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Abstract

This thesis reports on theory and results from two experiments related to
nonlinear behaviour in ensembles of optically-trapped ultracold atoms.

The first experiment, performed at ICFO in Barcelona, regards the prediction
and measurement of strong ac Stark shifts (light shifts). We present a numerical
method based on Floquet’s theorem for calculating light shifts to all orders with
fewer approximations than the usual calculation based on second-order pertur-
bation theory. The method is experimentally validated by performing absorption
spectroscopy of a optically-trapped cloud of cold 87Rb atoms in three scenarios.
1) The atoms are trapped in a singly-polarised monochromatic dipole trap with
a wavelength detuned ∼ 30 nm from the nearest atomic transition. 2) A bichro-
matic two-polarisation trap, where one wavelength is much closer to atomic tran-
sitions (∼ 0.01 nm detuning), and finally 3) Another monochromatic trap but
with the wavelength variable and scanned close to atomic transitions, again with
∼ 0.01 nm detuning but three times the intensity of the near-resonant light in
the previous experiment, producing nonlinear light shifts of the D2 transition up
to ∼ 1 GHz. We discuss the potential application of the method to the accurate
measurement of electric dipole transition matrix elements. The method is ex-
tended to calculate atomic energy level shifts in the presence of light and static
magnetic fields.

The second experiment was performed at LENS in Florence, and involves 39K
atoms with tunable interactions cooled into the ground- and first-excited state of
a two-mode optical potential. We derive a differential equation to describe be-
haviour of a two-mode quantum system with tunable interactions, and then solve
it to model behaviour of the system in the three distinct regimes of attractive,
zero, and repulsive interatomic interactions. With attractive interactions the
system is shown to exhibit a quantum phase transition, and with repulsive inter-
actions is shown to exhibit nonlinear dynamics, including behaviour analogous
to a superconducting Josephson junction.
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As background material the thesis presents a summary of standard laser cooling
and trapping techniques, namely Doppler cooling, σ+− σ− polarisation gradient
cooling, magneto-optical trapping, and optical trapping. Optical traps are dis-
cussed in detail. We discuss relevant basic physics, derive and analyse a technique
for using light shifts to characterise an optical trap, discuss optical Bose-Einstein
condensation and control of light intensity to reduce noise-induced heating. Also
described is a theoretical proposal for optical evaporation with a constant-depth
trap.



Resumen

Esta tesis describe la investigación teórica y los resultados de dos experimentos
relacionados con el comportamiento no lineal en un conjuntos de átomos ultrafŕıos
atrapados ópticamente.

En el primer experimento, realizado en ICFO en Barcelona, se presenta la
predicción y unos resultados de fuertes cambios de ac Stark (light shifts). Se
explica un método numérico basado en el teorema de Floquet para calcular light
shifts a todos órdenes con menos aproximaciones que el método habitualmente
usado basado en teoŕıa de perturbaciones de segundo orden. El método se valida
experimentalmente mediante la realización de espectroscoṕıa de absorción en una
nube de átomos de 87Rb ópticamente atrapados en tres escenarios distintos. En
el primero, los átomos están atrapados en una trampa de dipolo monocromática
de polarización única con una longitud de onda desintonizada ∼ 30 nm a la tran-
sición atómica más cercana. En el segundo se emplea una trampa bicromática
de dos polarizaciones, donde una longitud de onda está mucho más cerca de las
transiciones atómicas (∼ 0.01 nm fuera de resonancia). En el tercer y ultimo
escenario, se usa una trampa monocromática con la longitud de onda variable
y escaneado cerca de transiciones atómicas, nuevamente con ∼ 0.01 nm desin-
tonizada pero tres veces más intensa que la luz casi resonante del experimento
anterior, produciendo light shifts no lineales de la transición D2 hasta ∼ 1 GHz.
Se discute la aplicabilidad del método para la medición precisa de los elementos
de la matriz de transición dipolar eléctrica. Por último, el método se extiende
permitiendo calcular los cambios de niveles de enerǵıa atómica en presencia de
luz y campos magnéticos estáticos.

El segundo experimento que se describe en esta tesis se realizó en LENS, en
Florencia, e involucra átomos de 39K con interacciones sintonizables en átomos
fŕıos ocupando al estado fundamental y el primer estado excitado de un potencial
óptico de dos modos. Se deriva una ecuación diferencial para describir el compor-
tamiento de un sistema cuántico de dos modos con interacciones sintonizables.
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Esta se resuelve para modelar el comportamiento del sistema en tres reǵımenes
distintos de interacciones inter-atómicas: atractivas, nulas y repulsivas. En el
caso de interacciones atractivas se muestra que el sistema exhibe una transición
de fase cuántica. En presencia de interacciones repulsivas el sistema muestra
dinámica no lineal, incluyendo un comportamiento análogo a una unión super-
conductora de Josephson.

Como material de referencia, la tesis presenta un resumen de las técnicas
estándar de enfriamiento y atrapamiento láser, concretamente enfriamiento Doppler,
σ+−σ− enfriamiento por gradiente de polarización, atrapamiento magneto-óptico
y atrapamiento óptico. Las trampas ópticas se revisan en detalle. Discutimos
la f́ısica básica relevante, derivamos y analizamos una técnica para usar los light
shift para caracterizar una trampa óptica. Analizamos la condensación óptica
de Bose-Einstein y el control de la intensidad de la luz para reducir el calen-
tamiento inducido por el ruido. También se presenta una propuesta teórica para
la evaporación óptica con una trampa de profundidad constante.
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Chapter 1

Introduction

1.1 A brief history of optical dipole traps

Erwin Schrödinger wrote in 1952 (italics his):

“... we never experiment with just one electron or atom or (small) molecule.
In thought-experiments we sometimes assume that we do; this invariably entails
ridiculous consequences ... it is fair to state that we are not experimenting with
single particles, any more than we can raise Ichthyosauria in the zoo” [1].

He would probably have been delighted to learn that since the advent of laser
cooling, control of single atoms has reached such high fidelity that arrays of
trapped single atoms can be deterministically arranged and imaged [2], and we
can even measure the interaction of a single atom with a single photon [3, 4]1.

The trapping and observation of single atoms might be considered the ultimate
limit of the exquisite manipulation and control of atoms made possible with laser
cooling and optical dipole traps. The existence of “radiation pressure” - the force
exerted on matter by light - has been known for centuries. Nichols and Hull in
1903 refer to Kepler studying the pressure of sunlight on the tails of comets [7].
Fast-forward to 1970 when Art Ashkin reported on what was probably the first
controlled trapping of particles using the optical dipole force, where he trapped
micron-sized latex spheres suspended in water with a pair of counter-propagating
focused laser beams [8]. Since then the field has exploded, with the first report

1He probably would also have been delighted to learn that a recently extinct goat was
brought back to life by cloning in 2009 [5], and that responsible management of de-extincted
species is now the subject of serious academic debate [6].

13



14 Chapter 1. Introduction

of a cloud of atoms trapped in a single laser beam in vacuum in 1986 (again
involving Art Ashkin) [9]. Optical traps have also found a huge application in
the biological sciences, being used to trap and observe viruses and bacteria as
early as 1987 (again by Art Ashkin) [10].

Nowadays, as well as the single-atom trapping mentioned above, optical dipole
traps (ODTs) are used for a variety of precise and delicate physics. For exam-
ple, the first Bose-Einstein condensate (BEC, a form of matter where all the
constituent particles have the same spatial wavefunction) made all-optically was
reported in 2001 [11], ODTs are used for the study of exotic quantum states of
matter (e.g. observation of the superfluid to Mott insulator phase transition [12]),
quantum simulators (e.g. the creation of artificial graphene [13]), and precision
magnetometry. Optical lattices - spatially-periodic potentials made by interfering
two or more laser beams - are crucial to the latest generation of atomic clocks.
Optical lattice atomic clocks have reached a relative uncertainty on the order
of 10−18 [14], and are poised to reach 10−20 in the near future [15]. Current
uncertainty is small enough to measure relativistic time-dilation by moving 2 cm
higher or lower in the Earth’s gravitational field.

This thesis presents work related to two experiments employing optical dipole
traps. One experiment in Barcelona studies the interaction of laser-cooled atoms
in an optical dipole trap with the trapping light itself, and how this affects the
internal structure of the atoms. The results of this project may be important
for improving understanding of how atoms interact with light through the ac
Stark effect. The other project involves atoms cooled into the ground state of a
two-mode optical potential. This project demonstrates the first observation of a
quantum phase transition with full control over all the experimentally-relevant
variables, and also studies the system in a regime where the behaviour is analo-
gous to a superconducting Josephson junction.

1.2 This thesis

The majority of my PhD was spent in the group of Professor Morgan Mitchell
at ICFO in Barcelona. When I joined in mid-2013, the group in Barcelona was
just beginning construction of a new optical BEC experiment, and the first two
years of my PhD were mostly spent on the construction and characterisation
of this experiment. Mid-2015 I moved to Florence to work in the group of Dr.
Marco Fattori at LENS in Florence for one year. The experiment in Florence
had completed construction some time before I joined, and was already in the
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process of gathering scientific data. After one year in Florence I moved back to
Barcelona for the remainder of my PhD.

Due in part to these logistical constraints, this thesis is organised as follows:
Chapters 2, 3, and 4 describe background material common to both experiments.
There is a stronger emphasis on experimental data from the Barcelona experi-
ment, due to the fact I contributed to the construction of this experiment and
worked on the calibration of many components. However the material is relevant
to both experiments. The ‘main’ results of the thesis are chapters 5 and 6, which
describe theory and experimental results, respectively, from the Barcelona exper-
iment, and chapter 7, which describes some theory and results from the Florence
experiment. Each experiment is introduced more thoroughly in its respective
chapter, however below are short introductions to both.

The experiment in Barcelona concerns large nonlinear ac Stark shifts (light
shifts) of atoms in optical dipole traps. Light shifts are the result of off-resonant
light coupling atomic energy levels, resulting in level shifts. Usually these shifts
are calculated using second-order perturbation theory, which describes the shifts
well in the case they are linear in light intensity and much smaller than the
atomic hyperfine splitting. This thesis presents a way of calculating these shifts
based on Floquet’s theorem. The calculation requires fewer approximations than
the perturbative calculation, with the result that the shifts can be nonlinear and
larger than the hyperfine splitting and can induce strong mixing of the hyperfine
levels. The thesis also presents experimental data of light shifts in 87Rb in a
regime where some levels are shifted up to 1 GHz, which disagree with theory by
20-45 MHz. This small discrepancy is not explained in this thesis. As far as I
am aware this is the first calculation and measurement of nonlinear light shifts.

The other experiment, in Florence, studies the ground-state phases and dynam-
ics of a two-mode 39K BEC with tunable interactions. 39K has broad Feshbach
resonances at a relatively low magnetic field, enabling fine tuning of inter-atomic
interactions over positive and negative values. The BEC is formed in double-well
potential, with a tunable barrier between the two wells. This combination of tun-
able interactions and control of the inter-well coupling enables the observation of
a variety of interesting physical effects. This thesis reports on the observation of
a quantum phase transition, and nonlinear Josephson dynamics.

1.2.1 Outline

Chapter 2 reviews standard laser cooling techniques of neutral atoms. Namely,
Doppler cooling, σ+ − σ− polarisation gradient cooling (AKA optical molasses),
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magneto-optical traps, and also an explanation of time-of-flight temperature mea-
surements.

Chapter 3 focuses on absorption imaging. First I derive an equation for extract-
ing atomic density data from absorption images, and then describe an algorithmic
technique used for reducing noise in processed images.

Chapter 4 discusses optical dipole traps in-depth. Firstly it reviews the basic
physics of trapping atoms with far-off resonant light, then reviews a technique
for characterising optical dipole traps called light-shift tomography, showing some
example measurements. Next is a brief discussion of Bose-Einstein condensation
in optical dipole traps, which is relevant to the results presented in Chapter 7.
Then I describe a system to control the intensity of the dipole trap lasers in
the Barcelona experiment. Finally, I present a new idea for performing optical
evaporation without reducing the trap depth, as is done in the standard approach.
The idea has not been tested experimentally but the theoretical analysis presented
here suggests that it is at least worth further investigation.

Chapter 5 presents a calculation based on Floquet’s theorem for calculating
atomic light shifts (AKA ac Stark shifts). Starting from Schrödinger’s equation,
this chapter describes a numerical technique using Floquet’s theorem to find the
eigenenergies of a periodic Hamiltonian. This result is used in combination with
the electric dipole operator to describe light shifts of atoms with an arbitrary
number of light fields with arbitrary polarisation, in the electric dipole approxi-
mation. The final part of this chapter describes how to include magnetic fields
in the light shift calculation, giving a kind of toolbox for engineering of atomic
energy levels.

Chapter 6 describes an experiment to measure large nonlinear light shifts to
test the theory of Chapter 5, and presents and discusses experimental data. An
initial measurement agrees with theory well outside of the linear shift regime to
within experimental uncertainty. However a second, more accurate, measurement
appears to show a discrepancy between data and theory.

Chapter 7 describes an experiment at LENS in Florence, in the group of Dr.
Marco Fattori. This experiment is a 39K BEC experiment with a one-dimensional
optical lattice and a tunable inter-atomic interaction strength. The optical lat-
tice is used to realise a two-mode system with tunable coupling between the
two modes. The experiment is used to study a quantum phase transition and
Josephson physics.
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Appendix A describes a transfer lock for stabilising the frequency of a laser
used in several of the measurements performed in Chapter 6. Appendix B de-
scribes works done towards implementing a phase-contrast imaging system in the
Florence experiment. Appendix C outlines the architecture and components of
the control system for the Barcelona experiment. Appendix D describes a model
of the imaging system in Florence that was used to try and understand the de-
tection limits of that experiment, and whether or not it can be used to detect
atom-number squeezing.
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Chapter 2

Laser cooling of neutral
atoms

All the work described in this thesis depends on having an ensemble of near-
stationary neutral atoms, as isolated as possible from the external environment.
The realisation of such an ensemble has been made possible by the work of,
among others, Steven Chu, Claude Cohen-Tannoudji, and Bill Phillips, who were
awarded the 1997 Nobel Prize in physics “for development of methods to cool
and trap atoms with laser light” [16]. Their work was based on earlier theoretical
proposals and experimental work involving ions [17].

The field of laser cooling of atoms is now quite mature, with most major de-
velopments occuring in the last quarter of the 20th century. The field has seen
fantastic optimisation over the last twenty years, but the fundamental techniques
have remained largely the same. More complicated schemes of cooling, such as
Raman sideband cooling or gray molasses, were widely used and understood by
the year 2000 [18]. In this section I’ll review the most common techniques of
optical cooling and trapping of atoms: Doppler cooling, optical molasses, and
magneto-optical trapping, all of which were employed for work described in later
sections in this thesis. Due to their importance for my work, I describe opti-
cal dipole traps, and the final method of laser cooling - optical evaporation -
separately in Chapter 4.

19



20 Chapter 2. Laser cooling of neutral atoms

2.1 Sources of neutral atoms

Cold-atom physics experiments depend on a source of alkali atoms inside a
ultrahigh-vacuum chamber with optical access. Typical background vapour pres-
sures inside a vacuum chamber are 10−10 − 10−11 Torr, which is comparable to
the pressure on the surface of the moon [19].

Once ultrahigh vacuum has been reached, there are two standard sources of
atoms: most alkali metals have a relatively low melting point, and as such have a
relatively high vapour pressure. Thus one can place a lump of solid alkali metal
inside a vacuum chamber, which emits enough vapour to perform experiments.
In this case differential pumping and transfer techniques are used to move clouds
of trapped atoms to regions of the vacuum chamber away from the solid metal,
such that the constant uncontrolled vapour emission does not interfere with ex-
periments. An experiment with such a source usually requires a sophisticated
multi-chamber vacuum system.

Another standard source of atoms is to use a “dispenser”, which consists of an
alkali salt inside a tube which can be heated with electric current. The hot metal
tube liberates alkali atoms from the salt, forming a beam of atoms which can be
switched on and off at will. However there is the danger of accidentally passing
too much current through the dispenser, and liberating all the metal at once.

2.2 Doppler cooling

Analogous to stopping a freight train by throwing millions of tennis balls at
it, Doppler cooling works by transferring atomic momentum onto a beam of
incident laser light. The process can be explained as follows: Imagine an atom
is at the intersection of three pairs of counter-propagating laser beams, each pair
aligned with a different axis in Cartesian coordinates. All the lasers are slightly
detuned to the red of an atomic resonance. If the atom is moving toward any of
the six lasers, the Doppler effect causes the laser to be closer to resonance with
the atom, which is then more likely to absorb a photon and its corresponding
momentum, once absorbed it re-radiates the photon in a random direction. Over
many absorption-emission cycles, the atom mostly absorbs photons from the laser
beam opposing its direction of motion and the emission averages to zero, thus the
atom is cooled. Under the right conditions, this effect can be very strong. Atoms
can be cooled from room temperature, with velocities on the order of ∼ km s−1,
to microkelvin (∼ cm s−1) over a distance of centimetres. Assuming a two-level
atom, the minimum achievable temperature with this effect is
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TD =
hΓ

2kB
(2.1)

where h is Planck’s constant, Γ is the transition linewidth in Hz, and kB is
Boltzmann’s constant. For rubidium cooled on the D2 line, this temperature is
about 150 µK. A more quantitative analysis can be found in [20].

2.3 Optical molasses

In 1987, Bill Phillips and colleagues experimentally measured much lower tem-
peratures in ensembles of laser cooled atoms than what was theoretically possible
according to Eq. (2.1) [21]. It was recognised that the derivation of the limit in
Doppler cooling naively assumes a two-level system, however it was thought the
multi-level structure was irrelevant: the Zeeman sublevels are all degenerate and,
in the case of sodium which was used in the experiments, other levels are too far
off-resonant to be relevant [17]. The mechanism behind this sub-Doppler cooling
was explained by Dalibard and Cohen-Tannoudji in 1989, and it turned out the
multi-level Zeeman sub-structure was important after all [22].

The sub-Doppler cooling mechanism requires two things: an atom with ground-
state angular momentum Jg ≥ 1, and red-detuned laser light with a polarisation
gradient. There are two possible ways of creating a polarisation gradient, the
most common technique is to counter-propagate two beams of opposite circular
polarisation, creating an optical lattice of constant intensity but linearly chang-
ing polarisation (this configuration is known as σ+ − σ− polarisation-gradient
cooling). This adds a term to the atomic Hamiltonian

V = kvJz (2.2)

where k is the magnitude of the wavevector of the light, v is the velocity of the
atom in the lab frame, and Jz is the projection of atomic angular momentum on
the quantisation axis. It can be seen that this term removes the degeneracy of
the ground state levels, in a way that looks like a magnetic field. In one picture
of this effect, this fictitious magnetic field modifies the steady-state occupation of
the ground state levels in such a way that a moving atom is predominately in the
state which absorbs photons from the beam opposing its motion. Thus whichever
way the atom moves it feels a force opposing its motion, while if it is stationary
it is equally likely to scatter a photon from any of the laser beams and feels no
net force. This velocity-dependent friction force is analogous to moving through
molasses. The theoretical lower-limit of this effect is the recoil limit, which is
the temperature associated with the momentum transferred by absorption and
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emission of a single photon. In practice it is possible to get very close to this
limit, for example the recoil limit for rubidium is about 0.4 µK, and [23] reports
a measured temperature of 1.5 µK in a rubidium fountain clock.

As the sub-Doppler cooling mechanism effectively relies on the Zeeman effect to
function, this technique is very sensitive to external magnetic fields. For cooling
to function well external fields must be compensated or blocked. The optimal
laser detuning depends on many experimental parameters, but is usually 5-10
transition linewidths red of resonance. The process typically takes a few tens of
milliseconds. Sub-Doppler cooling necessarily reduces the density of the atomic
ensemble, as the atoms are free to diffuse (albeit slowly).

2.4 Magneto-optical trapping

Doppler cooling and optical molasses serve to slow down atoms, but on their
own these two effects do not actually trap atoms as there is no “restoring” force
to confine the atoms. In 1987 E. L. Raab et al published a paper describing a
technique of combining optical cooling with spatially-dependent magnetic fields
to create an optical trap [24]. This technique became known as a magneto-optical
trap (MOT). MOTs are now routinely used to trap atoms directly from room-
temperature vapour, and can typically trap 107 - 108 atoms at densities around
1011 cm−3. MOTs are dynamic: Every trapped atom is constantly absorbing and
re-emitting light which limits the maximum density and minimum temperature
through a self-heating effect. Every atom emits light which heats surrounding
atoms (also known as multiple scattering, see e.g. [25]).

A MOT consists of three orthogonal pairs of counter-propagating laser beams
and two magnetic field coils, as shown in Fig. 2.1. The basic idea of the MOT is
to use magnetic fields to create a position-dependent force from the lasers such
that atoms inside the trap are always pushed towards the centre. The magnetic
field coils are in the anti-Helmholtz configuration, creating a quadrupole field: i.e.
a magnetic field that is zero in the centre, and varies linearly in every direction
away from the centre (for small distances). The lasers are all red-detuned from
an atomic resonance, such that an atom exactly in the centre interacts as little as
possible with any of the lasers, but if it atom strays from the centre, the magnetic
causes a Zeeman shift of the atomic energy levels such that the atom starts to
feel a force mostly from the laser beam which pushes it back to the centre of the
trap.

The optimum detuning for a MOT comparable to that used in Doppler cool-
ing, about 2-3 linewidths red of atomic resonance.
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Figure 2.1. Magnetic field and laser beam configuration for a magneto-optical
trap. The arrows on the coils show the direction of electric current. The σ+(−)

indicates left (right) circularly polarised light respectively. Image from [26].

2.5 Temperature measurements

The most common method for measuring temperatures of clouds of cold atoms
is the “time-of-flight” method, which is simply measuring the size of the cloud
after turning off all potentials to measure the expansion rate. It can be shown
(e.g. [26]) that a thermal cloud of gas at temperature T expanding in free space
has density

n(x, t) =
Aν3

0π√
r2
0 + t2ν2

0

exp

(
− x2

r2
0 + t2ν2

0

)
, (2.3)

where ν0 =
√

2kT
m is the most probable velocity, A =

(
m

2πkT

)3/2
, and r0 is the

1/e-width at t = 0. Note that this is valid for each direction. In principle the
temperature can be different in different directions but usually in a MOT all
directions have the same temperature. Measuring the temperature then involves
taking a series of photos of the cloud at a range of times t, and fitting a straight
line to a plot of r2, where r is the 1/e-width of the cloud, vs t2. The gradient of
this line is then ν2

0 .
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2.6 Production of cold atoms

Conveniently, the laser polarisations required to make a MOT are identical to
those required to perform the σ+ − σ− polarisation-gradient cooling described
above. However a MOT requires a strong magnetic field gradient, which interferes
with the sub-Doppler cooling mechanism described above. Production of samples
of cold atoms is thus usually performed in a timed sequence: The magnetic field is
switched on and the six trapping lasers are tuned to the optimum MOT frequency,
typically 2-3 linewidths red of resonance. The MOT loads from background
vapour until the desired number of trapped atoms is reached, which is usually
on the order of 1-10 seconds depending on the experiment. The magnetic field
is then quickly switched off and the lasers are detuned further from resonance
before the atoms have time to move from the centre of the trapping beams, to
perform the sub-Doppler cooling.

