01 0.99 1.02 1.01 0.99 1.03

Nigeria 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

South Africa 1.03 0.97 1.07 1.01 0.98 1.04 1.01 0.98 1.06

U.K 1.00 0.97 1.02 1.00 0.98 1.01 1.00 0.98 1.01

Denmark 1.79 1.07 2.97 1.35 1.03 1.79 1.35 1.03 1.79

Norway 1.02 0.97 1.06 1.01 0.98 1.03 1.01 0.98 1.04

Sweden 1.11 0.95 1.27 1.06 0.97 1.14 1.06 0.97 1.14

Switzerland 0.99 0.97 1.01 1.00 0.99 1.01 1.00 0.99 1.01

Notes: I simulate the model for 10000 times. For each simulation, I compute the RMSFE, RMAFE and
RMAPFE. The Low and High columns correspond to the 5 and the 95 percentiles respectively.
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Table 3.10: Prediction of the Model with Model Uncertain: h = 24

RMSFE RMAFE RMAPFE

95% Interval 95% Interval 95% Interval

Country Median Low High Median Low High Median Low High

Canada 1.01 0.97 1.03 1.00 0.99 1.02 1.01 0.99 1.02

Egypt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EURO 1.01 0.98 1.03 1.00 0.99 1.02 1.01 0.99 1.02

Israel 1.01 0.97 1.03 1.01 0.98 1.02 1.01 0.98 1.02

Japan 1.01 0.98 1.02 1.00 0.99 1.01 1.00 0.99 1.02

Nigeria 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

South Africa 1.01 0.97 1.04 1.01 0.98 1.02 1.01 0.98 1.04

U.K 1.00 0.98 1.01 1.00 0.99 1.01 1.00 0.99 1.01

Denmark 1.38 0.86 2.11 1.19 0.92 1.52 1.19 0.92 1.52

Norway 1.01 0.97 1.04 1.01 0.98 1.02 1.01 0.98 1.02

Sweden 1.05 0.92 1.16 1.03 0.95 1.09 1.03 0.96 1.09

Switzerland 1.00 0.98 1.01 1.00 0.99 1.01 1.00 0.99 1.01

Notes: I simulate the model for 10000 times. For each simulation, I compute the RMSFE, RMAFE and
RMAPFE. The Low and High columns correspond to the 5 and the 95 percentiles respectively.
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Table 3.11: Robust Check: MLE Parameter Estimates

Parameter Estimates Implied Kalman Gain

Benchmark Model Uncertain

Country σ̂ε σ̂u η̂1 σ̂e η̂2 K̂ K̂u

Canada 0.002 0.020 0.025 0.011 0.013 0.988 0.612

Egypt 0.000 0.018 0.000 0.019 0.092 1.000 1.000

EURO 0.000 0.029 0.035 0.021 0.028 1.000 0.671

Israel 0.000 0.023 0.029 0.017 0.000 1.000 0.534

Japan 0.000 0.033 0.033 0.020 0.002 1.000 0.616

Nigeria 0.000 0.023 0.000 0.039 0.098 1.000 1.000

South Africa 0.000 0.043 0.061 0.022 0.006 1.000 0.502

U.K 0.013 0.028 0.022 0.019 0.007 0.846 0.659

Denmark 0.000 0.001 0.017 0.001 0.004 0.904 0.220

Norway 0.004 0.018 0.025 0.014 0.004 0.947 0.511

Sweden 0.007 0.015 0.064 0.015 0.048 0.853 0.536

Switzerland 0.006 0.011 0.007 0.010 0.000 0.811 0.685

Notes: the parameters are estimated using MLE, for each country separately. The Kalman gains are then
computed using ku = pu(pu + σ2

ε + η21)
−1 and pu = (pu − p2u(pu + σ2

ε + η21)
−1) + σ2

u + η22 . And
k = p(p+ σ2

ε )
−1, p = (p− p2(p+ σ2

ε )
−1) + σ2

u.
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Table 3.12: Robust Check: Simulation Results h = 3

RMSFE RMAFE RMAPFE

90% Interval 90% Interval 90% Interval

Country Median Low High Median Low High Median Low High

Canada 1.08 1.01 1.15 1.04 1.00 1.08 1.04 1.00 1.08

Egypt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EURO 1.08 1.01 1.15 1.04 1.00 1.08 1.04 1.00 1.08

