Chapter2:Type theory

1 Introduction

Several formalisms have been used as metalanguages to define other formalisms,
which are normally referred as object formalisms. Two main principles to guide
the design of a metalanguage are expressibility and decidability issues. One
should be able to express several different object formalisms in a natural way
preferably, and the metalanguage should have some decidable properties such
as type checking to offer machine assistance.

Some object formalisms which have been encoded in different metalanguages
are for example type theories, semantics of programming languages or proof
systems for logics. Two different metalanguages which have been used to encode
logics are LF [HHP93] and higher-order logic (used as a core formalism of several
generic theorem provers like for example Tsabelle [Pau]).

The type theory of LF can be seen as a pure type system, that is a three-level
typed lambda calculus (elements, types and kinds) with dependent TI-types. LF
has been used to make adequate encoding of different logics. The encoding is
based on the idea of judgements as types, where judgements are seen as families
of types of their proofs.

UTT (Uniform Theory of dependent types ([Luo94],[Gog94])) is a type the-
ory which adds to the Extended Calculus of Constructions the possibility to
define inductive types. The whole type theory is encoded in the Martin-Lof
Logical Framework [BNS90]. A more refined view of UTT can differentiate two
different universes:

e A universe of types in which different types coexist: E-types (a dependent
type of tuples), TI-types (a dependent type of functions) and inductive

types.

e A universe of propositions in which a higher-order intuitionistic logic is
defined. We refer to this universe using the constant Prop.

UTT has been used in several ways for the specification and development of
software and it was originally designed as a framework for the development of
functional programs from modular algebraic-like specifications.

As we mentioned in the previous chapter, the main drawbacks of the result-
ing framework are lack of generality, expressibility at the computational level
and additionally it is difficult to relate with the algebraic frameworks by which
it has been inspired. In a first attempt to improve this framework, we present
general techniques to encode adequately different proof systems for deduction
and refinement of algebraic specifications which are sound and in some cases
complete with respect to the sound and complete but infinitary proof systems
presented in [BHW95] and more exhaustively in [Hen97]. We represent some of
these proof systems with first-order or higher-order logic as specification logic.
The implementation is presented with the same level of formality as the encod-
ings of logics in LF but using the more expressible metalanguage UT'T' with
a similar expressibility as the metalanguages of theorem provers like HOL or

Isabelle.

The main construction which we will use for our encodings are inductive
relations. In this type theory, inductive relations can be seen as functional types
which given some arguments of the appropriate type, return the proposition one
has to prove to guarantee that the tuple formed by the given arguments belongs
to the relation. We will use these constructions both for the encoding of formulae
and the encoding of proof systems.

In the rest of the chapter, first we will formally present LF showing with an
example how it has been used as metalanguage to encode logics and then we
will present the extended calculus (ECC) and UTT. ECC is an extended version
by Luo in order to use this new type theory as an object language for software
design. UTT is an extension of ECC with inductive types defined in the Martin
Lof logical framework. We will also present in the section of ECC and UTT the
notation that we will use to define basic types and functions, inductive types and
inductive relations in UTT, which will be used in the next chapter and chapter 6.
Finally, the meta-theoretic properties of both type theories will be summarised.
In the next chapter we will present how this type theory has been previously
used in software design with special emphasis in the algebraic approach and
how to define adequate encodings of logical systems, and in chapter 6 we will
present fully adequate encodings of proof systems for deduction and refinement
of ASL specifications with higher-order logic as specification logic.

2 LF

As we mentioned in the introduction, the type theory of LF can be seen as
a typed lambda calculus with dependent types. The type theory was chosen
as weak as possible in order to get efficient decidability features. It is quite
limited from a computational point of view since not even the primitive recur-
sive functions are representable in the type theory and from a logical point of
view, it has the expressive power of intuitionistic first-order logic. Even with
these limitations it is possible to make adequate encodings of different logics in-
cluding higher-order and modal logics using its higher-order features. Bounded
quantification is encoded as A-abstraction and therefore substitution can be im-
plemented as B-reduction. Judgements and rules of the logic are represented as
dependent functional types

In this section, first we will explain the basic rules of dependent types of LF
and then we will present how to develop adequate encodings with a fragment of
first-order logic.

