Chapter3:UTT as a design
framework

1 Introduction

As we mentioned in the previous chapter, UTT was originally designed as an
object language for the specification, development and verification of functional
programs. As we explained also, since UTT is an expressive type theory, it
can also be used as a formalism to represent other formalisms and therefore to
represent design frameworks.

Some examples of the different uses of this type theory as a framework for
software design are deliverables [BM91], [McK92], which is a methodology for
the development of functional programs from specifications using a precondition-
postcondition style like the specifications of imperative programs in Hoare logics,
the representation of Z specifications by [Mah95], a framework for the develop-
ment of operational semantics by [Kha97] and the representation of VDM and
Hoare logics for verification of imperative programs by [Kle98]. In the rest of
the chapter, we will first present the modular design framework for functional
programs developed by Luo since it is the most related to our work, then we will
present the verification of a functional program with respect to a basic speci-
fication and the refinement of an algebraic specification in Luo’s framework as
examples of two of the main tasks of design frameworks for functional programs.

Since in Luo’s work there exists no sound and/or complete result between
the semantics of this design framework and the semantics of a design framework
for algebraic specifications, we will finally explain how to represent natural de-
duction systems in UTT following the basic ideas of LF but using the more
expressive type theory UTT. None of the previous works have developed this
representation technique which will be the basis to represent adequately the
complete proof systems for deduction and refinement of algebraic specifications
in ASL presented in [BCH] and in [Hen97] using first-order and higher-order as
specification logics.

The main objective of this work is to give a way to reuse current and future
generations of theorem provers of the type theory U'T'T or a similar one following
the same philosophy as LF, to develop theorem provers for design frameworks
for algebraic specifications like the one presented in this thesis or others a little
bit more complex designed for industrial use.

2 UTT as an algebraic design framework

In this section, we represent as in [LLuo94], the basic components of this algebraic
design framework such as specifications, refinement of specifications and imple-
mentation of specifications. We concentrate on specifications of abstract data
types with a first- order signature and we explain how the implementations of
a specification of these abstract data types can be seen as functional programs.

Definition 2.1 Specifications are defined as elements of the following type:

SPEC = Y [Str:Type, Az : Str — Prop)

Notation: The first component of a specification SP : SPFEC will be denoted
by Str[SP] and its inhabitants will be referred as SP-structures and the second
component of a specification will be denoted by Az[SP]. For any type S : Type,
Spec(S) will denote the “subclass” of specifications such that Str[SP] = S
and the azioms are of the type Az[SP]: S — Prop. A possible type of this
“subclass” of specifications is just S — Prop but as in [Luo94], we will consider
them as specifications and therefore with structures as inhabitants.

Since we are specially interested in specification of abstract data types us-
ing the algebraic approach, in our examples the first component of the X-type
will be normally a first-order signature also denoted as X, its sorts denoted as
Sorts(X) and its operations denoted as Op(X). The sorts of the signature of a
specification will be represented by a type and a binary relation on this type as
in [Luo94] similar to the ultraloose approach of algebraic specifications. The bi-
nary relation of a sort will be normally required to be a congruence and therefore
this will be normally axiomatised in the second component of the specification
and operations will be represented as functions.

Definition 2.2 The representation in UTT of a first-order signature ¥ of the
following form:

Y o= (815043 805,0P1 1 S11 X oo X S1my = Smuysens30Pn 2 8p1 X oo X Spm, —> Sy,)
is the following X type:
SIG = > [s1 : Setoid, ... s, : Setoid,
op1 : Dom(s11) x ... x Dom(s1m,) = Dom(spm,), ...,

opn : Dom(sp1) X ... x Dom(spm,) = Dom(spm,)]
where a Setoid is again a X type of the form
Setoid = X[Dom : Type, Eq : Dom — Dom — Prop)

Note that the structures of these specifications are closely related to the
notion of ¥-algebra but they are not the same because the “carrier sets” of these
structures are types of the type theory and not arbitrary sets and the functions
of these structures are not set-theoretical functions but functions which can
be represented in the type theory using normally primitive recursion. See the
examples of this chapter for the specifications of some abstract data types in
the type theory following this representation and the axiomatisation that the
binary relations associated to the sorts are congruences.

Definition 2.3 Let SP be a specification of type SPEC. A realisation or an
implementation of SP is an S P-structure str : Str[SP] such that the proposition
Az[SP] str is derivable in the type theory.

Remark and notation: When the first component of the specification SP
is the representation of a first-order signature & as specified above, then a SP-
structures str : Str[SP] can be seen as a functional program or module defined
by a set of types (which are represented as setoids) and a set of functions. The
first component of the setoids of these structures will be normally denoted by
Dom|s]st, or just by ssi, where s € Sorts(X) and the functions will be normally
denoted by opsr where op € Op(X).

Definition 2.4 Let SP be a specification. The satisfaction relation str = ¢
between a SP-structure str : Str[SP)] and the sentence over SP-structures ¢ :
Str[SP] — Prop holds if the proposition (¢ str) is derivable in UTT.

Definition 2.5 Let SP and SP’ be specifications. A refinement map from SP’
to SP is a function p: Str[SP'] — Str[SP] such that the following condition,
called satisfaction condition, is provable:

Sat(p) = Vs': Str[SP'].Az[SP'](s') D Axz[SP](p(s"))

Notation: A refinement relation between two specifications SP,SP’ by a re-
finement map p: Str[SP'] — Str[SP] will be denoted by SP —>, SP’ and
we will say that SP refines to SP’.

Proposition 2.6 Vertical composition: If SP —>, SP’ and SP' —,
SP" then SP —,, ,» SP".

Notation: The composition function f o g is defined for any f : A — B,
g:C - Ajx:Basfogz = f(g9x).

3 An observational equality

One of the congruences which has been most frequently used in algebraic speci-
fications is an observational equality which was originally defined for first-order
signatures with a distinguished set of observable sorts, which in the following
will be referred to as Obs. Intuitively, two elements of the carrier set of a sort s
are related if they are indistinguishable by a set of observations which are rep-
resented by contexts, and contexts are represented by terms of observable sort
with a distinguished context variable of sort s. See below for a type-theoretic
representation of contexts and the chapter of ASL for the most general defini-
tion of contexts in an algebraic setting which includes also a distinguished set
of input sorts. These sorts can denote unreachable input in the context since
only free variables of input sort can appear in the context. For simplicity, in
this setting we will assume that the set of input sorts is empty since in our
examples and normally in this framework, we will be interested in reachable
S P-structures which implement a specification SP. In these cases, the repesen-
tation of contexts with and without input sorts is equivalent since they denote
the same set of observations.

In this section, we present a type-theoretic definition of the observational
equality proving that is a congruence and then we present a context induction
principle which is useful to reason about observational equality and some simpli-
fication techniques. Finally, we present an alternative definition given in [HS96]
based on the property of this relation which is the greatest congruence which
coincides with the Leibniz equality for the observable sorts. Both representan-
tions of the observational equality and the different proof techniques which are
presented in this section were not in the original work of Luo.

Definition 3.1 Assuming a structure str which inhabits the encoding of a sig-

nature ¥ = (S, Op), the inductive relation which defines contexts from sort r to

s of the signature X restricted to the operation symbols Op, , C Op is written
TS

C(str,Opr,s) and has type (rser — Sotr) = Prop. It is generated by the following
set of constructors:

I(C’(C(;Tfopm)) , T £ S
Ctr(ClZiop,y) = KO0,y WV
{ctrivr_s: C(s7rfopr,5) AT i rgpp.x} , T =8
where
KC(CF0p,) =

ccr_s_op; 2 vy @ S15¢r.

Ilec; : rger — 85

str”

IIr; : (str,0p) Ci- ie 1]

v, : Snstr.
r—S8 . .
C(str,Opr,s) AL 2 Tstr.OPstr (V1 oo o G &y ., Un)

Remarks:

We consider contexts with just one occurrence of the context variable. We
are able to restrict the operation symbols appearing in the outermost position of
the context depending on the sort of the context variable and the result sort of
the context we are defining. As we will see, these sets of contexts will be valid
to define observational equalities.

To make the presentation and the encoding in type theory easier, we pa-
rameterise contexts by a structure (to make the interpretation of contexts more
implicit) and abstract by the context variable (to make context application to a
value just functional application). Therefore, contexts can be seen as functions
from the type associated to the sort of the context variable to the type associated
to the result sort of the context. Since not all functions of this type are contexts,
it is necessary to define contexts via an inductive relation which determines the
functions which are contexts. Since C(s_t}rfOpr’s) has type (rsir — Ssir) — Prop,
(Ts?rfop,,s) ¢ where ¢ : rstr — Sstr 15 a valid UTT sterm, and
intuitively denotes the proposition one has to prove to show that the function ¢
is a context.

the application C'

r—ys; op:slx...x.sn—>s€0p,«7s

Notation: Given a function ¢ of type rsir — Ssir where C(s?rsOpr) ¢ holds

(which from now on will be referred to as ¢ is a context in C(s_t:“f()pr,s)), we use
c(c" : rgr — 8',) to distinguish the proper greatest subcontext ¢’ of ¢ and its
associated type.

We consider depth a predefined function which given a context returns the
depth of the occurrence of the context variable. (The depth of the context variable
of the trivial context is 0). We will denote by Cbyyy, the Sx S-family of inductive
relations defined for every pair (r,s) € S x S as C(s_t:‘fOp
S x S-family of inductive relations I, of type (rsir — Ssir) — Prop for every

) In general, given an

pair (r,s) € S x S we will denote by Is(:,_”) the inductive relation associated to
the pair (r,s) € S x S.

Definition 3.2 Given a signature ¥ = (S, Op), the S-family of observational
equalities associated to a set of observable sorts Obs C S, a structure str which
inhabits the representation in UTT of ¥, and an S x S-family of inductive
relations I, of type (rser — Setr) — Prop for every pair (r,s) € S x S, is
defined as:

~dstr

~str,Obs —def

AL P AY P N Ver t rgy — 0bsgy (175790 ex) D

str
obs€Obs
(C.’L' x) :Obsstr (C{L’ y) 7Zf r ¢ ObS
AL Tstr AY : Tpr & =pgy, Y ,if r € Obs

Notation: We will denote by N:’tﬁgbs: Tstr —> Ts¢r — Prop the relation associ-
ated tor € S in this S-family.

Remark: Roughly speaking, this S-family of indistinguishability relations is
defined for observable sorts as Leibniz equality and for non-observable sorts as
the equality which relates two elements if they are indistinguishable by a set of
observable contexts. For a given r ¢ Obs, this set is determined by the inductive

relations C7;7°% where obs € Obs.

Definition 3.3 Given a first-order signature ¥ = (S, Op), an inhabitant str of
the representation in UTT of X, the S-family of equivalence relations (=,) with
respect to the structure str is an U'TT-congruence if for all f :s1 X ... X sp, —
s € Op, the following proposition is provable in UTT:

Forr Yeq is1,,,.... Ve, tsn,,, VY1 2 51

L1 :iér YiA...Azg :iw?r Yn O fstr(‘rla cee amn) = .fstr(yla cee ,yn)

Notation: We will denote by Congsir (=str) the conjunction of Equivser(=ser)
(which determines that family of equivalence relations is reflezive, symmetric
and transitive as specified in previous chapter) and the proposition below for all
fisix...x s, >s¢&O0p for a given sort s € S.

Remark: From now on, we will use the notation Fyrr ¢ where ¢ is a term
of UTT, to express that ¢ is provable in UTT.

Proposition 3.4 For any first-order signature ¥ = (S, Op) and for any inhab-
itant str of the representation in UTT of X, the S-family of Leibniz equalities
is an UTT-congruence.

Proposition 3.5 For any first-order signature ¥ = (S,0p) and for any in-
habitant str of the representation in UTT of X, the S-family of observational
equalities Ns(’;gfgbs ts an UTT-congruence.

Since the definition of the observational equality includes universal quantifi-
cation over contexts, proofs about observational equality will normally use con-
text induction. The formulation of context induction which appears in [Hen91]
is based on the induction principle generated by a well-founded set.

Since our definition of contexts is by means of a set of constructors, the new
formulation of context induction that we propose is just the inductive principle
generated by the set of constructors which define contexts oriented to proofs of
observational equality. Since we have modified a little bit the general formula-
tion of the induction principle associated to a set of constructors, we present
also a proof of correctness of the context induction principle.