Israel 1.09 1.01 1.17 1.04 1.00 1.09 1.05 1.00 1.09

Japan 1.06 1.00 1.11 1.03 1.00 1.06 1.03 0.99 1.07

Nigeria 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

South Africa 1.11 1.03 1.20 1.05 1.01 1.10 1.06 0.99 1.14

U.K 1.00 0.96 1.04 1.00 0.97 1.02 1.00 0.97 1.03

Denmark 4.15 2.33 7.47 2.06 1.53 2.83 2.06 1.53 2.82

Norway 1.09 1.00 1.17 1.04 1.00 1.09 1.04 1.00 1.09

Sweden 1.42 1.16 1.73 1.19 1.07 1.33 1.20 1.07 1.33

Switzerland 0.98 0.95 1.01 0.99 0.97 1.01 0.99 0.97 1.01

Notes: I simulate the model for 10000 times. For each simulation, I compute the RMSFE, RMAFE and
RMAPFE. The Low and High columns correspond to the 5 and the 95 percentiles respectively.

3.6.2 Figures
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Figure 3.3: The RMSFE(κ) of Synthetic Forecasts for all Countries

The synthetic forecast are constructed using ysync,t+3|t = (1− κ)yproc,t+2|t−1 + κyc,t. From
the left to the right, up to down the countries are: Canada, Egypt, Euro zone, Israel,

Japan, Nigeria, South Africa, U.K, Denmark, Norway, Sweden, Switzerland.
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Figure 3.4: Current Exchange rate v.s Professional Forecast:
Canada, Egypt, Euro zone, Israel.

This figure plots the current exchange rate, yt in blue, together with the current
professional forecast of exchange rate at 3-month ahead, yproc,t+3|t in red. From the left

to the right, up to down the countries are: Canada, Egypt, Euro zone, Israel.
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Figure 3.5: Current Exchange rate v.s Professional Forecast: Japan,
Nigeria, South Africa, U.K

This figure plots the current exchange rate, yt in blue, together with the current
professional forecast of exchange rate at 3-month ahead, yproc,t+3|t in red. From the left

to the right, up to down the countries are: Japan, Nigeria, South Africa, U.K.
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Figure 3.6: Current Exchange rate v.s Professional Forecast: Den-
mark, Norway, Sweden, Switzerland

This figure plots the current exchange rate, yt in blue, together with the current
professional forecast of exchange rate at 3-month ahead, yproc,t+3|t in red. From the left
to the right, up to down the countries are: Denmark, Norway, Sweden, Switzerland.

164



Bibliography

Anand, Rahul, Eswar S. Prasad, and Boyang Zhang. 2015. “What
measure of inflation should a developing country central bank target?”
Journal of Monetary Economics, 74(C): 102–116.

Andrés, Javier, Eva Ortega, and Javier Vallés. 2008. “Competition and
inflation differentials in EMU.” Journal of Economic Dynamics and

Control, 32(3): 848–874.

An, Sungbae, and Frank Schorfheide. 2007. “Bayesian analysis of
DSGE models.” Econometric reviews, 26(2-4): 113–172.

Aoki, Kosuke. 2001. “Optimal Monetary Policy Responses to Relative-
price Changes.” Journal of Monetary Economics, 48(1): 55–80.

Baeriswyl, Romain, and Camille Cornand. 2010. “The Signaling Role
of Policy Actions.” Journal of Monetary Economics, 57: 682–695.

Baker, Scott R., Nicholas Bloom, and Steven J. Davis. 2016. “Mea-
suring Economic Policy Uncertainty*.” The Quarterly Journal of Eco-

nomics, 131(4): 1593–1636.

Bansal, Ravi, and Amir Yaron. 2004. “Risks for the Long Run: A Po-
tential Resolution of Asset Pricing Puzzles.” Joural of Finance, 59(4).

165



Baqaee, David Rezza. 2017. “Asymmetric Inflation Expectations, Down-
ward Rigidity of Wages and Asymmetric Business Cycles.” Centre for
Macroeconomics (CFM) Discussion Papers 1601.

Barnichon, Regis, and Christian Matthes. 2016. “Gaussian Mixture
Approximations of Impulse Responses and The Non-Linear Effects of
Monetary Shocks.”

Barro, Robert J. 1972. “A Theory of Monopolistic Price Adjustment.”
The Review of Economic Studies, 39(1): 17–26.