Many of the applications of cold atoms mentioned in the introduction require
colder temperatures and/or higher densities than what is possible with a MOT,
and many dramatic quantum effects are only observable at higher densities. Ad-
ditionally, in a MOT the atoms are constantly subject to resonant interactions
with the trapping light, which strongly influences behaviour. For these reasons,
a MOT and sub-Doppler cooling are often used as the preparation steps to load
atoms into a conservative minimally-interacting potential such as a magnetic
trap, an optical dipole trap, or an optical lattice.

Optical dipole traps are discussed in detail in Chapter 4. Although a magnetic
trap was used in the preparation of the experiments described in Chapter 7,
magnetic traps are otherwise not directly relevant to results discussed in this
thesis and so I will not discuss them in any detail. Magnetic traps have played
an important role in the development of the field of ultracold gases, the first
observation of magnetically trapped atoms was reported in 1985 [27]. Nowadays
they are important for miniature “chip-based” atom traps, see e.g. [28]. While
not talking about traps directly, the interaction of atoms with magnetic fields is
further discussed in Chapter 5.



Chapter 3

Absorption imaging of cold
atoms

3.1 Introduction

An important measurement in experimental atomic physics is determining the
atomic spatial distribution. This is typically done using a CCD camera and a
“probe beam”. The camera is used to measure the absorption of the probe beam
by the atomic cloud, which can be converted to atomic column density. This can
be done fast and accurately: a typical measurement takes a few tens of microsec-
onds and can reach near-single-atom resolution, e.g. [29] reports a resolution of
±3.7 atoms in a cloud of about 300. Absorption imaging of a single ion was
reported in [30]1, and single-atom absorption of a probe beam was reported in
[31]. Fluorescence imaging can reach even more impressive accuracy, for example
[32] reports single-atom resolution in clouds of up to 1200 atoms. However for
quantitative measurements of large, dense clouds of atoms fluorescence imaging
fails due to self-absorption by the cloud [33].

This chapter explains how absorption imaging is used to measure atomic clouds:
Firstly I derive an equation used to quantify the number of atoms by measuring
absorption of a probe beam. Then an algorithmic technique is described which
is used to reduce noise in absorption images (not invented by us, but found in
[34]).

1The title of this paper is “Absorption imaging of a single atom”, while the article actually
reports absorption imaging of a single ion, which comes with significantly different technical
challenges from imaging neutral atoms.
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3.2 Absorption imaging

The photon scattering rate Rsc of a two-level atom in a laser beam is given by
[20, 35]

Rsc =
Γ

2

I/I0

1 + I/I0 + 4
(

∆
Γ

)2 (3.1)

where Γ is the natural linewidth, I = I(x, y, z) is the light intensity, I0 is the
saturation intensity, and ∆ is the detuning of the light from resonance.

The rate of change of intensity of a laser beam (the probe beam) propagating
in the z-direction through an atomic cloud with density n = n(x, y, z) is then

dI

dz
= −n~ωRsc (3.2)

where ω = 2πc/λ is the angular frequency of the probe beam. For on-resonance
light (∆ = 0) this becomes

dI

dz
= −σ0

I

1 + I/I0
n (3.3)

where σ0 = 3λ2/2π is the absorption cross-section [33, 35]. This equation can be
solved by separation of variables∫

1

I
+

1

I0
dI = −σ0

∫
n(x, y, z)dz. (3.4)

The limits of the integration can be defined by the size of the atomic cloud. If we
assume it’s localised, then we just need to integrate over the cloud, rather than
to ±∞. We also assume that the input probe beam is an infinite plane wave,
and that there are no lensing effects from the atomic cloud, which is the case
with on-resonant light. I indicate “initial” and “final” positions before and after
the atomic cloud with the subscripts i and f , respectively. In practice, If and
Ii are measured at the same position, but with and without the atomic cloud,
respectively. I call If the “absorption image”, and Ii the “background image”.
With these limits Eq. (3.4) can be solved as(

ln(I) +
I

I0

) ∣∣∣∣If
Ii

= −σ0n(x, y)

−ln

(
If
Ii

)
+
Ii − If
I0

= σ0n(x, y)

(3.5)

giving an equation relating the atomic column density n(x, y) =
∫
n(x, y, z)dz

with the two measured images of the probe beam.
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The background image Ii needs to be measured without any atoms visible in the
field of view. To reduce noise as much as possible the absorption and background
images are typically measured one after the other as fast as possible. The longer
the time between the images the more likely it is for mechanical vibrations, etc,
to affect the probe beam, which is preferably identical in both of the images.
As the absorption image is measured first, the atoms need to be removed or
made invisible for the background image. This needs to be done quickly as the
time between images is typically hundreds to thousands of microseconds. In
the experiments I worked on during my PhD we used two techniques to make
the atoms invisible after the absorption image. In the Barcelona experiment we
excited the atoms on the F = 2 → F ′ = 2 transition, which depumped all of
them to the F = 1 ground state within a few hundred microseconds, making
them invisible to the probe beam which was resonant with the F = 2→ F ′ = 3
transition. We could not use the probe beam at a different frequency as this would
move the position of fringes in the probe beam, and so the position of fringes in
the two images would no longer match. The Florence experiment was able to
quickly apply large magnetic fields, which were used to move the resonances of
the atoms to be far away from the probe beam frequency.

In reference [36], the authors show that it is beneficial to use σ0/α in place
of the “ideal” σ0 = 3λ2/2π, where α is a unitless parameter that accounts for
imperfections in the measurement such as imperfect probe polarisation, non-
idealities resulting from having a multi-level atom, etc. α must be characterised,
which can be done by measuring n for different intensities of the probe beam,
then choosing the α which minimises the variation of n as a function of input
light intensity.

Any imaging system also has noise. A major noise contributor for the CCD
cameras typically used in this measurement is dark noise, which can be charac-
terised and the mean can be subtracted to reduce the effect of hot pixels or any
other inhomogeneity across the area of the CCD. Taking an image with no atoms
or probe beam results in a dark noise image Id. Including Id and the α parameter
the atomic column density can then be written as

n(x, y) =
α

σ0

[
ln

(
Ii − Id
If − Id

)
+
Ii − If
I0

]
(3.6)

Figure 3.1 shows an example of absorption image processing with Eq. (3.6).
(a) and (b) show Ii− Id and If − Id, respectively. (c) shows the processed result.
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Figure 3.1. Example of absorption image processing. (a) shows an example of Ii,
the light distribution without atoms. (b) shows If , the light distribution after
absorption by a cloud of atoms. The colour bar shows the number of photon
counts per pixel. (c) shows the result of processing the two images using Eq.
(3.6). The colour bar shows the column density, i.e. number of atoms per pixel.
The total number of atoms in this image is about 8000.

3.3 Noise reduction with an optimised background
image

The wavefront of the probe laser is typically far from flat, which in principle
should not be a problem because the absorption imaging signal depends only on
the difference between the absorption image and the background image. However,
due to mechanical instability and light intensity drifts, there can often be a small
difference in the light intensity distribution between the two images, resulting
in a “fringing” effect such as that seen on the left-hand side of Fig. 3.2. To
combat this, we use an algorithmic technique to produce an optimised background
image for a given absorption image, from a library of background images. This
reduces the fringing effect and can also reduce the contribution of shot noise. The
technique was first published in [34] but originates from a group at the University
of Hamburg [37] [38].

Given a set of reference background images Rk, we choose coefficients ck to
generate the background image Q, which can be used in place of Ii in Eq. (3.6):

Q =
∑
k

ckRk (3.7)

For each absorption image A, we find the best possible background image by
choosing ck to minimise the least-squares difference E between A and Q outside
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Figure 3.2. The left-hand image shows an absorption image processed with a
single background image. The right-hand image shows an absorption image
processed with the optimised background generated from 50 other background
images. The left image shows increased shot noise and distortion from fringes.
The two images have the same colour scale.

of the signal region. The signal region is “where the atoms are”, and needs to be
manually defined.

E =
∑
x

mx(Ax −Qx)2 (3.8)

where m = 1 outside the signal region, m = 0 inside the signal region, and x is
pixel index, assuming the images have been arranged into column vectors.

To minimise E we first take the partial derivative with respect to cj and set
the result to zero.

∂E

∂cj
= 2

∑
x

(Ax −
∑
k

ckRx,k)Rx,j = 0 (3.9)

If we let
Bj,k =

∑
x

mxRx,jRx,k (3.10)

we then have ∑
k

ckBj,k =
∑
x

mxAxRx,j , (3.11)

so we can easily find coefficients c by inverting the square matrix B. Note that
B is symmetric so only half the elements actually need to be calculated.
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Figure 3.3. Variance of A/Q as a function of the number of images used to
generate Q.

To quantify the noise reduction, Fig. 3.3 shows the variance of A/Q outside of
the signal region for different numbers of background images. As well as reducing
the effect of moving fringes, this technique also reduces the contribution of shot
noise to noise in the processed image. Because the background image is now an
averaged image, the contribution of random shot noise is reduced.

3.3.1 Additional noise-reduction techniques

Reference [29] discusses how careful selection of the “region of interest” in an
absorption image can significantly reduce noise in the integrated atom number.
In this paper they have an elliptically-shaped atomic cloud, and can halve the
noise contribution by using an elliptically-shaped integration region instead of
the usual rectangular one. Also in this paper is discussion of how compensation
of pushing of the atomic cloud by the probe beam can reduce uncertainty in the
measurement of total atom number, although this is more relevant in imaging
systems with a large numerical aperture (NA) and consequently small depth-of-
field, such as that in the experiment in Florence (which has a imaging system
with an NA of about 0.47, while the experiment in Barcelona has an imaging
system with an NA of 0.14).
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Optical dipole traps

Both of the experiments I worked on during my PhD largely depended on optical
dipole traps (ODTs) to prepare and hold ensembles of atoms for measurements.
ODTs exploit the interaction of the atomic electric dipole moment with light
to produce conservative traps which cause very little resonant excitation of the
atoms, and can produce much denser and colder samples of atoms than what is
possible with a MOT. ODTs can also hold atoms for long periods of time, as the
lifetime of atoms in the trap is usually only limited by collisions with background
gas. As such, atoms can be held for many tens of seconds in a high-vacuum
well-isolated from the external environment1. In this section I will review the
basic physics of ODTs, present experimental apparatuses and characterisation
data, and discuss some applications.

The first atomic optical dipole trap was experimentally demonstrated by Steven
Chu and team in 1986 [9], where they loaded 500 sodium atoms into a trap and
observed them for several seconds. The invention of the MOT greatly improved
loading capability, and now it is routine to observe many millions of atoms in an
ODT. Under the right conditions ODTs provide a state-independent potential
for atoms, making them an excellent substrate for spinor physics, the study of
the complex interactions of many atoms in different internal states [39]. Two or
more counter-propagating ODTs interfere to make a periodic potential known as
an optical lattice, the backbone of the field of quantum simulators: For example,
atoms in an optical lattice see a potential analogous to that seen by electrons
moving in a crystalline solid, and it is hoped that this will lead to, for example,

1For example in the Florence experiment the 1/e-lifetime of atoms in the dipole trap in the
science cell is over 80 seconds. In the Barcelona experiment we were limited to a lifetime of
about 5-10 seconds due to higher background vapour pressure.
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insights in the understanding of the mechanism of high-temperature supercon-
ductivity [40]. Optical lattices are also crucial for modern optical atomic clocks
[41].

4.1 Basic physics

Here I derive some of the fundamental properties of ODTs, illustrated using
data from the Barcelona experiment. Note that much of this section has been
adapted from [42].

4.1.1 Optical dipole potential and scattering rate

Atoms are polarisable particles, so placing an atom in an oscillating electric
field described by

E(r, t) = E(r)exp(−iωt)n̂ + c.c. (4.1)

induces an oscillating dipole moment in the atom given by

p(r, t) = p(r)exp(−iωt)n̂ + c.c. (4.2)

where n̂ is the polarisation vector. The amplitude p of the polarisation is related
to the amplitude E of the electric field by

p = αE (4.3)

where α is the complex atomic polarisability which is generally a complex function
of the properties of the applied light and of the atom (Chapter 5 is largely devoted
to accurate calculation of this value). However, if we make some approximations
- that there is a single electric-dipole transition from the atomic ground state,
and we have a classical light field which is far-detuned from resonance - we can
write α using a simple formula:

α = 6πε0c
3 Γ/ω3

0

ω3
0 − ω3 − i(ω3/ω3

0)Γ
(4.4)

where ε0 is the permittivity of free space, c is the speed of light, ω0 is the
atomic transition frequency, ω is the laser angular frequency, and Γ is the natural
linewidth of the transition.

The oscillating electric field creates a potential for the induced dipole, which
can be calculated as

Udip = −1

2
〈pE〉 = − 1

2ε0c
Re(α)I(r) (4.5)
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where the angular brackets indicate the time-average and I = 2ε0c|E|2 is the light
intensity.

Another quantity of interest is the scattering rate. The atom is a damped
oscillator, so it absorbs energy from the light and re-emits it as dipole radiation.
The power absorbed is given by

Pabs = 〈ṗE〉 = 2ω Im(pE∗) =
ω

ε0c
Im(α)I(r) (4.6)

This can be converted to a scattering rate by dividing by the energy of a single
photon

Γsc =
Pabs

~ω
=

1

~ε0c
Im(α)I(r) (4.7)

Substituting eq. (4.4) into eqs. (4.5) and (4.7) gives

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r)

Γsc(r) =
3πc2

2ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r).

(4.8)

We define the detuning ∆ as ∆ = ω0 − ω. In the case where |∆| � ω0, we can
make the rotating-wave approximation, and eqs. (4.8) become

Udip(r) = −3πc2

2ω3
0

Γ

∆
I(r)

Γsc(r) =
3πc2

2ω3
0

(
Γ

∆

)2

I(r),

(4.9)

which illustrate two important points about ODTs:
1) Red-detuned light (i.e. ∆ > 0) makes a negative potential for the ground

state, so atoms are attracted to regions of high-intensity, while blue-detuned light
does the opposite.

2) The potential is proportional to I/∆, while the scattering rate is propor-
tional to I/∆2. Thus for the maximum ratio of trap depth to scattering rate,
ODTs typically employ high-intensity far-detuned light.

4.1.2 Trap geometry and depth

An ODT can be made with a single focussed Gaussian laser beam. In this case,
the light intensity as a function of position is, in cylindrical coordinates:

I(r, z) =
2P

πw2(z)
exp

(
−2

r2

w2(z)

)
(4.10)
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where P is the total optical power in the beam, and

w(z) = w0

√
1 +

(
z

zR

)2

(4.11)

where w(z) is the 1/e2 beam radius, and zR = πw2
0/λ is the Rayleigh range. In

this configuration the confining force is much stronger in the radial direction than
the longitudinal direction, so at equilibrium the density distribution of a cloud
of trapped atoms forms a cigar shape (e.g. see Fig. 4.1a).

If the cloud of trapped atoms has a thermal energy kBT much less than the
trap depth and the longitudinal distribution is less than the Rayleigh range zR,
where T is the temperature of the ensemble and kB is Boltzmann’s constant, we
can approximate the trap potential by expanding eq. 4.10 in a power series and
taking the first two terms:

U(r, z) ≈ U0

(
2

(
r

w0

)2

+

(
z

zR

)2

− 1

)
, (4.12)

so −U0 is the potential at the centre of the trap.

Particles trapped in a parabolic potential undergo harmonic oscillations. The
frequency of oscillation can be calculated by equating the potential energy of a
harmonic oscillator U(x) = 1

2mω
2x2 with eq. 4.12 at the positions (r, 0) and

(0, z). The oscillation frequencies in the radial and longitudinal directions are
given by

ωr =

√
4U0

mw2
0

ωz =

√
2U0

mz2
R

(4.13)

where m is the mass of the trapped atom species. So by knowing the waist
w0 of our trapping beam, which can be determined from the optics used in the
experiment, we can measure the trap oscillation frequencies to find out the depth
of the trap. Figure 4.1 shows an example of radial trap oscillations from the
Barcelona experiment.

4.2 Light-shift tomography

An unavoidable consequence of trapping atoms with light is that the light
interacts with the energy levels of the atoms, inducing level shifts known as ac
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Figure 4.1. Radial trap oscillations of 87Rb atoms in a single focussed-beam
dipole trap at 1560.492 nm. The trapped atoms are excited by switching the trap
off and on again within 100 µs, inducing “breathing mode” oscillations at twice
the trap frequency. (a) shows two 10 ms time-of-flight images after the oscillation
time shown in each respective label. The width of the cloud is measured near
the centre as a function of oscillation time. (b) shows the width as a function
of oscillation time, and a fit with an exponentially decaying sinusoid function to
get the oscillation frequency given at the top of the figure.

Stark shifts or light shifts. This is of course the very mechanism that traps the
atoms in the first place: if the trapping light is sufficiently far-detuned such that
excitation is negligible, the spatially-dependent light shift of the ground state is
identical to the trapping potential. In general, every level experiences a shift due
to the light field but the polarisability of each level is different, meaning the light
shift of each level is different. This differential light shift means the transition
frequencies become dependent on the local light intensity, an effect which can be
used to characterise the ODT.

Figure 4.2 shows the effect of a differential light shift on an atom in a Gaussian
ODT. The diagram is representative of the shift experienced by the D2 transition
in 87Rb in an ODT at 1560.492 nm: both the excited and ground states experience
a negative shift, but the excited state shift is much larger (in this specific case
αe/αg ≈ 50, Chapter 5 discusses how to calculate this value).
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4.2.1 Transition frequency shift due to differential light
shift

The actual transition frequency shift as a function of light intensity can be calcu-
lated as follows: Consider an atomic transition with polarisability of the ground
state αg and polarisability of the excited state αe, in a Gaussian optical potential
I(r). Fig. 4.2 shows that the light shift of the transition is ∆(r) ∝ (αg−αe)I(r).
Given that U(r) ∝ −αgI(r), we can write

~∆ =

(
αe
αg
− 1

)
U(r). (4.14)

Figure 4.2. Energy level shifts of an atomic transition of an atom in a Gaussian
potential. Each level has a different polarisability α, resulting in a position-
dependent shift of the transition frequency.

4.2.2 Tomography of an ODT with a homogeneous distri-
bution of atoms

Here I’ll describe a technique for using differential light shift to map out an optical
potential. First described in [43], where it is used to extract information about
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(a) (b)

Figure 4.3. (a) Experiment geometry for using light shifts to measure the size
of the optical potential. The atom cloud is approximately homogeneous across
the ODT, so variation in the signal on the CCD comes from the induced light
shifts. The system has translational symmetry along the z-axis over the area of
the probe beam. (b) Typical absorption data from this measurement. The area
inside the black circle has approximately homogeneous atom density.

the temperature of the atoms and depth of the trap, here I also use it to extract
data about the size of the dipole trap, as is described in [44].

Consider the cylindrically-symmetric system shown in Fig. 4.3a: a single fo-
cused Gaussian laser beam propagating through a large cloud of cooled atoms.
The atom cloud is approximately homogeneous across the waist of the laser beam.
A probe beam projects the atomic absorption onto the CCD camera, which can
be measured as a function of frequency of the probe beam. Atoms in the path of
the focused beam experience a light shift depending on the intensity of the the
beam, which is seen as a position-dependent absorption of the probe beam. A
typical absorption image from this system is shown in Fig. 4.3b.

The apparent number of atoms at a given position r and probe detuning δ is
given by2

N(r, δ) = n(r)σ(r, δ), (4.15)

2I’m using this strange notation so that a later result can be compared to an equation in
reference [43]. Instead of “apparent number of atoms” one would normally discuss absorption
of a probe beam.
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where σ(r, δ) is the absorption cross-section of a single atom normalised such that
the on-resonance cross-section is 1, and n(r) is the atomic density. δ = (ω−ω0)/Γ
is the normalised detuning of the laser from the free-space transition frequency
ω0 = 2πc/λ. In the low-intensity limit, the normalised σ of a single two-level
atom with a transition with linewidth Γ is

σ(δ) =
1

1 + 4(δ −∆(r)/Γ)2
, (4.16)

In cylindrical coordinates, the light shift ∆(r) shown in Fig. 4.3a is only a function
of r, and the potential is Gaussian, so ∆ can be written as

∆(r) =
U0

~

(
αe
αg
− 1

)
e−2r2/w2

0 (4.17)

where w0 is the 1/e2 waist of the ODT. The signal on the camera is then the
projection of Eq. 4.15 onto the x− z plane with n(r) = n0:

N(x, δ) = n0

∫ ∞
−∞

[
1 + 4

(
δ −Ae−2(x2+y2)/w2

0

)2
]−1

dy (4.18)

giving the ‘Batman’ signal shown in Fig. 4.4a. Here A = (U0/~Γ)(αe/αg − 1).
The absorption signals at different detunings can be fitted collectively to find a
value for w0, the waist of the ODT (Fig. 4.4b). Note that this measurement is
done in-situ, so can be useful for diagnosing imperfections in the ODT introduced
by windows, optics, etc. Also, while the tomography is done here for a Gaussian
potential, it has been demonstrated for mapping the modes of a cavity [44], and
could be used for a more complicated potential created with e.g. a spatial light
modulator [45].
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Figure 4.4. (a) ‘Batman’ signal created by projecting a cylinder of absorption on
to the flat plane of a camera for different laser detunings. (b) Fitting the peak
separation of many ‘Batmen’ to a Gaussian function can be used to measure w0

of an ODT in-situ. Here the measurement gives 47µm, which is very close to
the 45 µm we expected from the optics used in this system. Note that the data
in (b) was measured at a lower optical power than the data in (a).

4.2.3 Tomography of a thermalised gas in a harmonic po-
tential

Rather than using a homogeneous atom cloud to probe the optical potential,
it is also possible to use differential light shifts to probe the distribution of atoms
trapped inside the dipole trap. This can give information on the trap depth and
the cloud temperature. In this section I first of all re-derive a result from reference
[43], which describes the number of atoms measured vs trap depth in a harmonic
potential. There appears to be a small mistake in the published equation, which
is rectified here. This equation is then used to extract information about the
ODT used in the Barcelona experiment.