Definition 3.6 The new formulation of context induction is defined as:

Ind(c(r-:rf()pr,s) 7Op) = VP: (rstr — 53“‘) — Prop.
/}_}s Ind_pr(cstr, C(Ts_t:‘fopr,s) »P) D
CStTEC”(C(str,OPr,s))

Ve i (Pstr = Sstr)- C’(;rfop) cDPe

r—S

where Ind_pr(estr, C'(m, Opr.s

) , P) returns the inductive premise associated to

the constructor cstr of C'(Ts_t’?,‘fop”) given a proposition P : (rgr — Ser) —
Prop. For example, if cstr € KC(C(TS?TSOP,)) the inductive premise would be
defined as
VU1 Sistre .-« VCi I Pstr —> Sioypener VUn ¢ Spstr-
C(rs?rflop,,s) €D P ¢iDP Az:rgr0psir(Viy.e. s Z,.0..,0p)

provided that s; = s.

Theorem 3.7 Ind(C(s_t’Tfop), Op) is derivable in UTT.

Proof:
The proof is by induction on natural numbers over the proposition
Vn @ NYex @ (Pser — Ssir) — Prop.(C(s_t’rfop)cm) D depth(czx) =n+ 1D Pex

where P : (rstr — Sstr) — Prop. The base case is trivial and the general case
is easily provable using the induction hypotheses and the inductive premises of
the context induction principle.

3.1 Making easier proofs about observational equality

The main drawback of our formulation of context induction for formal reason-
ing is that it has in general a considerable number of premises (one for every
constructor). If we define this indistinguishability relation with a smaller but
still adequate set of contexts, then we can reduce the number of premises of the
induction principle associated to the inductive definition of contexts. We have
to guarantee that the new formulation of indistinguishability is equivalent to
the one above. First, we will formulate a theorem which allows us to reduce the
set of contexts provided that the indistinguishability relation associated to this
new set is a congruence. A proof of a similar theorem can be found in [BH95].
After that, we will discuss how to make a choice of this set of contexts.

Theorem 3.8 Let ¥ = (S5,0p) be a signature, let str be a structure which
inhabits the representation in UTT of ¥ and let Irgy be a S X S-family of
inductive relations such that for every pair (r,s), the following proposition holds:

. r—>s r—S
Ve : roir — Ssire Ir(s”) cD C(str,Opr,g) c

str

If the indistinguishability relation NSC;T’ObS is a UTT-congruence then for all
se€s

FUTT Vo s see Ny s NG Y 8 NG Y

Now let’s see how one can choose the set of contexts so as to make formal
proofs simpler. Although in concrete cases one can develop more interesting
simplifications, we present these results because we think that they give an
idea of how to reason to make a good choice of contexts. As we mentioned in
the definition of contexts, we introduced the parameter Op, ,, a distinguished
subset of operations of the original signature. This parameter allows us to define
subtypes of the original set of contexts with type C7’*

(str0p where the outermost
operation symbol of the context has to belong to Op, . T])'lis new set of contexts
are enough to get a context induction principle that is simpler to use in practice.
Besides, proofs which guarantee that the induced indistinguishability relation is
a congruence are especially easier to develop in concrete cases.

Let’s see with an example how to choose this set Op, s, and how formal proofs
are simplified. Imagine the specification of natural numbers with operations
0 : nat, succ : nat — nat and + : nat x nat — nat. It is clear that contexts
generated by the operation + can easily be transformed into contexts with succ
outermost. Therefore, the operation + would not be included in the subset
Opnat,nat and the simplified induction principle would have two premises less.

To guarantee that the indistinguishability relation induced with this smaller
set of contexts is a congruence, it is necessary to assume that all the contexts

which we have excluded (contexts in C'(s_t’fop_opr)) are extensionally equal

to some of those that we have chosen (contexts in C(s?rs()p)). Let’s now show

formally our results:

Theorem 3.9 Let ¥ = (5,0p) be a signature, let str be a structure which
inhabits the representation in UTT of ¥ and let Csir be the S x S-family of
inductive relations defined for every pair (r,s) as C(s?rfop,,s) . Assume that the
following judgement is derivable in UTT for every (r,s) € S x S:

. . TS . /
Forr Hyp: Ve :7rgr — Ssir. C(str,Op—opr,s) e(scirgr =80) D
/. r—s / /. /
3¢’ i Perr —> Ssir- C(str,Opr,s) d(sc irgp =5 A
. /
Vv i reer. Eqs,,, (cv) (' v)
Csir .
Then R simobs 18 a UTT-congruence.
Proof:
We have to prove that for any =1 : s1,,,,...,25 :Csnm and any
. . : . Sy 1 . .
Yi t S, Yn t Sn,,, assuming that z; &/ 50y for all 4 € [1..n] then

~S5:1Cstr

Fotr (21, xn) &L A fotr(Y1y -+ s Yn). The idea of the proof is based on the
fact that we can easily get a proof by transitivity provided that the following
elements are indistinguishable:

Nsvcstr

fstr(mla v ’In_) ~str,Obs fStT(yl’ L2y ’m")’

N57Cstr

fstr(yla L2yeen axn) ~str,Obs fstr(yla Y2, .- 7yn)a

8,Cstr
v afstr(yla cee s Yn—1, wn) Nm’:notbs fstr(yla e ayn)
To prove for example that
5,Csqr
fstr(yla cee s Yic1s Ty Tigly e - - 71377.) Ns;}r,ébs fstr(yla e Y1, Y Tig1y .- 7In) holds

it is necessary to differentiate the cases s € Obs and s ¢ Obs. Since both proofs
are quite similar, we will present just the case s ¢ Obs.
We have to prove that

. si—obs
N Vex : sis — 0bsg.(C(;tr Ope.one) cx) D
\Op s obs
obs€Obs

(Eqsgy, (cx f(yr, oo, Yic1, @iy Tig1y oo 2n)) (€ F(Y1s - o s Yist, Yis Tig1s o v 5 Tn)))

Let’s fix obs and cx. Again, we have to differentiate the cases s; € Obs and
s; € Obs. We will show just the second case.

Since z; NZ;;%})'S y;, if we guarantee that
si—obs

A ¢ Sigerc® (Y1, -0, Yim1, &, Tigt, ..., Tpn) I8 in C(str,Ops,,obs

) we get what we

wanted. To show that Az : siser.cx f(y1, ... s Yio1, & Tig1,. .., &) is in
fsit_r:OOb;si,obs) , let scx : (Siser — Sjser) — Prop be the greatest subcontext of
cx. If s; # s; there is no problem, but if s; = s; and scz is the trivial context
we have to apply the assumption to convert the context
A : Siser f(Y1y oo Yim1, &, Tig1, - - - , &n) Which in general is not in
S;—+S; . . e . .
(5tr,0p11.5;) to a context which is in this relation.

As we have said, in concrete cases we can often make a better choice of the
subset of observable contexts. Normally, it is a good idea to take the mini-
mum set of operations which characterises the intuitive notion of behaviour of
the specification. For example, two sets are indistinguishable if they have the
same elements or for the specification of trees, two trees are indistinguishable
if after applying to them the same ordering operation, the resulting sequences
are indistinguishable. Since in general the definition of observable contexts uses
contexts with result sort a non-observable sort, it is also useful to think of re-
ductions of these set of contexts. When the result sort coincides with the sort
of the context variable, it is normally a good choice to take just the operation
constructors associated to the sort of the context and in some cases just the
trivial context.

Finally, we just mention that we do not need to obtain a finite set of contexts
as in [BH95], since our formalism is powerful enough to represent infinite sets
of observable contexts using inductive definitions. On the other hand, since our
type theory includes a higher-order logic, it is possible to give an alternative
representation in UTT of the same observational equality based on the definition
of [HS96]. We will refer to this new definition as indistinguishability relation (as
in [HS96]). This alternative definition is given below and it does not require in
general the use of context induction to relate two elements of a given carrier set
although it is always possible to use the previous representation in the new one
since the representation of the latter is existentially quantified by a congruence.

Definition 3.10 Given a first-order signature X, a set of observable sorts Obs C
Sorts(X) and a structure str which inhabits the representation in UTT of X,
the indistinguishability relation for any sort r € Sorts(X) is defined as follows:

Indrell,, op, = A% 175 MYt Pstr. ARses @ Sser — Sstr — Prop.R,(z,y) A

(A Ve, y :0bssr . Rops (2, y') & 2' = y') A Congsir(R)
obs€Obs

Proposition 3.11 For any signature ¥ = (S, Op), for any set of observable
sorts Obs C Sorts(X) and for any inhabitant str of the representation in UTT
of 3, the indistinguishability relation is an UTT-congruence.

One can prove the equivalence of the indistinguishability relation and the
observational equality in the same way as in [H596]:

Proposition 3.12 Let © = (S, Op) be a signature, let str be a structure which

inhabits the representation in UTT of &, let Nsctifgbs be the observational equal-

10

ity and let Indrelsir ops be the indistinguishability relation. The following propo-
sition holds for any sort s € Sorts(X):

. $,Cbgyp 3
VYo, w : Sg¢p.v Nirobs W & [ndrelsmObs v w

4 An Example

In this section, we show with a simple example how to prove that a certain
structure satisfies a specification. The example is the specification of an ab-
stract data type to store elements called CONTAIN ER. The example appears
in [BH95] and we use their simpler version of the observational equality for this
concrete signature to prove satisfaction and we also mention how to prove sat-
isfaction using the indistinguishability relation. We also develop the refinement
of stacks of elements by lists of elements with a pointer in a similar way as in

[Luo94].

4.1 The Container Example

The specification CONTAINER is defined by Str[CONTAIN ER] and
Ax[CONTAIN ER] as follows:

Str[CONTAINER] =) [Container : Setoid, Elem : Setoid, Nat : Setoid, Bool : Setoid,

: Dom(Container)

insert : Dom(Flem) x Dom(Container) — Dom(Container)
union : Dom(Container) x Dom(Container) — Dom(Container)
remove : Dom(FElem) x Dom(Container) — Dom(Container)
inset : Dom(Flem) x Dom(Container) — Dom(Bool)

card : Dom(Container) — Dom(Nat)

subset : Dom(Container) x Dom(Container) — Dom(Bool)
zero: Dom(Nat)

suce : Dom(Nat) — Dom(Nat)

false : Dom(Bool)

true : Dom(Bool)

and for any CONTAIN E R-structure str : Stt[CONTAIN ER], Ax{CONTAIN ER] str

is defined as follows:

Congsir(Eq[Container]s,) A Congsyr(Eq[Elem]g,) A
Congsir(Eq[Nat]ser) A Congsyr(Fq[Bool)sr) A
VS, S" : Dom[Container)si,.Ve, e : Dom[Elem]t,.

Eq[Container]s, (uniong, Bser S) S A

11

Eq[Container|s, (uniong, (inserts, e S) S') inserts, e (uniong, S S')) A
Eq[Container|s, (removess, € Bsir) Osir A

Eq[Container]syy (removessy e (inserts, € S)) (removess, € S) A
—(Eq[Elem]str e €') D

Eq[Container]y, (removey, e (inserty, e’ S)) (inserty, e’ (removes, e S)) A

(insetsir € Ogir) = falsegy A

(Eq[Bool]siy (insetsy e (insertg, €' S)) true) &

((Eq[Elem]str e €') V (Eq[Bool]str (insetsir € S) truesyy) A
Eq[Nat]sir cardsy (Bsir) zerossy A
(Eq[Bool]str (insetsiy € S) truesy) D (Eq[Nat]ser (cards, (inserts, € S)) (cards, S)) A
(Eq[Bools, (insetsy, € S) falseg,) D

(Eq[Nat)s, (cardgy, (inserty, e S)) (suces, (cardg, S))) A

(Eq[Bool]s, (subsetsy, S S') trueg,) < (Ve : Elem.(Eq[Bools, (insety, e S) trues,) D

(Eq[Bool]siy (insetge, € S') trues,))

What we want to prove is that the structure list of natural numbers denoted
by Listn is a CONTAIN E R-structure. This structure is defined by a tuple
with the following setoids and functions:

Listn = (LN, N, N, B,empty_In,insert_In, union_{n, remove_ln,is_in_In,

cardln, subset In, zero_n, succin,truedn, false_In)

where the setoids NV and B are defined by the type Nat and Bool respectively
and with the predefined Leibniz equality =nq: and =pg,0, and the setoid list
of natural numbers (LN) is defined by the type List Nat and the congruence

- -) . . Container,CblL”tn
associated to this type is defined as the observational equality N Listn,{nat,bool}

where assuming that S, is the set of sorts of the specification CONTAINER
and Op. is the set of operations of the specification CONTAINER, Cb}; .,
is the S. x S.-family of inductive relations defined for (Container, Nat) as

Container—Nat . , Container— Bool
C({}’[’fism) “Nat . (LN — N) — Prop, for (Container, Bool) as C({e}fmsm)ﬁ :

(LN — B) — Prop, for (Container, Container) as C&i?ﬁ%fjf"c‘mmm”

12

(LN — LN) — Prop, and for the rest of the cases (r,s) as C({%;C},Lism)
(TListn = SListn) — Prop.