Barsky, Robert B., and Eric R. Sims. 2012. “Information, Animal Spir-
its, and the Meaning of Innovations in Consumer Confidence.” Ameri-

can Economic Review, 102(4): 1343–77.

Basu, Susanto, and Pierre De Leo. 2016. “Should Central Banks Target
Investment Prices?” Boston College Department of Economics Boston
College Working Papers in Economics 910.

Bekaert, Geert, Seonghoon Cho, and Anotonio Moreno. 2010. “New
Keynesian Macroeconomics and the Term Structure.” Journal of

Money, Credit and Banking, 42(1): 33–62.

Benigno, Pierpaolo. 2004. “Optimal Monetary Policy in a Currency
Area.” Journal of International Economics, 63(2): 293–320.

Bergin, Paul R, and Giancarlo Corsetti. 2008. “The extensive margin
and monetary policy.” Journal of Monetary Economics, 55(7): 1222–
1237.

166



Bernanke, Ben S., Jean Boivin, and Piotr Eliasz. 2004. “Measuring the
Effects of Monetary Policy: A Factor-Augmented Vector Autoregres-
sive (FAVAR) Approach.” National Bureau of Economic Research, Inc
NBER Working Papers 10220.

Bilbiie, Florin O., Fabio Ghironi, and Marc J. Melitz. 2008. “Mone-
tary Policy and Business Cycles with Endogenous Entry and Product
Variety.” In NBER Macroeconomics Annual 2007, Volume 22. NBER

Chapters, 299–353. National Bureau of Economic Research, Inc.

Bilbiie, Florin O, Ippei Fujiwara, and Fabio Ghironi. 2014. “Optimal
monetary policy with endogenous entry and product variety.” Journal

of Monetary Economics, 64: 1–20.

Bloom, Nicholas. 2009. “The Impact of Uncertainty Shocks.” Economet-

rica, 77(3): 623–685.

Calvo, Guillermo A. 1983. “Staggered prices in a utility-maximizing
framework.” Journal of Monetary Economics, 12(3): 383–398.

Campbell, Jeffrey, Chalres Evans, Jonas Fisher, and Alejandro Jus-
tiniano. 2012. “Macroeconomic Effects of Federal Reserve Forward
Guidance.” Brookings Papers on Economic Activity, 1: 1–80.

Campbell, Jeffrey R., Jonas D. M. Fisher, Alejandro Justiniano,
and Leonardo Melosi. 2016. “Forward Guidance and Macroeconomic
Outcomes Since the Financial Crisis.” NBER Macroeconomics Annual

2016.

167



Canova, Fabio, and Luca Sala. 2009. “Back to square one: Identi-
fication issues in DSGE models.” Journal of Monetary Economics,
56(4): 431 – 449.

Christopoulou, Rebekka, and Philip Vermeulen. 2012. “Markups in
the Euro area and the US over the period 1981–2004: a comparison of
50 sectors.” Empirical Economics, 42(1): 53–77.

Cooke, Dudley. 2016. “Optimal monetary policy with endogenous export
participation.” Review of Economic Dynamics, 21: 72–88.

Cukierman, Alex, and Allan H Meltzer. 1986. “A Theory of Ambigu-
ity, Credibility, and Inflation under Discretion and Asymmetric Infor-
mation.” Econometrica, 54(5): 1099–1128.
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“Monetary Policy and Real Borrowing Costs at the Zero Lower
Bound.” American Economic Journal: Macroeconomics, 7(1): 77–109.

Golosov, Mikhail, and Robert E. Lucas. 2007. “Menu Costs and
Phillips Curves.” Journal of Political Economy, 115(2): 171–199.

Gorodnichenko, Yuriy, and Michael Weber. 2016. “Are sticky prices
costly? Evidence from the stock market.” American Economic Review,
106(1): 165–99.

Gürkaynak, Refet, Brian Sack, and Eric Swanson. 2005a. “Do Ac-
tions Speak Louder Than Words? The Response of Asset Prices to
Monetary Policy Actions and Statements.” International Journal of

Central Banking, 1(1): 55–93.

Gürkaynak, Refet S, Brian Sack, and Eric Swanson. 2005b. “The Sen-
sitivity of Long-Term Interest Rates to Economic News: Evidence and

170



Implications for Macroeconomic Models.” American Economic Re-

view, 95(1): 425–436.

