Chapter4:Semantics of ASL



1 Introduction

ASL is a specification language which was originally defined by a set of specifi-
cation operators. Some of the operators of the original definition were operators
to build structured specifications from smaller specifications or to make some
modifications from a given specification, like for example the renaming of a
specification. This language was not originally designed to be used directly but
as a basis to define the semantics of higher-level specification languages. Two
specification languages which used ASL to define their semantics were EML
and PLUSS. A specific kind of operator which appeared in ASL was an oper-
ator which was used to behaviourally abstract a given specification closing its
model-theoretic semantics by an equivalence relation between algebras. Later
on, different operators related to the one just described were developed. We will
refer to these operators as behavioural operators.

In this chapter we give a general semantic framework for behavioural op-
erators. In a general setting, these operators are parameterized by fixed but
arbitrary equivalence relations. Three different kinds of behavioural operators
in AST have been defined. We will refer to them as the abstract operator, the
behaviour operator and the quotient operator. All of them have a specifica-
tion as an argument and they transform the model-theoretic semantics of the
argument specification.

Intuitively, the abstract operator extends the class of models of the argu-
ment specification with those models which are equivalent (by an equivalence
relation between models) to some model belonging to the model-theoretical se-
mantics of the argument specification.

The class of models of the behaviour operator is defined by those models
whose behaviour (denoted also as a model and defined via a congruence rela-
tion on values within a model) belongs to the class of models of the argument
specification of the operator.

Finally, the class of models of the quotient operator is defined by the closure
under isomorphism of the quotient of the models associated to the semantics of
the argument specification of the operator.

A formal semantics of these operators is given in [BHW95] by defining their
signature and their model-theoretical semantics. They use a first-order logic
with equality to define the sentences of specifications. Apart from giving the
semantics of the operators, a theory which establishes different equivalences
between the semantics of these operators is presented.

In [HS96], an alternative semantics for the behavioural operators is given
using just flat specifications as argument specifications. They use higher-order
logic as specification logic and a similar theory as in [BHW95] to relate the
semantics of the behaviour and abstract operator is developed.

Since both semantics are quite independent of the specification logic of the
specification language, it seems reasonable to make a generalisation of the se-
mantics of these operators for an arbitrary but fixed institution. These insti-
tutions have to satisfy specific properties in order to include these operators
in a version of ASL with structuring operators and they are a restricted ver-



sion of the institutions presented in [Tar85]. We refer to these institutions as
algebraic institutions (AINS) and the two main restrictions are that the cat-
egory of signatures is the category of first-order relational signatures and the
model functor of these institutions assigns to every first-order relational sig-
nature ¥ the category of X-algebras which we will denote as Alg(X) instead
of an arbitrary category of models Mod(X). This is necessary because these
institutions are used to define the semantics of different set of ASL operators
including behavioural operators which we will denote as BASLker languages.
The signatures of the specification expressions of BASLker languages are first-
order signatures since the semantics of some of the behavioural operators are
defined using a fixed but arbitrary partial X-congruence and therefore using
the internal structure of first-order signatures. These languages also include
the common operators of another set of operators of ASL which we will denote
as ASLker languages. These common operators are base specifications (with
syntax < X, ¢ >), a sum operator to define structured specifications and an
export operator. These restrictions are not needed to define the semantics of
the common operators of ASLker languages. (See [BCH] for the semantics of
these operators in a fixed but arbitrary semiexact institution). In [BCH], the
semantics of the behavioural operators of BAS Lker languages is given just for
an institution of infinitary first-order logic and for concrete observational equiv-
alences. See also [BT96] for an abstract categorical framework to relate the
semantics of the behavioural operators which is not required for our purposes.

In order to define a certain kind of proof systems for the deduction of sen-
tences from ASLker languages, it is required additionally a normalisation func-
tion on specification expressions where the normal forms of specifications are
defined in terms of the export operator (with syntax < X', ¢ > |x). This nor-
malisation function is also useful to relate the semantics of [ BHW95] and [HS96].
We call any set of operators defined with a normalisation function and including
at least the common operators of ASLker languages as ASLnf language. To
generalise the semantics of [BHW95] and [HS96], we define behavioural algebraic
institutions (BAIN S) which incorporates additional components to a fixed but
arbitrary algebraic institution (AINS) in order to define the semantics of the
behaviour operator of [HS96] and the normalisation function of the behavioural
operators with the semantics of [BHW95].

The structure of the chapter is as follows: first we introduce the abstract con-
cept of algebraic institution and we present two concrete algebraic institutions:
a first-order one and a higher-order one. Then, we give the semantics of the be-
havioural operators and how to relate them in an arbitrary but fixed algebraic
institution following the ideas of [BHW95] and [BCH]. Next, we present be-
havioural algebraic institutions, a normalisation function for the behavioural
operators presented previously and a relationship between the semantics of
[BHW95] and [HS96]. Finally, we present concrete equivalence relations and
a concrete behavioural algebraic institution using the concrete equivalences and
the higher-order algebraic institution presented in the first section.



2 Semiexact algebraic institutions

In this section, we will present the abstract semantic framework to define the
semantics of different operators of ASL including the behavioural operators.
We will assume predefined basic concepts of institutions, which can be found in

[DGS91], [GBI2], or in [Tar].

Definition 2.1 An algebraic institution (AINS) is an institution which con-
sists of:

o The category of first-order relational signatures AlgSig whose objects are
first-order relational signatures and morphisms are signature morphisms.

e a functor Senarng : AlgSig — Set
o the functor Alg : AlgSig°? — Cat where:
— for any ¥ € |AlgSig|, Alg(X) is the category of X-algebras
— for any morphism o : ¥ — X' in AlgSig, Alg(c) is the reduct functor
ot Alg(2) = Alg(XZ).
e for each ¥ € |AlgSig| a satisfaction relation
Farvss: |Alg(X)] x Senarnvs(X)
such that

— the satisfaction condition holds for any signature morphism o : ¥ —
Y/ and for any formula ¢ € Sena;ns(X). This condition is formally
defined as:

VA € |Alg(X')|. A Earns,s Senarns(0)(6) © Alo Earvs,s ¢

— an abstract satisfaction condition holds for any formula ¢ in Senarns

(2):
VA,B € |Alg(2)|.A ~“B = (A ':AINS,E ¢ B ':AINS,E (ﬁ)
Notation and comments:

o The main differences between algebraic institutions and the original defi-
nition of institutions is that the category of signatures is not an arbitrary
category but the category of first-order relational signatures and therefore
the model functor is also restricted assigning to every X-algebra not an
arbitrary category of models but the category of Y-algebras. Another dif-
ference is that it is added explicitly the abstract satisfaction condition which
almost all institutions satisfy.



o We will normally refer to first-order relational signatures just as relational
signatures. For any relational signature © = (S, Op, Pr) € |AlgSig|, the
functions Sorts(X), Ops(X) and Prs(X) will return S, Op and Pr respec-
tively.

For any relational signature ¥ = (S, Op, Pr), if Pr = 0 we will denote
it just by T = (S, 0p) and it will be normally referred just as signature.

For any relational signature ¥ = (S, Op, Pr) € |AlgSig| and for a fized
but arbitrary S-sorted infinite denumerable set of variables X, Ty, (X) will
denote the (S, Op)-term algebra freely generated by X and Py (X) will
denote the set of atoms of the form p(ty,... ,tn) where p: sy X ... X s, €
Prs(X) and ty € Ty, (X),...,t, € Ty, (X)

For any algebra A € Algarns(X) and an S-sorted valuation o : X — A,
I, : Tx,(X) — A will denote the unique extension to a X-morphism of the
valuation «, and for the case of p(t1,...,t,) € Ps(X), In(p(t1,...,ts))
will hold if and only if (I t1,... .1, t,) € pa. We will refer to them as
the interpretations of terms and atoms associated to c.

We will assume predefined the function a|J{(z1,v1),.-.,(Zn,vn)} which

given a valuation o : X — A and a set of pairs of the form {(z1,v1),..., (Zn,vn)}
such that z; € X, and v; € Ay, for any i € [1..n], it will return the usual
update of the valuation o with the given set of pairs.

o If ¥ C Y, we will normally denote by o : ¥ — X/ the obvious embedding
morphism which we will normally refer to as inclusion.

e Since it is well known that AlgSig has pushouts, the pushout object of
any pair of morphisms o : X9 — X1, o' : g = Xy in AlgSig (where
Yo, X1, X9 € |AlgSig|) will be denoted in general as PO(o : g — ¥/, 0’ :
Yo — X'} and if the pair of morphisms are both inclusions the pushout
object will be normally denoted as X1 +x, Yo and the pushout morphisms
as (inl : 1 = Ty +5, Tg,inr : By = By 45, B2). In this last case, we
can assume in general that either inl or inr are inclusions but not both.

o We will also drop usually the subscript of the functor Senarns and the
subscripts of Earns,s if it can be inferred from the context.

We will also refer as
Farnss: [Alg(X)] x P(Senarns (X))
the obvious extension of the satisfaction relation to a set of sentences.

e For any signatures X, %' € |AlgSig| and for any signature morphism o :
¥ — X', the morphism

SenA]Ns(O') : Senarns (E) — Senarns (EI)

will be normally denoted just by o : Senayns(X) = Senarns(X').



Definition 2.2 An institution INS = (Signins, Senrns : Signins — Set,
Modrys : Sign?’;\,s — Cat, <[|FInNs,s>SeSignins) 18 semiexact if for any pushout
in Signrys (inl : £ = X inr : 3 = X') of any pair of morphisms (o : Tg —
Yq,0' : X = X2) and for any models My € Modrns(21), M2 € Modrns(22)
such that M1|, = Mz|, there exists an unique model M € Modrns(X') such
that M|inl = M] and M|mr = M2.

Notation: This definition is equivalent to the definition of institution with
semi-composable signatures presented in [Tar].

Proposition 2.3 Any algebraic institution AINS is semiezact.

Now we present two concrete algebraic institutions which we will use in the
following chapters:

Proposition 2.4 The tuple
FOLEQ = (AlgSig, SenrorLrqg, Alg, <EroLrQ,=>xe|Algsig))
such that:
o Senrorrqg : AlgSig — Set is a functor defined in the following way:

— For each © = (S, Op) € |AlgSig|, the set Sen(X) is inductively de-
fined by the following set of rules:

* true, false € Sen(X).
x Ift,r € Tu(X), for s € Sorts(X) thent =r € Sen(X).

x If p: sy x...xs, € Prs(X) and t; € Ty(X)s,,...,tn €
Ts(X)s, then p(ty,...,t,) € Sen(X)

* If ¢, € Sen(X) then = ¢, ¢ AN ¢, 6 V ¢, ¢ D ¢ € Sen(X).