One can prove that the Nf:sziai{xgécéso’;i" is an UT"I-congruence.
As examples of the definition of the functions of this structure, the function
empty_In would be defined as nil Nat, the function insert_In as cons Nat, and

the function remove_ln would be defined as follows:

remove_ln nll = Prim_rec(LN)I1 (ins_if _neqn)l
where

ins_if neqnmllf = Prim_rec Bool lf (cons mlf) (Eqbool_nat n m)

To prove that the structure Listn is a CONTAIN F R-structure, one has
to prove that Listn satisfies the axioms of the specification. All the equational
subexpressions of the form Eq(CONTAINFER)]p;s¢n t t' where t,¢' : List Nat
are transformed into formulas of the form:

Vexb : (List Nat) — Bool.(C(S:tt:j{_é%‘;ol cxb) D Eqpoot (cxbt) (cxbt’)

After applying context induction over cab, which is necessary for all equa-
tions of our example, one has to provide a proof of the premises of the induction
principle, which is:

Vn : Nat.Vezl : (List Nat) — (List Nat).(C’f:ttf{_}’)”t” cxl) D

Eqpoor is_indn(n,czlt) is_inn(n,czlt’)

Since we have just the trivial context in C(‘fffﬁj’em , the previous proposition

is equivalent to
Vn: Nat.Eqpoo is-inin(n,t) is_inin(n,t’)

which is the proposition we have to proof for every equation ¢ = #' where
t,t' : List Nat. For the rest of subformulas of our specification where the equality
is interpreted by Leibniz equality, classical proof techniques can be applied.

If we had chosen as equivalence relation of the setoid LN the indistinguisha-
bility relation Indrelgﬁg’;fﬁ?}\?;t’lgml}, to prove that the equational subexpres-
sions of the form Eq[CONTAIN ER]r;stn t t' where t,t”:LN, we could use the
Sc-family of equivalence relations defined for Flem and Nat as the Leibniz
equality for the type Nat, for Bool the Leibniz equality for the type Bool and

for C'ontainer
A, t': List Nat.Vn: Nat.Eqpoo is-indn(n,t) is_inIn(n,t')

In this case, the proposition that we must prove for every equation t = ¢’ where
t,t' : ListNat is also

Vn: Nat.Eqpoor 1is-inin(n,t) is_inn(n,t’)

13

because we can prove generally that the S.-family of equivalence relations
is an UTT-congruence and it coincides with the Leibniz equality for Nat and
Bool.

4.2 The refinement example

As we mentioned in the introduction, we develop here the refinement of stacks
of natural numbers by a list of natural numbers with a pointer.

Definition 4.1 The specification of stack of elements is defined by Str[STACK]
and Ax[STACK] as follows:

Str[STACKN] = > [Stack : Setoid, Elem : Setoid,
empty : Dom(Stack)
push : Dom(Elem) x Dom(Stack) — Dom(Stack)
pop : Dom(Stack) — Dom(Stack)
top : Dom(Stack) — Dom(Elem)
errelem : Dom(Elem)

and for any STACK N-structure str : Str[STACKN], Ax[STACK N] str is
defined as follows:

Congsir(Eq[Stackn]s,) A Congger(Eq[Elem]sy,) A

Eq[Stackn]y, (popsty emptyse,) empty, A

Vel : Dom[Elem]y, Vst : Dom[Stackn]s,.Eq[Stackn]s, (popsir (pushge, el st)) st A
Eq[Elem)sir (topstr emptyser) errelemgy, A

Vel : Dom[Elem]sir Vst : Dom[Stackn]sir. Eq[Elem)sr (topser (pushger el st)) el

Definition 4.2 The specification of list of elements with pointer is defined by
Str[PLIST] and AxX[PLIST] as follows:

Str[PLIST| = Y [Plist : Setoid, Elem : Setoid,
emptyl : Dom(Plist)
addl : Dom(Flem) x Dom(Plist) — Dom(Plist)
access : Nat x Dom(Plist) — Dom(Elem)
assigninp : Dom(FElem) x Dom(Plist) — Dom(Plist)
getdim : Dom(Plist) — Nat
initpointer : Dom(Plist) — Dom(Plist)
getpointer : Dom(Plist) — Nat
shiftpl : Dom(Plist) — Dom(Plist)
shiftpr : Dom(Plist) — Dom(Plist)
errelem : Dom(Elem)

14

and for any PLIST-structure str: Ste[PLIST], Ax[PLIST] str is defined as
follows:

Congsir(Eq[Plist]sey) N Conger(Eq[Elem]g,) A
VI : Dom[Plist]ssr.((Fgbool_Nat (getpointers, 1) (getdimgyy 1)) =poo true) D

(Eq[Plist]ser (shiftpr 1) 1) A

Vel : Dom[FElem].Yi : Nat.Vl: Dom[Plist]st..
((LtBool_Nat (getdimg, 1) i) =pgoa true) D (Eq[Elem]y, (accessg, (i,1)) errelem) A
(Eq[Elem]si, (accessgyy (i, emptylsiy)) errelem) A
((EqBool_Nat i (succ (getdimg, 1))) =Boo true) D
(Eq[Elem)sr (accessser (3, (addlser el 1)) el) A
((LeqBool_Nat i (getdimgir 1)) =poot true) D

(Eq[Elem)sir (accesssir (4, (addlsr €l 1)) (accessgr (1,1))) A

(Eq[Elem]sy, (accesssy, (i, (shiftprse, 1)) (accessgy, (i,1))) A

Vel,el' : Dom[Elem].Vi : Nat.Vl : Dom[Plist]s,.
(Eq[Plist]ser (assigninpg, (el,emptylsiy)) (shiftprsy, (addlsy el emptylsiy))) A
(Eq[Plist]ser (assigninpse, (€l, (addls, el 1)) (addls el' (assigninpser (el,1)))) A
(Eqbool_Nat (getdimg, 1) (getpointersyy 1) =Roo true) D

(Eq[Plist]ser (assigninpse, (el, (shiftpr (add el’ 1)) (addls, €l 1)) A
((LtBool_Nat (getpointers, 1) (getdimgy, 1)) =poo true) D
(Eq[Plist]se, (assigninpg, (el, (shiftprg, (addls, el'1))))

(addly, el (assigninpg, (el, (shiftprg, 1))))) A

15

Vel : Dom[Elem].¥l : Dom[Plist]s:,.
(Eq[Elem) s, (accessge, ((getpointery, 1), (assigninpg, (el,1)))) el) A
Vel,el' : Dom[Elem].¥l : Dom[Plist]s,.
(getpointersy, emptylser) =nNar zero A
(getpointeryy, (addly, el emptyly,)) =na (suce zero) A
(getpointeryy, (addly, el (addly, el' 1)) =nq (getpointersy, 1) A
((LtBool_Nat (getpointers, 1) (getdimgy, 1)) =poo true) D
(getpointersy, (shiftpr 1)) =nat (succ (getpointers, 1)) A
((EqBool_Nat (getpointerssy 1) (getdimgir 1)) =poor true) D
(getpointergy, (shiftprl)) =nat (getpointerg, I) A
Vel : Dom[FElem].¥l : Dom[Plist],.
(getdimgs, emptylser) =nat zero A

(getdimg, (addlsr el l) =nar (suce (getdimg, 1)) A

(getdimg, (shiftprl)) =wna (getdimge, 1) A

Vel : Dom[Elem].¥l : Dom[Plist]ys.
(Eq[Listn] s, (shiftplse- emptylsi,) emptyls,) A
(Eq[Listn), (shiftply, (addly, el 1)) (addly, el (shiftply, 1)) A
((EqBool_Nat (getpointers, 1) (getdimge, 1)) =poar true) A
((EqBool_Nat (getdimg, 1) (succ zero)) =poo true) D

(Eq[Listn)sr (shiftplsyy (shiftpre, 1)) 1)

16

((EqBool_Nat (getpointerg, 1) (getdimgiy 1)) =Boot true) A
((LtBool_Nat (succ zero) (getdimgsy 1)) =Boor true) D
(Eq[Listn)sr (shiftplsyy (shiftprs, 1)) (shiftpls, 1))

((LtBool_Nat (getpointers, 1) (getdimsi, 1)) =poot true) D

(Eq[Listn]s, (shiftplsy (shiftprg, 1)) 1)

Yi: Nat.Vel : Dom[Flem].¥l : Dom[Plist]str.
((LtBool_Nat (succ zero) (getpointerse, 1)) =Boo true) D
(getpointergy, (shiftpll)) =nat (decr (getpointers, 1)) A
(getpointersy, (assigninpsr (el,1))) =nar (getpointers, 1) A
(LtBool_Nat i (getpointersi, 1)) =poot true) D
(Eq[Elem)str (accessgiy (3, (assigninpssy (n,1)))) (accesssir (i,1)))

Definition 4.3 The refinement map p : Str[PLIST]| — Str[STACK], given
a structure Pl : Str[PLIST] returns the following STAC K N -structure:

Dom[Stack],p1y = Dom[Plist]p
Eq[Stack]p(pl) st st' = (getpointerp; st) =na (getpointerp; st') A
Vi: Nat.(LeqBool_Nat i (getpointer _Pl st) =pgoo true) D
(Eq[Elem]p; (accespy i st) (accesp; i st'))
Dom[Elem],p1y = Dom[Elem|p,

Eq[Elem],pyy = Eq[Elem]pi

empty,pry = emptylpi

17

push,(piy el st = Primrec Bool (EqBool_Nat (getpointerp; st) (getdimp; st))

(shiftprp; (addlp; el st)) (assigninpp; (el, (shiftprp; st)))

pPop,(pr) ST = (Shiftplpl St)
top,(piy st = (accessp; ((getpointerp; st), st))

errelem,pyy = errelemp,

and one can prove that the function p is a refinement map in a similar way as
in [Luo94].

5 Structuring operators

In [Luo94],different structuring operators to structure specifications have been
developed in a similar way as the specification language ASIL. One of these
operators is defined to put together two subspecifications and other operators
are defined to rename, extend or modify a given specification. These operators
are related to the basic set of operators of the specification language AST which
we present in the following chapter but we do not think that it is possible to
obtain any soundness and/or completeness between the semantics of the two
sets of operators. As we mentioned in the introduction, the resulting framework
is an expressible and acceptable framework for software design although it has
some drawbacks. In this section, we finish to present some of the operators
of this framework and in the rest of this thesis we present how to represent an
algebraic design frameworks for ASL in a generic way proving soundness and/or
completenes between the formal semantics of the original frameworks and its
representation.

Definition 5.1 Let SP and SP’ be specifications. Then, the infiz specification
operation Q : SPEC — SPEC — SPEC is defined as follows:

Str[SP @ SP'] = Str[SP] x Str[SP']
and for any s of type Str[SP @ SP'],
Az[SP @Q SP'](s) = Az[SP](mi(s)) A Az[SP](ma(s))

Definition 5.2 Given a specification SP, an extension function of Str[SP] of
type Ext_Str : Str[SP] — Type and some extra azioms on the extended
structure ¥s : Str[SP].Fxt_Str(s) Ext_Az : ¥s : Str[SP].Fxzt_Str(s) — Prop,
the specification E = Extend(SP, Fxt_Str, Fxt_Az) with arity

E:TISP : SPECIIf : Str[SP] — Type.llg : ¥s : Str[SP].f(s) = Prop.SPEC

18

is defined by
Str[E] = s : Str[SP].Ext_Str(s)
and for any s of type s : Str[SP].Ext_Str(s) — Prop, Az[E](s) is defined as
Az[F](s) = Az[SP](mi(s')) A Ext_Ax(s)

Definition 5.3 Assume that 5,5 : Type and p : S — 5'. The specification
operation Con, : Spec(S') — Spec(S) is defined for any specification SP' such
that ' = Str[SP’'] as follows:

Str[Con,(SP')] = S
Az[Con,(SP")] = 35" : 8. Az[SP'|(s') A p(s') = s

In [Luo94], you can find the proofs that these operators are monotonic with
respect to the refinement relation, the definition of others and the definition of
parameterised specifications, their instantiation and their refinement.

6 Adequate encodings of logical systems in UTT

The main tasks of software design in an algebraic framework are the the deduc-
tion of properties from algebraic specifications, the refinement of specifications
or the verification of programs from algebraic specifications. To assist these
tasks, sound (and in some cases complete) proof systems with respect to the
formal semantics of these tasks have been developed. For the case of design
frameworks for ASL, in [HS96], [BCH] and in [Hen97] sound and complete proof
systems for the tasks of deduction and refinement have been developed. The
main difficulty to give a representation of these proof systems is that some of
them are infinitary proof systems and for some cases it is not possible to give a
sound and complete representation in a finitary proof system, like for example
the type theory we use, since there exist some incompleteness results. In order
to be able to give a representation of this kind of proof systems, we redefine the
infinitary proof systems as finitary proof systems which are sound with respect
to the semantics of the design tasks and then we give adequate encodings of the
finitary proof systems in type theory. Some of the finitary proof systems are
formulated as natural deduction systems but we will allow in general the use
of different sequents to define proof systems like for example all the sequents
which are used to define all the type theories of the previous chapter.