Gürkaynak, Refet S., Brian Sack, and Jonathan H. Wright. 2007.
“The U.S. Treasury Yield Curve: 1961 to the Present.” Journal of Mon-

etary Economics, 54(8): 2291–2304.

Hammond, Gill. 2012. State of the art of inflation targeting. Handbooks,
Centre for Central Banking Studies, Bank of England.

Hansen, Lars Peter, and Thomas J Sargent. 2008. Robustness. Prince-
ton university press.

Hanson, Samuel G, and Jeremy C. Stein. 2015. “Monetary Policy and
Long-Term Real Rates.” Journal of Financial Economics, 115(3): 429–
448.

Hobijn, Bart, and Fernanda Nechio. 2017. “Sticker shocks: using VAT
changes to estimate upper-level elasticities of substitution.” Federal Re-
serve Bank of San Francisco.

Huang, Kevin X.D., and Zheng Liu. 2005. “Inflation targeting: What
inflation rate to target?” Journal of Monetary Economics, 52(8): 1435–
1462.

Hubert, Paul. 2015. “Do Central Bank Forecasts Influence Private
Agents? Forecasting Performance vs. Signals.” Journal of Money,

Credit and Banking.

Ilut, Cosmin. 2012. “Ambiguity Aversion: Implications for the Un-
covered Interest Rate Parity Puzzle.” American Economic Journal:

Macroeconomics, 4(3): 33–65.

171



Ilut, Cosmin L., and Martin Schneider. 2014. “Ambiguous Business
Cycles.” American Economic Review, 104(8): 2368–99.

Ilut, Cosmin, Matthias Kehrig, and Martin Schneider. 2015. “Slow
to Hire, Quick to Fire: Employment Dynamics with Asymmetric Re-
sponses to News.” Center for Economic Studies, U.S. Census Bureau
Working Papers 15-02.

Iskrev, Nikolay. 2010. “Local identification in DSGE models.” Journal

of Monetary Economics, 57(2): 189 – 202.

Ito, Takatoshi. 1990. “Foreign Exchange Rate Expectations: Micro Sur-
vey Data.” The American Economic Review, 80(3): 434–449.

Jurado, Kyle, Sydney C. Ludvigson, and Serena Ng. 2015. “Measuring
Uncertainty.” American Economic Review, 105(3): 1177–1216.

Komunjer, Ivana, and Serena Ng. 2011. “Dynamic Identification
of Dynamic Stochastic General Equilibrium Models.” Econometrica,
79(6): 1995–2032.

Kozicki, Sharon, and P.A. Tinsley. 2005. “What do you expect? Im-
perfect policy credibility and Tests of the Expectations Hypothesis.”
Journal of Monetary Economics, 52(2): 421–447.

Kuttner, Kenneth N. 2001. “Monetary Policy Surprises and Interest
Rates: Evidence from the Fed Funds Futures Market.” Journal of Mon-

etary Economics, 47(3): 533–544.

Lakdawala, Aeimit. 2016. “Decomposing the Effects of Monetary Pol-
icy Using an External Instruments SVAR.” Working Paper.

172



Lewis, Vivien. 2013. “Optimal monetary policy and firm entry.” Macroe-

conomic Dynamics, 17(8): 1687–1710.

Loecker, Jan De, and Jan Eeckhout. 2017. “The Rise of Market Power
and the Macroeconomic Implications.” National Bureau of Economic
Research Working Paper 23687.

Loria, Francesca, Carlos Montes-Galdon, Shengliang Ou, and Dong-
hai Zhang. 2017. “The Time Varying Effect of Unconventional Mone-
tary Policy.”

Lucas, Robert Jr. 1972. “Expectations and the neutrality of money.”
Journal of Economic Theory, 4(2): 103–124.

Mackowiak, Bartosz, and Mirko Wiederholt. 2009. “Optimal Sticky
Prices under Rational Inattention.” American Economic Review,
99(3): 769–803.

Mankiw, N. Gregory, and Ricardo Reis. 2002. “Sticky Information ver-
sus Sticky Prices: A Proposal to Replace the New Keynesian Phillips
Curve*.” The Quarterly Journal of Economics, 117(4): 1295–1328.

Mankiw, N. Gregory, and Ricardo Reis. 2003. “What Measure of In-
flation Should a Central Bank Target?” Journal of the European Eco-

nomic Association, 1(5): 1058–1086.