Dependent functional types are defined by a type formation rule and intro-
duction and elimination rules which determine the inhabitants of the dependent
functional types: abstraction and application.

Whereas the formation rule of dependent functional types can vary between
type theories, the introduction and elimination rules are always the same.

For the case of the formation rules of a dependent functional type of the
form Iz : A.B the formation rules vary depending on the universes of the given
type theory which the types A, B and Ilz : A.B inhabit.

In the case of one formation rule of dependent functional types of LF, all
these types inhabit the basic universe of the type theory which is denoted as

Type.
The formation rules of these dependent types is as follows:
' A:Type T,x: A+ B : Type
I' F Iz : A.B : Type

and the introduction and elimination rules are of the following form:

Lz:AFy M:B \
T AXx:AM:Mlzx: A.B ()

'ty M :TIz:AB T +y N:B
' s M N:B{N/z}

(app)

where as we can observe, the type of the application M N depends on the
term N and is the result of the substitution of the free variable x by N in the
type B.

Dependent functional types are the main families of types of this type theory,
but appart from families of types and their associated objects, this type theory
has got contexts to represent the variables of the type theory, signatures to
represent all the components of a logic (terms, formulae, judgements and rules)
and kinds to classify the different families of types. See the appendix on LF for
the full definition of the type theory

The proof systems which are encoded in LF are usually formulated as nat-
ural deduction systems. See [Gar92] for a formal description of these systems.
Basically, these systems are defined by a finite set of natural deduction rules.
These kind of rules are defined by a set of n premises, a conclusion, and side
conditions are allowed. Premises and conclusions are defined by sequents with
schematic variables and therefore a rule denotes in general a set of (n+1)-tuples
of sequents. An instance of a rule is a (n+1)-tuple of sequents of this set. In
general, sequents are defined with judgements and for example the only judge-
ment which is used to define first-order logic is ¢ ¢rue which means that the
formula ¢ is derivable. In the definition of first-order logic below we will denote
this judgement just by ¢.

The sequent to define natural deduction systems in [Gar92] is T = x J where
T is a set of judgements (normally referred as environment), J is a judgement
and X a finite set of variables.

Some of the structural rules which natural deduction systems with the pre-
vious sequent usually satisfy are the following:

— U=xd ey
TU{J}=xJ (A485) T=xJ = (MON)

F'=sxJ AUJ=xJ
TUA=x J (cuT)

As an example, we present the encoding in LF of the following fragment of
first-order logic:

rdo¢ =x ¢ I'=>x¢D¢ T=x¢
T=x¢D¢ (D19 T=x ¢ (D ¢
['=x ¢{t/x}
I =x Ja.¢ @an

=x7 (3E)
r = Xxu{z} ¢
T =x V.o v 1)
I'=x Vz.¢
['=x ¢{t/z} (V E)

Terms and formulae are represented in LF by the following constants:
i@ Type
o : Type

Terms are formed over a signature, and for the signature of natural numbers with
just the operations 0, suce, 4+, the inhabitants of i are defined by the following
constants:

zero : 1
suce 1t — 1
sum : 1 —1—1

To encode formulae with the operators =, D,V, 3, we need to define the following
constants:

equal : i =1 —>o0

implies : 0 > 0— o0
forall : (i —0)— o0
exists : (i = 0) =i

Thus, the following terms are inhabitants of ¢ and o assuming that we have
the context T = {z :4,y: i} and the signature FOL contains the constants

defined above:

I' Fror sum zero (succx) : i
T Fror equal (sum zero (succz)) y : o

' Fror forall Xz :i.(exists Ay :i. (equal z y)) : o

To represent the rules of a natural deduction system, first we have to define
its judgements as types of LF and then the rules by LF constants which inhabit
those types parameterizing the schematic variables which appear in the rule.