Before presenting the redefinition of the proof systems for the deduction of
properties of ASL specifications and the refinement of ASL specifications for
first-order and higher-order logic in Chapter 5 and the adequate encodings of
these proof systems in the appendix and Chapter 6, we present in this chapter
the basic representation techniques of natural deduction systems in UTT. First

19

we give the adequate encoding of the fragment of first-order logic presented in
the previous chapter in LF, then we give the adequate encoding of the typed
lambda calculus and its substitution operation and after that we give the ade-
quate encoding of a functional fragment of a linear type system in UTT which,
as we will explain, is not possible to represent with the principle of encoding of
LF.

As we mentioned in the introduction, the main objective of this work is to
reuse theorem provers of type theories with inductive types to develop theorem
provers for design frameworks for algebraic specifications and logical formalisms
in general.

6.1 Adequate encoding of first-order logic

In this subsection, we present the adequate encoding in UTT of the following
fragment of first-order logic which we will refer to as #OL and which was also
encoded in LF in the previous chapter:

TU¢=x ¢ I'sx¢D¢" I'sx¢
T=x¢é¢Dd (D) =y ¢ (D €
' =x ¢{t/x}
I'=>x 3z.¢ (HI)
[=x 3z TU{} =xup) ¥
I'=x (3E)
r = Xu{z} ¢
[=x Vz.é (V1)
I'=>x Vz.¢
I'=x o{t/x} (V E)

Before presenting the encoding, we give some extra definitions of logical
systems which are needed for the presentation of the encoding and its proof of
adequacy.

Definition 6.1 The sequent T' = x ¢ is closed iff ¢ and all the formulas in T
are closed under X.

Notation: In the following, for any sequent S of a logical system 11 including
a set of free variables, we will assume predefined the property of closedness in
the obvious equivalent way.

Definition 6.2 A rule is closed if the sequents of the premises and the sequent
of its conclusion are closed.

20

Definition 6.3 The set of derivations of a sequent I = x ¢ in FOL is denoted
by Aror (T =x ¢) and recursively defined as follows:

e ifp €l thenT =x ¢ € Apor(I =x ¢).

o ifre FOL, (I =x ¢,T1=x, ¢1,...,n =x, ¢n) is an instance of the
rule v, 61 € Apor(T1 =x, ¢1), ... and d, € Aror(T'n =x, ¢n), then
'i"(r =X (]5, [(51,... ,Jn]) c AFOL(F =>X (]5)

Notation: In the following, we will denote by An(S) the set of derivations
of the sequent § in the logical system T and we will denote just by An the whole
set of derivations of the logical system Ary.

Definition 6.4 A derivation of a sequent is closed iff the sequent is closed and
its subderivations are closed, where the subderivations are the derivations of the
instances of the first-rule premises of the derivation.

As we explained in chapter 2, an encoding of a proof system can be considered
adequate if there is an exact correspondence between syntax and proofs of the
object system and their encodings. Our new encoding is based on the principle of
proof systems as inductive relations. Using inductive relations and this encoding
principle will allow us to make a more precise representation of syntax, proof
systems and derivations of logical systems, and what is more important, we will
be able to use primitive recursive operations to describe the whole encoding
of our proof system. See also chapter 2 for a general comparison between our
principle of encoding and the principle of encoding of LF.

A technical difference with respect to the work of [HHP93] and [Gar92] is
the encoding of syntax. We won’t identify bound variables of formulas with
variables of the type theory. Instead, we will encode them using the underlying
idea of deBruijn indexes which will allow us to make a trivial conversion between
free and bound variables. Finally, note that because of the general definition of
derivation which we give above, the proof of adequacy does not need to redefine
the object logical system making more explicit in the sequent some notion of
correct proof expression.

The encoding of the syntax of our logic requires the representation in the
type theory of variables, contexts, terms, formulas and environments (set of as-
sumptions). All of them are defined as inductive types. Besides, it is necessary
to define some functions over these inductive types, like for example the sub-
stitution of a term by a variable in a term or a formula. Just remember that
in this type theory we have no operator for general recursion, but instead one
can use the operators of primitive recursion associated to each inductive type
to define this kind of operations.

In order to avoid the necessity of a-conversion in the substitution operation
on formulas, we need a non-trivial encoding of variables. Thus, the inductive
type which define variables is defined as a product type including always its
variable name, a variable index and in some logics additional information like
for example its associated sort or type. Variable names are defined as non-empty

21

sequences of characters, numbers or the symbols $ or _. Since we can assume that
the infinite set of variables is countable, variable indexes are trivially defined as
inductive types. These indexes are assigned during the encoding of terms and
formulas using the underlying idea of deBruijn indexes, and the deBruijn indexes
for bounded variables start from the greatest index assigned to the free variables
of the formula. It is obvious that using the variable names together with the
variable indexes as identifiers no name clashes can occur during substitution and
therefore no a-conversion is needed to define this operation. Note also that we
do not lose readability because we preserve the original names of the variables.

In the following, we proceed with the whole encoding of the proof system
presenting first the encoding of variables, encoding of terms and formulas, en-
coding of well-formed terms and formulas and after that the adequacy of the
representation of synstax and finally the adequate encoding of the proof system.

6.1.1 Encoding of variables

In the following we present the definitions of the inductive types for variable
symbols, variable names, variable indexes, indexed variable and set of indexed
variables. First, we define variable symbols which determine the symbols of
variable names.

Definition 6.5 The type Var_symbol is inductively defined by the following set
of constructors:

ay...,z: Var_symbol
A, .., 7 : Var_symbol

8 Var_symbol

Remark: We assume predefined the equality function Eqbool_V's : Var_symbol —
Var_symbol — Bool.

Next, we define variable names as non-empty sequences of variable symbols.

Definition 6.6 For any type T : T'ypeq, the inductive type Nelist T is defined
by the following constructors:

first_Nel : T — (Nelist T)
cons_Nel : T — (Nelist T) — (Nelist T)
Definition 6.7 The type Varname is defined as follows:
Varname = Ne_list Var_symbol

Remark: We assume predefined the equality function Eqbool_Vn : Var_name —
Var_name — Bool.

22

Next, we define variables with indexes as a pair of a variable name and
variable index.

Definition 6.8 The type Var_index is inductively defined by the following set
of constructors:

first_Vi: Var_index

next_Vi: Var_index — Var_index

Remark: We assume predefined the equality function Eqbool_Vi : Var_index —
Var_index — Bool.

Definition 6.9 For any ¥ € |AlgSig|, the type Invarn is defined as:
Invarn = Pair Varname Var_index

Remark: We assume predefined the equality function Eqbool_Ivarn : Invarn —
Invarn — Bool.

Finally, we define set of variables and some operations on it. The basic
operations on set of variables are to define the empty set, to add a variable with
a new index to the variable set, to get the indexed variable with the greatest
index of a given variable name from a variable set, and an inductive relation to
check whether a given variable is in the variable set.

Definition 6.10 The type Var_set is defined as:
Var_set = pair Var_index (List Invarn)
Definition 6.11 The function
empty_Vst : Var_set
is defined as follows:
empty Vst = mkpair Var_set first_Vi (nil Invarn)
Definition 6.12 The function
addvar_Vst : Varname — Var_set — Var_set

is defined as follows:

addvar_Vst vn vs = mkpair Var_set

(next Vi (fst vs)) (cons Invarn (mkpair Invarn vn (fst vs)) (snd vs))

23

Definition 6.13 The function

getvar_Vst : Varname — Var_set — Invarn
is defined as follows:

getvar_Vst vn vs =

Primrec (List Invarn) (mkpair Invarn v (fst vs))
(get_if eq vn) (snd vs)

where

get_if _eqon v wlvf =
Prim_rec Bool v' vf (Eqbool_Vn vn (fst v'))

Definition 6.14 The inductive relation
Isan Vst : Tlv : Varname.llvs : Var_set. Prop

is defined by the following set of constructors:

ctr_Invs : TThy : Varname.llvs : Var_set.
Misinpr : I's_in_ivl v (snd hvs).Isin_Vst v vs
Definition 6.15 The inductive relation
Is_in_ivl : v : Varname.llvs : List Invarn.Prop
is defined by the following set of constructors:

base_Invs : llv,v' : Varname.llivl : List Invarn.
Tegpr : Eqbool_Vn v v' =p,, true.ls_in_vl v

(cons Tnvarn (getvar_V st v’ (addvar_V st v’ vs)) ivl)

genc_Invs : Tlv : Varname.lliv : Invarn.dlivl : List Invarn.
Mpr : I's_in_ivl v ivl.

Is_in_ivl v (cons Invarn iv ivl)

24

6.1.2 Encoding of terms and formulas

And now we define the inductive types of terms, formulas and their associ-
ated substitution operation. The inductive type for terms is defined with one
constructor to define variables and one constructor for each function symbol.
The constructor names of the overloaded function symbols have the arity of the
function symbols as component of the constructor names.

Definition 6.16 For any single sorted first-order signature, the inductive type
Term is defined by the following set of constructors:

{var_Trms : Invarn — Term}U

{fTrm:Term — ... — Term — Term |
f:n€X and fis not overloaded in ¥ }U

{f-nTrm:Term — ... > Term — Term |

f:n €X and fis overloaded in X}

The substitution operation on terms is trivially defined using primitive re-
cursion replacing the ocurrences of a given variable in a term by another term.

Definition 6.17 For any signature X
subst_Trm : Term — Term — Invarn — Term
is defined as follows:

subst_Trm trm trm' v = Primrec Term (varc trm' v) (func_l trm’ v) ...

(func_n trm’ v) (funove_l trm/ v) ... (funove_m trm’ v) trm

where
varctrm v v’ = Primrec Bool trm v' (Egbool_Ivarn v v')

func_ltrm v trm_11 ... trm_lny trms_11...trms_1ny =

25

fiTrms trms_11 ... trms_ln,q

func_ntrm v trmonl ... trm_nn, trms_nl ... trms_nn, =
fn Trmstrms_nl ... trms_nn,
funove_l trm v trm_11 ... trm_1mq trms_11 ... trms_lm; =
g1-mqi_Trmstrms_11 ... trms_1my
funove_m trm v trm_ml ... trm_mm,, trms_ml... trms_mm,, =
Im My _Trms trms_m1 ... trms_mm,,
where f1in1, ooy fniMn,g1: M1, -y Gm : Mim .

The inductive types for formulas is defined with one constructor for each

logical operator.

Definition 6.18 For any signature, the type Formula is defined by the follow-
ing set of constructors:

equal_Form : Term — Term — Formula
implies_Form : Formula — Formula — Formula
exists_Form : Invarn — Formula — Formula

forall_Form : Invarn — Formula — Formula

And the substitution operation of a free variable by a term in a given term
is trivially defined by primitive recursion as follows:

Definition 6.19 The function

subst_Form : Formula — Term — Invarn — Formula

26

is defined as follows:

subst_Form form trmiv =
Primrec Formula (equal fe trm iv) (impliesc trm iv)
(existsc trm iv) (forallc trm iv) form
where
equal fc trm fv strm strm’ =

equal_Htrm (subst_Trm strm trm iv) (subst_Trm strm' trm iv)

impliese trm iv form sform form' sform’ = implies_Htrm sform sform/
foralle trm iv v’ strm strmf = forall_Htrm iv' strmf
existsc trm iv ©v' strm strmf = exists_Htrm iv' strmf

6.1.3 Encoding of well-formed terms and formulas

For the adequacy of syntax, it is required to represent well-formed terms and
well-formed formulas closed by a set of variables. As we explained before, the
bound variables of well-formed formulas are indexed with deBruijn indexes start-
ing from the greatest index assigned to the set of free variables.

Definition 6.20 The inductive relation
W fterm : Var_set — Term — Prop
is defined by the following set of constructors:

{ass_tr : Mvs : Var_set.ITv : Invarnpr : Is_in_Vst (fst v) vs.

W fterm wvs (var_sTrmsv) } U

{appl_f ir : Mlvs : Var_set.Ilty : Term..... IIt, : Term.
Hwft : W fterm vs ty Ilwft, : W fterm vs t,.
W fterm vs (f Trmsty ... 1t,)

f:n and f is not overloaded in ¥} U

27

{appl_f n_tr : Tlvs : Var_set.Ilty : Term.. ... It, : Term.
Mwfty : W fterm vs t1.1Mwft, : W fterm vs t,.
W fhterm vs (fonTrmt1...t,)) |
f:n and f is overloaded inX}
Definition 6.21 The inductive relation

W fform : Var_set — Formula — Prop

is defined by the following set of constructors:

eq_fer : Tlvs : Var_set.Ilt, r : Term.Tlw ft : W fterm vs t.TIw fr : W fterm vs r.