Meese, Richard A., and Kenneth Rogoff. 1983a. “Empirical Exchange
Rate Models of the Seventies.” Journal of International Economics,
14(1): 3 – 24.

173



Meese, Richard A., and Kenneth S. Rogoff. 1983b. The Out-of-Sample

Failure of Empirical Exchange Rate Models: Sampling Error or Mis-

specification? In: Exchange Rates and International Macroeconomics.

Meese, Richard, and Kenneth Rogoff. 1988. “Was it Real? The Ex-
change Rate-Interest Differential Relation Over the Modern Floating-
Rate Period.” The Journal of Finance, 43(4): 933–948.

Melosi, Leonardo. 2017. “Signalling Effects of Monetary Policy.” The

Review of Economic Studies, 84(2): 853–884.

Michelacci, Claudio, and Luigi Paciello. 2017. “Ambiguous Policy An-
nouncements.”

Miranda-Agrippino, Silvia. 2016. “Unsurprising Shocks: Information,
Premia, and the Monetary Transmission.” Working Paper.

Nakamura, Emi, and Jón Steinsson. 2008. “Five facts about prices:
A reevaluation of menu cost models.” The Quarterly Journal of Eco-

nomics, 123(4): 1415–1464.

Nakamura, Emi, and Jón Steinsson. 2017. “High Frequency Identifica-
tion of Monetary Non-Neutrality: The Information Effect.” Quarterly

Journal of Economics.

Nimark, Kristoffer. 2008. “Monetary policy with signal extraction from
the bond market.” Journal of Monetary Economics, 55(8): 1389 – 1400.

Ramey, Valerie A. 2016. “Macroeconomic Shocks and their Propaga-
tion.” NBER Working Paper.

174



Romer, Christina D., and David H. Romer. 2000. “Federal Reserve In-
formation and the Behavior of Interest Rates.” American Economic Re-

view, 90(3): 429–457.

Romer, Christina D., and David H. Romer. 2004. “A New Measure of
Monetary Shocks: Derivation and Implications.” American Economic

Review, 94(4): 1055–1084.

Rossi, Barbara. 2013. “Exchange Rate Predictability.” Journal of Eco-

nomic Literature, 51(4): 1063–1119.

Rossi, Barbara, and Tatevik Sekhposyan. 2015. “Macroeconomic Un-
certainty Indices Based on Nowcast and Forecast Error Distributions.”
American Economic Review, 105(5): 650–55.

Rotemberg, Julio J, and Michael Woodford. 1997. “An optimization-
based econometric framework for the evaluation of monetary policy.”
NBER macroeconomics annual, 12: 297–346.

Rotemberg, Julio J, and Michael Woodford. 1999. “Interest rate rules
in an estimated sticky price model.” In Monetary policy rules. 57–126.
University of Chicago Press.

Sheshinski, Eytan, and Yoram Weiss. 1977. “Inflation and Costs of
Price Adjustment.” The Review of Economic Studies, 44(2): 287–303.

Sims, Christopher A. 2003. “Implications of rational inattention.” Jour-

nal of Monetary Economics, 50(3): 665–690.

Stock, James, and Motohiro Yogo. 2005. “Testing for Weak Instruments
in Linear IV Regression.” Identification and Inference for Econometric

175



Models, , ed. Donald W.K. Andrews, 80–108. New York:Cambridge
University Press.

Svensson, Lars E. O., and Michael Woodford. 2003. “Indicator Vari-
ables for Optimal Policy.” Journal of Monetary Economics, 50(3): 691–
720.

Svensson, Lars E. O., and Michael Woodford. 2004. “Indicator Vari-
ables for Optimal Policy under Asymmetric Information.” Journal of

Economic Dynamics and Control, 28(4): 661–690.

Tang, Jenny. 2015. “Uncertainty and the Signaling Channel of Monetary
Policy.” Working Paper.

Wicksell, Knut. 1989. Interest and Prices (R.F. Kahn, 1936, English

Trans.). Macmillan, London.

Woodford, Michael. 2001. “The Taylor Rule and Optimal Monetary Pol-
icy.” The American Economic Review, 91(2): 232–237.

Woodford, Michael. 2002. “Inflation stabilization and welfare.” Contri-

butions in Macroeconomics, 2(1).

Woodford, Michael. 2011. Interest and prices: Foundations of a theory

of monetary policy. princeton university press.

176