Since for the case of first-order logic we just have the judgement ¢ true, the
only type which we have to add to the signature FOL is the following:

true : o — Type

And the constants which we have to add to FOL to encode the rules of first-
order logic defined above are:

implies_i : 11 ¢,v : o.((true ¢) — (true) — (true (implies ¢ 1))
implies_e : II ¢,v : o.(true (implies ¢ ¥)) — (true ¢) — (true)
forallsi : @ : i — o.(Ilz : i.true (® z)) — (true (Forall ®))

forall_e : TI & : i — o.I1t : i.(true (forall ®)) — (true (® t))

exists_i : W ®: 1 — oIlt: i.(true (P t)) — (true (exists @))

evists_e : T1 ®: i — oIl 4 : o.(true (exists)) —

(M : itrue (P x)) — (true p)) = (true))

The encoding of terms and formulae is defined by the functions

€T, x - T(X) — irX

€F,X T(X) — Or'y

where X is a finite sequence of free variables X = {z1,...,2,}, 7(X) and
F(X) denote the set of terms and formulae generated by the signature of natural
numbers, I'x denote the context T'x = {z{:4,...,2), : i} and ir, and or,

denote any inhabitant of 7 : Type and o : Type generated by the signature FOL
with context T'. The function e x : T(X) — ir, is inductively defined as
follows:

erx x =
er,x (succt) = suce (er,x t)
er,x (t1 + t2) = (sum (er,x t1) (er,x t2))

and the function epx : F(X) — ory is inductively defined as follows:
erx (t = r) = (equal (ep,x t) (e7,x 7))
crx (¢ D) = implies (erx @) (er,x V)
erx (Vz.¢) = forall Xz’ :i.(ep xuis) @)

erx (Fx.0) = exists Az’ 1 i(ep xu{s} @)

And to prove the adequacy of the presentation, we need to prove the following
theorems the proofs of which can be found in [HHP93]:

Theorem 2.1 For any finite sequence of variables X, there exists a bijection
between T (X) and the 3-normal forms of the inhabitants of iy, , and F(X) and
the B-normal forms of the inhabitants of op, . The encoding functions of terms
and formulae commutes with the substitution operation for any finite sequence
of variables X, for any termst,t € T(X), for any formula ¢ € F(X) as follows:

ETixt{tl/l‘} = (ET’Xt){(ETixtl)/l‘}
erx ¢{t'/x} = (erx ¢) { (erx t') /2 }

Theorem 2.2 For any finite sequence of variables X, for any sequence of as-
sumptions A = [¢1,...,¢,] and formula ¢ closed in X, the formula ¢ is
derivable in the proof system FOL if and only if there exists an inhabitant of

true (€F7X é)

in the context

Tx,aq:true (€px ¢1),...,0n t true (cpx ¢n)

We are going to define a new principle of encoding for natural deduction systems
in UTT because it solves the following limitations of the principle of encoding
of LF.

First, in LF it is not possible to develop metatheory of the encoded logics.
Since we will encode logics as inductive relations, we will be able to have induc-
tive principles to formalize metatheory. Terms and formulae will be encoded
as inductive types for the same reason and in such a way that functions on
terms and formulae (and specially substitution) will be easily encodable using
primitive recursion.

Second, in LF the consequence relation of the object logic must be intu-
itionistic because the object logic inherits the basic meta-properties of the type
theory. See for example [Gar92] for a more formal explanation. Since we will
also encode variables and contexts of the sequent as inductive types (as a pa-
rameter of the inductive relation which encodes the logic), the properties of the

type theory like for example weakening are not inherited by the encoded logic.
These properties have to be proven for the concrete object logic using for exam-
ple the induction principles associated to the inductive relation which encodes
the object logic.

Finally, our encodings will be more readable and easy to use in practice
than the ones in LF since we will not use higher-order abstract syntax and our
substitution operation will not depend on the implementation of S—reduction
of the proof checker of LF which can eventually perform renamings of variables
to avoid name clashes. In our approach, the encoding of syntax is more similar
to the informal usual notation and the names of variables are preserved under
substitution and from the encoded formulae we can always recover the original
names of variables. This might not be very relevant for the encoding of first
order logic, but we think that this is really important for the encoding of higher-
order calculi including modularity or concurrency.

As a conclusion, we believe that from a practical point of view the increase
of the expressivity of the type theory is rellevant and on the other hand, it does
not affect significatively the efficiency of its associated proof checkers. Note that
most of their decidability features have been developed generically for pure type
systems. See [Pol95] for details.