W f form vs (equal_Form1 r)

implies_fer : Tvs : Var_set.1l¢1, ¢ : Formula.
Mwfpry : W fform vs ¢1.1Mw fpry : W f form vs ¢,.

W f form vs (implies_Form ¢1 ¢2)

forall_fer : Tlvs : Var_set.Ilvn : Varname.ll¢ : Formula.
Miprp : W f form (addvar_V st vn vs) ¢.

W fform vs (forall_Form (getvar_V st vn (addvar_V st vn vs)) ¢)

exists_fer : lvs : Var_set.Ilvn : Varname.Il¢ : Formula.
Mprp : W f form (addvar_V st vn vs) ¢.
W fform vs (exists_Form (getvar_Vst vn (addvar_Vst vn vs)) ¢)

Definition 6.22 The inductive relation

W fforml : Var_set — (List Formula) — Prop

28

is defined by the following set of constructors:

nil W ffl : Tlvs : Var_set.W f forml vs (nil Formula)
cons W ffl :lvs : Var_set.Ilf : Formulallfl : List Formula.
Mwffp: Wfform vs f.Tlwf flp : W fforml vs fl.
W f forml vs (cons Formula f fI)

6.1.4 Adequate representation of syntax

One can easily define encoding and decoding functions of variable names, vari-
able sets, terms, formula and lists of formula with the following arities:

€yn : X = Varname

: Varname — X

€ys t [X] = (Var_set)

e;l: (Var_set) — [X]

€ (List Imvarn) — [X]

€ : Var_set - Ty (X) — Term

et_l : Var_set - Term — Tx(X)

¢f : Var_set — Senpor, (T, X) — Formula

-1

€ Var_set — Formula — Senpor, (I, X)

er 1 Varset — [Senpor (Z, X)] — (List Formula)

6;11 : Var_set — (List Formula) — [Senpor, (2, X)]

and the encoding and decoding functions of well-formed terms, well-formed
formulas and list of well-formed formulas with the following arities:

® ¢, which given ws : Var_set, t € Tx(X) returns an element of the
following set:

{t:Term | (W fterm vst) }

. e;},t which given vs : Var_set and an element of the set
{t:Term | (W fterm vs t) }

returns an element ¢ € Ty, (X).

29

® ¢y which given vs : Var_set, f € Senror, (X, X) returns an element of
the following set:

{ f: Formula | (W fform vs f) }

° E;Jl,f which given vs : Var_set and an element of the set

{ f: Formula | (W fform vs f) }
returns an element f € Senrpor (X, X).

where Tx(X) denotes the term algebra generated by the signature ¥ with a
finite set of free variables X and in this case, Senpor, (X, X) denotes the set of
closed first-order fomulas generated just by the operators =, D, 3, V. See the full
encoding of a higher-order logic in the appendix for the complete definition of
similar encoding and decoding functions.

Definition 6.23 The substitution operation on terms {_/_} : Ts(X) — Tx(X) —
X — Tx(X) for any signature T is inductively defined as follows:

y{t/z} =y vifr =y
=1 ,otherwise

f(tla"-atn){t/m}: f(tl{t/'r}a"'atn{t/'r})
where
tty,...,t, €Ts,(X), f:n € X

Definition 6.24 The substitution operation on formulas {_/_} : Senror (X, X) —
Ts(X) — X for any signature © € AlgSig is inductively defined as follows:

y{t/=} =y vifr =y
t , otherwise

ty =t {t/xz} = (t{t/z} =t{t/z}

Fz.g {t [y} = F2"((¢{2'/2}) {t / y}) ify# e
= Fe.o{t/y} vify==

30

Ve.g {t [yt = Va'.((¢{='/z}) {t / y}) ify#
= Va.¢ Jify =2
where
(x ¢ FV(1)) = (& = z) A
(ze FV(t) = ((«' ¢ FV() A (2" ¢ FV(¢)) A (2" ¢ BV (9))

p2¢' {t/x} = ¢ {t/x} D ¢ {t/x}

where FV (t) and FV(¢) are the free variables of term t and formula ¢ respec-
tively, and BV (t) and BV (¢) are the bound variables of term t and formula ¢
calculated in the obvious way.

We can prove the following adequacy theorem of syntax:

Theorem 6.25 e There exists a bijection between first-order formulas closed
under the finite set of free variables X and the normal forms of formu-
las form : Formula which are well formed, i.e. that the proposition
Wfform (eys X) form is provable in the type theory and

e this bijection is preserved under the substitution operation

Proof:

1. One can trivially prove that the encoding function of syntax €+ and
€yys are total and injective. To prove the bijection, we use the decoding
functions cu_]}f and 6;11% defined in a similar way as the ones of higher-
order logic. We can also prove that these decoding functions are injective
and total. Note that this would not be possible if we take as domain of
the decoding function the set of formulas belonging to the inductive type
Formula. Finally, one can prove for all form € Senpor (EZ, X) that

E;Jl,f (€os X) (€wps (€ws X) form) = form
by induction on form, which guarantees the bijection stated in 1).

2. This is guaranteed by proving that encoding and substitution commutes,
which can be formulated by the following equation for all closed formulas
form € Senpor (X, X), all term ¢ € Ty, (X) and all free variables z in X:

subst_f (ewpr (€vs X) form) (ewsr (€vs X) 1)
(getvar Vst (eyn @) (evs X)) = (ewss (€us X) (form {t/z}))

This equation is trivially provable by induction over form.

31

6.1.5 Adequate encoding of the proof system

The fragment of first-order logic presented in this section is encoded in UTT as

the inductive relation with type FOL : IEnv : List Formula.llvs : Var_set.Il form :
Formula.Prop defining for each rule of the logical system, a constructor in the
inductive relation as follows:

impl_i : Henv : List Formula.llvs : Var_set.Il¢, ¢’ : Formula.
Mw fenv : W fforml vs env.
NMwff:Wfformvs ¢.llwff' : Wfform vs ¢'.
Mprd : FOL (cons Formula ¢ env) vs ¢'.

FOL env vs (implies_Form ¢ ¢')

impl_e : lenv : List Formula.llvs : Var_set.llg, ¢' : Formula.
Mwfenv : W f forml vs env.

Mwff:Wfformvs ¢.1lwff' : Wfform vs ¢'.

Mprd : FOL env vs (implies_Form ¢ ¢').Hprd' : FOL env vs ¢.

FOL env vs ¢'

forall i : Tlenw : List Formula.llvs : Var_set.Ilon : Varname.Il¢ : Formula.
Mwfenv : W fforml vs env.lMwff : W f form (addvar_V st vn vs) ¢.
Idpr : FOL env (addvar_Vst vn vs) ¢.

FOL env vs (forall_Htrm (getvar_Vst vn (addvar_Vst vn vs)) ¢)

32

forall_e : Tlenv : List Formula.Tlvs : Var_set.Tlon : Varname.ll¢ : Formula.Ilt : Term.
Mwfp: Wfforml vs env.
Mwff : Wfform (addvar Vst vn vs) ¢.IIwft : W fterm vs 1.
Ildpr : FOL env vs (forall_Form (getvar_Vst vn (addvar_Vst vn vs)) ¢).

FOL env vs (subst_Form ¢ t (getvar_Vst vn (addvar_V st vn vs)))

exists_i : llenv : List Formulallvs : Var_set.Ilvn : Varname.ll¢ : Formula.llt : Term.
Mwfp: Wfforml vs env.
Mwff: Wfform (addvar Vst vn vs) ¢.ITwft : W fterm vs t.

Mdpr : FOL env vs (subst_Form ¢ t (getvar_Vst vn (addvar_V st vn vs))).

FOL env vs (exists_Form (getvar_Vst vn (addvar_Vst vn vs)) ¢)

exists_e : lenv : List Formula.Ilvs : Var_set.Ilvn : Varname.Il¢, ¢’ : Formula.
Mwfenv : W f forml vs env.lMwff : W f form env (addvar_Vst vn vs) ¢.
Mwff' : Wfform env ¢'.
Ildpr : FOL (cons env ¢) (addvar_V st vn vs) ¢'.
Mdpr' : FOL env vs (exists_Form (getvar_Vst vn (addvar_Vst vn vs)) ¢).

FOL env vs ¢

For the encoding and decoding functions of the proof system for first-order
logic, we will also assume predefined the following functions:

® ¢y rtp Which given a variable set vs : Var_set, t € Ty returns an inhabitat

of (W fterm vs (€; (€ys v5) 1))

® ¢y 1p which given a variable set vs : Var_set, f € Senpor, () returns an
inhabitat of (W fform vs (ef (€us vs) f))

® ¢, ¢7p which given a variable set vs : Var_set, fl € [Senpor (X)] returns
an inhabitat of (W fforml vs (ef; (€45 vs) fl))

33

The encoding function of derivations of FOL ¢y4 which given a closed deriva-
tion in A, (T =x ¢) returns a proof of the proposition

FOL (st (e X) T) (c0s X) (¢ (c0s X))

is inductively defined by closed derivations as follows:

€rqd (impli (T =x ¢ D ¢',[0])) =
impl_i (€51 (€vs X) T) (€05 X) (€7 (€05 X) @) (ef (€05 X) ')
(cwpsip (€os X) L) (ewppp (cus X) @) (€wppp (€vs X) &) (€1a 0)

where § € A, (TU¢ =x ¢).

€ra (tmpl_e (T =x ¢',[61,d2])) =
impl_e (g1 (€vs X) T) (evs X) (ef (€vs X) @) (€7 (€05 X) &)
(cwpsip (€os X) T) (cwrpp (cvs X) @) (€wppp (€vs X) @) (efa 01) (efa d2)

where §1 € Ao, (T =x ¢ D ¢'),02 € Anpo, (T =x 6).

€rd (forall_i(T =x Vz.¢,[d])) =
forall_i (e (eys X) T) (evs X) (€vn @) (€ (addvar_ Vst (eyn x)(€vs X)) @)
(custip (€ue X) T) (cussp (addvar Vst (con 2)(cus X)) @) (¢749)

where § € Anpo, (I' = xuia} @)

€rd forall_e(T =x ¢{t/x},[d]) =
forall_e (e (€vs X) T) (€ys X) (€un x)(€p (addvar_Vst (eyn x)(€vs X)) 8) (e (€45 X) 1)
(cwsstp (€vs X) I) (€wssp (addvar Vst (€vn z)(€vs X)) 6) (€wse (€vs X) 1) (€74 0)

where § € Anyo, (I = x Vi.¢),

34

€pq exists_i(l =x Jx.¢,[0])) = ewxists_i

(€71 (€vs X)T) (€vs X) (€un 2)(€f (addvar Vst (e,n 2)(€ys X)) &) (€1 (€45 X) 1)

(cwsip (€vs X) T) (cwysp (addvar Vst (evn z)(€vs X)) @) (€wstp (€vs X) t) (€1d J)

where § € Ampo, (I' = xuia} @)

€ra exists_e(l = x ¢',[01,02])) = exists_e

(€71 (€vs X)T) (€vs X) (€un x)(€f (addvar Vst (eyn 2)(eys X)) @) (€5 (€05 X) &)
(cwsstp (€vs X) T) (€wssp (addvar Vst (€un z)(€vs X)) 8) (€wssp (€vs X) ¢')
(csa 01) (€1 02)

wheredt € Anpe, (TU {0} = xu{e} ¢'),02 € Anpp, (I =x J2.9)

Adequacy of the encoding of the proof system is guaranteed by the following
theorem:

Theorem 6.26 There is a bijection between closed derivation trees of a sequent
' =x ¢ and the normal forms of the proofs of the inductive relation
FOL (efi (evs X) T) (eys X) (5 (evs X) ¢).

