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“Don’t judge each day by the harvest you reap, but by the seeds that you plant.”

Robert Louis Stevenson
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The trend for the next generation of cellular network, the Fifth Generation (5G), pre-
dicts a 1000x increase in the capacity demand with respect to 4G, which leads to new
infrastructure deployments. To this respect, it is estimated that the energy consump-
tion of ICT might reach the 51% of global electricity production by 2030, mainly due
to mobile networks and services. Consequently, the cost of energy may also become
predominant in the operative expenses of a mobile network operator (MNO). Therefore,
an efficient control of the energy consumption in 5G networks is not only desirable but
essential. In fact, the energy sustainability is one of the pillars in the design of the next
generation cellular networks.

In the last decade, the research community has been paying close attention to the en-
ergy efficiency (EE) of the radio communication networks, with particular care on the
dynamic switch ON/OFF of the Base Stations (BSs). Besides, 5G architectures will
introduce the Heterogeneous Network (HetNet) paradigm, where small BSs (SBSs) are
deployed to assist the standard macro BS in satisfying the high traffic demand and re-
duce the impact on the energy consumption. However, only with the introduction of
energy harvesting (EH) capabilities the networks might reach the needed energy savings
for mitigating both the high costs and the environmental impact. In the case of HetNets
with EH capabilities, the erratic and intermittent nature of renewable energy sources
has to be considered, which entails some additional complexity. Solar energy has been
chosen as reference EH source due to its widespread adoption and its high efficiency in
terms of energy produced compared to its costs. To this end, in the first part of the the-
sis, a harvested solar energy model has been presented based on an accurate stochastic
Markov processes for the description of the energy scavenged by outdoor solar sources.

The typical HetNet scenario involves dense deployments with a high level of flexibility,
which suggests the usage of distributed control systems rather than centralized, where
the scalability can become rapidly a bottleneck. For this reason, in the second part of
the thesis, we propose to model the SBS tier as a multi-agent reinforcement learning
(MRL) system, where each SBS is an intelligent and autonomous agent, which learns by
directly interacting with the environment and by properly utilizing the past experience.
The agents implemented in each SBS independently learns a proper switch ON/OFF
control policy, so as to jointly maximize the system performance in terms of throughput,
drop rate and energy consumption, while adapting to the dynamic conditions of the
environment, in terms of energy inflow and traffic demand.
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However, multi-agent might suffer the problem of coordination when finding simultane-
ously a solution among all the agents that is good for the whole system. In consequence,
the Layered Learning paradigm has been adopted to simplify the problem by decompose
it in subtasks. In particular, the global solution is obtained in a hierarchical fashion:
the learning process of a subtask is aimed at facilitating the learning of the next higher
subtask layer. The first layer implements an MRL approach and it is in charge of the
local online optimization at SBS level as function of the traffic demand and the energy
incomes. The second layer is in charge of the network-wide optimization and it is based
on Artificial Neural Networks (ANNs) aimed at estimating the model of the overall
network.
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Chapter 1

Introduction

1.1 Scenario and Motivation

Energy efficiency in cellular networks is becoming a key requirement for network op-

erators to reduce their operative expenditure (OPEX) and to mitigate the footprint of

Information and Communication Technologies (ICT) on the environment. Costs and

greenhouse gases emissions of ICT grew in the last few years due to the escalation of

traffic demand from mobile devices such as smartphones and tablets. The global mobile

data traffic grew 63% in 2016 [2], also cloud-based and Internet of Things services are

expected to further aggravate this trend. In fact, mobile traffic will increase sevenfold

between 2016 and 2021, which correspond to an increase at a compound annual growth

rate (CAGR) of 47%, reaching 49.0 exabytes per month by 2021. Therefore, it is com-

monly accepted that the fifth generation (5G) of cellular networks will support 1, 000

times more capacity per unit area than 4G.

According to a recent report by Digital Power Group [3], the world’s ICT ecosystem

already consumes about 1500 TWh of electric energy annually, approaching 10% of the

world electricity generation and the 2− 4% of carbon footprint by human activity. For

example, the energy consumption of ICT represents the 25% of all car emissions in the

world and it is equal to all airplane emissions in the world. Telecom operators consume

254 TWh per year (77% of the worldwide electricity consumption of the ICT) with an

annual growth rate higher than 10% [4]. Telecom Italia is the second industry in Italy

for energy consumption after only the railway industry. Besides, considering the mobile

traffic growth rate, it is expected to reach up to the 51% in 2030 [5]. Nowadays the

energy bill of mobile network operators (MNO)s has become an important portion of

their OPEX, e.g., it already reaches the cost of the personnel required to manage the

network for a Western European MNO in 2007 [6]. Consequently, the Average Revenue

1
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Per Unit (ARPU) has been decreasing across the years. A notable example is represented

by the case of Vodafone Germany, that experienced an annual shrinking of 6% on average

in the period 2000-2009 [6].

Consequently, many major industries have already put environmental sustainability in

their roadmap to 5G [7, 8]. This can be translated in a change of the design paradigm

of the next generation cellular networks, shifting from coverage and capacity oriented

systems, typical of 3G and 4G networks, to energy oriented in 5G. Many standardization

bodies already started working on this aspect, e.g., the European Telecommunications

Standards Institute (ETSI) [9] and the 3rd Generation Partnership Project (3GPP) [10].

In addition, governmental bodies have introduced policies fostering the usage of sus-

tainable energy for reducing the greenhouse gas emissions due to the human activity.

Recently, EU started a plan on energy and climate targets for 2030, which includes the

minimum target of 27% for the share of renewable energy consumed in the union [11].

The goal is to arrive with zero carbon emissions in 2060.

In the last decade, the research community has been paying close attention to the en-

ergy efficiency (EE) of the radio communication networks. The effort concentrated in

adjusting the network capacity according to the actual traffic conditions. In fact, up to

now, the predominant system design paradigm was to deploy networks able to satisfy the

peak of traffic, independently of the time they occur and their duration. However, the

most energy hungry component of the cellular network is represented by the access part,

which approaches the 80% of the total consumption [12]. In consequence, dynamically

switch ON/OFF base stations (BSs) [13] have been identified as one of the most promis-

ing EE technique. However, this solution has been received distant from MNOs since it

might generate problems of coverage holes and possible failures of network equipment

due to the frequent ON/OFF switches.

As a result, the introduction of energy harvesting (EH) capabilities represents an in-

teresting approach to further increase the energy savings allowing simultaneously to

mitigate both the costs and the environmental impact of new mobile telecommunication

systems. In fact, thanks to the progress in the hardware of the network equipment, the

BSs peak power consumption decreased from 3 KW for the 2G BSs to a thousand of W

for the 4G ones. In the last years, the idea of using renewable energy sources (RESs) in

cellular networks has been already proposed, like in [14] and [15]. However, it has been

exploited only in very specific scenarios where the grid connection was not present or

extremely unreliable, such as in rural areas. In these cases, solar and wind power has

been used in hybrid installation for integrating the diesel generators due the high energy

requirements of old BSs. Starting from 2008, the GSM Association (GSMA) has begun

the Green Power for Mobile Programme for promoting and investigating the usage of
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renewable energies for powering the 118, 000 off-grid BSs in developing countries, which

would allow the saving of 2.5 billion of liter of diesel per year (0.35% of global diesel

consumption of the 700 billion). One of the main challenges for 5G networks for enabling

higher energy savings with EH will be its integration with the smart grid technology.

In particular, MNOs can adopt the micro-grids architecture, which has been defined

by the US Department of Energy as “a group of interconnected loads and distributed

energy resources (mainly renewables) within clearly defined electrical boundaries that

act as a single controllable entity with respect to the power grid”. A micro-grid would

enable to connect and disconnect from the grid and to operate in both grid connected

and island mode. A further step has been done by the European Union with recently

released the EU Winter Package, aimed at providing guidelines for the next generation

of power grids. The main idea is to foster cooperation among local energy communities

by providing them with the infrastructure to work in island mode and with market-based

retail energy prices.

Moreover, 5G will bring ultra-dense networks (UDN) of small BSs (SBSs), especially

for satisfying the high traffic demand in urban scenarios [16]. The UDNs consist on a

multi-tier network architecture where SBSs with reduced coverage (e.g., picocells, fem-

tocells and microcells) are deployed in massive numbers to provide primarily capacity

enhancements, while the traditional pre-planned tier of macro BSs (MBSs) is preserved

to provide baseline capacity and coverage. This architecture is also known as HetNet.

This paradigm has a twofold motivation: firstly the SBSs resources are shared among

a lower number of users due to the smaller coverage area of the SBS and, secondly, by

decreasing the distance between the transmitter and the receiver, communications ex-

perience better channel conditions which implies the usage of more efficient modulation

and coding schemes (MCSs). Moreover, SBSs have the potential of substantially reduc-

ing the energy consumption of the network [17], due to the low power dissipation of the

transmission components (i.e., power amplifier and its cooling system) combined with

the higher spectral efficiency. In fact, the energy consumption of the SBSs is reduced to

a hundred of W for the micro cells and tens of W for the pico ones. This implies that

applying switch ON/OFF strategies to this new architecture has limited impact on the

EE [18] but helps in introducing energy harvesting capabilities. The typical renewable

system is composed by a photovoltaic (PV) solar panels and a battery for the energy

storage, to allow the accumulation of the exceed energy that cannot be directly used and

make it available for the periods when PV source is not generating energy. Therefore,

a proper harvesting and storage system design is needed to provide a reliable energy

income to the BS. Standard design approaches are usual to model the system for guar-

anteeing its full self-sustainability. However, in this case the obtained PV sizes result

in impractical deployments, especially in urban scenarios (e.g., in street furniture) [19].
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Therefore, an optimization of the energy utilization is needed. The SBSs together with

the distributed energy harvesters and storage systems can be coordinated by dynamic

renewable energy management, similarly to what done for micro-grids [20].

However, by reducing the capacity of the harvesting system, the intermittent and erratic

nature of the renewable energies has to be considered in order to be able to manage the

high variations in the incoming energy. In fact, even in summer and in good weather

conditions areas like Los Angeles, the harvested energy in the peak irradiation hour can

vary up to the 85%, as showed in [21]. Similarly, also seasons have a strong impact

in the energy income and have to be considered when optimizing for having a solution

working for the whole year.

Self-Organized Network (SON) paradigm is expected to be a key enabler in 5G to pro-

vide intelligence and autonomous adaptability to network elements for improving the

system efficiency and simplifying the management of such a complex architecture. In

particular, softwarization and Artificial Intelligence (AI) have been identified as the main

technologies for implementing the SON paradigm and providing a flexible and dynamic

Radio Resource Management (RRM). On the one hand, Software Defined Networking

(SDN) [22] and Network Function Virtualization (NFV) [23] provide a flexible infras-

tructure for collecting the necessary system information and reconfiguring the network

elements [24]. SDN separates control and data planes and, by centralizing the control,

enables many advantages such as programmability and automation. NFV enables soft-

warized implementation of network functions on a general purpose hardware, improving

scalability and flexibility. On the other hand, AI gives the tools for automatic and intel-

ligent system (re-)configuration [25]. Machine learning (ML) contributes with valuable

solutions to extract models that reflect the user and network behaviors. Reinforcement

Learning (RL) can be used for more dynamic decision making problem working in real-

time and at short time scales.

SBSs powered by renewable energies can help in reducing the impact of ICT in the carbon

emissions by saving energy in the SBS tier and allowing the adoption of energy efficiency

mechanisms in the macro BS. Like in a symbiotic process, SBSs can in parallel move

toward a more energy efficient network paradigm and, at the same time, help in solving

the problem of the huge demand. As presented in [26], the use of small-cell networks

represents a challenging solution for targeting the future traffic demand in a cost and

energy efficient way even without the usage of renewable energies. However, according

to the expected performance of Long Term Evolution (LTE) UDNs, cellular networks

can move to a more sustainable paradigm cutting down their energy grid dependency in

a seamless way with respect to the QoS provided becoming a reference architecture for

5G solutions.
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1.2 Problem Statement

The introduction of RES in HetNet is not only an integration engineering problem, since

it has to deal with the characterization of intermittent and/or erratic energy sources, and

the design, optimization and implementation of core network, BS and mobile elements

especially considering the need of massive deployment for targeting the high demand.

In detail, the following issues need to be solved:

1. Characterization of the RESs: In order to optimize the behavior of the network, a

detailed characterization of the energy income has to be performed since, consid-

ering the intrinsic nature of the RES, their availability is not deterministic. For

instance, solar harvested energy is ruled by atmospheric conditions (i.e., seasons,

weather, geographic location, etc.) and can be also affected by specific installa-

tion phenomena (e.g., partial shadowing by trees or buildings). On this matter, a

statistical behavior can help in accurately include the RES behavior in the design

of network.

2. Characterization of the network usage patterns: Similarly to RES, there are crucial

elements of the network that have to been characterized in order to correctly model

it. The energy drained by the BSs represents one of the most important one, since

it is one of the variables that enables the energy efficient optimization toward a

sustainable network. In turn, as presented in [17], the energy needed by a BS is

related to the amount of traffic it is has to serve; therefore, spatial-temporal traffic

models have to be take into account, too.

3. Self-organization: Considering that the SBSs will be massively deployed, self-

organization is essential for efficiently managing radio resources of SBSs, due to

their huge number and unknown position. It is expected that SBSs need to have

the capability of autonomously making RRM decisions without compromising the

macro cell performances. For instance, SBSs can share their traffic with the macro

layer when they experience low battery or low traffic. Load balancing becomes

of crucial importance for the operators and has to consider a new variable, the

energy reserves of the SBSs. However, SBSs will be massively deployed, possibly

some of them in a dynamic fashion (e.g., for capacity extension during high traffic

spot-like events like concerts, football matches, etc.), their number and position

will be unknown to the network operator, so that the load balancing cannot be

handled only by means of centralized static solutions.

4. QoS: SBSs dimensioning and corresponding resource allocation is an important

aspect of HetNet design, since they are expected to be deployed at massive scale
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and in an uncoordinated fashion. Towards this objective, an efficient joint manage-

ment of the traffic demand and the energy reserves in the SBSs is also a challenge.

The design of online RRM solutions for cellular networks with energy constrained

elements is an open issue and is a novel topic in literature.

5. Low power consumption: Despite of the already low power consumption of the

SBSs, energy saving mechanisms for reducing the power consumption of the SBSs

by improving PHY related technologies and layer 2 algorithms will help in scale

down the equipment needed by RES and in, more in general, in their management.

Recently, the softwarization of the radio access part started attracting interest due

to the high flexibility it enables.

6. Energy market trends: The trend in energy market is that the energy price in future

power grids will change hourly. However, standard networks are not optimized to

this respect, since in general the network energy consumption directly depends on

the requested capacity. Using RES, the network will have now an energy reserve

which enables the possibility to trade some of the energy that they harvest.

In this Ph.D. dissertation we focus on a subset of the open issues of the energy sus-

tainability of self-organized HetNet partially powered by RES from an online RRM

perspective. In particular, we will pay special attention to the open issues described in

points 1, 3, 4 and 6.

1.3 Objectives and Methodology

The goal of this thesis is to investigate on scenarios where harvested ambient energy

is employed to steer LTE HetNets toward a more sustainable paradigm, reducing the

energy consumption from the grid and, more than that, where communication networks

blend with future electricity grids, as the one depicted in Fig. 1.1. The usage of RES

can be distinguished in two different operative cases: i) energy self-sustainable network

elements and ii) grid energy saving thanks to the efficient use of the network elements

powered with RES. In the first paradigm, the problem is to guarantee network reliability

by managing the limited available energy resources since there is no connection to the

electric grid. While, in the second vision, RESs are used as an alternative green solution

for powering part of the network in order to reduce its carbon footprint and represents

the core of the contribution. It is to be noted that, the second paradigm can, in turns,

have a further extension which comprises the possibility that future network elements

may trade some of the energy that they harvest to make profit and provide ancillary

services to the power grid. In pico deployments, for instance, it may occur in the form of
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Figure 1.1: HetNet powered with RES reference architecture.

supporting connected loads, such as street lighting or weather stations. Instead, selling

energy to the grid operator may make sense for micro and macro cells where the amount

of energy harvested easily matches or surpasses that of residential users.

Solar energy has been chosen as reference RES due to its widespread adoption and its

high efficiency in terms of energy produced compared to its costs. To this end, an

harvested solar energy model has been implemented through a simple but yet accurate

stochastic Markov processes for the description of the energy scavenged by outdoor solar

sources. The Markov models that we derived are obtained from extensive solar radiation

databases. The basic idea is to derive the corresponding amount of energy from hourly

radiance patterns that is accumulated over time in order to represent it in terms of its

relevant statistics. We tested Markov models with different number of states and data

clusterization models for having both simple solutions and accurate ones.

We characterized the problem of distributed energy aware SBS control by considering

the aforementioned Markov processes for modeling the solar energy harvested. The high

dynamism typical of the HetNet scenarios jointly with the complexity of the system

suggest the usage of distributed control systems rather than centralized, where the scal-

ability and the flexibility can become rapidly a bottleneck. We focus on the energy aware

online control for improving the energy-efficiency of the system by optimizing the usage

of the renewable energy reserves in the SBS tier. We propose to model the SBS tier

as a multi-agent system [27], where each SBS is an intelligent and autonomous agent,

which learns by directly interacting with the environment and by properly utilizing the

past experience. The novel solution will make able the SBS tier to work without the
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knowledge of the traffic demand and the expected solar harvested energy income. Due

to the complexity and the dynamism of the scenario, which does not allow to define

an integrated probabilistic model, we propose to solve the RRM with a reinforcement

learning solution [28].

Multi-agent RL (MRL) systems are an effective way to treat complex, large and unpre-

dictable problems since they offer modularity in distributing the implementation of the

solution across different agents. However, such distribution might suffer the problem

of finding simultaneously a solution among all the agents that is good for the whole

system. Therefore, the Layered Learning (LL) [29] and heuristically accelerated MRL

(HAMRL) [30] paradigms are adopted to simplify the problem by decompose it in sub-

tasks. The global solution is then obtained in a hierarchical fashion: the learning process

of a subtask is aimed at facilitating the learning of the next higher subtask layer. We

adopted the logical layers classification intrinsic in the nature of the HetNet. The first

layer implements an MRL approach and is in charge of the local online optimization at

SBS level as function of the traffic demand and the energy incomes. The second layer is

in charge of the network-wide optimization and is based on Artificial Neural Networks

(ANNs) aimed at estimating the model of the overall network. The architecture for

implementing the two levels and enable their interaction is based on a SDN paradigm.

According to the review of the literature, this is the first work in the literature that has

proposed online solutions with realistic environmental conditions and considering the

optimization across different energy harvesting conditions, as will be also discussed in

Chapter 2.

1.4 Outline of the thesis

This section gives a brief overview of the contents of the following chapters, which are

summarized in Fig. 1.2.

Chapter 2

This chapter provides the necessary background information concerning the description

of network design and switching ON/OFF approaches presented in the literature. It

starts with the required background knowledge, including a description of the reference

scenarios and architectures. In continuation, a survey of the state-of-the-art and current

trends is given. The chapter examines the energy efficient solutions that are applied

in two different network architectures: single-tier and HetNet. In this chapter some

preliminary work devoted to evaluate the feasibility of the solutions investigated are

also presented for introducing the reference solutions for HetHet with EH capabilities.
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Figure 1.2: Outline of the dissertation.

The work presented in this chapter has been published in the following papers:

• G. Piro, M. Miozzo, G. Forte, N. Baldo, L.A. Griego, G. Boggia, P. Dini, “Het-

Nets Powered by Renewable Energy Sources: Sustainable Next-Generation Cellu-

lar Networks”, in IEEE Internet Computing, vol. 17, no. 1, pp. 32-39, Jan.-Feb.

2013.

• D. Zordan, M. Miozzo, P. Dini, M. Rossi, “When telecommunications networks

meet energy grids: cellular networks with energy harvesting and trading capabil-

ities”, in IEEE Communications Magazine, vol. 53, no. 6, pp. 117-123, June

2015.

• N. Piovesan, A. Fernandez Gambin, M. Miozzo, M. Rossi, P. Dini, “Energy sus-

tainable paradigms and methods for future mobile networks: A survey”, Computer

Communications,Volume 119,2018,Pages 101-117.

• P. Dini, M. Miozzo, N. Bui, N. Baldo, “A Model to Analyze the Energy Savings

of Base Station Sleep Mode in LTE HetNets”, in Proceedings of IEEE GreenCom

2013, 20-23 August 2013, Beijing (China).
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• N. Baldo, P. Dini, J. Mangues, M. Miozzo, J. Núñez-Mart́ınez, “Small cells,

wireless backhaul and renewable energy: a solution for disaster aftermath com-

munications”, in Proceedings of 4th International Conference on Cognitive Ra-

dio and Advanced Spectrum Management (COGART 2011) - Cognitive and Self-

Organizing Networks for Disasters Aftermath Assistance, 26-29 October 2011,

Barcelona (Spain).

• M. Miozzo and N. Bartzoudis and M. Requena and O. Font-Bach and P. Har-

banau and D. López-Bueno and M. Payaró and J. Mangues, “SDR and NFV

extensions in the ns-3 LTE module for 5G rapid prototyping”, in Proceedings of

2018 IEEE Wireless Communications and Networking Conference (WCNC), April

2018, Barcelona (Spain).

Chapter 3

The main principles of the theory behind the ML methods used in this thesis are pre-

sented in chapter 3. The overview of reinforcement learning algorithms is discussed for

both the single-agent and multi-agent case, introducing the algorithms used and their

main challenges in the application in the considered scenario. Finally, an introduction

on neural networks and on their training solutions is presented.

Chapter 4

Chapter 4 provides a novel model for the energy harvesting process, describing the

methodology to model the energy inflow as a function of time through stochastic Markov

processes. The proposed approach has been validated against real energy traces, showing

good accuracy in their statistical description in terms of first and second order statistics.

This model will be used for generating the solar harvested energy profile in the evaluation

of the HetNet control solutions proposed in this thesis.

The work presented in this chapter has been published in this paper:

• M. Miozzo, D. Zordan, P. Dini, M. Rossi, “ SolarStat: Modeling Photovoltaic

Sources through Stochastic Markov Processes”, in Proceedings of IEEE Energy

Conference, 13-16 May 2014, Dubrovnik (Croatia).

Chapter 5 In this chapter we present the innovative contribution of this thesis on the

online control of HetNet with EH capabilities. Different distributed Q-learning solutions

are investigated both analyzing their temporal behavior and their network performance.

The results presented, despite of being encouraging, show that scalability of the solution

might be a problem in case of dense SBSs networks.
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The work presented in this chapter has been published in the following papers:

• M. Miozzo and L. Giupponi and M. Rossi and P. Dini, “Distributed Q-learning for

Energy Harvesting Heterogeneous Networks”, in Proceedings of 2015 IEEE Inter-

national Conference on Communication Workshop (ICCW), June 2015, London

(UK).

• M. Miozzo and L. Giupponi and M. Rossi and P. Dini, “Switch-On/Off Policies for

Energy Harvesting Small Cells through Distributed Q-Learning”, in Proceedings

of 2017 IEEE Wireless Communications and Networking Conference Workshops

(WCNCW), March 2017, San Francisco (USA).

Chapter 6

In Chapter 6, the Layered Learning solution for HetNet powered with solar energy is

presented. In particular, a hierarchical framework based on a two-layered optimization

has been adopted: where the bottom layer implementing multi-agent RL is enhanced

by the above layer through its network-wide view through a control based on neural

networks. The goal is to improve the coordination of the agent issues of distributed Q-

learning solutions for guaranteeing high EE in systems with dense deployment of SBSs.

Simulation results prove that the proposed layered framework outperforms both a greedy

and a completely distributed solution both in terms of throughput and energy efficiency.

The work presented in this chapter has been published in the following papers:

• M. Miozzo and P. Dini, “Layered Learning Radio Resource Management for En-

ergy Harvesting Small Base Stations”, in Proceedings of 2018 IEEE Vehicular

Technology Conference (VTC Spring), June 2018, Port (Portugal).

• M. Miozzo and N. Piovesan and P. Dini, “Layered Learning Load Control for

Renewable Powered Small Base Stations”, submitted to IEEE Transactions on

Green Communications and Networking.

Chapter 7

The document is closed with Chapter 7, where the high level assessment of the achieve-

ments accomplished through the research presented herein, the conclusions and perspec-

tives for future works are presented.



Chapter 2

State of the Art and Beyond

2.1 Introduction

In the last decade several solutions have been proposed for reducing the energy con-

sumption of the radio communication networks, as testified by the vivid literature on

this topic [31]. In general, this family of solutions has been named as green communi-

cation and networking and it includes models to characterize the energy consumption

of the network elements and strategies for energy optimization for all the layers of the

protocol stack, such as: power amplifiers, radio transmission techniques, media access

control (MAC) algorithms, networking solutions and architectures.