As we mentioned in the introduction, in the next sections we will formally
present the type theory UTT and we leave for the end of the next chapter the
formal explanation on how to encode natural deduction systems in UTT.

3 ECC and UTT

The calculus of constructions ([CH88]) is the most expressive type theory of the
A-cube [Bar92]. From a logical point of view, it can be seen as an intuitionistic
higher-order logic in which Leibniz equality and several logical operators can be
encoded such as conjunction, disjunction and an existential operator. From a
computational point of view, different inductive types can be encoded provided
that their constructors satisfy some syntactic constraints, and primitive recur-
sion functions on these inductive types can also be encoded. Luo proposes an
extension of this type theory (the Extended Calculus of Constructions (ECC)
which is more suitable for the development of functional programs from modular
specifications. See [Luo94] for an explanation of the design decisions and next
chapter for how to use this type theory with these purposes.

In ECC and UTT, there exist an impredicative universe Prop and a pred-
icative hierarchy of universes Type; ¢ € w. There are two formation rules of
dependent functional types: one for the impredicative universe and the other
for the predicative hierarchy. They are defined as follows:

F,z:AF P : Prop m
F'FTz:A:P : Prop (M)

' A:Type; T,z: A+ B : Type;
' z:A:B : Type; (12)

The impredicative one allows quantification over the universe of propositions.
This means that the term of the form Ilz : Prop.z inhabits the universe Prop,
and this gives a great expressive power to the type theory because in this im-
predicative universe a higher-order intuitionistic logic resides. See the appendix
on ECC for the full definition of the logical operators of this logic which is also
possible to perform in the calculus of constructitions. Note that in the predica-
tive hierarchy of universes this is not the case, since we are forced to quantify
over types which are inhabitants of the universe Type;, but not the universe
Type; itself. In this predicative hierarchy, all the computational types of the
type theory reside: dependent functional types, dependent product types and
in UTT, inductive types also.

The introduction and elimination rules of dependent functional types are
as in LF and dependent product types has a similar formation rule as the
predicative formation rule of dependent functional types:

' A:Type; TUyx:AF B : Type;
' m Xx:A.B : Type; ()

The inhabitants of dependent product types are pairs and projections deter-
mined by the following introduction and elimination rules
'r-M:A THFN:B{M/z} T,z:AF B : Type;
T k< M,N >vmA.B: Lz A.B

(pair)

' M:¥Xz: AB (m1) ' M:¥Xz: AB ()
'k m(M): A T F m(M):B{m(M)/x}

UTT extends ECC with inductive types. Inductive types can be defined in
this type theory by a set of constructors. They have to satisfy the usual positive
syntactic restrictions in order to be definable in the type theory. In [Gog94],
in [Luo94] and in the appendix of this thesis for UTT one can find the formal
definition of UTT including the schema which inductive types have to follow
in order to be representable in UTT. These formal definitions are given in the
Martin Lof logical framework, a metalanguage for defining type theories.

In the following we present some examples on how to define inductive types
and inductive relations using the notation which we will use in the following
chapters. We will also explicit the induction principles and the computation
rules associated to inductive definitions following a similar notation. In the
rest of the thesis we will use most of the examples presented below and for the
new definitions we will normally assume predefined the induction principles and
computation rules associated to inductive definitions by a set of constructors.
See the appendixes of UTT for these examples using the notation of [Luo94]
and [Gog94] and for a list of predefined functions for some of the inductive types
presented here using a similar notation to the one used in this chapter.

e Booleans:

The inductive type Bool : Typeg is defined by the following set of con-
structors:

true : Bool
false : Bool

The induction principle Ind(Bool) which we will use to reason about
propositions of type Bool — Prop is the following:

TP : Bool — Prop.(Ptrue) D (P false) D (Vb: Bool.P b)

and the primitive recursion principle Primrec Bool with arity
Primrec Bool : T — T — Bool — T
for any type T': T'ypeg has the following computational rules:

Primrec Bool bet bef true — bet
Primrec Bool bet bef false — bef

Naturals:

The inductive type Nat : Typeg is defined by the following set of con-
structors:

zero : Nat

suce : Nat — Nat

The induction principle Ind(Nat) which we will use to reason about propo-
sitions of type Nat — Prop is the following;:

IIP: Nat — Prop.(P zero) D (Vn: Nat.(Pn) D (P (succn))) D (Yn: Nat.P n)
and the primitive recursion principle Primrec Nat with arity

Primrec Nat : T — (Nat - T — T) - Nat - T
for any type T': T'ypeg has the following computational rules:

Primrec Nat ben gen zero — ben
Primrec Nat ben gen (suce n) — gen n (Primrec Nat ben gen n)

Pairs of elements:

The inductive type Pair : Typey — Typeo — Typeo is defined by the
following constructor:

mkpair : TIA : Typeo IIB : Typeg.A — B — (Pair A B)

10

The induction principle Ind(Pair A B) for any type A, B : Typeg which
we will use to reason about propositions of type (Pair A B) — Prop is
the following:

IIP: (Pair AB) — PropNa: ANb: B.(P (mkpair A Bab)) D (Vp: Pair A B.P p)

and the primitive recursion principle Primrec (Pair A B) with arity
Primrec (Pair AB) :(A - B—> T) - (PairAB) - T
for any type T : Typeg has the following computational rules:
Primrec (Pair A B) bep (mkpair ABab) — (bepab)

Notation: In some cases we will denote the type Pair A B by the infix
operator A x B for any types 4, B : Typeo, and normailly we will denote
the expression mkpair A B a b just by (a,b) or we will omit the types A
and B of the expression.

e List of elements:

The inductive type List : Typeg — Typeo is defined by the following set
of constructors:

nil : TIA : Typeq.List A
cons : 1A : Typeg. A — (List A) — (List A)

The induction principle Ind(List A) for any type A : Typep which we will
use to reason about propositions of type (List A) — Prop is the following:

TP : (List A) — Prop.(P (nil A)) D (Va: AVl: List A.(P1l) D (P (cons Aal))) D
(Vl: List A.P1)
and the primitive recursion principle Primrec (List A) with arity
Primrec (List A) : T — (A— (List A) 5T —>T) - (List A)—> T
for any type T : Typeo has the following computational rules:

Primrec (List A) bel gel (nil A) — bel
Primrec (List A) bel gel (cons Aal) — (gl Aal (Primrec (List A) bel gel 1))

As an example of inductive relations we give an inductive relation which
could be used to encode the following fragment of propositional logic:

['= ¢1 A oo ['=é1/A ¢
= ¢ (/\El) I'= ¢, (/\ET)

11

F'=¢1 I'= ¢y
['=¢1A¢2 (AI)

TUg= ¢ I=¢D¢ I'=o
I'=¢Dd¢" (D i) r= ¢ (D ¢

Definition 3.1 Assume that the inductive type Propos is defined by just the
following two constructors:

and : Propos — Propos — Propos

implies : Propos — Propos — Propos

The inductive relation PC : (List Propos) — Propos — Prop is defined by the
following constructors:

andle : Tlenv : List Propos.Il¢q : Propos.lgs : Propos.

Tipr : PC env (and ¢1 ¢2).PC env ¢

andre : Tlenv : List Propos.Il¢y : Propos.Il¢y @ Propos.

Ipr : PC env (and ¢1 ¢2).PC env ¢

andi : Ilenv : List Propos.Il¢ : Propos.

Iprq : PC env ¢1.Ilpry : PC env ¢2.PC env (and ¢1 ¢2)

tmpli : Tlenv : List Propos.Il¢, : Propos.Il¢y : Propos.

Ipry : PC (cons Propos env ¢1) ¢2.PC env (impliesdy ¢2)

imple : Tlenv : List Propos.Il¢y : Propos.lgs : Propos.

Mprq : PC env (implies ¢1 ¢2).Hpry : PC env ¢1.PC env ¢

and the induction principle Ind(PC) to reason about propositions of type P :

12

(List Propos) — Propos — Prop is defined as follows:

1P : (List Propos) — Propos — Propos.
Mandle : Tlenv : List Propos.Ilgq : Propos.Il¢s : Propos.