Proof:

This proof is not difficult because we have an exact correspondence between
rules of the proof system and constructors of the inductive relation which en-
codes the proof system. One can proof by induction that the encoding function
is injective and total. To prove the bijection we define a decoding function with
arity

eJTd] : FOL env vs form —

1

Attpo, (€5 (e7 vs) env) = o1 (67 (e vs) form)

for any env : List Formula,vs : Var_set,form : Formula inductively defined

35

as follows:
e;dl (impl_i env vs ¢ ¢' wfenv wff wff prd) =
impl_i((c;ll vs env) = -1, (6;1 vs ¢) D (6;1 vs ¢'), [EJle prd))
EJle (impl_e env vs ¢ ¢' wfenv wff wff prdprd) =

impl_e((e;ll vs env) = -1, (6;1 vs @), [e;dl prd, e;dl prd’]

EJle (forall_i env vs vn ¢ wfenv wff dpr) =

forall_i ((6;11 vs env) = (5] vs) Ve, i vn.(e}l (addvar_Vst vn vs) ¢), [efdl dpr])

€ys US

e;dl (forall_e env vs vn ¢ t wfenv wff wft dpr) =

forall_e ((e}ll vs env) = -1, (6;1 (addvar_Vst vn vs) ¢)

{(e " vs 1) / (e vn)}, €5, dpr])

eJle (exists_i env vsvn ¢ t wfenv wff wft dpr) =

exists_i ((e;ll vs env) = (5 Je ! vn.(e}l (addvar_Vst vn vs) @), [e;dl dpr])

€ns US)

EJle (exists_e env vs vn ¢ ¢' wfenv wff wff dprdpr') =

erists_e ((6;11 vs env) = (5} vs) (6;1 vs @), [efdl dpr, edel dpr'])

This decoding function is also injective and total and it holds by an easy
induction that for all closed derivations deriv € Am,,, EJle (€pq deriv) =
deriv which is necessary to guarantee the bijection.

6.2 Adequate encoding of the typed lambda calculus

In this subsection we are going to present the adequate encoding of the typed
lambda calculus and its substitution operation. One of the original formulation

36

of the typed lambda calculus has the following three rules:

z:7 eX

Xpz:T (Ass)

XU{z:7}pe:r
XpAr:re:Tr— 1 (ABS)

Xpe:r>17 Xpe:r
Xpee: 7 (APPL)

where the possible types (Typerpc(B)) are generated by a set of base types B
and the constructor 7 — 7/ where 7,7 € Typerpc(B) and the set of preterms
(variables, lambda abstraction and application) are denoted by Termrpc(B)

An alternative presentation of the typed lambda calculus is to split the set
of free variables in two: the initial set of free variables of the derivation and
the set of bound variables of a variables which become free in the derivation
process. We will denote this new set of free variables as a pair of the form
(X, X') where the first is the initial set of free variables and the second the
set of bound variables which have become free, and if the second component is
empty we will normally denote the set (X, []) just by X.

This split will be used to determine the difference between the last DeBruijn
index assigned to the bound variables in the scope of every ocurrence of a
variable in a higher-order term and the last index assigned in the original set
of free variables. This index (which will be referred as bound level and it is
an information which every variable in a higher-order term has) is necessary to
update the indexes of the variables of the higher-order term which replaces a
variable in the substitution operation.

Thus, the new formulation of the alternative definition of the typed lambda
calculus has the following four rules:

z:T7 ¢ X' x:7 €X

(X, XYpz:T (Assl)

z:17 €X'

(X, X)Ypz:T (Ass2)

(X, X'U{z:tH)pe: 7
(X, X'Yp dz:re:T—> 71 (ABS)

X, XYpe:Tr>1 (X, X')pe:T
(X, XYpee: 7 (APPL)

And the substitution operation _{_/_} : Termrrc — Termrrc — X —

37

Termryc is inductively defined as follows:

y{t/ =} t ife =y

=y , otherwise

Neireld [y} = Mlirn((efe’/e)) { [y)) Life #y

= dv:Te Jife =y

where
r¢g FV(e) = 2 = 2 A
r€EFV() = ' ¢ FV(e') A 2’ ¢ FV(e) A 2’ ¢ BV (e),

ee {t/x} = e{t/ax}(e{t/a})

where F'V (e) denotes the set of free variables of ¢ and BV (e) denotes the set of
bound variables of e in the usual way.

As for the case of first-order logic, the encoding of variables is not trivial
but in this case additionally to the variable name and its type requires two
variable indexes: one to denote the DeBruijn index as in first-order logic and
the other to denote the bound level of the variable. Variable names are variable
indexes are defined as in first-order logic . Both indexes are assigned during the
encoding of terms. But in this case, The DeBruijn index of the bound variables
of the term which replaces a variable in the substitution operation must be
updated. This update uses the bound level of the variable to be replaced (the
additional variable index associated to variables). Additionally, the bound level
of all the variables of the term which replaces a variable must also be updated
using the bound level of the variable which is replaced. Note that we do not
lose readability in this process either because we always preserve the original
names of the variables.

6.2.1 Encoding of variables

The encoding of variable symbols, variable names and variable indexes is the
same as in first-order logic. We assume predefined the following functions on
variable indexes which can be found in the appendix where a full encoding of a
higher-order logic is given:

e Fgbool Vi : Var_index — Varinder — Bool which is the boolean
equality on variable indexes.

o Ltbool_ Vi : Var_index — Var_index — Bool which is the function
lower than on variable indexes.

38

e add_Vi: Var_index — Var_index — Var_index which adds two variable
indexes like they were naturals.

o decr Vi : Var_sindex — Var_index — Var_index which decrements a
variable index like it was a natural.

o substract_ Vi : Var_indexr — Varindexr — Var_index which substracts
two variable indexes like they were naturals.

Next, we define the higher-order types of variables and higher-order vari-
ables.

Definition 6.27 The inductive types Holtype for a given set of base types B
is defined by the following set of constructors:

{b_Holt : Holtype | b€ B} U

{ func_Holt : Holtype — Holtype — Holtype}

We assume predefined the equality function Eqbool_Hty : Holtype — Holtype —
Bool

Definition 6.28 The type Holvar is defined as:
Holvar = pair Var_name Holtype

Higher-order variables with indexes are defined as higher-order variables with
two indexes: the first is the deBruijn index and the second is the bound level of
the variable which is the number of bound variables which has the scope of an
ocurrence of a variable in a term.

Definition 6.29 The type Holinvar is defined as:
Holinvar = pair Holvar (pair Var_index Var_index)

We assume predefined the following function on Holvar and Holinvar:

e Fqbool_Hvar : Holvar — Holvar — Bool which is the boolean equality
function on higher-order variables.

e FEqgbool_Hivar : Holinvar — Holinvar — Bool which is true if the two
higher-order variables and their deBruijn indexes (not the bound level)
are equal.

o getindex_Hiv : Holinvar — Var_indexr which given a higher-order
variable with indexes returns the DeBruijn index.

e getblevel _Hiv : Holinvar — Var_indexr which given a higher-order
variable with indexes returns the bound level.

39

e assindex_Hiv : Holinvar — Varindex — Holinvar which given
a higher-order variable with indexes and a variable index, assigns the
variable index as deBruijn index to the variable.

o assblevel_Iv : Holinvar — Varindexr — Holinvar which given
a higher-order variable with indexes and a variable index, assigns the
variable index as bound level to the variable.

e addindex_Hiv : Holinvar — Varindex — Holinvar which given a
higher-order variable with indexes and a variable index, adds the variable
index with the deBruijn index of the variable

e addblevel_Hiv : Holinvar — Var_index — Holinvar which given a
higher-order variable with indexes and a variable index, adds the variable
index with the bound level of the variable.

6.2.2 Encoding of variable sets

Variable sets are defined as pairs of two pairs of a variable index and list of
higher-order variables with indexes. The first pair denotes the set of free vari-
ables together with the last deBruijn index assign to the set of free variables
and the second pair denotes the set of bound variables together with the last de-
Bruijn index assign to bound variables. The deBruijn indexes of bound variables
are always assigned after the deBruijn indexes of free variables.

Definition 6.30 The type Holvar_set is defined as:

Holvar_set = pair (pair Var_index (List Holinvar))

(pair Var_indexz (List Holinvar))

We assume predefined the following functions on Holvar_set which can be
found in the appendix where a full encoding of a higher-order logic is given:

o empty_Hwst : Holvar_set which returns the empty variable set

o addfvar_Hvst : Holvar — Holvar_set — Holvar_set which given a
higher-order variable and a variable set, adds a free higher-order vari-
able with indexes to the variable set. The bound level of the variable is
always the first variable index.

o addbvar_Hwvst : Holvar — Holvar_set — Holvar_set which given a
higher-order variable and a variable set, adds a bound higher-order vari-
able with indexes to the variable set. The bound level of the variable is
always the first variable index.

o getblevel _Hust : Holvar_set — Var_indexr which given a variable set,
returns the difference between the second variable index (the one of the
bound variables) and the first variable index (the one of the free variables)

40

e getvar_Hwvst : Holvar — Holvar_set — Holinvar which given a higher-
order variable hv and a variable set hwvs, returns the higher-order variable
with variable indexes with the greatest deBruijn index in the variable set
and with bound level the index getblevel_Hwvst hvs

Additionally, we define different inductive relations on Holvar_set. First,
and inductive relation which checks that a higher-order variable is in a list of
higher-order variables with indexes

Definition 6.31 The inductive relation
Is_in_Hivl : Tlv : Holvar.lvs : List Holinvar.Prop
is defined by the following set of constructors:
base _Inhivl : 11hv : Holvar.Ilhiv : Holinvar.Ilhivl : List Holinvar.
Iegpr : (Eqbool_Hvar hv (fst hiv)) =poor true.

Is_in_Hivl hv (cons hiv hivl)

genc_Inhivl : TThv : Holvar.IThiv : Holinvar.IThivl : list Holinvar.
Mpr : Is_in_Hivl hv hivl.

I's_in_Hivl hv (cons Holinvar hiv hivl)

Second, and inductive relation which checks that a higher-order variable is
not in a list of higher-order variables with indexes

Definition 6.32 The inductive relation

Notisin_Hivl : Tlv : Holvar.Ilvs : List Holinvar.Prop
is defined by the following set of constructors:

base_Ninhivl : IThv : Holvar.Notisin_Hivl hv (nil Holinvar)

genc_Ninhivl : TThv : HolvarIThiv : HolinvarThivl : list Holinvar.
Megpr : (Eqbool_Hvar hv (fst hiv)) =poor false.
Mpr : Notisin_Hivl hv hivl.

Notisin_Hivl hv (cons Holinvar hiv hivl)

41

After that, an inductive relation which checks that a higher-order variable
is in the list of bound variables of a variable set and next an inductive relation
which checks that a higher-order variable is not in the list of bound variables of
a variable set.

Definition 6.33 The inductive relation
Isin_boundv_Huvs : TThv : Holvar.Tlvs : Holvar_set. Prop

is defined by the following set of constructors:
ctr_Inbhvs : Tlhv : Holvar.Ilhvs : Holvar_set.

Misinpr : Is_in_hivl hv (snd (snd hvs)).Isin_boundv_Hvs hv hvs

Definition 6.34 The inductive relation
Notisin_boundv_Hwvs : 11hv : Holvar.llvs : Holvar_set. Prop

is defined by the following set of constructors:
ctr_Ninbhvs : TThv : Holvar.Ilhvs : Holvar_set.

Misinpr : Notisin_hivl hv (snd (snd hvs)).Notisin_boundv_Hvs hv hvs

Finally, an inductive relation which checks that a higher-order variable is in
the list of free variables of a variable set.

Definition 6.35 The inductive relation
Isin_freev_Hwvs : IThv : Holvar.Ilvs : Holvar_set. Prop

is defined by the following set of constructors:
ctr_Inbhvs : TThv : Holvar.Ilhvs : Holvar_set.

Misinpr : Is_in_hivl hv (snd (fst hvs)).Isin_freev_Hvs hv hvs

6.2.3 Encoding of typed lambda terms and the substitution opera-
tion

In this subsection, we present the encoding of higher-order lambda terms and
the substitution operation.

Definition 6.36 The inductive type Holterm is defined by the following set of
constructors:

holvar_Htrm : Holinvar — Holterm
abstr_Htrm : Holinvar — Holterm — Holterm

appl_Htrm : Holterm — Holterm — Holterm

42

In the following, we present the substitution operation on higher-order terms
which given a variable index, a higher-order term ht, a higher-order term ht’
and a free higher-order variable with indexes hiv, returns the higher-order term
which is obtained by replacing all the appearences of the variable hiv in ht by
ht'. Once a higher-order term is replaced by a variable, the variable indexes of
the bound variables of the higher-order term must be updated and the bound
level of every variable of the higher-order term must also be updated. The first
parameter of the substitution operation (the first variable index which is not
assigned to the set of free variables of ht and ht’) is used to determine whether
a variable is free or bound.