In terms of energy consumption, the most important element of the network is repre-

sented by the BS, according to it impact of 80% in the energy budget of the overall radio

access network [12]. Consequently, the main effort concentrated in optimizing the net-

work from BS usage perspective. To this end, two main approaches have been adopted

so far: offline and online optimization. The formers are usually based on stochastic ge-

ometric and are devoted to draw the general trends and guidelines for deploying optimal

energy architectures without considering specific details of the scenario. The latter are

usually sub-optimal solutions which however can consider more realistic models of the

system components and allows a closer approximation to realistic scenarios. To this end,

learning solutions represent a valuable way to implement a self-organization approach

that enables to deploy cellular network in a flexible way able to adapt to the most im-

portant environmental variables. This background information is important, since it

facilitates the understanding of the motivations behind the contributions of this thesis.

This chapter is structured as follows: Section 2.2 introduces the energy consumption

model of the different types of BSs, which allows to better understand the principles

12
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behind the energy efficiency solutions. Section 2.3 presents the review of the existing

literature with the more consolidated energy efficiency techniques for both standard cel-

lular network and for the ones with EH capabilities. After presenting the most common

methods and widely used solutions found in the literature, a description of the research

challenges and open issues is given in Section 2.4, introducing the main contributions of

this thesis. Finally, Section 2.5 concludes the chapter.

2.2 BS Energy Model

Before delving into the description of the techniques to make the network energy effi-

cient and self-sufficient, next we review the main achievements in power consumption

measurement and models for base stations. One of the most detailed BS energy models

adopted in literature has been developed in the framework of the Energy Aware Radio

and neTwork tecHnologies (EARTH) EU founded project [32]. By taking in consid-

eration the principal elements that drain energy in a LTE BS (i.e., power amplifiers,

baseband unit, radio frequency module, AC-DC converters, the main supply unit and

the cooling system), in [17] an accurate model has been derived. As depicted in Fig. 2.1,

the power amplifier (PA) is one of the main power draining component in all type of the

BSs. Moreover, PA generates a dependency on the load of the BS both in macro and

micro BS. In the former, the power consumption can change up to the 44%, while in

the latter 27%. Reducing the form factor and the PA needs, the cooling system (CO)

part disappears but the one of the baseband processor (BB) increases its contribution.

However, it is to be noted that, for very small BSs like pico and femto, the load of the

BS marginally affects the power consumption.

The BS power consumption model presented in Fig. 2.1 can be approximated with a

linear function, defined as follows:

P = P0 + βρ (2.1)

where ρ ∈ [0, 1] is the traffic load of the BS normalized to its maximum capacity, and

P0 is the power consumption when ρ = 0. The values of P0 and β for each type of BS

are reported in table 2.1.

Remarkably, P0 represents a significant part of the total energy consumed by any BS

and, due to this, researchers have investigated the use of sleep modes during low traffic

periods. Moreover, it is expected that P0 of new sites will be reduced by about 8%

on average thanks to recent technological advances [33], thus further decreasing the BS

energy cost during low traffic periods.
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(a) Macro BS
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(b) Micro BS
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(c) Pico BS
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Figure 2.1: Power consumption dependency on relative linear output power in all BS
types for a 10MHz bandwidth, 2x2 MIMO configurations and 3 sectors (only Macro)
scenario based on the 2010 State-of-the-Art estimation. Legend: PA=Power Amplifier,
RF=small signal RF transceiver, BB=Baseband processor, DC: DC-DC converters,

CO: Cooling, PS: AC/DC Power Supply [1].

Table 2.1: Power model parameters for various types of BS.

BS Type P0 [W] β

Macro 750.0 600
Micro 105.6 39
Pico 11.6 1.1
Femto 10.4 0.9

In the next future, the introduction of SDR and SDN-NFV solutions enabled a fur-

ther degree of flexibility in the architecture of the network by allowing to split network

functionalities in different network elements. This process started a few years ago with

the Cloud Radio Access Network (CRAN) solutions [34], in which only some physi-

cal layer processing is left next to the antenna, called the remote radio head (RRH),

while the baseband processing is carried out in data centers, namely base band unit

(BBU). More recently, Heterogeneous Cloud Radio Access Network (HCRAN) architec-

ture [35] introduced new type of virtualizations by decoupling transmissions functions
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from proprietary hardware-dependent implementations, enabling their execution in dif-

ferent hardware resource of the network. Various splits at PHY, MAC, RLC and PDCP

layers are considered for relaxing the stringent requirements of CRAN while maintaining

its centralized processing benefits [36]. The energy model of such novel architectures has

not been yet proposed in literature. However, it can be estimated based on the model

introduced in [37], which is a general flexible power model of LTE base stations and

provides the power consumption in Giga Operation Per Second (GOPS). To this re-

spect, in [38] and [39] we provided a preliminary assessment on the energy consumption

figures of different HCRAN configurations through an emulation platform based on the

LTE module of the popular ns-3 Network simulator [40] and a real-time implementation

of the physical layer functionalities based on field-programmable gate array (FPGA).

From this analysis, we showed that important energy savings can be obtained at RRH

when moving part of the lower layer network functionalities to the BBU. Moreover, we

highlighted also that the bandwidth of the system is the most important parameter for

what concern the energy consumption of the RRH since it can affect up to 50% on the

overall energy budget of the RRH.

2.3 Techniques for Energy Efficiency

2.3.1 Single Tier Networks

In standard 3G architectures, where the type of BSs is reduced to macro and micro and

they are treated as a single tier, the most promising solution to optimize the BS energy

consumption is by putting them in sleep mode (or OFF mode). In this case, in order to

sleep a BS and guarantee the coverage, the BSs in the set of the ones that remain awake

(ON mode) have usual to re-adjust their transmission power and, possibly, the tilt of

the antenna, enabling the communications also the users that was previously served by

the BS slept, technique called cell zooming or cell breathing.

Sleep Mode

The cellular networks have been dimensioned to support traffic peaks, i.e., the number

of BSs deployed in a given area should be able to provide the required Quality of Service

(QoS) to the mobile subscribers during the highest load conditions. However, during

off-peak periods the network may be underutilized, which leads to an inefficient use

of spectrum resources and to an excessive energy consumption (note that the energy

drained during low traffic periods is non-negligible due to the high values of P0 in

Eq. (2.1)). For these reasons, sleep modes have been proposed to dynamically turn OFF
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some of the BSs when the traffic load is low. This has been extensively studied in the

literature, considering different problem formulations [13]. However, since BSs cannot

serve any traffic when asleep, it is important to properly tune the enter/exit time of

sleep modes to avoid service outage.

The authors of [41] propose centralized and distributed clustering algorithms to clus-

ter those BSs exhibiting similar traffic profiles over time. Upon forming the clusters,

an optimization problem is formulated to minimize their power consumption. Optimal

strategies are found by brute force, since the solution space is rather small and its com-

plete exploration is still doable. A similar approach is presented in [42] where a dynamic

switching ON/OFF mechanism locally groups BSs into clusters based on location and

traffic load. The optimization problem is formulated as a non-cooperative game aiming

at minimizing the BS energy consumption and the time required to serve their traf-

fic load. Simulation results show energy costs and load reductions while also provide

insights of when and how the cluster-based coordination is beneficial.

User QoS is added to the optimization problem in [43]. In this case, as the problem

to solve is NP-hard, the authors propose a suboptimal, iterative and low-complexity

solution. The same approach is used in [44–47], playing with the trade-off between

energy consumption and QoS. The Quality of Experience (QoE) is included in [48],

where a dynamic programming (DP) switching algorithm is put forward. The user

QoE is utilized in place of standard network measures such as delay and throughput.

Other parameters that have been considered are the channel outage probability (also

referred to as coverage probability), i.e., the probability of guaranteeing the service

to the users located in the worst positions (e.g., at the cell edge) and the BS state

stability parameter, i.e., the number of ON/OFF state transitions. For instance, a set

of BS switching patterns engineered to provide full network coverage at all times, while

avoiding channel outage, is presented in [49]. The coverage probability, along with power

consumption and energy efficiency metrics, are derived using stochastic geometry in [50–

52]. The QoE is also affected by the user equipment (UE) positions according to the

channel propagation phenomena. To this respect, in [53] the selection of the BSs to be

switched OFF is taken in order to provoke less impact to the UEs’ QoE according to

their distance to the handed off BSs.

In order to support sleep modes, neighboring cells must be capable of serving the traffic

in OFF areas. To achieve this, proper user association strategies are required. In a sce-

nario where sleeping techniques are not applied, each user is associated with the BS that

provides the best Signal to Interference plus Noise Ratio (SINR). However, when BSs

can go to sleep, user association is more complex and requires traffic prediction as well

as very fast decision-making. Otherwise, users may suffer a deterioration of their QoS. A
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framework to characterize the performance (outage probability and spectral efficiency)

of cellular systems with sleeping techniques and user association rules is proposed in [54].

In this paper, the authors devise a user association scheme where a user selects its serv-

ing BS considering the maximum expected channel access probability. This strategy is

compared against the traditional maximum SINR-based user association approach and

is found superior in terms of spectral efficiency when the traffic load is inhomogeneous.

According to the BS state stability concept, a bi-objective optimization problem is at-

tained in [55] and solved with two algorithms: (i) near optimal but not scalable, and (ii)

with low complexity, based on particle swarm optimization.

The authors in [56, 57] propose solutions based on stochastic analysis for designing the

deployment of macro BSs able to guarantee the QoS requirements and save energy by

switching OFF subsets of BSs.

In [58] the notion of energy partition, an association of powered-ON and powered-OFF

BSs, is used to enable network-level energy saving. It then elaborates how such con-

cept is applied to perform energy re-configuration to flexibly re-act to load variations

encouraging none or minimal extra energy consumption. Similarly, in [59] the authors

introduce the notion of network-impact, which takes into account the additional load

increments brought to its neighboring BSs, for detecting which BS to turn OFF as the

one that will minimally affect the network.

Finally, RL techniques are investigated in [60] to solve the energy saving problem in

order to make the system able to automatically reconfigure itself. In particular, the

BS switching operation problem has been modeled according to the actor-critic method.

The simulation results reported show the effectiveness of presented energy saving scheme

under various practical configurations.

Cell Zooming

This family of methods is complementary to the sleep techniques and has been intro-

duced to avoid the coverage gaps that may occur as BSs go to sleep. It amounts to

adjusting the cell size according to traffic conditions, leading to several benefits: (i) load

balancing is achieved by transferring traffic from highly to lightly congested BSs, (ii)

energy saving through sleeping strategies, (iii) user battery life and throughput enhance-

ments [61]. To compute the right cell size, cell zooming adaptively adjust the transmit

powers, antenna tilt angles, or height of active BSs. Centralized and distributed cell

zooming algorithms are proposed in [62], where a cell zooming server, which can be

either implemented in a centralized or distributed fashion, controls the zooming proce-

dure by setting its parameters based on traffic load distribution, user requirements, and
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Channel State Information (CSI). A different approach is proposed in [63], where the

authors design a BS switching mechanism based on a power control algorithm that is

built upon non-cooperative game theory. A closed-form expression cell zooming factor is

defined in [64], where an adaptive cell zooming scheme is devised to achieve the optimal

user association. Then, a cell sleeping strategy is further applied to turn OFF light

traffic load cells for energy saving. In general, most zooming scenarios entail a compu-

tationally intractable formulation, so affordable solutions based on iterative algorithms

or heuristics abound in the literature, see, e.g., [65, 66].

Remarkably, cell zooming entails an increase in the transmit power of the active BSs,

which leads to a higher energy expenditure for the BSs that are on. However, when

used in combination with sleeping strategies, this leads to additional energy savings.

Some researchers are oriented towards the study of sleeping schemes in conjunction

with cooperative communication strategies for distributed antennas, also referred to as

Coordinated Multi Point (CoMP). This technique increases spectral efficiency and cell

coverage without entailing a higher BS transmit power and reducing the co-channel in-

terference. The authors of [67] prove the effectiveness of this approach in terms of energy

and capacity efficiency when sleep modes are combined with downlink CoMP. Despite

these advantages, their results also reveal that imperfect downlink channel estimations

and an incorrect CoMP setup can lead to energy inefficiency.

An online algorithm is proposed in [68] for a cell-breathing solution based on a clus-

tered architecture. Since it a distributed solution, it allows to improve the scalability

constraints given by a centralized approach and the risk of having one-point failure in

network coordination. Moreover, it dynamically adjusts the traffic thresholds to define

the BS behavior in order to be able to follow traffic fluctuations.

2.3.2 HetNets

Considering HetNet, the problem has been concentrated in defining strategies for sleep-

ing the SBSs rather than the macro BSs. Similarly to the macro BS case, stochastic

analysis has been used for defining the trends and the optimum deployment principles

of HetNet [69–71]. In [72] a distributed online scheduling algorithm for SON HetNets

is proposed which optimizes jointly the resource allocation, the transmission power and

the UE attachment in terms of call admission control. In [73] the authors propose a

noncooperative game among the BSs that seeks to minimize the trade-off between en-

ergy expenditure and load requirements when putting in sleep mode the SBSs. All the

techniques in the above do not consider the traffic demand in the optimization problem.
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In [74], closed-form expressions of coverage probability and average user load are formu-

lated through stochastic geometry. Optimal resource allocation schemes are proposed

to minimize power consumption and maximize coverage probability in a HetNet, and

are validated numerically. User association mechanisms that maximize energy efficiency

in the presence of sleep modes are addressed in [75], where the energy efficiency is de-

fined as the ratio between the network throughput and the total energy consumption.

Since this leads to a highly complex integer optimization problem, the authors propose

a Quantum particle swarm optimization algorithm to obtain a suboptimal solution.

In [76] an offline algorithm that defines the timing for putting the SBSs in sleep mode as

function of the system load has been presented. However, in [18] we showed that, when

considering the energy model profiles in [17], the amount of energy saved is reduced due

to the fact that the macro BS has to manage the traffic of the users previously attached

to the SBS switched OFF. In fact, as highlighted in Fig. 2.1, when the macro BS is loaded

with more traffic, its power consumption might considerably increase affecting the one

of the whole network. This is coherent with HetNets paradigm, where the spectrum

efficiency of the SBSs is greater with respect to the one of the MBS.

2.3.3 HetNet with Energy Harvesting Capabilities

The increasing interest in energy harvesting (EH) application in cellular networks from

the research community is testified by the rich literature [77] on this relative new topic.

On this matter, the contributions can be divided, in turns, in two problems: commu-

nication cooperation and energy trading [78]. In communication cooperation scenarios

the solutions have to enable mechanisms to deal with the energy as a hard constraint,

since the system cannot work when the energy is finished. While in energy trading prob-

lem, the energy derived by RES has to be optimized to increase the energy efficiency of

the whole system or, in case of considering the energy market, to increase the benefits

generated thanks to the energy trading.

On this matter, we performed two feasibility studies on HetNet with EH capabilities for

assessing the actual challenges of such problems that will be detailed in what follows.

Then, a review of the main techniques proposed for the problem of energy cooperation

is discussed.

Feasibility Studies

In the context of communication cooperation solutions, we proposed a feasibility study

for LTE-like cellular network deployments with photovoltaic panels [79]. The system
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Table 2.2: PV and storage ratings and installation costs for both grid-powered and
energy-sustainable base stations.

LTE BS
Macro Micro Pico

PV ratings [kW] 8.45 0.9 0.09

Storage ratings [Ah] 1250 104.2 20.8

PV system land occupation [m2] 61.43 6.43 0.46

CAPEX for the grid connection [e] 16450 13650 12750

CAPEX for the PV+storage plant [e] 240100 11900 1190

design took in consideration all the principal elements of the access network, among

them:

1. The OPEX due to the electricity consumption according to the model presented

in Section 2.2.

2. The capital expenditure (CAPEX) of the grid-connected nodes has been modeled

as the cost of the infrastructure for providing grid electricity.

3. The CAPEX of the off-grid nodes includes both the cost of the photovoltaic solar

panel and of the batteries, both of them dimensioned for the worst case scenario

where solar panels do not generate energy during 7 contiguous days.

In Tab. 2.2 the installation costs for grid-powered nodes are reported for the worst

case scenario when the BS are always at full load. Looking at the PV system land

occupation, we noticed that RES can be a viable cost-effective solution for SBSs, while

it is still not possible to exploit it for MBS. However, it is to be noted that, with

these simple dimensioning solutions the solar panel dimensions are still rather large

for considering their deployment in street furniture (i.e., a micro BS would need a PV

module of 6.43m2).

In [80], we advanced this study by considering a more realistic scenario with real energy

harvesting traces and traffic demand profiles. Moreover, we introduced the design con-

cept of outage probability, defined as the fraction of time during which the BS is unable to

serve the users’ demand due to an insufficient energy reserve. In that case, the BS has to

be momentarily switched OFF or put into a power saving mode. The size of harvesters

and batteries has been evaluated as a function of the outage probability for different

geographical locations. In detail, hourly energy generation traces from a solar source

have been obtained for the cities of Los Angeles (CA) and Chicago (IL), US. For the

solar modules, the commercially available Panasonic N235B photovoltaic technology has

been considered. These panels have single cell efficiencies as high as 21.1%, delivering
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Figure 2.2: Contour plot of the outage probability for a micro cell operated off-grid
(battery voltage is 24V). Different colors indicate outage probability regions, whose
maximum outage is specified in the color map in the right hand side of the plot. The

white filled region indicates an outage probability smaller than 1%.

about 186W/m2. The raw irradiance data were collected from the National Renewable

Energy Laboratory [81] and converted, accounting for this solar power technology, into

harvested energy traces using the SolarStat tool of [21], that will be presented in detail

in Chapter 3. For the demand profile, it is commonly accepted and confirmed by mea-

surements that the energy use of base stations is time-correlated and daily periodic. In

this article, we use the load profiles obtained within the EARTH project and reported

in [1]. The BS operates off-grid and the above models are accounted for the energy

harvested and the cell load. Therefore, we are concerned with the right sizing of solar

panel and battery, so that the BS can be perpetually operated.

The contour plot for the outage probability for micro BSs is shown in Fig. 2.2 considering

solar traces from Los Angeles. Different colors are used to indicate outage probability

regions (maximum outages are specified in the associated color map). The white filled

area indicates the parameter region where the outage probability is smaller than 1%.

The outage probability graphs for pico and macro BSs show a similar trend, rescaled

to higher (macro) or smaller (pico) values along both axes. From Fig. 2.2, we see that

panels of size smaller than 15 square meters and battery capacities of at most 150Ah at

24V suffice for micro BSs, which is in line with the results in Table 2.2. For pico and

macro deployments, solar panels range in size from 0.7 to 1.4 square meters (pico) and

from 40 to 80 square meters (macro) and battery capacities form 20 to 90Ah at 12V
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(pico) and from 300 to 1500Ah at 48V (macro). Taking an outage of 1% as our design

parameter, all the points on the boundary of the white-filled region are equally good.

The results for the city of Los Angeles are rather good, indicating that the nearly-zero

energy is indeed a feasible goal. In fact, both battery and panel sizes are acceptable

given the dimensions of typical installation sites for the considered BSs. Instead, for the

city of Chicago the energy inflow is less abundant, and this is especially so during the

winter months. In that case, reasonable panel and battery sizes (even slightly higher

than those discussed for Los Angeles) lead to outages of 10% or higher. Due to this,

grid-connected operation is required for locations where the energy inflow is moderate

(especially during the winter).

Now, we consider the energy trading problem where a grid-connected BS that can sell or

buy energy from the grid. Most likely, the energy price in future power grids will change

hourly. This practice is not yet adopted worldwide but there are relevant programs

that already use it. A relevant example can be found in Illinois, US, where electrical

companies are offering new hourly electricity pricing programs where energy prices are

set a day-ahead by the hourly wholesale electricity market run by the Midcontinent

Independent System Operator (MISO). In this way, customers can optimize their usage

patterns, saving money in their energy bills. In this work, we use publicly available

historical energy price data from these programs to discuss suitable energy management

policies. From telecommunication perspective, energy harvesting and future market

policies will permit at least two additional optimization strategies. First, the system

could adapt its behavior to the energy price, i.e., it could be energy frugal when the

energy cost is high, whilst adopting more aggressive policies when the cost drops. Second,

part of the energy that is accumulated could be sold or re-distributed among other

network elements.

To this end, an energy manager intelligently chooses in which amounts and when energy

et (the decision variable) has to be purchased or sold so that the system maximizes its

profit. In detail, we considered a system that evolves in slotted time t, where the slot

duration is one hour. At any given time t, the BS may sell or buy a certain amount of

energy et, which is positive when energy is sold and negative when purchased. When

energy et < 0 is purchased from the grid operator, a monetary cost C(et) is incurred,

which corresponds to the price of energy in slot t. Instead, when energy et > 0 is

sold, a reward R(et) = rC(−et) is accrued, with r ≤ 1 being a discount factor. This

means that the energy sold is paid less than that purchased, as this is usually the

case in current energy markets and is expected to remain so for future ones. Also,

we use C(et) = 0 for et ≥ 0 and R(et) = 0 for et ≤ 0, meaning that no cost is

incurred when selling and no reward is accrued when buying. At each time t, the

demand dt has to be fully served and the energy required to do so is harvested, taken
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from the battery or bought from the grid. This corresponds to maximizing the total

monetary reward, expressed as f(T ) =
∑T

t=0[R(et) − C(et)], over the time horizon

of interest t ∈ T (with T = {0, 1, . . . , T}). The solution to this problem amounts

to finding the optimal allocation {e∗t }t∈T for all time slots t ∈ T . Here, we do so

through dynamic programming considering the actual traces for hourly energy prices,

user demand and harvested energy. Based on the optimization performed by the energy

manager, we studied how to dimension the solar add-on in order to maximize the net

profit, considering an amortization period T of ten years and given that the optimal

policy e∗t is used throughout. The net profit over this period is obtained summing the

revenue f(T ) to the cost incurred when the BS is powered in full by the energy grid,

and subtracting the CAPEX associated with the resulting harvesting hardware.

For the following example results, we have accounted for the current price of solar panels,

which is about 0.5$/kWh and a battery cost of 300$/kWh. Table 2.3 and Table 2.4

show the 10-year net income for pico, micro and macro cells that can be achieved in

the cities of Chicago and Los Angeles, respectively. For the net income the notation we

used “X$ (Y,Z)”, where X is the net income in US dollars, Y is the solar panel size

(square meters) and Z is the battery size (Ah). According to the considered CAPEX

cost, optimal designs tend to pick smaller battery capacities and invest more on solar

modules. In the tables, two designs D1 and D2 are shown for each type of BS, where

D2 returns the maximum net profit within the considered parameter range. Notably, a

positive income is accrued in almost all cases. As expected, Los Angeles allows for higher

revenues due to the more abundant energy inflow that is experienced at that location.

D1 was added to show that even a suboptimal design, which may be required due to

space limitations, still provides positive incomes and is a sensible alternative. The only

case returning a negative net profit is Chicago for Macro BSs, where an additional year

(eleven years) would be required to amortize the CAPEX.

Table 2.3: Net income and annual revenue for the city of Chicago.

BS type D1 (net income) D2 (net income) D2 (annual revenue)

Pico 19$ (1, 20) 58$ (2, 20) 71$
Micro 232$ (10, 80) 607$ (20, 80) 709$
Macro −1566$ (60, 500) −695$ (80, 500) 1395$

As one may expect, the actual sizing for the solar add-on depends on the energy selling

price as well as on the location. Nevertheless, the rather good results that we have shown

here are encouraging. These, are due to the modest cost of PV technology, that has been

plummeting over the last decade (10-fold reduction). In addition, we observe that while

commercial panels at the time of writing have maximum efficiencies of about 21%, new
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Table 2.4: Net income and annual revenue for the city of Los Angeles.

BS type D1 (net income) D2 (net income) D2 (annual revenue)

Pico 51$ (1, 20) 117$ (2, 20) 130$
Micro 544$ (10, 80) 1193$ (20, 80) 1295$
Macro 446$ (60, 500) 1813$ (80, 500) 2568$

developments with efficiencies as high as 44% are on the way [82]. The battery cost is

still rather high, but trends are encouraging for it as well. As an example, since 2008, the

cost reduction has been of about one third for lithium ion cells, which is the technology

of choice at the time of writing. These facts can be found in numerous reports, see,

e.g., [83] and allow us to assert that the scenarios envisioned here are already feasible

and are expected to become even more appealing in the near future, as the harvesting

CAPEX will further drop and PV efficiencies will improve.

The main outcome of these studies is that the system may be feasible and cost-effective

in locations with relatively high solar irradiation, considering the cost and dimension of

the energy harvesting hardware and of the grid energy. However, as discussed in [21],

that there may be a high variability in the energy harvested during the day and this also

holds for the summer months. This means that, although the energy inflow pattern can

be known to a certain extent, intelligent and adaptive algorithms that control the BSs

based on current and past inflow patterns as well as predictions of future energy arrivals

have to be designed. Moreover, the design of energy efficient sleeping modes is expected

to be a very effective means to further reduce the energy consumption figure. For these

reasons, we have been motivated to concentrate our effort in the study of energy efficient

solutions for HetNet with EH capabilities, that constitutes the core of the contribution

of this thesis. The reference solutions of this scenario are presented in the following

subsection.