* If x € X, and ¢ € Sen(X) then Ve : s.¢,Jx : 5.6 € Sen(X)

— For each signature morphism o : ¥ — X' the morphism
SenFOLEQ (0’) : SenFOLEQ (E) — SenFOLEQ (EI)
is the usual renaming function between first-order sentences.

o for each ¥ € |AlgSig| the satisfaction relation |Eporpq,x is defined as
follows:

VA € |Alg(2)|v¢ S Senp()LEQ (E)A ':FOLEQ,E ¢ f=4

Vpe X - AAEroLEgs,, ¢

where for any X € |AlgSig| and for any p : X — A, the relation Eporrg,x,,
is simultaneously defined by induction as follows:



— A [, true holds.

— IfI,(t) = I(r) then A =, t = r holds.

— If A=, ¢ does not hold then A =, —~ ¢ holds.

— IfA =, ¢ holds and A |=, v holds then A =, ¢ A1 holds.

— If A=, ¢ holds or A |=, 1 holds then A =, ¢ V4 holds.

— If A=, ¢ does not hold or A =, 1 holds then A =, ¢ D 1 holds.
— If Vo € Ay A Epu{(o,0)) ¢ holds then A |=, Y : 5.¢ holds.

= If A= u{(z,0)) ¢ holds for some v € A then A |=, 3 : 5.¢ holds.

is an algebraic institution.

Proof sketch:
We have to prove that Senrorrg is a functor (which is straightforward) and
we have to show that the relation <':F0LEQ,2>EG|A1g5ig| :

e satisfies the satisfaction conditions which follows by a generalization of
the satisfaction lemma. See for example [GB92].

e satisfies the abstract satisfaction condition which follows trivially by the
satisfaction condition.

Before presenting an algebraic institution for higher-order logic (HOL), we
give some basic definitions which will be used in its definition.

Definition 2.5 For each X = (S, Op, Pr) € |AlgSig|, the set Typesgor (X) is
inductively defined by the following set of rules:

o Ifs€ S then s € Typespor (X).

o Ifm € Typesgor(X),..., o € Typesgor (X) and n > 0 then
[T1,...,™] € Typesaor (X).
Notation: The type [| will be normally denoted by Prop.

For any signature morphism o : ¥ — Y/, we will also denote by o the usual
renaming function between types o : Typesgor (X) = Typesmor (L').



Definition 2.6 The semantic function [7]a is inductively defined for any type
T € Typesgor () and for any X-algebra A as follows:

[s]a = A

lUri, - s m]]la =P([r1]a X ... x [Tn]a)

Notation: The semantics of Prop is a set of two elements: the empty set and
the set with the empty tuple. These two elements will be denoted as ff and tt
respectively.

Definition 2.7 The set Sengor (X, Xgor, ) for a given Typesgor, (X)-sorted
infinite denumerable set of variables Xgor and for every T € Typesgor (X) is
inductively defined by the following set of rules:

° If.l‘ € XHOL,T then z, € SenHOL(E,XHOL,T).

If f:s1x...x5, > s€0ps(X), t1 €Ts,, (< Xnor,s >ses),---
ty, € Ts ;. (< XHoL,s >s¢5)

then f(tl, ... ,tn) S SenHOL(E,XHOL,s).

Ifp:six...xs, € Prs(X), t1 € Tx s, (< XgoL,s >ses)s---
ty, € Ty, (< XHoL,s >se5)

then p(t1,...,t,) € Sengor (X, Xgor, Prop)

Ile, e, T € TypeSHOL(E), r1 € XHOL,Tla e,y € XHOL,T,L
and ¢ € Sengor (X, Xaor, Prop) then

A1 :71,. ., 20 :Tn)-¢ € Senmor(Z, Xuor, [T1,-.-, ™))

o ifri,...,m € Typespor (X)), t € Senmor (X, Xaor, [T1,... ™)),
t1 € Sengor (X, Xgor, 1)y -+ stn € Sengor (X, Xgor, )

then t(t1,...,tn) € Sengor, (X, Xmor, Prop).



o if T € Typesgor (X), ¢ € Xpor,r and
¢ € Sengor (X, Xgor, Prop) then

Ve :1.¢ € Sengor (X, Xuor, Prop).

o if ¢, ¢' € Senpor (X, X,Prop) then ¢ D ¢' € Senpor (X, X, Prop).
Notation: We will denote by Termsgor (X, Xgor) the set

U Senmgor (X, Xwor, T)
T€Typespor(X)

For any signature morphism o : . — Y/, we will also denote by o the usual
renaming function between terms

o:Termspor (X, Xwor) = Termsgor (X', Xmor)

such that for any type T € Typesgor (L), for any higher-order sentence ¢ €
Sengor (X, Xpor,T), o(¢) € Sengor (Y, Xgor,o(T))-

The usual definition of f—equality between terms in Termsyor (T, Xgor)
identifying also a-convertible terms will be denoted by =5 and the usual sub-
stitution operation avoiding name clashes will be denoted by t{t'/z} for any
t e TeT'mSHOL(E,XHOL)a t e Se”HOL(EaXHOLa T) and x € XHOL,T-

Definition 2.8 The function [t], 4 for any term t € Termsgyor (S, Xpor),
for any algebra A € Alg(X), for any Typesgor (X)-sorted valuation p which
for every T € Typesgor (), pr has arity p; : Xgor,» — [T]a is inductively
defined by the structure of t as follows:

[2:15,4 = pr (2)
[t s ta)lpa = fa(ltilp,a, - - - s [ta] s a)
[p(t1s- - ta)lpa = if ([t1]poas--- s [tnlpa) € pa then tt else fF
A1 5 T1yeee @ )l pn =
{(v1,- vy on)lor € [malpas -y on € [Tl a5 [Bloui@rn),en (wnva)} = B8}
[t (t1yne s ta)]pa =
if ([tilpoas-- s [tnlp,a) € [t]p,a then tt else ff
[6D¢'lpa=if [6],a = tt then [¢], 4 else tt

Vo : 1.¢]pa =if Yo € [r]a-[8],u((z,0)},4 = tt then tt else ff



Proposition 2.9 The tuple
HOL = (AZQSig’ Senpgor, Alg, <|:H0L,2>ze|AlgSig|)
such that:
o Senpgor : AlgSig — Set is a functor defined in the following way:
— For each ¥ € |AlgSig|, the set Senpor (X) is defined as

Sengor(X) = Senmor (X, Xwor, Prop)

for a given Typesgor (X)-sorted infinite denumerable set of variables
Xnot

— For each signature morphism o : X — X' the morphism
SenHOL (O’) : SenHOL (E) — SenHOL (EI)

is the usual renaming function between sentences using o : ¥ — Y/
and it will also be denoted just by o.

o for each T € |AlgSig|, for all A € |Alg(X)|, for all ¢ € Senmor(X), the
satisfaction relation A |Ex; ¢ holds if and only if for any Typesmor (X)-
sorted valuation p which for every T € Typespor (X), pr has arity Xpor,r —

[7]a, []5,a = tt

is an algebraic institution.

Proof sketch:
We have to prove that Sengor is a functor (which is straightforward) and we
have to prove that the relation <l=por,s>x¢|aigsig) satisfies:

e the satisfaction condition which follows by induction on Termsgoy in a
similar way as in the first-order case.

e the abstract satisfaction condition holds extending the isomorphism be-
tween algebras to higher-order types in the obvious way. See [HS96] for
details of the proofs.

3 Abstract semantics of different operators of
ASL

In this section, we will present the semantics of different operators of ASL in-
cluding the behavioural operators presented in [BHW95] as we briefly explained
in the introduction.
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Definition 3.1 An ASLker specification language with a fized but arbitrary
algebraic institution AINS is a specification language defined with a set of op-
erators including basic specifications, an export operator and an operator for
structuring specifications which we will refer as the sum operator. The syntaz
of these operators is the following:

SPyu= <X,®>
SPi|s
SP) +5 SP,
where the signature ¥ = (5,0p) € |AlgSig| and & C Senarns(X). Let

ASLK be an ASLker specification language and let SPEX(ASLK) be the
set of specification expressions of this language. The semantics of an ASLker
language ASLK is inductively defined by the functions Signature : SPEX
(ASLK) — |AlgSig|, Symbols : SPEX(ASLK) — |AlgSig| and Models :
SPEX(ASLK) — Alg(Signature(SP)).

The function Signature must return the signature with just the visible sym-
bols of the given specification, whereas the function Symbols must return the
signature with the visible and hidden symbols of the given specification. These
functions must satisfy the following conditions:

Signature(< X,® >) =X
Symbols(< X, P >) = X
Models(< ¥, >) = {A | A ':AINS,E @}

where the signature ¥ = (5,0p) € |AlgSig| and ® C |Senarns ()]

Signature(SP|g) = T
Symbols(SP|x) = Symbols(SP)
Models(SP|x) = {A|x | A € Models(SP)}

where SP ranges over specification expressions, the signature ¥ = (S,0p) €
|AlgSig| and X C Signature(SP)
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Signature(SPy +x SPy) = Signature(SPy) +x Signature(SPy)
Symbols(S Py +x SPy) = Symbols(SPy) +x Symbols(SPy)
Models(SPy +5 SPy) =
{A| A € Alg(Signature(SPy) +x Signature(SP)),
Alini € Models(SPy), Alin, € Models(SPy)}
where the signature ¥ = (S,0p) € |AlgSig|, SP1, SP, ranges over specifica-

tion expressions in SPEX(ASLK), ¥ C Signature(SPy), ¥ C Signature(SPy)
and the pushouts

Signature(SPy) +x Signature(SPy)
and
Symbols(SPy) +x Symbols(SP;)

are the pushouts of the following diagram:

Sym(SPy) > Sym(SP1) +s Sym(SPy)

is]\ ' ' 188
Sign(SPy) 2 Sign(SPy) +s Sign(SPy)

! » Sign(SPy) - Sym(SPy)

Since Signature(SPy) +x Signature(SPy) is a pushout iss is the unique
morphism with arity

iss : Signature(SP1) +x Signature(SPy) —

Symbols(SPy) +x Symbols(SPy)
and the pushouts can be chosen in such a way that iss is an inclusion.