Definition 6.37 The function
subst_Htrm : Var_index — Holterm — Holterm — Holinvar — Holterm
are defined as follows:
subst_Htrm vi hirm htrm’' hiv =

Prim_rec Holterm (holvarc vi htrm' hiv) (abstrc htrm' hiv)
(apple htrm' hiv) htrm

where

holvarc vi htrm' hiv hiv' =
Primrec Bool (update_index_Htrm vi (getblevel _Hiv hiv') htrm')

(holvar_Htrm hiv') (Eqbool_Hivar hiv hiv')
abstre hirm’ hiv hiv' htrm htrmf = (abstr_Htrm hiv’' htrmf)
apple htrm’ hiv htrm hirm” hirmf hirmf’ =

appl_Htrm hirmf htrmf"

Definition 6.38 The function update_index _Htrm : Var_index — Var_index

43

— Holterm — Holterm is defined as follows:
update_index _Htrm vi bl htrm = Primrec Holterm

(holvarc vi bl) (abstrc bl) apple htrm

where

holvarc vi bl hiv = Primrec bool (addblevel _Hiv bl hiv)
(addblevel _Hiv bl (addindex _Hiv bl hiv))

Ltbool Vi (getindex_Hiv hiv) vi)

abstre bl hiv ht htf =

abstr_Htrm (addblevel _Hivl bl (addindex _Hivl bl hiv)) ht f

apple ht ht' htf htf' = appl_Htrm htf htf'

6.2.4 Encoding of the type system

The encoding of the type system of the typed lamda calculus is with an inductive
relation with the same number of constructors as rules of the new definition of
the type system:

Definition 6.39 The inductive relation

W fhterm : Holvar_set — Holterm — Holtype — Prop

44

is defined by the following set of constructors:

{ass1_tr : Tlvs : Holvar_set.Ilhv : Holvar.
Mpr : Notisin_boundv_Hwvs hv vs.Ilprin : I'sin_freev_Hwvs hv vs.

W fhterm vs (holvar_Htrm (getvar_Huvst hv vs)) (snd hv)} U

{ass2r : Mvs : Holvar_setIlhv : HolvarIlpr : Isin_boundv_Huvs hv vs.

W fhterm vs (holvar_Htrm (getvar_Hwvst hv vs)) (snd hv)} U

{abs_tr : Tlvs : Holvar_set.IThv : Holvar.ITht : Holterm.Ilhty : Holtype.
Mwft : W fhterm (addbvar_Hwvst hv vs) ht hty.
W fhterm vs (abstr_Htrm (getvar_Huvst hv

(addbvar_Huvst hv vs)) ht) (func_Holt (snd hv) hty),

appl_ir : Mlvs : Holvar_set.TTht, ht' : Holterm.I1hty, hty' : Holtype
Tiprt : W fhterm vs ht (func_Holt hiy hty').
Tiprt’ : W fhterm vs ht' hty.

W fhterm vs (appl_Ht ht ht') hty'}
One can easily define encoding and decoding functions of types, variable
names, list of variables, variable sets and higher-order terms. See the appendix

of a full encoding of a higher-order logic for the definitions of similar functions.
These functions have the following arities:

45

- : Types(B) — Holtype

e;' 1 Holtype — Types(B)

€un : X = Var_name

e} Var_name — X

€nut : [(X, Types(B))] — (List Holvar)
egvll : (List Holvar) — [(X, Types(B))]
€5 ¢ ([X],[X]) = (Holvar _set)

e (Holvar _set) — ([X], [X])

€nt + Holvar _set — Term(X) — Holterm

e;tl : Holvar_set — Holterm — Term(X)

and the encoding of derivations of typed lambda terms is inductively defined
as follows:

€rg Ass1((X, X') b r:T)=
ass_tr(e,s (X, X')) ence
(etr_Ninbhvs encz (6,5 (X, X))
(genc_Ninhivl encx (getvar_Huvst enchvl,

(€vs [hv, ..y hop)))

46

(snd (snd (eys [hv),... hv),_4])))
AP : bool — Prop.\pr: P false.pr
(... (genc_Ninhivl encx (getvar _Hvst enchvl, ey [])
(snd (snd (cus [))))
(base_Ninhivl encz))...)))
(etrInfhvs encz (ey5 (X, X))
(genc_Inhivl encz (getvar _Hust enchv,
(€vs [hv1, ... yhvi_q, (2, 7), hoiy ..., hoy,]))
(snd (fst (evs [hv1,.. ., hvi_q, (2, 7), hvgy oo hop_1])))
(...(genc_Inhivl encx (getvar_Huvst enchv;
(€ys [hV1,. .. s hoi_q, (2, 7), hy]))
(snd (fst (eys [hv1, ..., hvi_1, (2,7)]))
(base_Hivs encx (getvar_Hust encx
(€ys [hv1y... hoi_q, (2, 7)]))
(snd (fst (eys [hv1,..., hvi_q, (2, 7)])))
(AP : bool — Prop.Apr: P true.pr)))...)))
where X = [hv1,...,hvi_1, (2, T), hv;, ..., hoy]
encex = mkpair Holvar (eyn) (€ T)

enchv, = mkpair Holvar (fst hv,) (snd hv,)

enchv; = mkpair Holvar (fst hv;) (snd hv;) X' = [hvi,...

/
enchv;,

= mkpair Holvar (fst hv),) (snd hv),)

enchvy = mkpair Holvar (fst hvy) (snd hv))

47

€rg Ass2(X, X"y p z:7) =
ass2tr(eys (X, X')) ence
(ctr Inbhvs encz (e, (X, X))

(genc_Inhivl encx (getvar_Hust enchv),
iree s honl))

(€ps [AVY, ... hVi_q, (2, 7), holy ...,

(snd (snd (€ys [hVY, ... hvi_y, (2, 7), hv}, ..., Aol _4])))

(...(genc_Inhivl encx (getvar_Huvst enchv}
(€os [PVh, .o s hoj_y, (@, 7)), hvi]))
(snd (snd (€ys [V, ..., hvi_q, (2, 7)])))
(base_Hivs encx (getvar _Hvst ence
(€vs [A]s ooy hop_y, (2, T)]))
(snd (snd (€45 [AVY, ... hvl_{, (2, 7)])))
(AP : bool — Prop.Apr: P true.pr)))...)))

where X' = [hv}, ... hvi_q, (2, 7),hvl, ... hol]

mkpair Holvar (eyn) (€r T)

encr =
enchv!, = mkpair Holvar (fst hvl) (snd hv!)
enchv, = mkpair Holvar (fst hv}) (snd hv})

48

era Abs((X, X') » Az : et 7 — 7/, [8]) =
abs_tr (cys (X, X')) (€yn 2,65 T)
(ent (addbvar Hovst (eyn , €7 7)(eus (X, X'))) €)
(€2a)

where

b€ AHTLC((X’XI) U{I : T} > e.)

ced Appl((X, X') w e ¢ = 7/,[8,8) =
appltr (cys (X, X)) (ent (cus (X, X)) €)
(ne (cus (X, X7))) (er 7) (& 7')
(€ta d) (€rad’)
where
8" € Arppe (X, X) e 2 7),
d €A, (X, XYpe:T—> 1)

6.2.5 Adequacy of the representation

Finally, we present the adequacy of the representation with the following theo-
rem and its proof.

Theorem 6.40 There exists a bijection between the closed derivations of a
judgement ((X,[]) » ¢ : 7) and the normal forms of the proofs of the proposition

W fhterm (cys (X)) (ene (€vs X) @) (€7 7)

Proof:

This proof is not difficult because we have an exact correspondence between rules
of the proof system and constructors of the inductive relation which encodes the
proof system. First, we can easily prove that e;q is injective and total To prove
the bijection we define a decoding function with type

i Whterm (cos (X, 1) (cne (cun (X, 1)) ©) (e 7) =

AHTLC((X7 []) > c: T)

49

inductively defined as follows:

et_dl (assl_tr vs hv pr prin) =

ASS1((e;) vs) » (€} (fst hv) : (e71 (snd hv)))

) S

et_dl (ass2_tr vs hv pr) =

ASSQ((EJS1 vs) » (egnl (fst hv) : (e;l (snd hv)))

e, (abs_tr vs hv ht hty dpr) =

MABS((e) vs) » Aey,) (fst hv) s €7 (snd hv)).

(e;tl (addbvar_Hust hv vs) ht) :

((fst hv) — hty), [(c;4' (dpr))])

e (appl_tr vs ht ht' hty hty' wftpr wftpr') =
APPL (¢;} vs) » (¢, vs ht) (e, vs ht') : hty',

[(ers (witpr)), (e;g witpr')]

This decoding function is also injective and total and it holds by an easy induc-
tion that for all closed derivations deriv € Ap,, . ct_dl (€¢q deriv) = deriv
which is necessary to guarantee the bijection.

6.3 Adequate encoding of a fragment of a linear type sys-
tem

In this section we give an adequate encoding of the functional fragment of SLR,
a lambda calculus with modal and linear function spaces designed by [Hof99].
The main differences with respect to typed-lambda calculus is that contexts
contains variables with aspects where an aspect is a pair containing the infor-
mation whether the variable is linear or nonlinear and whether the variable is
modal or nonmodal. As we mentioned in the introduction, this is possible in
our framework and not in LF since we are able to define non-standard contexts
and manipulate them because we do not have to identify the variables of the
object logic with the variables of LF. Another difference with respect to lambda
calculus is that there exists different functional spaces like for example a (lin-
ear,nonmodal) functional space and a (nonlinear,nonmodal) functional space.

50

The formal semantics can be found in [Hof99] and we do not detail it here be-
cause it is not necessary for our purposes. The fragment of SLR which we are
going to encode adequately in UTT is the following;:

Definition 6.41 An aspect is a pair (I, m) where | € {linear, nonlinear} and
m € {nonmodal, modal}. The aspects are ordered componentwise by nonlinear <:

linear and modal <: nonmodal.

Definition 6.42 The type expressions which we will consider are the following:

Tsip = N natural numbers
L(TsLr) lists over Tspgr
T(TsLr) binary trees labelled over Tspp

Tsir — Tspr function space of aspect a.

Tstr — TsiLr is the generic notation used to define the type system but
normally the different function spaces are denoted in this way:

Tstr — Tsir is Tsir — TsLr when a = {linear, nonmodal}

Tstr — Tsir is Tsir = TsLr when a = {nonlinear, nonmodal}

Tstr — Tsir is OTsLr — TsLr when a = {nonlinear, modal}
Definition 6.43 The expressions which we will consider are the following:
Asipr = =z (variable)

Asir Asir (application)
Az : Tspr-Aspr (abstraction)

Definition 6.44 A context is a partial function from term variables to pairs of

aspects and types typically written as a list of bindings of the form z YA
For any context T', Dom(T') denotes the set of variables bound in T'. If

2 T A € T then T (z) denotes A and T ((x)) denotes a and T, A denotes the
union of the contexts T and A if Dom(T') and Dom(A) are disjoint.

The following judgements are used to define the type system:
e [' nonlinear which means that all its bindings are of nonlinear aspect.
e Disjoint T' A which means that the sets Dom(T") and Dom(A) are dis-

joint.

51

e I' I e: A which means that the expression e has type A in the context

T.
e ' <: a which means that for all bindings « Y Ainl, d < a.

Definition 6.45 The judgement T' <: a for any context T' and any aspect a is
inductively defined by the following rules:

<Ss<ia (be<)

. I
F<a a <:a z ¢ Dom(T) (ge <)

T, {z a:’ A} < a

Definition 6.46 The judgement Disjoint T' A for any context T', A is induc-
tively defined by the following rules:

Disjoint <> & (bedisi)

Disjoint T A
Disjoint T,{z ¢ A} A

z & Dom(A) Az ¢ Dom(T') (gedisj)

Definition 6.47 The judgement T' nonlinear for any context T is inductively
defined by the following rules:

(benl)

< > mnonlinear

Fanonlinear z ¢ Dom(T) A fst(a) = nonlinear (genl)
[, {z : A} nonlinear

Definition 6.48 The functional fragment of the type system SLR is inductively
defined by the following rules:

T,{z * A} Fe: B
T X:4e: A 5 B

(Tarri)

Disjoint I' Ay Disjoint I' Ay Disjoint Ay Ag
IVAi Fep : AS B T,Ay F ey : B T nonlinear T,Ay <: a
F,A],A2 }_61 €9 : B

(Tarre)

And now we proceed with the encoding of the type theory. To give the en-
coding and proof of adequacy of this type type theory, we first give the represen-
tation of aspects, the order relation between aspects, types, variables, contexts
and terms with some predefined operations. Then, we encode the type theory
and finally we give the adequacy of the representation.

52

6.3.1 Encoding of variables, contexts and terms

First, we respresent aspects and their relation operation.

Definition 6.49 The inductive type Linearity is defined by the following con-
structors:

linear : Linearity
nonlinear : Linearity

Definition 6.50 The inductive relation <: _Lin : Linearity — Linearity —
Prop is inductively defined by the following constructor:

nll :<: _Lin nonlinear linear

Definition 6.51 The inductive type Modality is defined by the following con-
structors:

modal : Modality
nonmodal : Modality

Definition 6.52 The inductive relation <: _Mod : Modality — Modality —
Prop is inductively defined by the following constructor:

mnm :<: _Mod modal nonmodal
Definition 6.53 The type SLRaspect is defined as Pair Linearity Modality.

Definition 6.54 The inductive relation <: _Asp : SLRaspect — SL Raspect —
Prop is defined by the following set of constructors:

refl : Il : Linearity.IIm : Modality.