Energy Cooperation Solutions

The usage of RES in HetHets opens the door a new optimization paradigm: the standard

problem of energy saving for reducing the RES requirements is enriched by the one of en-

ergy constrained wireless networks, that is the optimization of the usage of the available

energy reserves. In [84], the authors extended the work on energy saving in k-tier Het-

Net ([69]) by including the EH variable in order to manage the SBSs powered with RES

with sleep mode strategies. In this model, the authors define a metric called availability

ρk which represents the fraction of time a kth tier BS can be kept on since it has enough

energy reserve. This work aims at defining the set of K-tuple (ρ1, ρ2, . . . , ρk), called
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availability region that are achievable with uncorrelated strategies (i.e., the decision of

sleeping a BS is taken by each BS independently). The authors proved that there exists

a fundamental limit on the availabilities ρk which cannot surpassed by uncoordinated

strategies. The energy harvested a kth tier BS has been modeled as a Binomial process,

as approximation of its Poisson energy arrival process µk at each solar cells since they

number is usually large. The user allocation scheme considered is orthogonal, which

implies that there is no intra-cell interference. The user locations are assumed to be

taken from an independent Poisson Point Process (PPP) [85]. The level of energy of a

kth tier is modeled as a continuous time Markov chain (CTMC) with birth process as

described before and death process with a rate that depends on the number of users

served by the BS, that are assumed to require a fix amount of energy per second. The

authors present some general results on the battery capacity and the dimensioning of

the energy harvesting system for having the same performance of a similar network with

reliable energy sources. The method is flexible and general; therefore, it represents a

good solution for providing guidelines in the design of the cellular network. However, it

cannot be extended to realistic scenario due to the complex analytical models that are

made of, especially for what concern the user traffic model, the BS energy one and the

energy harvesting one.

In [86], the authors provided a solution to deal with the uncertainty of the renewable

energies for energy self-sustainable cellular networks. In detail, they propose an Intel-

ligent Energy Managed Service to be mounted in each BS that is able to control the

power consumption as function of the stored energy in the battery supply, the expected

amount of renewable energy to be harvested as function of the weather forecast and

historical base station power consumption information. The algorithm proposed adjusts

the power consumption as function of the battery level, the prediction of energy wasted

and the prediction of the energy incomes as function of the weather conditions. The

solution has been tested with field trial experiments carried out during the Mobile World

Congress 2010 hold in Barcelona (Spain), where Vodafone deployed a solar based 100%

green site (sponsored by Huawei) and supported by simulations on the long term with

historical weather data. The results show that with the prediction technique the outage

of the system is reduced and, in parallel, the harvesting system can be minimized.

In [87] the authors proposed an algorithm called Intelligent Cell brEathing (ICE) aimed

at minimizing the maximal energy depleting rate (EDR) of the low-power base sta-

tions powered by renewable energy with cell breathing techniques. In this case the

authors considered two types of base stations: high-power BSs (HBSs) and low-power

BSs (LBSs). The LBS are powered by RES while HBS are powered by the electric

grid. The authors proposed to dynamically change the transmission power of the LBSs

in order to minimize the maximum ratio between the total consumed power and the
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energy income. The BS energy model is different from the one in [17] and is based on a

fixed power consumption component plus a variable one determined by the transmission

power level. They demonstrated that this problem in NP-hard. They solved it itera-

tively by introducing the energy dependent set (EDS) composed by LBSs with similar

EDR and decrementing the power level of the LBSs to allow users switching from LBSs

in a specific EDS to those outside it in order to find the optimal users allocation and

power level configuration. The results show that ICE balances the energy consumption

among the LBSs, augment the number of user served and decrease the outage.

In [88], the authors considered a different scenario, where BSs are connected by resistive

power lines and can cooperate by sharing the energy reserves. The authors demonstrate

that, with deterministic energy consumption and traffic profiles at all the BSs, the opti-

mal energy distribution can be found by solving a linear program optimization problem.

Alternatively, when the energy income is stochastic an online algorithm is presented

based on a greedy heuristic.

In [89], the authors introduced the concept of Zero grid Energy Networking (ZEN) which

consists of mesh network of BSs powered only with RES. The scenario considered is the

one of rural coverage where there is no connection to the electric grid and therefore the

BS need to energy self-sufficient. They firstly solved the problems of dimensioning the

renewable energy system by considering the daily typical traffic and energy harvested

profile for the cities of Aswan, Palermo and Torino generated with a simulator called

PVWatts [90]. With the PV system dimensioning of before, they also evaluated the stor-

age system capacity and the impact of introducing wind turbine. Finally, they relaxed

the assumption of energy self-sustainability and they optimized the RES equipment re-

quirements with an offline algorithm by introducing SBSs sleep mode strategies in a two

tier network extending what done in [76].

In [91] the ski rental problem has been proposed to optimize the switch ON/OFF problem

for ultra-dense EH SBS networks. Each agent operates autonomously at each small cell

and without having any a priori information about future energy arrivals. The algorithm

is compared against a greedy scheme that uses sleep modes when the battery level is

below a fixed threshold. The analysis is carried out considering Poisson arrivals for

energy and traffic, which may provide a non-realistic approximation to these processes.

Reinforcement Learning has been used in [92] for optimizing the control of a single EH

SBS as a function of the local harvesting process and storage conditions. However,

the effect of the simultaneous switching OFFs by multiple SBSs on the overall network

performance is not studied. This effect has been analyzed in [93], where a two-tier

urban cellular network composed by macro BSs powered by the power grid and energy

harvesting SBSs is considered. The authors evaluated the bounds of a centralized optimal
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direct load control of the SBS using an offline dynamic programming method that has all

the knowledge on the system variables a-priori. The optimization problem is represented

using Graph Theory and the problem is stated as a Shortest Path search. The results

show that an encouraging energy efficiency improvement can be theoretically achieved.

The authors in [94] provide useful insight on the impact of the parameters quantization

in networks of BS powered with solar energy. They discuss the choice of parameter

quantization for time, weather, and energy storage and provide guidelines for the de-

velopment of accurate and credible models that can support the power system design

to achieve a correct dimensioning. The main findings are that a credible and accurate

model requires: i) a time granularity equal to 1 hour that allows capturing the energy

production and consumption fluctuations during the day; ii) the discretization of the

weather conditions according to 5 or 7 levels of average daily solar irradiance; iii) a

storage energy quantum of the order of 1/5 of the minimum energy consumption per

time slot.

Finally, an interesting application of HetNet powered by RES is represented by the

so called public protection and disaster relief communications (PPDR), where the lack

of electrical grid is often impossible as a consequence of an emergency situation. As

we highlighted in [95], in such scenarios a flexible architecture like HetNet allows to

rapidly provide communication services to both emergency responders and civilians.

The proposed infrastructure is a network of energy self-sufficient LTE SBSs powered

by RES that features an all-wireless multi-hop backhaul network together with self-

organization capabilities which can replace the standard cellular network even when its

radio access part is totally compromised.

2.4 Beyond the State of the Art

The main goal of this thesis is to get closer to a real scenario with respect to the work

presented before on EH by investigating online solutions. In detail, considering [84] we

envisage that by taking into account the traffic profile, the system can work in a more

efficient way even when outside the availability region, allowing to reduce the capacity

of the RES system. Moreover, RL can optimize the system even without historical data

of the energy consumption and the users demand as in [86].

Similarly to [87], the target is to minimize the energy used by the part of the network

connected to the grid, the macro BS. However, we considered that SBSs can be put in

sleep mode in case of low traffic in order to save energy for the peaks, where it would

be more problematic to be managed by the network.
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Therefore, the scenario in [89], well fit with our vision, except from the fact that we

concentrate on general HetNet scenarios, where SBSs are supporting the MBSs especially

for capacity extension rather than coverage extension. However, we coincide in the final

example scenario where they evaluate the sleep mode solutions apart from the fact that

the algorithm is based on the knowledge of traffic and harvested energy profiles.

To this end, learning solutions are adopted for avoiding the usage of deterministic o

statistical data in the design of the network in order to implement a self-organization

approach that enables to deploy SBSs in a flexible way independently from the most

important environmental variables (e.g., weather conditions, traffic profiles and BSs lo-

cation). Self-organization is defined as the ability of entities to spontaneously arrange

given parameters following some constraints and without any human intervention. To

do this, entities have to somehow represent the environment where they perform and the

gathered information has to be interpreted for them to correctly react. Consequently,

learning solutions represent a viable tool for self-organization since they allow to trans-

late the environmental sensed information into actions. Considering the specific problem

of this work, network of SBSs can be interpreted as multi-agent systems.

In the following chapter, the main ML principles used in this thesis are introduced.

2.5 Concluding Remarks

This chapter has provided some background information that is relevant to the con-

tributions of this thesis, which will be thoroughly presented in the following chapters.

Initially, the reference energy model for different type of BS has presented. The state-

of-the-art works concerning the energy efficiency algorithms have been discussed next.

In continuation, an overview of the schemes available in the literature when introducing

EH capabilities to HetNets highlighting the principles, the contributions, but also the

limitations of proposed solutions. Thus, after presenting open issues and challenges, the

main novel contributions of this thesis has been detailed with respect to the literature.

The remaining of this thesis is organized in four parts. The first part provides the

necessary principles of ML methods, presenting the Q-learning and the prediction solu-

tions that constitutes the main building blocks of the framework presented in this Ph.D.

dissertation. The second part (Chapter 4) is focused on proposing an accurate energy

model based on stochastic Markov processes for the description of the energy scavenged

by outdoor solar sources. The third part of the thesis (Chapter 5) is devoted to propose

a novel solution based on distributed Q-learning algorithm for improving the EE of the

system by switching ON/OFF SBSs powered with solar panels. Finally, in the fourth
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part (Chapter 6), an enhanced switching OFF solution adopting Layered Learning is

given for solving the problem of conflicts among the agents.



Chapter 3

Machine Learning Background

3.1 Introduction

Machine Learning has recently attracted a remarkable attention from the research com-

munity for its flexibility in solving complex problems. ML-based tools are expected to be

the main enablers for providing the required flexibility to 5G system and implement the

SON functionalities. Machine Learning can contribute both for extracting models that

reflect the user and network behaviors and for more dynamic decision making problem

working in real-time. The former is commonly used in data analysis problem for evaluat-

ing the behavior of specific parameters of the system to drive the decisions made by 5G

SON functionalities. Typically, this is performed through learning-based classification,

prediction and clustering models. The latter are more adequate when independent and

dynamic problems are considered, as in the case of SBS with EH capabilities systems.

To this end, RL is the concept adopted in ML for implementing reactive agents, since

it works by learning from interactions with the environment, and observing the conse-

quences when a given action is executed. Therefore, multi-agent systems represent a

logical method to treat these types of problem, considering the intrinsic nature of the

scenario, which is composed of various SBSs that have to be controlled simultaneously.

For these reasons, we considered to adopt both solutions based on RL and prediction.

RL is used to provide the incremental learning behavior to the solution for obtaining

online algorithms that are able to adapt to the environment. These solutions typically

keep memory of the interactions by means of some representation mechanism, e.g., look-

up tables. Therefore, the complexity of RL methods is exponential in the number of

agents, because each agent has to store its own variables. To this end, we used prediction-

based tools for guiding the RL techniques in finding a solution. In detail we adopted

the Multi-layer FeedForward Neural Networks (MFNN) for being able to estimate the

30
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effect of the RL decision making process of each agent on the overall system before it

takes place. This estimation is then used as a feedback for the RL solution thanks to

the heuristically accelerated RL paradigm. Finally, the overall architecture has been

organized in a hierarchical fashion for clearly divide the problem in subtasks.

In wireless communications, RL solutions has been already used in literature [60, 96]

both for reconfiguring the network elements to improve the energy efficiency according

to the actual traffic and to study which sleep policies, respectively. In [97, 98] it has

been used for the problem of interference coordination.

In this chapter, we present the main principle of the ML tools used in this thesis. In

Section 3.2 we introduce the ML philosophy. In Section 3.3, we present the main principle

of the neural networks. Finally, in Section 3.4 we conclude the chapter.

3.2 Machine Learning

Machine Learning methods can be classified in three main categories as function on

the type of feedback used for learning: unsupervised learning, supervised learning and

reinforcement learning.

In supervised learning the task of the learner is to predict the value of the outcome for any

valid input after having seen a number of training examples. The training examples are

pairs of input objects and desired outputs, usually represented in form of vectors. When

the outputs are continuous, the learning problem is called regression. Alternatively, the

problem is referred as classification when the outputs are discrete values. After the end

of the training phase, the learning solution predicts the value for any new valid input

object [99]. This method is called “supervised” learning since the learning process is

driven by the desired output variable.

In unsupervised learning the objective is to learn underlying statistical structure or

distribution of unlabeled input patterns with unknown probability distribution. The

trained system is able to reconstruct pattern from noisy input data though the learned

statistical structure. This type of learning is referred as “unsupervised” because of the

absence of explicit desired output, as in supervised learning, or any reward from the

environment, as in RL, in the evaluation of the solution [100].

Reinforcement learning is the family of learning solutions that has the ability of learn-

ing behaviors online and automatically adapting to the temporal dynamics of the sys-

tem [101]. At each time step, the agent senses the state of the environment and take

an action to transit in a new state. The environment returns a scalar reward (or cost),
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which evaluates the impact of the selected action. Consequently, RL is applied for

creating autonomous system that improve themselves iteratively with the accumulated

experience at each cycle.

According to the specific problem to solve, the above methods can be more or less suit-

able. For instance, supervised and unsupervised learning methods are not appropriate

for interactive problems where the agents have to learn from their past experience and

be able to adapt to unpredictable environment characteristics, which is the scenario of

the problem we want to solve. However, they can help in understanding the behavior of

specific part of the environment, e.g., they can predict the value or classify some specific

sensible parameters. In literature RL solutions are typically formulated in a centralized

fashion, where a central entity takes decisions, e.g., a BS in an LTE system. However,

when considering network of SBSs, the process has to be distributed in order to better fit

the deployment model and be able to deal with the scalability of the system. Therefore,

we focus on decentralized learning processes based on RL.

The first studies in the field of distributed learning come from the game theory when

Brown proposed the fictitious play algorithm in 1951 [102]. The literature of single agent

learning in ML is extremely rich, while only recently the attention has been focused on

distributed learning aspects, in the context of multi-agent learning. Rapidly, it became

an interesting interdisciplinary area and the most significant interaction point between

computer science and game theory communities. The theoretical framework can be

found in Markov decision process (MDP) for the single agent system, and in stochastic

games, for a multi-agent system. In what follows, we give a brief introduction of learning

in single and multi-agent systems. In Section 3.2.1, we analyze RL for the case of the

single-agent, while in Section 3.2.2 the one of the multi-agent. Section 3.2.3 provides the

definition of TD algorithms, while Section 3.2.4 details on the Q-learning. Section 3.2.5

provides some open issues and challenges in the MRL.

3.2.1 Learning in single agent systems

A MDP provides a mathematical framework for modeling decision-making processes in

situations where outcomes are partly random and partly under the control of the decision

maker. MDP are valuable tool for describing a wide range of optimization problems.

A MDP is a discrete time stochastic optimal control problem. Here, operators take

the form of actions, i.e., inputs to a dynamic system, which probabilistically determine

successor states. A MDP is defined in terms of a discrete-time stochastic dynamic system

with finite state set S = {s1, . . . , sn} that evolves in time according to a sequence of

time steps, t = 0, 1, . . . ,∞. At each time step, a controller selects an action ak from a
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Figure 3.1: Learner-environment interaction.

finite set of admissible actions A = {a1, . . . , al} based on the perceived system current

state si. The action is then executed by being applied as input to the system, which

consequently evolves from state si to sj , with a state transition probability Pi,j . As a

result of the execution of the action ak in state si, the environment return an immediate

reward r(si, ak). In what following, we refer to states, actions, and immediate reward

by the time steps at which they occur, by using st, at and rt, where at ∈ A, st ∈ S and

rt = r(st, at) are, respectively, the state, action and reward at time step t. A graphic

representation is shown in Fig. 3.1. Summarizing, a MDP consists of:

• a set of states S.

• a set of actions A.

• a reward function R : S ×A → <.

• a state transition function P : S × A → Π(S), where a member of Π(S) is a

probability distribution over the set S (i.e., it maps states to probabilities).

The state transition function probabilistically defines the next state of the environment

as a function of its current state and the agent’s action. The reward function specifies

expected instantaneous reward as a function of current state and action. In order to be a

Markov model, the state transitions have to be independent of any previous environment

states or agent actions. The goal of a MDP problem is to find the policy that maximizes

the reward of each state st. Therefore, the objective is to find an optimal policy for the
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infinite-horizon discounted model, relying on the result that, in this case, there exists

an optimal deterministic stationary policy [101].

To solve RL problems there are three fundamental classes of methods, i.e., dynamic

programming, Monte Carlo and temporal difference (TD) learning. The first one rely

of the knowledge of the state transition probability function from state s to state v,

Ps,v(a). On the other hand, the second and the third solve the RL problems without

any knowledge of the transition probability function. When a sample transition model

of states, actions and rewards can be built, Monte Carlo method can be applied. Alter-

natively, if the only way to collect information about the environment is to interact with

it, TD methods have to be applied. In doing this, TD methods combine elements of DP

and Monte Carlos: they learn directly from experience, as in Monte Carlo methods, and

they gradually update prior estimates values, as in DP.

The core of RL algorithms is represented by the computation of the value functions. The

state-value function V (s) measures how good, based on the future expected reward, is

for an agent to be in a given state, while the state-action value function Q(s, a) measures

how good is to execute an action based on the future expected reward. The expected

rewards for the agent in the future are given by the action it will take, thus the value

functions depend on the policies being followed. The state-value of state s is defined as

the expected infinite discounted sum of the rewards that the agent gains starting from

state s and executing the complete decision policy π

V π(s) = Eπ

{ ∞∑
t=0

γtrt|st = s

}
(3.1)

where 0 ≤ γ < 1 is a discount factor which determines how much expected future

rewards affect decisions made now. Analogously, the Q-value Q(s, a) is the expected

decreased reward for executing action a at state s and then following policy π, in detail:

Qπ(s, a) = Eπ

{ ∞∑
t=0

γtrt|st = s, at = a

}
(3.2)

Therefore, in order to solve a RL problem the best return in the long term has to be

found. This is referred as finding an optimal policy, which will be the one that is giving

the maximum expected return. We define the optimal value of state s as:

V ∗(s) = max
π

V π(s) (3.3)
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This optimal value function is unique according to the principle of Bellman’s optimal-

ity [101], and can be defined as the solution to the equation:

V ∗(s) = max
a

(
R(s, a) + γ

∑
v∈S

Ps,v(a)V ∗(v)

)
(3.4)

which means that the value of state s is the expected reward R(s, a) = E{r(s, a)}, plus

the expected discounted value of the next state, v, when taking the best available action.

Given the optimal value function, we can specify the optimal policy as:

π∗(s) = arg max
a

(
R(s, a) + γ

∑
v∈S

Ps,v(a)V ∗(v)

)
(3.5)

Now we define an intermediate maximum of Q(s, a), denoted Q∗(s, a), applying the Bell-

man’s criterion in the action-value function, where the intermediate evaluation function

for every possible next state-action pair (v, a′) is maximized, and the optimal actions is

performed with respect to each next state v. Therefore, Q∗(s, a) is:

Q∗(s, a) = R(s, a) + γ
∑
v∈S

Ps,v(a) max
a′∈A

Q∗(v, a′) (3.6)

Finally, we can determine the optimal action a∗ with respect to the current state s,

which represents π∗. Thus, Q∗(s, a∗) is maximum, and can be expressed as:

Q∗(s, a∗) = max
a′∈A

Q∗(s, a′) (3.7)

3.2.2 Learning in multi-agent systems

The characteristics of the distributed learning systems are as follows: i) the intelligent

decisions are made by multiple intelligent and uncoordinated nodes; ii) the nodes par-

tially observes the overall scenario; and iii) their inputs to the intelligent decision process

are different from node to node since they come from spatially distributed sources of

information. Multi-agent system perfectly matches these characteristics, considering

each node as an independent intelligent agent. The theoretical framework is based on

stochastic games [103] and described by the five-tuple {N ;S;A;P ;R}. In detail

• |N | = N is the set of agents, ranging from 1, . . . N ;
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• S = {s1, s2, . . . , sn} is the set of possible states, or equivalently, a set of N-agent

stage games;

• A is the joint action space defined by the product set A1 ×A2 × . . .×AN , where

Ai = {ai1, ai2, . . . , ail} is the set of actions available to the ith agent;

• P is a probabilistic transition function defining the probability of going from one

state to another provided the execution of a certain joint action;

• R = {r1× r2× . . .× rN}, where ri is the reward of the ith agent in a certain stage

of the game, which is a function of the joint actions of all N nodes.

In fully cooperative stochastic games, the reward functions coincide for all the agents:

r1 = · · · = rN . In this case the agents have the same goal: to maximize the common

return. If N = 2 and r1 = −r2, the two agents have opposite rewards and the game

is called fully competitive. Finally, mixed games are the ones that cannot be defined

neither as fully cooperative or competitive.

The typical problems in multi-agent systems are usually modeled as non-cooperative

games, since the distributed decisions made by the multiple nodes strongly affect the

one made by the others. Stochastic games form a natural model for such interactions.

A stochastic game is played over a state space, and is played in rounds. In each round,

each player chooses an available action simultaneously with and independently from

all other players, and the game moves to a new state under a possible probabilistic

transition relation based on the current state and the joint actions. We can distinguish

in this context two different forms of learning: i) the agent can learn the strategies of

the opponents in order to formulate the best response accordingly, and ii) the agent

can learn his own strategy that perform well against the opponents, independently from

learning the strategies of the opponents. The former is defined as model-based learning,

and it requires some partial information of the strategies of the other players. The

second approach is referred to as model-free learning, and it does not necessarily require

to learn a model of the strategies played by the other players. To facilitate distributed

and autonomous functioning of wireless networks, model-based learning approaches are

considered not to be appropriate since they require each node/agent to acquire knowledge

on the actions played by the other agents which might yield to high overheads. In fact,

this approach, generally adopted in game theory literature, is based on building some

model of other agents’ strategies, following which, the node can compute and play the

best response strategy. This model is then updated based on the observations of their

actions. On the other hand, model-free approaches, also known as TD learning, are

adequate since they avoid building explicit models of other agents’ strategies and learn

over time how properly the various available actions perform in the different states.
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3.2.3 TD Learning

TD learning is a prediction method based on the future values of a given signal. The

name TD comes from the use of the differences in predictions over successive time steps

to drive the learning process [28]. Agents implementing TD methods are implemented in

an online fashion, thus learning from every transition without considering the subsequent

actions. Consequently, after the training phase, the agents can improve their behavior,

improvements that continue over time. The algorithms in this category typically keep

memory of the appropriateness of playing each action in a given state by means of some

representation mechanism, e.g., look-up tables, neural networks, etc. This approach

follows the general framework of RL and has its roots in the Bellman equations [101].

One of the main dilemma of RL algorithms is the trade-off between exploration and

exploitation. Exploration is the phase in which the agent learns across all available

actions in order to determine the best one to be used at the end of the learning process.

Alternatively, in the exploitation phase the agent uses the knowledge already acquired

to obtain the maximum reward.

A policy π maps state to actions, i.e., it defines the actions the agent has to follow

to maximize the reward. TD methods ca be classified in two groups with respect to

the policies, 1) the behavior policy, which learns the comportment of the agent in term

of the actual action to be selected by the agent, and 2) the estimation policy, which

determines the policy evaluated, or the action in the next state used for the evaluation

of behavior policy. In RL there are two methods to implement the exploration, the

on-policy and off-policy. They differ in the form the select the estimation policy. The

on-policy methods evaluate or improve the policy used to perform the decision, i.e., they

estimate the value of a policy while using it for control. This implies that, the policy

adopted by an agent is a given state, the behavior policy, is the same used to select the

action (estimation policy) based on which it evaluates the behavior followed. On the

contrary, off-policy methods distinguish between behavior and estimation policies. In

fact, the policy to generate the behavior is unrelated to the policy evaluated. In this

case, the policy evaluated is the one corresponding to the best action in the next state,

π∗, given the current agent experience.

The goal of the agents in TD learning is to select actions that maximize the discounted

reward they receive over the future. This is the role of the discount rate γ in the

state value function, Eq. 3.1 and in the state-action value function, Eq. 3.2. While, α

represents the weight of the new information in the state and state-action value update.

The action selection policy plays also a crucial role in RL, by defining the criterion the

agent have to follow in the selection of the action. The criterion can be either to perform
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exploration or to exploit the acquired knowledge. As introduced before, exploration has

to be included in the action selection policies in order to achieve good behaviors based

on explicit trial-and-error processes.

Among the TD methods, we adopted the off-policy Q-learning algorithm, since it has

more efficient learning properties, as detailed in what following. Q-learning is proven to

converge to an optimal policy in a single agent system, as long as the learning period

is enough long, and can be extended to the multi-agent stochastic game by having each

agent ignore the other agents and pretend that the environment is stationary. Even

if this approach has been shown to correctly behave in many applications, it is not

characterized by a strict proof of convergence, since it ignores the multi-agent nature of

the environment and the Q-values are updated without regard for the actions selected

by the other agents. Therefore, the convergence of multi-agent Q-learning is an open

issue, as detailed in Section 3.2.5, and have to be evaluated on a case-by-case basis.