Comment: The functions Signature and Symbols are needed to define differ-
ent proof systems for AS Lker languages. See the next chapter for the definition
of these proof systems.

Definition 3.2 Let ASL be an ASLker specification language and Symbols,
a function with arity Symbols,; : SPEX(ASLN) — |AlgSig|. A function nf
with arity nf : SPEX(ASLN) — SPEX(ASLN) is a normalisation func-
tion if it satisfies the following conditions which we will refer as normalisation
conditions:
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o For all SP € SPEX(ASLN),
nf(SP) =< Symbols,; (SP), ® > |signature(sP)
for some @ C |Senarns (Symbolsn; (SP))|.
o For all SP € SPEX(ASLN), Symbols(SP) C Symbols,; (SP).
o A€ Models(nf(SP)) & A€ Models(SP)

Comment: If the ASLker language just contains the common operators of
these languages, the function Symbols,; coincides with the functions Symbols,
but this will not be the case for example for the common operators of BASLnf
specification languages presented in later sections. The function Symbolsy, is
also needed to define certain kind of proof systems associated to the ASLnf
specifications languages presented in next definition.

Definition 3.3 An ASLnf specification language is an ASLker specification
language whose semantic definition also requires the definition of a normalisa-

tion function nf together with the function Symbols, ;. The functions nf and
Symbols, ; must satisfy the following conditions:

nf(< qu)>) =< X, %> |E
Symbolspf (< X, P >) =3

where the signature ¥ = (S,0p) € |AlgSig| and & C |Senarns(T)|

nf(SP1 +x SPy) =< Xf +35 X}, inl(®1) U inr(P2) > |5, 455,
Symbols, ¢ (SP1 +x SPy) = X} +x X

where nf(SPy) =< X, ®1 > [x,, nf(SP) =< X5, 3 > [y,
and inl and inr are fized but arbitrary pushouts of

i1 : ¥ < Signature(SPy) and iz : ¥ < Signature(SP;)
nf(SPls) =<X,®> |y

Symbols, ¢ (SP) = X'

where nf(SP) =< X/, ® > |gn.

Notation: In the following, ASL will range over an ASLker or an ASLnf
specification language.
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Proposition 3.4 The nf function of the previous definition satisfies the nor-
malisation conditions.

Proof sketch:
The proof is by an easy induction on specification expressions.

Definition 3.5 Let ASL be an ASLker or an ASLnf specification language
with an arbitrary but fized algebraic institution AINS. For any specification
expression SP € SPEX(ASL) and for any sentence ¢ € Sen(Signature(SP))
the satisfaction relation |:AIN575ignatwe(5p) is defined as follows:

SP EAINS,Signature(sP) ¢ < VA€ Models(SP).A EAINS, Signature(SP) ¢

Definition 3.6 Assume that ¥ € |AlgSig|. A partial X-congruence on a
Y-algebra A (normally denoted by ~v4) is defined for every sort s in S as a
symmetric and transitive relation (normally denoted as =~ 4) with domain C
sa X sa.This relation is compatible with every operation fa : S14X...XSn4 —> S4
where f € Ops(X). This means that for every vi, w1 € S14, -+, Vp, Wy € Spa,
if v1 Rsi,A W1y --0 , U R, 4 Wy then fA(Ula"' avn) Rs,A fA(wla-" awn);
and it is also compatible with every predicate py : S14 X ... X Sp4 which means
that for every vy, w1 € s14, «+-, Vn, Wy € Spa, if U, Wy € Spa, if V1 Risq1,4 W1,
C oy Up RY, 4 Wy then pa(ve,...,v,) © palwy, ..., wy)

Notation: A family of partial X-congruences <~ 4> ac aig(s) will be denoted

just by & if it can be inferred from the conteuxt.

Definition 3.7 Assume that X € |AlgSig|, let A be a X-algebra and let &4 be
a partial YX-congruence. The domain of a4 is defined for any sort s € S as
follows:

Domg(~4) = {v|v ma, v}

Definition 3.8 Let ¥ = (S,0p) be a signature, let A be a X-algebra and let
~R 4 be a partial X-congruence. For any s € S and for any v € Dom,(~a4), the
class [v]n, is defined as follows:

[Vlna = {0 [V ~a v}

Definition 3.9 The quotient of an algebra A € |Alg(X)| by a partial X-congruence
R4 is defined as:

Sajva = Vs |V € 54 for every sort s in X}
fA/NA([vl]NA? s 7[’“77.]%,;) = [fA('Ula e )Un)]NA

pA/NA([Ul]NAa ) [UH]NA) A4 pA/%A(Ula cee avn)
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Definition 3.10 An equivalence relation between algebras of signature Y. is a
relation with domain included in |Alg(X)| x |Alg(X)| which is reflexive, symmet-
ric and transitive, and it will be normally denoted by the symbol =.

In the following, we define a list of semantic operators which are used for
the definition the semantics of different operators for ASL.

Definition 3.11 The operators on classes of models Iso, | ~, Abs=, Behy
are formally defined as follows:

Iso(C) ={A|3B € C.A= B}
Cla={A/n, |AcC}
Abs=(C)={A|3B € C.A= B}
Behyy (C) = {A| A/ ma€ C}
Definition 3.12 A BASLker specification language is an ASLker specifica-

tion language including the behaviour, abstract and quotient operators with
syntaz:

SPy::= behaviour SP wrt =~ (behaviour)
abstract SP by = (abstract)
SP/ ~ (quotient)

and the following semantics:

Signature(behaviour SP wrt &) = Signature(SP)
Symbols(behaviour SP wrt &) = Symbols(SP)

Models(behaviour SP wrt =)= Behy(Models(SP))

Signature(abstract SP by =)= Signature(SP)
Symbols(abstract SP by =)= Symbols(SP)

Models(abstract SP by =)= Abs=(Models(SP))

Signature(SP/ ~) = Signature(SP)
Symbols(SP/ =) = Symbols(SP)

Models(SP/ ~) = Iso(Models(SP)/ ~)
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where & and = denote fizred but arbitrary family of partial Signature(SP)-
congruences and equivalence relations respectively.

Finally, we relate the semantics of the behavioural operators of BASLker
languages, giving first some properties on classes of Y-algebras and specifica-
tions:

Definition 3.13 A family of partial ¥.-congruences is isomorphism compatible

if for all ¥-algebras A and B, if A= B then A 2= B/ ~p

Definition 3.14 An equivalence relation between X-algebras is isomorphism
protecting if for all X-algebras A and B, A = B implies A = B.

Definition 3.15 A family of partial X-congruences is weakly regular if for all
A€ |Alg(X), A/ ~4 is isomorphic to (A) ~a)/(Rajn.,)-

Definition 3.16 An equivalence relation between X-algebras (=) is factorizable
by a family of partial X.-congruences if for all X-algebras A and B, A = B if
and only if Al ma= B/ ~p.

Proposition 3.17 If SP is closed under isomorphism, & is isomorphism com-

patible and = is isomorphism protecting then behaviour SP wrt =~
and abstract SP by = and SP/ & are closed under isomorphism.
Proof:

Assume that SP is closed under isomorphism, & is isomorphism compatible
and = is isomorphism protecting.
What we have to prove for the above operators Op(SP) is that

VA, B € Alg(Signature(Op(SP))). A€ Models(Op(SP)) A AZ=B
= B € Models(Op(SP))

where the case of the quotient operator is obvious by definition.

1. Op(SP) = behaviour SP wrt =
Assume that A, B € Alg(Signature(SP)).
By the definition of Models(behaviour SP wrt &) and since 4 €
Models(behaviour SP wrt =) we know that A/ ~€ Models(SP)
and our goal is equivalent to B/ ~€ Models(SP). Since # is isomorphism
compatible , we have that

A= B = A/xs= B/~p
Since SP is closed under isomorphism we can derive that
A/NAE MOClelS(SP) A A/NAE B/NB = B/NBE Models(SP)

Using that A = B and the two deduced propositions we trivially prove
our goal.
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2. Op(SP) = abstract SP by =
Assume that A, B € Alg(Signature(SP)).
Since = is isomorphism protecting and A = B, we have that A = B.
Since A = B and using A € Models(abstract SP by =), we have
that
B € Models(abstract SP by =)

Definition 3.18 Let ASL be an ASLker or ASLnf language. Two specifica-
tions SPy,SPy € SPEX(ASL) are equal if the following holds:

Signature(SP1) = Signature(SPs)
VA € Alg(Signature(SP1).A € Models(SP1) & A € Models(SPs)

Theorem 3.19 For any specification expression SP with signature (S, Op) which
is closed under isomorphism, for any family of partial ¥-congruences (~) which
is weakly regular and for any equivalence relation between X-algebras (=) which
is factorizable by =, the following equivalence between specifications holds:

abstract SP by = = behaviour (SP/=~) wrt =~

Proof:
Let SP be a specification expression with signature ¥ which is closed under
isomorphism, let & be a weakly regular family of partial ¥-congruences and let
= be an equivalence relation which is factorizable by ~.

By the definition of equality of specifications, we have to prove that:

e Signature(abstract SP by =)=

Signature(behaviour SP/~ wrt ) which holds since
Signature(abstract SP by =)=
Signature(behaviour SP/ =~ wrt =) = Signature(SP)

e the following proposition holds:
VA € Alg(Signature(SP)).A € Models(abstract SP by =) &

A € Models(behaviour SP/~ wrt r)

Assume that A € Alg(Signature(SP)) and assume that

A € Models(abstract SP by =).

By the definition of Models(abstract SP by =), we have that 3B €
Models(SP).A = B. Since = is factorizable by &~ we have that last
proposition is equivalent to

dB € Models(SP).A/~= B/~

By the definition of Models(behaviour SP wrt a3 and the defini-
tion of Models(SP/ ~) our goal is equivalent to

A/ ~€ Iso(Models(SP)/ ~)
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which is true because by the definition of I'so(Models(SP)/ ~) our goal
can be trivially proven equivalent to

dB € Models(SP).A/~= B/~

4 Refinement of ASL specifications

As we mentioned in previous chapters, the main task of software design using
the algebraic approach is the deduction of properties from algebraic specifica-
tions, the refinement of algebraic specifications and the verification of functional
programs from algebraic specifications.