We want to find N(δ), the total number of atoms as a function of detuning of
the probe beam, for a distribution of atoms trapped in an ODT. For this deriva-
tion assume we have a spherically symmetric Gaussian potential, so we integrate
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Eq. 4.15 over all space, shown here in Cartesian and spherical coordinates:

N(δ) =

∫
d3r n(r)σ(r, δ) =

∫ ∞
0

dr 4πr2n(r)σ(r, δ). (4.19)

We know the absorption cross section σ from Eq. 4.16, but here we make the
approximation that the thermal energy of the atoms kBT is much smaller than
the trap depth U0. In this case for the potential U(r) we can use Eq. 4.12 with
z = 0. So

U(r) = U0

(
2r2

w2
0

− 1

)
. (4.20)

The density n(r) of a gas at thermal equilibrium in a conservative potential
U(r) is given by [46]

n(r) = n0e
−U(r)/kBT , (4.21)

where n0 is the density at U(r) = 0. We can find n0 by equating the integral of
the density with the total number of trapped atoms

Ntot =

∫ ∞
0

4πr2n0e
−U(r)/kBT dr

=

∫ ∞
0

4πr2n0e
−U0(2r2/w2

0−1)/kBT dr

= 4πn0e
U0/kBT

∫ ∞
0

r2e−U0(2r2/w2
0)/kBT dr.

(4.22)

We make use of the identity∫ ∞
0

x2e−ax
2

dx =
1

4

√
π

a3
, (4.23)

to get

Ntot = n0e
U0/kBT

(
πw2

0kBT

2U0

)3/2

. (4.24)

The integral 4.19 now looks like

N(δ) =

∫ ∞
0

dr n0e
−U(r)/kBT × 1

1 + 4(δ −∆(r)/Γ)2
× 4πr2 (4.25)

To solve eq. (4.25), we make the substitution u2 = 2U0

w2
0

r2

kBT
, so that

∆(r) =
U(r)

~

(
αe
αg
− 1

)
=

(u2kBT − U0)

~

(
αe
αg
− 1

)
. (4.26)
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Substituting,

N(δ) = 4πn0e
U0/kBT

(
w2

0kBT

2U0

)3/2

×
∫ ∞

0

u2e−u
2 du

1 + 4[δ + (U0 − u2kBT )(αe/αg − 1)/~Γ]2

=
4Ntot√
π

∫ ∞
0

u2e−u
2

du

1 + 4(δ + ν − tu2)2
.

(4.27)

Where ν = U0

~Γ

(
αe

αg
− 1
)

and t = kBT
~Γ

(
αe

αg
− 1
)

. Note the extra “−1” factor in

the definition of ν compared to [43].

Figure 4.5 shows one experiment geometry we used to perform tomography on a
loaded ODT. The probe beam is co-propagating with the dipole trap beam when
they pass through the atoms, and then the two are separated with a dichroic
mirror sending the probe beam towards the camera. Fig. 4.6 shows some ex-
ample results of measuring absorption of the probe beam by the atom cloud
vs. frequency. The extracted values of U0 and T agree reasonably well with
those obtained from trap frequency measurements and time-of-flight measure-
ments. However, one can see that the fit does not match the data well, especially
near the peak. The reason for this is that this equation neglects the multi-level
structure of the atom, something which is discussed in detail in Chapters 5 and
6.

4.3 Optical Bose-Einstein condensation

My experiment in Barcelona was originally designed to be a system for studying
magnetometry with Bose-Einstein condensates (BECs), a form of matter where
all the constituent particles have the same spatial wavefunction. BEC magnetom-
etry is not the focus of my thesis, however I contributed towards the construction
of the experiment and BEC physics is relevant to my work in Florence. In this
section I will briefly review BECs and show some results from our experiment.

The first BEC was obtained in a magnetic trap with a dilute vapour of 87Rb
atoms in 1995 [47]. We successfully obtained a BEC all-optically with the same
species in August 2016. The typical path to creating a BEC starts with trapping
an ensemble of atoms in some confining potential, usually a magnetic or optical
trap. The confinement quantises the allowed energy levels of particles in the en-
semble. At low enough temperatures, a macroscopic number of particles occupies
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(a) (b)

Figure 4.5. (a) Experiment geometry used to perform tomography on a cloud of
trapped atoms. (b) “Ring” of resonant atoms as a result of performing the mea-
surement represented in (a),with the probe beam resonant with atoms halfway
down the trap. The total absorption is obtained by integrating this entire image.

the lowest energy level available, creating the BEC. The formation condition of a
BEC is usually defined as the point where the de Broglie wavelength of particles
in the ensemble becomes larger than the inter-particle distance, such that the
particles have to be described with a collective wavefunction. This condition can
be quantified as

nλ3
dB > 2.612 (4.28)

where n is the particle density, and λdB is the de Broglie wavelength (proportional
to 1/

√
T , see [48] for a derivation).

The trapped ensemble is usually cooled evaporatively (I say “usually” because
I know of two experiments that have optically achieved BEC without evaporative
cooling: [49] and [50]). In a magnetic trap this is usually done with the rf knife
technique, while in an optical trap the only way is to reduce the depth of the
potential, letting the hottest atoms escape while the remaining atoms thermalise
at a lower temperature. It is challenging to achieve a BEC in an optical potential,
as this final step of cooling requires relaxing the potential which reduces the
particle density and collision rate.

A representation of the optical evaporation process is shown in Fig. 4.7. Atoms
initially trapped in the ODT have a Maxwell-Boltzmann energy distribution. The
light intensity is then reduced, reducing the depth of the potential. Higher-energy
atoms escape while remaining atoms thermalise at a lower temperature. The rate
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Figure 4.6. Absorption vs. probe frequency as a result of the measurement
shown in Fig. 4.5. The values extracted by fitting Eq. 4.27, U0 = kB · 222 µK
and T = 42 µK agree well with complementary trap frequency and time-of-flight
measurements.

of this thermalisation decreases as the trap depth decreases because the atomic
oscillation frequency (and therefore collision rate) depends on the trap depth.
With sufficiently high initial atom number, The transition to BEC is considered to
occur when the ground state of the potential becomes macroscopically occupied.
Even with an optimised evaporation procedure this typically involves throwing
away more than 99% of the atoms trapped initially. Formation of a BEC has
been shown to be a stimulated process, not a relaxation: once the BEC starts
forming in a single energy level atoms preferentially scatter into that level, much
like the gain mechanism in a laser [51].

Despite the technical challenge presented by the reducing collision rate, the
first all-optical BEC was first obtained in 2001 by M. Barrett et al. [11]. It
is interesting to note that BECs were successfully transferred into optical traps
before this, e.g. [52]. There are many excellent articles on the physics of evap-
oration, for example see [53] for a review of the state-of-the-art in 1996, or [54]
for a theoretical description of evaporation in an optical trap.

A BEC in an optical trap has the big advantage over magnetic traps that an
optical potential can be state-independent. For example, the three F = 1 mag-
netic sublevels in the 5S1/2 ground state of 87Rb in an ODT at 1560 nm have
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Figure 4.7. Representation of the optical evaporation process to reach BEC.
(a) Atoms in an optical potential occupy discrete energy levels with a Maxwell-
Boltzmann distribution. (b) Reducing the trap depth removes higher-energy
atoms while remaining atoms thermalise at a lower temperature. (c) Eventually
the only remaining atoms are in the same energy level.

the same polarisability, and therefore experience the same potential. This is nec-
essary for applications such as optical magnetometry: in optical magnetometry
magnetic fields are detected by measuring the precessing spin of the atoms, which
is the same as measuring the time-dependent superposition of the atomic ground
states. A magnetic trap can only trap a single ground state, so such precession is
not possible. In any case for obvious reasons it would be impractical to measure
magnetic fields with magnetically trapped atoms.

Figure 4.8 shows the geometry of the Barcelona BEC experiment. The BEC is
formed at the crossing of two∼ 10 W ODTs at 1560.492 nm (for full details see the
PhD thesis of Silvana Palacios [55]). Fig. 4.9 shows crossing the BEC transition
by increasing evaporation time, with subsequent lowering of the potential depth.
All of the images show an evaporatively cooled atomic cloud after a 16 ms time-of
flight with the length of the evaporation given in the respective figure.
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Figure 4.8. Geometry of ODTs in the Barcelona experiment: Two beams cross
in the horizontal plane at a 90◦ angle and the atoms are trapped at the crossing.
The two beams are not equal in power, so the trap frequencies are anisotropic.
Imaging is done about 45◦ from the vertical axis.
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Figure 4.9. Absorption images after 16 ms time-of-flight for different evaporation
times, showing the transition from a thermal ensemble to a BEC in the Barcelona
experiment. The top row is absorption images, and the bottom row the same
image integrated vertically. Blue lines are data, red lines are a Gaussian fit
excluding the central third of the peak (i.e. fitting only data below the half-
maximum). The first image is a fully thermal cloud, which is well-fit by a
Gaussian. Then a sharp peak grows, showing an increasing condensed fraction.
Finally a fully condensed cloud (no detectable thermal fraction) with a Thomas-
Fermi density distribution has sharp edges, making the fit over-estimate the
peak height in the centre. The final image also has a pronounced anisotropy,
characteristic of a BEC released from an anisotropic trap.
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4.4 Laser intensity control and noise-induced heat-
ing

4.4.1 Feedback control of laser intensity

Lasers, especially the high-powered ones used for dipole traps, tend to have
intensity noise. If this noise is strong enough at twice the trap frequency it
can parametrically heat atoms trapped in the laser and cause unnecessary atom
loss. To control the intensity of the laser beam - which is necessary for controlled
optical evaporation - and to reduce intensity noise I built a “noise-eater” feedback
system for our ODT lasers. A schematic of this system is shown in Fig. 4.10.

The feedback system consists of a pure integrator, which was found to function
sufficiently well in reducing noise and for dynamic control of the laser power. The
actuator is an acousto-optic modulator (AOM), and the laser power is detected
on a large-area photodiode (we used a Thorlabs PDA10CS-EC, with 0.8 mm2 area
and 17 MHz bandwidth). The entire laser wavefront needs to be focussed on the
photodiode, with room to move, so that beam-pointing noise is not converted
into intensity noise.

To characterise the feedback system, I measured the relative intensity noise
ε(t) at the in-loop photodiode for a range of different conditions. ε(t) is defined
as

ε(t) =
I(t)− I0

I0
(4.29)

where I(t) is the signal as a function of time, and I0 is the mean of the signal
over the measurement period. Fig. 4.11 shows the power spectrum of ε(t) with
the laser at full power without feedback, with the laser at full power with the
feedback circuit closed, and finally with no laser power at all (to measure the
electronic noise of the photodiode). The reduction in noise in the locked signal
is significant for frequencies up to about 8 kHz. There is a peak in the electronic
noise at 100 Hz, probably from the room lights despite the photodiode being
covered by a bandpass filter with passband at the laser wavelength 1560±10 nm.
There is another significant peak in the free-running laser at about 2 kHz, which
is reduced by over 20 dB by the feedback. The large peak in the locked spectrum
at about 30 kHz shows the bandwidth of the feedback system, and is expected
behaviour because an integrator “pushes” noise to higher frequencies. The noise
due to shot noise was estimated from the power incident on the photodiode as

εsn =
2G2eSPopt
〈V 〉

(4.30)
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Figure 4.10. Noise-eater feedback system. The ODT intensity is controlled
by an acousto-optic modulator (AOM). A small part of the diffracted beam
is sent to a photodiode, which feeds an integrator controlling a variable-gain
RF amplifier (VGA), which controls the amplitude of the AOM output. The
integrator ensures the sum of the feedback signal from the photodiode and the
control voltage (Vcont) is zero. LNA = Low-noise amplifier, VCO = Voltage-
controlled oscillator, EDFA = Erbium-doped fibre amplifier.

where G is the gain of the photodiode transimpedence amplifier, e is the electronic
charge, S is the sensitivity of the photodiode in A/W , Popt is optical power
incident on the photodiode, and 〈V 〉 is the mean voltage of the signal due to the
laser.

In hindsight, I should have measured with a photodiode outside of the feedback
loop, i.e. directly measured the light in the beam going to the experiment. In
Fig. 4.11 one can see that at low frequencies the electrical noise power is actually
higher than the locked laser noise power. What is probably happening is that the
feedback system is cancelling out the electrical noise in the photodiode signal by
adding the opposite to the light intensity, which means that the data shown in
Fig. 4.11 actually underestimates the noise power in the locked laser spectrum.
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Figure 4.11. Relative intensity noise for different laser configurations in decibels-
relative-to-carrier per Hz (dBc/Hz). At low frequencies the system is limited by
electrical noise.

4.4.2 Atomic ensemble heating due to intensity noise

The authors of [56] use a simple model to describe how intensity noise on a dipole
trap laser can heat trapped atoms. They go on to show that the heating rate
Γε of trapped atoms with trap frequency ftr can be estimated from the noise
spectrum of the laser as

Γε = π2f2
trSε(2ftr) (4.31)

where Sε is the power spectrum of ε(t). We performed this calculation for the
data shown in Fig. 4.11, to produce Fig. 4.12, which shows the estimated heating
rate 1/Γε as a function of trap frequency. The heating rate is the time needed
for the energy of the cloud of atoms to increase by a factor of e.
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Figure 4.12. Estimated heating rate of atoms at a given trap frequency. The
most important feature is that the feedback reduces the large negative peak at
around 1 kHz from a lifetime of less than 1 second to over 100 seconds. At full
power of our dipole trap laser we measured a trap frequency of around 1.3 kHz,
so noise at frequencies above twice this is irrelevant for our system.

According to the analysis shown in Fig. 4.12, the lifetime limited by intensity
noise should be on the order of hundreds of seconds. However, as mentioned
in the previous section, this is an absolute upper bound as the measurement
underestimated the noise power, especially at low frequencies. In the end, the
lifetime of our dipole trap was found to be limited by background gas in the
vacuum chamber, confirming the efficacy of the feedback system.

4.5 Microwave-assisted constant-depth optical evap-
oration

Usually, production of BECs in optical potentials requires lowering of the trap
depth to force evaporation (e.g. [11, 57]). Techniques do exist to obtain an optical
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BEC without lowering of the optical trap depth. For example using a combined
optical-magnetic potential [58, 59], using a particular highly-asymmetric optical
potential [60], using a combination of light shifts and atoms with narrow transi-
tions [50], or using an optical lattice [49].

Here I’ll briefly present an idea developed with Morgan Mitchell and Pau
Gomez for performing optical evaporation without lowering the trap depth. The
advantage of not lowering the trap depth would be that the ensemble should
thermalise quickly and thus the duration of the evaporation should be short, in-
creasing overall experiment repetition rate. To my knowledge the fastest BEC
experiment at the moment is that of [49], where they obtain a BEC in 0.3 s with
very low atom loss and without any evaporative cooling, although the scheme de-
pends on the BEC forming in an optical lattice. Also in this reference the scheme
is performed with very few atoms: the resulting BEC contains 1400 atoms, al-
though the authors claim it is scalable to much larger atom numbers.

A schematic of the evaporation scheme is shown in Fig. 4.13 for 87Rb-like atoms
in a Gaussian potential. An applied magnetic field gradient induces a spatially-
dependent Zeeman shift between the sublevels of the upper ground state. An
applied rf field resonant with atoms at the edge of the trap but not at the centre
transfers atoms relatively high in the potential into the higher-energy ground
state. A laser resonant with a cycling optical transition from the upper ground
state pushes any atom excited into the upper ground state out of the trap, thanks
to the cycling transition. By lowering the frequency of the microwave field, atoms
lower and lower in the trap can be selectively removed.

4.5.1 Number of transitions required to escape

To study this evaporation scheme a bit more quantitatively, I looked at how
many photons an atom needs to scatter to escape the trap (in one dimension),
which can be used to estimate heating from off-resonant transitions. The atoms
excited to F = 2 by the microwave field are pushed out of the trap by photons
in the push beam, which will transfer momentum to the atoms. The atoms will
accelerate at a rate that depends on the balance between the force from the push
beam and the restoring force from the dipole trap. The force from the dipole
trap is the derivative of the dipole potential Eq. (4.5):

Ftrap = −∇Udip = − 1

2ε0c
Re(α)∇I(x). (4.32)

where I(x) is calculated using Eq. (4.10) with z = 0. The force from the push
beam is the rate of change of momentum, which is the momentum from one



4.5. Microwave-assisted constant-depth optical evaporation 51

Figure 4.13. Representation of microwave-assisted optical evaporation. A mag-
netic field gradient induces spatially-dependent energy shift of the ground state
levels, and an applied microwave field is resonant only with atoms near the edge
of the trap. Atoms at the edge are transferred from F = 1 to F = 2, and are
quickly pushed out of the trap by a laser resonant with the F = 2 → F ′ = 3
cycling transition. Note some states are not represented for clarity.

photon times the scattering rate Rsc

Fpush = Rsc~k = Rsc
h

2πλ
. (4.33)

The acceleration a of an atom is then:

a =
d2x

dt2
=

1

m
(Fpush + Ftrap(x)) (4.34)

which is a second-order differential equation that can be solved numerically to
find the position x of the atom at time t. Let’s assume the worst-case scenario
of a stationary atom starting from σ/2, which is the position of highest force
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from the trap. The atom needs to be accelerated such that it has a total energy
(kinetic + potential) equal to the trap depth to escape the trap. Fig. 4.14 shows
the total energy of an atom starting from zero velocity at x = σ/2, with a push
beam scattering photons at the rate given in the legend. The total energy of the
atom is given by

E = U(x) +
1

2
mv2 (4.35)

where U(x) is given by Eq. (4.5) and v = dx/dt is the velocity of the atom
from solving Eq. (4.34). This quantity is equal to zero when the atom has
enough energy to escape the trap. Fig. 4.14 shows the expected behaviour: a
high scattering rate kicks the atom out quickly, while lower scattering rates take
longer to kick the atom out, until below a critical scattering rate the atom does not
escape at all, and instead begins to oscillate inside the trap. To quantify this slow-
down, Fig. 4.15a shows the number of scatters required for an initially stationary
atom to escape from initial position x0 = σ/2 as a function of scattering rate.

4.5.2 Differential light shift

The escaping atoms must be always on-resonance with the push beam as they
are moving out of the trap, so I have not attempted to test this scheme in our
experiment due to the strong differential light shift, which makes the resonance
frequency position-dependent. In an ODT at, say, 1064 nm, this scheme would be
much more feasible as at this wavelength and at typical intensities the differential
light shift is negligible.

4.5.3 Off-resonant excitation of the F = 2→ F ′ = 1, 2 tran-
sitions

To estimate off-resonant heating effects from the F = 2 ground state, I’ll make
two worst-case assumptions: 1) With a scattering rate equal to Γ/4, which is
the case if the push beam intensity is equal to the saturation intensity, the most
photons an atom needs to scatter to escape the trap is about 300 (see Fig. 4.15b).
2) Off-resonant excitation is much more likely in the case of an unpolarised or
linearly polarised push beam, so in the following I’ll assume a linearly polarised
push beam.

Averaged across all sublevels, the on-resonant Rabi frequency of the F = 2→
F ′ = 2 transition is 5/14 of that of the F = 2 → F ′ = 3 transition, and the
F = 2→ F ′ = 3 is 1/14. Atoms excited to F ′ = 2 have a 1/2 chance of decaying
back to F = 1, and those excited to F ′ = 1 have a 5/6 chance of decaying back
to F = 1, returning their additional kinetic energy to the ensemble (relative
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Figure 4.14. Total (kinetic + potential) energy of an atom pushed out of a
dipole trap by a push beam. The atom starts with zero velocity at x = σ/2,
and the scattering rate is given as a fraction of the natural linewidth Γ. Γ/2 is
the scattering rate in the high-intensity limit. Below a critical scattering rate,
about Γ/8.11 in this case, the atom does not escape the trap but instead begins
to oscillate. Made by solving Eq. (4.34) with α calculated for the 5S1/2 ground
state with light at 1560 nm, a peak intensity of I0 = 2.91× 109 W m−2, an ODT
waist of σ = 45µm (i.e. a total beam power of about 10 W), a push beam at
780 nm, and Γ = 6 MHz.

transition strengths are shown in Fig. 4.16). If the push laser is resonant with
the F = 2 → F ′ = 3 transition, using Eq. 4.16, the relative scattering rate of
the F = 2 → F ′ = 2 transition is 1/(1 + 4(266/6)2) × 5/14 ≈ 1/22, 016. So for
every 22, 016/300 ≈ 73 atoms that escape the trap, one is excited to the F ′ = 2
state. Half of those excited to F ′ = 2 (so 1 in 146) decay to the F = 1 ground
state, going off-resonant with the push laser and returning their energy to the
ensemble.

For the F = 2 → F ′ = 1 transition, the relative scattering rate is 1/(1 +
4(266 + 157)2/62)× 1/14 ≈ 1/278, 348. Taking into account the 5/6 probability
of decay to F = 1, we find that one in every 1134 atoms decays into the F = 1
state through this transition, instead of being pushed out of the trap.
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Figure 4.15. (a) The number of photon scattering events required to escape the
trap vs. the scattering rate for an atom starting from x = σ/2. The higher the
scattering rate the less scattering events are required to escape the trap. Made
using the same parameters as Fig. 4.14, and the number of scattering events
was counted as Rsc × tesc, where tesc is the time taken to reach 0 total energy.
The red line shows the critical scattering rate. (b) Number of scattering events
to escape as a function of the initial position of the stationary atom for a range
of Rsc. All data was obtained by numerically solving Eq. (4.34).

In total, approximately 1 in 130 atoms will not escape the trap but will return
to the ensemble with higher energy. Note that this is in the case of an atom
starting from the “worst” possible trap depth. Atoms pushed from a higher or
lower position in the trap will undergo fewer transitions, and be less likely to
return their energy to the ensemble.

These numbers have been calculated assuming unpolarised or linearly polarised
light. In the ideal case of a perfectly circularly polarised push beam, there is in
principle no off-resonant excitation of any other transition from F = 2. While
this is never the case in a real experiment, heating through these off-resonant
transitions should be much less than this estimated value, which in any case does
not appear to make this evaporation scheme unfeasible.

4.5.4 Off-resonant excitation of the F = 1 → F ′ = 0, 1, 2
transitions

Off-resonant excitation from the F = 1 ground state would cause a background
heating effect, as atoms everywhere in the trap are equally likely to be excited
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Figure 4.16. Relative transition strengths/on-resonance Rabi frequencies of dif-
ferent transitions between the 5S1/2 and 5P3/2 states of 87Rb, averaged over π
and σ± transitions. Data from Appendix D of [20].

on these transitions by the push laser. Table 4.1 shows the excitation rate of
the different transitions calculated using Eq. (3.1) with I/I0 = 1. The total
excitation rate from the F = 1 state is about 0.55 Hz, meaning that for every
second of evaporation, 0.55×NtotkB ·0.36 µK of energy is added to the ensemble,
where Ntot is the total number of atoms. The total energy of the ensemble is
3NtotkBT [54]. T is of course a function of time, but if we take for an order
of magnitude estimate a typical initial condition of T = 30µK, the background
heating effect is about 0.2% of the total energy of the ensemble per second. This
fraction would increase as the ensemble temperature decreases. The heating could
be minimised by sweeping the microwave frequency faster to reduce the overall
evaporation time, but sweeping the microwave too fast would mean the ensemble
does not have time to thermalise and the evaporation would become inefficient.
In any case this heating rate is again an overestimate. A circularly-polarised push
beam would favour the F = 1 → F ′ = 2 transition, reducing the rates of the
other two.