<: _Asp (mkpair SLRaspect | m) (mkpair SLRaspect | m)

/

compw :: T, 1" : Linearity.Tlm, m’ : Modality.Mlinr :<: lin 1 I’ Tlmodr :<: _mod m m'.

<: _Asp (mkpair SLRaspect | m) (mkpair SLRaspect I' m’)
Next, we define the types of the type theory.

Definition 6.55 The inductive type SLRtype is defined by the following set of
constructors:

nat : SLRtype
list : SLRtype — SLRtype
tree : SLRtype — SLRtype

Imfunc : SLRtype — SLRaspect — SLRtype

53

And next, we define variables together with an operation to get the aspect
of the variable, variables with indexes and contexts.

Definition 6.56 The type SLRvar is defined as Pair (Pair Varname SLRtype) SLRaspect

Definition 6.57 The function getaspect _SLRv : SLRvar — SLRaspect is
defined as follows:

getaspect _SLRv svar = (snd svar)

We define an additional inductive relation on aspects to check whether an
aspect is nonlinear.

Definition 6.58 The inductive relation Nonlin_Asp : SLRaspect — Prop is
defined by the following constructor:

nonlec_Nlm : TImod : Modality. Nonlin_Asp (mkpair SLRaspect nonlinear mod)
Definition 6.59 The type SLRivar is defined as Pair SLRvar Varindex.
Definition 6.60 The type SLRcontext is defined as Pair Varindex (List SLRivar)

Definition 6.61 The inductive type SLRterm is defined by the following con-
structors:

var_SLRt : SLRivar — SLRterm
appl_ SLRt : SLRterm — SLRterm — SLRterm

abs_SLRt : SLRivar — SLRterm — SLRterm

We assume predefined the following functions and inductive relations of
SLRvar, SLRivar, SLRcontexrt and SLRcontext which are defined in a very
similar way as the equivalent operations of Var, Invarn, Var_set and Formula
in first-order logic:

FEqbool_SLRv : SLRvar — SLRvar — Bool

Fqbool_SLRiv : SLRivar — SLRivar — Bool

empty SLRctxt : SLRcontext

addvar _SLRctzt : SLRvar — SLRcontext — SLRcontext
getvar _SLRectxt : Varname — SILRcontext — SLRivar
concat_SLRctxt : SLRcontext — SLRcontext — SI Rcontext
Isin_SLRctxt : Varname — SLRcontext — Prop

Not_isin_.SLRctxt : Varname — SLRcontext — Prop

54

We also need the following representations of the judgements I' <: a,
Disjoint T' A and T nonlinear used in the definition of this type theory.

Definition 6.62 The inductive relation <: _Ctzt : SLRcontext — SILRaspect —
Prop is defined by the following constructors:

be <:: Ila : SLRaspect. <: _Ctat empty_SLRctxt a
ge <:: lslre : SLRcontext Ilslrv : SLRvar.dla : SLRaspect.
Mapr :<: _Asp (getaspect_.SLRv slrv) aIlslrepr :<: _Ctat slrc a.

Misinpr : Not_is_in SLRctxt (fst (fst slrv)) (snd slrc).

<: _Ctzt (addvar _SLRctxt slrv slrc) a

Definition 6.63 The inductive relation Nonlinear_Ctxt : SLRcontext —
Prop is defined by the following constructors:

benl : Nonlinear _Ctxt empty_SLRctat
genl : 1slre : SLRcontext Islrv : SLRvarlnlpr : Nonlinear _Ctxt slrc.
Mninpr : = Not_is_in_SLRectxt (fst (fst slrv)) (snd slre).
Mnlapr : Nonlin_Asp (getaspect _SLRv slrv).
Nonlinear_Ctxt (addvar_SLRctzxt slrv slre)

Definition 6.64 The inductive relation Disjoint_Ctxt : SLRcontext — SLRcontext —
Prop is defined by the following constructors:

bedisj : 1lslre : SL Reontext.Disjoint _Ctat empty_SLRetat slre
gedisj : Mslre, slre’ © SLRcontext Tlslrv : SLRvar.
Mninpr : = Not_is_in SLRectxt (fst (fst slrv)) slre.

Mninpr : = Not_is_in _SLRectxt (fst (fst slrv)) slrc’.

Mdisjpr : Disjoint_Ctxt slre slrc'.

Disjoint _Ctat (addvar_SLRctxt slrv slre) slre!

%)

6.3.2 Encoding of the type theory

We will also assume predefined the following encoding and decoding functions
which are very similar to the ones of first-order logic:

€q : Aspect — SILRaspect

6(;1 : SLRaspect — Aspect

ersLr : TsLr — SLRtype

¢7sir : SLRtype — Tsrr

€ctotsLr ¢ [Binding] — SLRcontext
Ec_t;tSLR : SLRcontext — [Binding)

€:sLr : SLRcontext — Asrr — SLRterm

€;¢1.n* SLReontext — SLRterm — Asrr

€Djetot * (ATp,ajoime (Disjoint Ay Ag)) —
(Disjoint_Ctxt (€ctwtsir A1) (€ctotsLr A2))
for any A1, Az € [Binding]

EB;ctzt : (Disjoint_Ctxt sclr sclr’) —

c e -1 -1
AHDiSjoint(DZSJOlnt (€cmesrr 5€lT) (€mesrr sClr'))

for any selr, selr’ : SL Reontext
€nletot © AT, o0 (Nonlinear T) — (Nonlinear_Ctat (€ctotsir T))
for any I' € [Binding]

Er:l]ém: : (Nonlinear Ctxt slre) — An

nlctxzt (Nonlinear (Er:llctzt slrc))

for any slrc : SL Rcontext
€cietot P Al (I <t @) — (<2 Ctat (ectztsir) (€q a))

for any a € Aspect,I' € [Binding]

56

-1

-1
€<:ct:ct

(<t Ctatslrea) — An_, (€5t 65 slre) <t (€' a)
for any s : SLRaspect,slrc : SLRcontext

where Binding are triples of type (X, Aspect,Tspr). See the full encoding
of higher-order logic for similar encoding and decoding functions for similar
structures.

And finally, we give the representation of the proof system of the fragment
of the linear type theory, its encoding functions and its proof of adequacy.

Definition 6.65 The inductive relation
SLRts:SLRctet — SLRterm — SLRtype — Prop

is defined by the following constructors:

Tarri : Mslre : SLRecontext Ilslry : SLRvar.Ilt : SLRterm.
Ipr : SLRts (addvar_SLRctxt slrv slre) t (snd (fst slrv)).

SLRts slrc (abs_SLRt (getvar_SLRctxt (fst (fst slrv)) (addvar _SLRctat slrv slre)) t)

Tarre : Uslre, slrc, slre” « SLReontextMa : SLRaspect. 11, t' : SLRterm.I1A, B : SLRtype.
Idpr : Disjoint_Ctxt slre slre’ Xdpr' : Disjoint _Ctxt slre slrc”.
Mdpr" : Disjoint_Ctxt slrc’ slrc”.
Ttd : SLRts (concat_SLRctxt slre’ slre) t (Imfunc A a B).
Mtd' : SLRts (concat _SLRctxt slrc’ slre) t' A.
Mnlpr : Nonlinear _Ctxt slre.lrpre :<: _Ctat (concat_SLRctxt slre slrc') a.

SLRts (concat_SLRctat slrc” (concat _SLRctat slrc'’ slre)) (appl SLRttt') B
where Binding are triples of type (X, Aspect, Tsi,r).

The representation of the type system is by the following inductive relation:

Definition 6.66 The encoding function of derivations of SLR €sirtq which
given a closed derivation in Ang, o(T F e : A) returns a proof of the proposi-
tion

SLRts (€ctatsir T) (€tsLr (€ctotsir T) €)(ersir A)

57

is inductively defined as follows:
€sirtd (Tarri(T F Az Ade @ A 5 B),[0]) = Tarri (€ctotsir ') enca
(etspr (addvar_SLRctxt ence (€ctotsLr T)) €) (€sirta)

where
§eAstr(l,{z ¢ A} F ¢ : B)

encx = mkpair SLRvar (mkpair Varname SLRtype (€yn @) (€rsLRr 7)) (€0 @)

€sireqg Tarre(T, Ay, Ay F eq ez : B,[d1, 02,03, 04, 05,06, 67]) =
tarre (€ctotsir I) (€ctotsir A1) (€ctwtsir A2) (€4 @)
(ersir (€ctwtsr T's A1) €1)
(€tsir (€ctotsir Ty A1) €2)
(ersLr A) (€r51r B)
(€njetat 61) (€Djetat 02) (€Djetat 03)
(esrr 04) (esLr I5) (€ntctst 06) (€<ictst 07)
where

41 € AHchmt (Dzsyomt r Al),(SQ € AHchtm (DZS_]OZTLt r Ag),
33 € Amip, ., (Disjoint Ay Az), 64 € Anig,p (T, A1 F €1 0 A 5 B),

05 GAHSLR (F,Ag F ey : A),
36 € Ari,yen, (Nonlinear T),07 € Ap ., (T, Ay <t a)

And the adequacy of the representation is stated by the following theorem
and its proof:

Theorem 6.67 For any context T, for any term t € Aspgr, for any type T €
TsLr, there exists a bijection between the closed derivations of the judgement
(T 1t : 1) and the normal forms of the proofs of the proposition

SLRts (€uptsirT) (€rsir (€ctotsir T) t) (€rsLr T)

Proof:

58

To prove the bijection we define a decoding function with type

fs_l:td :(SLRts slret) —

(Anigsr (Ec_ti'tSLR slre) (ft_leR (Ec_ti'tSLR slre) t) (fr_leR 7))

for any slrc : SLRcontext, t : SLRterm, 7 : SLRtype inductively defined as
follows:

es_l:td (Tarri slre slrv t pr) =
Tarri((€;h, o1 p slre) B X (e} (fst (fst slrv)) = (eZapp (snd (fst slrv))).
(¢;4, g (addvar _SLRctx slrv slre) t), [et, 4 pr])
¢t (Tarre slre slre’ slre att' A B dpr dpr’ dpr td td' nlpr rpr) =
Tarre((€ pesr (concat (¢qpsppslre”) (concat(cg g, sy p3lre') (€psp sire))) F
(6,415 (concat_ctztSLR slrc' slrc) t)
(et_SlLR (concat_ctxtSLR slrc” slre) t') :
(€ srr B)s
[GB}ctzt dpr, GB}ctrt dpr’, GI_)}ctzt dpr, fgiR id,

-1 v —1 -1
€SLR td s Cnletat nlpr’ €<:ct:ct rpr])

and the rest of the proof follows in the same way as the first-order case.

59

References

[BCH]

[BH95)

[BMY1]

[Gar92]

[Hen97]

[HHPY3]

[Hof99]

[F1S96]

[Kha97]

[K1e98]

[Luo94]

[Mah95]

[McK92]

Michel Bidoit, Maria Victoria Cengarle, and Rolf Hennicker. Proof
systems for structured specifications and their refinements. Chapter
11 of the book Algebraic Foundations of Systems Specification.

Michel Bidoit and Rolf Hennicker. Behavioural theories and the
proof of behavioural properties. Report LIENS-95-5, Ecole Normale
Supérieure, 1995.

Rod Burstall and James McKinna. Deliverables: An approach to
program development in the calculus of constructions. ECS-LFCS-91-
133, January 1991.

Philippa Gardner. Representing Logics in Type Theory. PhD thesis,
University of Edinburgh, July 1992.

Rolf Hennicker. Structured Specifications with Behavioural Operators:
Semantics, Proof Methods and Applications. Habilitationsschrift, In-
stitut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen, June

1997.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143-184, January 1993.

Martin Hoffman. Type systems for polynomial-time computation. Ha-
bilitation thesis, University of Darmstadt, 1999.

Martin Hofmann and Donald Sannella. On behavioural abstraction
and behavioural satisfaction in higher-order logic. Theoretical Com-

puter Science, 167:3-45, 1996.

Saif Ullah Khan. Machine Assisted Proofs for Generic Semantics to
Compiler Transformation Correctness Theorems. PhD thesis, Univer-

sity of Edinburgh, 1997.

Thomas Kleymann. Hoare logic and VDM:Machine-Checked Sound-
ness and Completeness Proofs. PhD thesis, University of Edinburgh,
1998.

Zhaohui Luo. Computation and Reasoning: A Type Theory for Com-
puter Science. Clarendon Press Oxford, 1994.

Savitri Maharaj. A Type-Theoretic Analysis of Modular Specifications.
PhD thesis, University of Edinburgh, 1995.

James Hugh McKinna. Deliverables: A Categorical Approach to Pro-
gram Development in Type Theory. PhD thesis, University of Edin-
burgh, November 1992.

60