In this section, we give the semantics of different refinement relations be-
tween ASL specifications and some of their properties: standard refinement,
behavioural refinement and abstract refinement.

Definition 4.1 Standard refinement: Let ASL be an ASLker specification
language with an arbitrary but fired algebraic institution AINS. Assume that
SP,SPI € SPEX(ASL). SPI is a refinement of SP (denoted by SP ~
SPI) if the following two conditions are satisfied:

e Signature(SPI) = Signature(SP)
o Models(SPI) C Models(SP)

Notation: In the following, for any refinement SP ~» SPI we will refer to
SP as the abstract specification and SP1 as the refined specification.

Definition 4.2 Behavioural refinement: Let ASL be an ASLker specifica-
tion language with an arbitrary but fixed algebraic institution AINS. Assume
that SP,SPI € SPEX(ASL), A € Models(SP) and assume that ~ is a
isomorphism compatible family of partial ¥-congruences. SPI is a behavioural
refinement of SP (denoted by SP ~~~ SPI) if (behaviour SP wrt r)
~ SPI.

Definition 4.3 Abstract refinement: Let ASL be an ASLker specification
language with an arbitrary but fized algebraic institution AINS. Assume that
SP,SPI € SPEX(ASL), A € Models(SP) and assume that = is an isomor-
phism protecting equivalence relation between algebras in Alg(Signature(SP)).
SPI is an abstract refinement of SP (denoted by SP ~~= SPI) if

(abstract SP by =) ~ SPI.

Proposition 4.4 Monotonicity:Let ASL be an AS Lker specification language
with an arbitrary but fized algebraic institution AINS. If SP,SP', SPI,SPI'
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€ SPEX(ASL), X € |AlgSig|,inl : ¥ < Signature(SP), inr : ¥ < Signature(SP’)
SP ~» SPI and SP' ~ SPI'. Then the following holds:

SP +x SP' ~ SPI +s SPI'

SP|st ~ SPI|s

rename SP by o ~ rename SPI by o

reach SP with Fr ~» reach SPI with Fr

behaviour SP wrt =~ ~ behaviour SPI wrt =
abstract SP by =~ abstract SPI by =

SP/ ~~ SPI/~

Proposition 4.5 Transitivity:Let ASL be an ASLker specification language
with an arbitrary but fizred algebraic institution AINS. If SP,SPI,SPI' ¢
SPEX(ASL) then if SP ~ SPI and SPI ~» SPI' then SP ~» SPI'

Although the behaviour and abstract implementation relation are defined in
terms of the standard implementation relation, they don’t satisfy in general the
main properties of the standard relation.

In [Hen97] it is studied under which conditions these properties hold. For
example, for the case of transitivity of behaviour implementation of the form
SP ~~® SPI and SPI ~~ SPI') SP ~~ SPI holds if the partial
cogruence &' is smaller than ~ (which basically means that & identifies more
and distinguishes less) and & is uniform. This last property requires that for
any family of partial Y-congruence &/’ smaller than &~ and for any algebra A €
Alg(Sig), A [a (A /)[4 ).

If we always work with a fixed and concrete observational equality, then
transitivity always hold. If we work with different observational equalities, it is
required that the observable and input sorts of observational equalities of more
concrete levels are included in the observable and input sorts of the equalites of
more abstract levels.

5 BASLnNf specification languages

In this section, we present the inductive definition of the normalisation func-
tion of the behavioural operators of BASLker specification languages using a
fixed but arbitrary institution which extends algebraic institutions with several
components such as a fixed but arbitrary family of partial congruences, a be-
havioural satisfaction relation and different functions which are used to define
the normal forms of the behavioural operators. We will refer to these institu-
tions as behavioural algebraic institutions. We also generalise the semantics of
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the behaviour operator with higher-order logic as specification logic of [HS96]
using also behavioural algebraic institutions and we relate this semantics with
the semantics of the behaviour operator of BASLker specification languages.

In [Hen97], the normalisation function of the behavioural operators with
infinitary first-order logic as specification logic is presented. The equivalences
of the behaviour and abstract operator are the observational and behavioural
equality which are presented in the last section of this chapter. The normal-
isation functions of the behavioural and quotient operator are defined as the
normalisation functions of structured specifications, the semantics of which are
equivalent to the semantics of the behaviour and quotient operator.

In [HS96], the semantics of the behavioural operator is given in terms of
a behavioural satisfaction relation which is denoted as E=® where = is a fixed
but arbitrary family of partial congruences and they use higher-order logic as
specification logic.

They also define a relativization function which we will refer as brel relating
standard and behavioural satisfaction in the following way:

VY € |AlgSig| VA € |Alg(%)|No € Senmor (%).

AER ¢ & AR brel(é)

The semantics of the behavioural operator is defined using the behavioural
satisfaction relation in the following way:

Models(behaviour <X, ® > wrt =) = {Ae Alg(X)|AE® &}

This operator can only be applied to base specifications and because of the
relation between behavioural and standard satisfaction, the semantics of the
behavioural operator can also be defined as:

Models(behaviour <X, &> wrt =) = {4A¢c Alg(X)|A = brel(D)}
Since they also prove that
VI € |AlgSig|.VA € |Alg(X)|.V¢ € Sengor(T).
AJmEG & AER§
the relativization function brel also satisfies the following condition:
VE € |AlgSig|.VA € |Alg(X)|.V¢ € Senpmor (T).
A/lnEo¢ & A brel(d)
In order to define the normalisation function of the behavioural operators of
BASLker languages for an arbitrary algebraic institution and arbitrary equiv-

alence relations, we have decided to define them in terms of the normal form of
the argument specification of the behavioural operators. The definition of the
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normal form will use functions on sentences based on the idea of relativization
function presented in [HS96] and above for the behaviour and quotient operator.
The normal form of the abstract operator will be defined as the normal form
of the behaviour of the quotient of the argument specification of the abstract
operator. It follows that this is the normal form of the abstract operator using
theorem 4.3.24 as in [Hen97].

The definition of the relativization functions for the normalisation functions
of BAS Lker languages will need in general to extend the original signature of
the specification with extra symbols. For example, an alternative definition of
the normalisation function of the behaviour operator for the institution HOL
and for an observational equality is based on [Hen97], which, as we mentioned
above, proves the equivalence between the semantics of the behaviour operator
with the semantics of a structured specification. The symbols of the structured
specification extends the symbols of the behavioural operator with, for example,
a disjoint copy of the signature of the behaviour operator and symbols to denote
the observational equality. A possible definition of the relativization functions
uses the same symbols as the symbols of the structured specifications. The con-
ditions which must satisfy these relativization functions are more complicated
than the condition which satisfies the relativization function of [HS96] presented
below.

Thus, we present in this section an institution which extends algebraic insti-
tutions with a behavioural satisfaction relation and two different functions on
sentences for any inclusion ¢ : ¥ < X/ in AlgSig. These institutions will be
referred as behavioural algebraic institution. One of this kind of functions will
be denoted by brel[i, bi[X]] where ¢ is an inclusion with arity i : ¥ — X/ and
bi[X] is an inclusion with arity bi[X] : ¥’ — X and these functions will be used
to define the normalisation functions of the behaviour operator. These func-
tions can also be used to define the normal form of the generalized semantics
of the behaviour operator presented in [HS96] extended to structured specifica-
tions. See subsection 4.6.4 for a concrete example of a definition of the inclusion
bi[X] and the function brel[i, bi[X]] in a behavioural algebraic institution with
higher-order logic as algebraic institution.

The inclusion 7 of the function brel[i, bi[¥]] used in the normalisation function
of the behaviour operator behaviour SP wrt =~ of BASLker specifica-
tion languages will have arity i : Signature(SP) < Symbols,; (SP) whereas
the inclusion of the function brel used in the behaviour operator of [HS96] will
be the identity i : Symbols, ¢ (SP) — Symbols,; (SP).

The other kind of functions will be used to define the normalisation function
of the semantics of the quotient operator and it will be denoted as grel[i, ¢i[X]]
where i is an inclusion with arity i : ¥ < X’ and ¢i[X] is an inclusion with arity
qi[X] : X' = X",

The conditions which must satisfy these two kind of functions are presented
in the general definition of behavioural algebraic institutions (BAINS). See
next section for proofs that these concrete functions satisfy the general condi-
tions which are defined in BAINS. In this section, we present the definition
of BAINS, the alternative and generalised version of the semantics of the be-
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haviour operator of [HS96] and how to relate it with BAS Lker languages.

Definition 5.1 A behavioural algebraic institution (BAINS) consists of an
algebraic institution and additionally the following 6 components:

e For any signature . € |AlgSig|, a fized but arbitrary family of partial
Y.-congruences <RA> A¢|Alg(S)| -

e For each signature & € |AlgSig| a behavioural satisfaction relation |:§IASL’E:
Alg(X) x Senprast (X), which is related to the standard satisfaction by
the behavioural satisfaction condition. This condition is defined as:

VA € Alg(X).Vo € Senprast(X).A/ ~Eprasr,s ¢ &
AESrasts ¢

e For each inclusion i : ¥ — X' in AlgSig, an inclusion bi[X] : ¥/ — X
and a function

brel[2, bi[2]] : P(Senparns (X)) = P(Senparns (bi[Z](X)))

which satisfies the following conditions which we will refer as the be-
havioural relativization conditions:

(1)VA' € |Alg(XZ')|.V® € P(Senparns (¥')).VA € |Alg(T)].
Alls = A/l NA ED =
A" € |Alg(bi[Z](X))]. A" |nr = A" N A" = brel[i, bi[Z]](P)

for a given Y/ -algebra A" is defined as follows:
A”I|E — A
A" = Al for any sort s € Sorts(X') — Sorts(X)
fam = far for any sort f € Ops(X') — Ops(X)
Py = Py for any sort P € Pr(¥') — Pr(X)

and

(2)VA" € Alg(bi[Z](X)).Y® € P(Senparns (T')).
A" E brelli, bi[Z]](®) = A’ € |Alg(X)|.A|lx = A" |x/~ NA' ED

e For each inclusion i : ¥ — X' in AlgSig, an inclusion qi[X] : &' — X
and a function

qrelli, qi[X]] : P(Senparns (X)) = P(Senparns (¢i[X](X)))
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which satisfies the following conditions which we will refer as the quotient
relativization conditions:

(\VA € |Alg(S)|.¥® € P(Senparns (3)). A’ g ® =

JA" € Alg(qi[Z](X')). A" |z = Alls/~ N A" =iz qrelli, qi[Z]]( )

(VA" € Alg(qi[S](X').VD € P(Senparvs (X)).
A" Eumy s qrelli, ¢i[X]](®) =
A" € |Alg(X')]|. A" |s = Alls/~ NA' Exipains ®

Remark: If the inclusion i is an identity (i : ¥ — X) then the first behavioural
relativization condition can be rewritten to:

VA € |Alg(X)|.Y® € P(Senparns (X)).
Al @ 34 € |[Alg(bi[Z](X))]. A'|ly = A A A’ | brel[i, bi[X]] (D)
Definition 5.2 A BASLnf specification language is an ASLnf specification
language over a behavioural algebraic institution BAINS with additionally the

behaviour, abstract and quotient operator with the same additional seman-
tic conditions as in BASLker and additionally the following conditions:

Let nf(SP) be < X', ® > |y.Then:
nf(behaviour SP wrt =) =
< Symbols, ¢ (behaviour SP wrt =), brel[i, bi[S]](P) > |p

Symbols, ¢ (behaviour SP wrt &) = bi[X](¥)

nf(abstract SP by =) = nf(behaviour SP/~ wrt =»)
Symbols, ; (abstract SP by =) =

Symbols, s (behaviour SP/~ wrt =)

nf(SP/ ~) =< Symbols,; (SP/ ~),qrel(i, ¢i[Z]](P) > |=

Symbols, ¢ (nf(SP/ ~)) = qi[Z](X)

where brel[i, bi[X]] : Senparns(X') = Senparns (bi[X](X')) is a function which
satisfies the behavioural relativization conditions where 1 has arity i : ¥ <« Y/
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and grel[i,qi[X]] : Senparns(X') = Senparns (qi[X](X’)) is a function which
satisfies the quotient relativization conditions.

Theorem 5.3 BASLnf is an ASLnf specification language.

Proof:
The proof is by induction on specification expressions. Let behop denote any of
the three behavioural operators. It is trivial to show that

Signature(behop(SP)) = Signature(nf(behop(SP)))

and that there exists an inclusion between X' and Symbolsy, s (SP) for all the
behavioural operators. Besides, we have to show that

A € behop(SP) < A € nf(behop(SP))

for every behavioural operator.
We assume that nf(SP) =< ¥/, ® > |y where X/ = Symbols,; (SP) and ¥ =
Signature(SP) for every argument specification S P of any behavioural operator

behop(SP).
o behaviour,; SP wrt &~
=)
By the definition of the behaviour operator we know that:
A € Models(behaviour SP wrt =&)< A/~€ Models(SP)
By the induction hypotheses, A/~ € Models(SP) can be rewritten to:
JA € |Alg(X")|. A'ls = A/ NA' E®
Let A’ be the X'-algebra such that
Alg=Aln NA'E®

By the first behavioural relativization condition of the function brel[7, bi[X]],
we can deduce that

JA" € Alg(bi[Z)(T)). A”|x = A" A A" |= brel[i, bi[Z])(P)
where A" is defined as:

AI”|E — A

A" = A for any sort s € Sorts(L') — Sorts(X)
farnr = far for any sort f € Ops(X') — Ops(X)
Pym = Pyfor any sort P € Pr(X') — Pr(X)

by
by

And therefore we have that:

A € Models(< bi[S)('), brel[i, bi[X])(®) > |x)
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and therefore A € Models(nf(behaviour SP wrt &)).

=)
By the definition of Models(nf(behaviour SP wrt ~)) we know
that

JA" € Alg(bi[X](21)). A'|ls = A A A s brel[i, qi[Z]](P)
Let A’ be a Y'-algebra such that A'|s = A and A’ f=x/ brel[i, ¢i[X]] (D).

By the second condition of the behavioural relativization function we can
deduce that

JA" € |Alg(E2)].A"|xs = A/ ANA" =@
and by the induction hypotheses we have that

A € Models(behaviour SP wrt )
SP/nt

=)
By the definition of Models(SP/ =), we know that

A € Models(SP/ ~) & A" € |Alg(X)[. A= A"/~ A A" € Models(SP)

By the induction hypotheses, we can transform the right hand side part
of the previous proposition to:

JA" € |Alg(2)]. A" s = A AN A=A/ NA"ED
Let A” be a X'-algebra such that
Alls=A ANAZA /s NAE®
By the condition of quotient relativization function we can deduce that

JA" € Alg(qi[S)(S)). A”|y = A'/a A

A" s parns qrel(i, qi[¥]](®)
and therefore A € Models(nf(SP/ =~))

=k

By the definition of Models(nf(SP/ ~)) we know that
A" € Alg(qi[X](X")). A'ls = A A A" s grel[i, qi[X]](P)

Let A’ be a X'-algebra such that A'|s = A and A’ |=x qrel[i, ¢i[X]](P).
By the second condition of the quotient relativization function we can
deduce that

3/4” € |Alg(2’)|14,|2 =~ A”|E/H A A” ':E’,BAINS [}
and by the induction hypotheses we have that A € Models(SP/ ~).
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e abstract SP by =: We know by theorem 4.3.24 that
abstract SP by == behaviour SP/~ wrt =.
Since we know by induction hypotheses that
A € Models(nf(SP)) < A € Models(SP),

by the induction condition of the quotient operator we know that SP/ ~
= nf(SP/ ~) and by the induction condition of the behavioural operator
we know that

behaviour SP/~ wrt =

Thus abstract SP by =

= nf(behaviour SP/~ wrt =).
nf(abstract SP by =).

Finally, we relate the semantics of the behaviour operator of BASLnf lan-
guages with the generalisation of the semantics of this operator given in [HS96].

In the section of further work of [HS96], general lines are given to define the
semantics of this operator for structured specifications. The M odels function is
defined using an auxiliar function as follows:

Models(behaviour SP wrt &) = Mody(SP)

and the auxiliar function Mody, following the underlying ideas of [HS96], can
be defined for the common operators of ASLnf languges and for an arbitrary
but fixed behavioural institution BAINS as follows:

Mody(< 2,8 >) = {A € Alg(T) | A £ &}

Mody (SPl +x SPQ) =
{A| A € Alg(Signature(SP;) +x Signature(SPz)),

Alint € Modn(SP1), Alinr € Mody(SP2)}

Mods(SPls) = {Als| A € Mods(SP))

Note that the Mody is not defined for the behavioural operator.
An alternative possible way to give semantics to the behaviour operator in
ASLnf languages which is equivalent to the previous extension under the same
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syntactic restrictions is as follows:
Signature(behaviour,;  SP  wrt &) = Signature(SP)
Symbols(behaviour,y SP  wrt &) = Symbols(SP)
Models(behaviour,y SP wrt w)=
{Aedlg(x) | A £~ 0}
nf(behaviour,y SP wrt =)=
< Symbols, ¢ (behaviour,y SP wrt =),
brel[i, bi[S)(®) > |s
Symbols, ¢ (behaviour,y SP  wrt r5) = bi[X](X')
where nf(SP) =< X', ® > |5,
brel[i, bi[X']] : P(Senparss (X)) = P(Senparss (bi[X](X')))
is a function which satisfies the behavioural relativization condition,
and i has arity i : ¥ — X/,
One way to see that this alternative semantics is equivalent to the one pre-

sented in [HS96] is to define the ASLnf language ASLN with just the com-
mon operators of ASLnf languages and prove the following proposition for any

SP € SPEX(ASLN):
VA € Models(SP). A € Mody(SP) &

A € Models(behaviour,y SP wrt =)

which follows trivially by the behavioural relativization conditions. Finally, we
can relate our alternative semantics with the semantics of the behaviour operator
of BASLker languages with the following theorem:

Theorem 5.4 Let BAINS be a behavioural algebraic institution. Let BSP Ly
be a BASLnf specification language over BAINS and let BSP Ly be the ASLnf
language with additionally the behaviour operator with the alternative semantics
presented below and the same institution BAINS. Let SPy; be a specification

expression of BSPLy and let SPy be a specification expression of BSP Ly such
that

A € Models(SP1) & A€ Models(SPy).

nf(SP1) =nf(SP)=<X,® > |z
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Under these assumptions the following holds:
A € Models(behaviour,y SP, wrt &)=

A € Models(behaviour SP; wrt =)
Proof:

Assume that A € Models(behaviour,; SP, wrt =). By the defini-
tion of the semantics of this behavioural operator, the previous proposition is
equivalent to

JA’ € Alg(hi[2']) (%) A'ls = A A A’ = brel[i, bi[2']] (@)

By the behavioural relativization condition we can deduce that A'/~E ® and
by the behavioural satisfaction condition we can deduce that A =¥ ®. Since
A'ls = A we have that A € Models(behaviour SP; wrt r).

Note that the left implication of the propositions which relate the class of
models of the behavioural operators doesn’t seem to hold since from our point of
view it is necessary that an equivalent or more general condition to the following
one

VA" ¢ |Alg(E”)|‘v’¢ € SenBAINS (E”_).
JAc |Alg(R)|.A" s = A/~ A A" Esv pains ¢ =

JA' € |Alg(E)|.A"|s = A/~ A A" s pains ¢

must be satisfied for any pair of inclusions i : ¥ < X', i : ¥/ < %" of a fixed but
arbitrary behavioural algebraic institutions and we have not succeeded to find
it for example for the institution of this kind with a higher-order logic presented
in the next section.

6 BHOL: A behavioural algebraic institution

In this section, we present a behavioural algebraic institution which extends
the algebraic institution HOL presented also in this chapter. The family of
partial congruences of this concrete behavioural algebraic institution will be the
observational equality which we described in the chapter of type theory and it
will be presented in this section in a more general way.

First, we present the definition of the behavioural satisfaction relation for
an arbitrary but fixed family of partial congruences as in [HS96]. Then, we
define the observational equality for first-order relational signatures which will
be referred to as relational observational equality and for first-order signatures
which will be referred to as observational equality, but in both cases they will
be denoted by the same symbol. The formulation of the observational equality
is the same as in [BHW95] or [Hen97].