Excitations on these transitions could also have a cooling effect, as some atoms
will be transferred from the F = 1 to the F = 2 ground state and quickly pushed
out of the trap. From Fig. 4.16, an atom excited from the F = 1 ground state
has about a 28% chance of ending up in the F = 2 ground state. Once in the
F = 2 ground state the atom is resonant with the push laser.

4.5.5 Selectivity of the microwave field

This evaporation scheme would need the microwave field to transfer atoms from
F = 1 to F = 2 in a slice narrow relative to the size of the trap. If it were too wide
too many atoms would be kicked out of the trap at once, resulting in inefficient
evaporation. This could be controlled by the gradient of the magnetic field.
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F = 1→ Ω (rel.) ∆ (MHz) R (Hz)
F ′ = 2 5/14 6568 0.22
F ′ = 1 5/14 6412 0.23
F ′ = 0 1/7 6340 0.10

Total 0.55

Table 4.1. Scattering rates of all the possible transitions from the F = 1 ground
state with a push laser resonant with the F = 2→ F ′ = 3 transition. Calculated
using Eq. (3.1) with I/I0 = 1 and scaling by the Rabi frequencies Ω relative to
the F = 2→ F ′ = 3 transition Rabi frequency, averaged over all possible π and
σ± transitions.

The linewidth of the hyperfine ground-state transition in 87Rb is 0 as theF = 2
ground state is metastable. This transition is subject to power broadening, and
a power-broadened linewidth of, say, 1 kHz is reasonable. The Zeeman shift of
these ground states is 700 kHz/G [35]. It is experimentally feasible to have a
gradient of, say, 0.1 G across the width of the dipole trap, so a Zeeman shift of
70 kHz across the ensemble.

Another possibility is using optical Zeeman shifts to control the energy levels.
One way of doing this would be to use an additional beam in some way, but
possibly one could use a circularly-polarised dipole trap to provide both the
trapping potential and energy level gradients used during the evaporation. This
could maybe be done, for example, with 87Rb in a circularly-polarised dipole trap
at 790 nm, where the scalar light shift of the ground state is zero but the vector
light shift is not.

4.5.6 Outlook

This scheme looks similar to evaporation with an rf knife in a magnetic trap but
with much faster thermalisation and several additional heating mechanisms. The
fast thermalisation means the evaporation could be more efficient than conven-
tional optical evaporation, provided the additional heating is not too fast. The
scheme works better for ODTs with high trap frequencies, as the thermalisation
will be faster and thus the overall evaporation time will be shorter, reducing the
background heating.

The above analysis has not identified any serious impediment to this evapora-
tive cooling method, but more work should be done to study the thermalisation
in this scheme as it is probably highly dependent on the shape of the optical
potential, and this analysis might have missed a problem in the full dynamics of
the situation. For example if the atomic ensemble becomes too dense the atom
number could decay rapidly due to three-body collisions [61] [62] [52], or perhaps
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the off-resonant heating is simply too great for this to work.
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Chapter 5

Light shifts with Floquet’s
theorem

5.1 Introduction

Atomic energy level shifts due to an optical field are known as light shifts or ac
Stark shifts, and are well known in physics. Light shifts can be exploited to deter-
mine atomic properties for fundamental physics [63, 64], in sensing applications
such as optical magnetometry where they can be detrimental [65, 66] or benefi-
cial [67], they can be used to characterise optical traps as explained in detail in
Chapter 4 [43, 44], have recently been exploited for fine control and addressing
of individual qubits in a trapped-ion quantum information processor [68], and
even used to make a BEC without evaporative cooling [50]. Using light shifts to
manipulate atomic spins for quantum information storage and manipulation is a
growing field [69]. Light shifts due to both blackbody radiation and probe light
are a limiting factor in the accuracy of modern optical atomic clocks [41, 70].

During the characterisation of the BEC experiment in Barcelona, we wanted
to quantitatively describe the energy level shifts of atoms trapped in the ODT, as
this affected loading dynamics. The ODT at 1560 nm induces strong light shifts
of the 5P3/2 levels due to its proximity to the excited-state transitions to the 4D
levels around 1529 nm (see Fig. 5.1). This experiment also has an additional
laser at 1529 nm to compensate for these level shifts. The 1560 nm light is close
enough to the excited-state resonance to produce a slight nonlinearity in the level
shifts, and the 1529 nm light produces highly nonlinear level shifts.
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Figure 5.1. 87Rb energy levels used for calculations presented in Chapters 5
and 6. We performed several representative calculations with many more matrix
elements up to n = 10 and found that these made a < 1 MHz contribution to the
calculated light shifts under our experimental conditions, which is less than the
uncertainty in our measurement. The inset shows the hyperfine splitting of the
5P3/2 levels. We included hyperfine splitting for all levels except the 4F levels,
for which we were unable to find hyperfine constants in the literature.

We found that the conventional description of light shifts was insufficient for
our experiment. Light shifts are usually calculated using second-order perturba-
tion theory (e.g. [68, 71–77]), but this is not adequate in situations with strong
nonlinear light shifts and non-negligible mixing of different hyperfine energy lev-
els, which can be the case if the light is sufficiently near-resonant with an atomic
transition like in our experiment, especially in the case of moderate intensities of
our 1529 nm beam.

In order to accurately describe the combined effect of both the 1560 nm and
1529 nm beams, we developed a calculation based on Floquet’s theorem. The
theory and experimental results have recently been published in Optics Express
[78]. In this chapter I will describe the theory, which includes a section not in the
paper about how to combine light shifts with magnetic fields, giving a “toolbox”
for experimental manipulation of atomic energy levels.

There is nothing in the theory specific to any particular transition or atom,
so it could be useful for calculating light shifts in any system involving optically
trapped atoms. Indeed, it could greatly expand the range of experimental pos-
sibilties with conventional optically-trapped atoms, optically-trapped molecules
[79], atoms in optical lattices [80], or atoms trapped close to optical fibers [81].
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The theory can accurately describe light shifts in a regime analogous to the
magnetic Paschen-Back regime, i.e. a regime where the light shifts are large,
non-linear, and there is strong mixing of the hyperfine levels. It can describe
light shifts due to multiple lasers of arbitrary polarization with wavelengths close
to atomic resonances, with the limitation that the different wavelengths must be
related by a rational fraction. At the same time, the mathematics is considerably
simpler than in perturbative treatments [76, 77] and handles strong level mixing
in a natural way, thus extending the possibilities of light-shift engineering, e.g.
for state preparation [82], and light-shift compensation techniques such as that
demonstrated in [83, 84].

The theory presented here could have a potential application in measuring
excited-state electric-dipole matrix elements. Precise knowledge of dipole matrix
elements is important for e.g. optical clocks, testing atomic structure calculations
[85], and atomic parity non-conservation measurements [86, 87]. The idea of using
light shifts to measure dipole matrix elements is not new [64, 88], but the theory
here can be used in a regime of strong light shifts, where errors in electric-dipole
transition matrix elements should manifest as a larger discrepancy between theory
and experiment.

5.2 Floquet theory of light shifts

The basic idea of this theory is that light acts as a periodic potential for an
atom, which is a situation amenable to solution using Floquet’s theorem. There
is a wealth of research describing quantum systems in time-periodic potentials,
the first paper probably published by John Shirley in 1965 [89].

5.2.1 Solving a periodic Hamiltonian

Floquet’s theorem states that the Schrödinger equation

i~
∂

∂t
ψ(t) = H(t)ψ(t) (5.1)

with time-periodic Hamiltonian H(t) = H(t+T ) has solutions of the form ψ(t) =
φ(t)e−iωF t, where φ(t) = φ(t+ T ) has the same periodicity as H(t). In the case
of an atom in an oscillating external field, we have H(t) = H0 + V (t), where H0

is the free-atom Hamiltonian and V (t) = V (t + T ) is a periodic potential [89].
ψ(t) describes a dressed state of the Hamiltonian, with dressed energy ~ωF .
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To find the dressed states, we just need to find U (T, 0), the time-evolution
operator for one period of the potential for which

ψ(t+ T ) = U (t+ T, t)ψ(t) = ψ(t)e−iωFT . (5.2)

The eigenstates of this operator are thus the dressed states ψi(t), with eigenvalues
exp(−iωF,iT ). This determines ωF,i up to additive multiples of 2π/T . When
2π/T is large relative to fine- and hyperfine-structure splittings, ~ωF,i can be
unambiguously assigned by comparison against the bare energies.

To compute U (T, 0), we use a numerical Euler method [90], although there is
another popular method which involves diagonalising a truncated infinite matrix,
described in Shirley’s original paper [89] or for example [91]. In the technique
described here, we first partition U (T, 0) into N subintervals

U (tN , t0) = U (tN , tN−1)...U (t2, t1)U (t1, t0). (5.3)

then approximate U (t1, t0) ≈ e−iH(t0)(t1−t0)/~ to find

U (T, 0) ≈
N−1∏
n=0

e−iH(tn)T/(N~) (5.4)

where tn = nT/N , and the order of the product must be as in Eq. (5.3).

5.2.2 Hyperfine energy levels

Now we calculate the two terms in the Hamiltonian. We work in the basis
|nJFmF 〉, in which the free-atom Hamiltonian H0 is diagonal, with different mF

states degenerate

〈nJFmF |H0|nJFmF 〉 = 〈nJ |H0|nJ〉+
1

2
~AnJK

+ ~BnJ
3K(K + 1)/2− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)

(5.5)

where K ≡ F (F + 1)− I(I + 1)− J(J + 1) and the hyperfine constants AnJ and
BnJ for 87Rb are taken from [85]. Fine-structure energies 〈nJ |H0|nJ〉 are taken
from the NIST atomic spectra database [92].

5.2.3 Atom-light interaction in the dipole approximation

We describe the interaction between the atoms and the light in the electric-
dipole approximation, so

V (t) = −E(t) · d (5.6)
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where E(t) is the electric field of a laser, and d = er is the electric-dipole operator.
The electric dipole approximation effectively makes several approximations at the
same time: only electric-dipole transitions are possible, the atom is only affected
by the electric field of the laser beam, not the magnetic field, and only single-
photon transitions are possible. These approximations are remarkably accurate
most of the time, but in Chapter 6 I present some experimental data indicating a
more sophisticated description is required in situations where the light is intense
and very close to resonance.

To find the matrix elements of this interaction in our basis, it is convenient to
work in Cartesian coordinates. Choosing z as the quantisation axis, we first find
dz, the z-component of d, which describes ∆mF = 0 or π transitions.

〈nJFmF |dz|n′J ′F ′m′F 〉 = 〈nJ ||er||n′J ′〉(−1)mF +J+I
√

(2F + 1)(2F ′ + 1)

×
(

F ′ 1 F
m′F 0 −mF

){
J J ′ 1
F ′ F I

}
,

(5.7)

where (:::) and {:::} are the Wigner 3-j and 6-j symbols, respectively, and the
reduced matrix elements 〈nJ ||er||n′J ′〉 are known from the literature1. The dz
matrix can be rotated to find the dx and dy matrices:

dx = eiFyπ/2dze
−iFyπ/2

dy = e−iFxπ/2dze
iFxπ/2

(5.8)

where Fx = (F+ +F−)/2 and Fy = −i(F+−F−)/2 are total angular momentum
components, given in terms of the ladder operators F± with matrix elements [94]

〈nJFmF |F±|n′J ′F ′m′F 〉 =
√

(F ∓mF + 1)(F ±mF )δnJF,n′J′F ′δmF ,mF
′±1.

(5.9)

5.2.4 Electric field of a laser beam

The electric field is similarly described in Cartesian coordinates. As examples,
if the incident optical field is monochromatic and polarized along ẑ, the electric
field is

Eπ(t) = Ecos(ωt)ẑ (5.10)

where E is the amplitude of the electric field, ω = 2πc/λ is the optical frequency,
c is the speed of light, and λ is the wavelength. Circularly-polarized light has the

1We obtained all the matrix elements except three from [85], elements between the 4d and 4f
states were obtained directly in a private communication from M. S. Safronova of U. Delaware.
All the elements we used are available online [93].
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field

Eσ±(t) =
E√
2

[cos(ωt)x̂± sin(ωt)ŷ] . (5.11)

The electric field of two linearly polarized fields with amplitudes Ei, polarizations
ni frequencies ωi, i ∈ {1, 2}, can be written

E(t) = E1cos(ω1t)n̂1 + E2cos(ω2t)n̂2. (5.12)

It is important to note that the period T in Eq. (5.4) refers to one period of the
total electric field, so we can calculate the light shifts due to multiple wavelengths
as long as they are related by rational fractions. E.g. if λ1/λ2 = a/b, where a and
b are positive integers, the period of the total electric field is the lowest common
multiple of T1 and T2, where Ti = 2π/ωi = λi/c is the optical period.

5.2.5 Extending beyond the electric dipole effect

In this formulation H0 can be readily extended to include static electric and/or
magnetic fields (this is described in Section 5.3), and V can be adapted to include
magnetic and higher electric multipole transitions, provided the matrix elements
are known. Note that we neglect any possible additional vacuum field, relaxation,
continuum, or relativistic effects. As we neglect relaxation/excitation effects we
effectively calculate only the real part of the polarisability and not the imaginary
part (see Section 4.1.1).

5.2.6 Convergence of the numerical calculation

For the calculations presented in Chapter 6, we used only the energy levels
shown in Fig. 5.1, comprising 136 distinct states. We performed several rep-
resentative calculations with levels up to n = 10 and found these extra states
contributed less than 1 MHz to the calculated light shifts which is below the
resolution of our experiment, as explained below. We computed U numerically
with Eq. (5.4) and cut off N at some finite value, but making sure it is sufficiently
high such that the result has converged. For calculations with our 1560 nm beam
only we used N = 200. All calculations were performed in MATLAB and our
code is available online [93].

5.3 Combining light shifts and magnetic fields

With the inclusion of magnetic fields in the light shift calculation we can de-
scribe the level shifts of an atom in arbitrary static magnetic and ac electric/light
fields, thus providing a “toolbox” to manipulate atomic energy levels using the
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two most common techniques of doing so. This could be useful for, for example,
calculating what magnetic field is required to compensate for some particular
vector light shift (aka “fictitious magnetic field” [95]), or vice versa.

In the presence of an external magnetic field, and assuming the resulting shifts
are small compared to the fine-structure splitting, the Zeeman interaction can be
written as [35]

HB = (µB/~)(gJ Ĵ + gI Î) ·B
= (µB/~)(gJ Ĵz + gI Îz)Bz

(5.13)

However the |F,mF 〉 states are not eigenstates with an applied magnetic field, as
mJ and mI are not independently defined in this basis. We need to find a new
basis where these quantum numbers are defined. We can change basis by finding
each |F,mF 〉 state as a sum of |J,mJ , I,mI〉 states, which form a complete set.

|FmF 〉 =

J∑
mJ=−J

I∑
mI=−I

|JmJImI〉〈JmJImI |FmF 〉 (5.14)

where 〈JmJImI |FmF 〉 is the corresponding Clebsch-Gordan coefficient given by

〈JmJImI |FmF 〉 = (−1)J−I+F
√

2F + 1

(
J I F
mJ mI −mF

)
(5.15)

Then the new eigenstates can be written as superpositions of the |FmF 〉 states
by diagonalising the total Hamiltonian in the new basis

〈JmJImI |H0 +HB |J ′m′JI ′m′I〉, (5.16)

To include magnetic fields in a light shift calculation, we need to write the
entire Hamiltonian in the |JmJImI〉 basis, including the periodic term V (t),
which effectively means finding the dipole operator dz and the rotation matrices
Fx and Fy in the new basis. This can be done by writing eq. (5.14) as a matrix
C and changing basis as e.g. d′z = CdzC

T .
Figures 5.2 and 5.3 show example calculations of the energy shifts of the 5P3/2

levels in 87Rb as a function of magnetic field, with and without additional light
shifts, and as a function of light intensity at 1529.282 nm, with and without an
applied magnetic field of 10 Gauss.
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Figure 5.2. Energy shifts of the 5P3/2 levels in 87Rb as a function of magnetic
field (a) without and (b) with an additional light shift from 3× 109 Wm−2 of
linearly polarised light at 1560.0 nm. Note the shifted y-axes.

0 1 2 3 4 5 6 7 8 9 10

10
6

-500

-400

-300

-200

-100

0

100

200

(a)

0 1 2 3 4 5 6 7 8 9 10

10
6

-500

-400

-300

-200

-100

0

100

200

(b)

Figure 5.3. Energy shifts of the 5P3/2 levels in 87Rb as a function of light
intensity at 1529.282 nm (a) without and (b) with an applied magnetic field of
10 Gauss.

5.4 Conclusion

This chapter presented a theory for the calculation of strong atomic light shifts
due to multiple wavelengths of light which can be close to an atomic resonance.
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The shifts can be nonlinear and larger than the hyperfine splitting. While no
single part of the calculation is new, as far as we know this is the first such
calculation of light shifts outside of the linear perturbative regime. Moreover,
our results are not specific to any particular transition or atom, and should be
widely applicable in any system involving optical trapping.
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Chapter 6

Measurement of strong
nonlinear light shifts

The light shift theory of Chapter 5 was tested by performing absorption spec-
troscopy on the light-shifted D2 transition in optically trapped 87Rb. The ex-
periment can resolve light shifts of individual magnetic sublevels, and shows that
there is good agreement between the measured and predicted positions of atomic
energy levels after calibration of the in-situ light intensity and polarization, al-
though a careful measurement finds a small unexplained discrepancy. We use
the simple model of atoms in a dipole trap derived in Chapter 4 to explain the
observed spectra. The spectra are sensitive to both the trapping light intensity
and polarization and can be used for calibration of both.

This chapter describes the setups and results of measurements in three differ-
ent configurations:

� The first experiment, and preliminary test of the theory, measured the ab-
sorption of atoms trapped in the ODT characterised in Chapter 4. This
ODT has a wavelength of 1560.492 nm, a total power of about 10 W and
a peak intensity of about 3× 109 W m−2. The light shifts of 87Rb in this
environment are almost linear, so this experiment constituted a test of the
theory in a regime that agrees with perturbation theory within experimen-
tal error. The results are compared to a calculation using the Floquet-based
theory. This experiment was also useful to calibrate the intensity and po-
larisation of the 1560 nm laser, parameters which were used for calculating
light shifts in the second experiment.

� The second experiment added a beam at 1529 nm which was mode-matched
to the 1560 nm beam. Light at 1529 nm induces very strong light shifts

69
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Figure 6.1. Experimental setup of first and second light shift measurement.
The high-power ODT at 1560.492 nm was used to hold the atoms and induce
a medium-strength light shift, while the second mode-matched beam at 1529
nm is used to induce strong light shifts without strongly affecting the potential
experienced by the ground state of the atoms. Absorption of a probe beam at
780 nm is measured on a CCD camera.

in rubidium, so this experiment tested the theory well beyond the linear
regime, as well as testing calculations of light shifts due to multiple wave-
lengths. In this and the previous experiment the measurements agreed with
the theory to within the experimental uncertainty. The precision of this ex-
periment was limited by the 1529 nm laser not being frequency-locked.

� The final experiment used a different experimental sequence to measure
with a much denser cloud than in the previous two measurements which
reduced the signal broadening, and also a higher intensity of the 1529 nm
light, resulting in larger shifts of some levels. I also constructed a system to
stabilise the 1529 nm laser which was limiting the precision of the previous
measurement. The results of this measurement show an as-yet unexplained
deviation from theory.

6.1 Light shifts @ 1560 nm + 1529 nm

A schematic of the configuration of the first and second experiments is shown
in Fig. 6.1. To trap the atoms we used an optical dipole trap consisting of a
single linearly polarized 10 W (∼ 3× 109 W m−2) beam locked with < 100 kHz
stability to 1560.492 nm (the second harmonic of which is locked to a transition of
the 87Rb D2 line at 780.246 nm), and focused to a spot size of ∼ 44 µm. A second
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beam near 1529 nm was mode-matched to the 1560 nm beam, with a controllable
power from 0-100 mW (0-3.3× 107 W m−2). The two beams were combined on a
polarizing beamsplitter, with the 1560 nm light reflected and the 1529 nm light
transmitted, so the nominal polarisations are linear vertical and linear horizontal,
respectively. The 1560 nm beam is not perfectly linear before the beamsplitter,
and the polarization is not perfectly cleaned on reflection from the cube, so there
is some residual ellipticity. The 1529 nm beam could be scanned across the
5P3/2 →4D3/2(5/2) excited-state resonances at 1529.26 (1529.36) nm (see Fig.
5.1), so we could induce strong light shifts in the 5P3/2 states with relatively
low intensities. Initially, we measured three datasets: one with no 1529 nm light
present, another with the 1529 laser at 1529.282 nm and another at 1529.269 nm.
The 1529 laser was not frequency-stabilised, and the wavelength was measured
with a calibrated wavemeter to drift by ±0.001 nm from the nominal wavelength
over the duration of the measurements. Measurements of the 1529 nm laser
wavelength were limited by the resolution of the wavemeter, but the observed
fluctuations of ±0.001 nm (approximately ±100 MHz at this wavelength) were
corroborated by the measured data. For the absorption signal, a probe beam
at 780 nm propagates at an angle of 60◦ relative to the trap axis, to reduce
the chance of producing states that are “dark” to the probe light. Absorption
by the atoms was measured using a PCO Pixelfly CCD camera and a standard
absorption imaging technique (see Chapter 3 for more information about our
image processing). The probe laser was stable to less than 100 kHz, and could be
scanned up to 1 GHz to the red side of the D2 transition.

The experimental sequence was as follows: We trapped approximately 3 ×106

atoms in the F = 1 ground state in the 1560 nm optical dipole trap. Initially
the trap depth was about 270µK and the atoms had a temperature of about
40 µK. To ensure the atoms experienced as homogeneous a light intensity as
possible, we reduced the temperature and therefore the spatial extent of the
cloud by performing an evaporation sequence followed by adiabatic increase of
the trap depth back up to about 270 µK, obtaining ∼ 105 atoms at 11 µK. We
then pumped the atoms into the F = 2 ground state and measured absorption
of the probe laser as a function of the frequency of the probe beam and intensity
of the 1529 nm beam.
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6.1.1 Results @ 1560 nm only
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Figure 6.2. Relative optical depth of atoms in the dipole trap around the light-
shifted F = 2 → F ′ = 3 transition with only 1560 nm light. Blue dots show
measured optical depth in a small transverse slice of the dipole trap, extracted
from absorption images. Each point is from a single experiment run. The red
line is a fit using Eq. (6.1). The x-axis is relative to the free-space 5S1/2, F =
2 → 5P3/2, F = 3 transition. Free parameters in the fit were peak amplitudes,
trap depth, and the ellipticity of trap light. Arrows show positions of resonances
at maximum trap depth. The finite temperature of the atoms systematically
shifts the measured peaks relative to the arrows. “×2” indicates 2 resonances
within the width of the arrow.

The first measurement was the absorption spectrum of atoms in the trap with
just the 1560.492 nm trap itself, i.e. with zero intensity of the 1529 nm beam. Fig.
6.2 shows relative optical depth as function of probe beam frequency at zero 1529
nm beam intensity. We say “relative” as our image processing was calibrated
for measuring the density of atoms in free space, correcting for saturation as
described in Chapter 3.