3.2.4 Q-learning algorithm

Q-learning algorithm has been proposed in 1989 by Watkins in his Ph.D. thesis [104] and

the proof of convergence of this algorithm was presented in 1992 by Watkins and Dayan

in [105]. The goal of Q-learning is to find Q∗(s, a) in a recursive manner using available

information (s, a, v, r), where s and v are the states at time t and t+ 1, respectively, a is

the action taken at time t and r is the reward of executing a in s. Q-learning estimates

π∗ while following π, as it is a off-policy algorithm. This means that the behavior of the

agent is determined by the action selection policy followed by it, which is the policy π,

while the Q-value updating process is performed based on the minimum Q-value in the

next state, independently of the policy being followed [28]. The Q-value is computed

according to the rule:

Q(s, a)← Q(s, a) + ∆Q(s, a) (3.8)

where ∆Q(s, a) is defined as:

∆Q(s, a) = α[r + γmax
a

Q(v, a)−Q(s, a)] (3.9)

where α is the learning rate, which weights the importance given to the information

observed after executing action a, and γ is the discount factor which determines the

importance of future rewards. When γ is equal to 0 will make the agent short-sighted
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by only considering current rewards, while using values approaching to 1 will make it

strive for a long-term high reward. Algorithm 1 presents the Q-learning procedure.

The main advantage of Q-learning is that it does not include the cost of exploration in

the Q-value update. This characteristic makes Q-learning consistent with the principle

of knowledge exploitation. This implies that the policy found by the algorithm is applied

without including the exploration after the end of the learning process. Thus, the off-

policy learning solutions allow the agents to exploit the acquired knowledge in a very

effective way since the beginning of the learning process.

Algorithm 1 Q-learning

1: for each s ∈ S, a ∈ A do
2: Initialize Q(s, a) arbitrarily
3: end for
4: for each step do
5: Choose a from s following the action selection policy
6: Execute a
7: Collect r
8: Observe v
9: Q(s, a)← Q(s, a) + α[r + γmaxaQ(v, a)−Q(s, a)]

10: s← v
11: end for

3.2.5 Challenges in MRL: Agents Coordination

The definition of a good MRL goal is a difficult challenge, since the agents’ environment

are correlated and cannot be maximized independently. Non-stationarity arises in MRL

because all the agents in the system are learning simultaneously. Each agent is therefore

faced with a moving-target learning problem: the best policy changes as the other

agents’ policies changes [106]. In fact, the exploration phase is further complicated in

MRL since agents explore to obtain information not only about their local environment,

but also about the other agents in order to adapt to their behavior. Therefore, any

agent’s action on the environment depends also on the action taken by the other agents,

which introduces the need of coordination. In fully cooperative stochastic games, the

common return can be jointly maximized. In other cases, as the one investigated in

this work, the agents’ returns are typically different and correlated, and they cannot be

maximized independently. Therefore, specifying a good general MRL goal is a difficult

problem. The goal has to incorporate the stability of the learning dynamics of the agent

on the one hand, and the adaptation to the changing behavior of the other agents on the

other hand. Stability means the convergence to a stationary policy, whereas adaptation

ensures that performance is maintained or improved as the other agents are changing

their policies.
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Convergence to equilibria is a basic stability requirement [107], since agent’s strategies

should eventually converge to a coordinated equilibrium, like the Nash equilibria. How-

ever, it is unclear the connection between the Nash equilibria and the performance in the

dynamic stochastic game [108]. In [109] rationality is added as an adaptation criterion

upon the required convergence. Rationality is defined as the requirement that the agents

converges to a best-response when the other agents remain stationary. An alternative

to rationality is presented in [110] with the concept of no-regret, which is defined as the

requirement that the agent achieves a return that is at least as good as the return of a

any stationary strategy.

Another family of solutions is represented by the ones that define an empirical coordi-

nation among the agents. In [30], the authors suggest to increase the convergence rate

or RL algorithms by using a heuristic function for selecting actions in order to guide the

exploration of the stat-action space in a more efficient way. Heuristically accelerated

MRL approach, that has been originally proposed to improve the training phase of a

single-agent RL problem, has been be extended to the multi-agent scenario in [111].

The idea is to use case-based reasoning for heuristic acceleration to exploit similarities

between states of the environment already experienced in the past to make a guess

on which action has to be taken. HAMRL has been already successfully applied in the

wireless communication domain in the field of inter-cell interference coordination (ICIC)

problem in [112]. In this work HAMRL has been applied to distributed Q-learning for

implementing a decentralized ICIC controller aimed at reducing the interference in the

LTE downlink channel of a network of macro BSs.

The introduction of an external heuristic suggests the construction of a hierarchical

solution, which is able to coordinate the agents by having a centralized view of the

effect of the agent’s action on the overall environment. This type of ML paradigm is

called Layered Learning [113]. It has been originally designed for solving the robotic

soccer problem, and is intended in general for domains that are too complex for learning

a mapping directly from an agent’s sensory inputs to its actuator outputs. In fact,

robotic soccer has to deal with limited communication, real-time, noisy environments

with both team-mates and adversaries, which is too complex for agents to learn direct

mappings from their sensors to actuators. The appropriate behavior granularity for

the decomposition and the aspects of the behaviors to be learned are determined by

the specific domain. Therefore, the definition of the subtask in layered learning is not

automated. In fact, it is the domain that defines the layers. ML is used as a central part

of layered learning to exploit data in order to train and adapt the overall system. Like

the task decomposition itself, the choice of machine learning method depends on the

subtask. The main characteristic of layered learning is that each learned layer directly

affects the learning at the next layer. A learned subtask can affect the sub-sequent layer
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either (i) by providing a portion of the behavior used during training or (ii) by creating

the input representation of the learning algorithm.

HAMRL and LL will be presented more in detail in Chapter 5, where have been used to

mitigate the coordination problem of distributed Q-learning when solving the problem

of SBSs powered with renewable energies.

3.3 Neural Networks

An artificial neural network (ANN), often called simply neural network (NN), is a model

of computation inspired by the neurons of the human brain. In simplified models, the

human brain consists of a large number of basic computing devices, the neurons, that

are connected to each other through synapses in a complex communication network.

The resulting network is the actual engine of the brain that allows to perform complex

computations. Artificial neural networks adopt the same principles of the brain for

solving problems through computational tools.

A neural network is implemented as a directed graph whose nodes correspond to neurons

and edges correspond to links between them [114]. Each neuron receives as input a

weighted sum of the outputs of the neurons connected to its incoming edges. In what

following we focus on feed-forward NN, which means that the correspondent graphs does

not contain cycles.

The neuron has two operative modes: training and using. The former mode corresponds

to the phase where data are supplied to a neuron along with the instruction to activate

or not, depending on the received input. In the latter, new data is presented and the

neuron is activated or not activated based on the similarity of the input pattern to those

for which the neuron was trained. In case the type of data presented during the training

is labeled, the training method belong to the supervised learning. Alternatively, for

unlabeled data the training method falls in the unsupervised learning category.

3.3.1 Feed-forward Neural Networks

The basic element of an ANN is represented by the neuron (also called perceptron),

which consists of a linear combination of fixed non-linear functions θj(x). In detail, for

a vector of input xi, i = 1 . . . , N , it takes the form:

y(x,w) = σ

 N∑
j=1

wjθj(x)

 (3.10)
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where wi are the weights associated to each input and σ(·) is a non-linear activation

function, typically the sigmoid function f(x) = 1/((1 + e−x)).

A feedforward neural network is described as a directed acyclic graph G of vertexes V

and edges D, G = (V,D), and a weight function over the edges, w : D → R. Each single

neuron is modeled as a simple scalar function, f : R → R. The basic neural network

model is composed by a series of neurons organized in L layers in a way that the input

information moves only in one direction (i.e., there are no cycle in the networks like in a

recurrent neural network). Let define I as the number of neurons in layer l. The bottom

layer, L0, is the input layer and it contains N + 1 neurons, which are the inputs plus

the “constant” neuron always at 1. The last layer is composed by only one neuron and

represents the output of the neural network. Each neuron in a layer l = 2, . . . , L has

Il = Il−1 inputs, each of which is connected to the output of a neuron in the previous

layer. Layers 2, . . . , L− 1 are called hidden layers. We denote by vt,i, the ith neuron of

the tth layer and by ot,i(x) the output of vt,i when the network is fed with the input

vector x. For every i ∈ [n], the output of neuron i in L0 is simply xi, where n is

dimensionality of the input space. The last neuron in L0 is the constant neuron, which

always outputs 1. Therefore, for i ∈ [n] we have o0,i(x) = xi and for i = n+ 1 we have

o0,i(x) = 1. The other outputs can be calculated iteratively, in a layer by layer manner.

Considering we have already calculated the output of a specific layer t, we can calculate

the output of layer t + 1 as follows. Fix some vt+1,j ∈ Lt+1. Let at+1,j(x) denote the

input to vt+1,j when the network is fed with the input vector x, then:

at+1,j(x) =
∑

r:(vt,r,vt+1,j)∈E

w ((vt,r, vt+1,j)) ot,r(x) (3.11)

and

ot+1,j(x) = σ (at+1,j(x)) (3.12)

That is, the input of vt+1,j is a weighted sum of the outputs of the neurons in Lt that

are connected to vt+1,j , where weighting is according to w, and the output of vt+1,j is

simply the application of the activation function σ on its inputs. An example diagram

of a network with one hidden layer is provided in Fig. 3.2.

3.3.2 Neural Network Training

A MFNN can approximate arbitrary continuous functions defined over compact subsets

of RN by using a sufficient number of neurons at the hidden layers. In order to achieve
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Figure 3.2: Network diagram for a MFNN with one hidden layer.

this, it is necessary to determine the values of the weights correspondent to the function

to be approximated, the so called network training. Given a training set of input vectors

xn, where n = 1, . . . , N , together with a corresponding set of target vectors tn, the

training objective is to minimize the function

E(w) =
1

2

N∑
n=1

‖ y(xn,w)− tm ‖2 (3.13)

which implies to find the weight vector w so that

∇E(w) = 0. (3.14)

However, the error function typically has a high nonlinear dependence on the weights and

bias parameters, and so there will be many points in weight space at which the gradient

is very small. Because it is very difficult to find an analytical solution to Eq. (3.14), it

is common practice to rely on iterative numerical procedures. Most common techniques

involve choosing some initial value w(0) for the weight vector and then moving through

weight space in a succession of steps of the form



Chapter 3. ML Background 44

w(τ+1) = w(τ) + ∆w(τ) (3.15)

The simplest approach to comprise a small step in the correct direction is to choose the

weight update in Eq. (3.15) in the direction of the negative gradient, so that

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
(3.16)

where the parameter η > 0 is known as the learning rate. The error is defined with

respect to a training set, so the entire training set has to be processed at each step in

order to evaluate ∇E. Techniques that use the whole data set are called batch methods.

When the weight vector is moved toward the direction of the greatest rate of decrease of

the error function, the optimization is called gradient descent. This approach has been

demonstrated to be a poor algorithm in [99], despite of being intuitively reasonable. In

order to find a good minimum, it may be necessary to run a gradient-based algorithm

multiple times using different randomly chosen starting point, and comparing the result-

ing performance on an independent validation set. However, there is an online version

that has proved useful in practice for training neural networks [115]. In this case, the

error function is considered as a sum of terms defined per each data point:

E(w) =

N∑
n=1

En(w) (3.17)

This variation, also known as sequential gradient descent, is based on updating the weight

vector one data point at a time, in detail

w(τ+1) = w(τ) − η∇En
(
w(τ)

)
(3.18)

This method allows to easily escape from local minima, since a stationary point with

respect to the error function for the whole dataset is difficult to be a stationary point

also for each data point individually.

Therefore, the problem to solve now is to find an efficient technique for evaluating

the gradient of an error function E(w) for a feed-forward neural network. The most

widespread solution is called error backpropagation or simply backpropagation and is

based on a local message passing scheme in which the information is sent forwards

and backwards through the network [99]. For explaining the backpropagation, we start

considering the evaluation of the derivative of En with respect to a weight wij , where



Chapter 3. ML Background 45

the outputs of the units depend on the specific input pattern n. In order to keep the

notation uncluttered, we will omit the subscript n from the network variables. Applying

the chain rule for partial derivative we have

∂En
∂wij

=
∂En
∂aj

∂aj
∂wij

(3.19)

exploiting the fact that En depends on the weights wij via summed input aj to unit j.

Thanks to Eq. (3.19), we can introduce the errors, defined as

δj ≡
∂En
∂aj

(3.20)

Considering Eq. (3.11), we can rewrite Eq. (3.19) as

∂En
∂wij

= δjoi (3.21)

since oi =
∂aj
∂wij

. Therefore, the derivative can be obtained by simply multiplying the

value of δ for the unit at the output end of the weight by the value of o for the unit at

the input end of the weight. Thus, the derivative can be calculated only evaluating the

values of δj for each hidden and output unit in the network, and then apply Eq. (3.21).

Using the chain rule for partial derivatives, we can rewrite Eq. (3.20) as

δj ≡
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

(3.22)

where the sum is over all nodes k to which node j sends connections. Substituting

Eq. (3.11) and Eq. (3.12) in Eq. (3.22), we can obtain the backpropagation formula

δj = σ′(aj)
∑
k

wkjδk (3.23)

From Eq. (3.23), we can see how the value of δ for a particular hidden node can be

obtained by propagating the δs backward from nodes in the higher layers of the network.

Thanks to the values of δs from the output unit that we already know, we can evaluate

the δs for all the hidden nodes by recursively applying Eq. (3.23).
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3.4 Concluding Remarks

This chapter has provided some background information of ML methods that constitute

the main building block of the solutions presented in this Ph.D. dissertation. In detail,

the TD learning methods has been presented for the multi-agent problem, focusing on

the Q-learning algorithm. Moreover, the NNs have been introduced as they will be used

in the layered learning framework.



Chapter 4

Photovoltaic Sources

Characterization

4.1 Introduction

The standard approaches for the integration of a solar panel into existing electrical

apparatuses are often not sufficient as keeping these devices fully operational at all times

would demand for unrealistically large solar modules, even for SBSs [79]. To overcome

this, the energy coming from the renewable sources should be wisely used, predicting

future energy arrival and the energy consumption that is needed by the system to remain

operational when needed. This calls for complex optimization approaches that will adapt

the behavior of modern systems to the current application needs as well as to their energy

reserves and the (estimated) future energy inflow [116].

A large body of work has been published so far to mathematically analyze these facts,

especially in the field of wireless sensor networks. However, often researchers have tested

their ideas considering deterministic [117, 118], independent and identically distributed

across time slots [119] or time-correlated Markov models [120]. While these contributions

are valuable for the establishment of the theory of energetically self-sufficient networks;

seldom, the actual energy production process in these papers has been linked to that

of real solar sources, to estimate the effectiveness of the proposed strategies in realistic

scenarios.

The work in this chapter aims at filling this gap, by providing a methodology and a tool

to obtain simple and yet accurate stochastic Markov processes for the description of the

energy scavenged by outdoor solar sources. In this study, we focus on solar modules as

those that are installed in wireless sensor networks or LTE SBSs, by devising suitable

47
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Figure 4.1: Diagram of a solar powered BS.

Markov processes with first- and second-order statistics that closely match that of real

data traces. Our Markov models allow the statistical characterization of solar sources

in simulation and theoretical developments, leading to a higher degree of realism.

This chapter is organized as follows. In Section 4.2 we detail the system model and,

in particular, how the raw radiance data are processed to estimate the corresponding

instantaneous harvested power. This requires the combination of several building blocks,

including an astronomical model (Section 4.2.1) to estimate the actual irradiance that

hits the solar module, given the inclination of the sun during the day and the module

placement, an electrical model of photovoltaic cells (Section 4.2.2) and a model for the

DC/DC power processor (Section 4.2.3), which is utilized to maximize the amount of

power that is collected. Hence, in Section 4.2.4 we describe the Markov model that we

use to statistically describe the energy inflow, according to two clustering approaches

for the raw data. The results from this Markov model are shown in Section 4.3, whereas

our conclusions are presented in Section 4.4.

4.2 System Model

The system model adopted in this work is depicted in the diagram of Fig. 4.1 where

we identify the key building blocks for our study: the solar source (indicated as Isun),

the PV panel, the DC/DC power processor and the energy buffer (i.e., a rechargeable

battery). In following subsections we start with the characterization of the effective

solar irradiance, Ieff , that in general depends on the geographical coordinates of the

installation site, the season of the year and the hour of the day. Hence, Ieff is translated

by the PV module into some electrical power and a DC/DC power processor is used to

ensure that the maximum power is extracted from it.
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4.2.1 Astronomical Model

The effective solar radiance that hits a photovoltaic module, Ieff , depends on physical

factors such as its location, the inclination of the solar module, the time of the year and

the hour of the day. Solar radiation databases are available for nearly all locations around

the Earth and their data can be used to obtain the statistics of interest. An astronomical

model is typically utilized to translate the instantaneous solar radiance Isun (expressed

in W/m2) into the effective sunlight that shines on the solar module. According to [121],

the effective solar radiance that hits the solar module, Ieff , is Ieff ∝ Isun cos Θ, where

Θ ∈ [−90◦, 90◦] is the angle between the sunlight and the normal to the solar module

surface1. Astronomical models can be found in, e.g., [121] and Chapter 8 of [122].

In short, Ieff depends on many factors such as the elliptic orbit of the Earth around the

sun (which causes a variation of the distance between Earth and sun across different

seasons), the fact that the Earth is itself tilted on its axis at an angle of 23.45◦. This

gives rise to a declination angle ν, which is the angular distance North or South of the

Earth’s equator, which is obtained as:

ν(N) ' sin−1 [sin(23.45◦) sin (D(N))] , (4.1)

where D(N) = 360(N − 81)/365◦ and N is the day number in a year with first of

January being day 1. Other key parameters are the latitude La ∈ [0, 90◦] (positive in

either hemisphere), the longitude Lo, the hour angle ζ(t,N) ∈ [0, 360◦], that corresponds

to the azimuth’s angle of the sun’s rays due to the Earth’s rotation, the inclination ξ

of the solar panel toward the sun on the horizon and the azimuthal displacement ψ,

which is different from zero if the normal to the plane of the solar module is not aligned

with the plane of the corresponding meridian, that is, the solar panel faces West or

East.2 ζ(t,N) is given by ζ(t,N) = 15(AST (t,N) − 12)◦, where AST (t,N) ∈ [0, 24]

hours, is the apparent solar time, which is the time based on the rotation of the Earth

with respect to the sun and is obtained as a scaled version of the local standard time

t (we refer to t′ as t adjusted accounting for the daylight savings time) for the time

zone where the solar module is installed. AST (t,N) is computed as follows. Briefly,

we obtain the Greenwich meridian angle, GMA = UTCoff × 15◦, which corresponds to

the angle between the Greenwich meridian and the meridian of the selected time zone:

UTCoff is the time offset between Greenwich and the time zone and 15 is the rotation

angle of the Earth per hour. Thus, we compute ∆t = (Lo − GMA)/15◦, i.e., the time

displacement between the selected time zone and the time at the reference Greenwich

meridian. At this point, AST (t,N) is obtained as AST (t,N) = t′ + ∆t + ET (N)

1Θ = 0 (Θ = ±90◦) if the sunlight arrives perpendicular (parallel) to the module.
2ψ > 0 if the panel faces West and ψ < 0 if it faces East.
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(expressed in hours), where ET (N) is known as the equation of time, with ET (N) '
[9.87 sin(2D(N))− 7.53 cos(D(N))− 1.5 sin(D(N))]/60.

Finally, the power incident on the PV module depends on the angle Θ, for which we

have:

cos Θ(t,N) = sin ν(N) sinLa cos ξ −

− sin ν(N) cosLa sin ξ cosψ +

+ cos ν(N) cosLa cos ξ cos ζ(t,N) +

+ cos ν(N) sinLa sin ξ cosψ cos ζ(t,N)

+ cos ν(N) sin ξ sinψ sin ζ(t,N) . (4.2)

Once an astronomical model is used to track Θ, the effective solar radiance as a function

of time t is given by: Ieff(t,N) = Isun(t,N) max(0, cos Θ(t,N)), where the max(·) ac-

counts for the cases where the solar radiation is above or below the horizon, as in these

cases the sunlight arrives from below the solar module and is therefore blocked by the

Earth. The sun radiance, Isun(t,N), for a given location, time t and day N , has been

obtained from the database at [81].

4.2.2 PV Module

A PV module is composed of a number nsc of solar cells that are electrically connected

according to a certain configuration, whereby a number np of them are connected in

parallel and ns in series, with nsc = npns. A given PV module is characterized by its I-V

curve, which emerges from the composition of the I-V curves of the constituting cells.

Specifically, the I-V curve of the single solar cell is given by the superposition of the

current generated by the solar cell diode in the dark with the so called light-generated

current i` [123], where the latter is the photogenerated current, due to the sunlight

hitting the cell. The I-V curve of a solar cell can be approximated as:

iout ' i` − io
[
exp

( qv

nκT

)
− 1
]
, (4.3)

where q ≈ 1.6·10−19 C is the elementary charge, v is the cell voltage, κ ≈ 1.380·10−23 J/K

is the Boltzmann’s constant, T is the temperature in degree Kelvin3, n ≥ 1 is the diode

ideality factor and io is the dark saturation current. io corresponds to the solar cell diode

leakage current in the absence of light and depends on the area of the cell as well as on

the photovoltaic technology. The open circuit voltage voc and the short circuit current

3T is given by the sum of the ambient temperature, which can be obtained from the dew point and
relative humidity, and of a further factor due to the solar power hitting the panel.
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isc are two fundamental parameters for a solar cell. The former is the maximum voltage

for the cell and occurs when the net current through the device is zero. isc is instead

the maximum current and occurs when the voltage across the cell is zero (i.e., when

the solar cell is short circuited). If vM
oc and iMsc are the open circuit voltage and short

circuit current for the solar module M, the single solar cell parameters are obtained as:

isc = iMsc/np and voc = vM
oc/ns (considering a module composed of homogeneous cells).

The light-generated current for the single solar cell is a time varying quantity, i`(t,N),

which depends on the amount of sunlight that hits the solar cell at time t, where N is the

day number. Here, we have used the following relation: i`(t,N) = iscF (t,N), where the

radiation rate F (t,N) ∈ [0, 1] is obtained as F (t,N) = 0.001Ieff(t,N), i.e., normalizing

the effective irradiance hitting the solar cell with respect to the maximum radiation of

1 kW/m2 (referred to in the literature as “one sun” [124]). Hence, i`(t,N) is plugged

into 4.3 to obtain iout(t,N) for a single solar cell as a function of the time t for day N .

The total current that is extracted from the solar module is: iMout(t,N) = npiout(t,N).

4.2.3 Power Processor

Generally speaking, every voltage or current source has a maximum power point, at

which the average power delivered to its load is maximized. For example, a Thévenin

voltage source delivers its maximum power when operating on a resistive load whose

value matches that of its internal impedance. However, in general the load of a generic

device does not match the optimal one, which is required to extract the maximum power

from the connected solar source. To cope with this, in practice the optimal load is emu-

lated through a suitable power processor, whose function is that of “adjusting” the source

voltage (section A of Fig. 4.1) until the power extracted from it is maximized,4 which

is also known as maximum power point tracking (MPPT). Ideally, through MPPT, the

maximum output power is extracted from the solar panel under any given tempera-

ture and irradiance condition, adapting to changes in the light intensity. Commercially

available power processors use “hill climbing techniques”; as an example, in [125] the au-

thors propose advanced control schemes based on the downhill simplex algorithm, where

the voltage and the switching frequency are jointly adapted for fast convergence to the

maximum power point. See also [126] for further information on MPPT algorithms and

their comparative evaluation and [127] for a low-power design targeted to wireless sensor

nodes. In the present work, we have taken into account the DC/DC power processor by

computing the operating point (iMout, v
M) (see Eq. 4.3) for which the extracted power in

section A, P = iMoutv
M, is maximized. Note that, if iout and v are the output current

4This corresponds to adapting the input impedance of the power processor to Zopt = Z∗source, where
∗ indicates the complex conjugate.
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and the voltage of the single solar cell, we have iMout = npiout and vM = nsv. For this

procedure, we have considered the parameters presented before (solar irradiance, rota-

tion of the Earth, etc.) and also the fact that isc and voc change as a function of the

environmental temperature, which affects the shape of the I-V curve in Eq. 4.3 (see, e.g.,

the dependence of i` on isc). Hence, we have computed the extracted power in two steps:

step 1) we have obtained the (ideal) maximum power PMPP that would be extracted by

the panel at the MPP by an ideal tracking system:

PMPP = max
v
{iMoutv

M} = npns max
v
{ioutv} , (4.4)

where iout = iout(t,N) is given by Eq. 4.3. Step 2) the power available after the power

processor (section B in Fig. 4.1) is estimated as P ′max = ηPMPP, where η ∈ (0, 1) is the

power processor conversion efficiency, which is defined as the ratio η = P ′max/PMPP and

can be experimentally characterized for a given MPP tracking circuitry [127]. P ′max is

the power that is finally transferred to the energy buffer.