Finally, we define the relativisation functions for the institution HOL and
we present the behavioural algebraic institution BHOL.
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6.1 The behavioural satisfaction relation

In order to define the behavioural satisfaction relation for the algebraic insti-
tution HOL it is necessary to extend the given fixed but arbitrary family of
partial X-congruences to higher-order types. We present this extension just
for the general case because the instantiation to the relational observational
equality is obvious.

Definition 6.1 Let ~ be a family of partial ¥i-congruences. The relation X4 [7, ... 7,]:
[ [ry-oosml]la x [ [my... m]la for any 1 € Typesgor(X),..., ™ €
Typespor (X) and for any A € |Alg(X)| is defined as follows:
P Rafr,.. ] P e Yo,vp € [1]a. .. Vo0, € [7 ]a.
V1 RA VI AU, Ry, U

((v1y... ) €Ep & (Vi,...,v,) €D)

Definition 6.2 For any relational signature ¥ € |AlgSig|, for any sort s €
Sorts(X), for any X-algebra A, a value v € A, respects a partial X-congruence
ifv ~a v. A predicate p € [ [m,...,m]la respects ma [, ... ] for any
7 € Typespor (X),..., T € Typesgor (X) if the following condition holds:

Yoy, vf € [71]a.... You,v, € [ ]a.

V1 RAn VAL AU, RA, Y, =
((vi,oooyvn) €p & (vh,...,0,) €P)
Proposition 6.3 ~, ; is a partial equivalence relation for any T € Typesyor, (X)

Definition 6.4 The semantic function [T]% is inductively defined for any type
T € Typesgor (X) and for any T-algebra A as follows:

[s1% = {veA;|vrespects ~ }
ooy 715 = p € PURIT x - x [1]5) | prespects ~ )
Notation: The semantics of Prop is a set of two elements: the empty set and

the set with the empty tuple. These two elements will be denoted as ff and tt
respectively.

Definition 6.5 The function [[t]]:A for any term t € Termspor (X, XHor),
for any algebra A € Alg(X), for any Typesmor (X)-sorted valuation p which
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for every 7 € Typespor (X), pr has arity p; : Xgor,» — [7]3 is inductively
defined by the structure of t € Terms(X, X) as follows:

[2:15.4 = pr (@)
L@ t)I5a = Fa(lta]Fas - 0] 5 4)
[p(t1, - )] 4 = if (115 a5 [talT4) € pathen tt else ff
YRR T S ) b
{(v1, .. sva) v € [m]F a5 -+ vn € [R5 40 [[qﬁ]]fu{(zhvl)’___7(“7%)} = tt}
[t (s )5, =
if ()54, [tn]54) € [t]5 4 then tt else ff
[0 ¢'15a=if 6134 = tt then [4]5, else tt
Ve : 7813 4 = if Vo € [T]5.[6]5 ((0,0)},4 = tt then tt clse fF

Definition 6.6 For ecach ¥ € |AlgSig|, for all A € |Alg(X)|, for all ¢ €
Sengor (X), the satisfaction relation A E§ ¢ holds if and only if for any
Typesnor (X)-sorted valuation p which for every T € Typesgor(X), pr has
arity pr : Xnor,» = [7]a, [8]54 = tt

6.2 The observational equality

In this subsection, we present the observational equality together with a be-
havioural equality between algebras which is factorizable by the observational
equality.

Definition 6.7 Given a signature ¥ = (S,Op) € |AlgSig| and a set of sorts
In C Sorts(X), X is sensible wrt In if for all s € Sorts(X) — In , there exists
a term t of sort s built with function symbols in & and variables of sort s € In.

Definition 6.8 Let ¥ = (S5,0p) be a signature in |AlgSig|, let In and Obs
be two set of sorts s.t. In, Obs C Sorts(X) and let X, be an In-sorted set of
variables. The Sorts(X)-sorted set of contexts Cs ops(X1n) is defined for each
sort s as the set of terms Tx (X1, Uz,) of result sort in Obs such that z, is a free
variable which satisfies the condition {z;} N X = 0. This set is also denoted as
Cs,005(X1n, 25) for every sort s € S.

Definition 6.9 Let ¥ = (S,0p) be a signature in |AlgSig|, let Obs and In
be two set of sorts s.t. Obs,In C Sorts(X) and In is sensible wrt ©. Let A be
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a Y-algebra. The observational equality (Ngbs’m) is formally defined for each
sort s and for each v,w € A[X,]s as follows:

Obs,In
v NS’A w <

Ve € CE,Obs(XIn, Zs).Voz c X — A[X]n].

Louizowyi(€) = lau{zaw)y(c) ,ifs €S —0bs

v=w ,ifs € Obs

Proposition 6.10 Let ¥ = (S5,0p) be a signature in |AlgSig|, let Obs and
In be two set of sorts s.t. Obs,In C Sorts(X). The observational equality
(~0%In ) is a family of partial $-congruences.

Proposition 6.11 Let ¥ = (S5,0p) be a signature in |AlgSig|, let Obs and
In be two set of sorts s.t. Obs,In C Sorts(X) and let A be a T-algebra. The

observational equality (Ngbs’ln) is weakly regular.

Definition 6.12 Let ¥ = (S5,0p) be a relational signature in |AlgSig|, let
In and Obs be two sets of sorts s.t. In,Obs C Sorts(X) and let Xi, be an
In-sorted set of variables. The behavioural equality between X-algebras =ops,mn
is formally defined as:

A=pps,in B & Vt,reTy(Xp,) Vo € X, > AVB € X1, — B.
Ia(t) = 1a(r) & Ig(t) = I5(r)

Proposition 6.13 Let ¥ = (S5,0p) be a signature in |AlgSig|, and let In
and Obs be two sets of sorts s.t. In,Obs C Sorts(X).=ops,1n is an equivalence
relation.

Proposition 6.14 Let ¥ = (S5, Op) be a signature in |AlgSig|, let In and Obs
be two sets of sorts s.t. In,Obs C Sorts(X) and let A be a T-algebra. =ops,1n

. . Obs, T
is factorizable by &7, """,

6.3 The relational observational equality

In this subsection, we extend the observational equality to relational signatures
giving also a relational behavioural equality which is factorizable by the rela-
tional observational equality.

Definition 6.15 Let X be a relational signature in |AlgSig|, let In and Obs

be two set of sorts s.t. In, Obs C Sorts(X) and let X, be an In-sorted set of
variables. The Sorts(X)-sorted set of contexts PCs obs(X1n) is defined for each
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sort s as the set of atoms Ps, (X1, Uzs) such that zs is a free variable which sat-
isfies the condition {z,} N X, = (. This set is also denoted as PCx ops(Xin, 2s)
for every sort s € S.

Definition 6.16 Let X be a relational signature in |AlgSig|, let Obs and In be
two set of sorts s.t. Obs,In C Sorts(X) and In is sensible wrt ¥. Let A be
a Y-algebra. The relational observational equality (Ngbs,m) is formally defined
for each sort s and for each v,w € A[X,]s as follows:

Obs,In
v R w =

Ve € CE,Obs(XIna 25).\V/Oz c X, — A[Xjn]
lau{zon}(€) = Tauf(.wyy(e) A
Vpe € PC&Obs(X]n, zs).Va c X — A[X[n].

Lou(zo3(PE) & Lauf(z.,w)} (Pe)

,ifs € S — Obs

v=w ,ifs € Obs

Notation: To denote an observational equality Ngbs’m we will normally

drop the subscript denoting an algebra A if it can be inferred from the contezt.

The following propositions can be proven in a similar way as in [BHW95]

Proposition 6.17 Let X be a relational signature in |AlgSig|, let Obs and In be
two set of sorts s.t. Obs,In C Sorts(X). The relational observational equality
(~0%In ) is a family of partial $-congruences.

Proposition 6.18 Let X be a relational signature in |AlgSig|, let Obs and In

be two set of sorts s.t. Obs,In C Sorts(X) and let A be a X-algebra. The

relational observational equality (Ngbs’m) is weakly regular.

Definition 6.19 Let X be a signature, let In and Obs be two sets of sorts s.t.
In,Obs C Sorts(X) and let Xy, be an In-sorted set of variables. The relational
behavioural equality between X-algebras =ops,rn is formally defined as:

A=ops,;n B & VtreTs(Xp,)Vae X, > AVG € X1, — B.
Io(t) = Ia(r) & I5(t) = Ig(r) A
Vp,p' € Ps(X1,) Vo € X1, > AVB € X1 — B.
l(p) & L(p) & Islp) & Li(p)
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Proposition 6.20 Let X be a signature and let In and Obs be two sets of sorts
s.t. In,Obs C Sorts(X). =ops,1n is an equivalence relation.

Proposition 6.21 Let X be a signature, let In and Obs be two sets of sorts
s.t. In,0bs C Sorts(X) and let A be a X-algebra. =ops,1n is factorizable by

Obs,I
Ay S

6.4 The relativization functions

One possible way to define the functions which have to satisfy the behavioural
relativization conditions is to define for any inclusion 7 : 3 < ¥/, the inclusion
bihol[X] : ¥/ — bihol[X](X') with a disjoint copy of ¥/ which we will denote as
Copy' (¥') and to define the function

b?“elhol[i, bihol[E]] H P(SenBHOL (EI)) — P(SERBHOL (bz'hol[E](E’)))

in such a way that if a bihol[X](X')-algebra A" satisfies the set of sentences
brelhol[i, bihol[X]](®), then A” must also satisfy the following condition:

AIIlCopy’(E) = A”|E/ NObs’In /\AH|COpy’(E’) ': Copyl(q))

This can be achieved by defining the set of sentences brelhol[i, bihol[X]](®) as
the union of Copy' (®) with an axiomatization in higher-order logic of the ob-

Obs;In and an axiomatization of a pseudo epimorphism

servational equality &
between A”|s and A”|¢py(x). This axiomatization requires extra symbols to
denote the observational equality and the pseudo epimorphism. The axiomati-
zation of the observational equality is based on [HS96] and the axiomatization
of the pseudo epimorphism is based on [Hen97].