This experiment measured absorption on the 5S1/2, F = 2 → 5P32 , F = 3
transition. In the conditions of this experiment, the five magnetic sublevels in the
lower state have the same polarisability to within experimental resolution, while
each of the seven magnetic sublevels in the upper state has a unique polarisability
that depends on the wavelength, intensity, and polarisation of the trapping light.
Thus we used a modified version of Eq. (4.27) to model the signal:
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A(δ) =

7∑
i=1

Ci

∫ ∞
0

u2e−u
2

du

1 + 4(δ + νi − tiu2)2
(6.1)

where i indicates the ith state, and Ci is a fitting parameter depending on the
number of atoms measured and the absorption cross-section of the ith level for
the probe beam.

To fit Eq. (6.1) to the data shown in Fig. 6.2 we modelled the electric field
of the 1560 nm laser as

E1(t) =
E1√

2
(cos(ω1t)x̂ + cos(ω1t+ φ)ŷ), (6.2)

and calculated the light shifts as described in Section 5.2, to obtain the differential
light shift and consequently the differential polarisability αe/αg, as this quantity
is equal to ∆fe/∆fg, where ∆fe(g) is the light shift of the excited (ground) state.
We included the quadrature phase φ to account for a slight ellipticity of the 1560
nm light after reflection at a polarizing beamsplitter as discussed in above. If
φ = 0 this simply describes a linearly polarized electric field oscillating in the
x̂ + ŷ plane. The coefficients Ci, electric field E1, and quadrature phase φ were
free parameters in the fit1. The light intensity is related to the electric field by

I =
ε0c

2
|E|2 (6.3)

where ε0 is the permittivity of free space and c is the speed of light. From the
fit we extracted I1560 = 2.91± 0.01× 109 Wm−2, which agrees well with power
meter measurements, and φ = 0.133 ± 0.009. By using colder atoms and/or a
deeper trap, these quantities could be known more accurately. The trap depth U
is equal to the light shift of the ground state at peak light intensity at the center
of the trap. We obtained U = h · 5.623± 0.004 MHz (= kB · 270.0± 0.2 µK). We
can compare the U obtained from the fit to Ucalc calculated from the measured
trap oscillation frequency fosc = 1.22 kHz and the beam waist measured with a
beam profiler w = 44µm as Ucalc = (2πwfosc)

2m/4 = h ·6.2 MHz. The difference
between the two can be explained with an error in the measurement of the beam
waist of 2 µm, which is entirely feasible.

The arrows in Fig. 6.2 show calculated light shifts of atomic transitions at the
bottom of the trap, i.e. ∆fe,i − ∆fg at peak light intensity. The data peaks
are slightly offset from the theoretical peaks due to the finite temperature of the
atoms: atomic density peaks above the bottom of the trap.

1Quantitative prediction of Ci is feasible but would require use of the optical Bloch equations
to solve for atomic dynamics in the presence of the 1560 nm beam, the single probe beam at
780 nm, and repump light also at 780 nm which is emitted from six directions toward the centre
of the trap.
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(b) λ2 = 1529.269 nm.

Figure 6.3. Probe absorption with λ1 = 1560.492 nm and λ2 given in the re-
spective subcaption.The probe frequency is indicated relative to the free-space
5S1/2, F = 2→ 5P3/2, F = 3 transition. The black lines show calculated energy
levels of dressed states at peak light intensity, these are offset from the data due
to the finite temperature of the atoms. Shading shows measured optical depth
of the atomic cloud in arbitrary units with the scale shown in the colour bar on
the right. Each column is scaled to have the same maximum value. After using
the data shown in Fig. 6.2 as a calibration of the experimental parameters, the
only fitting parameter here is the 1529 nm beam power. The arrows point to
lines showing the calculated light shifts for a change in wavelength of the 1529
nm laser by ±0.001 nm, for a particular level.

6.1.2 Bichromatic light shifts @ 1560 nm + 1529 nm

Figs. 6.3a and 6.3b show absorption of the probe beam as a function of probe
frequency and 1529 beam intensity. The black lines are calculated transition
frequencies relative to the free-space 5S1/2, F = 2→ 5P3/2, F = 3 transition. We
used the data shown in Fig. 6.2 as a calibration of the parameters of the 1560
nm beam, to then perform the calculation of energy level shifts as a function of
1529 nm beam intensity, so the only fitting parameter here is the calibration of
the 1529 nm beam intensity. The left-most column in Fig. 6.3a shows the same
data as that shown in Fig. 6.2, while that shown in the left-most column of Fig.
6.3b is a different data set but measured under the same conditions.
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For calculating light shifts with both the 1560 nm and 1529 nm beams present
we model the electric field as

E(t) = E1(t) +
E2√

2
[cos(ω2t)x̂− cos(ω2t)ŷ] (6.4)

which describes the electric field of the 1560 beam added to the linearly polarized
1529 beam. The two fields have linear orthogonal polarisations if φ = 0. The
wavelength of the 1560 nm trapping beam was λ1 = 1560.492 nm, so for one
measurement we set the wavelength of the 1529 nm beam to be λ2 = 49

50λ1 =
1529.282 nm. For the data shown in Fig. 6.3b, at 1529.269 nm λ2 is closer to
a resonance so the nonlinearity is clearer, including avoided and non-avoided
crossings. Because the ratio of experimental wavelengths does not form a simple
rational fraction, black theory curves are calculated with λ1 = 1559.854 nm (i.e.
λ1 = 51

50λ2). We mostly compensate for this mismatch between the real and
assumed wavelength of the 1560 nm light by reducing the intensity of light in the
calculation by 2.6%. There is still an estimated error of up to 150 kHz in the
calculated light shifts, however this is below the uncertainty introduced by the
drift of the 1529 nm laser, which was not frequency-stabilised.

The arrows in Figs. 6.3a and 6.3b point to lines representing the light shifts for
a representative level given a change in the 1529 nm laser wavelength of ±0.001
nm, showing that data and theory agree to within experimental error given the
uncertainty of the laser wavelength.

6.2 Higher precision measurements @ 1529 nm

While the measurements in the previous section agree with the theory to within
experimental uncertainty, I was interested in testing the limits of the Floquet the-
ory more accurately. For this reason I built a “transfer lock” using a fibre-based
Mach-Zehnder interferometer to stabilise the 1529 nm laser, which was the main
source of uncertainty in the previous measurements. The interferometer works by
using the 1560 nm laser as a sensitive thermometer to stabilise the temperature
of the apparatus, then the 1529 nm laser can be locked using the output signal of
the interferometer. This effectively transfers stability from the atomic-referenced
1560 nm laser. The interferometer was measured to stabilise the frequency of
the 1529 nm laser to < ±250 kHz (±2× 10−6 nm) over 16 hours, down from a
drift rate of around 100 MHz (∼ 1× 10−3 nm) in one hour. The interferometer
itself is described in Appendix A. I also developed a new experimental sequence
to measure light shifts at the highest available intensity of just the 1529 nm laser,
i.e. without the 1560 nm laser.
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Figure 6.4. Schematic of the experimental sequence for measuring light shifts
due to just the 1529 nm beam. The atoms are trapped in a crossed-beam trap
consisting of the 1560 nm beam in one direction and the 1529 nm beam in the
other. This crossed-beam trap is used to efficiently evaporate the atoms down
to 1 µK, then the 1560 nm beam is switched off, and the absorption is quickly
measured before the atoms have time to move.

6.2.1 Experimental sequence to produce a higher-density
ensemble

The experimental sequence presented in the previous section measured the light
shifts over a wide range of intensities of the 1529 nm laser. The potential for the
atoms was mainly due to the 1560 nm laser which did not change, while the light
shifts of the 5P levels were mainly due to the 1529 nm laser which could be varied
in wavelength and intensity without affecting the preparation of the atoms. The
results of this measurement agreed with the calculations to within experimental
uncertainty, however with the insight from this first experiment I was able develop
a new experimental sequence with a decreased measurement uncertainty and
larger-magnitude light shifts. I was able to reduce the experimental uncertainty
in two ways: 1) Stabilise the 1529 nm frequency with the interferometer, and
2) develop a new sequence to produce an ensemble of atoms with decreased
temperature to reduce the asymmetric temperature-dependent broadening of the
absorption peaks.

The new experimental sequence consisted of trapping atoms in the crossing of
the 1529 nm beam and an orthogonal 1560 nm beam, and then measuring light
shifts due to just the 1529 nm beam. The polarisability of the ground state of
rubidium is approximately the same at both of these wavelengths, so at equal
intensity the two beams provide a near-spherical-shaped potential for atoms in
the crossing. Using the two beams I could produce a sample of 2× 105 atoms
at 1 µK in a dense sphere at the crossing. The measurement then consisted of
switching off the 1560 nm beam and measuring the absorption of the probe beam
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within 100 µs before the atoms had time to move, thus measuring the light shifts
due to just the 1529 nm beam. This measurement produced much narrower peaks
than the previous measurement. The sequence is represented in Fig. 6.4.

I was able to obtain an estimated peak intensity of 4.5× 107 W m−2 of the 1529
nm laser. This value was obtained by fitting to the data, and does not agree well
with power meter measurements. I measured about 270 mW next to the vacuum
chamber, which corresponds to a peak intensity of 8.5× 107 W m−2 when focused
down to 45µm. I am not sure of the reason for this discrepancy, especially as
the fitted light intensity resulting from the light shift measurement with just the
1560 nm laser corresponds well with the measured light power outside the vacuum
chamber. Possibly it is simply due to an error in the measurement of the size of
the beam waist.

The interferometer includes a fringe-counting system which enables precise
control of the laser frequency by counting interferometer fringes and locking to
a particular one. Instead of measuring light shifts as a function of intensity, I
measured as a function of wavelength. This way the experimental sequence was
exactly the same every run except for the wavelength of the 1529 nm laser which
was controlled by a separate system (see Appendix A). The wavelength of the
1529 nm laser did not appear to affect the preparation of the atoms unless it
was exactly resonant with one of the excited-state transistions, in which case it
prevented the MOT from forming (the mechanism for this is unknown at this
time).

6.2.2 Results

Figure 6.5 shows the calculated light shifts for light close to the excited-
state transitions around 1529 nm. Due to technical limitations of our experi-
ment2, I was only able to measure with a probe frequency between 0 and about
−1200 MHz, as such I was limited to measuring in the regions indicated by the
blue boxes (a) and (b) in Fig. 6.5. The straight lines located in the region be-
tween the two blue boxes, labelled (c), appear to be an artifact of the calculation
and are not completely understood at this time. Note that in this region there
are 4 pairs of two lines with equal energies, or 8 lines in total. I attempted with
several experiments but was unable to measure absorption of the probe beam in
this region.

2The probe laser is offset-locked to a spectroscopically-referenced master laser, and at present
this system is made in such a way it is only possible to blue-detune the probe laser about 40
MHz above resonance with the F = 2 → F ′ = 3 transition. This is explained further in
Appendix C.
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Figure 6.5. Predicted shifts of 87Rb 5P3/2 energy levels due to light around 1529
nm, at an intensity of 4.5× 107 Wm−2. The blue boxes show regions measured
to compare the theory to experiment. Zero on the y-axis is the free-space energy
of the F = 3 levels. The labels (a) and (b) indicate regions where the shifts were
measured experimentally. (c) is explained in the text.

Data from the measurement corresponding to the box (a) in Fig. 6.5 is shown
in Fig. 6.6. Four theory lines are shown in the figure, roughly corresponding to
the F ′ = 3, 2, 1, 0 levels, in that order, from the top. There is good agreement
between the F ′ = 3 line and the data, but with decreasing F ′ the absorption
peaks become increasingly red (low frequency) relative to theory. The theory
curves were calculated with I = 4.5× 107 W m−2, because this intensity provides
the best fit to the experimental data. The fitting was done “by hand”, i.e. I
observed by eye the difference between the data and theory, and adjusted the
intensity of the light in the calculation such that the theory lines best match the
data. The effect of changing the intensity of the light in the calculation is as
follows: a higher intensity increases the gradient of the theory lines, and lower
intensity decreases it. 4.5× 107 W m−2 is the best compromise between these two
situations such that the gradients of the theory curves are as close as possible
to those of the data curves, and the only intensity where any of the theory lines
appears to match all of a particular row of data points. The uncertainty on this
value of 4.5× 107 W m−2 is ±0.2× 107 W m−2. This uncertainty was judged by
changing the intensity of light in the calculation until the F ′ = 3 theory curve
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Figure 6.6. Absorption of the probe beam vs. frequency of the probe beam and
frequency of trapping light, around 1529 nm. The uncertainty in wavelength
(±2× 10−6 nm) is much narrower than the width of each column, which are
shown wider for clarity. Theory curves are calculated for I = 4.5× 107 W m−2.
The shift of the ground states is about 100 kHz.
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Figure 6.7. Absorption of the probe beam vs. frequency of the probe beam and
frequency of trapping light, around 1529 nm.
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(a) λ2 = 1529.280 nm.
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(b) λ2 = 1529.50 nm.

Figure 6.8. Predicted shifts of 87Rb 5P3/2 energy levels as a function of light
intensity at the wavelength indicated in the respective caption. The shifts in (a)
show a relatively weak dependence on intensity at 4.5× 107 Wm−2, compared to
those in (b). Note the difference in scale on the y-axes. The text labels identify
the eigenstates at zero intensity.

obviously no longer fit any of the data.

Data from the measurement corresponding to the box (b) in Fig. 6.5 is shown
in Fig. 6.7. These data show larger and less systematic deviations from the
theory than the data from the measurement corresponding to box (a), and the
peaks appear to be broadened. The reason for this can be seen by looking at
Fig. 6.8, which shows the light shifts vs. intensity at two different wavelengths
corresponding to the two measurements described in this section. Fig. 6.8a shows
that around 1529.280 nm (i.e. in the middle of Fig. 6.6) at the light intensity
corresponding to the measurement the shifts have only a weak dependence on
intensity, which is not the case for Fig. 6.8b. In other words, the measurement
shown in Fig. 6.7 is much more sensitive to beam-pointing noise and finite-
temperature effects. A given change in the position of the 1560 nm beam relative
to the 1529 nm beam would change the equilibrium position of the atomic cloud,
and have a bigger effect on the light shifts in Fig. 6.7 than the light shifts in
Fig. 6.6, due to the stronger dependence of light shifts on light intensity in this
wavelength region in Fig. 6.8b. The strong intensity-dependence also means the
finite temperature of the atoms broadens the signal.
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Uncertainty in calculated light shifts

Here I consider the effect of three factors which introduce uncertainty to the
position of the calculated theory lines in Fig. 6.6: errors in the electric dipole
matrix elements, inclusion of a limited number of atomic transitions, and a finite
number of time steps in the calculation.

The calculation was performed using the electric dipole matrix elements of all
the transitions shown in Fig. 5.1. However, using only the elements associated
with the 5P3/2 → 4D3/2,5/2 transitions makes a ∼ 100 kHz difference to the
resulting calculated light shifts, and including levels up to n = 10 makes an
even smaller difference, so the use of a finite number of transitions is thought to
contribute at maximum a 100 kHz uncertainty to the calculation. The laser is so
close to these transitions that these electric dipole matrix elements are the only
ones to make a significant contribution to the light shifts. The number of time
steps used was 200, as discussed in Section 5.2.6.

The electric dipole matrix elements are estimated to have an uncertainty of
0.5%, due to approximations made in their calculation [85]. Here I estimate
errors in the calculated light shifts by assuming “worst-case” errors in the values
of the electric dipole matrix elements. In the wavelength region of Fig. 6.6, the
two nearby transitions “pull” the levels in opposite directions, so changing both
of the corresponding matrix elements by ±0.5% (i.e. in the same direction by
0.5%) has very little effect on the positions of the theory lines. However changing
one by +0.5% and the other by −0.5% makes the biggest possible difference to
the calculation within the bounds of the uncertainty of the values of the matrix
elements. Calculating the light shifts with this worst-case error in the dipole
matrix elements shifts the theory curves by up to ±14 MHz. In any case changing
the values of the matrix elements shifts all the theory curves by approximately the
same amount, and does not change their relative positions. Changing the matrix
elements by up to about 3% made it possible to fit any one of the theory curves
to the data, but as far as I was able to determine never all four simultaneously.

Uncertainty in measured light shifts

Here I estimate the effect of two factors that might contribute to errors in
the measured light shifts: An error in the probe beam frequency, or an external
uncontrolled magnetic field.

Errors in the probe beam frequency are thought to be < 1 MHz. It was
calibrated by measuring the frequencies of the F = 2 → F ′ = 3, 2, 1 transitions
in free space. Relative to the y-axis of Fig. 6.6 these occur at 0, -266, and -424
MHz, respectively. So the probe beam was demonstrated to be accurate to less
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Figure 6.9. Probe absorption data with atoms subject to 4.5× 107 W m−2 of
light at 1529.2829 nm (i.e. second column from the right in Fig. 6.6). The
blue crosses are the mean of 4 measurements. The red line shows a sum of four
Lorentzians fitted to the data. The numbers show the fitted FWHM of each peak
in MHz. The arrows show the predicted position of each peak, after calibrating
the light intensity to fit the largest peak.

than 1 MHz up to a detuning of -424 MHz. Beyond this, the frequency was
not calibrated directly, but measurements were performed only when the laser
frequency was stable, indicating that it was at the correct frequency (more about
this in Appendix C).

Regarding the external magnetic field, after measuring these data it was re-
alised an external field of at most 1 Gauss was accidentally applied during the
measurement, at an angle of 45◦ relative to the polarisation of the 1529 nm light.
This is enough to shift the atomic energy levels by ±2 MHz.

Agreement between data and theory

The combined total of estimated experimental and theoretical uncertainties is
no more than 20 MHz. However, the measured difference between theory and
experiment is up to about 45 MHz (see Fig. 6.9). This suggests that there is
some effect occurring which is not accounted for by the theory.
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Beyond electric dipole transitions

This section discusses some known effects which have been neglected by the
theory of Chapter 5, and speculates whether or not they might be responsible for
the theory-experiment discrepancy.

� Imaginary part of polarisability
The calculation of Chapter 5 effectively calculates the real part of the polar-
isability of the atoms (associated with the phase shift of the applied light),
and neglects the imaginary part (associated with scattering of the applied
light, see e.g. Eq. (4.6) ). This means we are ignoring the effect of atoms
scattering light during the measurement. However, if this were the cause
one would expect the error to depend strongly on wavelength, as the de-
tuning of the 1529 nm laser spans one octave from the nearest transition,
whereas the error appears to be constant as a function of wavelength.

� Two-photon transitions
Two-photon transitions connect states of the same parity, so there is no
nearby transition for two 1529 nm photons (1529 nm / 2 = 764.5 nm).
However, the 5S1/2 → 4D3/2 transition at 516.6 nm is very close to the
energy of a 780 nm photon + a 1529 nm photon = 516.5 nm, and this
transition is allowed under two-photon transition selection rules [96]. This
could be checked by measuring the data/theory discrepancy as a function
of the intensity of the 780 nm light.

� Magnetic dipole transitions
The magnetic field of the light can interact with the magnetic dipole mo-
ment of the atom to induce magnetic dipole transitions [97] [98]. The se-
lection rules for magnetic dipole transitions are that ∆n = 0, ∆F = ±1, 0,
and ∆L = 0. All such transitions in Rb are on the order of GHz or less, so
the light is very far off-resonant for this kind of transition.

� Electric quadrupole transitions
Electric quadrupole transitions connect states of the same parity [48], but
there are no transitions between states of the same parity close to 1529 nm,
so it seems unlikely the discrepancy is caused by quadrupole transitions.
Ref. [99] describes how to calculate electric quadrupole matrix elements.

6.3 Conclusion

I have experimentally validated the light shift theory of Chapter 5 by predicting
and measuring light shifts of the D2 transition in 87Rb caused by incident light
nearly resonant with the 5P3/2 → 4D3/2,5/2 transitions around 1529 nm.
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An initial experiment agreed well with theory well beyond the regime of light
shifts linear in light intensity, where there was strong mixing of the hyperfine
energy levels and some levels were shifted more than 300 MHz from their unper-
turbed values, which is larger than the largest hyperfine splitting in the 5P3/2

manifold in 87Rb. However due to an unstable trapping laser frequency, the
precision of the measurement was limited to about ±50 MHz.

A more precise measurement with larger light shifts showed a small but sys-
tematic discrepancy between theory and experiment. In this experiment some
levels were shifted up to 1 GHz from their unperturbed values. The impreci-
sion of the measurement is thought to be no more than ±2 MHz, while there is
a discrepancy of up to 45 MHz between the measured data and the theoretical
energy levels. There are mainly two electric-dipole matrix elements contributing
to the calculated light shifts in this regime, and each element has an estimated
uncertainty of ±0.5%. Assuming the absolute worst-case within the bounds of
the uncertainties, i.e. that one element is wrong by +0.5% and the other is wrong
by −0.5%, can explain up to 20 MHz of this discrepancy but no more.



Chapter 7

Bimodal Bose-Einstein
condensate with tunable
interactions

This chapter describes some theory and results from my time working at LENS
in Florence. For one year from October 2014 I joined the group of Marco Fattori
and spent one year with his group on their 39K BEC experiment. My work during
this year contributed to the publication of two papers, one in Nature Physics [100]
and another in Physical Review Letters [101].

7.1 Introduction

The Florence 39K BEC experiment was originally designed to study the po-
tential of quantum effects for metrology (e.g. as described in [102] [103]). With
this application in mind, the experiment was constructed with two interesting
features: One feature is an optical potential that can split a single BEC be-
tween two coupled potential wells, with the barrier between them tunable, and
the other feature is that the inter-atomic interaction strength (i.e. the atom-
atom scattering length) can be scanned through zero. This interaction tuning
is done with an external magnetic field. 39K has accessible and wide Feshbach
resonances which enable precise tuning of inter-atomic interactions with a rela-
tively low magnetic field of around 350 G [104]. This ability to dynamically tune
the interaction strength meant that this experiment was the first to condense
39K without sympathetic cooling by exploiting control of the atomic scattering
length during evaporation (for an example using sympathetic cooling see e.g.

85
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[105]). The apparatus and procedure to reach BEC is already well-described in
the PhD thesis of Giulia Semeghini [106] and summarised in [107].

The system presented here exhibits several interesting phenomena such as a
quantum phase transition with metastability and hysteresis, and a macroscopic
self-trapped phase. Similar two-mode many-body quantum systems have been
published previously (for example in a spatially bimodal rudibium BEC [108]
and in a system that couples two magnetic sublevels of a single rubidium BEC
in [109]), but this is the first system to demonstrate full control over all of the
relevant experimental variables. These are coupling between the two modes, the
relative energy of the two modes, and interactions between the atoms.

Experiments with a tunable scattering length have been used for other inter-
esting many-body physics such as the observation of bright solitons [110], the
observation of non-equilibrium many-body phases in cesium [111], and the study
of Anderson localisation [112].