4.2.4 Semi-Markov Model for Stochastic Energy Harvesting

The dynamics of the energy harvested from the environment is captured by a continuous

time Markov chain with Ns ≥ 2 states. This model is general enough to accommodate

different clustering approaches for the empirical data, as we detail shortly.

Formally, we consider an energy source that, at any given time, can be in any of the

states xs ∈ S = {0, 1, . . . , Ns−1}. We refer to tk, with k ≥ 0, as the time instants where

the source transitions between states, and we define τk = tk+1 − tk as the time elapsed

between two subsequent transitions. In what follows, we say that the system between

tk and tk+1 is in cycle k.

Right after the k-th transition to state xs(k), occurring at time tk, the source remains in

this state for τk seconds, where τk is governed by the probability density function (pdf)

f(τ |xs), with τ ∈ [τmin(xs), τmax(xs)]. At the next transition instant, tk+1, the source

moves to state xs(k + 1) ∈ S according to the probabilities puv = Prob{xs(k + 1) =

v|xs(k) = u}, with u, v ∈ S. When the source is in state xs(k), an input current ik

is fed to the rechargeable battery, where ik is drawn from the pdf g(i|xs), with i ≥ 0.

That is, when a state is entered, the input current i and the permanence time τ are

respectively drawn from g(i|xs) and f(τ |xs). Then, the input current remains constant

until the next transition, that occurs after τ seconds. In this work, we assume that the

voltage at the energy buffer (section B of Fig. 4.1) is constant, as typically considered
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when a rechargeable battery is used. Given that, there is a one-to-one mapping between

instantaneous harvested power and harvested current.

4.2.5 Estimation of Energy Harvesting Statistics

Based on the aforementioned models, we have mapped the hourly irradiance patterns

obtained from [81] into the corresponding operating point, in terms of power P ′max and

current i after the power processor (section B of Fig. 4.1). Thus, we have computed the

statistics f(τ |xs) and g(i|xs) from these data according to the two approaches that we

describe next. These differ in the adopted clustering algorithm, in the number of states

Ns and in the structure of the transition probabilities puv, u, v ∈ S.

Night-day clustering: we have collected all the data points in [81] from 1991 to 2010,

grouping them by month. Thus, for each day in a given month we have classified the

corresponding points into two states xs ∈ {0, 1}, i.e., a low- (xs = 1) and a high-energy

state (xs = 0). To do this, we have used a current threshold ith, which is a parame-

ter set by the user, corresponding to a small fraction of the maximum current in the

dataset. According to ith, we have classified all the points that fall below that threshold

as belonging to state 0 (i.e., night) and those points above the threshold as belonging

to state 1 (day). After doing this for all the days in the dataset, we have estimated the

probability density function of the duration τ , f(τ |xs), and that of the input current i

(after the power processor), g(i|xs), for each state and for all months of the year. For

the estimation of the pdfs we have used the kernel smoothing technique see, e.g., [128].

The transition probabilities of the resulting semi-Markov chain are p10 = p01 = 1 and

p00 = p11 = 0 as a night is always followed by a day and vice versa.

Slot-based clustering: as above, we have collected and classified the irradiance data

by month. Then, we subdivided the 24 hours in each day into a number Ns ≥ 2 of time

slots of constant duration, equal to Ti hours, i = 1, . . . , Ns. Each slot is a state xs of our

Markov model. Hence, for each state xs we computed the pdf g(i|xs) for each month of

the year, considering the empirical data that has been measured in slot xs for all days in

the dataset for the month under consideration. Again, the kernel smoothing technique

has been utilized to estimate the pdf. For the statistics f(τ |xs), being the slot duration

constant by construction, we have that: f(τ |xs) = δ(τ−Txs), for all states xs ∈ S, where

δ(·) is the Dirac’s delta. The transition probabilities of the resulting Markov chain are

puv = 1, when u ∈ S and v = (u+ 1) mod Ns, and puv = 0 otherwise. This reflects the

temporal arrangement of the states.
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Figure 4.2: Result of the night-day clustering approach for the month of July consid-
ering the radiance data from years 1999− 2010.

4.3 Numerical Results

For the results in this section, we have used as reference the commercially available micro-

solar panels from Solarbotics, selecting the Solarbotics’s SCC-3733 Monocrystalline solar

technology [129]. It is to be noted that, the conclusions drawn in this subsection for this

type of panel are general and valid also for panel of bigger size, such as the one used for

SBSs since the harvested current is only scaled. For this product, the single cell area is

about 1 square centimeter, the solar cells have an efficiency of 21.1%, isc = 5 mA and

voc = 1.8 V. Next, we show some results on the stochastic model for the solar energy

source obtained considering a solar module with np = 6 and ns = 6 cells in parallel and

in series, respectively. We have selected Los Angeles as the installation site, consider-

ing ξ = 45◦, ψ = 30◦ and processing the data from [81] as described in the previous

section with a cluster threshold equal to 1/50−th of the maximum current in the dataset.

4.3.1 Night-day clustering

A first example for the night-day clustering approach is provided in Fig. 4.2, which

shows the result of the clustering process for the month of July. Two macro states are

evident: a low energy state (night), during which the power inflow is close to zero, and

a high energy state (day). As this figure shows, the harvested current during the day

follows a bell-shaped curve. However, contrarily to what one would expect, even for the
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Figure 4.3: g(i|xs) (solid line, xs = 0) obtained through the Kernel Smoothing (KS)
technique for the month of February, for the night-day clustering method (2-state semi-
Markov model), using radiance data from years 1999− 2010. The empirical pdf (emp)

is also shown for comparison.

month of July the high-energy state shows a high degree of variability from day-to-day,

as is testified by the considerable dispersion of points across the y-axis. This reflects the

variation in the harvested current due to diverse weather conditions. In general we have

a twofold effect: 1) for different months the peak and width of the bell vary substantially,

e.g., from winter to summer and 2) for all months we observe some variability across

the y-axis among different days. These facts justify the use of stochastic modeling, as

we do in this work, to capture such variability in a statistical sense.

Another example, regarding the accuracy of the Kernel Smoothing (KS) technique to

fit the empirical pdfs, is provided in Fig. 4.3, where we show the fitting result for the

month of February.

In Figs. 4.4 and 4.5 we show some example statistics for the months of February, July

and December. In Fig. 4.4, we plot the pdf g(i|xs), which has been obtained through

KS for the high-energy state xs = 0. As expected, the pdf for the month of July has

a larger support and has a peak around i = 0.04 A, which means that is likely to get

a high amount of input current during that month. For the months of February and

December, we note that their supports shrink and the peaks move to the left to about

0.03 A and 0.022 A, respectively, meaning that during these months the energy scav-

enged is lower and is it more likely to get a small amount of harvested current during

the day. Fig. 4.5 shows the cumulative distribution functions (cdf) obtained integrating

g(i|xs) and also the corresponding empirical cdfs. From this graph we see that the cdfs

obtained through KS closely match the empirical ones. In particular, all the cdfs that we
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Figure 4.4: Pdf g(i|xs), for xs = 1, obtained through Kernel Smoothing for the
night-day clustering method (2-state Markov model).

have obtained through KS have passed the Kolmogorov-Smirnov test when compared

against the empirical ones, for a confidence of 1%, which confirms that the obtained

distributions represent a good model for the statistical characterization of the empirical

data. The pdf for state xs = 1 is not shown as it has a very simple shape, presenting

a unique peak around i = 0+. In fact, the harvested current is almost always negli-

gible during the night.5 Figs. 4.6 and 4.7 respectively show the pdf f(τ |xs) obtained

through KS and the corresponding cdf for the same location and months of above, for

xs = 0. Again, Fig. 4.6 is consistent with the fact that in the summer days are longer

and Fig. 4.7 confirms the goodness of our KS estimation. Also in this case, the statistics

for all months have passed the Kolmogorov-Smirnov test for a confidence of 1%. The

pdfs for state xs = 1 are not shown as these are specular to those of Fig. 4.6 and this

is also to be expected as the sum of the duration of the two states xs = 0 (daytime)

and xs = 1 (night) corresponds to the constant duration of a day. This means that the

duration statistics of one state is sufficient to derive that of the other.

4.3.2 Slot-based clustering

The attractive property of the 2-state semi-Markov model obtained from the night-

day clustering approach is its simplicity, as two states and four distributions suffice to

statistically represent the energy inflow dynamics. Nevertheless, this model leads to

5Note that our model does not account for the presence of external light sources such as light poles.
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Figure 4.5: Cumulative distribution function of the harvested current for xs = 1 (solid
lines), obtained through Kernel Smoothing (KS) for the night-day clustering method

(2-state Markov model). Empirical cdfs (emp) are also shown for comparison.
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Figure 4.6: Pdf f(τ |xs), for xs = 1, obtained through Kernel Smoothing for the
night-day clustering method (2-state Markov model).

a coarse-grained characterization of the temporal variation of the harvested current,

especially in the high-energy state.

Slot-based clustering has been proposed with the aim of capturing finer temporal details.

An example of the clustering result for this case is given in Fig. 4.8, for the month of

July for Ns = 12. All slots in this case have the same duration, which has been fixed a

priori and corresponds to 24/Ns hours.
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Figure 4.8: Result of slot-based clustering considering Ns = 12 time slots (states) for
the month of July, years 1999− 2010.

Fig. 4.9 shows the pdf g(i|xs) for the first three states of the day (slots 5, 6 and 7, see

Fig. 4.8) for the month of July, which have been obtained through KS. As expected, the

peaks (and the supports) of the pdfs move to higher values, until reaching the maximum

of 0.04 A for slot 7, which is around noon. Due to the symmetry in the solar distribution

within the day, the results for the other daytime states are similar and therefore have

not been reported. In Fig. 4.10 we compare the cdfs obtained through KS against the
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Figure 4.10: Comparison between KS and the empirical cdfs (emp) of the scavenged
current for xs = 5, 6 and 7 for the slot-based clustering method for the month of July.

empirical ones. Also in this case, all the cdfs have passed the Kolmogorov-Smirnov test

for a confidence of 1%.

A last but important results is provided in Fig. 4.11, where we plot the autocorrelation

function (ACF) for the empirical data and the Markov processes obtained by slot-based

clustering for a number of states Ns ranging from 2 to 24 for the month of January.

With the ACF we test how well the Markov generated processes match the empirical

data in terms of second-order statistics. As expected, a 2-state Markov model poorly

resembles the empirical ACF, whereas a Markov process with Ns = 12 states performs
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quite satisfactorily. Note also that 5 of these 12 states can be further grouped into a

single macro-state, as basically no current is scavenged in any of them (see Fig. 4.8).

This leads to an equivalent Markov process with just eight states.

We highlight that our Markov approach keeps track of the temporal correlation of the

harvested energy within the same day, though the Markovian energy generation pro-

cess is independent of the “day type” (e.g., sunny, cloudy, rainy, etc.) and also on

the previous day’s type. Given this, one may expect a good fit of the ACF within a

single day but a poor representation accuracy across multiple days. Instead, Fig. 4.11

reveals that the considered Markov modeling approach is sufficient to accurately rep-

resent second-order statistics. This has been observed for all months. Hence, one may

be thinking of extending the state space by additionally tracking good (g) and bad (b)

days so as to also model the temporal correlation associated with these qualities. This

would amount to defining a Markov chain with the two macro-states g and b, where

pgb = Prob{day k is g| day k − 1 is b}, with k ≥ 1. Hence, in each state g or b, the

energy process could still be tracked according to one of the two clustering approaches

of Section 4.2.4, where the involved statistics would be now conditioned on being in the

macro-state. The good approximation provided by our model, see Fig. 4.11, show that

this further level of sophistication is unnecessary.



Chapter 4. Photovoltaic Sources Characterization 61

Table 4.1: Results for different solar panel configurations with night-day clustering
in Los Angeles for the month of August

np × ns Size ī max(i) τ̄ min(τ) max(τ)
[cm2] [mA] [mA] [h] [h] [h]

2 x 2 2.99 2.16 4.52 9.73 8.17 10.17
4 x 4 11.98 9.25 19.77 10.18 9.00 10.67
6 x 6 26.96 21.29 45.56 10.26 9.17 10.67
8 x 8 47.92 38.15 82.10 10.32 9.17 10.83

10 x 10 74.88 59.97 129.19 10.34 9.17 10.83
12 x 12 107.83 86.73 186.91 10.35 9.17 10.83

Table 4.2: Results for different solar panel configurations with night-day clustering
in Los Angeles for the month of December

np × ns Size ī max(i) τ̄ min(τ) max(τ)
[cm2] [mA] [mA] [h] [h] [h]

2 x 2 2.99 1.11 2.48 7.74 5.00 8.33
4 x 4 11.98 4.85 11.03 8.27 6.50 8.67
6 x 6 26.96 11.19 25.67 8.38 6.67 8.83
8 x 8 47.92 20.16 46.01 8.42 6.83 8.83

10 x 10 74.88 31.65 72.44 8.44 6.83 8.83
12 x 12 107.83 45.79 104.83 8.45 6.83 9.00

4.3.3 Panel size and location

To conclude, we show some illustrative results for different solar panel sizes and lo-

cations. Table 4.1 and Table 4.2 present the main outcomes for different solar cells

configurations for the night-day clustering approach for the months of August and De-

cember. Two representative months are considered: the month with the highest energy

harvested, August, and the one with the lowest, December. As expected, the current

inflow strongly depends on the panel size (linearly). Also, note that the day duration

slightly increases for an increasing panel area as this value is obtained by measuring when

the energy is above a certain (clustering) threshold. Although we scaled this threshold

proportionally with an increasing harvested current, the longer duration of the day is

due to the exponential behavior introduced by the scaling factor in Eq. 4.3, see the RHS

of this equation.

Finally, in table 4.3 and table 4.4 we show some energy harvesting figures for a solar

panel with np = ns = 6 for some representative cities for the months of August and

December, respectively.
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Table 4.3: Results for different solar panel locations for np = ns = 6 for the month
of August

Location ī max(i) τ̄ min(τ) max(τ)
[mA] [mA] [h] [h] [h]

Chicago, IL 17.03 46.74 10.57 8.50 11.33
Los Angeles, CA 21.29 45.56 10.26 9.17 10.67
New York, NY 17.17 44.62 10.42 8.83 11.00
Reno, NV 22.91 48.52 10.72 9.16 11.00

Table 4.4: Results for different solar panel locations for np = ns = 6 for the month
of December

Location ī max(i) τ̄ min(τ) max(τ)
[mA] [mA] [h] [h] [h]

Chicago, IL 5.24 16.08 6.95 4.83 8.00
Los Angeles, CA 11.19 25.67 8.38 6.67 8.83
New York, NY 6.81 18.95 7.57 5.67 8.33
Reno, NV 8.24 21.12 7.85 6.00 8.50

4.4 Conclusions

In this chapter we have considered micro-solar power sources, providing a methodology

to model the energy inflow as a function of time through stochastic Markov processes.

The latter, find application in energy self-sustainable systems, such as the one considered

in this thesis (i.e., the simulation of energy harvesting communication networks) and are

as well useful to extend current theoretical work through more realistic energy models.

Thus, it allows to accurate model one of the most important environment variable,

i.e., the energy. The proposed approach has been validated against real energy traces,

showing good accuracy in their statistical description in terms of first and second order

statistics. As final remark, it is to be noted that the tool has been developed using

MatlabTMand is available under the GPL license at [130].



Chapter 5

Switch-ON/OFF Policies for EH

SBSs through Distributed

Q-Learning

5.1 Introduction

Massive deployment of SBSs represents the most promising architecture to meet the high

capacity demands of mobile networks. Their reduced energy requirements encourage

the use of RES as distributed power suppliers. Their adoption is expected to have

a twofold positive effect: 1) it will increase the use of renewable sources to provide

energy, and consequently to reduce the carbon footprint of ICT, and 2) it will allow

savings on power grid bills. Solar energy is probably the most important RES, due

to its widespread availability, the good efficiency of photovoltaic technology and its

competitive cost [79]. However, the resulting panel sizes may represent an obstacle for

urban scenarios, where SBSs are likely to be installed in street furniture (i.e., traffic

lamps, street lights, transportation hubs, etc.). Small form-factor solar panels can also

be adopted by intelligently allocating energy to the SBSs, putting them in power saving

(OFF) mode when necessary, and exploiting the macro BS to compensate for their OFF

time. The bottom line is that the panel size can be made small at the cost of some extra

processing / optimization, which entails a tight interaction among SBSs and between

SBSs and the macro BS.

However, with the introduction of energy harvesting, we also need to consider the erratic

and intermittent nature of RES, which further complicates the EE problem and the

corresponding ON/OFF strategies. Most of the previous papers published in this area

have only provided guidelines for dimensioning the network, while online approaches

63
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to control network elements have appeared only recently. In [91], the authors present

an algorithm for determining when to switch OFF the SBSs by solving a ski rental

problem. The analysis is carried out considering Poisson arrivals for energy and traffic,

which may provide a non-realistic approximation to these processes. A solution based

on Reinforcement Learning is presented in [92], where the authors concentrate on the

performance of a single SBS. However, the impact of multiple SBSs simultaneously

switching OFFs within the same area is not considered.

In this chapter, we fill these gaps by proposing a solution considering multiple SBSs in

a macro BS area, realistic traffic conditions and solar radiation data from real measure-

ments. SBS network is modeled as a multi-agent system where each agent (SBS) makes

autonomous decisions, according to a Decentralized SON paradigm. SBSs supplied by

solar energy and batteries (energy storage) are utilized as an overlay layer in a two-tier

network with a macro BS powered by the electricity grid. The behavior of small cells can

be optimized to offload the traffic from the macro BS according to the energy income

and the traffic demand. To this purpose, we designed a distributed online solution based

on multi-agent RL, known as distributed Q-learning, which allows SBSs to independently

learn a RRM policy. This main contribution of this study lies on the following points:

1. proposing a distributed Q-learning solution to control SBSs powered with solar

energy

2. extend the standard Q-learning solution with offline trained algorithm

3. investigating the convergence of the algorithms

4. characterizing the ON/OFF switching policies

5. evaluate the network system performance with the proposed solutions compared

to a baseline solution

6. calculating the surplus energy that cannot be stored, due to the energy storage

capacity constraints

The remainder of the chapter is organized as follows. In Section 5.2 we present the

system model. Section 5.3 gives an overview on the distributed Q-learning algorithm,

whereas the two proposed algorithms are presented in Section 5.4. In Section 5.5 we

discuss some performance results. In Section 5.6 we draw our conclusions and discuss

future research directions.
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5.2 System Model

We consider a two-tier network composed of clusters of one macro BSs and N SBSs.

The macro BSs are connected to the power grid and provide baseline coverage. The

SBSs are deployed in a hotspot manner to increase the system capacity, where needed

(e.g., shopping hall, city center, etc.). SBSs are solely powered through solar-harvested

energy and possess rechargeable batteries to store the harvested energy.

For the BS power consumption model we use the linear model presented in Section 2.2,

P = P0 + βρ, where ρ ∈ [0, 1] is the BS traffic load, normalized with respect to its

maximum capacity, and P0 is its baseline power consumption. We consider medium scale

factor “metro cells” as SBSs, featuring a maximum transmission power of 38 dBm. The

values of β and P0 for the macro BS (SBS) are 600 (39)W and 750 (105.6), respectively.

The user equipment resource allocation scheme uses the methodology defined in [131].

This includes a detailed wireless channel model and the dynamic selection of the mod-

ulation and coding scheme for each user as function of its channel state.

5.3 Distributed Q-Learning

In this Section we present the distributed Q-learning algorithm already introduced in

Chapter 3 and we define the variables used in this work. Distributed Q-learning is an

online optimization technique to control multi-agent systems, i.e., a system featuring

N distributed agents (the SBSs) which make decisions (switch-ON/OFF) in an unco-

ordinated fashion. Each agent has to independently learn a policy (switch-ON/OFF)

through real-time interactions with the environment. These interactions entail taking

actions for the agents and receiving, in return, a reward from the environment. In dis-

tributed Q-learning each agent i maintains a local policy and a local Q-function Q(xit, a
i
t)

that only depends on its state xit and actions ait, with t being the decision epoch (time).

The agents only have a partial view of the overall system and their local states may

differ since traffic load and energy income may be unevenly distributed. In particular,

the input of the switch-ON/OFF algorithm depends on the SBS location and on the

geographical distribution of its users, affecting for instance, the experienced traffic load.

The decision making process of each agent is defined according to a MDP with state

vector xt = (x1
t , x

2
t , . . . , x

N
t ), where xit is the state associated with SBS i at time t. Agent

i independently chooses an action ait from an action set A based on its own state xit.

At the next decision epoch t+ 1, the agent receives a reward rit from the environment.

The agent dependent reward rit is then used to locally update the Q-value, Q(xit, a
i
t),
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indicating the level of convenience of selecting action ait when in state xit. The Q-value

is updated as follows:

Q(xit, a
i
t)← Q(xit, a

i
t) + α

[
rit + γmax

a
Q(xit+1, a

′)−Q(xit, a)
]

(5.1)

where α is the learning rate, γ is the discount factor and xit+1 is the next state for agent

i and a′ is the associated optimal action, as introduced in Section 3.2.2. This procedure

is executed by each agent at each epoch of the system in a synchronized manner. The

asynchronous Q-learning algorithm proposed in [132], uses a learning rate given by a

polynomial function that at time t accounts for the number of visits, up to and including

time t, to state-action pair (x, a), termed n(x, a, t). In detail αω(x, a) = α/n(x, a, t)ω,

where ω = 1 leads to a linear learning rate, ω ∈ (1/2, 1) to a polynomial one and ω = 0

to a constant learning rate.

To make the best decisions (exploitation) the algorithm must have gathered enough

information from the environment (exploration). The exploration phase is commonly

controlled by an ε-greedy approach, in which random states are visited by the agents with

probability ε. Since rigorous convergence results for multi-agent reinforcement learning

algorithms are still an open research question, here we refer to the convergence time

as the first instant in which the Q-values remain stable within a certain tolerance. In

particular, we say that the system has reached convergence when all the SBS batteries

are below BOFF
th for a certain amount of time (e.g., within a window of consecutive days).

The rationale behind this definition is to foster the energy sustainability of the SBSs.

5.4 Algorithms

5.4.1 ON/OFF switching through online distributed Q-learning

In this section we provide details on the Q-learning algorithm, by defining state, action

set and reward function, for the N agents.

State: The local state xit is defined by:

xit = {Sit , Bi
t, L

i
t} , (5.2)

where Sit is the state of the renewable energy source based on the incoming amount

harvested energy (e.g., day and night), Bi
t is the normalized battery energy level, Lit is

the normalized load for SBS i in slot t, which depends on the number of users served

by this SBS. We uniformly quantize Sit , B
i
t and Lit into 2, 5 and 3 levels, respectively,
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since we found experimentally that represent a good trade-off between complexity and

accuracy.

Action set: The set of possible actions A consists of the two actions of switching ON

and OFF the SBS. We have not considered the option of modulating the load ρ between

0 and 1, due to the energy profile of SBSs. In fact, the β parameter in Table 2.1 for

the SBSs is usually small, and therefore the parameter ρ has a marginal impact on

their energy consumption. When a SBS is switched OFF, the associated users have to

connect to the macro BS. However, in case the macro BS is not able to provide them

with service, they will be dropped, until the next time slot, when a variation of system

state may lead to different RRM decisions.

Reward function: The reward function has been defined as:

rit =


0 Bi

t < BOFF
th or Dt > Dth

κT it Bi
t ≥ BOFF

th and Dt ≤ Dth and SBS i is ON

1/Bi
t Bi

t ≥ BOFF
th and Dt ≤ Dth and SBS i is OFF

(5.3)

where T it is the normalized throughput of SBS i in slot t, Dt is the instantaneous system

drop rate, defined as the ratio between the total amount of traffic dropped and the

traffic demand in the entire network (accounting for macro and small BSs). The latter

is not available locally at the SBSs but can be easily retrieved from the macro BS, e..g,

through the private message mechanism of the X2 interface [133]. Dth is the maximum

tolerable drop rate. Finally, BOFF
th is a threshold on the battery level. The rationale

behind Eq. 5.3 is the following. The condition in the first line implies a zero reward when

the battery level falls below BOFF
th (Bi

t < BOFF
th ) or the system drop rate is below Dth

(Dt < Dth). This incentivizes the SBS to turn itself OFF to save energy, as this implies

a higher reward. When Bi
t < BOFF

th , this is necessary to promote the energetic self-

sustainability of the SBS, whereas when Dt > Dth, the system performance is deemed

sufficient. Thus, the SBS can be switched OFF and offload the macro BS at a later time.

In the second and third line of Eq. 5.3, the reward is proportional to the throughput

when the SBS is turned ON and is instead proportional to the inverse of the energy

buffer level when the SBS is OFF. Note that the SBS, after a learning phase, will choose

to remain ON (and offload the macro BS) when the reward in the second line is higher,

i.e., when κT it > 1/Bi
t. Note that 1/Bi

t may dominate over κT it in case battery level

and throughput are both low. In this case, the SBS switches OFF to save energy.