Mpr : PC env (and ¢1 ¢2).Ilpr' : P env (and ¢1 ¢2).P env ¢1.

Mandre : Tlenv : List Propos.lgq : Propos.lgs : Propos.

Mpr : PC env (and ¢1 ¢2).Tlpr : P env (and ¢1 ¢2).P env ¢,.

Mandi : Menv : List Propos.Il¢ : Propos.
Tpry : PC env ¢1.Tpry : PC env ¢o.Tpr} : P env ¢1.Tlprh : P env ¢,.

P env (and ¢1 ¢2).

Iimpli : Ilenv : List Propos.Il¢, : Propos.Ilgs : Propos.
[prq : PC (cons Propos env ¢1) ¢2 Ilpr : P (cons Propos env ¢1) ¢a.

P env (implies ¢1 ¢2).

I imple : Tlenv : List Propos.Ilgq : Propos.Ilg, : Propos.
IIprq : PC env (implies ¢1 ¢2).1pry : PC env ¢1.
IIprq : P env (implies ¢1 ¢2).Ilpry : P env ¢1.

P env ¢,.

Menv : List Propos.Il¢ : Propos.P env ¢

Finally, we present an example of mutually recursive inductive types. The
example is the type which is used for the encoding of the higher-order types of
the higher-order specification logic which we will define in the chapter of the
semantics of ASL. The definition is as follows:

Definition 3.2 The mutually recursive inductive types Holtype and
Holtype_list for a given signature X are defined by the following set of construc-

13

tors:

{s_Holt : Holtype | s € Sorts(X) } U
{ prop_Holt : Holtype,

holrel_Holt : Holtype_list — Holtype ,

nil_Holt : Holtype list

cons_Holt : Holtype — Holtype list — Holtype_list}
The induction principle associated to Holtype is defined as follows:

YV P: Holtype — Prop.N P’ : Holtype_list — Prop.
(Psy_Holt) D ... D (P s,-Holt) D (P prop_Holt) D

(V htl : List Holtype.(P' (holrel_Holt htl)) O (P (holrel_Holt htl)))

D (P nil_Holt) D (Yht: Holtype.Vhtl : Holtype list.

(P ht) D (P"htl) O (P’ (cons_Holt ht htl))) D

(Vht : Holtype.P ht)
and the induction principle associated to Holtype_ list is defined as follows:
VY P : Holtype — Prop.N P’ : Holtype_list — Prop.
(Psi-Holt) D ... D (P sp_Holt) D (P prop_-Holt)
D (V htl: List Holtype.(P' (holrel_Holt htl)) D (P (holrel_Holt htl)))
D (P nil_Holt) O (Yht: Holtype. Vhtl : Holtype list.

(P ht) D (P’ htl) D (P’ (cons_Holt ht htl))) D

Vhtl : Holtype_list. P’ htl
yp)

Note that the induction premises of both induction principles (one for each con-
structror of both inductive types) are both universally quantified by propositions
on Holtype and propositions on Holtype_list. The induction principles just
differ on the conclusions.

The arity of the primitive recursive operators for any type T, 1" : Typeg are

14

the following :

Primrec Holtype : T O ... D T D T D (Holtypelist - T' — T) - T —
(Holtype — Holtype list - T — T' — T') — Holtype — T
Primrec Holtype list : T O ... D T D T D (Holtypelist - T' - T) - T —

(Holtype — Holtype list - T — T' — T') — Holtype list — T’

and the computational rules associated to the type Holtype and the type Holtype list
are the following:

{ Primrec Holtype slec ... snc prope holrele nilhtle conshtle s;_Holt — sic |

s; € Sorts(X) U
{Primrec Holtype slc ... snc propc holrele nilhtlc conshtle prop_Holt — prope,

Primrec Holtype slc ... snc prope holrele nilhtle conshtlc (holrel_Holt htl) —

holrele htl (Primrec (List Holtype) slc ... snc prope holrele nilhtrle conshile htl),

Primrec (List Holtype) slc ... snc prope holrele nilhtle conshtle nil_Holt — nilhtlc,

Primrec (List Holtype) slc ... snc prope holrelc nilhtle conshtle (cons_Holt ht htl) —
conshtle ht htl (Primrec Holtype slc ... snc prope holrele nilhtle conshtle ht)