7.2 Theory a of coherent two-mode quantum sys-
tem

Here I derive a Hamiltonian describing the behaviour of a general two-mode
quantum system with interactions. Despite the simplicity of the model it turns
out to be very useful for describing phenomena observed in this experiment. Note
this section follows [103] and some unpublished notes by Manuele Landini.

We can write the many-body Hamiltonian of interacting bosons in a potential
as

H =

∫
Ψ†HsΨd

3r +
g

2

∫
Ψ†Ψ†ΨΨd3r (7.1)

where the first term is the single-particle energy of the Hamiltonian, and the
second term describes inter-particle interactions. g is a function of the s-wave
scattering length a

Hs = − ~2

2m
∇2 + V

g =
4π~2a

m

(7.2)

and V is the external potential experienced by the atoms.
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Now we make the two-mode approximation, where we assume that there are
only two states available to the (noninteracting) atoms, a ground state ψg and
an excited state ψe. The many-body wavefunction can now be written

Ψ = ψgag + ψeae (7.3)

where ag (ae) is the annihilation operator for an atom in the ground (excited)
state. The Hamiltonian can now be written

H = 1
2 (εe + εg)(a

†
eae + a†gag)

+ 1
2 (εe − εg)(a†eae − a†gag)

+ κeea
†
ea
†
eaeae + κgga

†
ga
†
gagag

+ κeg(a
†
ea
†
eagag + a†ga

†
gaeae

+ 4a†ea
†
gaeag)

(7.4)

where

εa =

∫
ψaHsψa,

κab =
g

2

∫
|ψa|2|ψb|2

(7.5)

for a, b ∈ {g, e}. One important parameter in this system is the energy difference
between the ground and excited states. We define

ε = εe − εg. (7.6)

If we assume our potential V is one-dimensional with two local minima, we can
define left- and right-hand states

ψl,r = 1√
2
(ψg ± ψe) (7.7)

with corresponding operators

al,r = 1√
2
(ag ± ae). (7.8)

With sufficiently small overlap between these states, the absolute squares of the
even and odd wave functions

|ψg,e|2 = 1
2 (|ψl|2 + |ψr|2 ± ψlψr) (7.9)

are approximately equal, i.e. the overlap ψlψr can be ignored. This means we
can write

κee ≈ κgg ≈ κeg ≡ κ (7.10)
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We are interested in the dynamics of the system, so we can ignore terms that are
a function of the conserved total atom number (N̂ = a†eae + a†gag). With these
substitutions and simplifications, the Hamiltonian 7.4 becomes

H = − ε
2

(a†l ar + a†ral)− 4κ(a†l ala
†
rar). (7.11)

We can make another approximation to the Hamiltonian to more easily un-
derstand the behaviour of this system. The quantity 〈a†l al〉 is equal to the mean
number of atoms in the left well. We can make a mean-field approximation and
say al ≈

√
Nle

iφl , where Nl is the number of atoms in the left well, and φl the
phase (equivalently for the right well). Letting φ = φl − φr, Λ = Nκ/ε, and
parameterising the imbalance as z = (Nl − Nr)/N , where N = Nl + Nr, the
Hamiltonian 7.11 becomes

HMF =
H

εN
= −

√
1− z2cosφ− Λ

2
z2, (7.12)

where the system is normalised by the number of atoms and energy is scaled
relative to ε, the difference between the ground and first excited state. To simulate
the system dynamics we can solve Hamilton’s equations

∂φ

∂t
= −∂HMF

∂z
= − z√

1− z2
cosφ+ zΛ

∂z

∂t
=
∂HMF

∂φ
=
√

1− z2sinφ

(7.13)

for z and φ, both observables we can also measure. Despite all the simplifications,
this Hamiltonian turns out to be remarkably accurate in predicting much of the
possible behaviour of the double well.

7.3 Experimental apparatus

Now I describe the experimental apparatus used to create a system well-
approximated by the theory in the previous section. The laser beam configu-
ration used to create the double-well potential is shown in Fig. 7.1. There are
two interfering pairs of lasers at 1064 nm and 532 nm, both propagating nearly
vertically but at an angle of ±0.05 radians relative to vertical. The interference
of the four beams creates two collinear one-dimensional optical lattices in the
horizontal x-direction, the depth of which can be independently controlled. The
lasers are arranged in this way to make the lattice have a large period, and the
number of atoms in each well can be more easily resolved than if the lattice beams
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532 nm

Lattice beams
Radial
confinement

Figure 7.1. Diagram showing the 5 of the 6 optical beams used to create the
tuneable 1D lattice potential. Not shown is an additional “cross” beam per-
pendicular to the radial confinement beam, propagating into the page in the
ŷ-direction, which is used to load a single site in the lattice.

were counter-propagating. The system can be used as an interferometer, and the
large period increases the sensitivity of the interferometer to potential energy
gradients such as gravity gradients, magnetic field gradients, etc. The infrared
“primary” lattice at 1064 nm has a period of 10 µm, and the green “secondary”
lattice at 532 nm has a period of 5µm. The height of the central barrier is
controlled by changing the power of the secondary lattice. An orthogonal beam
provides radial confinement perpendicular to the x-direction, and another “cross”
beam used during evaporation to BEC allows us to load atoms into a single site
of the primary lattice.

Fig. 7.2 shows one site of the lattice and the wavefunctions of the ground and
first excited states of a trapped atom. From this diagram we can see that the
normal (no interactions) ground state is a wavefunction with equal amplitude on
each side of the double well.

We can also control the relative phase of the two lattices, which enables us to
control the relative depths of the two sites of the double-well as shown in Fig.
7.3. This was used to load with a non-zero difference between the atom number
in each well: we can load with imbalanced depths of the two wells, then quickly
switch the phase between the lattices back to zero, such that the well depths are
the same but with unequal atom number.
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Figure 7.2. Representation of the double-well potential, which is the sum of the
primary and secondary lattices (black), and wavefunctions of the ground state
(blue) and first excited state (green dashes).

Figure 7.3. Lattice potential as a function of phase difference between the lattice
beams. We can change the relative phase of the lattice beams to induce a small
imbalance δ in the depth of the two wells.

Fig. 7.4 shows the lowest three eigenenergies of the potential for different
heights of the barrier, or intensities of the green lattice. For sufficiently low
excitation and sufficiently high barrier, this justifies the two-mode approximation
made in the previous section.

7.4 Observables

To perform measurements in this experiment we used standard absorption
imaging, as explained in Chapter 3, with which we could destructively measure
two observables: the population imbalance between the two BECs z and their
relative phase φ.
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Figure 7.4. The lowest three eigenenergies (blue) for a non-interacting atom in
a potential (black). The amplitude of the primary lattice is constant, while the
amplitude of the secondary lattice Vg is given below each subfigure. The lowest
two eigenenergies approach degeneracy as the amplitude of the secondary lattice
becomes higher.

7.4.1 Imbalance z

A typical experimental sequence involves loading the double-well and then
waiting some time for the system to evolve, the amount of time depending on the
experiment. At the end of the experimental sequence, we increase the power of
the green lattice to effectively switch off tunneling between the two well sites, and
then turn off the radial confining potential but leave the lattice on, such that the
atom clouds expand radially but the imbalance stays the same. The purpose of
the expansion is to reduce the density of the clouds, otherwise the density would
be too high to quantitatively measure the number of atoms in each well. After
the expansion we perform a standard absorption image sequence.

To measure z we integrate images of the expanded cloud in the radial direction,
and then fit a double Gaussian function to the two peaks in the one-dimensional
data, as shown in Fig. 7.5. The lattice is one-dimensional, so in the direction
perpendicular to the k-vector of the lattice the clouds are Gaussian-shaped due
to the harmonic confinement of the radial dipole trap, thus integrating in this
direction does not lose any information.
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Figure 7.5. Data and fit of a measurement of population imbalance z. The top
figure shows a typical absorption image of the bimodal BEC after the radial
expansion, with the experiment axes labelled. The bottom figure shows data
(blue) resulting from integrating the top image in the ẑ-direction. The red line
is a fit of a double-Gaussian function to the data.

7.4.2 Phase φ

For measuring the phase difference between the two trapped clouds, rather than
letting the clouds expand in the lattice after an experiment we simply switch all
the optical beams off simultaneously. This lets the two atom clouds freely expand
and interfere. We then integrate the data to one dimension, and then fit the data
to a function to extract the phase. Here I will derive the function which we fit to
the interfering clouds to measure the phase.

There is a BEC in each well, and the wavefunction of each individual cloud is
approximately that of a particle in the ground state of a harmonic oscillator. In
the case of non-interacting atoms, the wavefunction of each cloud is given by

ψi = Ci × exp(−x2/4σ2
i )

Ci =

√
Ni√
2πσi

(7.14)

where Ni is the number of atoms in the ith well (i.e. so
∫∞
−∞ |ψi|

2dx = Ni, not
1), σ is the Gaussian half-width of the cloud (given by the trap depth), and x is
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position. The wavefunction for the total system before the expansion is

ψtotal(x, t = 0) = ψ1(x+ d) + ψ2(x− d)eiφ (7.15)

where 2d is the distance between the well centres, the numerical subscript is an
index for each well, and φ is the phase that we want to measure. First of all we
Fourier transform (the spatial coordinate)

Ψ(k, t = 0) = F [ψ(x)] =
√

2C × exp(−k2σ2) (7.16)

where k is the spatial frequency coordinate. Then apply the time evolution
operator (with the free-space Hamiltonian)

Ψ(k, t) = Ψ(k, 0)× exp

(
− i
~
Ht

)
=
√

2C × exp
(
−k2σ2

)
× exp

(
− i
~
~2k2

2m
t

) (7.17)

where m is the mass of one atom. Then inverse Fourier transform back to real
space

ψ(x, t) =
σC√
iα+ σ2

× exp

(
− x2

4(iα+ σ2)

)
(7.18)

where α = ~t/2m. Plugging this into eq. 7.15, and taking the modulus squared
to get density, which is what is actually measured, we get

ρ(x, t) = |ψtotal(x, t)|2

= exp

(
−σ

2(x2 + d2)

2(σ4 + α2)

)
×[

(C2
1 + C2

2 )cosh

(
xdσ2

σ4 + α2

)
+

(C2
1 − C2

2 )sinh

(
xdσ2

σ4 + α2

)
+

2C1C2cos

(
φ− xdα

2(σ4 + α2)

)]
(7.19)

This function is fitted to some example data in Fig. 7.6.
Rather than thinking of the number of atoms in each well, we can instead

parameterise the system with the total atom number N = N1 + N2, and the
imbalance z = N1−N2

N1+N2
. This means

C2
1 =

N(1 + z)

2σ
√

2π

C2
2 =

N(1− z)
2σ
√

2π

(7.20)
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Figure 7.6. Data and fit of interfering clouds used for a phase measurement. The
top figure shows a typical absorption image of two interfering BECs after release
from the optical potential. The bottom figure shows the top figure integrated in
the ẑ-direction. The blue line is the data, and the red line a fit of Eq. (7.19) to
the data.

We can then fit eq. 7.19 to data to find N , z, and φ. The other parameters t,
d, and σ are known. Although we can in principle simultaneously obtain both z
and φ from this measurement, it tended to not work so well for z ∼ ±1 as the
cloud is more dilute than in the measurement procedure for z, so a small peak is
more easily buried in the noise.

7.5 Dynamics of the double well

Now I will describe the three regimes of behaviour of the double-well BEC,
defined by the value of Λ in Eq. (7.12), which in practice is controlled by changing
the scattering length of the atoms with an external magnetic field. In the phase
plots that follow, shown trajectories were calculated by numerically solving Eq.
(7.13) with initial condition z = z0 (shown in each figure) and φ = 0.

7.5.1 Λ = 0 Rabi oscillations

Figure 7.7 shows predicted and measured Rabi oscillations of z and φ in the
double well. That is, oscillations with no inter-atomic interactions. For low



7.5. Dynamics of the double well 95

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.7. (a) Phase plots of the double well with Λ = 0. z0 indicates the ini-
tial imbalance. For small initial z the system undergoes harmonic oscillations,
however for large initial z the oscillations become less harmonic. Obtained by
numerically solving Eq. (7.13). (b) Experimental data. The points show mea-
surements with error bars representing the uncertainty in each measurement,
and the lines are fits to the data points.

initial z the oscillations of both variables are harmonic, while for larger initial
z, the oscillations of φ become anharmonic. For every initial z the system still
undergoes periodic oscillations in both z and φ.

7.5.2 Λ < −1 Parity-symmetry-breaking quantum phase
transition

This section is a summary of results published in [100].

For sufficiently strong negative (attractive) interactions the double well under-
goes a fundamental change in the symmetry of the ground state. An example
of this is shown in Fig. 7.8, which shows phase plots calculated with Eq. (7.12)
for Λ = −1.1. In this case, if the initial imbalance z0 is around ±0.4 there is no
dynamics, i.e. no evolution of z or φ. This means the ground state is no longer
uniquely that with z = 0, but there are now two degenerate ground states with
z ≈ ±0.4.

The transition from a symmetric to two degenerate asymmetric ground states
as a function of the interaction strength is a second-order parity-symmetry-
breaking quantum phase transition (QPT). It is second-order as the first deriva-
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Figure 7.8. Phase plot of Eq. (7.12) with Λ = −1.1. Notice that for z0 ≈ ±0.4
there is no dynamics, meaning these are now ground states.

tive of the “order parameter” (z in the ground state) is discontinuous as a function
of the “control parameter” (Λ in this case). A first-order phase transition is dis-
continuous in the order parameter directly [113]. The symmetry-breaking comes
from the fact that with an interaction strength above the critical value the system
has parity-symmetry, i.e. the ground state is symmetric. This symmetry is lost
below the critical interaction strength, and the system must ‘choose’ one side or
the other as the ground state. Which side it chooses depends on small random
imbalances of the optical potential. As this transition occurs at zero temperature
as a result of varying a non-thermal parameter, it is a quantum phase transition
[114].
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Figure 7.9. (a) The ultracold atomic gas (ground state density indicated by
blue Gaussians) is trapped in a double-well potential (black line). Tuning the
interatomic interaction strength Λ to large negative values, the ground state of
the system goes from a symmetric state to two degenerate asymmetric states.
The system undergoes a second-order QPT where the spatial parity symmetry,
that is, reflection with respect to the vertical dotted line (symmetry axis), is
broken. (b) Measured absolute value of the order parameter z in the ground
state as a function of the control parameter Λ in a balanced double well. Error
bars are three times the standard deviation. The solid line is the fitting function
(see supplementary material of [100]).

Fig. 7.9a demonstrates the behaviour of this system as a function of Λ < 0.
Above the critical value of Λ the ground state is a symmetric state, with an equal
number of atoms on either side of the central barrier. Below the critical value,
the ground state is one of two degenerate asymmetric states. Fig. 7.9b shows
experimental measurements, which agree with theory within experimental error
down to about Λ = −1.2. These data were measured by loading just the primary
optical lattice with interaction strength Λ, i.e. loading the double well with zero
barrier/zero intensity of the secondary lattice, then slowly raising the barrier so
as minimise excitations, then finally measuring z as described above.
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In this regime of strong attactive interactions the system exhibits further inter-
esting behaviour. Below the critical interaction strength, the asymmetric ground
states are metastable. To demonstrate this, we control the relative height of the
two sides of the double well (recall Fig. 7.3). By changing the phase between the
two lattices, one side of the double well can be raised above the other, the energy
difference between the two minima is labelled as δ.

The hysteresis is shown in Fig. 7.10. These data were obtained by loading
atoms in the absolute ground state with a non-zero δ, where the majority of
atoms are in the lower-energy well. The lattice was then shifted so that this well
becomes the higher-energy well. For interactions below the critical value, the
atoms stay in this same well up to some δ with opposite sign from the initial δ,
showing that the system is in a metastable state.

7.5.3 Λ > 0 Plasma oscillations and macroscopic quantum
self-trapping

This section is a summary of results published in [101].

The third studied regime of behaviour of the double well is that with Λ > 0, i.e.
positive or repulsive interactions. For sufficiently high Λ two distinct behaviours
are possible depending on the initial imbalance z0. A phase plot of dynamics
with Λ = 12 is shown in Fig. 7.11a. For small z0, the system undergoes periodic
oscillations in z and φ, but with the frequency decreasing as z0 increases. As z0

crosses some critical value the nature of the oscillations changes suddenly, and the
system becomes trapped in a metastable state with a monotonically increasing
phase and a z that oscillates around some non-zero value. This phenomenon is
known as macroscopic quantum self-trapping (MQST) [115]. Figures 7.11b and
7.11c show measured experimental data in the so-called plasma oscillation and
MQST regimes, respectively.

Figure 7.12 shows the frequency of oscillation vs. z0 for Λ ≈ 18. The blue and
red dots are fits to experimental data, and the black line a fit using Eq. (7.12).
The frequency of the oscillations decreases to zero with increasing z0, then the
system suddenly changes to the MQST regime, where the oscillation frequency
increases quickly with increasing z0. Note that this is not a phase transition, as
the ground state is still the state with z = 0.

The double well system with positive (repulsive) interactions is a kind of gen-
eralised Josephson junction (a ‘Bosonic Josephson junction’ (BJJ)), able to ac-
cess dynamic regimes not possible with the analogous superconducting Josephson
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Figure 7.10. Atomic imbalance z as a function of well imbalance δ. Green
squares (orange dots) are obtained by cooling the gas to its ground state at
negative (positive) δ and then increasing (decreasing) δ to the indicated value
in 500 ms and waiting 10 ms before the measuring of the imbalance. Lines are
theoretical predictions for the imbalance of the ground and the metastable states
using a Ginzburg–Landau model (see Supplementary Information of [100]).

junction (SJJ). For example, the symmetrical oscillations in this regime, so-called
plasma oscillations, are analogous to the ac Josephson effect in the SJJ [116], and
applying a differential energy between the wells δ is equivalent to applying a dc
voltage to the SJJ. The MQST oscillations have no such analogue [115]. With
the BJJ it is possible to control variables that are not controllable in the SJJ. For
example in the BJJ the coupling between the wells can be changed, which would
amount to dynamic control of the separation between the two superconducting
bulks in the SJJ.
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Figure 7.11. (a) Phase plot with Λ = 12 for different z0, calculated using Eq.
(7.13). (b) Experimental data in the plasma oscillation regime. (c) Experimental
data in the MQST regime, note how z oscillates about some non-zero value while
φ increases linearly.
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Figure 7.12. Experimental data with Λ ≈ 18 showing the two kinds of behaviour
possible in this regime, depending on the initial value of z. Plasma oscillations are
where z and φ oscillate symmetrically about 0. Self-trapping refers to the system
being “trapped” in a non-equilibrium state where z undergoes fast oscillations
about a non-zero mean value, while φ increases linearly. The black line is a fit
using Eq. (7.13) with Λ as a fitting parameter. The noise around z0 ≈ 0.5 is
due to the numerical fitting procedure.



Chapter 8

Conclusion & outlook

8.1 Conclusion

This thesis presented a theoretical and experimental study of some physical
phenomena observable with ultracold atoms in optical dipole traps. The experi-
ments were performed in two cold atom laboratories, one at ICFO in Barcelona
and the other at LENS in Florence. There is background material describing
the most common techniques for laser cooling of neutral atoms, and a descrip-
tion of optical dipole traps, including some techniques exploiting light shifts to
characterise them.

The main result of the thesis is a theoretical framework that exploits Floquet’s
theorem to calculate atomic light shifts, and an experiment demonstrating that
the theory is valid for large light shifts well beyond the range of the usual pertur-
bation theory-based approach. Intriguingly, at very large shifts there is a small
but systematic disagreement between the theory and experimental data. This
disagreement is outside the range of known uncertainties and was not able to be
explained for this thesis.

A secondary result of the thesis is the theory and experimental characteri-
sation of a two-mode Bose-Einstein condensate with tunable interactions. The
behaviour of this system is explored in three distinct regimes: with attractive,
zero, or repulsive inter-atomic interactions. With attractive interactions the sys-
tem exhibits a second-order quantum phase transition, with some interesting
hysteretic properties. With repulsive interactions the system shows behaviour
analogous to a superconducting Josephson junction.
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In four appendices the thesis presents background technical details of the two
experiments. There is a description and characterisation of a Mach-Zehnder
interferometer used as a laser frequency stability transfer lock, a block diagram-
level description of the control system developed for the Barcelona experiment,
an overview of phase-contrast imaging, and finally a description of a numerical
model developed to understand the detection limits of the absorption imaging in
the Florence experiment.

8.2 Outlook

While this thesis presented a method to calculate light shifts beyond the stan-
dard perturbation theory-based method, it also presented data showing a small
discrepancy between the theory and a measurement. This calculation method
is potentially useful for measuring ratios of electric-dipole transition matrix ele-
ments. Accurate measurement of these matrix elements would be useful for many
areas of physics, so it would be interesting to find the reason for this discrepancy.
Further experiments could be performed to determine whether the discrepancy is
due to an experimental error or due to the theory not including some effect that
becomes significant at these large light shifts. Further experiments could mea-
sure the shifts as a function of more parameters, to see if the discrepancy can be
amplified or decreased, for example measuring as a function of probe beam power
could eliminate the probe beam as the source; measuring as a function of trap-
ping light intensity could determine if there is a linear or quadratic dependence of
the discrepancy on light intensity, which could give a clue as to its origin. Other
parameters not checked during my experiments were the ellipticity of the trap-
ping light, and the light shifts measured with a positively detuned probe beam.
Changing the sign of the probe beam could find some systematic experimental
errors, for example if the discrepancy changes sign with the detuning this might
indicate some technical problem with the probe beam tuning.

In the case that the discrepancy is real, and the theory of Chapter 5 is insuffi-
cient to explain the experimental data, it would be interesting to perform more
theoretical work to determine (a) what is the physical mechanism causing the
discrepancy, and (b) whether or not this can be included in the calculation. As
mentioned earlier, if for example the cause is quadrupole transitions, this should
be easy enough to include in the calculation, and perhaps could even serve as a
technique to measure the matrix elements of these transitions. However if the
cause is something like scattering on the excited-state transition, this might be
more complicated to include in the theory, as it is dissipative and might require
a master equation approach.