The constant κ is used to balance the impact of the two terms (throughput vs energy

efficiency).
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5.4.2 ON/OFF switching based on trained distributed Q-learning

Online learning algorithms suffer from an initial exploration phase to gather information

from the environment and, based on this acquired knowledge, make good decisions. This

process produces instability and poor performance potentially for a long time, i.e., until

a sufficient amount of knowledge is gathered. We proposed an offline training period for

the algorithm to setup initial switch OFF/ON policies. In detail, the training phase

consists of running the agent with the energy statistics of a specific month for generating

the Q-tables in an offline fashion. This returns the trained Q-values that can be used for

initializing the Q-tables of the SBSs when they are deployed in their online operative

mode. The pseudo-code of this solution is presented in Alg. 2. This initial training helps

reduce the initial exploration phase and, in case the algorithm is not able to follow the

dynamics of the environment, it also helps improve the system performance, by avoiding

slow recalibration phases. We note that, the training phase can be either performed

with a simulation approach, as we propose, or obtained by other expert SBSs that have

been already deployed, as in the transfer learning paradigm [98].

Algorithm 2 Trained Distributed Q-learning

1: procedure Training(Qminit(x
i, ai))

2: Qminit(x
i, ai)← 0

3: for m ∈M do
4: Run Q-learning(EHm)
5: Qminit(x

i, ai)← Q-table(xi, ai)
6: end for
7: end procedure

1: procedure Online
2: for m ∈M do
3: for m ∈ Dm do
4: Q-table(xi, ai)← Qminit(x

i, ai)
5: Run Q-learning(EHm)
6: end for
7: end for
8: end procedure

where
M is the set on months
EHm = Energy Traces for month m
Dm is the set of days in month m
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5.5 Performance Evaluation

5.5.1 Simulation Scenario

We consider a deployment of a varying number of SBSs within a square macro cell area

with a side of 1 km. The macro BS is placed in the center of it, whereas the SBSs are

randomly positioned with the constraint that their cells do not overlap. This translates

into a minimum inter-SBS distance of 50 m, which corresponds to the coverage radius of

a SBS with transmission power of 38 dBm. The coverage area of each SBS is populated

with 120 uniformly placed UEs, which allow congesting the SBS in peak traffic hours.

Data load is modeled using an urban profile [89], where traffic is concentrated around

working hours and has one peak in the morning and one in the afternoon. According

to [1], we considered that 20% of the UEs are “heavy users” with a data volume of

900 MB/h, while the remaining UEs are “ordinary users” (112.5 MB/h). As for the

RES system, we consider the Panasonic N235B solar modules, which have single cell

efficiencies of about 21%, delivering about 186 W/m2. Each SBS is equipped with an

array of 16× 16 solar cells (i.e., 4.48 m2). The battery size is 2 kWh (panel and battery

sizes have been chosen so that SBS batteries can be replenished in a full winter day).

Realistic harvested energy traces are obtained using the SolarStat tool [21], considering

the city of Los Angeles as the deployment location. Fig. 5.1 shows typical profiles for

the traffic demand and the harvested energy across two subsequent days. Interestingly,

we see that the maxima in the energy inflow and in the traffic demand are not aligned.

This means that some optimization actions that could be taken are e.g., saving energy

resources and use them when the next traffic peak occurs.

The analysis is performed as follows. We first elaborate on the convergence of the online

algorithm, then we characterize the switch ON/OFF policies in different representa-

tive months (i.e., January, April and July) and compare the performance of the online

distributed Q-learning (“QL” in the figures) against that of a distributed Q-learning

algorithm trained in an offline fashion (“QLT”). We conclude our investigation with

an assessment of the energy efficiency of the considered techniques. The Q-learning

based algorithms are independently implemented by each SBS. The learning rate is set

to α = 0.5 and the discount factor to γ = 0.9 for all SBS, according to our simulation

analysis. The constant κ (see Eq. 5.3) is set to 10 as this provides a good trade-off

for the considered system parameters. Both algorithms also implement exploration fea-

tures [134], i.e., random states are visited by the learning agents with probability ε = 0.1.

The threshold on the instantaneous traffic drop rate is set to Dth = 0.05. QL and QLT

are contrasted with a greedy scheme (“Gr” in the figures) where the i − th SBS is

switched OFF at time t when its battery level Bi
t drops below BOFF

th , and is reactivated
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Figure 5.1: Examples of total traffic demand and amount of energy harvested.

at time t + ∆ when it has harvested enough energy for returning above the threshold

(i.e., Bi
t+∆ ≥ BOFF

th ). The battery threshold BOFF
th is set to 20% of the battery capacity

in order to keep the battery within its safe operating regime [135].

5.5.2 Online Algorithm Convergence

At time t, a SBS i is said to be in outage if Bi
t ≤ BOFF

th . Then, the total outage time

for SBS i over a period of time T > 0 is computed as
∫ T

0 1{Bi
t ≤ BOFF

th }dt, where

1{·} is the indicator function, which is one if the event in its argument is verified and

zero otherwise. In a certain day, the system is said to be in outage if the total outage

time, obtained summing the outage time of all the SBSs during the day, is higher than

5%. An algorithm is said to have converged when no outage occurs during a window of

three consecutive days. An example of the convergence behavior is shown in Fig. 5.2,

where the hourly battery level of a SBS is plotted on a per hour basis for the month of

January for a network of 3 SBSs. A preliminary phase of instability can be noted until

hour 1000 (i.e., lasting about 40 days), where the SBS adopts a greedy-like approach

and drops frequently below the threshold since it is using the energy only according to

instantaneous availability. After this amount of time, the agent has been able to gather

information from the environment in order for its Q functions to stabilize. After that

point, the battery level drops below BOFF
th less often and the density of points starts

becoming more prominent above the battery threshold. In proximity of 1300 hours, we

can appreciate a temporary instability due to the scarce amount of energy harvested
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Figure 5.2: Battery level for the month of January of a single SBS.
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Figure 5.3: Average daily outage with multiple SBSs.

during several consecutive days. However, we note that the algorithm promptly reacts

and drives the system toward a good (zero-outage) region.

Similar considerations hold for scenarios involving more SBSs. Nonetheless, in such

case the instability during the winter can be more frequent, as depicted in Fig. 5.3,

which presents the average daily outage rate when varying the number of SBSs. During

the summer period, the system is always able to maintain the batteries levels in a

safe operative window. On the other hand, in winter periods the daily outage rate

is increasing with the number of SBSs, reaching the 40% for 10 SBSs. Multi-agent RL
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suffers the problem of the coordination among agents, since they may incur in conflicting

behaviors, as highlighted in Section 3.2.5. In particular, in this case the SBSs need to

find a coordination on when switching OFF for avoiding to overload the macro BS. This

task becomes more difficult when the number of SBSs in the network is high, since the

SBSs share the macro BSs resources when temporary switching OFF, which implies that

they have less opportunities to do this.

5.5.3 Policy Analysis

The switch OFF rate of a single SBS during 24 hours is reported in Fig. 5.4 for polynomial

(ω = 0.5) and constant (ω = 0) learning rates for the months of January, April and July.

The rate is calculated by simulating 180 days, so as to allow for the completion of the

training phase and increase the statistical confidence of the results.

Switch OFFs are more intensive during early morning hours (from 0am to 4am) and in

the night (from 9pm to 11pm), due to the scarce harvested energy and the low traffic

demand at night-time. When the SBS is turned OFF, the SBS agent chooses to recharge

its battery and relies on the macro cell for serving the UEs within its coverage. This

behavior is similar for all months. In January, another less intensive switch OFF period

can be appreciated from 5am to 9am (switch OFF rate of about 0.3). This is due to

a feeble harvesting process during those months. Moreover, it can be noticed that the

two values of ω do not significantly affect the shape of the policy. This implies that a

constant learning rate (ω = 0) provides the needed flexibility for Q-learning to effectively

cope with the system dynamics.

In Fig. 5.5, the switch OFF rate of a SBS in a multi-cell scenario with 10 SBSs is

presented. The policies are similar to those in Fig. 5.4 (single cell case). However, we

can appreciate a slight reduction in the switch OFF intensity in the early morning. Here,

the SBSs switch OFF less often in order not to overload the macro cell and maintain

the traffic drop rate below Dth. In the months of April and July, the number of switch

OFFs is lower than in January, due to an increase in the harvested energy income.

According to this, we can appreciate that the algorithm is able both to learn the policy

as function of the energy and traffic patterns and to adapt to different scenarios with

different number of SBSs.

In Fig. 5.6, we plot an example of the temporal system behavior for a HetNet including 3

SBSs and a macro BS for the last week of December. Here, from top to bottom we show

temporal traces concerning traffic demand and instantaneous harvested energy (in the

same plot), battery level, policy adopted at the SCs (y-label “Action”) and normalized

load at the macro BS (y-label “Macro Load”). From these results various observations
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Figure 5.4: Switch OFF rate of a SBS during the day with a single SBS.
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Figure 5.5: Switch OFF rate of a SBS during the day with multiple SBSs.

can be made. First, the policy adopted by QL tends to save energy during the night,

and this makes it possible to offload more the macro BS during the day, as it can be seen

in the bottom plot of Fig. 5.6 in correspondence of the points marked with “(a)”. Also,

the impact of our reward function (see Eq. 5.3) can be appreciated in correspondence of

label “(b)”. Here, the QL keeps the SBSs ON, as the traffic demand is high, and in this

case sleeping would cause congestion at the macro BS. We remark that QL is capable of

doing this as it proactively saves some of the harvested energy when the energy inflow

is abundant. In contrast, the greedy scheme shows a more aggressive behavior and, as
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Figure 5.6: Example temporal behavior for a HetNet with 3 SBSs and one macro BS.
Temporal traces show the status of the SBSs.

a result, it has no residual energy to compensate for an upsurge in the traffic load.

We observe that the energy harvesting traces are the same for all SBSs. We implement

this choice since it is expected that the level of solar irradiation will not change much

within a macro cell area. In addition, this sort of synchronization with respect to the

experienced energy inflow from RESs is enforced by the traffic demand processes, as

different SBSs will as well undergo similar traffic profiles. This implies that, in the

considered setup, SBSs are often switched ON/OFF simultaneously.

This can be appreciated from Fig. 5.7, where the average load is plotted as a function

of the hour of the day for a network with 3 SBSs. The greedy scheme usually leads

to a higher load for the macro BS during the morning peak hours, where the batteries

are likely to be drained, and therefore most of the SBSs must be turned OFF. On the

contrary, QL loads the macro BS slightly more during most of the day in order to put

some of the SBSs to sleep (saving energy at these SBSs) and serve more traffic during

the morning peak.

5.5.4 Network Performance

In Fig. 5.8 we show the average throughput gain of QL and QLT with respect to the

greedy scheme by varying the number of SBSs, whereas in Fig. 5.9 we show the traffic

drop rate of QL, QLT and of the greedy algorithm. The results are achieved running

simulations across a full year. Statistics are gathered only when the algorithm has
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Figure 5.7: Average hourly load for the macro BS in a network with 3 SBSs.

converged and for a duration of 365 days. Since the harvesting process substantially

differs for different seasons, we have presented our results separately for the winter and

the summer periods, respectively termed “Win” and “Sum” in the plots. January,

February, October, November and December are considered winter months.

The effect of ω is not relevant from the throughput and traffic drop perspective. QL

and QLT outperform greedy: the throughput gain of Q-learning with respect to greedy

is of up to 16% in the winter, which results in a drop rate smaller than 5% for QL and

QLT, whereas the drop rate reaches 20% for the greedy scheme. The difference between

winter and summer resides in the corresponding switch OFF policies, as discussed in the

previous section.

We also note that QL and QLT have similar performance, both in terms of throughput

and traffic drop, but they have a different convergence time. In fact, QLT presents 6

times shorter convergence times on average, taking at most 10 days to converge in the

worst case scenario of 10 SBSs, with respect to the 40 days needed by QL in the same

settings. However, QL can rapidly adapt to the changing dynamics of the harvesting

process across the months (as reported in Fig. 5.8 and Fig. 5.9), thus rendering useless

the per-month-training of QLT. Therefore, SBS agents shall only be trained to gather

the necessary information during their initial exploration phase. Upon that, they can

be used in an online fashion and further training is no longer required.



Chapter 5. Switch-ON/OFF Policies for EH SBSs through Distributed Q-Learning 76

 8

 10

 12

 14

 16

 18

 3  4  5  6  7  8  9  10

T
h
ro

u
g
h
p
u
t 
G

a
in

 [
%

]

Number of SBSs

QL Sum

QL Win

QLT Sum

QLT Win

Figure 5.8: Average throughput gain [%] of QL and QLT with respect to the Gr
scheme.
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Figure 5.9: Traffic drop rate for QL, QLT and Gr.

5.5.5 Energy Efficiency

In this section, the energy performance of QLT is not shown as is the same as that of

QL. The energy efficiency is defined as EE = TS/ES , where TS is the system throughput

and ES is the total energy drained by the macro BS (from the power grid). The traffic

demand profile is also shown.



Chapter 5. Switch-ON/OFF Policies for EH SBSs through Distributed Q-Learning 77

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5  10  15  20  25

E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 [
M

b
p
s
/K

W
h
]

T
ra

ff
ic

 P
ro

fi
le

 [
%

]

Hour [h]

Traffic Profile

Gr Jan

Gr Apr

Gr Jul

QL Jan

QL Apr

QL Jul

Figure 5.10: Average energy efficiency of a SBS during the day with a single SBS.
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Figure 5.11: Energy efficiency improvement [%] of QL with respect to greedy vs
number of SBSs.

The energy consumption metric is shown in Fig. 5.10, where the QL energy efficiency is

compared with that of the greedy scheme for January, April and July. QL outperforms

the greedy scheme during the morning slot (e.g., from 6am to 12pm), since it saves

energy during the nocturnal low traffic period in order to have enough energy reserve

for the morning peaks of traffic, without compromising the throughput performance.

Fig. 5.11 reports the energy efficiency improvement of QL with respect to greedy, varying

the number of SBSs. QL offers a considerable gain, which reaches 15% in the winter
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Figure 5.12: Average redundant energy during the day for a single SBS.

months. This is due to its higher throughput, which follows from a proper usage of the

available energy reserves. The lower gain during the summer months and its decreasing

behavior for an increasing number of SBSs are motivated by the fact that the RES

system has been dimensioned to provide the necessary energy in the worst case, which

is a winter day. This implies that, during the summer, there are days in which the

algorithm does not have to smartly save energy, since the harvested energy is enough

for the whole day and therefore greedy and QL have similar performance. In this case,

the abundant energy has to be discarded by the SBSs, i.e., it can neither be used for

transmission nor stored in the battery. This fact is shown in Fig. 5.12 (“excess energy”).

With QL, the total amount of grid energy drained by the system spans from 7.3 KWh for

a network of 3 SBSs, to 7.9 KWh with 10 SBSs (as compared to 7.5 KWh for the greedy

scheme). Note that QL has a worse annual energy consumption performance since it

serves more traffic, as we have discussed in Section 5.5.4. QL has a higher energy surplus

than greedy. In fact, QL (greedy) reserves 0.124 (0.064) KWh in January, 2.115 (1.619)

KWh in April and 2.021 (1.513) KWh in July. This translates into a total amount of

energy not used by QL of 400 KWh in the summer (300 for greedy), and of 65 KWh in

the winter (36 for the greedy scheme). Considering the higher energy efficiency and the

energy surplus of QL, we conclude that QL uses less energy to offload the macro BS.

In such a context, SBSs may act as prosumers (i.e., an energy consumer and producer)

and offer/trade their excess energy to provide ancillary services to the smart grid.
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5.6 Conclusions

In this chapter, we have presented a distributed implementation of a switch OFF/ON

algorithm aimed at optimizing the energy usage in a dense small cell deployment with

solar energy harvesting capability. The solution uses Q-learning techniques to learn the

dynamics of energy harvesting and traffic processes and make switch ON/OFF decisions

accordingly. Our numerical results demonstrate that distributed learning is a promis-

ing approach to make decisions in complex, dense and dynamic scenarios, leading to

substantial advantages with respect to greedy schemes, such as higher throughput and

energy efficiency. In our future work, we are planning to analyze the behavior of the

proposed solution for different types of traffic profiles with different traffic demands for

studying the flexibility in adapting to the various 5G operative cases. In addition, we

would like to enhance the control performed by the SBSs in order to enable a cooperative

optimal computation of the policies that accounts for common (and global) performance

objectives. In fact, in the current algorithm, the cooperation is only marginally achieved

through the use of the global drop rate in the reward functions that are locally computed

by the SBSs.



Chapter 6

Layered Learning Load Control

for Renewable Powered SBSs

6.1 Introduction

In this chapter, motivated by the promising results of the distributed MRL solutions

presented in Chapter 5, we propose a novel energy efficient framework specifically de-

signed to deal with dense HetNets. In doing this, we will consider the newest techniques

that are expected to the be key enabler in 5G of the SON paradigm, i.e., softwarization

and AI. On the one hand, SDN and NFV provide a flexible infrastructure for collecting

the necessary system information and reconfiguring the network elements. SDN sepa-

rates control and data planes and, by centralizing the control, enables many advantages

such as programmability and automation. NFV enables softwarized implementation of

network functions on a general purpose hardware, improving scalability and flexibility.

And on the other hand, AI gives the tools for automatic and intelligent system (re-

)configuration thanks to ML and RL methods. ML contributes with valuable solutions

to extract models that reflect the user and network behaviors, while RL can be used for

interactive decision making problem working in real-time and at short time scales.

Recently, the interest in online approaches to control network elements attracted more

attention with the goal of optimizing the system by considering its actual instantaneous

conditions and introducing more accurate models of harvested energy and traffic demand

with respect to the ones used in offline approaches. This type of optimization is based

on agents that control each BS, generating a multi-agent optimization problem. Multi-

agent systems are an effective way to treat complex, large and unpredictable problems;

however, such distribution might suffer the problem of finding simultaneously a solution

80
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among all the agents that is good for the whole system, as we introduced in Section 3.2.5

and we will show with numerical results in this chapter.

The main contribution of this chapter is to present an online solution for switching

ON/OFF SBS powered by solar PV panels and batteries in an HetNet scenario. The

proposed framework is based on a MRL approach for controlling the SBS. The Layered

Learning paradigm is adopted to simplify the problem by decompose it in subtasks.

Thus, the overall solution for the multi-agent optimization is performed by decomposing

the general problem in subtasks. In particular, the global solution is obtained in a

hierarchical fashion: the learning process of a subtask is aimed at facilitating the learning

of the next higher subtask layer. The first layer implements an MRL approach and it is

in charge of the local online optimization at SBS level as function of the traffic demand

and the energy incomes. The second layer is in charge of the network-wide optimization

and it is based on Artificial Neural Networks (ANNs) aimed at estimating the model of

the overall network. The architecture for implementing the two levels and enabling their

interaction is based on a SDN paradigm. To the best of the authors’ knowledge, this is

the first work in the literature that has proposed an online control system for HetNet

with EH capabilities based on a learning solution with realistic environmental conditions

and considering the optimization across different energy harvesting conditions, as has

been discussed in 2.4. Moreover, in this work we compare it against an optimal solution.

As a result, the innovative contribution of this chapter can be summarized as follows:

1. Definition of a control framework based on a SDN/NFV paradigm for networks

with SBS powered with renewable energies.

2. Design of an online solution based on Layered Learning for the optimization of

SBS with energy harvesting capabilities.

3. Characterization of the temporal behavior

4. Characterization of the performance of the whole framework and of the specific

algorithms at each layer.

5. Comparison with an optimal solution evaluated offline.

The rest of this chapter is organized as follows. Section 6.2 defines the system model

and the architecture of the control framework. Section 6.3 and 6.4 describe the solutions

adopted in the two layers with details. Section 6.5 is devoted to the presentation of the

simulation scenario where the proposed approach has been evaluated and to describe

the correspondent numerical results. Finally, Section 6.6 concludes by summarizing the

main results of the work.
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6.2 Problem Statement

We consider a two-tier network composed of clusters of one MBS and N SBSs. The

MBS provides baseline connectivity and is powered by the electric grid. The SBSs

are deployed for increasing the capacity in a hot-spot manner (e.g., shopping hall, city

center, etc.). SBSs are solely powered through the energy harvested by a solar panel

and are equipped with rechargeable batteries.

The system evolves in cycles, based on the variation of the traffic demand and the energy

arrivals in time. The time granularity ∆T is the time difference between two consecutive

cycles. The energy harvested by the SBSs at time t is defined by St = [St1, S
t
2, . . . , S

t
N ]

and the energy stored by each SBS at time t is defined by Bt = [Bt
1, B

t
2, . . . , B

t
N ]. The

traffic load experienced at time t by each SBS due to the traffic of the UEs is defined as

Lt = [Lt1, L
t
2, . . . , L

t
N ].

At each cycle t, the LL control framework decides the configuration of the cluster of the

SBSs in terms of ON/OFF states. When a SBS is switched OFF, the associated users

have to connect to the macro BS. However, in case the macro BS is overloaded, it will

not able to provide them with service and the users will be dropped, until the next time

slot. We define this situation as system outage.

The core our proposed solution is based on a multi-agent system, being each agent

located at the SBSs. Such a distributed approach is indicated for providing system

scalability and allows SON implementation for controlling the different SBSs. Each

agent is in charge of defining the ON/OFF policy based on its local environment. In

fact, each SBS may experience different traffic and energy harvesting profiles. The agents

can be either endowed with an offline behavior or learn new behaviors online, such that

the performance of the single agent or of the whole system are improved gradually.

The former is usually solved thanks to game theory solution. However, sometimes the

complexity of the environment makes difficult or impossible the offline design of the agent

behavior. In this case, the latter solution represents a viable approach for optimizing

the agent behaviors and it is known as Multi-agent Reinforcement Learning (MRL). A

RL agent learns by interacting with its environment. At each time step, the agent takes

an action according to the state its perceived from the environment. The action causes

the environment to transit to a new state and allows the agent to evaluate the benefits

incurred in the transition, the so called reward. By trying different actions, the agent

has to learn the optimal behavior of the system thanks to the cumulative rewards. This

phase is called exploration and provides the inputs to the stable phase, in which the

agents will use the learned policies, called exploitation. MRL and Q-learning will be

described more in detail in Section 6.3.
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The fundamental dilemma in RL is the trade-off between exploration and exploitation.

In MRL, this dilemma is even more sensitive, since the exploration phase is further

complicated. In fact, agents in MRL explore to obtain information not only about

their local environment, but also about the other agents in order to adapt to their

behavior. In fact, any agent’s action on the environment depends also on the action

taken by the other agents. In order to overcome this problem, the agents have to be

coordinated for choosing actions that are consistent to achieve their goal. A promising

solution to this issue is the heuristically-accelerated MRL [30]. The goal of HAMRL is to

guide the exploration using additional heuristic information. A successful application of

HAMRL in the telecommunication domain has been presented in [112] for the problem

of interference management in LTE networks.

In order to provide a valuable heuristic to the HAMRL control system, the global per-

formance of the system has been considered here. In fact, the agents at each SBS have

a local view of the system for maintaining the algorithm complexity at reasonable levels

and avoiding to have too large phase of exploration, which is one of main reason of agents

conflicts. Therefore, we advocate for a hierarchical management of the system through

a Layered Learning solution. The goal of LL is to decompose the problem in subtasks in

order to reduce the complexity of the whole optimization problem. The proposed LL so-

lution is based on two-layers in charge of local and network-wide EE control, respectively.

The two layers can interact thanks to a SDN framework that provides the infrastructure

for collecting the needed parameters and distributing the control policies, as shown in

Fig. 6.1. An example of such SDN solution is the EMMA SDN application defined in

the H2020 5G Crosshaul project [136]. EMMA is an infrastructure-related application

based on the SDN paradigm aimed at monitoring the status of the RAN, fronthaul and

backhaul elements and triggering reactions to minimize the energy footprint. The first

layer is a set of local agents in the SBSs, each of those in charge of learning switching

ON/OFF policies according to the harvested energy arrivals, the available energy bud-

get, the user traffic demand and the energy consumption of the SBSs. To address this

objective, agents are implementing a HAMRL algorithm based on our proposal in [137],

presented in Chapter 5. Layer 2 is a central manager in charge of collecting local agent

state information and assisting Layer 1 in learning intelligent switch ON/OFF policies

according to a network global perspective. The second layer implements a MFNN to

forecast the MBS load based on the environmental variables of each SBS and a SBSs

Centralized Controller (SCC) that decides whether to enforce the local policies of a

specific set of SBSs. The algorithm implemented in the two layers will be detailed in

Sections 6.3 and 6.4.
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Figure 6.1: Layered Learning control architecture overview.

6.2.1 BS Energy Model

The BS power consumption model adopted is one presented in Section 2.2: P = P0 +

βρ, where ρ ∈ [0, 1] is the BS traffic load, normalized with respect to its maximum

capacity, and P0 is its baseline power consumption. This model is supported by real

measurements [1] and closely matches the real power profile of LTE BSs.