For example, for the signature of a base specification C'ontainer with sorts
Container, Elem, Nat and Bool, operations {) : Container, insert : Flem x
Container — Container, union : Container x Container — Container,...

which will be denoted by Contsign and set of sentences C'ontax including

Vs : Container.union ) s = s

Vs, s' : Container.(union (insert e s) s')(insert e (union s s'))
bihol[Contsign] would be defined as:

bihol[Contsign](Contsign) = Conisign U Copy(Contsign)U

{~s:s x s|s € Sorts(Contsign)} U {ms : s = Copy(s) | s € Sorts(Contsign)}

(where Copy(Contsign) is a disjoint copy of the signature Contsign, the symbols

~ are used to denote the observational equality and the symbols 75 to denote a
pseudoepimorphism), and the set of sentences brelhol[i, bihol[Contsign]](Contaz)

will include the axioms C'ontaz appropiately renamed for the signature Copy(Consign),
axioms to define the indistinguishability relation (Indist_rel[Contsign[~], Obs, In])
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and axioms to establish a pseudo-epimorphism (pEpi[bihol[Contsign], Obs, In])
for given sorts Obs, In which determine the indistinguishability relation. These
set of axioms are detailed in this section.

To define the functions which have to satisfy the quotient relativization con-
ditions we proceed in a similar way defining for any inclusion i : ¥ < ¥/, the
inclusion gihol[X] : &/ — bihol[X](X') with also a disjoint copy of X' which we
will also denote as Copy’(X'), and defining the function

grelhol(i, qihol[X]] : P(Senpror (X)) = P(Senpror (gihol[X](X)))

in such a way that if a gihol[X](X’)-algebra A" satisfies a set of sentences
grelhol[i, qihol[X]](®), then A” must also satisfy the following condition:

AHlE ~ AHlCopy’(E)/ NCOpy’(ObS),Copy’(In) /\A”|Copy’(2’) ': Copy’(q))

This can be achieved in a symmetrical way as in the definition of the set of sen-
tences brelhol[i, bihol[X]](®) by defining the set of sentences grelhol[i, gihol[Z]](®)
as the union of Copy/(®) with an axiomatization in higher-order logic of the

Obs),Copy(In) ( Obs:In) and an axioma-

observational equality asCory( instead of & _
tization of a pseudo epimorphism between A”|¢,py1(x) and A”|x (instead of a
pseudo epimorphism between A”|g and A”|c,pyi(x))-

For the same signature Contsign and the set of axioms Contaz presented

above, qihol[Contsign] would be defined as

gihol[Contsign](Contsign) = Contsign U Copy(Contsign)U
{~copy(s): Copy(s) x Copy(s) | s € Sorts(Contsign)}U

{7 Copy(s) : Copy(s) — s | s € Sorts(Contsign)}

and the set of sentences grelhol[i, gihol[Contsign]](Contaz) will also include
the axioms Copy(Contaz), axioms to define the indistinguishability relation
(Indist_rel[Copy(Contsign[~]), Obs, In]) and axioms to establish a pseudoepi-
morphism (pEpi[gihol[Contsign], Obs, In]).

See the rest of this subsection for a complete formal definition of the functions

brelhol[i, bihol[X]] : P(Senpuor (X)) = P(Senpuor (bihol[Z](X')))

and the functions

qrelholli, qihol[X]] : P(Senpror (X)) = P(Senpuor (qihol[Z](X')))

for any inclusion i : ¥ < X/ and the next subsection for proofs that these func-
tions satisfy the behavioural and quotient relativization conditions respectively.

Definition 6.22 The relational signature X[~] is defined for any signature ©. €
|AlgSig| and for any Sorts(X)-set of new symbols ~ as:

Y~=XU{~;:sxs|seS}
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Definition 6.23 The relational signature X[~, Tcopy] for any signature T €
|AlgSig|, for any bijective signature morphism Copy : ¥ — Copy(X) such that
YN Copy(X) = O and for any Sorts(X)—set of new symbols ~ and 7 is defined
as:

X[~y Teopy] = E[~] U Copy(Z) U {ms : s — Copy(s)|s € S}

Remark:  The relational signature Copy(X)[~, Tcopy—1] stands for the
following signature:

Copy(X)[~, mcopy-1] = Copy(T)[~] UL U {m; : Copy(s) — s|s € S}

Definition 6.24 For any inclusion i : ¥ < X' in AlgSig, the inclusion bihol[X] :
X' < bihol[X](X') is defined as follows:

bihol[S](S) = Copy/ (%) U X[, mcopy]

where Copy' is a pushout morphism of the bijective signature morphism Copy
and the inclusion i : ¥ < X/ such that

Copy' () N/ [~, Tcopy] = Copy' (X)

Definition 6.25 For any inclusioni: X < X/ in AlgSig, the inclusion gihol[X] :
X' — gihol[X](X') is defined as follows:

qihol[Z](X') = Copy'(X') U Copy (X')[~, mcopy-1]

where Copy' is a pushout morphism of the bijective signature morphism Copy
and the inclusion i : ¥ < X' such that

Copy' (2') N Copy' (X')[~, Tcopy—1] = Copy' (X')

Definition 6.26 The Sorts(X)-set of sentences D[X, In] for any In C Sorts(X)
is defined as follows:

DX, In] = {D,[X,In] | s € Sorts(X)}

where
DX, In] = Az : s.(VP : [s].( A (V&1 s1.... Ya, @ sp.
fi81X... X5, —>3€O0ps(XT)
( A P(z;) D P(f(x1,...,2s))))) D Pux) ,ifseS—1In
i€[1l..n],s;=s
Ds[X, In] = Az : s.true ,ifseln
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Definition 6.27 The set of sentences Indist_rel[X[~], Obs, In] is defined as
follows:

Indist_rel[X[~], Obs, In] =
{Indist_rel[X[~], Obs, In,s] | s € Sorts(X)}

where

Indist_rel[Y[~], Obs, In, s] = Ax : s. Ay : 8. 351¢50r15(5) Rst [, s'].
R, (z,y) NOBSEQ[(S,Op), R, Obs, In] A

CONGI[E, R,0bs,In] N DX, In](z) AN D2, In](y)

OBSEQ[Z, R,0bs,In]= A\ Vv :obs.Yw: obs.
obs€Obs

Dops [2, In](v) A Dops[Z, In](w) = (Robs(v,w) & v = w)

CONGIX, R, Obs, In] =

Vei:81.Vy 181, ... Vo, 15, Vy, : s,
f181X..X 8, —>8€0ps(T)

(Rs1(I1,y1) VAN Rm(mn,yn) =

Rs(f(mla-" 7In)7f(y]7"' 7yn))) A

A Vzy:s1.Vyr:s1. ... Vo, 15, VY, @ sn.
pis1X.. X5, EPrs(X)
(Rsl(l'layl) A oo A Rsn(l'nayn) =
(p(z1y...y20) © Py, Yn))

Definition 6.28 The set of sentences pEpippor[X[~, Tcopy], Obs, In] is de-
fined as:

pEpiprorL[E[~, Tcopy), Obs, In] = Hom[X[~, Tcopy), Obs, In] U

Epihom[X[~, Tcopy], Obs, In] U ~ —comp[S[~, Tcopy), Obs, In]
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where

Hom[X[~, T¢opyl, Obs, In] = U {Vty:s1.... Vi, 2 s,.
f:slx...Xsn%sEOps(E)

A Dy [E In](t;) =
i€[l..n]
WCopy,s(f(tla .. atn)) = Copy(f)(ﬂ-Copy,m (tl)a cee ,ﬂ-COpy,sn(tn))} U

U {Vt1:81.... Vi, 1 s,.

p:slx...Xsn%seprs(E)

/\ DSi[EaIn](ti) =
i€[1..n]

P(t1y ... s ty)) & Copy(p)(Tcopy,s; (t1)s -+ > TCopy,sn(tn))}

Epihom[X[~, T¢opy], Obs, In] =
US{Vy : Copy(s).Fu 1 s.Dg[8, In](x) A Tcopy,s(x) =y)}
s€

~ —comp|X[~, Tcopyl; Obs, In] =

LGJq{Vx ts.Vy 5. D2, In](z) A Ds|X, In](y) =

T ~s Y Topy,s () = Teopy,s(¥)}
Definition 6.29 For any inclusion i : ¥ — X/ in AlgSig, the function
brelhol[i, bihol[X]] : P(Senpuor (X)) = P(Senpuor (bihol[Z](X')))
is defined as follows:
brelhol[i, bihol[X]](®) =
Copy' (®) U pEpipror[E[~, Tcopyl; Obs, In] U
{Ve:sVy:s.x~; y o Indist_rel[X][~],Obs,In,s|(z,y) |
s € Sorts(X)} U
Ve:sVy:s.a~y & o = y|se€Sorts(X') — Sorts(L)} U

{Vz:s.m(z) = z|s € Sorts(X') — Sorts(L)}
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Definition 6.30 For any inclusion i : ¥ < X/ in AlgSig, the function

qrelholli, qihol[X]] : P(Senpror (X)) = P(Senpror (qihol[Z](X')))

is defined as follows:
grelhol[i, qihol[X]](®) =

Copy'(®) U pEpipror[Copy(X)[~, mcopy-1], Copy(Obs), Copy(In)] U
{Va : Copy(s).Yy : Copy(s). & ~copy(s) ¥ ©

Indist_rel[Copy(E)[~], Copy(Obs), Copy(In)](z,y) | s € Sorts(X)} U
{Va : Copy'(s).Vy : Copy/(s)- & ~copy(s) ¥

r = y|s€ Sorts(S) — Sorts(T)} U
(¥ : Copy (). Taopyr(s)(x) = @ | 5 € Sorts(X') — Sorts(%)}

Lemma 6.31 If Rgbs’h is a partial X-congruence which satisfies the following
condition:

Yobs € Obs.Nv,w € Aops[X1n].(v Rg?:éin w S v = w)
then
Vs € S.¥v,w € A[Xp]v Ry w = v w
Proof:

It follows by context induction.The proof of the general case uses that R is
af partial X-congruence which coincides with the set theoretical equality for
observable sorts.

The following lemma can also be found in [HS596]:

Lemma 6.32 The sentence Indist_rel[X[~], Obs, In, s| for any sort s € Sorts(X)
and for any free variables xz,y € X satisfies the following condition which we
will refer as the indistinguishability condition:

Vs € S.YA € |Alg(2)|.Vp € {z,y} — A.