Appendix A

Laser stability transfer with
a temperature-controlled
fibre interferometer

The main source of experimental uncertainty in the initial light shift experi-
ments of Chapter 6 was the frequency instability of the 1529 nm laser. Using
the spectroscopic lock system developed in the group [117], we could lock this
laser 80 MHz from an excited state resonance, but to perform the light shift ex-
periments I needed to scan the laser from being resonant with an excited-state
transition to being a few GHz away with high accuracy and resolution. To per-
form this broadband stabilisation I built a Mach-Zehnder interferometer (MZI)
to act as a “transfer lock.” That is, to transfer stability from a spectroscopically-
referenced 1560 nm laser to the 1529 nm laser. The interferometer consists of a
temperature-stabilised unequal arm length all-fibre optical MZI. The two wave-
lengths are in-coupled on different sides of the first beamsplitter, and each wave-
length is amplitude-modulated at a different frequency to enable separation of
the respective signals at the output. The 1560 nm laser is frequency-stabilised
spectroscopically, so the output signal is in principle limited by the frequency
stabilisation and the stability of the relative arm lengths of the interferometer.
So long as the interferometer is vibration-isolated, the relative arm length only
changes if the temperature changes. Thus the signal from the 1560 nm laser can
be used as a precise thermometer of the fibre, and a PI feedback system controls
a resistive heater to control the temperature of the fibre. Once the temperature
of the fibre is stable, the output of the 1529 nm signal will only change due to
a change in frequency of this laser and thus this signal can be used to control
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Figure A.1. Schematic of MZI used to control the frequency of the 1529 nm
laser. Red lines indicate free-space light, blue lines fibre-coupled light, and black
lines electronic signals. Both the 1560 nm and 1529 nm laser are amplitude-
modulated by AOMs and then enter at the first beamsplitter. Both outputs are
detected and subtracted to obtain a differential signal. The signals are separated
by demodulation at their respective modulation frequencies. The 1560 nm signal
is used to control the temperature of everything inside the thermal isolation, and
the 1529 nm signal is used to measure and control the frequency of that laser.
AM = amplitude modulation. HPF/LPF = high-pass/low-pass filter. VCO =
voltage-controlled oscillator. PD = photodiode. All filters are active third-order
filters with the multiple feedback architecture and a cutoff/cuton frequency of 1
kHz.

the laser frequency. I also implemented a system to scan the laser frequency and
digitally count interferometer fringes. In this way the frequency of the laser can
be scanned an integer number of fringes and locked on any particular fringe. A
schematic of the interferometer is shown in Fig. A.1.

This idea was based on a simliar device built in the group [118]. A very
similar system to the interferometer presented here has been published [119], but
the interferometer described here is at least twice as stable and demonstrates
integration of a fringe counter. The stability of the two systems is compared in
Fig. A.6.
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Figure A.2. Photo of inside the thermal isolation. The resistive heater is un-
derneath the aluminium base, and the thermistor is taped to the top side of the
base. The aluminium box evenly distributes heat around the fibre, and the foam
insulates the aluminium from the outside environment. The small opening in
the corner closest to the camera allows entry of fibres and wires. Completely
blocking this opening would probably improve performance of the interferometer
by eliminating air currents.

A.1 Temperature control with an Arduino

The temperature of the interferometer is controlled in two ways: there is rough
control using an HTC-1500 temperature controller that uses a thermistor as a
sensor and a resistive heater as an actuator. Fine control of the temperature is
done using the interferometer output signal from the 1560 nm laser. This signal
is fed to an Arduino which is programmed to act as a PI feedback controller.
An Arduino was used instead of analogue electronics as the gain of the feedback
needed to be very low to achieve stability. The output from the Arduino is then
added to the setpoint of the HTC controller, with the correct polarity such that it
opposes changes in temperature. Signal I/O is performed using a Digilent Analog
Shield, a 16-bit 100 kS/s analog-digital interface made especially for use with
Arduino Unos [120]. The modulation frequency of the 1560 nm laser amplitude
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is 100 kHz.

A.2 Frequency control and fringe counting with
an Arduino

Frequency control of the 1529 nm laser (an NKT Photonics Koheras Adjustik
low-noise laser diode) was done by feeding the interferometer signal to a pure
integrator implemented in firmware in an Arduino (with the same Analog Shield
I/O interface), and feeding that to the piezo controller of the laser. Also im-
plemented in the Arduino is a digital fringe counter (the method is described
in [121]) to count interferometer fringes and keep track of the laser frequency.
The Arduino can switch between these two functions on command. The fringe
counter can lock the laser to a particular fringe - which can be manually set to,
for example, an atomic resonance - and then programmed to count and lock an
exact number of fringes away. The fringe counter can be used to quickly scan
the laser over at least 20 GHz with precise knowledge of the number of fringes
from fringe zero. The frequency of fringe zero could be known with a few MHz
accuracy using atomic spectroscopy, described below. The modulation frequency
of the 1529 nm laser amplitude was 75 kHz.

The piezo could be used to scan the laser over about 1 GHz only, so larger
frequency changes were performed by tuning the temperature of the laser diode
and keeping track of the number of fringes while the temperature of the laser
changed. This process takes about 30 seconds to accurately scan the laser up
to 20 GHz (about 1000 fringes). No mode-hops were ever observed during this
scanning.

The fringe-counting method requires a small frequency-modulation of the laser
to be converted to an amplitude modulation by the interferometer. The frequency-
modulation was performed by turning off the integrator function of the Arduino,
and instead outputting a small sine wave at 140 kHz. This oscillates the laser
piezo and thus modulates the laser frequency.

A.3 Calibration of the interferometer

To use the MZI output as an accurate measurement of the laser frequency, it
first needed to be calibrated so that the frequency change of one fringe is known.
This calibration was done in three ways.
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A.3.1 Calibration by path-length-difference

The first calibration was done by using the physical properties of the interfer-
ometer. The phase difference of the interfering signals at either output is given
by

∆φ = nk∆L (A.1)

where n is the refractive index of the fiber, k = 2π/λ, and ∆L is the path-
length difference of the interferometer arms. This interferometer was made using
Corning SMF-28 fibre with a refractive index of n = 1.4682 at 1550 nm [122],
and has a path-length difference of ∆L = 10.4 m. This can be rearranged to find
what change in frequency (proportional to k) gives a 2π phase difference.

∆f =
kc

2π
=

c

n∆L
≈ 19.634 MHz (A.2)

This value is only a rough estimate as the fibre lengths are known only from the
package labels which may not be accurate.

A.3.2 Calibration with DROP spectroscopy

Another way of calibrating the interferometer was to use the excited-state
transitions as a frequency reference. This was done in two ways, the first using
double-resonance optical pumping (DROP). DROP is explained in Fig. A.3. It
involves pumping atoms from one ground state to another via an excited-state
transition. The atoms are initially driven on a closed transition (in this case the
5S1/2, F = 2 → 5P3/2, F

′ = 3 transition), the excited state of which can only
decay to the same state the atom started from. Addition of a laser resonant with
an open excited-state transition excites the atoms to an even higher state, which
has a finite probability of decaying to a different ground state. Thus the addition
of the second laser enables pumping from one ground state to another, an effect
which can be observed by measuring ground state populations.

DROP was used to calibrate the interferometer by measuring the absorption
of a laser at 780 nm in a rubidium vapour cell. The 780 nm laser is locked
on-resonance with the 5S1/2, F = 2 → 5P3/2, F

′ = 3 transition. The 1529 nm
laser counter-propagates through the vapour cell, mode-matched to the 780 nm
laser. The frequency of the 1529 nm laser is scanned periodically by applying a
sawtooth wave to the laser piezo controller, and the absorption of the 780 nm
signal is captured on an oscilloscope along with the interferometer signal from the
1529 nm laser. The resulting data is shown in Fig. A.4. There are two absorption
peaks visible, these peaks occur as a result of the 1529 nm laser crossing the two
excited-state transitions from the 5P3/2, F = 3 state to the 4D3/2, F = 2, 3
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Figure A.3. Simplified level diagram of 87Rb showing relevant levels for DROP
spectroscopy. The red lines show excitation and decay paths available with just
a 780 nm laser resonant with the F = 2 → F ′ = 3 transition. The blue arrows
show the additional excitation and decay paths introduced with the inclusion of
a laser at 1529 nm.

states, which changes the relative population of the two 5S1/2 levels, changing
the absorption of the 780 nm light. These two excited-state transitions have been
measured to high accuracy (e.g. [123]), and the frequency difference is known to
be 77.44 MHz. The two absorption peaks are thus used to calibrate the frequency
scale by fitting two Lorentzian lineshapes to the absorption peaks. A sine wave
is fitted to the interferometer signal to get the calibration, which is 18.86 MHz
per fringe. This method is compromised by there being a large DC offset on the
absorption signal. Shown in the figure is the AC-coupled oscilloscope trace, but
the AC coupling distorts the signal, limiting the accuracy of this measurement.

A.3.3 Calibration with non-degenerate MTS

The final and most accurate method of calibrating the interferometer uses a
form of AC spectroscopy called modulation transfer spectroscopy (MTS). This
method is used to lock lasers in our lab (our setup is published and characterised
in [117], a good description of the theory of MTS can be found in [124]). In
MTS there are two laser beams counter-propagating through a vapour cell. One
of the beams is frequency-modulated, and if both beams are close to an atomic
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Figure A.4. Rough calibration of the interferometer period. The peaks show
increased transmission of a laser at 780 nm as the 1529 nm laser crosses the
5P3/2, F = 3→ 4D3/2 resonances.

resonance, this creates an oscillating refractive index for the other beam. This
oscillating refractive index effectively transfers the modulation to this other beam,
which can then be demodulated to obtain an error signal. MTS provides error
signals with high signal-to-noise ratio and no DC offset. This can be done in a
degenerate (both beams address the same transition) or non-degenerate (the two
beams address different but connected transitions) manner.

For calibration of the interferometer I used the non-degenerate technique where
one laser was locked at 780 nm, addressing the 5S1/2, F = 2 → 5P3/2, F

′ = 3
transition. The second laser is at 1529 nm and scanned across the excited-state
5P3/2 → 4D transitions. The demodulated MTS signal observed when the 1529
nm laser is scanned across the 5P3/2, F

′ = 3 → 4D5/2, F
′′ = 4 transition is

shown by the green line in Fig. A.5. For the calibration I then simply counted
the number of fringes between the 4D5/2, F

′′ = 4 and 4D3/2, F
′′ = 3 resonances,

which produce the largest MTS signals. The energies of these states are known
very accurately, and the difference is 13478.506 MHz [125]. The number of fringes
between these resonances was counted to be 697 fringes with an uncertainty of
± half a fringe, resulting in a calibration of 19.338± 0.028 MHz per fringe.
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Figure A.5. The fringe counter counting 6 fringes across the excited-state
5P3/2, F

′ = 3 → 4D5/2, F
′′ = 4 resonance. The noise decreases on the 1529

nm MTS signal (green line) while the fringe counter is counting as it frequency-
modulates the laser, moving noise to higher frequencies that are filtered out of
the signal.

A.3.4 Temperature and frequency stabiliity

A measurement of the stability of the 1529 nm laser locked with the interferom-
eter also used nondegenerate MTS. With the temperature of the interferometer
locked with the 1560 nm laser signal, the 1529 nm laser frequency was scanned
at about 10 Hz across an excited-state resonance, producing an MTS signal like
in Fig. A.5 (and simultaneously producing a DROP signal like in Fig. A.4). An
oscilloscope trace was recorded every minute, and fit a Lorentzian to the MTS
signal, and a sine wave to the oscillatory interferometer signal (e.g. blue line in
Fig. A.5). The phase of the sine wave was then compared to the peak of the
Lorentzian. Allan deviation from a typical dataset is shown in Fig. A.6. The
MTS signal comes from an atomic reference, so in principle this should be very
stable. The phase of the interferometer signal relative to the MTS signal is a
measurement of where the 1529 nm laser would lock to, if it were locked. The
measurement here showed an RMS frequency drift of 225 kHz over 15 hours.

Note that this is an upper bound in the inteferometer instability. The MTS
signal is highly dependent on the phase of the demodulation (see [117]), and it
was empirically observed that the measured stability of the interferometer was
much worse just after the MTS electronics was powered on compared to a few
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Figure A.6. Allan deviation of the 1529 nm laser frequency stabilised with the
interferometer (red crosses). Black circles show data from ref. [119] for compar-
ison. Red crosses correspond to a 15-hour measurement, over which the laser
frequency had an RMS stability of 225 kHz. Red error bars were calculated as
the value of the data point divided by the square root of the number of intervals
for that averaging time.

hours later, despite the interferometer having been locked for several days. This
suggests that at least some of the measured instability is due to temperature
drifts in the MTS electronics, and not the interferometer.

Figure A.7 shows a calibration of the temperature stability of the interferome-
ter, note that the y-axis is half-fringes. The temperature of the interferometer was
measured with a thermistor while the fringe counter was running and the heat-
ing was turned off. By counting fringes as the interferometer cooled down from
its nominal temperature I could obtain an estimated conversion from fringes to
temperature of 646 half-fringes per Kelvin, or 323 fringes per Kelvin. The earlier
frequency calibration measurement gave a conversion from frequency to fringes
of 19.38 MHz per fringe. Knowing that the RMS frequency stability of the in-
teferometer is 225 kHz over 15 hours, we can convert this to an estimated RMS
temperature stability of 36µK over 15 hours.
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Figure A.7. Temperature sensitivity of the interferometer. This measurement
was performed by counting fringes as the interferometer cooled down, tempera-
ture was measured using a thermistor.



Appendix B

Phase-contrast imaging
system for the experiment
in Florence

B.1 Introduction

Towards the end of my time in Florence I started working on a phase-contrast
imaging (PCI) system to provide the capability of performing non-destructive
measurements of the two-mode BEC. This appendix summarises the progress
made. Note that this appendix is a summary of information specific to the
Florence experiment. A more general and comprehensive reference on PCI is the
Master’s thesis of Maxime Joos of the University of Heidelberg [126].

PCI is a technique that exploits the phase shift of probe light by a cloud of
cold atoms, rather than the absorption as in standard absorption imaging. Cold
atoms can non-destructively imprint a phase shift on off-resonant probe light,
giving a signal that is a function of the column density of atoms. This has
several advantages compared to conventional absorption imaging: For example if
the atomic cloud is an optically-trapped BEC, the atoms can be imaged without
losing coherence and without being heated out of the shallow optical trap, which
enables several images to be taken of the same BEC for studies of quantum
dynamics etc.

To see the phase shift signal from the atoms, the light that is phase-shifted
must be interfered with some reference light. The reference beam and the signal
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Original imaging system Image Relay lens

Phase plate

Scattered light

Unscattered light

Figure B.1. Optical system for phase contrast imaging on the Florence ex-
periment. The “original imaging system” is what is currently installed on the
experiment. The focal plane of the objective is too close to the objective for the
phase spot to be placed there, so a relay lens must be used. The phase plate is
placed exactly between the two elements of the relay lens. The green lines show
the path of light scattered from the atom cloud, and the red lines show the path
of the probe beam, which is collimated at the input. f is the focal length of the
lenses used for the relay lens.

beam can be the same beam if one employs a “phase spot”: a clear flat piece
of glass with a small (∼ 50 µm) circle of slightly different thickness cut into the
centre. Light that passes through this central spot then experiences a different
phase shift compared to light that passes around the spot (i.e. light with large k-
vectors due to being phase-shifted by the atoms). The phase spot is placed in the
focal plane of the lens so that the probe light is selectively phase shifted relative
to light that has been phase-shifted by the atoms. This light is then interfered
on the camera, giving a signal related to the phase shift from the atoms. This
process is shown in Fig. B.1.

B.2 Basic theory of PCI

This section calculates the signal observed on a camera placed in the image
plane of the imaging system shown in Fig. B.1. Note that there are two image
planes: one before and one after the relay lens.

Assuming no absorption of the probe light and that the atomic cloud is small
compared to the probe beam size, the light reaching the camera can be written
as the sum of the probe light and the light phase-shifted by the atoms

E = Eprobe + Eatoms = Eprobe + Eprobe(e
iφ − 1) (B.1)

where φ is the spatially-dependent phase shift of the light due to the atoms. The
phase spot can be placed at the focal plane of the relay lens, selectively phase
shifting the probe light relative to the scattered light.

E = Eprobee
iθ + Eprobe(e

iφ − 1) (B.2)
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Figure B.2. Comparison of the point-spread functions of the optical system with
and without the relay lens. The lenses used were doublets with f = 100 mm and
clear aperture of 21 mm diameter (i.e. 1 inch lenses). Units on the x-axis are
mm.

The intensity on the camera is given by:

I =
cε0
2
|E|2 = I0(3− 2cosθ + 2cos(θ − φ)− 2cosφ) (B.3)

and with θ = π/2, the resulting intensity on the camera is

I = I0(3 + 2(sinφ− cosφ)) (B.4)

The phase shift from the atoms can then be extracted numerically. In Section
B.4 I estimate the phase shift as a function of density.

B.3 Optical performance of the relay lens

The experiment will require a relay lens to implement the PCI, as the focal
plane of the experiment objective lens is physically located too close to the lens
body. OSLO optical design software was used to analyse the effect of the relay
lens on image quality. Fig. B.2 shows the point-spread functions of the imaging
system in the image planes before and after the relay lens. The relay lens is
assumed to be constructed of two realistic doublet lenses, with a focal length of
100 mm, and a clear aperture of 21 mm diameter (i.e. 1 inch lenses).
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B.4 Calculation of light propagation in an atomic
cloud

This section derives an expression for the phase shift of the light as a function
of the density of the atoms.

Atomic susceptibility We can calculate the effect of an atomic medium on
light using the susceptibility. Ref. [127] gives the complex susceptibility as

χeg =
ρ|Deg|2

ε0~
(−∆ + iΓ/2)

∆2 + Γ2/4 + Ω2/2

=
ρ|Deg|2

ε0~
4

Γ2

(−∆ + iΓ/2)

1 + 4 (∆/Γ)
2

+ 2 (Ω/Γ)
2

=
ρ|Deg|2

ε0~
4

Γ2

(−∆ + iΓ/2)

1 + I/Is + 4 (∆/Γ)
2

(B.5)

where ρ is atomic density in ground state |g〉 and Deg is the dipole matrix element
coupling ground state |g〉 with excited state |e〉, Ω is the atomic Rabi frequency (a
function of the electric field amplitude), ∆ is the laser detuning from resonance,
and Γ is the atomic linewidth, I is the light intensity and Is is the saturation
intensity for the transition (the intensity at which the scattering rate is half the
maximum scattering rate on-resonance), and 2|Ω|2/Γ2 = I/Is.

Scattering rate Ref. [20] gives the photon scattering rate of a single two-level
atom as

R =
Γ

2

I/Is

1 + I/Is + 4 (∆/Γ)
2 (B.6)

Light propagation using the Helmholtz equation We can calculate the
effect of the atomic medium on a laser beam with k = 2π/λ, and electric field E.
The Helmholtz equation in a three-dimensional medium with susceptibility χ is
[128]

∇2E(r) + k2[1 + χ(r)]E(r) = 0 (B.7)

If we let E(r) = E0(r)eikz, and make the paraxial approximation that the electric
field envelope E0 is slowly varying in the z-direction (such that ∂2E0/∂dz

2 = 0),
we get

− 2ik
∂E0(r)

∂z
= ∇2

⊥E0 + k2χE0 (B.8)
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Now say the medium and propagrating wave are flat in the x− and y−directions

− 2ik
∂E0(z)

∂z
= k2χ(z)E0(z) (B.9)

The solution to this is

E0(z0 + δz) = exp

(
ik

2

∫ δz

z0

χ(z)dz

)
E0(z0) (B.10)

and we can see that the phase shift φ of the light is

φ =
k

2

∫ δz

z

Re{χ(z)}dz. (B.11)

Phase shift signal as a function of trap parameters The spatial distribu-
tion of a BEC can be well-defined as a function of trap parameters.

First of all we estimate the atomic density. Non-interacting atoms trapped
in the ground state of a quantum harmonic oscillator (i.e. an optical dipole
trap) have a Gaussian spatial distribution, the size of which depends only on the
trapping frequency.

ψ0(x, y, z) =
√
ρ0 × exp(−m

2~
(ωxx

2 + ωyy
2 + ωzz

2)) (B.12)

where wr is the trap frequency in dimension r, and ρ0 is the peak atom density
at the centre of the cloud. We can find ρ0 by integrating in all three dimensions:

N =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|ψ0|2dxdydz

= ρ0

(
π~
m

) 3
2 1
√
ωxωyωz

∴ ρ0 = N
(m
π~

) 3
2 √

ωxωyωz

(B.13)

where N is the total number of atoms. We estimate the frequencies in our
experiment to be (wx, wy, wz) = 2π × (200, 200, 300) Hz, giving a peak density
of ρ0 = 1.5× 1014 cm−3. We can estimate the column density by integrating the
atom density in the z−direction.

ρcol(x, y) =

∫ ∞
−∞
|ψ0(x, y, z)|2dz

=

√
π~
mωz

|ψ0(x, y)|2
(B.14)



118Appendix B. Phase-contrast imaging system for the experiment in Florence

at (x, y) = (0, 0) this is

ρcol(0, 0) =

√
π~
mωz

ρ0

= N

√
π~
mωz

×
(m
π~

) 3
2 √

ωxωyωz

= N
m

π~
√
ωxωy

(B.15)

Now we can estimate the total phase shift of a laser passing through the centre
of the cloud using Eq. B.11. The atomic density is the only part of the suscepti-
bility that depends on position, and the integral was already performed in Eqs.
B.14 & B.15. Combining everything

φ =
k

2

∫ ∞
−∞

ρdz
Re{χ}
ρ

=
k

2
N
m

π~
√
ωxωy

Re{χ}
ρ

(B.16)

Phase shift under ‘typical’ experimental conditions Fig. B.3 shows the
estimated phase shift and scattering rate for light passing through the densest
part of the 39K BEC in Florence under ‘typical’ conditions of the experiment.
These plots were calculated using potassium data from [129], and ‘typical’ exper-
iment conditions are given in Table B.1.

We simultaneously want a visible phase shift and minimal excitation of the
atoms. Close to resonance the shift is quite large (∼ 100 rad one linewidth away),
but the scattering of photons is non-negligible. A typical absorption image probe
pulse is 10 µs. If we want to excite, say, 1 in every 100 atoms, we want a scattering
rate of 10−2 photons per atom/10−5 s = 1000 photons/s, so we want to work at
laser frequencies where the scattering rate is less than 1000 Hz (see Fig. B.4)
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Number of atoms 1000
|F,mF 〉 |1,−1〉 (absolute ground state)
B-field 350 Gauss
I/Isat ∼ 1
λ 767 nm
ρ0 1.5× 1014 cm−3

(wx, wy, wz) 2π × (200, 200, 300) Hz

Table B.1. Typical experiment parameters used to calculate the phase shift and
scattering rate shown in Figs. B.3 and B.4.
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Figure B.3. Estimated phase (a) of a beam passing through the densest part of
the BEC as a function of frequency, and scattering rate (b) of an atom. Both
curves were calculated using the parameters in Table B.1. The frequency axis is
relative to the F = 2→ F ′ = 3 transition in the D2 manifold in 39K.
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Figure B.4. Phase shift under ‘typical’ experimental conditions, at frequencies
where the scattering rate is less than 1000 Hz. Again the frequency axis is
relative to the F = 2→ F ′ = 3 transition in the D2 manifold in 39K.
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Experiment control system

Ultracold gas physics experiments require precise control and synchronisation
(timing accurate to ∼ 1 µs) of a large number of active optical and electronic
hardware components. This appendix is an overview of the control system devel-
oped for the Barcelona experiment. An overview of the control system is shown
in Fig. C.2. In the following text each component is briefly described.