(Primrec (List Holtype) slc ... snc prope holrele nilhtle conshtle htl)

}

4 Metatheory and decidability features of the
previous type theory

The metatheory and decidability features of LF, ECC and UTT are quite sim-
ilar. See [HHP93] for the metatheory of LF and [Bar92] for a generic presen-
tation of the metatheory of pure type systems and how it can be instantiated
to determine the metatheory of LF. In [Luo94] and [Gog94] you can find the
metatheory of EC'C' and UTT respectively and in this section we will summa-
rize the metatheory of FC'C which is very similar to UTT although the latter

15

is formulated in a more complicated way using typed operational semantics and
the Martin Lof logical framework to handle with inductive types. The main dif-
ference with respect to the the metatheory of pure type systems is the property
of uniqueness of types. This property is more complicated to formulate because
of the predicative hierarchy of types of ECC"

Theorem 4.1 Thinning lemma:

For any valid contexts I', A such that I' C A, for any terms A, B, if I' F
A: B then A+ A: B

Theorem 4.2 Substitution lemma:
For any context T, A, for any term A,B,C, if T,z : AA F+ B :C and
L'F D : A then

ILA{D/z} F B{D/z}:C{D/z}

Theorem 4.3 Church Rosser theorem:
For any terms My, My such that My = My there exists a term M such that
My and My reduces to M by a finite sequence of reductions.

Theorem 4.4 Type reflection:
For any context T and terms M, A, if T v M : AthenT F A : U for some
universe U.

Definition 4.5 Principal types:
A is a principal type of a term M in the context T' iff:

o' M : A.
e Foranyterm A\, T M : A" ifand only if A < A" and T + A’ : U

for some universe U.
Theorem 4.6 Uniqueness of principal types:

For any context T' and for any terms M, A such that ' = M : A there
exists A" such that A’ is a principal type of M.

Theorem 4.7 Subject reduction:

For any context T' and for any terms A,A',B, ifT - A : Band A = A’
thenT - A" : B

Theorem 4.8 Strong normalisation:

For any context I and for any terms A, B such thatT' - A : B, there exists

no infinite sequence of reductions starting from A and B.

Theorem 4.9 Decidability of type checking and type inference:

16

e Type checking: For any context T and terms A, B it is decidable
whether ' - A : B holds.

e Type inference: For any context I' and terms A it is decidable whether
I' A : B holds for some term B.

17

References

[Bar92]

[BHW95]

[BNS90]

[CHSS]

[Gar92)

[Gog94]

[Hen97]

[HHPY3]

[Luo9%4]

[Pau]

[Pol95]

H.P. Barendregt. Lambda Calculi with Types. In Abramsky, Gabbai,
and Maibaum editors, Handbook of Logic in Computer Science, vol-
ume II. Oxford University Press, 1992.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and
abstractor specifications. Science of Computer Programming, 25(2-

3):149-186, December 1995.

Kent Petersson Bengt Nordstrém and Jan Smith. Programming
in Martin-Léf’s Type Theory: An Introduction. Oxford University
Press, 1990.

Thierry Coquand and Gérard Huet. The calculus of constructions. In-
formation and Computation, 76(2/3):95-120, February /March 1988.

Philippa Gardner. Representing Logics in Type Theory. PhD thesis,
University of Edinburgh, July 1992.

Healfdene Goguen. A Typed Operational Semantics for Type Theory.
PhD thesis, University of Edinburgh, September 1994. Also published
as Technical Report CST-110-94, Department of Computer Science.

Rolf Hennicker. Structured Specifications with Behavioural Operators:
Semantics, Proof Methods and Applications. Habilitationsschrift,
Institut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen,

June 1997.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143-184, January 1993.

Zhaohui Luo. Computation and Reasoning: A Type Theory for Com-
puter Science. Clarendon Press Oxford, 1994.

Lawrence C. Paulson. Introduction to isabelle. 25 October 1998
(Computer laboratory of University of Cambridge).

Robert Pollack. The Theory of LEGO. PhD thesis, University of
Edinburgh, April 1995.

18