6.2.2 Energy Harvesting Model

The energy harvesting process is based on model presented in chapter 4. It consists of a

Markov model that provides accurate statistics per month basis by processing the hourly

solar energy arrival data over 20 years. In detail, the 24 hours are divided into a number

Ns ≥ 2 of time slots of constant duration, equal to Ti hours, i = 1, . . . , Ns. Each slot

is a state of the Markov model and the pdf is evaluated through the kernel smoothing

technique per month basis, considering the empirical data that has been measured for

all days in the dataset for the month under consideration.
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6.2.3 Traffic Model

The user equipment (UE) resource allocation scheme uses the methodology defined

in [131]. This includes a detailed wireless channel model and the dynamic selection

of the modulation and coding scheme (MCS) for each user as function of its SINR,

which is given by

SINR =
|h0|2Pt,0∑NI

i=1 |hi|2Pt,i + σ2
0

, (6.1)

where Pt,0 and h0 are the transmission power and the channel gain for the useful trans-

mission respectively, NI is the number of interferers, whereas |hi|2 and Pt,i represent the

channel gain and the transmission power of the i-th interferer. σ2
0 is the power of the

thermal noise. The profile of the traffic of each user is obtained according to the model

presented in [138]. The model combines time, location and frequency information for

analyzing the traffic patterns of thousands of cellular towers. The analysis demonstrates

that the urban mobile traffic usage can be described by only five basic time domain

patterns that corresponds to functional regions, i.e., residential, office, transportation,

entertainment and comprehensive.

6.3 Layer 1: Local Optimization

6.3.1 Distributed Q-learning and HAMRL

The first layer is composed of a set of distributed agents implementing HAMRL with

the goal of dynamically switching ON and OFF the SBSs according to the available

harvested energy budget, the user traffic demand and the energy consumption of the

SBS. The control decisions are made by multiple intelligent and uncoordinated agents,

which can only partially observe the overall scenario. Therefore, the local environment

may differ from agent to agent, since they come from spatially distributed sources of

information. To this end, the distributed Q-learning technique has been considered [134].

The decision making problem of each agent is defined by an MDP with state vector

~xt = {x1
t , x

2
t , . . . , x

N
t }, where xit is the state associated with SBS i (described in the next

Section 6.3.2), at time t. At every MDP state transition, the energy level the batteries

Bt+1 at the beginning of the next slot is evaluated as the sum of the energy already in the

battery at the beginning of the current slot Bt, plus the energy produced during the time

slot St, minus the energy consumed in the same time slot, that depends on the traffic

Lt. Each agent i maintains a local policy and a local Q-function Q(xti, a
t
i) representing

the level of convenience in taking actions ati in state xti, with t being the decision epoch

(time). As a result of the execution of this action, the environment returns an agent
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dependent reward rit, which allows the local update of a Q-value, Q(xit, a
i
t). The Q-value

is computed according to the rule:

Q(xit, a
i
t)← Q(xit, a

i
t) + α

[
rit + γmax

a
Q(xit+1, a

′)−Q(xit, a)
]

(6.2)

where α is the learning rate, γ is the discount factor, xit+1 is the next state for agent i and

a′ is the associated optimal action, as introduced in Section 3.2.2. Therefore, thanks to

Eq. (6.2) and the reward, the control policy can be learned by exploring the environment.

The most common exploration procedure is the ε-greedy, which consists on randomly

choosing a sub-optimal action with probability ε, and the one with highest Q-value with

probability 1-ε, i.e., â = arg max
ai

(Q(xti, a
t
i)). The choice of the maximum Q-value makes

Q-learning an off-policy algorithm, since it uses the greedy exploration for estimating

the long term reward, while the Q-values are evaluated according to Eq. (6.2).

The idea of HAMRL is to use a heuristic function H(xti, a
t
i) derived from additional

knowledge not in its state variables for influencing the action choices of the learning

agent in order to modify its current policy Π(xti) and guide the exploration. The new

combined policy selection formula is:

Π(xti) = arg max
ai

(
Q(xti, a

t
i) +H(xti, a

t
i)
)

(6.3)

where H(xti, a
t
i) is a heuristic function derived from additional knowledge not in the

state variables. It is used for influencing the action choices and modify the current

policy Π(xti). Therefore, H(xti, a
t
i) have to be compliant with the Q-table used by the

agent (i.e., values and dimensions), in order to be able to properly influence the action

to be taken. If H(xti, a
t
i) = 0 the algorithm behaves like a regular QL for the i-th SBS.

6.3.2 Our Solution

To represent the environment, we define the local state xti of agent i at time t as

xti = (Sti , B
t
i , L

t
i), for including the most representative variables, i.e., the instantaneous

energy harvested, the battery level and the SBS load. Since these parameters assumes a

continuous value, they have been quantized for having a reasonable number of states to

be explored. The possible actions are to switching ON and OFF the SBS. The reward

of an agent i at time t is defined as follow:

rit =


0 Bt

i < BOFF
th or Dt > Dth

κT ti Bt
i ≥ BOFF

th and Dt ≤ Dth and SBS i is ON

1/Bt
i Bt

i ≥ BOFF
th and Dt ≤ Dth and SBS i is OFF

(6.4)
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where Dt is the traffic dropped by the network (i.e., non-served users), T ti is the through-

put of the SBS. Dth is the threshold on system drop-rate (i.e., macro and SBS), whereas

BOFF
th is the security threshold of the battery state of charge (SOC). The constant κ is

used to balance the impact of the throughput and energy saving rewards. The reward

rit is designed to avoid critical status such as low battery level or too high system drop

rates. SBSs are incentivized to save energy in normal load conditions (i.e., Dt ≤ Dth),

by putting a reward proportional to the inverse of the energy buffer level (1/Bi
t) when

the SBS is OFF. Alternatively, when the SBS is ON, the reward is proportional to the

throughput, as this promotes offloading the macro BS in high traffic situations. The

rationale behind this state/action model is borrowed from our previous work [137], pre-

sented in Chapter 5. The choice of the H(xti, a
t
i) values is made by Layer 2 and will be

detailed in Section 6.4.

6.4 Layer 2: Centralized Optimization

The task of this layer is to guide the agents of the Layer 1 for avoiding conditions of

high traffic drop or the wasting of energy. In particular, the second layer is in charge

of deciding the local agent(s) to be influenced and returns the most appropriate set of

heuristics values Ht = [H(xt1, a
t
1), H(xt2, a

t
2), . . . ,H(xtN , a

t
N )] according to network-wide

parameters that are not present in the HAMRL optimization. Layer 2 comprises an

MBS load estimator based on a MFNN which provides the input to an SBS Centralized

Controller, in charge of evaluating the system load conditions of the whole cluster and

selecting the SBSs to be influenced.

6.4.1 MBS Load Estimator

A MFNN estimates the normalized MBS load LtMBS at the time t as a function of the

load of each SBS Lti and of their ON/OFF policy Πt
i. We define the estimated load of the

MBS at the time t as L̂tMBS. A supervised approach has been adopted, i.e., a training

set of input-output is used to train the neural network according to the backpropagation

algorithm [99].

The basic element of a MFNN is represented by the neuron (also called perceptron),

which consists of a linear combination of fixed non-linear functions θj(x). In detail, for

a vector of input xi, i = 1 . . . , N , it takes the form:

y(x,w) = f

 N∑
j=1

wjθj(x)

 (6.5)
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where wi are the weights associated to each input and f(·) is a non-linear activation

function, A MFNN is composed by a series of neurons organized in L layers in a way

that the input information moves only in one direction (i.e., there are no cycle in the

networks like in a recurrent neural network). Let define I as the number of neurons in

layer l. The bottom layer, L0, is the input layer and it contains N + 1 neurons, which

are the inputs plus the “constant” neuron always at 1. The last layer is composed by

only one neuron and represents the output of the neural network. Each neuron in a

layer l = 2, . . . , L has Il = Il−1 inputs, each of which is connected to the output of a

neuron in the previous layer. Layers 2, . . . , L − 1 are called hidden layers. A MFNN

can approximate arbitrary continuous functions defined over compact subsets of RN by

using a sufficient number of neurons at the hidden layers. In order to achieve this, it

is necessary to determine the values of the weights correspondent to the function to

be approximated (also known as training phase). More details on the MFFN and its

training algorithms has been provided in 3.3.

6.4.2 SBS Centralized Controller

We identify two different operational cases based on the MFNN estimation output L̂tMBS:

i) the system is under-dimensioned, i.e. when L̂tMBS is above the threshold LthrHigh
MBS and

ii) the system is over-dimensioned, i.e. when L̂tMBS is below the threshold LthrLowMBS . The

former can happen when the SBSs have scarce energy reserves and many agents decide

to switch OFF simultaneously. In this case, the switching OFF of some SBSs can be

delayed, when the battery levels allow such operation. More in detail, the SBS Central-

ized Controller defines the set of candidate SBSs that can be switched ON (SBStON)

among those that are in OFF state and have enough battery reserves. Alternatively, in

case ii), the SBSs are providing the overlay capacity just for a few traffic, which can be

managed by the macro BS, especially in case some SBSs do not have a huge amount

of energy stored. In detail, in this case, the set of candidate SBSs to be switched OFF

(SBStOFF) is defined among those that are in ON state and have scarce energy reserves

(i.e., Bt
i ≤ BLOW

th ). The number of SBSs in SBStON and SBStOFF and their relevant

heuristics values Ht are derived based on Algorithm 3. For each SBS i that has been ac-

tivated or deactivated in this process, the correspondent heuristic value is set to −QMAX
i

in Ht, which was initialized to a vector of 0. In fact, H(xti, a
t
i) must be the lowest value

that can influence the choice of action in order to minimize the distortion in the Q-value

function due to the use of heuristics [30]. Therefore, for influencing the choice of ac-

tion of SBS i in state xti, H(xti, a
t
i) should be negative and higher than the maximum

Q-value in xti (i.e., QMAX
i ). Alternatively, when H(xti, a

t
i) = 0 the correspondent agent

will behave like in a regular Q-learning solution.
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Algorithm 3 SBS Enforcing

1: procedure Evaluate Ht(Lt,Πt)
2: Ht ← 0
3: Evaluate L̂tMBS with Lt,Πt

4: if L̂tMBS > LthrHigh
MBS then . Case i)

5: SBStON ← SBSs in OFF with Bt
i ≥ BOFF

th

6: Order SBStON from the lowest QMAX
i

7: while L̂tMBS > LthrHigh
MBS do

8: K ← index of the first SBS in SBStON

9: Ht
K ← −QMAX

K

10: Evaluate L̂tMBS with kthSBS ON
11: SBStON ← SBStON − kth SBS
12: end while
13: else if L̂tMBS < LthrLowMBS then . Case ii)
14: SBStOFF ← SBSs in ON with Bt

i ≤ BLOW
th

15: Order SBStOFF from the lowest QMAX
i

16: while L̂tMBS < LthrLowMBS do
17: K ← index of the first SBS in SBStOFF

18: Ht
K ← −QMAX

K

19: Evaluate L̃tMBS with kthSBS OFF
20: SBStOFF ← SBStOFF − kth SBS
21: end while
22: end if
23: end procedure

6.5 Numerical Results and Discussion

6.5.1 Simulation Scenario

The scenario considered in this analysis is composed of a single cluster with 1 MBS

placed in the middle of a 1× 1 m2 area and a varying number of SBSs randomly placed

and non-overlapping. We consider medium scale factor “metro cells” as SBSs, featur-

ing a maximum transmission power of 38 dBm, which corresponds approximatively to

50 meters of coverage range. The values of β and P0 of the energy model presented in

Section 2.2 for the MBS (SBS) are 600 (39)W and 750 (105.6), respectively.

Each SBS is supplied by an array of 16×16 solar cells of Panasonic N235B solar modules

(area 4.48 m2), that have single cell efficiencies of about 21%, and a lithium ion battery

of 1.5 KWh, which has been proven to be the optimal dimensioning for the worst case of

winter season [139]. The solar energy arrivals are generated with the SolarStat tool [21]

for the city of Los Angeles. The traffic demand is modeled as in [138]. In detail, the office

and residential traffic profiles has been considered, respectively termed “Res” and “Off”

in the following. Both of them present an intense activity during the day. However,

they differ in the profile: the office concentrates the traffic during the daylight hours
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(e.g., from 10 AM to 6 PM), while the residential has only one peak during the early

night hours (e.g., from 6 PM to 12 PM). Users have been classified according to [1],

where heavy users request 900 MB/h while ordinary ones need 112.5 MB/h. The main

simulation parameters are given in Table 6.1.

Table 6.1: Simulation Parameters.

Parameter Value

Scenario Solar panel size (m2) 4.48 (16×16)
Solar panel efficiency (%) 21
Battery capacity (kWh) 1.5
MBS transmission power (dBm) 43
SBS transmission power (dBm) 38
Bandwidth (MHz) 5
Epoch duration (h) 1

HAMRL α 0.5
γ 0.9
ε 0.1
κ 10
Battery threshold BOFF

th (%) 20
System drop-rate threshold Dth (%) 3

MFNN Learning rate (%) 0.1
First hidden layer nodes no. I1 = d3/2Ne
Second hidden layer nodes no. I2 = d2/3Ne
Third hidden layer nodes no. I3 = max(d2/3Ne, 2)

SCC High congestion threshold LthrHigh
MBS (%) 85

Low load threshold LthrLowMBS (%) 5

6.5.2 MFNN Training Analysis

We start the analysis of the framework presenting the training phase behavior of the

MFNN used in Layer 2. Based on simulative analysis, the best number of neurons per

layer is I1 = d3/2Ne, I2 = d2/3Ne and I3 = max(d2/3Ne, 2). Fig. 6.2 presents the

overall mean squared error (mse) of this configuration for a MFNN with two and three

hidden layers (respectively “2L” and “3L” in the figures) as a function of the day, which

includes 24 system evolution epochs. MFNN with three hidden layers starts with a

higher mse; however, it presents lower mse asymptotically (after 500 days). The two

MFNNs have a different starting behavior, the one with two hidden layers performs

better till 50 days. After that, the errors

As an additional illustrative result, we evaluate two different statistical measures that

return the performance of the SBS Centralized Controller decision making process: the

sensitivity and the specificity. The sensitivity is defined as the proportion of positive
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Figure 6.2: Mean squared error of the MFNN for different number of hidden layers.

cases that are correctly identified as such, in detail:

sensitivity =
true positive no.

true positive no. + false negative no.
(6.6)

where define the false negatives as the cases when the MFNN does not estimate that the

system is under-dimensioned (i.e., L̂tMBS ≤ LthrHigh
MBS ) but it is really in outage. Fig. 6.3

provides the sensitivity as a function of the day. From Fig. 6.3, we can observe that

the MFNN with two hidden layers takes approximatively 50 days for reaching a stable

behavior, whereas the one with three hidden layers takes 10 times longer and passes the

500 days.

Besides, the specificity measures the proportion of negative cases that are correctly

identified as such, which corresponds to:

specificity =
true negative no.

true negative no. + false positive no.
(6.7)

where false positives have been defined as the cases when the MFNN expects that the

system in under-dimensioned (i.e., L̂tMBS > LthrHigh
MBS ) but it is not in outage. Fig. 6.4

depict the specificity as function of the system evolution epochs. In this case, the MFNNs

reach a stable behavior at 1500 days. However, the MFNN with two hidden layers

presents less variance on the specificity. We can also note that the asymptotic value of

the specificity is lower than the sensitivity. This is due to the fact that we have adopted

a guard margin to guarantee the MBS not to be overloaded (i.e. LthrHigh
MBS = 0.85).

Therefore, some false positives are MFNN estimations that fall between LthrHigh
MBS and 1,
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Figure 6.4: Specificity of the MFNN for different number of hidden layers.

which do not represent a system outage.

Based on the analysis in the above, the MFNN with two hidden layers has been used

due to its better sensitivity and specificity, and a faster training phase.
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6.5.3 Distributed Q-learning and Layered Learning Training Analysis

The training phases of both distributed Q-learning and Layered Learning algorithms

have been evaluated considering the stability of the system to avoid conditions of battery

failure, which we defined as the case when the battery level drops below the security

threshold of the battery SOC BOFF
th . The reason behind this choice is that we considered

the energy as the most important parameter allowing the SBS to be operative and

avoiding a rapid degradation of the batteries [135]. In detail, in the epoch t, a SBS i is

said to be in battery failure if Bi
t ≤ Bth. Then, the total battery failure time for SBS i

over a period of time T > 0 is computed as
∫ T

0 1{Bi
t ≤ Bth}dt, where 1{·} is the indicator

function, which is one if the event in its argument is verified and zero otherwise. In a

certain day, we define that the system is stable if the sum of the battery failure time of

all the SBSs during the day is higher than 5%. An algorithm is said to have converged

when is stable during a window of three consecutive days.

An example of the convergence behavior of QL and LL algorithms is shown in Fig. 6.5

and Fig. 6.6, where the hourly battery level of a SBS is plotted on a per hour basis for a

scenario with 3 SBSs and different traffic profiles. The simulations start with the month

of January and runs for 400 days spanning across the correspondent months. In both

cases, the system starts with a short-sighted approach, since it is using the energy only

according to the instantaneous availability, and drops frequently below the threshold.

During this period, the agent is at the beginning of the exploration phase and has to

gather information from the environment in order for its Q functions to stabilize. The

resulting training phase is very shorter in case of the office traffic profile (almost 40 days

for both 20% and 50% of heavy users) than the residential one that presents a duration

of 50 and 80 for the case of 20% and 50% of heavy users, respectively. After these points,

the battery level drops below Bth less often and the density of points starts becoming

more prominent above the battery threshold. Similarly to what experienced with the

duration of the training phase, the number of points falling below the threshold in case

of office traffic profile are less with respect to the residential one. This phenomenon is

due to the fact that the hour profile of the office traffic is more similar to the one of the

harvested energy (i.e., both of them are concentrated during the daylight hours), which

helps the MRL in finding a policy that avoids the battery failure problem, as will be

also showed in the following sections. In such case, the improvement of the LL approach

with respect to the QL one is more evident, as depicted in Fig. 6.6a and Fig. 6.6b. In

fact, in Fig. 6.6a the LL is able to avoid that the battery level falls outside the ideal SOC

window (i.e., below BOFF
th ), while QL presents many points below the battery security

threshold starting from 300 days, which is approximatively the beginning of the winter

season. The effect of the traffic demand can be appreciated in both Fig. 6.5 and Fig. 6.6.



Chapter 6. Layered Learning Load Control for Renewable Powered SBSs 94

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  50  100  150  200  250  300  350  400

B
a
tt
e
ry

 L
e
v
e
l

Days no.

QL

LL

Battery Threshold

(a) 20% of heavy users

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  50  100  150  200  250  300  350  400

B
a
tt
e
ry

 L
e
v
e
l

Days no.

QL

LL

Battery Threshold

(b) 50% of heavy users

Figure 6.5: Example of battery level of an SBS in a network of 3 SBSs with Office
traffic profile. Scenario with 70 UEs per SBS with 20% and 50% of heavy users.
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Figure 6.6: Example of battery level of an SBS in a network of 3 SBSs with Residential
traffic profile. Scenario with 70 UEs per SBS with 20% and 50% of heavy users.

In case of the Office traffic profile, the minimum average battery level decreases from

0.6 to 0.4. In case of the residential traffic profile, only the LL is able to guarantee the

minimum battery level and only for the case of 20% of heavy users. Therefore, despite

of converging as in the definition above, the system in the last case is less stable and

presents still some problem in finding a solution that guarantees a longer battery lifetime.

It is to be noted that, the system is dimensioned for the worst case scenario of working

in the winter season. Thus, during the summer the energy reserves are abundant and,

usually, both LL and QL have an easier task when optimizing the system.

6.5.4 ON/OFF Policies

In this section, we analyze the behavior of the switch ON/OFF policies of the LL solu-

tion. The LL policies are compared with optimal direct load control based on Dynamic

Programming (DP) introduced in [93]. The policies have been evaluated across a full

year of simulation with the HAMRL algorithm already trained offline. The results are

presented separately for the winter and the summer periods, respectively termed “Win”



Chapter 6. Layered Learning Load Control for Renewable Powered SBSs 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20
 0

 2

 4

 6

 8

 10

S
w

it
c
h
 O

F
F

 r
a
te

T
ra

ff
ic

 [
G

B
/h

]

Hour [h]

traffic profile

LL Win

LL Sum

Opt Win

Opt Sum

(a) 20% of heavy users

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

S
w

it
c
h
 O

F
F

 r
a
te

T
ra

ff
ic

 [
G

B
/h

]

Hour [h]

traffic profile

LL Win

LL Sum

Opt Win

Opt Sum

(b) 50% of heavy users

Figure 6.7: Daily average switch OFF rate for the LL and optimal solutions with
Office traffic profile. Scenario with 70 UEs per SBS with 20% and 50% of heavy users.
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Figure 6.8: Daily average switch OFF rate for the LL and optimal solutions with
Residential traffic profile. Scenario with 70 UEs per SBS with 20% and 50% of heavy

users.

and “Sum” in the plots, since the harvesting process substantially differs for different

seasons. January, February, October, November and December are considered winter

months. Thus, it is impossible to evaluate the optimal solution over a full simulated year

for networks with more than 3 SBSs. The daily average switch OFF rate of the SBSs

for the LL and optimal policy with Office and Residential traffic profile is reported in

Fig 6.7 and Fig 6.8, respectively, jointly with the total traffic requested by the 3 SBSs.

Regarding the latter, it is to be noted that, the two traffic profiles considerably differ

in the amount of traffic requested during the day. In fact, while the office traffic arrives

to 61 GB/h for 20% of heavy users and to 115 GB/h for the case of 50% ones, the

residential almost double the capacity requirements reaching up to 116 GB/h and 218

GB/h, respectively.

In Fig. 6.7 we observe that the policies substantially converge in having a high switch

OFF rate during the night in order to save energy for the daily peak of traffic. However,

the LL algorithm is more conservative with respect to the optimal one, i.e., it is starting

the high switch OFF rate period already in the late afternoon (i.e., at 8 pm). The total
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amount of traffic in the network influences the policies of the LL algorithm moving the

beginning of the high switch OFF zone from the 8 pm till 12 pm. Therefore, the main

difference between the optimal and the LL solutions is in the duration of the high switch

OFF period. The latter presents a more conservative approach and needs to switch OFF

with higher intensity for being able to reach the design goals.

In Fig. 6.8 we observe that the policies have a similar behavior during the night and

differs during the day. In fact, considering the case of high traffic in Fig. 6.8b, the

optimal solution reports an extra switching OFF period during the afternoon in order

to save energy for the peak of traffic during the night. On the contrary, LL is maintaining

the behavior of the office traffic profile with only switch OFF period during the night.

However, LL reacts to the higher traffic demand during the night by reducing of 50%

the switch OFF rate with respect to the case of the office traffic profile.

6.5.5 Network Performance

In this section the LL framework is compared with a distributed QL solution and a greedy

(GR) algorithm. The GR switches OFF an SBS when its battery is below a security

threshold BOFF
th , and reactivates it when the battery returns above the threshold. BOFF

th

is set to 20% for maintaining the batteries in the correct SOC operative range and avoid

to rapidly jeopardize the battery performance [135]. Results are obtained averaging

simulations spanning over different months for an overall duration of 365 simulated days

with framework already trained. Despite of the fact that the training is performed offline,

the exploration phase is not stopped in order to be able to follow the slower dynamics of

the harvesting energy process across the seasons. It is worth noting that, the performance

behavior evaluated including the training phase does not change substantially, since the

training phase is relatively short with respect to the assessment window. Moreover, the

training can be reduced by using offline solution like the one presented in [137], where Q-

tables are initialized with trained Q-values evaluated either with a simulation approach

or obtained by other expert SBSs that have been already deployed, as in the transfer

learning paradigm. As for Section 6.5.4, two representative periods are considered for

presenting the results: winter and summer, respectively termed “Win” and “Sum”. We

considered a high-traffic intensity involving 70 UEs (50% heavy), since the results with

low-traffic present a similar behavior and will not presented for space reasons.

Fig. 6.9 presents the system average percentage gain in throughput of the LL and QL

schemes with respect to the GR. The LL framework presents always a higher throughput.

Moreover, the LL has better scalability than QL, which shows a degradation starting

from 5 SBSs. This phenomenon is of particular intensity in case of residential traffic



Chapter 6. Layered Learning Load Control for Renewable Powered SBSs 97

-3

-2

-1

 0

 1

 2

 3

 4

 3  4  5  6  7  8  9  10

T
h
ro

u
g
h
p
u
t 
G

a
in

 [
%

]

Number of SBSs

QL Sum

QL Win

LL Sum

LL Win

(a) Office Traffic Profile

 0

 2

 4

 6

 8

 3  4  5  6  7  8  9  10

T
h
ro

u
g
h
p
u
t 
G

a
in

 [
%

]

Number of SBSs

QL Sum

QL Win

LL Sum

LL Win

(b) Residential Traffic Profile

Figure 6.9: Throughput [%] gain of the LL and QL solutions with respect to the GR
one. Scenario with 70 UEs per SBS with 50% of heavy users with Office and Residential

traffic profile.

profile, where it leads to a throughput lower than the GR in the summer period, as

depicted in Fig. 6.9a. This is the typical problem of a distributed QL solutions, since

the lack of coordination may generate conflicting behaviors among the agents. This issue

may occur with higher probability for a higher number of agents, as clearly demonstrated

by the QL performance in Fig. 6.9. It is to be noted that, during summer the gain in

throughput is lower since the renewable source system has been dimensioned to provide

the necessary energy in winter season. This implies that during summer the harvested

energy is generous and both LL and QL have fewer margins for policy optimization.