C.1 Software

Every experiment uses a unique combination of hardware and has a unique set
of requirements for the experiment sequences. Software to control these experi-
ments usually needs to be custom, at least to some degree, as no commercially
available software suitable for controlling an atomic physics experiment yet exists
(to my knowledge).

C.1.1 Cicero & Atticus

Given that laser cooling experiments are now reasonably mature, a few groups
have developed versatile software systems appropriate for distribution. Rather
than develop our own software from scratch, we decided to use a system called
Cicero, developed in the group of Wolfgang Ketterle at MIT [130]. This soft-
ware provides a way of designing experiment sequences through a visual interface
(some systems use a text-based interface). A screenshot is shown in Fig. C.1.
An “experiment sequence” is a description of the output value of a number of
hardware channels as a function of time. These can be digital channels, which
can be on or off, or analogue channels which can output a range of values.
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Figure C.1. Screenshot of Cicero. An experimental sequence is divided into
timesteps horizontally, and channels vertically. Analogue channels are repre-
sented by the white lines on the black/green background, and digital channels
by the coloured boxes.

Cicero works with a program called Atticus in a client-server configuration.
Cicero generates the experiment sequences, then sends them to the Atticus server,
which translates the sequence into instructions for the hardware, then sends these
instructions to the hardware to output. Cicero and Atticus are made to work
mainly with National Instruments (NI) input/output (I/O) hardware.

Cicero can also be used to control serial and GPIB devices. However as
these communication protocols are not real-time, we used these interfaces to pre-
program devices, such as Arduinos, before starting the sequence which were later
triggered using a digital signal. For example one Arduino was pre-programmed
over a serial interface with a queue of laser frequencies, which could then be trig-
gered in real-time at specific points in the sequence to change the laser frequency
to the next frequency in the queue.
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C.1.2 LabVIEW for data acquisition, data storage, and ex-
periment monitoring

While the Cicero/Atticus system is supposed to have functionality for recording
data, we were never able to make it work. Instead, we wrote a LabVIEW program
to record data and monitor the status of the experiment. LabVIEW was chosen
for the ease of making graphical user interfaces (GUIs) with this language, and it
naturally works well with NI hardware. The LabVIEW program has two parts: a
background loop constantly recording and displaying various signals to monitor
the ‘health’ of the experiment, and another real-time triggered component that
records analogue signals from the experiment at points in the experiment sequence
dictated by Cicero.

The default state of the experiment is with a loaded MOT. While this is a
static state, many instruments must be stably operating within a strict param-
eter range for atoms to be observable inside the MOT. The monitor part of the
LabVIEW program records and displays as many of these parameters as possible
to check the experiment is functioning correctly. For example, we measure the
ion pump current to check the vacuum level is stable, the error signals from the
laser locks to check the laser frequencies are stable, and a photodiode records the
power of the cooling lasers to check this is stable, and we also monitor the current
in the MOT magnetic field coils. The most important signal we monitor, how-
ever, is fluorescence from the MOT itself. This is measured with a photodiode
looking through a telescope pointing at the centre of the vacuum chamber. The
MOT fluorescence is sensitive to the majority of parameters in the experiment,
so observing a time-domain graph of this signal alone can often be enough to
diagnose technical problems (although this takes some practice).

For the most part, scientific data is acquired with the experiment camera.
However, some data can be in the form of a time-dependent voltage, and for di-
agnosis of technical problems it can be useful to observe the dynamic behaviour
of signals from many experiment instruments. For this reason part of the Lab-
VIEW program records analogue signals at a time dictated by a trigger from the
Cicero experiment sequence. This can be useful for checking, for example, how
long the magnetic field coils take to switch off, how long the dipole trap lasers
take to switch on or off, or checking the behaviour of the dipole trap laser during
evaporation.



124 Appendix C. Experiment control system

C.1.3 HDF5 data storage

The final job of the LabVIEW program was to collate and store all the exper-
iment data in a recoverable form. For every experiment run we saved a copy of
the experiment sequence, analogue data, and camera data to an HDF file (Hierar-
chichal Data Format), which can contain all the data in a single file and provides
efficient retrieval of a specific subset of the data.

C.1.4 MATLAB GUI for real-time data monitoring

Most experimental data was in the form of absorption images, with one image
taken each experiment run. We used MATLAB to make a GUI to process the
data and display the image as fast as possible immediately after the experiment
run was finished. MATLAB also performed rudimentary analysis of the data,
giving parameters such as the estimated number of atoms in the image and the
cloud size.

C.2 Hardware

Like the experiment software, there is no single hardware system suitable for
an atomic physics experiment. Instead, many components from disparate sources
must be integrated and made to reliably work together. This section just men-
tions the two main parts: an atomic clock-based timing source and a National
Instruments PXI rack for analogue and digital input and output.

C.2.1 Timing

All clocked hardware in the experiment is referenced to a 10 MHz clock signal
from a Stanford Research Systems CG635 synthesised clock generator (SCG)
with a rubidium timebase, which provides a stable low-jitter clock signal.

Cicero and Atticus provide the option of using an FPGA to generate a variable-
rate clock signal. Long experimental sequences would require an impractically
large number of samples if the entire sequence were clocked at the maximum
required sampling rate of the sequence. To mitigate this effect, Atticus generates
a variable-rate clock signal for every experiment sequence that clocks the sequence
only at the sampling rate required for that part of the sequence. For example a
fast-changing analogue signal requires a fast clock, while there are several parts
of the sequence where no output changes for several hundred milliseconds, which
does not require any clock at all. The generated clock sequence is sent to an
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FPGA referenced to the SCG, the FPGA is pre-programmed with firmware which
outputs a clock signal at the appropriate rate throughout the sequence.

Cold atomic clouds are sensitive to external magnetic fields, especially during
state preparation procedures. The main uncontrolled external source of magnetic
fields in a laboratory is mains electricity powering the lab equipment and in cables
running through the walls. The 50 Hz oscillation frequency of mains electricity is
slow on the timescale of processes in the experiment, so depending on the phase
of the mains when the experiment sequence is started, the background magnetic
field can be significantly different at a given point of the sequence. To mitigate
this we implemented a system to trigger the experiment on a zero-crossing of
the mains electricity, significantly reducing the variation in background magnetic
field.

C.2.2 Input/Output

Our system uses a NI PXI rack with a mixture of 16-bit and 12-bit analogue
I/O channels, a range of ±10 V, and a maximum sample rate of about 500 kS/s,
although we were limited by Cicero to an output rate of 50 kS/s (i.e. timesteps
of 20 µs). In the rare cases where we needed higher input sampling rates, we used
Cicero to trigger an external device. For example in some experiments we used
a high-speed analogue aquisition board called a Red Pitaya, which has analogue
sampling rates of up to 125 MS/s.

C.3 Laser frequency stabilisation and control

The experiment has a main “master” laser which is used as a reference for all
the other lasers in the experiment. The master laser is locked using modulation-
transfer spectroscopy, and is well-described elsewhere [117]. Relevant here is
that this master laser provides a stable frequency source 160 MHz blue of the
5S1/2, F = 2→ 5P3/2, F

′ = 3 transition.

C.3.1 Slave lasers with digitally programmable offset locks

The cooling and repump lasers used for the MOT and optical molasses phases
of the experiment are locked relative to the master laser by measuring and con-
trolling the beatnote of the interference of the lasers on a fast photodiode. This
technique was published in [131]. The basic idea of this technique is that a high-
speed digital phase-locked loop frequency synthesiser (PLL) is used to compare
the beatnote of the interference of the master and slave lasers to a stable reference
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signal. The PLL divides the frequency of the beatnote using a programmable dig-
ital counter, and then outputs an error signal proportional to the phase difference
between the two signals. This error signal can be fed to a controller which acts
on the slave laser frequency.

Our original implementation of this PLL system used the frequency of the
reference signal as the control variable: A voltage-controlled oscillator (VCO)
provided a variable-frequency source which was compared to the divided beatnote
signal. Changing the VCO frequency with an analogue voltage output from
Cicero changes the lock frequency of the slave laser. This method is prone to long-
term drifts, however, as the VCO output frequency is temperature-dependent.
Rather than change the reference signal frequency, we realised we could instead
reprogram the divider settings on the PLL. This can be done by setting a 24-
bit register on the PLL over an SPI interface, which can be done in a few tens
of microseconds with a microcontroller. For the reference signal, we used the
10 MHz SCG. To lock the cooling and/or probe laser on resonance, we set the
PLL to lock the laser with a beatnote of 160 MHz. To tune the laser to the
blue of resonance, we decreased the frequency of the PLL. The PLL used is an
ADF4110, which is supposed to work down to 80 MHz, but we found the lock
became unstable at around 120 MHz (i.e. with the laser 40 MHz blue-detuned
from resonance), limiting the blue-detuning range of the cooling and/or probe
laser.

The error signal from the PLL can be used as a measurement of whether or
not the laser frequency is stable: If the beatnote between the master and slave
lasers is at the programmed frequency, the error signal is zero. If the slave laser
frequency is changing or unstable, this can be diagnosed by looking at the error
signal as a function of time.

C.4 Camera

The camera used in the experiment is a PCO Pixelfly. This is a black-and-white
scientific USB camera. The feature important for our experiments is “double-
framing”, where the camera can take two photos in quick succession (within a
few hundred microseconds of each other). This is important for proper absorption
imaging, as described in Chapter 3.
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Figure C.2. Diagram showing logical blocks of the control system developed to
run the experiment. The individual components are briefly explained in the text.
The labels next to each connection indicate the format of that connection. The
square wave means a digital clock signal, and the laser symbol indicates light in
an optical fibre.
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Appendix D

Absorption imaging model
for determining detection
limits

One of the goals of the experiment in Florence was to measure atom numbers
with high enough resolution to detect atom number squeezing in the double-well
system (see Chapter 7). By increasing the strength of inter-atomic interactions,
the fluctuation in the atom number in each well should decrease to zero. In order
to measure this we would need to image the atomic cloud in each well with high
enough resolution in atom number to see if the fluctuations decrease below that
expected in the standard quantum limit. To this end, I developed a model of the
imaging system to estimate the best atom number resolution possible with our
experiment under the best possible imaging parameters.

For a given number of atoms, we want to find the optimum cloud density, probe
light intensity, and probe pulse length to minimise errors in the detection of the
atom number in the double-well potential. With too high an atom density, too
few photons propagate completely through the centre of the cloud and so infor-
mation is lost about the density. With too low an atom density the atomic signal
becomes buried in photon shot noise and camera electronic noise. Regarding the
light intensity, higher light intensity means more signal, up to the point where
the atoms become saturated. After this point, photon shot noise increases but
atomic signal stays the same so the signal-to-noise ratio (SNR) decreases. Atomic
saturation is nonlinear so the optimum light intensity is not obvious.
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D.1 Noise sources

The first step in making the model was to characterise noise sources in the
imaging system. There are three primary noise sources identified: shot noise in
the probe beam, detection noise (the quantum efficiency of the camera is 0.95, so
each photon incident on the camera has a 95% chance of being absorbed), and
camera electronic noise (the readout noise and dark noise cannot be measured
independently, so are treated as a single source of noise).

The camera used in this experiment is an Andor iKon M934 with a CCD
sensor cooled to -70◦C. The pixels are 13µm square, and the imaging system has
a magnification of 31.5×, resulting in a pixel size in image space of 0.4127 µm on
each side.

Probe beam noise The probe beam was assumed to be shot noise limited, so
was simulated as a Poisson distribution with the mean corresponding to a given
probe intensity. One effect I was not able to simulate well was fringes in the
probe beam. They constitute local variations in intensity (see Fig. D.1), which
means local variations in atomic saturation.

Detection Every photon incident on the CCD has a 95% chance of being de-
tected. Photon detection events are in principal uncorrelated and random, so
detection events are modelled with a binomial distribution with the number of
trials being the incident number of photons and the chance of “success” (i.e.
being detected) 0.95.

Electronic noise The electronic readout and dark noise was directly measured
by analysing CCD images with no incident light. This noise was found to be well-
approximated by a Gaussian distribution, and was assumed to be additive to the
other noise.

Fig. D.1 compares statistics of a typical measurement of a probe beam image
with a simulation. The difference between the measured distribution and simu-
lated distribution is thought to originate from local variations in the probe beam
intensity, or fringes.

D.2 Atom distribution

For the simulations the atomic density distribution used was a two-dimensional
Gaussian, with 1/e widths σx and σy. In the Florence experiment it is possible
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Figure D.1. The left figure shows a typical measurement of the probe laser with-
out atoms. The colouring shows the photon count at each pixel. The right figure
shows a histogram of the data in the left figure, and a simulated measurement
of the probe with all noise sources taken into account. The broader width of
the measured data is thought to be due to fringes, which are correlated between
images.

to hold the atomic cloud in an optical potential and let it expand in one direction
but not the other (more about this in Chapter 7), so the width σy of this Gaussian
is changed to simulate different expansion times.

D.3 Simulating a real measurement

The absorption and background images were generated as follows: The atom
number N , atomic distribution, and the probe light intensity are specified, then 2
matrices of Poisson-distributed random numbers representing the two probe beam
pulses are generated. One of these matrices is used to generate the absorption
image by numerically solving Eq. (3.6) for If with a known density distribution,
the other matrix represents the background image. We now have the two probe
beam pulses If and Ii. Detection is simulated as described above, and then a
Gaussian distribution representing the electronic noise is added to each image.
The data is then analysed exactly as we would analyse experimental data. The
measured parameters are compared to the input parameters to see under what



132 Appendix D. Absorption imaging model for determining detection limits

5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

(a)

5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

(b)

Figure D.2. (a) shows a simulated image of a balanced double-well in-situ. (b)
shows an in-situ absorption image with the probe beam about 1 linewidth below
resonance. The dimensions of the two images are the same. The purpose of these
images is just to indicate the dimensions of the simulation are correct. The noisy
background of (b) is because the probe laser was detuned for the measurement
which results in strong lensing of the beam. Also because there was a frequency
difference of the probe beam between the two absorption images the fringes are
more apparent.

conditions we can make the most accurate measurements.

D.4 Comparison with real data

Figure D.3 shows a comparison of simulated data with real measured exper-
imental data. The experiment performed in this case consisted of loading an
optical dipole trap and then letting the atomic cloud expand in one direction for
different amounts of time. The simulation was performed under the optimum
light intensity. The optimum light intensity was found by measuring the variance
of the number of atoms as a function of light intensity, which in this case was
found to be minimal at 500 photons. In the simulation the total atom number
was always exactly 5000, while this parameter could not be precisely controlled
in the real experiment. The two graphs show the same behaviour as a function
of density: at high density the error bars are small but the mean atom number
is too low, and at lower density the mean approaches the correct value but the
error bars get bigger.

Figure D.2a shows a simulated image of a balanced double-well in-situ, and
D.2b shows experimental data under the same conditions. For the second image
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Figure D.3. Comparison of a simulation of a single Gaussian cloud with variable
size against experimental data. The simulation was performed always with N =
5000, and the mean number of photons was 500, which was empirically found to
give the smallest variance on the measured number of atoms in this situation.

the probe beam was detuned about 1 linewidth below resonance, to reduce the
optical depth of the atomic clouds. This led to increased visibility of fringes in
the image. These two images show that the resolution and dimensions of the
simulation are realistic.

D.5 Atom-number fluctuations in the double-well

Here I derive an expression for the variance of a non-squeezed two-mode quan-
tum state. This describes the noise expected in the atom number difference of
the two wells for a coherent, or non-squeezed, state.

Classically, the observable is the difference in atom number between the two
wells Z

Z = NL −NR (D.1)

A single atom could be in the left well |L〉, the right well |R〉, or a superposition
of both. So the operator z for a single atom in the double-well is

ẑ = |L〉〈L| − |R〉〈R| (D.2)



134 Appendix D. Absorption imaging model for determining detection limits

So

Ẑ =

N∑
i=1

ẑi (D.3)

where i is a label for the ith atom, and N is the total atom number (which is also
a random number, as it varies from shot-to-shot in an uncontrolled manner). We
want to find the variance of Ẑ to find the quantum-limited noise in the system
for a non-squeezed state.

var(Ẑ) = 〈Ẑ2〉 − 〈Ẑ〉2

=

〈∑
i,j

ẑiẑj

〉
−

〈∑
i

ẑi

〉2
(D.4)

If the atoms in the ensemble are uncorrelated, then the mean z of every atom
is the same. So the last term of Eq. (D.4) is:〈∑

i

ẑi

〉2

= 〈N〈z〉〉2

= 〈N〉2〈z〉2
(D.5)

and the first term is:〈∑
i,j

ẑiẑj

〉
=

〈∑
i=j

ẑiẑj

〉
+

〈∑
i6=j

ẑiẑj

〉
(D.6)

From Eq. (D.2), ẑ2 = Î, so〈∑
i=j

ẑiẑj

〉
=
∑
i

〈
ẑ2
i

〉
= 〈N〉

(D.7)

When i 6= j, zi and zj are independent random variables with the same mean,
so

〈ẑiẑj〉 = 〈(〈ẑ〉+ δẑi)(〈ẑ〉+ δẑj)〉
〈δẑiδẑj〉 = δij

(D.8)



D.6. Feasibility of sub-shot-noise resolution 135

Substituting these into the second term of Eq. (D.6)〈∑
i 6=j

ẑiẑj

〉
=
〈
N(N − 1)〈ẑ〉2

〉
= 〈N2〉〈ẑ〉2 − 〈N〉〈ẑ〉2

(D.9)

Summing Eqs. (D.5), (D.7), and (D.9)

var(Ẑ) = 〈N〉+ 〈N2〉〈ẑ〉2 − 〈N〉〈ẑ〉2 − 〈N〉2〈z〉2

= 〈N〉
(
1− 〈ẑ〉2

)
+ 〈ẑ〉2

(
〈N2〉 − 〈N〉2

) (D.10)

note that the second term is 〈ẑ〉2×var(N). In the case of a balanced double-well
with 〈ẑ〉 = 0, the variance of the atom number difference is simply 〈N〉, which is
consistent with [132].

D.6 Feasibility of sub-shot-noise resolution

To see if Florence imaging system is capable of measuring squeezing, I ran
some simulations of to measure var(Ẑ) of a balanced double-well with 5000 atoms.
var(Ẑ) was measured for 50 different simulations for a range of “expansion times”,
i.e. images of a double-well with constant σx but variable σy. The simulations
had a constant separation of 5µm between the two clouds, and each cloud had a
constant width of σx = 1 µm. A typical simulated image is shown in Fig. D.4a
(compare with Fig. 7.5). Results of the simulation are shown in Fig. D.4b. Error
bars show the standard deviation of 50 runs, with a minimum value of about 40,
which is less than the standard deviation of a coherent state with 5000 atoms,
for which one would expect a standard deviation of

√
5000 ≈ 71. This indicates

that with this imaging system it should be possible to measure squeezing.

D.7 Conclusion

As well as estimating that this experiment should be able to observe number
squeezing, the model provided two useful insights to absorption imaging in gen-
eral. In all the simulations I performed both of the following were true:

� The optimum light intensity is about 2-3 times the atomic saturation in-
tensity.

� The optimum density of the atom cloud is such that the maximum optical
depth is ∼ 2.



136 Appendix D. Absorption imaging model for determining detection limits

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

10
-5

-200

-150

-100

-50

0

50

100

150

200

0

1

2

3

 Z 

Max. OD

(b)

Figure D.4. (a) shows a typical simulated image of the expanded double-well
atom clouds. In this case N = 5000, σx = 1µm, σy = 5µm, the separation
between clouds is 5 µm, and the mean number of photons was 500. For com-
parison, Fig. 7.5 shows experimental data. (b) shows simulation results from
measuring 〈Ẑ〉 for different values of σy. Error bars show standard deviation
over 50 measurements. Measurements with 2 µm < σy < 8µm appear to show
sub-shot-noise resolution (i.e. std. dev.(Ẑ) < 71).
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[19] E. Öpik, “The lunar atmosphere,” Planetary and Space Science 9, 211 –
244 (1962).

[20] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer,
1999).

[21] P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and
H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,”
Phys. Rev. Lett. 61, 169–172 (1988).

[22] J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler
limit by polarization gradients: simple theoretical models,” J. Opt. Soc.
Am. B 6, 2023–2045 (1989).

http://science.sciencemag.org/content/235/4795/1517
http://dx.doi.org/ 10.1103/PhysRevLett.87.010404
http://dx.doi.org/10.1038/415039a
http://stacks.iop.org/2053-1583/4/i=1/a=015039
http://stacks.iop.org/2053-1583/4/i=1/a=015039
http://dx.doi.org/10.1038/ncomms7896
http://www.nobelprize.org/nobel_prizes/physics/laureates/1997/
http://www.nobelprize.org/nobel_prizes/physics/laureates/1997/
http://dx.doi.org/ 10.1103/RevModPhys.70.721
http://dx.doi.org/10.1103/PhysRevLett.84.439
http://dx.doi.org/https://doi.org/10.1016/0032-0633(62)90149-6
http://dx.doi.org/https://doi.org/10.1016/0032-0633(62)90149-6
http://dx.doi.org/10.1103/PhysRevLett.61.169
http://dx.doi.org/10.1364/JOSAB.6.002023
http://dx.doi.org/10.1364/JOSAB.6.002023


Bibliography 139

[23] W. Bin, L. De-Sheng, Q. Qiu-Zhi, Z. Jian-Bo, L. Tang, L. Liang, and
W. Yu-Zhu, “Laser cooling of 87Rb to 1.5 µK in a fountain clock,” Chinese
Physics Letters 28, 063701 (2011).

[24] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping
of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59,
2631–2634 (1987).

[25] T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically
trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990).

[26] S. Coop, An optical mask for atomic interferometry experiments, Master’s
thesis, The University of Otago (2014).

[27] A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J.
Metcalf, “First observation of magnetically trapped neutral atoms,” Phys.
Rev. Lett. 54, 2596–2599 (1985).

[28] S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese,
N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich,
and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117,
203003 (2016).

[29] W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič,
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absorption imaging of dense clouds of ultracold atoms,” Opt. Lett. 32,
3143–3145 (2007).
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and H.-C. Nägerl, “Realization of an excited, strongly correlated quantum
gas phase,” Science 325, 1224–1227 (2009).

[112] G. Semeghini, M. Landini, P. Castilho, S. Roy, G. Spagnolli,
A. Trenkwalder, M. Fattori, M. Inguscio, and G. Modugno, “Measure-
ment of the mobility edge for 3D Anderson localization,” Nature Physics
11, 554–559 (2015).

[113] K. Binder, “Theory of first-order phase transitions,” Reports on Progress
in Physics 50, 783 (1987).

[114] M. Vojta, “Quantum phase transitions,” Reports on Progress in Physics
66, 2069 (2003).

[115] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, “Quantum coherent
atomic tunneling between two trapped Bose-Einstein condensates,” Phys.
Rev. Lett. 79, 4950–4953 (1997).

[116] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, “Coherent oscil-
lations between two weakly coupled bose-einstein condensates: Josephson
effects, π oscillations, and macroscopic quantum self-trapping,” Phys. Rev.
A 59, 620–633 (1999).
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