[indist_rel[S[~], Obs, In](z, 1) 5.1 < plx) ~92" p(y)

6.5 The institution BHOL

Theorem 6.33 The algebraic institution BHOL extended with the following
components:
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e Foreach X € |AlgSig| and for a fized but arbitrary sets Obs, In C Sorts(X),
the relational observational equality.

o For each ¥ € |AlgSig| the behavioural satisfaction relation defined in sec-
tion 4.6.1.

e For each inclusion i : ¥ — X' in AlgSig, the inclusion bihol[X] : ¥/ —
bihol[X](X') and the function brelhol[i, bihol[X]]

e For each inclusion i : ¥ — X' in AlgSig, the inclusion qihol[X] : X
qihol[X](X') and the function grelhol[i, gihol[X]]

is a behavioural algebraic institution.

Proof:

We have to prove that

o foreach ¥ € |AlgSig| and for a fixed but arbitrary sets Obs, In C Sorts(X),

Obs JIn

the relational observational equality = is a family of partial -

congruences which follows by proposltlon 4.6.17.

e The behavioural satisfaction relation satisfies the behavioural satisfaction

condition. See theorem 3.35 of [HS96].

e For each inclusion i : ¥ «— ¥’ in AlgSig, the function brelhol[i, bihol[X]]
satisfies the behavioural relativization conditions.

— (1) ): Assume that A" € |Alg(¥')| and ® € P(Senpror (X)), and
let A be a X-algebra such that

Aly = A/ NAED
To prove that
A" € Alg(bi[X](X")). A" |z = A" N A" = brel[i, bi[X])(P)
where the ¥'-algebra A" is defined as follows:

14///'E —
Al = A’s for any sort s € Sorts(X') — Sorts(X)
fam = far for any sort f € Ops(X') — Ops(X)
Py = Py for any sort P € Pr(¥') — Pr(X)

/

we will define a bi[X](X)-algebra A" such that
Al = A" N A" = brel[i, bi[X]](P)

The bi[X](X')-algebra A" is defined as follows:
¥ Ay = A
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x AV = Al for any sort s € Sorts(X') — Sorts(X)
% fan = far for any sort f € Ops(X') — Ops(X)
% Pan = Py for any sort P € Pr(X') — Pr(X)

Obs, T
* A”|Copy(2) A/N ’ nlCopy 1-

* Al

Copy'(s) = A

k]

for any sort s € Sorts(X') — Sorts(X)
x Copy (f)an = far  for any sort f € Ops(X’) — Ops(X)
% Copy'(P)an = Py for any sort P € Pr(X') — Pr(X)

* Al =eq, for every sort s € S.
where
€a,5(v) = [v]NObs,In for all s € Sorts(X).

* Al =id g s for every sort s € Sorts(X') — Sorts(X).
where

idgs(v) = v

Al = Ngbj 7 for every sort s € Sorts(X).

"
~Copy!(s)

It is obvious that A”|sr = A" and to prove that

= = for every sort s € Sorts(X') — Sorts(X).

A" = brelhol[i, bihol [X]](®)

we have to prove that

x A" Izbmol 1z1),BroL Copy'(®) which holds by the satisfaction
lemma since ® € P(Senpror (X)), A”|Copy/(gz) = Al|copy'—1
and A’ ':E’,BHOL o .

x A" = Indist_rel[¥[~], Obs, In] holds since for every sort s €
Sorts(X) A = 1]471 100 and Indist_rel[S[~], Obs, In] satisfies
the 1ndlst1ngulshab1hty condition.

* A" Epinosysr) {Vr 1 Copy'(s).Vy : Copy'(s).
T ~copy'(s) Y & =y |s€ Sorts(X') — Sorts(X)}

since for every sort s € Sorts(X') — Sorts(X) AL’,S is the set
theoretical equality.
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* A" = pEpi[X[~, mcopy]] holds since for every sort s € Sorts(X),

. . Obs,T
A can be seen as an epimorphism between A and A/~ """

and therefore A" satisfies Hom[X[~, m¢copy], Obs, In], Epihom[X[m¢copy], Obs, In]
and also ~ —comp[X[~, Tcopy], Obs, In].

* A" E{Ve:s.m,(x) = x|s € Sorts(X') — Sorts(X)} since for
every sort s € Sorts(X') — Sorts(X) A7 is the identity function.

— (2) ): Assume that A" € Alg(bihol[X](X')), ® € P(Senpror (X))
and A" | brel[i, bi[X]] (D).
We have to show that

JA' € |Alg(Z)|.A'ls = A"|s/~ A A= @

Since A" |copyr(zy = Copy'(®) and because of the indistinguishabil-
ity condition together with the definition of pEpi[X[~, Tcopy]] We can
deduce that

A”|Copy(2) I~ Alllz/mg)bs,[n|copy_1

Finally, by the abstract satisfaction condition and the satisfaction
condition of the institution we can prove our goal.

e For each inclusion 7 : ¥ < ¥/ in AlgSig, the function grelhol[i, qihol[X]]
satisfies the quotient relativization conditions.

— ()VA’ € |Alg(S)|¥® € P(Senpror(T)). A' = & =
JA" € Alg(gihol[S](S')). A"|s = Alls/~ AA" = qrelhol[S](S)(®)

Assume that A’ € |Alg(X')], ® € P (Senpror (X)) and A" Exi pror
®. To prove that

34" € Alg(qihol[S](2")). A"|s = A'|s/~ A

A" Esi Bror qrelhol[i, qihol[X]](P)
we will define an algebra A" such that
A'ls = Alls/~ AN A" | grelholli, qihol[X]] (D)

The algebra A” is defined as follows:

¥ Ay = A'|g /00
x A = A, for any sort s € Sorts(X') — Sorts(X)

¥ fan = far for any sort f € Ops(X') — Ops(T)
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*

Py = Py for any sort P € Pr(X') — Pr(X)

1" — /
A |Copy’()3’) =A |Copy’—1-

1" —

Moy (s) = CAlGopyr_1:Copy’(s) for every sort s € Sorts(X).

where

ca,copy!(s) (V) =[] Copy!(Obs),Copy’(In)

A, Copy!(s)
1" _
TCopy'(s) ZdAIlCOpy’—Ncopyl(s)
for every sort s € Sorts(X') — Sorts(X).

where

idas(v) =0

1" _ ,Copy'(In),Copy’ (Obs)

Ry () = R Al g1t GomyomCopy'(5) for every sort s € Sorts(X).
A = = for every sort s orts(X') — Sorts(X).

_ y sort s € Sorts(s) — Sorts(%)

It is obvious that A" |y = A'|g/~ since A" |y = A'|s/~.
To prove that

A" Esv Bror grelhol[i, qihol[X])(®)

we have to prove that

*

A" =gisyxr,BaorL Copy'(®) which holds by the satisfaction
lemma since ® € P(Senpror (X)), A”|Copy’(2:’) = AI|COPy’—1
and AI ':E’,BHOL [ON

A" k= Indist_rel[Copy(X)[~], Copy(Obs), Copy(In)] holds since
for every sort s € Sorts(X) AZCOM(S) = Niflpcy(lrj)_,fgpoz;(y?f;) and

Indist_rel[Copy(X)[~], Copy(Obs), Copy(In)] satisfies the indis-
tinguishability condition.

A" ':qihol[E](E’),BHOL {Va : Copy'(s).Vy : Copy'(s).

T ~Copy'(s)Y & T =y|s€ Sorts(X') — Sorts(X)}
since for every sort s € Sorts(X') — Sorts(X) AZCOM(S) is the set
theoretical equality.

A" | pEpi[Copy(X)[~, Tcopy—1]] holds since for every sort s €
Sorts(X), A’,;CD”(S)
and A’|E/Ngbs’m and therefore A" satisfies Hom[X[~, m¢opy], Obs, In],
Epihom[S[ncopy], Obs, In] and also ~ —comp[X[~, m¢opy], Obs, In].
A" = {Va : Copy'(s). Teopy'(s)(x) = x| s € Sorts(¥') —
Sorts(X)} since for every sort s € Sorts(X')—Sorts(X) AY

TCopy! (s)

can be seen as an epimorphism between A’|s

is the identity function.

— (2)VA” € Alg(qihol[S](S)).V® € P(Senpror (X))
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A" IZE,BHOL qT’elhOl[i, qzhol[E]](fb) =

JA € |[Alg(X')|.A"]s = A'ls/~ NA Exi oL ®
Assume that A" € Alg(qihol[Z](X')), ® € P(Sengnor (X)), and

A" s pror qrelhol(i, qihol[L]] (D)

By the definition of grelhol[X](X')(®) we know that

A copyr(=nlcopy ExtBrOL ®
By the definitions of Indist_rel[Copy(X)[~], Copy(Obs), Copy(In)]
and pEpi[Copy(X)[~, mcopy—1]; Copy(Obs), Copy(In)]

Obs,In ~ Alll

we have that A”|Copy()3)|copy/ S 5.

43



References

[BCH]

[BHW95]

[BT96]

[DGSY1]

[GBY2]

[Hen97]

[F1S96]

[Tar]

[Tar85]

Michel Bidoit, Maria Victoria Cengarle, and Rolf Hennicker. Proof
systems for structured specifications and their refinements. Chapter
11 of the book Algebraic Foundations of Systems Specification.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and
abstractor specifications. Science of Computer Programming, 25(2-

3):149-186, December 1995.

M. Bidoit and A. Tarlecki. Behavioural satisfaction and equivalence
in concrete model categories. In Proc. CAAP’96 Trees in Algebra and

Programming (LNCS 1059), 1996.

R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for
modularisation. In G. Huet and G. Plotkin, editors, Logical FEnuvi-
ronments. Cambridge University Press, 1991. Workshop on Logical
Frameworks (Edinburgh).

Joseph A Goguen and Rod Burstall. INSTITUTIONS: Abstract
model theory for specification and programming. Journal of the As-
soc. for Computing Machinery, 39(1):95-146, 1992.

Rolf Hennicker. Structured Specifications with Behavioural Operators:
Semantics, Proof Methods and Applications. Habilitationsschrift,
Institut fir Informatik, Ludwig-Maximilians-Universitat Miinchen,

June 1997.

Martin Hofmann and Donald Sannella. On behavioural abstraction
and behavioural satisfaction in higher-order logic. Theoretical Com-

puter Science, 167:3-45, 1996.

Andrzej Tarlecki. Institutions:an abstract framework for formal spec-
ifications. Chapter 3 of the book Algebraic Foundations of Systems
Specification (Springer).

Andrzej Tarlecki. On the existence of free models in abstract algebraic
institutions. Theoretical Computer Science, 37, 1985.

44