Fig. 6.10 reports the average traffic drop rate of the three schemes and confirms the

analysis in the above. The QL solution is able to reduce the drop rate with respect to

the GR in most of the cases for the case of Residential traffic profile, where it has a

higher drop rate only in case of 10 SBSs during the summer. However, the scalability

issue with the drop rate is more clear in the case of the Office traffic profile, where

the GR solution has better performance both in summer, starting from 8 SBSs, and

in winter, in case of 10 SBSs. Alternatively, LL is able to always present the lowest

traffic drop rate and to maintain it almost always below the HAMRL system drop rate

threshold Dth of the 3%. The only exception is for the case of Residential traffic profile

in the winter season, where the traffic drop rate reaches the 8%, which corresponds to

approximately the half of the one experienced by the GR.

We now analyze the average daily performance during the summer and winter periods

in the scenario with 10 SBS in order to highlight the differences between QL and LL

in the most sensitive zones. In Fig. 6.11, we report the traffic drop rate of the LL, QL

and GR solutions in a cluster of 10 SBSs varying the number of UEs per SBS. The LL

solution is able to reduce the traffic drop rate of more than 50% with respect to GR. On

the contrary, QL has always worst performance in summer period and also in the winter
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Figure 6.10: Traffic drop rate of the LL, QL and GR solutions. Scenario with 70 UEs
per SBS with 50% of heavy users with Office and Residential traffic profile.
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Figure 6.11: Traffic drop rate of the LL, QL and GR solutions. Scenario with 10
SBSs and varying the number of UEs per SBS with 50% of heavy users with Office and

Residential traffic profile.

one starting from 60 UEs per SBS when considering the Office traffic profile. Finally,

Fig. 6.12 presents the average hourly traffic drop for the case of 70 UEs per SBS. It is

clear that LL outperforms the other solutions during all the day and considering both

traffic profiles. In detail, in case of the Office traffic profile, LL can meet the design

goals on the system drop rate during the whole day, while GR and QL present high

peaks in the early morning (9 am) and early night (from 8 pm to 12 pm). Regarding

the residential traffic profile, it can be seen that LL is not able to maintain the traffic

drop rate below Dth passing the 4% since it is not able to properly manage the high

traffic peaks at late night and early morning, which are two sensitive periods as in both

of them the system does not have high energy reserves.

6.5.6 Energy Assessment

Table 6.2 and Table 6.3 present the footprint of the two learning-based methods and

of a baseline solution where both the MBS and the SBSs are powered with the grid.
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Figure 6.12: Average hourly traffic drop rate of the LL, QL and greedy solutions.
Scenario with 10 SBSs and 70 UEs per SBS with 50% of heavy users with Office and

Residential traffic profile.

In particular, the comparison is performed in terms of grid energy consumption and

carbon dioxide equivalent (CO2e) production for a scenario with 50% of heavy users.

The CO2e has been evaluated by considering the average grid electricity CO2 intensity

of UK in 2016, which corresponds to 320 gCO2eq/kWh [140]. In addition, the column

excess energy reports the values of the harvested energy that cannot be used by the

SBSs nor stored in the batteries, since the harvesting/storage system is dimensioned for

the worst case (i.e., winter).

The learning solutions can reach energy and carbon savings of up to 50% during the

summer, as for the scenarios with 10 SBSs. However, the savings are strongly affected by

the number of SBSs deployed. In fact, for small numbers of SBSs, the energy footprints

of the three methods are closer, and the savings are limited to 20 − 30% for networks

with 5 SBSs. The traffic profile is another important factor that influences the footprint,

since it varies in the total amount of data exchanged in the network and in temporal

dynamics, as discussed in Section 6.5.4. The energy savings for the scenarios with office

traffic profile are in general 10% greater with respect to the ones obtained with the

office traffic profile. The reason behind this fact is that the latter has a peak of traffic

during the night (12 am), which is where the energy reserves are scarce and the learning

solutions differ more with respect to the optimal and rely more on the MBS, as can be

seen in the longer high switch OFF period depicted in Fig. 6.8. Considering the two

learning methods, the amount of traffic delivered influences the behavior of the energy

consumption, as expected. Thus, LL, that drops less traffic, usually consumes more

energy with respect to the QL solution. However, the gap between them is almost null

when considering scenarios with 10 SBSs, which is where QL experiences the highest

drop error rate since it suffers of agents’ coordination problem, as presented in Fig. 6.10.

Finally, looking at the excess energy values in Table 6.2 and Table 6.3, we can appreciate



Chapter 6. Layered Learning Load Control for Renewable Powered SBSs 100

Table 6.2: Energy consumption, carbon dioxide equivalence and exceed energy in the
winter period for a network composed of 5 and 10 SBSs, and 70 UEs per SBS with 50%

of heavy users.

Traffic Solution Energy Used CO2e Excess Energy
(kWh) (kg) (kWh)

5 10 5 10 5 10
SBSs SBSs SBSs SBSs SBSs SBSs

Off grid 4784 6854 1435 2139 0 0
QL 3320 3745 1066 1198 770 1499
LL 3324 3647 1064 1167 776 1310

Res grid 4921 7130 1574 2281
QL 3634 4180 1163 1338 501 999
LL 3854 4200 1233 1344 536 949

Table 6.3: Energy consumption, carbon dioxide equivalence and exceed energy in the
summer period for a network composed of 5 and 10 SBSs, and 70 UEs per SBS with

50% of heavy users.

Traffic Solution Energy Used CO2e Excess Energy
(kWh) (kg) (kWh)

5 10 5 10 5 10
SBSs SBSs SBSs SBSs SBSs SBSs

Off grid 6871 9713 2199 3108 0 0
QL 4584 5184 1455 1659 2662 5295
LL 4592 5069 1469 1622 2651 5033

Res grid 6975 10106 2232 3234 0 0
QL 4923 5651 1575 1808 3912 6995
LL 5188 5647 1660 1807 3941 7892

how the harvested energy process is abundant in summer, where the energy that cannot

be used can be greater than the grid energy used by the system, as in the summer for the

case of 10 SBSs. As for the energy savings, this circumstance occurs with particularly

intensity with the residential traffic profile, that is the scenario in which the learning

algorithms experience more difficulties in optimizing the system. The performance of

QL and LL are similar in this case, expect for the case of summer with 10 SBSs, where

the QL consumes 10% more of harvested energy despite of the fact that is dropping more

traffic. This behavior confirms that LL scales better and is able to use more efficiently

the available energy reserves, i.e., it utilizes less solar energy than QL and delivers more

traffic.

In the light of the above results, future work need to consider enhancements in the

decisions making process for enabling the system to reduce the exceed energy and work

with the same performance under different traffic conditions. Moreover, tolerating an

increment in the complexity of the problem, the exceed energy can be a new variable
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in an extended optimization problem than can control the process of sharing it with

other network elements, as in a micro-grid scenario, and/or trading it, as done by the

prosumers in the smart grid architecture.

6.6 Concluding Remarks

In this chapter we have presented a comprehensive framework for the management of

two tiers networks with SBS powered with solar power. A Layered Learning approach

to improve the EE of the system while maintaining the performance requirements has

been proposed.

The first layer implements a MRL algorithm for learning the control policies locally

at each SBS. Each agent (SBS) makes autonomous decisions to independently learn

when switching ON/OFF for adapting to the dynamic conditions of the environment, in

terms of energy inflow and traffic demand. Layer 2 is in charge of improving the Layer 1

policies through a MFNN-based solution by considering network-wide parameters and,

in doing this, helping in mitigating the effects of the conflicting behavior of the agents.

The interaction between the two layers is provided by the heuristically accelerated MRL

paradigm.

We compared the policies with respect to an optimal offline solution based on dynamic

programming, obtaining that the behaviors correspond in almost all cases, proving the

fact the online learning can be a viable tool for managing dense network of SBSs. Then,

we analyzed the training phase of both MFNN and MRL algorithms. The latter high-

lighted the improvements obtained thanks the introduction of the proposed LL approach

with respect to a distributed MRL solution. The network performance of the proposed

LL algorithm has been contrasted with respect to the one of a greedy and distributed

MRL solutions. Simulations results show that the proposed solution outperforms the

other ones in terms of throughput and drop rate. The energy savings achieved are

considerable with respect to standard solution where both MBS and SBSs are powered

with the grid, reaching up to the 50%. Moreover, the exceed energy is also abundant,

which opens the door to the possibility of extending the problem for including it in the

optimization framework.

Finally, there are several ways in which this work can be extended. The traffic model

is deterministic due to the lack of models considering the geographical and temporal

statistical distributions. However, HetNet scenarios are characterized for specific spatial

distribution of users (i.e., hotspot) that varies during the day according to the zone

(e.g., residential, office, transportation). The effect of these dynamics in the learning
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process is important to be evaluated for considering the deployment of this framework

in real networks. The proposed solution has shown some stability problem for network

of very dense SBSs with high traffic. The proposed heuristically accelerated RL together

with the layered learning paradigm represent a good starting point, since they combine

the flexibility of a distributed learning solution with the efficiency of a centralized one.

Further work can be done for a deeper integration between the solutions adopted in the

two layers. The results on the excess energy encourages to integrate its control in the

optimization problem. In fact, the presence of abundant energy perfectly matches with

Demand Response method of the smart grid, where the energy can be either shared

among elements and/or traded with the energy operators.



Chapter 7

Conclusions and Future Work

The trend for the next generation of cellular network, the Fifth Generation (5G), pre-

dicts a 1000x increase in the capacity demand with respect to 4G, which leads to new

infrastructure deployments. In order to deal with this huge demand, one of the most

promising solution is to support macro BSs with small form scale factor BSs, which

helps in improving the spectrum efficiency and provides broadband connection in hot

spot manner. However, this will translate in a important increase in energy consump-

tion. It is estimated that the energy footprint of the whole ICT ecosystem might reach

the 51% of global electricity production by 2030, mainly due to mobile networks and ser-

vices [5]. Consequently, the cost of energy may also become predominant in the OPEX

of a mobile network operator and, cellular communication networks will have greater

ecological impact in the coming years. Therefore, an efficient control of the energy

consumption in 5G networks is not only desirable but essential.

The research community has been paying close attention to the energy efficiency (EE)

of the radio communication networks, with particular emphasis on the dynamic switch

ON/OFF of the base stations (BSs). However, only with the introduction of energy

harvesting (EH) capabilities is possible to enable the needed energy savings, especially in

scenario with dense deployments of SBSs. The objective of this Ph.D thesis is to present

a solid contribution on the control of the SBSs by evaluating online switch ON/OFF

policies based on ML tools. According to the study of the state-of-the-art literature, a

set of new opportunities were identified on the field of online control solution, which has

been recognized as novel topic that enable the optimization of the system considering a

more realistic scenario, i.e., with accurate traffic and energy models.

The adoption of learning methods for the control of SBSs enables a highly adaptive

and autonomous behavior, which is in-line with the paradigms of HetNet and self-

organization of 5G wireless communications. The proposed framework is based on a

103
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multi-agent RL approach for controlling the SBS together with a Layered Learning

paradigm to simplify the problem by decompose it in subtasks. The technical chapters

of this thesis have hence been focused on the design of learning approaches analyzing

MRL solutions and their extension with LL.

The novelties presented in this Ph.D thesis include not only the development of online

switching ON/OFF algorithm for improving the EE of HetNet, but also, the definition of

a methodology to model the energy inflow of solar panels as a function of time through

stochastic Markov processes. Thus, the frameworks developed have been successfully

applied to investigate realistic scenarios under different environmental conditions, such

as traffic profiles of residential and office areas, and considering the different seasons of

the year for what concern the energy harvesting process.

7.1 Summary of Results

The goal of this thesis is to contribute on making more sustainable the ICT ecosystem,

by focusing on the next generation cellular networks. The focus has been put on the de-

sign and performance analysis and evaluation of new energy-efficient control algorithms

HetNet with energy harvesting capabilities. The thesis is organized into one preliminary

part and three main parts:

• Chapter 1, Chapter 2 and Chapter 3: introducing the problem, the state-of the

art and the theoretical background.

• Chapter 4: presenting the first technical part on an accurate stochastic Markov

processes for the description of the energy scavenged by outdoor solar sources.

• Chapter 5: presenting the second technical part on the definition and analysis of

a control solution for SBSs powered with solar panels based on distributed MRL.

• Chapter 6: presenting the third technical part on the definition and analysis of a

control framework for HetNet with EH capabilities based on LL.

In what follows, the contributions and conclusions of the three main technical parts are

summarized.

7.1.1 Modeling Solar Sources through Stochastic Markov Processes

The research work presented in this Ph.D. thesis started by presenting a methodology to

derive simple and accurate stochastic Markov processes for the description of the energy



Chapter 7. Conclusions and Future Work 105

scavenged by outdoor solar sources. The proposed models are especially useful for the

theoretical investigation and the simulation of energetically self-sufficient communication

systems that include these devices. In fact, a large body of work has been published

so far to mathematically analyze these facts considering deterministic, independent and

identically distributed across time slots or time-correlated Markov models, which do not

guarantee to estimate the effectiveness of the proposed strategies in realistic scenarios.

The Markov models that we derived in this paper are obtained from extensive solar

radiation databases, that are widely available online. Basically, from hourly radiance

patterns, we derive the corresponding amount of energy (current and voltage) that is

accumulated over time, and we finally use it to represent the scavenged energy in terms

of its relevant statistics. Toward this end, two clustering approaches for the raw radiance

data are described and the resulting Markov models are compared against the empirical

distributions. Our results indicate that Markov models with just two states provide a

rough characterization of the real data traces. While these could be sufficiently accurate

for certain applications, slightly increasing the number of states to, e.g., eight, allows

the representation of the real energy inflow process with an excellent level of accuracy

in terms of first and second order statistics.

7.1.2 EH HetNet Control through Distributed Q-Learning

The massive deployment of SBS represents one of the most promising solutions adopted

by 5G cellular networks to meet the foreseen huge traffic demand. The high number of

network elements entails a significant increase in the energy consumption suggesting the

usage of renewable energies for powering the SBSs for reducing both the environmental

impact of mobile networks and enabling cost saving on operators’ electric bills. In this

work, we proposed an ON/OFF switching algorithm, based on reinforcement learning,

that autonomously learns energy income and traffic demand patterns. The algorithm

is based on distributed multi-agent Q-learning for jointly optimizing the system perfor-

mance and the self-sustainability of the SBSs. We analyze the algorithm by assessing its

convergence time, characterizing the obtained ON/OFF policies, and evaluating an of-

fline trained variant. Simulation results demonstrate that our solution is able to increase

the energy efficiency of the system with respect to simpler approaches. Moreover, the

proposed method provides an harvested energy surplus, which can be used by mobile

operators to offer ancillary services to the smart electricity grid. Nevertheless, there are

various aspects that need to be further investigated. First, we would like to enhance the

decisions made by the SBSs so that they will cooperatively compute optimal policies

accounting for common (and global) performance objectives. Note that in the current

algorithm this cooperation is only marginally achieved through the use of the global
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drop rate in the reward functions that are locally computed by the SBSs. Finally, we

need to explore more scenarios considering different traffic profiles with different traffic

demands for studying the behavior of the algorithm in more 5G operative cases.

7.1.3 EH HetNet Control through Layered Learning

In the last part of this Ph.D. thesis, we investigated techniques based on Layered Learn-

ing for the Radio Resource Management of dense cellular networks with SBSs powered

solely by renewable energy. The goal of the proposed solution is to improve the system

scalability, which has been demonstrated to be an issue in MRL system. In the first

layer, reinforcement learning agents locally select switch ON/OFF policies of the SBSs

according to the energy income and the traffic demand based on a heuristically acceler-

ated RL paradigm similar to the one defined in Chapter 5. The second layer relies on

an Artificial Neural Network that estimates the network load conditions to implement a

centralized controller enforcing local agent decisions. The proposed framework has been

compared with an optimal bound obtained offline based on dynamic programming. The

resulting learned behavior of the SBSs matches quite well the optimal one, except in

extreme cases as for high load with residential traffic profile. Simulation results prove

that the proposed layered framework outperforms both a greedy and a completely dis-

tributed solution like the one presented in Chapter 5 both in terms of throughput and

energy efficiency under various conditions and with different traffic demand profiles.

7.2 Future Work

The road toward the sustainability of wireless networks represents one of the main

challenges for the future. This Ph.D dissertation aimed at starting the investigation on

some open topics that have not been covered in the state-of-the-art, and some others

have been identified through the course of the thesis. In the light of the conclusions

presented above, multiple research lines have been left open for future work. In what

follows, we summarize the most important ones.

7.2.1 Realistic Models of the Network Environment

In Chapter 4 we presented an accurate Markov model for the harvested energy by solar

panels. The model is accurate and allows to have realistic energy harvesting profiles

for different cities of US. However, such model is difficult to reproduce for other cities

in the world and, nowadays, even for the same cities it has been developed. In fact,
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in order to maintain it flexibility in defining the solar panel type, it needs information

like extraterrestrial radiation, dry-bulb temperature and of the dew point temperature

which are not easily to find in the free available data-bases. Moreover, in order to have a

good statistical confidence, the data set should span over several years, which is usually

another constraint of the open data-bases. Future work includes to find a more simple

methodologies to retrieve accurate model for the solar harvested energy and, possibly,

also for other renewable energies source type. For example, clusterization and feature

extraction methods represent tools that are suitable for solving this kind of problem.

The issues faced for the RES energy models are even more important for what concern

the traffic demand ones. In fact, the models we adopted in the work carried out in

this thesis, despite of proving a realistic representation of the real phenomenon, do not

provide any specification on the geographical and temporal statistical distributions. In

fact, HetNet scenarios are characterized for specific spatial distribution of users (i.e.,

hotspot) that varies during the day according to the zone (e.g., residential, office, trans-

portation). The model in literature do not provide any reference to this respect. All

the models define only the temporal variations of the total amount of traffic requested

per hour basis. Therefore, it is impossible to reproduce realistic scenarios in which the

traffic profiles have specific distributions for both the time and the space, instead of a

deterministic value. In literature, the common solution is to make assumption on the

spatial distribution and analyze the different profiles separately, has been done in this

thesis. Further investigations to fill this gap remain a future work. Some preliminary

work have been already performed on this field. For instance, in [141] an LTE sniffer ca-

pable of decoding the unencrypted LTE Physical Downlink Control Channel (PDCCH)

has been used for analyzing the temporal and spatial analysis of the recorded traces and

deriving the stochastic characterization for the daily-varying LTE traffic. However, the

process of retrieving the needed data is long and, at the time of this writing, the model

is limited only to a few cases.

7.2.2 Characterization of the RL based solutions

One of most important problem when using learning solutions in multi-agent systems is

the duration of the training phase and the convergence to the point of equilibrium. As

highlighted in chapter 6, the proposed solutions have still margin for improvement for

both aspects.

The duration of the training is important in real network for enabling the rapid de-

ployment of new SBSs and allowing the network to rapidly reconfigure and adapting to



Chapter 7. Conclusions and Future Work 108

the new architecture. The offline training has been investigated in this thesis provid-

ing interesting results. However, it is not always possible to simulate offline a specific

change in the network deployment. Therefore, solutions like transfer learning have to

evaluated. Regarding the convergence, ML literature offers different algorithms that

can find interesting solutions (e.g., NashQ [142] or DynaQ [28]). However, the space

of possible solutions becomes too big, making unfeasible it usage in real network due

to the increased time of training. Therefore, future work has to consider more research

on multi-agent systems. The proposed heuristically accelerated RL together with the

layered learning paradigm represent a good starting point, since they combine the flexi-

bility of a distributed learning solution with the efficiency of a centralized one. Further

work can be done for a deeper integration between the solutions adopted in the two

layers. For example, the centralized controller can take directly part of the single SBS

control process, by estimating the SBSs behavior in a more detail fashion. For instance

deep learning and deep neural networks can be an interesting solution to exploit thanks

to their abilities in predicting the relation among different patterns, in this case the ones

of the energy income and the traffic demand.

The solutions proposed in Chapter 5 and Chapter 6 have been presented from a dis-

tributed perspective, for highlighting the advantages that these methods have in the

problem studied. However, a comparison with the optimal bound has been carried out

only partially, due to complexity of the problem. This aspect is important for having

a quantitative evaluation of the gap of the learning solution with respect to the opti-

mum. In fact, considering all the dynamics of system, it is impossible that the learning

solutions found the optimal, as it is demonstrated in Chapter 6. Similarly, a compar-

ison with a centralized solution is needed to quantify the gap of distributed solutions

with respect to the centralized ones. In fact, centralized solution typically have better

performance provided that they have complete knowledge of the system. This, in turns,

translates in a high complexity due to the higher signaling and dimension of the problem.

The centralized approach is of particular interest when considering the SDN/NFV-like

approach, where, thanks to the SDN framework, the network can provide a large num-

ber of parameter in data centers. In addition, the layered learning paradigm can be a

valuable architecture for distributed NFV approaches [143], where virtualized functions

should be located where they are the most effective and least expensive. To this respect,

future work included the development of more lightweight models for finding the optimal

solution and the evaluation of centralized and distributed NFV-like solutions.
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7.2.3 Integration with Smart Grids

The huge energy consumption estimation of mobile networks for the next future encour-

age their integration with the upcoming smart grid architectures. In fact, as showed in

Chapter 5 and Chapter 6, the HetNet with EH capabilities can become a prosumer and

share or trade the energy during the day, according to the energy incomes.

In case of sharing, the SBSs can either help other SBSs when running out of energy or

provide energy to ancillary services. In this respect, Energy Packet Networks (EPN)

are envisaged to be an interesting solution to be further explored for energy transfer

among network nodes. In an EPN, discrete units of energy, termed energy packets, can

be exchanged among network elements of the micro-grid.

Trading is a solution of the Demand Response (DR) family that aimed at helping in

solving the problem of managing the peaks of energy demand in the smart grid, namely

Demand-Side Management (DSM). As we introduced in [80], this solution will be inter-

esting when a proper pricing schemes will be in place, which should incentivize BSs to

sell their excess energy, while also making these transactions convenient for the electric-

ity grid. In the next future, the energy price will depend on the cost of production and

on the expected demand. In this scenario, future work can evaluate decision-making

solutions to find the best energy-purchasing policies for the BSs taking into account: (i)

current and forecast renewable energy income, (ii) current and forecast traffic load and

(iii) the future evolution of the energy prices. In this scenario, BSs act as prosumers of

the smart grids.
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[25] J. Pérez-Romero, O. Sallent, R. Ferrús, and R. Agust́ı. Knowledge-based 5g radio

access network planning and optimization. In 2016 International Symposium on

Wireless Communication Systems (ISWCS), pages 359–365, Sept 2016. doi: 10.

1109/ISWCS.2016.7600929.

[26] J. Hoydis, M. Kobayashi, and M. Debbah. Green Small-Cell Networks: A Cost-

and Energy-Efficient Way of Meeting the Future Traffic Demands . IEEE Veh.

Technol. Mag., Mar. 2011.

[27] K. P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92, 1998.

[28] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.

[29] Peter Stone and Manuela Veloso. Using decision tree confidence factors for multi-

agent control, pages 99–111. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[30] R. A. C. Bianchi, M. F. Martins, C. H. C. Ribeiro, and A. H. R. Costa.

Heuristically-accelerated multiagent reinforcement learning. IEEE Transactions

on Cybernetics, 44(2):252–265, Feb 2014. ISSN 2168-2267. doi: 10.1109/TCYB.

2013.2253094.

[31] M. H. Alsharif, R. Nordin, and M. Ismail. Survey of green radio communications

networks: Techniques and recent advances. Journal of Computer Networks and

Communications, 2013:13, 2013.

[32] EARTH (Energy Aware Radio and neTwork tecHnologies). EU Funded Research

Project FP7-ICT-2009-4-247733-EARTH, Jan. 2010 - Jun. 2012. https://www.

ict-earth.eu.

https://www.ict-earth.eu
https://www.ict-earth.eu


Bibliography 113

[33] Dario Sabella, Damiano Rapone, Maurizio Fodrini, Cicek Cavdar, Magnus Ols-

son, Pal Frenger, and Sibel Tombaz. Energy Management in Mobile Networks

Towards 5G, pages 397–427. Springer International Publishing, 2016. doi:

10.1007/978-3-319-27568-0 17.

[34] C-RAN: the road towards green RAN. China Mobile Research Institute, White

Paper, 2011.

[35] NEC. NFV C-RAN for Efficient RAN Resource Allocation. http://www.nec.

com/en/global/solutions/nsp/sc2/doc/wp_c-ran.pdf. Online White Paper;

accessed on March 16, 2016.

[36] Small Cell Forum. Virtualization for small cells: overview. White Paper (available

on-line, 2015.

[37] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer, H. Holtkamp, W. Wajda,

D. Sabella, F. Richter, M. J. Gonzalez, H. Klessig, I. Gódor, M. Olsson, M. A.
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